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Preface to the Second Edition

 

The publication of this 

 

Second Edition

 

 of 

 

The Dynamics of Heat

 

 has given me the op-
portunity to make some major and, I hope, useful changes to the book. The character
of the conceptualization of thermal processes—the direct approach to entropy as what
in lay terms would be called “heat” and temperature as the corresponding potential—
has been retained and much has been taken directly from the 

 

First Edition

 

, but I have
completely changed the structure of this text and I have added new material on thermal
processes, chemical dynamics, and explicit dynamical modeling. The original goals of
a unification of foundations and applications in general, and of thermodynamics and
heat transfer in particular, have been the guiding principles for this revision. As such,

 

The Dynamics of Heat

 

 continues to be a text that can help students of the applied sci-
ences, engineering, and medicine to take the steps from the simplest beginnings in
thermal and chemical physics all the way to more demanding and formal treatments
of modern continuum thermodynamics. Students of physics can find an introduction
to the foundations of a dynamical theory of macroscopic thermal phenomena that will
complement modern treatments of statistical physics.

The book is now divided into four parts. Part I, 

 

Processes, Energy, and Dynamical
Models

 

, is an extensive revision of the Introduction of the 

 

First Edition

 

. I have simpli-
fied the original brief description of the material and I have added explicit system dy-
namics modeling of laboratory experiments. Part II, 

 

Thermal and Chemical Processes

 

,
takes the introductory elements of the four main chapters of the previous edition and
transforms them into an introduction to the dynamics of heat and substances suitable
to a first college course on the subject. It builds upon the description of fluid, electrical,
and mechanical phenomena introduced in Part I and essentially provides a uniform dy-
namical systems approach to models of thermal and chemical processes. Part IV, 

 

Spe-
cial Processes and Systems

 

, is the least changed from the previous text and contains
the more advanced applications of the four large chapters of the 

 

First Edition

 

. The Ep-
ilogue of the 

 

First Edition

 

 has been converted into Part III, 

 

A Dynamical Theory of
Heat

 

. which now offers a formal conclusion to Part II and an introduction to continu-
um thermodynamics and radiative transfer useful for the applications in Part IV. The
Interlude of the First Edition which had the character of a historical and formal intro-
duction to the thermodynamics of spatially uniform systems, has been omitted. For a
direct approach to the dynamics of heat I now prefer the formalism of uniform pro-
cesses developed in Part III over the classical treatment of cycles. Parts III and IV can
be the foundation of an advanced course. Last but not least, the new 

 

Introduction

 

 is a
brief outline of cognitive and historical aspects of human conceptualizations of nature
in general and of thermal phenomena in particular.

A number of aspects of the text have been changed and some elements have been add-
ed. Here is a list of the most important of these changes and additions:

• There are descriptions including actual laboratory data for thermal and chemical
phenomena in some key chapters. Many of the phenomena have subsequently
been modeled with the help of simple system dynamics tools, providing explicit
and detailed dynamical models. Additional experiments and models can be
found on a Website for inquiry based learning (see below).
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• Time dependent thermal and, especially, chemical phenomena have been given
more space than in the previous edition. They can be found in Part II.

• A discussion of thermoelectricity has been added both in the introduction to
thermal processes (Chapter 4) and in a more in-depth study of conductive pro-
cesses (Chapter 13). This is another demonstration of the ease with which some
subjects can be treated that are usually considered advanced material in standard
texts.

• To strengthen the didactic approach to introductory continuum physics, I have
added a brief development of equations of balance and constitutive relations for
the life and migration of locust in a single spatial dimension in Chapter 11.

• Short conceptual and review questions have been added to most of the chapters
of the book. They should require no more than a pencil and a piece of paper, and
maybe not even that. Answers to these questions are provided in the Appendix. 

• There are short answers to many of the end-of-chapter problems in the Appen-
dix. A solutions manual will accompany the book.

• I have changed the sign convention for fluxes. Previously, I had chosen to go
with the tradition of electromagnetic field theory where an outward flux is given
a positive sign. Now, I prefer to count a flow 

 

into

 

 a system as a 

 

positive

 

 quantity.
This leads to two changes: (1) in the laws of balance, the rate of change of a flu-
idlike quantity equals the sum of the currents (rather than the negative sum); (2)
a flux as the surface integral of a current density obtains a minus sign. The con-
vention adopted here should be more convenient for engineering students.

Many of the new aspects and elements have been inspired by a didactics of inquiry
based learning which I have been privileged to build up with Georges Ecoffey of the
University of Applied Sciences of Western Switzerland and Edy Schütz (Bildungszen-
trum Uster),

 

1

 

 partially under a grant made available by the Eduard Job Foundation for
Thermal and Chemical Dynamics in Hamburg, Germany.

 

2

 

 My school and colleagues
at the Center of Applied Mathematics and Physics have been supportive in the con-
struction of a studio for introductory physics courses where I have been able to apply
new learning materials and tools for the last few years. In particular, I would like to
thank Jürg Krieg who has made sure that funds were available, and Arthur Baumann
who has been doing much of the actual setting up of the studio. I would like to express
my gratitude to Paolo Lubini for editing Chapter 6, Jürg Hosang for end of chapter
problems for that same chapter, Georges Ecoffey for editing the entire book, and Dav-
id Packer and the staff at Springer who have been patient and always very supportive
of this project. 

Again, my special gratitude goes to my wife Robin who did the language editing of
the entire text.

Winterthur, June 2010

 

Hans Fuchs

 

1. See the Website for 

 

Physics as a Systems Science—A Virtual Learning Environment

 

 at
http://www.zhaw.ch/~fusa/PSS_VLE/index.html.

2. See the Website at http://www.job-stiftung.de.

PREFACE TO THE SECOND EDITION
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Preface to the First Edition

 

The last few decades have seen the development of a general approach to thermody-
namic theory. Continuum thermodynamics has demonstrated to us how we can build
a theory of the dynamics of heat rather than of statics. In this book I would like to
transfer what I have learned about the general theory to an introductory level and to
applications in the sciences and engineering.

Two elements combine to make this presentation of thermodynamics distinct. First of
all, taking as the foundation the fundamental ideas that have been developed in con-
tinuum thermodynamics allows one to combine the classical theory of thermodynam-
ics and the theory of heat transfer into a single edifice. Second, didactic tools have
been built that make it not just simple, but rather natural and inevitable to use entropy
as the thermal quantity with which to start the exposition. The outcome is a course that
is both fundamental and geared toward applications in engineering and the sciences.

In continuum physics an intuitive and unified view of physical processes has evolved:
That it is the flow and the balance of certain physical quantities such as mass, momen-
tum, and entropy which govern all interactions. The fundamental laws of balance must
be accompanied by proper constitutive relations for the fluxes and other variables. To-
gether, these laws make it possible to describe continuous processes occurring in space
and time. The image developed here lends itself to a presentation of introductory ma-
terial simple enough for the beginner while providing the foundations upon which ad-
vanced courses may be built in a straightforward manner. Entropy is understood as the
everyday concept of heat, a concept that can be turned into a physical quantity com-
parable to electrical charge or momentum. With the recognition that heat (entropy) can
be created, the law of balance of heat, i.e., the most general form of the second law of
thermodynamics, is at the fingertips of the student. 

The book contains two lines of development which you can either combine (by read-
ing the chapters in the sequence presented) or read separately. In addition to the four
chapters which represent the main line, you will find a Prologue, an Interlude, and an
Epilogue which discuss some subjects at a somewhat higher level. 

The four chapters that form the main body of the text grew out of my experience in
teaching thermodynamics as a part of introductory physics, but represent an extension
both in content and level of what I commonly include in those courses. The extension
mostly concerns subject matter treated in courses on engineering thermodynamics and
heat transfer and applications to solar energy engineering. Still, the chapters maintain
the style of a first introduction to the subject. Previous knowledge of thermal physics
is not required, but you should be familiar with basic electricity, mechanics, and chem-
istry, as they are taught in introductory college courses. With the exception of one or
two subjects, only a modest amount of calculus is used. Chapter 1 provides an
introduction to basic quantities, concepts, and laws. Entropy is introduced as the quan-
tity which is responsible for making bodies warm or for letting ice melt, and the law
of balance of entropy is formulated directly on the basis of ideas taken from everyday
images of heat. The relation between currents of heat (entropy) and currents of energy
is motivated along the lines of Carnot’s theory of heat engines, yielding a law which
makes the development of thermodynamics rather simple. (The relation is proved later
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on the basis of some alternative assumptions in the Interlude.) Then, some simple ap-
plications which do not rely too heavily upon particular constitutive relations are
developed. First among them is a treatment of irreversibility and the loss of power in
thermal engines, a subject which teaches us about the importance of the rule of mini-
mal production of heat. Chapters 2, 3, and 4 furnish introductions to constitutive the-
ories. The first of these deals with uniform bodies, which respond to heating by
changing mechanical or other variables. A simple version of the constitutive theory of
the ideal gas is developed, which leads to a theory of the thermodynamics of ideal flu-
ids. In addition, blackbody radiation and magnetic bodies are treated. A short exposi-
tion of the concepts of thermostatics exposes the reader to the difference between
dynamics and statics in the field of thermal physics. Chapter 3 deals with theories of
heat transfer excluding convection. The general form of the equation of balance of en-
tropy for bodies and control systems is given and applied to various cases. Production
rates of heat in conduction and radiation are calculated and applied, among others, to
the computation of the maximum power of solar thermal engines. In this chapter, con-
tinuous processes are treated for the first time in the context of one-dimensional con-
duction of heat. The radiation field and the issue of the entropy of radiation are
discussed extensively, and a section on solar radiation concludes this Chapter. Chapter
4 extends the theory of heat to processes involving the change and the transport of sub-
stances. Subjects such as chemical reactions, phase changes, and convection, and ap-
plications to power engineering and to heat exchangers form the body of this Chapter.
All of these Chapters include a large number of solved examples in the text.

The second track of the book treats thermodynamics in a more advanced and formal
manner. The Prologue provides a brief view of a unified approach to classical physics.
Except for the first section, which you definitely should read before starting with
Chapters 1 – 4, the Prologue presents several subjects of physics at a relatively quick
pace, demonstrating the unified approach to dynamical processes which forms the
backbone of the entire book. (The concepts are introduced at a more leisurely pace in
the main chapters on thermodynamics.) If you wish, you can then try to read the Inter-
lude which introduces the subject of the thermodynamics of uniform fluids on the ba-
sis of the caloric theory of heat. This Chapter repeats the subject of part of Chapter 1
and most of Chapter 2 at a higher mathematical level. In contrast to those chapters, the
Interlude also provides a first proof of the relation between currents of entropy and of
energy, which shows that the ideal gas temperature can be taken as the thermal poten-
tial. Finally, the Epilogue takes the first simple steps into the field of continuum ther-
modynamics, exposing you to the ideas behind the more advanced subjects which
have been the focus of development over the last few decades.

If I seem to succeed in introducing you to an exciting new view of a classical subject,
the individuals actually responsible for this achievement are the researchers who have
developed this field. Carnot, who gave us an image of how heat works in engines, a
view which I have taken as the starting point of my exposition. Gibbs demonstrated
how to deal with chemical change and heat. Planck’s theory of heat radiation still is
one of the clearest expositions of the thermodynamics of radiation. Also, there are the
researchers who have built continuum thermodynamics, mainly since the 1960s and
who have contributed so much toward clarifying the foundations of the dynamics of
heat. They deserve our respect for one of the most fascinating intellectual endeavors. 

When it comes to applications we nowadays can turn to computational tools which can
make life so much easier. Two such tools which I have used deserve to be mentioned—
the system dynamics program Stella (High Performance Systems, Inc., Hanover, New
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Hampshire), and the program EES (Engineering Equation Solver; Klein, 1991) which
provides for extensive thermophysical functions in addition to a solver for nonlinear
equations and initial value problems. Also, in the fields of engineering applications,
including solar engineering, I have been inspired by such excellent textbooks as those
of Bejan (1988), Moran and Shapiro (1992), Rabl (1985), and Duffie and Beckman
(1991).

I am grateful to all my friends, colleagues, and teachers who, through their encourage-
ment and support, have contributed toward the writing of this book. Robert Resnick
and Roland Lichtenstein of RPI gave me the courage to take up the project. Walter Co-
hen, Werner Maurer, and Martin Simon read the book and gave me valuable feedback.
Heinz Juzi, Heinz Winzeler, and Klaus Wüthrich helped me with discussions of appli-
cations, and many more colleagues gave me kind words of encouragement. Most im-
portant, however, has been Werner Maurer’s friendship and professional companion-
ship in this endeavor. He and I developed the system dynamics approach to the teach-
ing of physics which you will find in this book.

I would like to acknowledge generous grants made available by the Federal Govern-
ment of Switzerland and my school, which allowed for the development of labs and
courses dealing with renewable energy sources, and I would like to thank my thesis
students whose work in solar energy engineering has led to many interesting applica-
tions included here. 

Finally, let me express my gratitude toward all those at Springer-Verlag, who have
made the production of the book possible. Thomas von Foerster, Frank Ganz, and
Margaret Marynowski turned the manuscript of an amateur madly hacking away on a
Macintosh into a professional product. They were very supportive and encouraging,
always with an open mind for my wishes. 

This has been a long journey. My wife and my daughter have gone through it with me
all the way. I would like to thank them for their love and their patience. When my
daughter was very little, she asked me if I would dedicate this book to her. I hope it
has been worth waiting for.

Honolulu, 1995

 

Hans Fuchs
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This book is as much about how people understand thermal and other physical pro-
cesses as it is about thermodynamics itself. Since the approach chosen here to describe
and model thermal phenomena probes the roots of imagination and understanding, a
few words about human conceptualizations of natural processes might be in place.
This should allow me to set the stage for a theory of the 

 

Dynamics of Heat

 

.

Even though this chapter is called 

 

Introduction

 

, the material covered is not introduc-
tory. I just want to get some philosophy, cognitive science, continuum physics, histo-
ry, and modeling theory out of the way before starting on the science of heat. You may
prefer to start with Chapter 1—or Chapter 4 if you are familiar with the physics of dy-
namical systems—and come back to these lines at a later time. After you have tried
your hand at a dynamical theory of heat, you will be prepared to tell whether or not
you agree with my rationale for the conceptualization of thermal phenomena.

 

I.1 S

 

OME

 

 C

 

ONCEPTUAL

 

 C

 

HALLENGES

 

Traditional courses treat thermodynamics in a form unlike anything else known in
physics. In particular, we are told that it is a theory of the equilibrium of heat and not
of how and how fast things happen in real life. This combines with the conceptualiza-
tion of heat as energy (or a form of energy) and thermal processes as the result of the
motion of little particles. The result is a theory that uses strange d’s in its equations,
does not produce initial value problems as we know them from the rest of physics, and
introduces concepts such as exergy, enthalpy, free energy, and Gibbs free energy, we
are hard put to distinguish from energy and entropy and from each other.

 

1

 

 

How did we arrive at such a representation of thermal phenomena? We know that two
to three hundred years ago scientists thought of heat as a kind of subtle fluid that goes

 

1. Here’s a gem from the Internet: “Entropy is never enthalpy, nor free energy. A system’s en-
thalpy is only entropy change (after DH is divided by T) if it is transferred to the surround-
ings and no work of any sort is done there in the surroundings. A surroundings’ enthalpy
is only entropy change (after DH being divided by T) when it is transferred to the system
and no work is then performed in the system. Gibbs free energy change, DG, is only con-
sidered entropy change (after being divided by T) when no useful work of any kind is done
by the heat transfer in the system or in the surroundings.” (www.2ndlaw.com/gibbs.html;
visited on February 15, 2007.)

1
and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_1, 

  A Unified Approach to ThermodynamicsH.U. Fuchs, The Dynamics of Heat:

© Springer Science+Business Media, LLC 2010 
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into bodies to warm them or to cause other changes. The concept is called the 

 

caloric
theory of heat

 

. Around 1820, Sadi Carnot (Carnot, 1824) used this conceptualization
to create a theory of heat engines (see Section I.3). In his view, caloric passes from a
hot to a cold body without being consumed, thereby producing “motive power.” This
is like water falling from a higher to a lower point driving a water wheel.

His theory met with some problems. On the one hand, it appears that unlimited quan-
tities of heat can be produced in irreversible processes such as rubbing or burning,
whereas the caloric theory of heat assumed that caloric was conserved and could not
be produced or destroyed (Fox, 1971). On the other hand, and possibly more important
from a formal point of view, Carnot’s model predicted that the heat capacities of a sim-
ple gas should be inversely proportional to its temperature. This contradicted the result
based on a view of heat as the energy of the irregular motion of little particles of the
gas. In this model, the capacities of a perfect gas should be constant, independent of
temperature.

 

2

 

 

Rudolf Clausius (1850) solved the problems encountered in Carnot’s theory by using
the idea of the conversion of heat to work. Some of the heat passing from the furnace
of a heat engine to the cooler is “converted” to work—only the rest is passed on to the
cooler. So heat and work are interconvertible (in some sense), and since work is a form
of energy, so must heat be. Clausius proved the existence of an energy function of flu-
ids which made the First Law a result that went beyond the concept of energy as a mere
integral of motion. Heat no longer could be visualized as this thermal fluid responsible
for making stones warm, or for expanding air, or for melting ice. In Clausius’ theory,
both problems of Carnot’s model were solved. Heat was not produced in irreversible
processes but converted from work, and the “heat capacities” of a simple gas turned
out to be constant.

This is the theory that brought us the funny d’s, the supremacy of equilibrium over dy-
namics,

 

3

 

 and concepts everybody confesses cannot be understood but can only be
dealt with in mathematical formalisms. Specifically, standard every-day reasoning
about a quantity of heat residing in bodies and flowing into and out of these bodies,
does not apply in Clausius’ 

 

mechanical theory of heat

 

. The theory does not provide
for a quantity of heat except for the case of a quantity of energy transferred as a result
of heating or cooling. Any other use of the word 

 

heat

 

 is forbidden.

 

4

 

From a conceptual and emotional viewpoint, we have paid dearly for the new theory
of heat. We know of the problems this conceptualization of thermal processes creates
for learners, and everyone else for that matter. Every teacher of physics knows this,
and years of research into conceptual difficulties learners encounter with the science
of heat have confirmed this. What normal person should be able to understand that the
heat that was just transferred into a room by heating is not to be found in the room?

 

2. As Rudolf Clausius put it, “[…] other facts have lately become known which support the
view that heat is not a substance but consists in a motion of the least parts of bodies.” (Clau-
sius, 1850). See Truesdell (1980) for a discussion of the case of heat capacities.

3. “The single, all-encompassing problem of thermodynamics is the determination of the
equilibrium state that eventually results after the removal of internal constraints in a closed,
composite system.” (Callen, 1985, p.26). Try to say this about mechanics, or electricity, or
fluids.

4. It has even been suggested to exorcise the word heat from thermodynamics altogether. See
Romer (2001): “Heat is not a noun.”
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Instead of simple conceptual explanations, we are offered words of wisdom concern-
ing the beauty and mystery of entropy—pop philosophy in place of hard science based
on how humans conceptualize natural processes (see Section I.2).

We should not and could not criticize traditional thermodynamics just for being arcane
and difficult to comprehend if the theory were the only possible one, and if it delivered
a fair description of the real world of dynamical thermal phenomena. It is not, and it
does not. We know that in a theory of the equilibrium of heat, there are no evolution
equations to be formulated and solved—there is no equation analogous to Newton’s
equation of motion, or to the balance of charge in electric systems. Engines do not run,
they operate infinitely slowly. Irreversible processes are recognized but not quanti-
fied. And quite importantly, thermodynamics is said to be wholly different from the
science of heat transfer.

 

5

 

 Generations of engineering students have had to take two
separate courses, one on thermodynamics, the other on heat transfer, and in each they
learned that one field has nothing to do with the other. 

So we have two challenges: How to create a complete and unified theory of the dy-
namics of heat, and how to make it conceptually accessible from the start. The first is
being addressed more and more frequently. Indeed, we basically have this theory in
the form of continuum physics. There is a forerunner—irreversible thermodynam-
ics—and there are the modern theories in the form of rational thermodynamics (Trues-
dell, 1984) and extended thermodynamics (Müller, 1985, Jou et al., 1996; Müller and
Ruggeri, 1998). And we have many fascinating examples of the application of finite
time thermodynamics and thermal optimization in engineering thermodynamics (Be-
jan, 1988; Sieniutycz and DeVos, 2000).

The second challenge was dealt with early on by Callendar (1911) and again by Job
(1972) who pointed out that Carnot’s conceptualization can serve us well in creating
an accessible representation of thermal phenomena. Caloric—freed from the require-
ment of conservation—turns into the latter-day 

 

entropy

 

. The theme was followed up
in physics education research and has led to introductory courses based on a unified
approach to physical processes that use entropy from the beginning (Falk and Ruppel,
1976; Schmid, 1982, 1984; Herrmann and Schmid, 1983; Fuchs, 1986, 1987a-c, 1996,
1997a,b, 1998; Burckhadt, 1987; Maurer, 1996; Herrmann, 2000, 1998–2010; Borer
et al., 2005; Fuchs et al., 2001–2010).

 

6

 

 Most importantly, in my view, these develop-
ments have demonstrated the validity of strong analogical reasoning that allows us to
create new and unified representations of well known phenomena.

In the first edition of this book, I produced a uniform systems version of thermody-
namics by combining continuum physics with what we had learned from our didactic
research:

 

Examining the flow of heat in this way makes it clear that the entropy is the funda-
mental property that is transported in thermal processes (what in lay terms would be

 

5. “At this point it is appropriate to note the fundamental difference between heat transfer and
thermodynamics. […] Thermodynamics is concerned with equilibrium states […] heat
transfer is inherently a nonequilibrium process […] heat transfer therefore seeks to do what
thermodynamics is inherently unable to do […].” (Incropera and DeWitt, 1996, p.12).

6. An analogous development is taking place in chemistry didactics where the chemical po-
tential is given center stage (Job, 2004; Job and Rüffler, 2011; see also Chapter 4 of the first
edition of 

 

The Dynamics of Heat

 

, 1996).
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called “heat”), and that the temperature is the corresponding potential. The resulting
theory of the creation, flow, and balance of entropy provides the foundation of a truly
dynamical theory of heat that unites thermodynamics and heat transfer into a single
subject. (Tom von Foerster, from the back cover of the first edition of 

 

The Dynamics
of Heat

 

, 1996.) 

 

We now know how to formulate ordinary differential equations for initial value prob-
lems in thermodynamics in simple yet practical applications accessible to the beginner
in high school or at university.

Clearly, the two challenges are related. Without a conceptual structure similar to the
one that gives us theories of dynamics in fluids, electricity, or motion, we cannot sim-
ply come up with a dynamics of heat. Let me therefore discuss some recent investiga-
tions into every-day conceptualizations of physical processes that demonstrate how
our imagination produces useful concepts for a formal science.

 

I.2 C

 

OGNITIVE

 

 S

 

TUDIES

 

 

 

OF
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ONCEPTUALIZATIONS

 

 

 

OF

 

 P

 

ROCESSES

 

Not so long ago I was told the following story (Sassi, 2006). Little Alex came home
from kindergarten. He told his grandmother that the teacher had said they should close
the door if they did not want cold to come in. Now his grandmother asked Alex what
cold was. He said that cold was a snowman. A snowman was very cold and if he
hugged Alex, the boy would also get cold and might get sick. Alex and his grandmoth-
er were outside and decided to build a snowman. When his grandmother wanted to
build a big one, Alex said that a big snowman would be so cold it could even kill young
Alex. He thought it would be better to build a small snowman. Finally, his grandmoth-
er wanted to know what he thought heat was. Alex said, heat was a dragon. He could
play with little dragons, they were not so hot and dangerous, but a really big dragon
would be so hot and strong, its fire could kill the boy.

Now compare this to the description of the concept of heat by the experimenters of the
Accademia del Cimento in 1667 who tried to determine the power of heat and cold.
According to Wiser and Carey (1983), their concept included the aspects of “sub-
stance (particles), quality (hotness), and force.” These elements are found in Alex’ sto-
ry as well—size, coldness or hotness, and the power to harm the boy. Now turn your
attention to a completely different phenomenon such as justice. If you apply methods
developed in linguistics to how we speak about this concept, you will find a closely
related structure, an 

 

experiential gestalt

 

 having aspects of quantity (“Let justice flow
like water,” Martin Luther King), quality or intensity (“He has a horrid history and de-
serves strong justice”), and power (“The healing power of justice”).

These are examples of an understanding of processes which appears in many areas of
human experience. My knowledge of the structure of classical physics suggested to
me that certain imaginative structures must be recurring in the conceptualization of
phenomena. I found background material on schematic structures of human under-
standing in modern cognitive science and linguistics (Arnheim, 1969; Lakoff and
Johnson, 1980, 1999; Johnson, 1987, 2007; Lakoff, 1987; Talmy, 2000a,b; Hampe,
2005). In short, physics, cognitive science, Alex’ story, and many examples of how
people speak about processes led me to identify what I now call 

 

force dynamic gestalts

 

(Fuchs, 2007). The human mind seems to generate these perceptual gestalts that have
at least the following three aspects: 

 

quantity

 

 (size), 

 

intensity

 

 (quality), and 

 

force

 

 or
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power

 

 (the latter stand for forms of causation). The aspects are rooted in image sche-
mas (such as fluid substance, scale and verticality, direct manipulation, and others)
that are projected metaphorically

 

7

 

 onto the particular phenomenon under consider-
ation. For example, verticality is projected onto the concepts of brightness, tempera-
ture, or pressure (brightness goes up, temperature is low, etc.) which are created from
polar schemas of light and dark, hot and cold, strong and weak.

There are additional schemas related to force dynamic gestalts: balance (or equilibri-
um), letting, forcing, hindering, preventing, etc. In short, conceptual structures identi-
fied in cognitive semantics for a wide range of fields of human interest also apply to
the basic conceptualization of natural phenomena such as heat, fluids, electricity, mo-
tion, or chemical change.

Clearly, quantity (size), intensity, and power are intertwined in Alex’ description of
the properties of snowmen and dragons. When I saw that we create the same gestalt in
conceptualizing phenomena such as justice or pain, market or information, I became
convinced that Alex’ story was more than just an offspring of an unchecked imagina-
tion of a little boy, an imagination that has to be reigned in later in life if the child is
to succeed in school. It testifies to a structure of figurative thought that is foundational
to human understanding of nature. In terms of modern cognitive science, what we see
here is an experiential gestalt whose aspects are structured through metaphoric projec-
tions of just a few image schemas. Since the same gestalt is constructed for different
phenomena such as fluids, electricity, heat, and motion, these fields become similar to
each other in our mind, which allows us to apply analogical reasoning—understand
one field in terms of the structures of another. 

Does this mean that anyone can come up with formal descriptions of thermal or other
physical processes effortlessly? Not quite. Children and laypersons do not commonly
distinguish between the quantity and the intensity of heat, nor is it easy for us to see
the difference between intensity and power, or quantity and power.
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 An investigation
of the metaphoric base of the gestalt of heat shows that its aspects are not easily kept
apart in common sense reasoning.
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 Therefore, one of the most important goals of ed-
ucation must be the differentiation of these aspects in the course of education.

What I have outlined here shows that common-sense conceptions of nature may be

 

7. Simply put, a metaphor is a device of figurative thought in which knowledge of a source
domain is projected onto a target domain. In cognitive science, metaphors are no longer
considered just embellishments of language or a rhetorical device. They are given concep-
tual status, reflecting figurative structures of thought (Lakoff and Johnson, 1980; Koevec-
ses, 2000; Evans and Green, 2006). It is important to distinguish between a linguistic
metaphorical expression (“heat escapes the room”) and the actual underlying metaphor
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SUBSTANCE

 

. Note that the metaphors I am mentioning here are of a simple,
foundational nature (in fact, they are part of conventional language which does not easily
let us recognize them as such). These structures are more important to me in the present
context than the more obvious metaphors such as 

 

THE
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SOLAR

 

 

 

SYSTEM

 

 or 

 

A
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IS

 

 

 

A

 

 

 

FACTORY

 

. I believe that science is metaphorical at its base, not just at the surface where
we try to make a person understand a complex subject by representing it with the help of
vivid language and comparisons.

8. Clausius does not distinguish between the quantity and the power of heat. Trying to fool
the human mind exacts its price—entropy comes in through the back door and takes its re-
venge (Fuchs, 1986).

9. For example, we connect quantity and intensity (verticality) in the metaphor 
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much more useful than has been realized up until now. Let us see how these figurative
structures of thought made their appearance in the course of the early history of ther-
mal phenomena and thermal physics.
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IMENTO TO SADI CARNOT

In 17th century Florence, a group of experimenters who called themselves the Acca-
demia del Cimento studied thermal and other processes (Magalotti, 1666). They re-
ported on their experiments many of which were designed to investigate the power of
cold (and heat). They stuck a bulb with a long neck (called the Vessel) filled with water
or other liquids to be frozen, into a box with ice and salt (Fig. I.1). Then they placed a
second such bulb containing alcohol in the ice; this device was their Thermometer.
They observed the levels of the liquids in the Thermometer and in the Vessel while
measuring how long certain steps such as Rise upon Immersion, Abatement, Rest, etc.
took and reported the results (Fig. I.1): Degrees of Vessel, Difference, Degrees of
Thermometer, Difference, Vibrations (of the clock), and Difference. Basically, they
measured the speed at which processes were running.

To the modern observer, this looks and sounds rather strange. The reason for this is
not just that they put the thermometer side by side with the probe in the ice to measure
the temperature of the freezing water, but also because of something we don’t do any
longer (or rather have not done for a long time): we do not use a clock to time such
phenomena. Speed is of no importance to us in traditional thermodynamics.

I do not want to say that the Experimenters had anything resembling a theory of ther-
mal processes.10 What is interesting is their language combined with their actions. As
mentioned above, a cognitive scientist might say that they made use of the force dy-
namic gestalt of heat, and they searched for the power of cold or heat in the dynamics
of the processes. They did not carefully distinguish between the separate aspects of
this gestalt—learning how to do this was going to take another 150 years.

In the years leading up to Sadi Carnot’s and his contemporaries’ work, quantities of
heat were finally distinguished from the measure of hotness. Joseph Black is credited
with making this distinction clear by introducing the concepts of latent and specific
heats. The concepts were created on the foundation of the caloric theory of heat.

By the time Carnot created his theory of heat engines, some of the fog was clearing,

10. For a criticism of their work in the light of traditional thermodynamics, see Wiser and
Carey (1983).

Figure I.1:  Experimental ar-
rangement set up by members of 
the Accademia del Cimento to 
measure the power of cold (left). 
A table with results of their mea-
surements (right).
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and formal mathematical models dealing with examples of thermal processes had been
produced (see Truesdell, 1980). Among these were a theory of heat conduction and a
model of adiabatic processes in gases which was used to explain the observed speed
of sound. Again, all of these achievements were based on the assumption that heat was
some kind of imponderable fluid.11

Understanding of heat engines was still limited, so Carnot proposed to answer ques-
tions regarding the Motive Power of Fire, and Machines Fitted to Develop that Power
(this is a paraphrase of the title of his book). To quote Carnot (1824, p. 3, 6):

Every one knows that heat can produce motion. That it possesses vast motive-power
no one can doubt, in these days when the steam-engine is everywhere so well known. 

To heat also are due the vast movements which take place on the earth. It causes the
agitations of the atmosphere, the ascension of clouds, the fall of rain and of meteors,
the currents of water which channel the surface of the globe, and of which man has
thus far employed but a small portion. Even earthquakes and volcanic eruptions are
the result of heat.

The phenomenon of the production of motion by heat has not been considered from
a sufficiently general point of view. […] A [complete] theory is evidently needed for
heat engines. We shall have it only when the laws of physics shall be extended
enough, generalized enough, to make known beforehand all the effects of heat acting
in a determined manner on any body.

Since Carnot’s time, it has become evident that the action of heat can effect more than
just motion. Heat drives many other processes, such as electric and chemical ones. We
take these phenomena as a sign of the interrelation between different classes of phys-
ical processes.

Heat can be used to do things; it can drive engines; it is an agent for effecting things.
In other words, heat can do work. Does this mean that heat is some sort of work? The
answer should be “no.” Water can also be used to drive water wheels and turbines.
Does this make water some sort of work? Certainly not. Similarly, electricity, i.e.,
electric charge, can be used to do work, but it is not work. 

The gestalt with its aspects of quantity, intensity, and power must have been present
in Carnot’s mind. Carnot created a vivid image of the Power of Heat by using water-
falls as an analogy for the operation of heat engines. Doing so, he produced the basis
of a formal differentiation of the aspects of the gestalt (Carnot, 1824, p. 15):

According to established principles at the present time, we can compare with suffi-
cient accuracy the motive power of heat to that of a fall of water … . The motive
power of a fall of water depends on its height and on the quantity of the liquid; the
motive power of heat depends also on the quantity of caloric used, and on what may
be termed, on what in fact we will call, the height of its fall, that is to say, the differ-
ence of temperature of the bodies between which the exchange of caloric is made. In
the fall of water the motive power is exactly proportional to the difference of level
between the higher and lower reservoirs. In the fall of caloric the motive power un-
doubtedly increases with the difference of temperature between the warm and the cold
bodies; but we do not know whether it is proportional to this difference.

11. Truesdell showed that the assumption regarding the nature of heat is not necessary for the
theory of adiabatic motion (Truesdell, 1980). However, the scientists who created it used
the caloric theory.
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Quantity, intensity, and power of heat are distinguished, and their relation is made for-
mal—ready to be put in the form of an equation. Just as water falls from a high level
to drive a turbine, after which it flows out of the engine at a lower level, heat is imag-
ined to fall from a high temperature to a lower one, thereby driving the heat engine
(Fig. I.2), and then flowing out at lower temperature. The principle of operation of
heat engines is in accordance with this image. Steam takes up caloric (heat) from a
burner, and passes through the engine where it effects motion, just to flow out again
and to give up its heat (caloric) to a condenser. As Carnot put it (1824, p. 7):

The steam is here only a means of transporting the caloric … . The production of mo-
tive power is then due in steam-engines not to an actual consumption of caloric, but
to its transportation from a warm body to a cold body.

We know today that we can indeed explain the motive power of heat in terms of these
images. There is a deep similarity between different types of physical processes. Hy-
droelectric power plants and heat engines are two examples which serve to drive home
this point (Fig. I.2). 

Those of you who already know thermodynamics may have noticed that Carnot’s heat
or caloric can be reinterpreted as the modern-day entropy. We simply have to make
sure that we allow for caloric to be produced in irreversible processes. For those of you
new to thermal physics, do not let yourselves get confused by an arbitrary, artificial
word created by Rudolf Clausius in the 1860s. For us, entropy is the child’s heat, the
layperson’s heat substance, or better, Carnot’s caloric—suitably extended by the as-
sumption that it can be produced but not destroyed.

The similarity observed here is a result of the imaginative power of the human mind
represented by force dynamic gestalts. There is a branch of physics which makes use
of this conceptualization in a broad manner, namely, continuum physics. Let me brief-
ly list the basic characteristics of this approach to the description of physical and
chemical phenomena.

I.4 A UNIFIED APPROACH TO PHYSICAL PROCESSES

Everything flows. Water and air flow on the surface of the Earth, where they create
the multitude of phenomena we know from everyday life. Winds can impart their mo-
tion to the water of the oceans, and in a far-away place, this motion can be picked up
again through the action of the waves. These processes are maintained by the radiation
pouring out from the surface of the sun; light flows from there through space, and
some of it is intercepted and absorbed by our planet. Both in nature and in machines,
heat is produced and transported from place to place. In electrical machines, we make
electricity flow in an imitation of its flow in the atmosphere; in reactors, chemical sub-
stances flow while at the same time undergoing change. Today, we even see life as
governed by flow processes. 

The sum of these observations can lead us to one of the most general description of
nature known today. There are a few physical quantities which can flow into and out
of systems, which can be absorbed and emitted, and which can be produced and de-
stroyed. Electrical charge is transported in electrical processes, and mass and sub-
stance flow in gravitational and chemical phenomena, respectively. In continuum
mechanics, motion is seen as the exchange of linear and angular momentum. Thermal

Upper level

Water

Lower level

High
temperature

Low
temperature

Heat

Turbine

Heat engine

Figure I.2:  Hydroelectric and 
thermal power plants are struc-
turally comparable. Water drives 
a turbine by falling from a higher 
to a lower level. Heat drives a 
heat engine by “falling” from a 
higher to a lower thermal level.
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physics is the science of the transport and the production of entropy. One of the great
advantages of this description of nature is that it relates the different phenomena,
which leads to an economical and unified view of physical processes. It turns out that
classical continuum physics is a precise method of expressing this point of view for
macroscopic systems.

What is this unified approach to physics? First, we have to agree on which physical
quantities we are going to use as the fundamental or primitive ones; on their basis other
quantities are defined, and laws are expressed with their help. Second, there are the
fundamental laws of balance of the quantities which are exchanged in processes, such
as momentum, charge, or amount of substance; we call these quantities fluidlike.12

Third, we need particular laws governing the behavior of, or distinguishing between,
different bodies; these laws are called constitutive relations. Last but not least, we
need a means of relating different types of physical phenomena. The tool which per-
mits us to do this is energy. We use the energy principle, i.e., the law which expresses
our belief that there is a conserved quantity which appears in all phenomena, and
which has a particular relationship with each of the types of processes.13 

The most basic constitutive relations result from the metaphoric interpretation of the
intensive quantities associated with processes—speed with momentum, electric po-
tential with charge, or temperature with entropy. These quantities are levels—remem-
ber, they are described as being high or low by virtue of the projection of the schema
of verticality onto the polarity which is constructed by our perception. An intensity re-
sults from the containment of a fluidlike quantity in a system: Pressure goes up if more
liquid or gas is put into a container. This we call a capacitive relation. Differences of
intensities are conceptualized as driving forces of processes. So the electric potential
difference serves as a driving force for the flow of charge through a conductor, and a
chemical potential difference is visualized as the driving force for the diffusion of a
substance through a material. Such relations we call resistive characteristics. 

The notion of levels and level differences as driving forces is instrumental also for un-
derstanding the role of energy in physical processes. We simply relate the power of
processes to driving forces and flows, as Carnot did. This is the starting point for my
approach to the energy principle used throughout this book (Chapter 2).

12. Falk and Herrmann (1977-1982), who started a unified approach to high school and uni-
versity physics in their didactic research, coined the term substancelike. I prefer fluidlike
since we transfer the image of fluids into our formal descriptions of processes. The Mer-
riam-Webster Online Dictionary defines fluidlike as a “substance (as a liquid or gas) tend-
ing to flow or conform to the outline of its container.” This is not bad for our purpose.
Momentum, charge, or entropy flow and fill space or materials in space. We have to add
the notion that some of these quantities can be produced and/or destroyed.

13. This is slightly different from the standard approach in continuum physics (or continuum
thermodynamics). Taking the usual approach of continuum mechanics, one formulates
laws of balance of momentum, angular momentum, and mass, and complements this with
the energy principle. Then constitutive relations are added. Thermal processes are treated
as a somewhat different breed. One starts with the already known equations such as for mo-
mentum and energy, formulates constitutive laws for the thermal phenomena, and finally
adds the law of balance of entropy as a special relation. This does not bring out the deep
analogy between thermal and the other kinds of processes I am going to use as my starting
point. I take the balance of entropy (the quantity of heat introduced above) as a basic rela-
tion alongside those for momentum, charge, or amount of substance. Energy is the special
quantity in this approach.
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Models are created from combinations of laws of balance and constitutive relations.
Since we want to compare the predictions of our models with data from experiments,
we need results for the most easily measured quantities such as speed, density, pres-
sure, or temperature. This means that we have to solve for these quantities while elim-
inating the rest. The “undesirables” are mainly the fundamental fluidlike quantities—
charge, momentum, entropy (our modern version of caloric). For example, to study the
conduction of heat, one formulates the law of balance of entropy and adds constitutive
laws for the storage, flow, and production of entropy. The constitutive laws introduce
temperature. Then we eliminate entropy and obtain a field equation for temperature
which we solve.

This is rather fascinating. We need speed, density, pressure, and temperature to relate
our models to the world, and mostly we do not care much about the fluidlike quanti-
ties. Who cares about entropy, or momentum? We want to know how warm it is, and
how fast a body moves. But we cannot create models, i.e., understand the world, with-
out the help of the quantities which seem to be pure constructs of our imagination. 

Continuum physics teaches us these important things about the structure and the role
of models of processes. Fortunately, there is a strongly simplified version—a subset—
of continuum theory from which we can learn about these things. This version is made
up of the uniform dynamical models of physical processes—including thermal and
chemical ones—which we are going to study for much of the first half of this book.

I.5 DYNAMICAL MODELS OF HEAT

So how do we construct dynamical models of thermal phenomena? Just as we do in
(introductory) mechanics, or when we describe the charging or discharging of capac-
itors. To model a ball falling straight down in air, we formulate the law of balance of
momentum for the ball. There are two momentum transports to consider: one due to
gravity, the other resulting from friction between the ball an air. Then we express the
momentum flows (the forces) by appropriate constitutive laws (force laws), and we
formulate the relation between momentum and speed of the body. The constitutive re-
lations introduce the speed of the body. We rearrange the equations so that we end up
with an initial value problem for the speed of the ball which we then solve.

Let us transfer this method to thermodynamics. Consider the cooling of hot water in a
thin walled can, placed in a room and stirred with the help of a magnetic stirrer. We
formulate the law of balance of entropy (heat, caloric) for the body of water. The en-
tropy changes because of cooling, i.e., because of the transport of entropy out of the
water and into the room. Moreover, we have to take into consideration the production
rate of entropy due to friction between the magnetic bar and water. Now we need con-
stitutive laws for the temperature–entropy relation of water, an expression for the en-
tropy flow from the hot water to the cold environment, and one for the production rate
of entropy due to stirring.14 The material laws introduce the temperature of the body

14. Here we use the energy principle to derive the missing expression. How much entropy is
produced in an irreversible process depends upon the quantity of energy dissipated, and
upon the temperature at which dissipation is taking place. In thermal design in engineering,
it has become customary to express entropy production rates by combining laws of balance
of entropy and of energy with appropriate constitutive laws (Bejan, 1988, 1996).
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of water. The model has now been cast in the form of a set of differential and algebraic
equations. They can be rearranged to yield a single initial value equation for the tem-
perature of the water which we solve.

If it is so simple to produce dynamical models in thermodynamics, why is it not stan-
dard practice to do so in physics? The answer has to do with conceptualizations of pro-
cesses and with basic philosophy of what a model is and what it can do. Here is an
example of a problem that has vexed students of thermal physics. Consider a cold
block of copper submerged in hot water. In a first step, we would write the laws of
balance of entropy for water and copper, and introduce two temperatures, one for wa-
ter, the other for copper. This means we imagine homogenous bodies having a certain
entropy and a certain temperature, capable of absorbing or emitting entropy. Now the
entropy flow is between the two bodies whose changes are being considered in the
model. Since entropy transfer from a hot to a cold body is irreversible, we have to add
an entropy production term to our equations. Moreover, the copper block should be
considered an inhomogeneous body between whose parts entropy flows—and again
entropy must be produced.

Upon closer inspection, this situation turns out to be anything but trivial from a con-
ceptual viewpoint. I introduced a single temperature of a body as if it were normal for
a physical system to have the same temperature throughout. Thermal processes cast a
glaring light upon the problem of uniform situations. Normally, when heat (entropy)
flows, temperatures change from point to point, which makes it necessary to set up a
continuum theory of nature. So, where does this leave us with our desire to learn about
thermal processes in the simplest possible settings?

I.5.1 A Continuously Variable World or Eternal Rest? 

Objects and systems do not only change with time. Their properties also vary from
point to point in space. The point masses of mechanics certainly are not an example of
how things are in nature. The electrical capacitor which we describe in terms of a sin-
gle value for its voltage or its electrical field does not even exist. While bodies move
they also may deform, which can make them nonuniform. When air rushes into a vac-
uum such as in free expansion, we are confronted with a situation which makes it im-
possible to speak of the air pressure. 

Thermal phenomena present us with more examples. Experience with the world
around us demonstrates most clearly that uniform situations do not exist in general.
The temperature never is the same at every point in a body. The Earth’s atmosphere is
far from a uniform state, and so are our homes and our bodies. When we heat a stone
in the Sun or air in a cylinder, heat (entropy) will gradually spread through the system
leaving parts closer to the heat source hotter than those further from it. Therefore, the
description I just used seems to be utterly unrealistic.

We might think that it should be possible to select parts of bodies small enough for
spatial uniformity to prevail to a significant degree. We could attempt to base our de-
scription of nature on such systems, from which we would build the world at large.
However, this turns out to be impossible: changes of temperature from location to lo-
cation are required if thermal processes are to take place at all. Heat does not flow
without a temperature gradient, not even in the tiniest part of a body. Inevitably, this
leads to the production of heat. Thermal processes are dissipative as a matter of fact,
leaving us between a rock and a hard place.
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You may object to this stark analysis and insist that situations exist in nature in which
physical systems can be described as spatially homogeneous. Again, entropy tells the
story. If we leave two bodies at different temperatures in contact for a long enough
time, their hotnesses will eventually be the same. If we insulate the bodies from the
environment we can even maintain this condition over a long period of time without
significant change. The air which undergoes free expansion will settle down eventu-
ally, making the pressure and temperature uniform throughout. Here, you will say, are
cases which we should be able to investigate successfully if we are looking for simple
situations.

There only is one problem. The examples provided have nothing to do with dynamics.
They are cases of eternal rest or, put more prosaically, of equilibrium. It seems we
must choose between a dynamical world which is too difficult for us to describe, and
a simpler, but less interesting, static one. 

I.5.2 Uniform Heating in Thermal Superconductors

There must be a way out of this dilemma. After all, we construct theories of mechan-
ical and electrical systems which we describe in simple ways using the notion of spa-
tial uniformity. We calculate the behavior of electrical circuits by assuming them to
be composed of discrete elements each of which can be modeled using a few physical
variables assumed to have the same values at every point. We model the motion of
bodies in the simplest terms, forgetting about spatial inhomogeneity. Ideal pendulums,
for example, are points which swing at the end of massless strings through frictionless
space. We are quite happy with such simple theories, and we do not let ourselves be-
come unduly worried about the complexities of the real world. After all, the ideal mod-
els have an important story to tell despite their shortcomings. 

Well, then, let us look for and construct a model of spatially uniform bodies which can
undergo thermal processes. How could we conceive of bodies which remain uniform
while they are being heated or cooled? Obviously we require the spatial variation of
temperature in a body to vanish while heat is allowed to flow through it. Carnot imag-
ined bodies which let heat pass easily. The situation he described in such simple words
is no stranger to us in other fields of physics. In electricity, we build circuits using
wires which “let electricity pass easily,” and we do not blink an eye when we set their
resistances equal to zero. In fact, we know of a perfectly modern phenomenon which
lets us support the assumption of ideal wires, namely superconductivity. We simply
take the wires as being superconducting: they let charge pass easily; the potential dif-
ference across their length is zero; and they do not produce any entropy.

What is the thermal equivalent of electrical superconductivity? It is a conductor where
entropy does not require a temperature difference to spread from one point to another.
Expressed differently, this is a material having zero thermal resistance. If we let the
thermal resistance vanish while the flow of entropy is kept constant, the rate of pro-
duction of entropy will go to zero as well. A body working according to this prescrip-
tion may very well be said to be a thermal superconductor.

Other ways of heating bodies may lead us to the same conclusion, namely that it is not
forbidden to construct models of uniform heating. Imagine many tiny electrical heat-
ers distributed uniformly through a body of water emitting the entropy they create at
an equal rate into every part of the body. Another form of evenly distributed sources
of entropy is encountered in the absorption of radiation in an almost transparent body.
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Radiation from the Sun is absorbed by a few cubic meters of air in our atmosphere at
just about a uniform rate. In either case, we may model the actual process as one in
which the temperature of the body remains uniform all the time.

I.5.3 Models and Truth

Are uniform processes realistic? It is important to realize that it does not matter wheth-
er such bodies and circumstances exist in nature precisely as I have described them.
They certainly may exist as models in our theories. They are comparable to ideal wires
and ideal pendulums. Just like these simple objects (which cannot be found in nature
either), thermal superconductors and evenly spread sources of entropy are the building
blocks of a theory of dynamics, this time of the dynamics of heat in uniform bodies.
In fact, despite all the factors which we are ignoring, this model leads to important re-
sults: bodies undergoing uniform thermal processes approximate many real cases rath-
er well. The idea of the change of a body through homogeneous states is an important
ingredient of classical thermodynamics. All we have to do now is to investigate the
consequences of such a far-reaching assumption.

Physics is not a science that creates words or concepts that have a direct, one-to-one
relation with the world out there.15 We have already seen that certain quantities such
as momentum or entropy occupy a special place in the inventory of human concepts.
They are absolutely necessary to talk about nature, to understand it, and to formulate
models, but we do not really need their values as we need those of speed and temper-
ature to compare our models with reality. We may very well wonder whether or not
these quantities exist out there. Certainly, these concepts demonstrate how human
imagination works. We imagine fluids and levels, and the force or power of phenom-
ena. Armed with these schemas and their metaphorical projections, we create stories
of how nature works. In science, we have learned how to make the stories formal, i.e.,
create mathematical models that can be simulated and whose results can be compared
with data of phenomena observed in the real world.

I.6 AN OVERVIEW OF THE BOOK

I have divided the book into four parts. Part I discusses hydraulic, electric, and some
mechanical processes with the goal of learning how to create simple system dynamics
models. In Part II, I introduce thermal and chemical phenomena which will be mod-
eled using the idea of uniform dynamical systems. These models will be formalized
and extended to spatially continuous situations in Part III. Finally, in Part IV, a number
of applications of thermal and chemical physics will be treated that require the more
formal tools made available in Part III.

This book starts with fluid, electric, and rotational phenomena which are conceptual-
ized as resulting from the storage and flow of fluids, electrical charge, and angular mo-
mentum (spin), respectively. Then we discuss a general theme: the role of energy in
physical processes (Chapter 2). Finally, Chapter 3 extends the discussion to examples

15. David Hestenes and I have both discussed the question of the nature of models in the light
of modern cognitive science and linguistics (Hestenes, 2006; Fuchs, 2006, 2007).
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of translational motion; here, we deal with the transport and storage of momentum.
There are several reason for having this part in a book on the dynamics of heat. If we
want to model thermal dynamical processes in analogy to how this is done in other
fields, we first have to get to know these fields from a systems perspective. Secondly,
we need to understand energy in physical processes from a generalized and unified
viewpoint. The traditional treatment of the energy principle is not exactly helpful in
this respect. I will introduce process diagrams that visualize flows, potentials, power
and energy currents, in single systems and in chains of systems. These diagrams can
be used as tools in process design (Tyreus, 1999, gives an example in control engi-
neering). 

The next six chapters are devoted to an introductory exposition of dynamical thermal
and chemical phenomena. With a few exceptions, I will limit the discussion to uniform
models. Naturally, if we divide a system into enough uniform parts, we may still get
very useful models—certainly good enough for many applications in the sciences,
medicine, engineering, and ecology.

Chapter 4 introduces us to hotness, heat (entropy), and energy, and their relation, using
simple systems such as water cooling in the environment, two bodies in thermal con-
tact, or (thermoelectric) heat pumps and heat engines. These examples are well suited
to the study of basic thermal concepts and for learning how to set up our first dynam-
ical models. The treatment will be extended to substances undergoing phase changes,
and to the dynamics of simple fluids such as the ideal gas and thermal radiation (Chap-
ter 5).

Chemical processes—the transport and the reaction of substances—are intimately
linked to thermal ones, so it is important to take a closer look at them. In Chapter 6, I
will deal with diffusion, solutions, and simple reactions. Concepts—amount of sub-
stance and the chemical potential—will be motivated and dynamical models will be
set up. Parts of this theme will be important when we take up the transport of heat in
Chapters 7 and 8. Finally, in Chapter 9, entropy production minimization will be ap-
plied to some interesting examples. This is a particularly useful method of thermal de-
sign which leads to models of optimal processes in engineering and in nature.

Chapters 10–12 make up Part III. They detail the construction of a formal theory of
the dynamics of heat for uniform and for spatially distributed phenomena. The latter
lead to ideas and tools needed for continuum thermodynamics and radiative transfer.

The applications discussed in Part IV deal with conductive and coupled transports
(Chapter 13), convective heat transfer (Chapter 14), and phase changes and mixtures
and their application to engines and power engineering (Chapter 15). The last chapter
describes solar radiation (Chapter 16). The chapters in this part develop more detailed
constitutive theories than those encountered in Part II of the book.

Throughout the book, I will use the images and the language of continuum physics as
the main tool—to me, continuum physics provides the best example of images of
change that grow from the basic structures of figurative thought discussed in this In-
troduction. In this way, I hope to prepare the ground for the approach to thermodynam-
ics which you will find here and in modern treatises of this subject that go beyond what
I do here. I believe you will find it advantageous to draw comparisons between differ-
ent fields of physics and make use of analogical reasoning as often as possible during
your journey through thermodynamics.
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In this chapter, hydraulic and electric phenomena will be introduced and described
with concepts known from the physics of dynamical systems and processes. We start
with fluids in systems of tanks, pipes and pumps, and extend the description to elec-
trical processes by making use of analogical reasoning. Dynamical models will be
constructed that share the same underlying structure even though the phenomena are
not at all alike—at least not superficially. The form of the conceptualization, and the
tools used to express it, are the same as those used to create models of mechanical sys-
tems (Chapter 3). They will be used to build a theory of the dynamics of heat in Part II.
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We all are familiar with the flow of water in simple settings, such as the filling or dis-
charging of tanks through pipes. By looking at some special examples, we will be able
to identify the elements of a physical theory which allow us to calculate such things
as the current of water through a pipe, the pressure at various points in the fluid, the
storage of water and associated values of pressure, and the time required to discharge
a storage element. Beyond the immediate application, the analysis will tell us that the
description of systems and processes is similar to what we know from electricity. By
comparing hydraulic and electrical systems, we shall learn about the importance of
analogies between different fields of physics.

 

Fluidlike quantities

 

 that are stored and can flow, and differences of their intensities
which I interpret as a kind of 

 

tension

 

 or 

 

driving force

 

, are the basic concepts. In this
section, processes of the creation and the equilibration of such driving forces demon-
strate how we perceive similarities in otherwise dissimilar phenomena.

 

1.1.1 Differences, Driving Forces, and Flows

 

Communicating tanks.

 

 Consider two cylindrical tanks connected by a hose at their
bottoms, and filled with some oil. We let the oil flow from one tank into the other and
measure the fluid levels in the tanks as functions of time (Fig. 1.1).

It turns out that the level of oil in one of the tanks decreases while the other level in-
creases. This is so since the oil flows from where the level is higher to where it is low-
er. The shape of the measured curves tells us that the process runs fast at the beginning,

17

Fluids and electricity demonstrate most clearly how humans conceptualize processes.

and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_2, 
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slows down and comes to a standstill when the levels have become equal (Fig. 1.1,
right). We say the system has reached 

 

equilibrium

 

. There is 

 

dynamics

 

 as long as we
have a difference of levels in the two tanks—the level difference is conceptualized as
the 

 

driving force

 

 of the flow of fluid. 

Note that the final common level is not the average of the initial levels if the tanks have
different cross sections (Fig. 1.1). This demonstrates that levels become equal, and not
quantities of liquid.

A closer look at the flow of fluids from one storage element to another shows yet an-
other important aspect of these phenomena. If you fill one of the tanks with oil having
a somewhat higher or lower density, the final levels in the tanks will not be the same—
even though the flow process has stopped. If we maintain that this is due to the fact
that the driving force of the process has become zero, the driving force cannot be mea-
sured by the difference of levels of liquids but rather by pressure differences.

 

Communicating balloons.

 

 A third experiment clarifies the situation. Instead of
tanks, let us use toy balloons filled with air at different pressures. The balloons are al-
lowed to communicate. If we measure the air pressure in the balloons as functions of
time, we see that pressures equilibrate (Fig. 1.2) whereas quantities of air or levels do
not (there are no levels of air to speak of in this experiment). In summary, the three
cases described above tell us that we can 

 

interpret pressure differences as driving
forces of flows of fluids

 

.

 

Two capacitors in an electric circuit.

 

 In a circuit having two electric capacitors with
a resistor between them (Fig. 1.3), we can observe a process which demonstrates sim-
ilar behavior. We charge the capacitors to different voltages in the open circuit, close
the circuit and measure the electric potential differences (voltages) as functions of
time. We get curves analogous to the ones in the diagrams of Fig. 1.1 and Fig. 1.2—
see Fig. 1.3. The interpretation of this phenomenon is analogous to that of fluid pro-
cesses, and it is well known from electricity. We imagine a quantity responsible for
electric processes—compared to quantity of fluid—which we call 

 

electric charge

 

.
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Figure 1.1:  Two communicating 
tanks connected by a pipe. Oil is 
allowed to flow from one tank 
into the other. The process runs 
until the oil levels have become 
equal.
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Figure 1.2:  Communicating toy 
balloons demonstrate that pres-
sure equilibrates. Pressure differ-
ences are interpreted as the 
driving forces of the flow of flu-
ids.
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This quantity is said to flow from a place having a higher electrical intensity—called

 

electric potential

 

—to one having a lower value of intensity. The process stops when
the potential differences across the capacitors have become equal. Note that a potential
difference has its own name; it is called 

 

voltage 

 

(the German word for this is 

 

tension

 

).
Observations like the one described here lead us to 

 

interpret electric potential differ-
ences (voltages) as driving forces of the flow of electric charge

 

.

If differences, i.e., driving forces, decay spontaneously as we have seen in these ex-
periments, they have to be reestablished if they are supposed to again make something
happen. In nature, on our planet, this works mostly through the action of solar radia-
tion. Chemical and thermal differences are created which in turn create pressure and
gravitational differences that drive the oceans and the atmosphere. As long as the Sun
shines on us, these vital tensions can be maintained.

 

1

 

 In engineering we build devices
that either set up differences or make use of them.

 

Driving charge apart.

 

 A simple electric experiment shows how this can work in tech-
nical settings. Add a battery to the circuit having two capacitors and a resistor (see
Fig. 1.4, left). Initially, the devices are uncharged, the electric potential differences
across the capacitors are zero: we have electrical equilibrium. If we now connect the
battery, i.e., close the circuit, the potentials of the capacitors are driven apart—a po-
tential difference is established (Fig. 1.4, right).

 

1. In old mythic cultures like Egyptian and Babylonian, people seem to have captured this un-
derstanding in their cosmologies. The world begins with a separation of the sky from the
earth. In Egypt, it was the god Shu (air) that supports Nut (heavens) from falling to Geb
(earth). In Babylonian mythology, it was the wind that separated heaven and earth. Dynam-
ics is rooted in the tension between the poles of the polarities that govern nature and soci-
ety.
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Figure 1.3:  Two capacitors in a 
circuit with a resistor. There is an 
electric potential difference be-
tween the capacitors which spon-
taneously decays in the closed 
circuit. Electric potentials equili-
brate.
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Figure 1.4:  Two capacitors in a 
circuit with a resistor. Here, a 
battery (circle with plus sign) is 
added to the circuit. The battery 
establishes a potential difference 
between the capacitors.
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Differences beget differences—there has to be a potential difference in the battery to
make that device establish an electric potential difference. This initial tension is chem-
ical in nature. There are chemicals in the battery that react as a result of their innate
chemical difference. Later, in Chapter 6, I will take up the issue of chemical processes
and formalize the idea of chemical differences by introducing the notion of 

 

chemical
potentials

 

. At this point, we probably realize how we can understand thermal dynam-
ical processes: they are the result of the 

 

difference between hot and cold

 

.

 

1.1.2 System Dynamics Models

 

The descriptions of the phenomena discussed above contain the seeds of formal expla-
nations of physical processes. Take the case of communicating tanks in Fig. 1.1. A
word model of the system and its processes might go like this. There is a pressure dif-
ference of the oil across the connecting pipe. As a result, oil will flow through the pipe
from the point of higher to the point of lower pressure. By resisting the flow, the pipe
regulates the current. This makes the volume of oil decrease in the first container, and
increase in the second. Since the quantity of oil in a container sets up the pressure due
to the action of gravity, the pressure difference between the tanks will go down, which
will make the current of oil through the pipe decrease, and this will make the levels of
oil in the tanks change more slowly, and so on.

 

Graphical modeling tools.

 

 There are system dynamics modeling tools that support
us in translating these words into diagrams and equations. Liquid flowing from tank 1
to tank 2 diminishes the volume of liquid in tank 1 and increases it in tank 2. This basic
idea is expressed graphically with storage and flow symbols (Fig. 1.5) whose combi-
nation represents 

 

laws of balance

 

. The stored liquid sets up a pressure which depends
upon the quantity of fluid and the size of the tank which is symbolized by a 

 

capaci-
tance

 

: The greater the volume the higher the pressure, with the capacitance as the fac-
tor relating one to the other. The flow, finally, depends upon the pressure difference
and a material factor that tells us how hard it is for the fluid to flow (this factor is called
flow 

 

resistance

 

).

The structure of the model has now been represented graphically. We still need to cast
our ideas into formal expressions. The software used to draw the diagram lets us enter
the relevant relations in mathematical form. Here is a concrete example:

 

d (Volume_1) / dt = – Flow  ,    Volume_1(0) = 10

d (Volume_2) / dt = Flow  ,    Volume_2(0) = 2

Pressure_difference = Pressure_2 – Pressure_1
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Figure 1.5:  A system dynamics 
model diagram (left, produced 
with the program Stella, isee sys-
tems 1986-2010) and its simula-
tion. Rectangles represent stored 
quantities, fat arrows symbolize 
transports, and circles stand for 
further variables and parameters 
that are connected by thin arrows. 
The model equations are shown 
further below. 
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Flow = – Pressure_difference/Resistance

Pressure_1 = Volume_1/Capacitance_1

Pressure_2 = Volume_2/Capacitance_2

Resistance = 100

Capacitance_1 = 2

Capacitance_2 = 1

 

In this example. values and units are arbitrary. Numerical software solves this set of
equations leading to pressures (and volumes and flow) as functions of time as shown
in the graph of Fig. 1.5. Quite obviously, the numerical result shows the same behavior
as experimental values obtained in the example of Fig. 1.1. In practice, we use data to
determine parameters of the model such as the flow resistance: parameter values are
changed and the simulations are fitted to experimental values. In the example dis-
cussed here, the ideas built into the model give close to perfect agreement between
model and reality. Therefore, we accept the assumptions that (a) the pressure of oil in
a tank is proportional to its volume, and (b) the flow of oil through the pipe is propor-
tional to the driving force (pressure difference).

 

Extending and changing models.

 

 Extending and changing the model produced
above becomes quite intuitive and simple when we use the graphical modeling tools
available to us today. Imagine that one of the tanks in Fig. 1.1 had an additional outlet,
or we used water instead of oil. In the first instance, we would simply add a flow ele-
ment to one of the tanks in the model diagram of Fig. 1.5 and express the flow in terms
of the appropriate pressure difference and a resistance. In the second case, we would
have to change the form of the relation between pressure differences and flows (it
would no longer be linear).

 

Analogical reasoning.

 

 The model constructed for this first example can be trans-
ferred to electrical systems (Fig. 1.6). Take the example of driving electric charge
from one capacitor to another with the help of a battery (or power supply), as in
Fig. 1.4. You can use the system dynamics model constructed for communicating
tanks (Fig. 1.5, left), change the names of the variables (replace volume by charge,
pressure by potential or voltage), and add the effect of the power supply by specifying
a fixed value of a driving potential difference which is added to the potential differ-
ence between the capacitors, and the model is completed. Equations for potentials and
for the flow do not have to be changed. The correspondence between fluid and electric
dynamical phenomena will become even more evident in an example from physiology
discussed in some detail below.

 

Structure of dynamical models.

 

 The model—represented by the equations listed
above—has a structure worth noting. There are two 

 

laws of balance

 

 of volume of oil
including two 

 

initial values

 

 (the volumes at the beginning of the process). We observe
that the flow leaving the first tank must be equal to the flow entering the second stor-
age element. This is a special case of the balance of volume which we might call the

 

interaction rule

 

. A 

 

relation between pressure differences

 

 in a circuit tells us how to
relate the pressure difference across the pipe to those across the fluid columns in the
tanks. Then there are three 

 

constitutive relations

 

 for pressures of stored fluids and for
the flow, and three 

 

parameters

 

. The laws of balance and the relation between pressure
differences have a generic structure that is the same in all systems. The constitutive
laws, on the other hand, depend upon circumstances. To be specific, if we had let wa-
ter flow through the pipe, the flow law would be different from what we used for oil.

Charge 1 Charge 2

Flow

Voltage 1 Voltage 2

Resistance

C 1 C 2

U S U R

Figure 1.6:  Diagram of a system 
dynamics model for a circuit con-
taining two capacitors, a resistor, 
and a power supply (U_S stands 
for the voltage of the power sup-
ply).
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1.2 A COMPLEX CASE: THE BLOOD CIRCULATORY SYSTEM

The concepts and methods used in Section 1.1 for creating an understanding of dy-
namical systems are basic, yet they suffice for some fairly sophisticated models of real
complex cases. This will be demonstrated by constructing models of the blood circu-
latory system. At the same time we will see how analogical reasoning is employed in
an active field of research and development. Researchers in physiology use the lan-
guage of electric circuits to describe their models of the blood circulatory system.

1.2.1 Description of the System

Historically, it was not self evident that one could understand the blood circulatory
system in terms of hydraulics. Today, we are accustomed to seeing the heart as a pump
and the vessels as pipes for the flow of blood. Briefly said, the circulatory system con-
sists of a single circuit having two pumps made up by the two main chambers (ventri-
cles) of the heart (Fig. 1.7).

The blood circulatory system. The right ventricle of the heart pumps blood through
the lungs (through the pulmonary circuit) where it is replenished with oxygen. From
there it flows to the left side of the heart into the atrium and then into the main chamber
called the left ventricle. From there the blood is pumped through vessels through the
body. The “pipe” leading away from the heart is called the aorta which branches off
into arteries, which branch into finer vessels and capillaries. There are several branch-
es of this body circuit (called the systemic circuit) going through the torso with its or-
gans, through the legs and arms, and through the head. After the blood has brought
oxygen, nutrients, and water to body parts and has taken up waste products, it flows
back through the veins toward the right ventricle of the heart. If we want to understand
blood pressure properly, we need to understand how the aorta functions. 

Blood pressure. We have probably all had our blood pressure measured at one time
or another. An air filled cuff is put around our upper arm. The pressure of the air is
increased until the cuff fits tightly. Then the pressure is slowly decreased and the doc-
tor listens for changes of sound and then reports something like “130 over 80.” The
upper value is called the systolic pressure, the lower one is the diastolic pressure
(Fig. 1.7).

First, we have to remember that the values reported are typically given in units of
mmHg (millimeters of mercury column, i.e., the pressure that supports a column mea-
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Figure 1.7:  Left: Schema of our 
cardiovascular system. Right: 
Blood pressure and blood flow 
measured in a sheep, as functions 
of time. The solid pressure curve 
that changes from about 110 
mmHg to less than 20 mmHg was 
taken inside the left ventricle. 
The second pressure curve (solid 
line, with values between 50 and 
90 mmHg) was measured in the 
aorta near the heart. The flow in 
the aorta near the heart is shown 
as the dashed line (with values on 
the right vertical axis).
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suring so many mm of mercury; 1 bar correspond to about 760 mmHg). Second, a val-
ue of zero means “ambient” pressure, i.e., the average pressure in the body which is
close to ambient air pressure. 

Why are there two values reported in blood pressure measurements? Why isn’t the
lower value simply zero or close to zero, considering that the pressure in the left ven-
tricle reaches a value close to zero at some point during the cardiac cycle? The aorta
and its properties are responsible for this. The aorta is a flexible vessel, in contrast to
arteries and capillaries. This means that the aorta functions not only as a pipe but also
as a storage vessel—very much like a balloon or a membrane accumulator. It stores
the blood that comes from the left ventricle for some time and releases it relatively
steadily into the rest of the circuit, i.e., into the arteries and capillaries. These basically
work as simple pipes that let the blood pass. Their hydraulic function is described by
stating that they set up a resistance to the flow of the relatively viscous blood. The
blood pressure measured at the doctor’s office is close to the pressure measured in the
aorta. This quantity varies rhythmically between a high value (somewhat lower than
the maximum pressure in the heart) and a lower one. Since there always is blood in the
aorta, this lower (systolic) value is never close to zero (Fig. 1.7).

1.2.2 An Electric Circuit Modeling the Action of the Aorta

In summary, the left ventricle is the intermittent pump for the systemic circuit, the aor-
ta is like a windkessel,2 and the rest of the blood vessels serve as a (branching) pipe
(see Fig. 1.8, top left). Between the pump and the windkessel there is the aortic valve
which must make sure that blood does not flow back into the left ventricle. Such a sys-
tem can be modeled successfully by a physical model using electric elements—power
supply, capacitors, resistors, and a diode (Fig. 1.8, bottom left). Operating the circuit
with a variable voltage of the power supply that mimics the pressure of blood in the
left ventricle leads to a voltage across the capacitor analogous to the blood pressure in
the aorta (see the graph on the right in Fig. 1.8).

2. Around 1660, windkessel pumps were invented to smooth water flows through fire hoses.
Without these, the flows directed at a fire would be as intermittent as the pressure differ-
ences set up by hand operated pumps used in old fire fighting systems. (Windkessel is Ger-
man for air or wind chamber.) 
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Figure 1.8:  The windkessel 
model of the systemic circuit (top 
left). It consists of a pump that 
takes liquid from the environ-
ment (left), a short pipe with a 
valve, a container, and a (long) 
pipe leading back to the environ-
ment. Analogous electric circuit 
(bottom left) having a power sup-
ply, diode, resistors, and a capac-
itor modeling the aorta. 
Operating the electric circuit 
with a variable voltage of the 
power supply leads to data shown 
on the right.
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To produce the equivalent electric circuit for the hydraulic windkessel, it is important
to identify voltages with pressure differences and to make sure that the relation be-
tween potential differences in a circuit (i.e., the loop rule) is adhered to. Here, we have
two loops, one leading from the ambient air through the pump and the valve to the tank
and back to the environment, the second leading from the environment through the
tank and the long pipe back to the ambient air (Fig. 1.9). The intermittently driven
pump is represented by a power supply that sets up a voltage as a function of time re-
sembling the pressure difference of the pump.

System dynamics model. Creating a system dynamics model of the electric cir-
cuit—and by analogy for the heart-aorta-vessels part of the systemic blood flow sys-
tem—is rather simple (Fig. 1.10, left). The fit of simulations and data can be made
close to perfect for the electric circuit (Fig. 1.10, right) whereas the model will always
be too simple to represent the physiological system very well. Still, it gives us a clear
understanding of important processes in the blood flow system.

There is a single law of balance of electric charge of the capacitor (analogous to vol-
ume; see the reservoir symbol in the system dynamics diagram of Fig. 1.10). Charge
can flow through two resistive elements (pipes), one associated with the circuit
through the power supply (pump), the other going through the second resistive ele-
ment (long pipe). If we use the ideas applied before, the flows through the resistive
elements are expressed in terms of the voltages (pressure differences) across them, and
the respective resistances. The voltage across the capacitor (pressure of the fluid in the
tank) is calculated with the help of the charge and the capacitance. The valve is imi-
tated by a diode. Finally, the resistive voltages are calculated from the other voltages
using the loop rule.

The model equations consist of a law of balance, two loop rules relating voltages, and
five constitutive relations for the resistors, the diode, the capacitor, and the power sup-
ply:

d (Charge) / dt = IQ_1 – IQ_2  ,    Charge(0) = 0

UR_1 = US – UD – UC

UR_2 = UC

IQ_1 = IF (UR_1 > 0) THEN UR_1/R1 ELSE 0

IQ_2 = UR_2/R2

Left
ventricle

Aorta

Aortic
valve

Arteries and
capillaries

ΔPP ΔPR1 ΔPR2

ΔPC

Figure 1.9:  The windkessel sys-
tem features two independent 
loops. Along a loop, the sum of 
all pressure differences is equal 
to zero.
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results are on the right. The dots 
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lation result. The source voltage 
(US) is used as input to the mod-
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UC = Charge/Capacitance

US = Graphical_Function(TIME)

UD = 0.82

Capacitance = 458e-6

R1 = 1.00e3

R2 = 1.0e4

1.2.3 Limitations of the Model

The model for the electric circuit representing the windkessel system is quite good.
The only real shortcoming is the strongly simplified model of the diode. Here, we as-
sume the diode to be ideal: it does not let any charge pass for voltages across the ele-
ment that are smaller than 0.82 V; above that, it is an ideal conductor. This is a crude
approximation of the real behavior, but apparently it suffices.

If we transfer the model to the physiological case (by simply changing names of vari-
ables and parameters, and by applying proper values for the hydraulic parameters),
limitations become more apparent. Experience with such models shows that the ex-
pressions for the capacitive pressure of the blood in the aorta, and for the flow through
the aortic valve, could be improved upon. The aorta is a pressure vessel having an elas-
tic wall which typically leads to a nonlinear relation between pressure and volume
stored. The flow from the left ventricle into the aorta is quite complex (narrowing of
the conduit, a valve, relatively high flow speed) so that the flow relation turns out to
be nonlinear as well. Using a relation for turbulent flow instead of laminar flow comes
closer to reality.

Another shortcoming is demonstrated by the shape of the simulated aortic pressure.
With a pressure of the blood in the left ventricle taken from measurements (see the di-
agram in Fig. 1.7), the simulated pressure curve looks more like that in Fig. 1.10.
There is no hump near the maximum values, with a slower decrease after the closing
of the aortic valve. We do get this behavior, however, if we apply a more realistic rep-
resentation of the aorta in our model. Rather than taking the aorta as a single piece
(with the blood having a single value of the pressure), we divide the vessel into several
elements. The dynamics of the fluid is represented by storage in each element and flow
from element to element (as in Fig. 1.1 and Fig. 1.5). This pseudo-finite-element mod-
el yields results that are better already.

Finally, there is one more important limitation in all of the models produced so far. If
we limit our concepts to those of storage and flow through resistive elements, we will
never understand why blood flows backward for a brief period during the cardiac cy-
cle (see the flow data in the diagram of Fig. 1.7). Note that this does not mean that
blood flows back through the valve into the heart of the animal. Rather, the liquid
flows back and forth in the aorta, mostly forward, but backward as well. We will dis-
cuss how to understand this later in this chapter (Section 1.6).

The limitations discussed have to do with the constitutive laws for storage and flow
applied in our models. The generic laws of balance of amounts of liquid or electric
charge, and the concept of pressure differences and voltages in circuits are unaffected,
and so is the basic assumption that fluid and electric phenomena can be described by
similar basic structures in dynamical models. We will see in this book how we can ap-
ply this type of analogical reasoning to construct a theory of the dynamics of heat.



CHAPTER 1.  STORAGE AND FLOW OF FLUIDS AND ELECTRICITY

26 THE DYNAMICS OF HEAT

1.3 WATER, CHARGE, AND DRIVING FORCES

We have been fairly successful in producing practical models without much regard for
formalisms. In the present and the following sections, I will present a more formal dis-
cussion of what we can learn from dynamical fluid and electric systems and the mod-
eling exercises just described. I will introduce the basic quantities needed to formulate
ideas, and discuss the most important relations between these quantities that make up
our models of dynamical systems.

1.3.1 Basic Explanatory Schemas and Physical Quantities

Let us review the structure of explanations used in our models of fluid and electric dy-
namical systems discussed so far. A process is visualized as the result of the storage
and flow of fluidlike quantities such as amount of fluid or electric charge. A flow going
through a potential difference—pressure difference or electric potential difference—
from high to low is said to run by itself. Potentials are visualized as levels, and a po-
tential difference is conceptualized as a driving force. Flows can be forced through a
potential difference going in the opposite direction—up instead of down—by a pump.
Finally, flows through conduits are resisted, and if a fluidlike quantity is stored, it lit-
erally sets up a tension (a potential difference) in the system.3

The interaction of fluidlike quantities and differences of levels is the source of dynam-
ics in the world. If differences decay, we end up in equilibrium where processes stop;
if the processes build up new differences, dynamics continues in waves through chains
of systems. The schemas listed here (substances, intensities, driving forces, resistanc-
es, tensions) are aspects of a gestalt of natural processes constructed by human percep-
tion. They form the basis of our understanding of nature.

Waterfalls and process diagrams. The relationship between fluidlike quantities and
their associated driving forces (potential differences) can be cast in graphical form. In
a voluntary process, a fluidlike quantity flows from a higher to a lower level of the
potential—like water in a waterfall (Fig. 1.11, left). The reverse is a fluidlike quantity
being forced through a potential difference from a low to a high level, like water being
pumped uphill. This I call an involuntary process (Fig. 1.11, center). 

3. What is still missing from this description is an explicit reference to the force or power of
a process which can be take as the source of our concept of energy (see Chapter 2).

Figure 1.11:  Both water and 
electrical charge (X) may be 
imagined to flow by themselves 
from regions of higher potentials 
(ϕ) to regions of lower ones. Po-
tentials are conceptualized as lev-
els. IX is the flow of quantity X. 
Coupling of processes is repre-
sented in process diagrams 
(right; this is a diagram for an 
ideal water pump). IQ and IV rep-
resent flows of charge and of vol-
ume, respectively. P stands for 
pressure.

Pump
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Physical systems often couple processes where a voluntary process drives an involun-
tary one (Fig. 1.11, right). An example of this is an electrically driven water pump.
Here, electric charge flowing downhill drives the flow of water from low to high pres-
sure. The diagram used to represent the coupling of phenomena is called a process di-
agram. 

Fundamental or primitive quantities. Our first question must be which physical
quantities we can use as the basis for a quantitative description of the flow and storage
of fluids and electric charge. From the foregoing discussion of explanatory schemas it
should be clear that we need to formalize the concepts of amounts of fluidlike quanti-
ties, their flows, and associated levels of fluids or electricity.

There is an important difference between fluidlike quantities and intensities which
helps us in keeping them apart. The former scale with the size of a system whereas the
latter do not. Take a body carrying electric charge and divide it into two equal parts.
Half of the body carries half of the charge. The electric potential, however, is the same
for both parts of the body (if it were not, charge would flow and rearrange upon bring-
ing the two parts of the body together again). The difference between the two types of
quantities is reflected in the terms extensive or additive for amounts of fluid or charge,
and intensive for pressure and electric potentials. 

Measures of amounts. To be concrete, let us consider water in a container. There are
several possible choices for measures of its amount, namely, volume of a certain
amount of the liquid, its mass or amount of substance (Chapter 6). These measures are
related:

(1.1)

V, m, and n stand for volume, mass, and amount of substance, respectively. The con-
version factors are the density ρ and the molar mass M0. Standard SI units of volume,
mass, and amount of substance are m3, kg, and mole. We shall express most of what
follows in terms of the volume of a body of water. Using the volume of an amount of
fluid is the basis of descriptions of hydraulic processes. Amount of substance will be-
come important when we turn to a chemically oriented discussion of transport process-
es. Mass is sometimes preferred in mechanical engineering models.

The physical quantity which measures an amount of electricity is well known: it is the
electric charge. A capacitor stores a certain amount of charge, just as a container
stores a certain volume of water. In contrast to quantities of fluids, quantities of charge
can take positive and negative values.

Measures of flows. If we want to set up a theory of the flow and balance of water and
charge, we need a primitive quantity which describes their transport. For this purpose
we conceive of the rate of flow of water or charge into or out of a system, measured
in terms of a new quantity which we call the flux4 or the current of water or charge

4. We often find the term flux associated with what we will call flux density, namely the rate
of flow divided by the surface area through which the current is flowing. Here, we follow
the tradition of electromagnetism, where we speak of electric or magnetic fluxes as the sur-
face integrals of the flux densities, which are the quantities E or B.

m V

n
M

m

=

=

ρ

1

0
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(informally, I will use the term flow). The rate at which water flows can be expressed
in terms of the volume flux or current of volume, i.e., the volume of water flowing past
a measuring device per time. Its unit is m3/s. Alternatively, we may employ the flux
of mass or the flux of amount of substance. Again, for practical purposes, we shall
choose the first of these measures for simple fluid processes. In electricity, the quan-
tity analogous to volume flux is the current of charge whose unit is Ampere (A).

We shall use the symbol I for fluxes or currents. Since there will be many fluxes for
different physical phenomena, indices will be used to distinguish between them. Here,
the index V stands for volume, Q for charge. So IV and IQ stand for currents of volume
and charge, respectively.

Measures of levels. Using volume and volume current, we are able to say something
about an amount of water, namely the amount of it stored in a system, and the rate at
which it is flowing. These quantities do not suffice for a complete theory of the phe-
nomena associated with containers of water and currents flowing in and out. They do
not tell us anything about why water should be flowing at all. In electrical circuits as
well, we need a quantity which is responsible for setting up currents of charge in the
first place. As we have already discussed, we introduce potentials or, figuratively
speaking, levels to make sense of this aspect of our conceptualization of reality. In flu-
ids, pressure takes this role; in electricity, it is the electric potential. Pressure is mea-
sured in Pascal (Pa), electric potential in Volt (V).

Derived quantities. Only hindsight can tell us if we have chosen the right quantities
as the fundamental ones for a given range of phenomena. This means that we have to
accept a certain choice, define new quantities on its basis, build a theory, and work out
its consequences. If we are satisfied with the results compared to what nature demon-
strates, we call the theory a successful one.

For the following, let us define derived quantities related to volume and volume cur-
rent. Again, the case of electricity is analogous. An important derived quantity for the
description of dynamical phenomena is the rate of change of stored quantities of fluid
(volume) or charge; it measures how fast quantities change. The rate of change of vol-
ume is visualized as the slope of the graphical representation of the function V(t) or,
more precisely, the slope of a tangent to the function at a chosen point of time
(Fig. 1.12). Symbols for rates of change of volume are dV/dt or the letter V with a dot
on top (read as V-dot).

(1.2)

Often we are interested in the overall change of the volume of water in a container as
the result of a process lasting for a period of time. For this purpose we define the
change of volume which is simply given by

(1.3)

The change of volume is related to the rate of change. It is the integral over time of the
rate of change of volume:

(1.4)

V̇
t

V

t

Figure 1.12:  Determining the 
rate of change of volume by cal-
culating the slope of tangents to 
the V(t) curve. The symbol V with 
the dot above it denotes the rate 
of change of V.

V̇
dV

dt
≡
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Finally, we need a measure of how much water has flowed across a surface with a cur-
rent in a given period. We shall call this quantity the volume exchanged or volume
transported. It is defined as the integral over time of the flux of volume:

(1.5)

As mentioned, analogous expressions hold for quantities relating to electric charge.

1.3.2 Accounting for Volume and Charge

Fluidlike quantities such as volume, amount of substance, or electric charge accumu-
late in systems, and there is a simple law of accounting for such quantities called a law
of balance. Consider water. If the volume of water is a conserved quantity (as should
be the case for incompressible fluids not subject to chemical conversions) the volume
stored in a given system can change only due to the transport of water across the sur-
face of the system (Fig. 1.13). There must be currents or fluxes of volume with respect
to the system, and they alone are responsible for the change of the contents of the sys-
tem. They determine how fast the volume changes: 

The rate of change of the volume of water in the system must be equal to the
sum of all fluxes associated with the currents of water crossing the surface:

(1.6)

This is taken as one of the most fundamental relations of a theory of dynamics. Here,
IV,net is the sum of all currents with respect to the system chosen (Fig. 1.13). Note that
the quantity we call flux has the dimensions of the quantity which is flowing divided
by time. If we write the law of balance in this form, we have implicitly assumed that
the flux of a quantity flowing into a system should be given a positive sign.

Equ.(1.6) is not a definition of the currents or fluxes of volume. The quantities occur-
ring in this equation are fundamentally different, related only by an interesting prop-
erty of fluidlike quantities. If we could no longer assume the volume of water to be a
conserved quantity, we would have to change the law of balance. We would be forced
to account for other means of changing the volume, by introducing other terms in
Equ.(1.6). For now, let us assume that this is not necessary. 

The definitions of change and of transported quantities (Equations (1.4) and (1.5)) al-
low us to express the law of balance of volume in the following form:

(1.7)

I call Equ.(1.6) the dynamical or instantaneous form of the law of balance of volume,
whereas Equ.(1.7) is the integrated form. Identifying processes with flows, and ex-
pressing laws of balance, is the first important step in systems analysis.

In the case of electricity, the laws and definitions are identical. Since charge is a strict-
ly conserved quantity, the rate of change of the charge of a body must be equal to the
sum of all currents of charge with respect to this body. In other words, the law of bal-
ance of electric charge looks exactly like Equ.(1.6), with volume replaced by charge:

V I dte V
t

t
= ∫

1

2

Figure 1.13:  A system is a re-
gion of space occupied by a phys-
ical object. It is separated from 
the surroundings by its surface. A 
fluidlike quantity which we 
imagine to be stored in the sys-
tem can change as a consequence 
of transports across its boundary. 
Currents leaving a system are 
given negative fluxes. In some 
cases, transport across the sur-
face is the only means of chang-
ing the contents.
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(1.8)

The change of charge and the amount of charge exchanged in a process are defined
analogously to Equations (1.4) and (1.5). Again, the law of balance in integrated form
looks just like the expression in Equ.(1.7).

There is a special expression of the instantaneous law of balance of charge that is often
used in modeling of electric circuits. Consider a junction of three or more wires in a
composite circuit. Charge flowing toward the junction from one or more wires then
leaves directly through the other wires. This is so because the junction does not store
charge. The charge of the junction is and remains equal to zero. Therefore, the rate of
change of charge of the junction must be zero as well, which means that for a junction,

(1.9)

This is called the junction rule or Kirchhoff’s First Law. Clearly, the same relation
must hold for the balance of volume of a liquid applied to a junction made of pipes.

1.3.3 Pressure Differences and Voltages

Pressure differences and voltages are considered causes for processes. Alternatively,
we may look at processes leading to potential differences. Identifying such differences
and related processes is the second integral part of systems analysis.

Pressure differences in circuits. The pressure of a fluid changes from point to point
in a closed hydraulic circuit. To make use of this observation, choose a few important
points in the system (usually at the inlets and outlets of elements such as pipes, pumps,
and tanks). Label pressure differences5 from point to point (Fig. 1.14) by introducing
arrows and symbols ∆PAB, etc.:

(1.10)

5. Note that there are two different kinds of (mathematical) differences in nature. One refers
to a change in time as in Equ.(1.3). Then there are also differences of a quantity associated
with their change along a path as in Equ.(1.10). I typically call the former change and the
latter difference.

dQ

dt
IQ net= ,

0 1 2= + +…I IQ Q

∆P P PAB B A= −
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D
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∆PBC
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CircuitFigure 1.14:  Pressures in a fluid 
system (left) form a kind of 
“pressure landscape” or “hydrau-
lic landscape” which shows ups 
and downs (right, level diagram).
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We can draw a diagram looking like a “landscape” (Fig. 1.14). When we are back at
the origin, the pressure is the same. Therefore, the sum of all pressure differences in a
closed circuit must be equal to zero (loop rule, Kirchhoff’s Second Law):

(1.11)

Electric potential and voltages. The electric potential measures the intensity of the
electric state of a system at a point (these systems can be material bodies such as wire,
but also electric fields). Its unit is V (Volt), the symbol used is ϕ or ϕel . Electric po-
tential does not have an absolute zero point (in contrast to pressure). This means that
only the differences of electric potentials are important. 

Electric potential differences are called voltages (see below). By itself, positive elec-
tric charge will flow from points of high to low electric potential, whereas electrons
flow from lower toward higher electric potentials. The potential difference is the dif-
ference of potentials at two different points A and B of a system (Fig. 1.15), indepen-
dent of the physical reasons for the difference:

(1.12)

The negative potential difference is called the voltage between points A and B:

(1.13)

This means that the voltage is positive across a resistor in the direction of the flow of
(positive) charge, whereas it is negative across a battery in the direction of flow.

Potential differences (voltages) in closed electric circuits. The potential changes
from point to point in a closed electric circuit. To make use of this observation, choose
a few important points in the system such as the circuit of Fig. 1.15. Label potential
differences (voltages) from point to point by arrows and by symbols UAB, etc.

We can draw a diagram looking like a “landscape” (Fig. 1.15). When we are back at
the origin, the potential is the same. Therefore, the sum of all voltages in a closed cir-
cuit must be equal to zero (loop rule, Kirchhoff’s Second Law):

(1.14)

∆ ∆ ∆P P PAB BC CD+ + +…= 0

∆ϕ ϕ ϕAB B A= −

UAB AB= −∆ϕ

Figure 1.15:  Electric potential as 
a function of position in a circuit 
containing two capacitors, a bat-
tery, and a resistor. The values 
will change in the course of time, 
but the form of the level diagram 
will basically remain the same.
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1.4 SOME CONSTITUTIVE RELATIONS IN FLUIDS AND ELECTRICITY

The relations discussed in Section 1.3 are basic or generic: they take the same general
form in different systems and processes. Laws of balance and relations between level
differences along a path in a system are independent of special circumstances. This is
not so for the relations between potential differences, stored quantities, and currents.
The latter depend upon special circumstances—upon how a system is built, the mate-
rials used, etc. For this reason we call the relations needed to express the terms in laws
of balance special, material, or constitutive laws.

1.4.1 Resistive Transports of Fluids and Charge

When a fluid flows through a pipe, its pressure drops in the direction of flow because
of fluid friction. This pressure drop is called a resistive pressure difference ∆PR, and
it is characteristic of the flow which, in turn, depends upon fluid properties and pipe
dimensions. Charge flows through a resistor (or a conductor) from higher to lower
electric potentials, so there is a resistive voltage UR associated with this process.

Process diagram of resistive transports. Since a fluid goes from high to low pressure
(different from what it does in a pump), or charge flows from high to low electric po-
tentials, we say that the level differences are driving the process. We know that in re-
sistive transports, the process caused by the flow of fluid or charge consists of the
production of heat (Fig. 1.16).

Flow characteristic for fluids. The relation between the resistive pressure drop ∆PR

and the associated volume current is called the flow characteristic (Fig. 1.17). (Note
that here the current IV measures the flow through the system.) It allows us to calculate
flows if we know the associated pressure difference, or vice-versa. There are two types
of flow (laminar and turbulent) leading to two different characteristic curves.

HYDRAULIC
PROCESS

Driving
process;

current from
high to low

THERMAL
PROCESS

Driven
processIV

P2

P1

Resistor
P1 P2

System

SYSTEM
P2

P1

IV Heat

Heat

Figure 1.16:  Process diagram of 
resistive fluid flow. The flow ele-
ment may be called a resistor. 
Here, the driving process is the 
flow of fluid. The driven process 
consists of the production of 
heat. Right: Waterfall representa-
tion of the driving process. The 
case of electricity is analogous.
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tics for laminar flow (oil in a 
pipe, left) and for turbulent flow 
(water in a pipe, right). IV is the 
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Analogous characteristic relations can be constructed for electric conductors. The sim-
plest conductors are made of ohmic materials where the relation between resistive
voltage and electric currents is linear as in the case of laminar flow (Fig. 1.17, left).
When we let electricity pass through a wire that can change its temperature drastical-
ly—as in the filament of an incandescent light bulb—characteristic curves look more
like those on the right in Fig. 1.17 (even though the material is still ohmic; the devia-
tion from linearity is not due to a basic change in transport mechanism, but to increas-
ing temperature). A completely different type of transport of charge is observed in
diodes which are made of combinations of semiconductors. Here, the electric current
grows exponentially with increasing voltage across the diode.

Laminar Flow. For laminar flow, the characteristic relation is linear. In this case, we
can write the flow law with the help of a hydraulic conductance GV (units m3/(s · Pa))
or its inverse, the hydraulic resistance RV (units Pa · s/m3):

(1.15)

There is an expression for the hydraulic conductance or resistance for laminar flow in
pipes with circular cross section which is called the law of Hagen and Poiseuille:

(1.16)

r and l are the radius and length of the pipe, µ is the viscosity of the fluid. The viscosity
of a fluid tells us how “thick” it is.6 Viscosity is discussed in some more detail in
Chapter 3.

Turbulent flow. In turbulent flow, the flow increases less rapidly with an increase of
the associated pressure difference (diagram on the right of Fig. 1.17). The turbulent
characteristic function is close to the square root function for many practical cases:

(1.17)

This simple relation suffices as a first approximation. k is called the turbulent flow fac-
tor. This factor is similar to a conductance, however, the terms resistance and conduc-
tance are only used for laminar flow.

Ohmic transport of charge. The transport of charge in metallic conductors satisfies
a simple relation. For small enough voltages or electric currents, the current is strictly
proportional to the potential difference across the conductor. Therefore, the character-
istic relation is linear. In this case, we can write the flow law with the help of a con-
ductance G (units A/V = 1/Ohm) or its inverse, the resistance R (V/A = Ohm = Ω):

(1.18)

6. For a derivation of the law of Hagen and Poiseuille, and for a comparison of conductive
transports of momentum, heat, and mass, see Bird, Stewart, and Lightfoot (1960) or any
other book on transport phenomena.

Figure 1.18:  Characteristic dia-
gram of a diode.
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There is an expression for the conductance or resistance for ohmic transport in con-
ductors having constant cross section:

(1.19)

l and A are the length and cross section of the conductor, respectively, and ρel is the
resistivity of the material. The resistivity basically measures how hard it is for charge
to flow through the conductor. The inverse of resistivity is called electrical conductiv-
ity: σ = 1/ρel (unit: S/m, S: siemens). 

1.4.2 Storage of Fluids and Charge

Constitutive laws specifying currents have to do with transport phenomena. We also
need a means of saying something about the process of storing water (or electrical
charge). It is customary to introduce a quantity which expresses the relationship be-
tween a change of the amount of fluid contained in a system and the change of the as-
sociated potential, i.e., the change of pressure. It allows us to relate the change of
system content to the possibly more easily measured potential. In electricity we are in-
terested in the relationship between the charge contained in a system and the voltage.

Capacitive characteristic in fluid systems. If fluids are stored in tanks or pressure
vessels, the pressure difference (normally) increases with an increasing amount of
stored fluid. In other words, there is a relation between the volume stored and the as-
sociated pressure difference (which we call a capacitive pressure difference ∆PC). The
relation is called a capacitive characteristic (Fig. 1.19). 

Elastance and hydraulic capacitance. The characteristic can be expressed mathe-
matically if we introduce the elastance αV, i.e., the factor which tells us how easy it is
to increase the pressure with a given amount of fluid:

(1.20)

αV is equal to the slope of a tangent to the characteristic curve (Fig. 1.19). This means
that the elastance measures the stiffness of container walls (in the case of pressure ves-
sels) or the inverse of the cross section of a tank. The unit of elastance is Pa/m3. Alter-
natively, we can introduce the hydraulic capacitance CV (units m3/Pa) which is
defined as the inverse of the elastance (CV = 1/αV):

(1.21)

For a liquid of density ρ in an open container the capacitance is

(1.22)

Equ.(1.21) suggests a way to determine volume changes from pressure changes if the
capacitance is known (as a function of pressure). For constant capacitance, we simply
multiply the pressure difference by the capacitance. Geometrically, this corresponds

R
l

Ael= ρ

V

P

P

αV

Figure 1.19:  Pressure as a func-
tion of stored volume (top). The 
slope of the characteristic curve 
is called the elastance of the stor-
age element. Typically, the 
elastance is a function of pres-
sure. The case shown here is 
characteristic of the fluid in the 
human eye.
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to the calculation of the area of a rectangle. This tells us that, in general, the change of
volume associated with a change of pressure is equal to the area between the capaci-
tance – pressure function and the pressure axis (Fig. 1.20).

Electric capacitive characteristic. If charge is stored in a capacitor, the voltage in-
creases with increasing amount of stored charge. In other words, there is a relation be-
tween the charge stored and the associated voltage (which we call a capacitive voltage
UC). The relation is called a capacitive characteristic (Fig. 1.21, left). Another way of
representing the relation is by drawing a fluid image (Fig. 1.21, right), an imaginary
tank with charge inside where the level represents the voltage UC. In general, the char-
acteristic is nonlinear. A linear characteristic is related to a constant capacitance. The
cross section of the imaginary tank represents the capacitance of the capacitor.

Elastance and capacitance. The characteristic relation can be expressed mathe-
matically if we introduce the elastance αQ, i.e., the factor which tells us how easy it is
to increase the voltage with a given amount of charge:

(1.23)

αQ is equal to the slope of a tangent to the characteristic curve (Fig. 1.21). This means
that the elastance measures the “stiffness” of the storage system. The unit of elastance
is V/C.

Alternatively, we can introduce the electric capacitance CQ or simply C (units C/V =
F (Farad)) which is defined as the inverse of the elastance (C = 1/αQ):

(1.24)
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Figure 1.20:  The change of vol-
ume related to a change of pres-
sure is obtained from integrating 
the capacitance over pressure 
(left). This can be interpreted 
more intuitively by considering 
the diagram as a type of tank with 
a fluid contained in it (center and 
right).

Figure 1.21:  Voltage as a func-
tion of stored charge (left). The 
slope of the characteristic curve 
is called the elastance of the ca-
pacitor. Fluid image of capacitors 
(right). A capacitor is like a tank 
storing charge (Q) which can be 
positive or negative. The level in 
the “tank” depends upon the 
quantity stored through the cross 
section of the tank. Here, the 
cross section symbolizes the ca-
pacitance.
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1.4.3 Pumps and Batteries

Pumps, batteries, generators, and solar cells drive fluid or electric processes, i.e., they
set up pressure differences and voltages. The driving process can be electric or me-
chanical in the case of pumps. Batteries are driven chemically, generators mechanical-
ly, and solar cells get their input from solar radiation.

Process diagram and characteristic of pumps. Pumps come in many different
types and forms, ranging from the heart to microengineered or large industrial pumps.
Here we are only interested in their overall performance. Pumps make fluids flow, and
they increase their pressure. This simple fact is best represented in a process diagram
of the type shown in Fig. 1.22. The process diagram used to describe the operation of
a pump can be used to introduce the notion of the energy delivered to the fluid by the
pump (Chapter 2).

We define the operation of a pump by describing the relation between the pressure dif-
ference ∆PP set up and the flow through the device. An ideal pump might be described
by assuming a constant pressure difference. Real pumps commonly have a more com-
plicated type of characteristic (Fig. 1.23). If we model a real water pump as consisting
of an ideal part that sets up a pressure difference, followed by a resistive element due
to turbulent flow, we should get a parabolic pressure-flow relation (this corresponds
well to what we see in the diagram on the left of Fig. 1.23).

Characteristics of batteries. Characteristic diagrams of batteries are simple linear
curves: The voltage across the terminals decreases with increasing electric current (see
Fig. 1.23, right). The formal description of the characteristic is

(1.25)

ELECTRIC
PROCESS

Driving
process

HYDRAULIC
PROCESS

Driven
process;

current from
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Figure 1.22:  As a fluid is forced 
through a pump, its pressure is 
made to go up. Figuratively 
speaking, the fluid current is 
forced uphill.
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UB is the voltage measured across the terminals, U0 is the maximum possible voltage
(the open circuit voltage), IQ is the current through the battery, and Ri is the internal
resistance of the battery. A derivation of Equ.(1.25) uses ohm’s relation for resistive
transports of charge.

1.4.4 Gravity and Height Differences

In the case of fluids, gravity—the Earth’s gravitational field—plays an important role
if we do not restrict our view to purely horizontal processes. The action of gravity
leads to particular constitutive relations for fluids in tanks and (vertical) pipes.

Hydrostatic pressure. For fluids which are “stacked” in a gravitational field, i.e., sys-
tems where the weight of the fluid is responsible for a pressure difference, there is a
simple relation between pressure difference and height difference (Fig. 1.24). It can
be derived from the observations which are summarized in Fig. 1.25:

(1.26)

This relation can be used to calculate pressure differences (and capacitive characteris-
tics) for fluid tanks (Fig. 1.20 and Equ.(1.22)). It is correct for constant density only.

Pressure gradients. According to the example of hydrostatic pressure in an incom-
pressible liquid (Equ.(1.26)), the pressure gradient in the upward direction is

(1.27)

As observed in Fig. 1.25, the pressure gradient is proportional to the density of the liq-
uid. Furthermore, it must depend upon the strength of gravity (g). The negative sign
tells us that the pressure decreases if we go upward.

Pressure in the Earth’s atmosphere. The pressure-height relation for the atmosphere
is not linear: the pressure of the air drops exponentially with height above ground. This
is so since the fluid is a gas whose density changes with pressure (and temperature).
Nevertheless, the expression for the vertical pressure gradient is the same as that for
incompressible fluids, i.e., Equ.(1.27) still holds.

If we know how the density of the air depends upon pressure and temperature, the re-
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Figure 1.24:  Going uphill in a 
fluid “stacked” in the gravitation-
al field, the pressure decreases.
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lation for hydrostatic equilibrium (Equ.(1.26)) can be solved. Even though this is not
realistic, one often considers the case of an isothermal atmosphere (an atmosphere
where the temperature does not change in the vertical direction). If this is the case, the
density is proportional to the pressure (see Problem 7 in Chapter 5) leading to an ex-
ponential pressure-height relation:

(1.28)

For the Earth’s atmosphere, the factor k is about 7000 m. This means that the pressure
decreases by a factor of e for every 7000 m, or by a factor of 2 for every 5000 m. Even
though our atmosphere is not isothermal, the result is useful for quick estimates.

The gravitational potential. Pressure differences are interpreted as hydraulic driving
forces, pressures are hydraulic “levels.” For fluids stacked in the gravitational field,
vertical pressure differences are the result of gravity. They are calculated according to
Equ.(1.26) or Equ.(1.27). If we multiply the pressure difference by the volume of a
certain quantity of liquid which we imagine to be transported from a height h1 to a
height h2 (Fig. 1.26), we have ∆PV = ρg∆hV = g∆hρV = g∆hm:

(1.29)

This result is interpreted as follows (Fig. 1.26). If we look at gravitational processes
as the transfer of the mass of a substance from a level 1 to a level 2, the right hand side
of Equ.(1.29) represents mass m going from a gravitational level gh1 to a level gh2.
Therefore, g∆h is interpreted as the gravitational driving force, and gh is the so-called
gravitational potential.

1.5 BEHAVIOR OF RC MODELS

The models we can construct by using laws of balance, loop rules, and resistive and
capacitive constitutive relations are called RC models. R and C stand for resistance and
capacitance, respectively. Adding pumps and batteries does not change anything
about the nature of the models we have been building. As we will see, the behavior of
such models is relatively simple. In particular, they do not admit oscillatory solutions.
We will see in the following section how to extend models to create an understanding
of oscillatory behavior and wave motion.

1.5.1 Charging and Discharging Single Storage Elements

Systems made up of containers and pipes (or capacitors and resistors) show relatively
simple behavior. Complex behavior is often the result of the interaction of several sim-
ple elements. For the simplest systems—those having constant values of capacitance
and resistance—analytic solutions of the model equations can be obtained. Solutions
are combinations of exponential functions of time. In the case of draining straight-
walled tanks through horizontal pipes with laminar flow (Fig. 1.27, top) we get

(1.30)

P h P e h k( ) = ( ) −0
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Figure 1.26:   A process diagram 
explaining the coupling of gravi-
tational and hydraulic processes. 
As a body of mass m goes “down-
hill by a distance” g∆h, the pres-
sure of the corresponding volume 
goes up by ∆P.
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If an empty tank is charged (Fig. 1.27, bottom), the solution of the model is

(1.31)

Equ.(1.30) and Equ.(1.31) also hold for h(t) and V(t), and they work for the equivalent
electric circuits. We only have to substitute electric for hydraulic variables.

The functions reported above are the solutions of the differential equations resulting
from the combination of all the relevant model equations. Here is an example of the
draining of the oil tank. We have a single storage element with a single flow. There-
fore, the law of balance of volume is 

The volume is related to the capacitive pressure difference, the flow results from the
resistive pressure difference along the pipe, and the pressure differences are equal:

If we introduce these equations into the law of balance of volume, we obtain a single
differential equation:

An initial condition has to be added to this differential equation: ∆PC(0) = ρgh0. Solv-
ing the initial value problem leads to a function of the type seen in Equ.(1.30).
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1.5.2 Time Constants

The behavior (fluid level as a function of time) for the simple cases of draining and
filling of a tanks is shown in the accompanying graphs (Fig. 1.27). The solutions of
the model are exponential functions. A measure of how fast (or slow) the process is,
is the time it would take for the tank to drain or to fill were the level to continue to
change at the initial rate. This time span is called the capacitive time constant τC of the
system. In a period equal to one time constant, the level of fluid in the system shown
on the left in Fig. 1.27 drops to 1/e = 0.37 times the initial level. The analytic solutions
in Equ.(1.30) and Equ.(1.31) demonstrate that

(1.32)

1.5.3 Conductive Transports Through Chains of RC Elements

If we combine storage elements and resistors (or conductors) in long chains (see
Fig. 1.28), we obtain models of a phenomenon that is very common in natural and
technical settings: diffusion. Diffusion is usually associated with the transport of sub-
stances through matter. An everyday example is the spreading of a drop of ink on blot-
ting paper, or salt dissolved in a layer of water slowly migrating into other parts.
Diffusion is particularly important in biology where many processes depend on the
transport of chemicals through bodies (see Chapter 6 for more detail). 

Diffusion is very much a physical process. As we have seen, fluidlike quantities such
as charge or amount of substance can be transported (later we will add heat and mo-
mentum to the list). One form of transport is the flow through conducting materials. A
fluidlike quantity is present in matter (it is stored), and it is conducted through it
(Fig. 1.28). The combination of effects leads to diffusion.
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Figure 1.28:  A chain of tanks 
connected by pipes (top) stores 
and conducts a fluid. The result-
ing behavior is found in diffu-
sion. The same phenomena are 
observed in chains of electric RC 
elements (middle: the equivalent 
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tom left: A system dynamics 
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stance in diffusion through mat-
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Consider several tanks in a row connected by pipes as in Fig. 1.28. This is the simplest
and most vivid of systems whose behavior mimics diffusion. The tanks are for tempo-
rary storage of a fluid, and the pipes let the fluid pass according to the law of conduc-
tion (or resistance): The flow depends upon the difference of fluid levels in the storage
elements. Alternatively, we can build an equivalent electric circuit that demonstrates
analogous behavior (Fig. 1.28, middle). This is a model of a thin electric conductor
such as a wire. It can be considered to consist of storage elements for charge placed
one after another along a line. The wire also acts as the conductor. If we place some
charge near the middle of such a conductor, electricity will spread toward the ends as
shown in the diagram of Fig. 1.28 (bottom, right).

1.6 OSCILLATORY PROCESSES AND WAVES

We still do not understand an important element of the behavior of dynamical systems.
I have pointed this out when we discussed the blood flow system (Section 1.2.2).
Blood flows backward in the aorta for brief periods during each cardiac cycle—the
flow oscillates back and forth. The windkessel model in the form presented in
Fig. 1.10, however, does not lead to oscillations. 

This shortcoming is no problem for the example of how oil flows from one tank into
another through a pipe. However, if we change the system to a U-pipe containing a
less viscous liquid (Fig. 1.29), oscillations occur. So we need to understand what we
have neglected in our discussions so far.

1.6.1 Starting and Stopping Currents

Contrary to what we would consider realistic, we have assumed that currents follow
pressure differences directly and in accordance with a simple flow relation such as the
ones in Equ.(1.15) and Equ.(1.17) (and Equ.(1.18) for electricity). To be concrete, the
model of the equilibration of levels in two communicating tanks (Fig. 1.5) predicts an
immediate rise of the current from zero to its maximum value upon opening the valve
of the connecting pipe (Fig. 1.30).

This is unrealistic. We know from experience that a current of water starting in a pipe
takes a noticeable amount of time to reach its maximum. The same is true of electric
currents, even though the delay there may be so much shorter that we think we can
neglect the effect in all our models. This is not so, however. The phenomenon of in-
duction, as it is called in electricity, is present all the time, and it can be made very
noticeable by introducing electromagnets in the form of solenoids in our circuits.

Both in fluids and in electricity, currents have to be driven to start up, or put more gen-
erally, to change. Driving means we need a pressure difference or a voltage for the ef-
fect to occur. The beginning phase of draining of a tank through a pipe (Fig. 1.31)
demonstrates how we can understand this phenomenon. As we open the pipe (take the
finger off the end of the pipe) to let the fluid flow, a pressure difference is established
along the pipe. (Even though this process also takes some time, we shall assume, and
reasonably so, that this happens quickly compared to the rise of the current we are in-
terested in.) This pressure difference results from the difference of pressures at the in-
let of the pipe at the tank and the pressure of the air at the outlet. It will slowly decrease
in time due to the draining of the tank. (This is the phenomenon we already understand
on the basis of our RC models.)

Figure 1.29:  Many systems ex-
hibit oscillatory behavior. Here 
we have mercury in a U-pipe.
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Figure 1.30:  As the pipe con-
necting two fluid tanks is opened, 
the current of fluid suddenly 
jumps to its initial value. 
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What we need to understand is this: there is a real pressure difference ∆PAB along the
fluid in the pipe. At the very beginning, when the flow is still zero, the resistive pres-
sure difference which we have been considering so far in this chapter must also be ze-
ro. So, there is an actual pressure difference that has nothing to do with the actual flow.
Rather, the pressure difference leads to an acceleration of the fluid: the fluid in the tank
presses more strongly upon the fluid in the pipe from behind than does the air at the
outlet from the front. Now, as the current of fluid increases, the resistive pressure dif-
ference associated with it increases as well. As a result, the part of the actual pressure
difference ∆PAB remaining, i.e., the quantity ∆PAB – ∆PR, also decreases. This is the
part that continues to accelerate the fluid. The flow will increase more slowly as time
goes on, just as indicated in the lower diagram of Fig. 1.31. Finally, the inductive ef-
fect—the changing of the current due to the driving force ∆PAB – ∆PR —must have
come to a halt. 

The pressure difference ∆PAB – ∆PR is called the inductive pressure difference ∆PL:

(1.33)

Hydraulic induction results from the inertia of the fluid flowing through a pipe (elec-
tric induction is caused by the magnetic field of a solenoid)7. Therefore, its should be
possible to derive the relation between rates of change of currents and inductive pres-
sure differences on the basis of the laws of mechanics. Newton’s law (i.e., the balance
of momentum; see Chapter 3) lets us calculate the accelerating effect of the inductive
pressure difference:

where Ap is the cross section of the pipe, and l is its length. We assume the flow speed
to be uniform over the entire cross section of the pipe. Therefore, the pressure differ-
ence may be expressed in terms of the rate of change of the volume flux (or volume
current):

7. While energy is stored in the magnetic field associated with a current of charge, energy is
stored in the flowing water (kinetic energy). The form of the relationship between energy,
current, and inductance is the same in hydraulics and electricity (see Chapter 2).

Figure 1.31:  A fluid discharging 
through a long horizontal pipe. 
The current cannot jump sudden-
ly to the value calculated accord-
ing to the resistance law. Rather, 
it rises gradually. B
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The factor lρ /Ap is called the hydraulic inductance of the fluid in the pipe (in analogy
to the electromagnetic inductance of a solenoid in electric circuits):

(1.34)

This factor measures how hard it is to change a current. Now we can write the law of
induction, i.e., the relation that shows in what way an inductive pressure difference
leads to a rate of change of a current:

(1.35)

In electricity, we have an analogous relation:

(1.36)

Note that these equations are constitutive laws, not some sort of law of balance of a
current. Hydraulic and electric phenomena are clearly comparable. As in the case of
electric currents, decreasing a current of water induces a positive potential difference
which tends to oppose the change of volume flux. 

If we want to know how a laminar fluid current through a pipe (or, in analogy, an elec-
tric current through a solenoid having ohmic resistive properties) changes in time, we
simply combine Equ.(1.33) and Equ.(1.35) to obtain

(1.37)

I have written the relation for the hydraulic case, but you may translate it to fit electric
phenomena by simply substituting charge for volume. The ratio of inductance and re-
sistance has the dimension of time. Therefore, L /R is the characteristic time scale on
which currents change in an inductive circuit (the inductive time constant). If we as-
sume a constant value for the total pressure difference, the solution of Equ.(1.37) for
the starting of a current is an exponential of the type shown in the lower diagram of
Fig. 1.27. The formal solution proves that L /R is the inductive time constant.

1.6.2 Oscillations

The explanation of the phenomena associated with starting and stopping of currents is
the missing link for an understanding of oscillatory systems. If we combine electric or
hydraulic capacitors and inductors, oscillations are possible. In an electromagnetic
LCR-circuit, charge oscillates between storage and flow with a frequency which de-
pends mainly on L and C. Water may be made to oscillate in a U-tube in just the same
manner (Fig. 1.29). By calculating the capacitance and the inductance of the container
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we can find the frequency of oscillation. There is another hydraulic setup which has
an electronic equivalent. If the flow of water from an artificial lake to the turbines of
an electric power plant has to be stopped abruptly for any reason the pressure may rise
to such a level that the pipes rupture. For this reason a hydraulic capacitor is built in
parallel to the system, namely a tower (surge tank) which is filled rapidly with the wa-
ter rushing down the pipes.

Let me derive the equations of a simple oscillator by creating a system dynamics mod-
el for a fluid in a U-pipe (Fig. 1.29). The U-pipe is structurally similar to two commu-
nicating tanks described in Fig. 1.1. So let us start with the system dynamics model
presented in Fig. 1.5. The relations it represents are still valid. Only the flow relation
has to be turned around: since the current will be calculated by integrating its rate of
change (which we obtain from the law of induction), we can use the flow to compute
the resistive pressure difference (Fig. 1.32). The difference of the capacitive pressures
yields the total pressure difference along the pipe (∆Pp). The latter minus the resistive
pressure difference yields the inductive pressure difference ∆PL. This is used to cal-
culate the rate of change of the current. This completes the system dynamics model
shown in Fig. 1.32. Here, C is the capacitance of one of the sides of the pipe, L is the
inductance of the fluid in the pipe, and R is its resistance. Properties are assumed to be
constant.

The equations that make up the model are three differential equations (one for each of
the stocks), the loop rule, and constitutive relations for the rate of change of the cur-
rent, the capacitive pressures, and the resistive relation. These equations can be rear-
ranged to yield two initial value problems (first order ordinary differential equations
with initial conditions). If we express these equations with two of the three state vari-
ables, namely PC1 and IV, we obtain

(1.38)

It is customary to combine such equations still further so we have a single second or-
der differential equation for one of the variables. If we choose PC1, we arrive at
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Figure 1.32:  A system dynamics 
model diagram for a fluid in a U-
tube. Note the integrator for the 
current (the combination of flow 
symbol for the rate of change of 
the current and the stock for the 
current itself). The inductive 
pressure difference is calculated 
from the capacitive and resistive 
pressure differences.
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(1.39)

with proper initial values for PC1 and dPC1/dt. This is the well known linear equation
for damped oscillations. If R = 0, the oscillation is undamped, and its period is

(1.40)

Note that the total capacitance, i.e., the capacitance of both sides of the U-pipe taken
together, is equal to half the capacitance of one side, so Ctot = C/2.

1.6.3 Inductive Model for Blood Flow

Notice how induction leads to an explanation of the back-flow of blood in the aorta of
a mammal (Fig. 1.7). Assume the aorta to be a storage element (it has flexible walls),
a resistor or conductor (it lets viscous blood pass), and an inductor (the fluid demon-
strates inertia). A simple model of the dynamic behavior of the aorta is one that divides
the vessel into two sections (Fig. 1.33). The storage elements and the flow between
them can now be modeled like a system made up of a fluid in a U-tube (Fig. 1.32). The
difference is that we have an input to and an output from the U-tube (intermittent input
from the heart, smoothed output to the body).

The model contains quite a number of parameters which have to be determined if we
want reasonable simulation results. It is important to have data to estimate at least
some of these values (see the graph in Fig. 1.7). The aortic pressure curve and the flow
allow us to estimate the capacitance of the aorta and the systemic resistance (we obtain
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Figure 1.33:  If we divide the 
aorta in the blood circulatory sys-
tem into two elements, the wind-
kessel model looks like the 
illustration at the top. The flow 
between the two tanks can be 
made to exhibit both resistive and 
inductive properties. Bottom: A 
system dynamics model diagram 
of this system. 
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values of 2·10–9 m3/Pa for the former, and 2·108 Pa · s/m3 for the latter). The difference
between the pressures in the left ventricle and the aorta yields an estimate of the resis-
tance of valve and entrance to the aorta (or, if we model the flow there as turbulent,
the flow factor as in Equ.(1.17); we obtain roughly 4·10–6 m3/(s · Pa0.5)).

We still need starting values for the inductance and resistance of the aorta. If we as-
sume a hose of 50 cm length and 1 cm diameter for the aorta of a sheep, the inductance
should be about 6·106 Pa · s2/m3 (Equ.(1.34)). For laminar flow, the resistance would
be roughly 7·106 Pa · s/m3 (Equ.(1.16)). If we use the inductance and the capacitance
of the aorta to estimate the period of oscillation of blood in this vessel as in Equ.(1.40),
we obtain 0.35 s. This can be compared to the oscillations visible in the flow data.
Armed with such values, we can simulate the model in Fig. 1.33, and adjust parame-
ters a little more. despite this overly simplified model, we obtain results that do mimic
many of the important real features (Fig. 1.34).

1.6.4 Wave Propagation in Chains of LCR Elements

The inductive two-tank windkessel model is a step toward an explanation of another
important phenomenon—wave propagation. If we divide a conductor into many ele-
ments and model each element as a storage device with a resistor and an inductor be-
tween each of them (Fig. 1.35), electric charge or a fluid will be transported in a
wavelike manner through the chain. Whereas in RC chains (Fig. 1.28), a substance dif-
fuses and basically does not flow backwards, here the fluidlike quantity can be reflect-
ed at an end of the chain and come back, and the amplitude can become higher in an
element further down the chain, something that does not happen in diffusion. Most im-
portantly, one can identify a definite finite speed of wave propagation. This is note-
worthy since the equations predict infinite speed for diffusion—something that is
quite unrealistic and unphysical (see Chapter 13).

A system dynamics representation of the chain of RCL elements in Fig. 1.35 is fairly
simple to achieve. We start with the laws of balance of charge for two neighboring ca-
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Figure 1.34:  Data for blood 
pressure (left) and blood flow 
(right) in the aorta of a sheep (cir-
cles in the diagrams; see also 
Fig. 1.7). Simulation results for 
the model in Fig. 1.33 have been 
superimposed. The results are far 
from perfect, but they show be-
havior not visible in RC models 
discussed earlier. There are 
wave-like features both in the 
pressure and in the flow.
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pacitors with a flow between them. This flow is calculated on the basis of the law of
induction which necessitates knowledge of the inductive voltage UL between the ca-
pacitors. This inductive voltage is a part of the total voltage between capacitors, i.e.,
UC,i+1 – UC,i, if there is a resistive element. The part taken by the resistive element is
calculated from UR = RIQ. Once we have a model for this part of the complete chain,
elements can be copied and joined which leads to a model diagram such as the one
shown in Fig. 1.36.

Qualitative reasoning can give us an idea of which quantities the wave speed should
depend upon (for a derivation of the wave equation and the speed of propagation see
Section 3.6). Resistive properties of the chain lead to attenuation of the wave; they can
be made smaller (even equal to zero, in theory) which lessens the damping but should
not affect the wave otherwise. So we do not expect the resistance to determine the
speed of propagation of a wave, at least not significantly. Inductance and capacitance,
on the other hand, seem to be the factors that are directly responsible for wavelike be-
havior. We know that they determine the frequency of oscillation between two capac-
itors (Equ.(1.40)).

Take an electric coaxial cable and represent it in a simplified manner by an RCL chain
as in Fig. 1.35. Assume that we have chosen 10 elements to model the cable. What
keeps us from using 20 or 40 or still more element? Models with successively more
elements should be better representations of the cable, not fundamentally different
ones. Within limits set by how well a number of elements models the cable, each mod-

Figure 1.36:  Top: Diagram of 
dynamical model of a chain of 
LCR elements as in Fig. 1.35. 
Bottom: Simulation of electric 
current at the center of a 1 m ca-
ble, represented by 40 RCL ele-
ments. Total capacitance: 1.0 F, 
total inductance: 1.0 H, resis-
tance equal to zero. Input: A short 
pulse at t = 0.025 s. Note that it 
takes about 0.5 s for the input 
pulse to arrive at x = 0.5 m, and 
1.5 s for the wave to reflect at the 
end of the cable and come back to 
the same point. This corresponds 
to a wave speed of 1.0 m/s.
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el should yield the same value for the propagation speed of the wave. Now, if we take
20 instead of 10 elements for the same physical object, we have to reduce the capaci-
tances and inductances by a factor of 2. If we were to use a pair of values to calculate
the wave speed, different models would lead to different results which contradicts our
assumption. Therefore, it seems reasonable to assume that capacitance per length and
inductance per length are the determining factors for wave speed:

(1.41)

c denotes the speed of propagation, and l stands for the length of the cable. The form
is reasonable on grounds of physical units since the product of C and L has units of
time squared. The product of capacitance and inductance per length has units of s2/m2,
so Equ.(1.41) has correct units. Playing around with a dynamical model of a wave
guide can confirm this hunch and tells us that the factor in Equ.(1.41) must be equal
to one (see the simulation results in Fig. 1.36).

Both the models for diffusion in Fig. 1.28 and for wave propagation in Fig. 1.35 tell
an important story for the later parts of this book. When we divide a body transporting
a fluidlike quantity into ever smaller elements, we arrive at a model of spatially con-
tinuous processes. Waves will be taken up again briefly in Chapter 3, and continuous
systems will be investigated in quite some detail in Parts III and IV of this book.

EXERCISES AND PROBLEMS

1. Two currents of water are flowing into a fountain. The first changes linearly from 2.0 liters/
s to 1.0 liters/s within the first 10 s. The second has a constant magnitude of 0.50 liters/s.
In the time span from the beginning of the 4th second to the end of the 6th second, the vol-
ume of the water in the fountain decreases by 0.030 m3. (a) Calculate the volume flux of
the current leaving the fountain. (b) How much water will be in the fountain after 10 s, if
the initial volume is equal to 200 liters?

2. Consider a tank having two outlets as in Fig. P.2. There is a constant inflow. Take vegetable
oil as the liquid. Assume the tank to be half filled initially. How will the level of oil in the
tank change in the course of time? Sketch a diagram showing different possibilities and ex-
plain how the different cases depend upon the magnitude of the inflow.

3. A battery is used to charge a capacitor through a resistor. The voltage across the capacitor
has been measured as a function of time (Fig. P.3). The parameters of the system are to be
determined with the help of a dynamical model. Resistance of the resistor, capacitance, in-
ternal resistance of the battery and open circuit (oc) voltage are unknown. (a) Sketch the
diagram of a system dynamics model. (b) Formulate all equations of the model. (c) The
open circuit voltage can be determined directly from the data. Why? How? Determine the
oc voltage. (d) Determine the time constant of the circuit. (e) More experiments will be
needed for a determination of all parameters. Describe possible measurements for a suffi-
cient number of additional parameters. Show how the parameters can be determined. As-
sume that the elements of the circuit plus other similar elements are available for
experimentation. Volt meters and ammeters and power supplies are available.

4. Derive the expression for the hydraulic capacitance of a U-pipe (as in Fig. 1.29). If you
look at each of the sides of the U-pipe as a capacitor, are these capacitors connected in par-
allel or in series?

5. Two tanks (see Fig. P.5) contain oil with a density of 800 kg/m3 and a viscosity of 0.20
Pa · s. Initially, in the container having a cross section of 0.010 m2, the fluid stands at a level
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of 10 cm; in the second container (cross section 0.0025 m2) the level is 60 cm. The hose
connecting the tanks has a length of 1.0 m and a diameter of 1.0 cm. (a) What is the volume
current right after the hose has been opened? (b) Calculate the pressure at A, B, C, and D
at this point in time. The pressure of the air is equal to 1.0 bar, and C is in the middle of the
hose. (c) Sketch the levels in the containers as a function of time. (d) Sketch an electric cir-
cuit which is equivalent to the system of containers and pipe. (e) Sketch a pressure profile
(pressure as a function of position) for a path leading from A to D; include a point C* at
the other end of the pipe from point B.

6. A hydraulic windkessel system (Fig. P.6 left) consisting of an ideal pump, a valve and two
identical containers is to be transformed into an electric system to be modeled formally
(use and ideal diode for the valve). There is a short pipe between the containers. The dia-
gram, Fig. P.6 right, shows the voltages across the (ideal) power supply (square wave sig-
nal) and across the two capacitors. Values of resistances and capacitances are assumed to
be constant. The resistance of the resistor corresponding to the pipe leading to the environ-
ment is 1000 Ω. 

(a) Sketch, label, and explain an electric circuit diagram that corresponds to the windkessel
model. (b) Sketch the diagram of a system dynamics model for the electric windkessel cir-
cuit. Use electric symbols for quantities. (c) Formulate all relevant equations of the model.
(d) Shortly after switching on the power supply, the capacitor voltages become constant
(roughly between 75 s and 80 s). Why? Give a formal explanation. Use this to determine
the missing resistances. (e) Use the behavior of the system to show that the capacitance of
a single capacitor must be roughly equal to 5 mF. (f) What is the electric current between
the capacitors shortly before 80 s? 

7. The figure (Fig. P.7.1) shows an electric circuit. Resistances and capacitances are constant.
The capacitance of the first capacitor is C1 = 1.0 · 10–4 F. Create a hydraulic model for the
circuit; perform the calculations for the electric quantities. Initially, the first capacitor is
charged, the second one is uncharged. At t = 0 s, the first switch (S1) is closed, the second
one stays open. The diagram, Fig. P.7.2, shows the voltage across the first capacitor. 

(a) Sketch a hydraulic system that corresponds to the electric circuit (b) Sketch the diagram
of a system dynamics model for the hydraulic system. (c) Formulate all the equations of
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the hydraulic model. (d) Sketch the voltage across the second capacitor for 0 ≤ t ≤ 40 and
explain the result. (e) Determine the capacitance of the second capacitor. (f) Determine the
resistance of the resistor between the capacitors. (g) At t = 40 s, the second switch is closed
as well. What will the currents through the circuit be and what the rates of change of the
voltages of the two capacitors right after closing of S2? Assume the resistance of the sec-
ond resistor to be equal to that of the first. (h) Sketch the voltages across the capacitors all
the way to 80 s and explain your result.

8. For the circuit diagram shown in Fig. P.8, (a) sketch a hydraulic system made up of con-
tainers, pipes, and pumps which would be equivalent to the electrical system shown here;
(b) write down the equations governing the processes taking place in the circuit. Solve the
differential equation for the current through the second resistor and demonstrate that the
time constant of the system is equal to τ = CR1R2/(R1 + R2). 

9. An inventory contains a quantity M of a certain product. It is filled by a production rate P
and drained by a sales rate S (the latter is assumed to be constant). There is a desired quan-
tity (E) of the product in the inventory. When the stored quantity M differs from E, the pro-
duction rate is changed. E is constant. Make the following assumptions regarding the
change of P. The rate of change of P is proportional to the difference between desired stor-
age E and the actual stored quantity M. We introduce a constant “inertia” or delay factor L
to calculate the relation between inventory difference and rate of change of P (larger inertia
leads to a smaller rate of change of P). (a) Sketch the diagram of a system dynamics model
that represents the word model formulated above. (b) Formulate all equations of the model.
Which equation is a law of balance? Which equation resembles an inductive relation?
Which quantity is analogous to a pressure difference or a voltage? What is the unit of L?
(c) What are the two differential equations of the model? What are the associated initial
conditions? (d) Show that the two differential equations in (c) can be transformed into a
single second order differential equation:

(e) What is the solution to the differential equation in (d) for E = 0? Is this the solution to
a damped or an undamped oscillation? What is the period of oscillation? (f) What is the
solution to the equation in (d)? 

10. The ideal power supply of the circuit shown in Fig. P.10.1 is turned on at t = 0. The voltage
of the power supply is set to 10 V. The curves in the graph of Fig. P.10.2 show the electric
currents through the branches containing the (ideal) inductive element, the resistor, and the
capacitor. 

(a) Show which curve in the graph belongs to which element in the circuit. (b) Use the data
in the graph to determine the inductance, resistance, and capacitance. (c) Formulate all
equations of the model of the circuit (including initial conditions). (d) Convert the model
to a single second order differential equation for the voltage across the capacitor, including
initial conditions. 
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So far we have not made use of an important aspect of physical phenomena. Whenever
something happens in the physical world, processes are accompanied by an additional
quantity—

 

energy

 

. We will see that energy plays a unique role, unlike the roles of
quantities which are often mistaken for it such as electricity, motion, or heat.

 

1

 

First, we will investigate chains of processes which teach us that a description in terms
of amounts of fluids, electricity, or motion alone does not suffice: we need a property
which quantifies the coupling of processes—namely energy. After this qualitative in-
troduction, we will discuss quantitative measures for this new quantity by studying
waterfalls, and hydraulic and electric processes. Then we shall take a closer look at
energy transfer and energy storage. Finally, the description will be extended to rota-
tional and magnetic phenomena. 
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Processes usually occur in chains. One process drives another, sometimes creating
long chains. This phenomenon teaches us that there must be a physical quantity which
relates one process to the next. We introduce energy to quantify the coupling of pro-
cesses.

 

2.1.1 Processes Driving Other Processes

 

Examples of processes driving other processes are easy to find. Even limiting our view
to hydraulic and electric phenomena we can identify coupling. In an electric water
pump, we make use of an electric process to drive a hydraulic one (Fig. 2.1), and a

 

1. There are good reasons why we mistake other physical quantities for energy—at least in
common sense reasoning. See Section I.2 in the Introduction for a brief discussion of this
issue.

Electric water pump

P1 P2

System

IV

System
P2

Wires Pipes

P1

IQ

1ϕ
2ϕ

2ϕ
1ϕ

Figure 2.1:  A process diagram 
of an electric pump shows an 
electric process driving the flow 
of a fluid. The electric process 
runs downhill, while the hydrau-
lic process runs uphill. The pump 
couples the processes.
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combination of turbine and generator couples a hydraulic process to the flow of elec-
tricity. If we extend our view and allow for additional processes such as rotation and
heat, we find even more instances of coupling (Table 2.1): a rotational process drives
the production of heat in the grinding of one mill stone against another; in a turbine,
the flow of water drives a rotational process; and in the flow of a viscous fluid through
a pipe the hydraulic process drives the production of heat (Fig. 2.2).

 

Coupling of processes.

 

 A single process is quantified in terms of the two fundamen-
tal quantities used to conceptualize it: the fluidlike quantity and its associated poten-
tial. In hydraulic and electric processes, these pairs are volume and pressure, and
electric charge and electric potential, respectively. These pairs of quantities are differ-
ent for different processes—they are basically unrelated. Therefore, the question aris-
es how different processes can be coupled. How can one process drive another in a
determined manner? Two processes—such as an electric process driving a hydraulic
one—must always be related or coupled in the same way. It never happens that the
electric process drives the hydraulic process differently at different times. We expect
a well defined relation between the two.

In other words, the same process should always accomplish the same result, assuming
that conditions do not change. Therefore, we need a measure of how much a process
driving another is accomplishing. We may also say that a process is 

 

working

 

 to accom-
plish a result. The measure introduced for “work” and “accomplishment” has to do
with 

 

energy

 

.

 

Releasing and using (binding) energy.

 

 A voluntary process driving another process
consists of water or electricity flowing through a potential difference from higher to
lower levels. The reverse—involuntary—process consists of a fluidlike quantity being
“pumped uphill” through a potential difference (Fig. 2.3, top). 

Now we introduce the measure of how a process is working. We say that the driving
process 

 

releases energy

 

 in the fall of the fluidlike quantity (Fig. 2.3, top) which is used
to drive the follow up process, i.e., the pumping of another fluidlike quantity. In the
latter case, we speak of the 

 

binding of energy

 

 to the quantity flowing “uphill.” There-
fore, we can use the amount of 

 

energy

 

 

 

released

 

 as the measure of how much a process
works, and the amount of 

 

energy used (bound) 

 

for how much has been accomplished.
Releasing and using energy is now introduced as an additional graphical element in
the system diagrams depicting physical processes (Fig. 2.3, bottom). 

 

Table 2.1: 

 

Examples of coupling of processes

Hydraulics Electricity Rotation Heat

Hydraulics

 

Hydraulic ram Turbine plus 
generator

Turbine Resistive flow

 

Electricity

 

Electric pump Transformer Electric motor Electric heater
Peltier device

 

Rotation

 

Hand pump Generator Gearbox Friction

 

Heat

 

Solar water 
pump

Thermoelec-
tric generator

Heat engine Absorption 
refrigerator

P1 P2

System

System
P2

P1

IV Heat

Figure 2.2:  In viscous flow, the 
fluid flows from higher to lower 
pressure, driving the production 
of heat (notice the symbol of a 
source of heat).

IV

P21 P1

IQ

ϕ
2ϕ

Releasing
energy

Using
energy

Pump

Electric
charge Fluid

Energy

Figure 2.3:  An electric pump 
couples electric and hydraulic 
processes. The driving process 
releases energy which is used 
(bound) in the follow-up process. 
The amount of energy released or 
used (bound) is the measure of 
how much processes “work” or 
“accomplish.” Release and bind-
ing of energy are depicted by fat 
vertical arrows.
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2.1.2 Chains of Processes: Transferring Energy

 

Consider a chain of processes as in Fig. 2.4. Processes coupled in a device are like sin-
gle links which can be connected to form long chains. Consider a turbine driven by a
current of water, which drives a generator, which in turn can be used to drive the pro-
duction of heat in an immersion heater (Fig. 2.4). Energy is not only the measure re-
lating two otherwise unrelated processes in a device. The coupling of processes must
work through long chains. While the coupling of two consecutive processes inside a
device is the result of releasing and binding of energy when the first processes drives
the second, two devices are coupled by the flow of quantities such as water or charge
from one device to another (Fig. 2.4). Consider the coupling of the generator and the
immersion heater in Fig. 2.4. In the generator, energy is bound to the current of charge
flowing from lower to higher electric potential. In the immersion heater, energy is re-
leased in the fall of charge from higher to lower potential.

 

It seems to be reasonable to assume that the same amount of energy that was bound to
the current of charge in the generator is released in the immersion heater. The second
process perfectly reverses the first; electric current and voltage (potential difference)
are the same. Therefore, we assume that the energy bound in the first process is trans-
ferred from the generator to the system following it (Fig. 2.5). In fact, whenever de-
vices are coupled in processes, energy is transferred.

 

2.1.3 Interrupting and Resuming Processes: The Storage of Energy

 

Chains of processes need not work continuously. It is possible to interrupt them, and
resume them later or at some other place. Therefore, it should be possible to store the
energy transferred through a chain so it can be used again for other processes.

Consider a pressure vessel which is being filled with a fluid with the help of a pump
(Fig. 2.6). We need energy to operate the pump, i.e., we deliver it to the pump. It is
released and used there and then transferred with the fluid to the pressure vessel. The
vessel, therefore, is not only a storage device for fluids, but it also stores energy. We
can use a pressure vessel filled with a fluid—and therefore with energy—to drive the

IV

1ϕ
2ϕ

Turbine

IQ

P2
P1

Generator

Heat

Electric Heater

IL

ω 1 ω 2

Figure 2.4:  Processes can be 
joined in a chain. Flow processes 
provide for the coupling between 
devices or systems. (L is the sym-
bol for angular momentum, the 
fluidlike quantity transferred in 
rotation; see Section 2.5.)

Energy Energy Energy
Energy

IV

1ϕ
2ϕ

Turbine

IQ

P2
P1

Generator

Heat

Electric Heater

IL

ω 1 ω 2

Figure 2.5:  Energy is transferred 
from system to system together 
with the quantities exchanged in 
processes—such as fluids and 
electric charge. The transfer is 
depicted by fat arrows pointing 
from one system to the next.
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operation of a turbine and generator, thus emitting the energy which was absorbed be-
fore by the vessel.

 

2.1.4 Conservation of Energy: Can Energy Be Lost or Created?

 

Consider different electric pumps. If we drive them in an identical manner all the time,
we expect the same result, which may be measured in terms of amount of water
pumped to a given height. It is found that different pumps operate differently; some
will pump less water than others.

Most processes in nature seem not to run at perfect efficiency—where the efficiency
is measured in terms of the energy used in the desired process compared to the energy
released by the driving process. Perfect efficiency would correspond to the case when
the energy bound is 100% of the energy released. This is what we have assumed for
all the processes depicted in the diagrams of Figs.2.3 to 2.6.

Does this mean that the lower quality pumps lose energy compared to the better ones?
Actually, this is not the case. It is found that the engine drives two processes at once—
the desired one, and an undesired production of heat—where each process uses part of
the energy released. Together they use 100% of the energy available. What we have
found to be true for pumps also holds for other processes. The apparent “loss” of en-
ergy is associated with an undesired production of heat which accompanies the pro-
cess the engine was designed for (Fig. 2.7).

There appears to be another reason for loss of energy. Energy storage devices usually
lose some of their energy in the course of time. Again, we can explain this not as an
actual loss but as the result of “leaking away” of energy. The energy which is not avail-
able any longer can always be detected in nature—at least in principle.

In summary, there is no reason to believe that energy can simply disappear. Neither
can it be created. If we wish to set in motion a chain of processes, we always need an
energy storage device which has to supply the energy running through the chain. To-
day we take this as one of the fundamental principles of nature: energy cannot be cre-
ated, nor can it be destroyed: 

 

energy is a conserved quantity

 

. 

 

2.1.5 The Properties of Energy

 

Energy is a buzz word for much of what we read about in science and technology. Our
usage of the term is often fuzzy which leads to imprecise images of what energy is all
about. We usually speak of generating and losing energy, even though energy is con-
served. We talk about converting energy, and we give it myriad names, even though
there is only one type of energy: we speak of electrical, hydraulic, and mechanical en-

IV

1ϕ
2ϕ

Pump

IQ

P2P1

Energy

V

E

Pressure
Vessel

V

E

Pressure
Vessel

Turbine and
Generator

1ϕ 2ϕP1 P2

IQIV

Energy Energy Energy

Figure 2.6:  Chains of processes 
can be interrupted and then re-
sumed later. This can be ex-
plained in terms of energy 
storage. The symbolic containers 
with letters V or E represent the 
storage of volume and energy, re-
spectively. 

IV

P2P1

IQ

1ϕ
2ϕ

PUMP

Heat

Figure 2.7:  Energy is not “lost” 
in a process which does not run 
perfectly. Rather, the amount of 
energy which seems to be miss-
ing is driving an unwanted pro-
cess—the production of heat.
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ergy, kinetic and potential energy, work and heat, and so forth. Most disturbingly, we
mix up energy with the fundamental quantities flowing in physical processes, namely,
electricity, heat, and motion.

Actually we have to learn very little about energy and what we learn repeats itself
again and again in every field of physics. From what we have discussed so far, we rec-
ognize that there is just a single quantity called 

 

energy

 

 which accompanies all process-
es. This quantity has the following properties:

R

 

Energy is released and used in processes. 

R

 

Energy can be transported from system to system.

R

 

Energy can be stored in systems.

R

 

Energy is conserved; it can neither be created nor destroyed.

The second and third items in the list make energy a quantity to which the laws of ac-
counting can be applied; in other words, energy satisfies a 

 

law of balance

 

 (Section
2.4). The properties of energy will now be investigated more carefully and with quan-
titative means.
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Nature presents us with a perfectly simple process which can serve as the archetype of
physical processes—a 

 

waterfall

 

. Other processes are interpreted analogously: a pro-
cess consists of the flow a fluidlike quantity from a higher to a lower level (Fig. 2.3).
We introduce 

 

energy

 

 as the measure of how much the fluidlike quantity is working,
i.e., how much it can achieve, when it falls down a gradient of its potential. Power is
the rate at which the fluidlike quantity is working. We will say that energy is released
in a process, and power—the rate of working—is the rate at which energy is released.
Common sense reasoning indicates that the power of a process will depend on the flow
of the fluidlike quantity and the height of its fall.2

2.2.1 Power of an Electric Process

A simple experiment which can be used to quantify the measure of power is the elec-
tric heating of water. The rate of heating of water may be measured in terms of the rate
of change of its temperature. If we always take the same amount of water at the same
temperature, and observe the same rate of change of temperature, we can be sure that
the electric process is “working at the same rate.” In terms of energy we may say that
this quantity has been released at the same rate in the immersion heater every time we
repeat the experiment. On the other hand, if twice as much water can be heated at this
rate, the electric processes must run at twice the rate.

Different runs of this experiment show that the rate of change of temperature is the
same for identical bodies of water whenever the product of electric current through the

2. This is how Sadi Carnot expressed his idea of the power of heat. See the Introduction for
a short discussion of his idea and the roots of common sense conceptualizations of phe-
nomena and processes.
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immersion heater and the electric potential difference across the device is the same. In
other words, the rate of working of the electric process can be measured in terms of
the product of electric current and voltage:

(2.1)

The symbol P is used for the rate at which energy is released; from now on we will call
this quantity power. Therefore, we speak of the electric power of a flow of electric
charge. The SI unit of power is the Watt (W). The minus sign in the first form of the
equation is arbitrary. It means that the power of a voluntary process is counted as a
positive number, while the power of an involuntary process is taken to be negative.

The equation can be interpreted graphically using the waterfall image of a process
(Fig. 2.8). In an electric process that drives another process, electric charge flows
“downhill” through a potential difference and in turn releases energy at a rate that de-
pends upon the flow of charge and the potential difference in the simple manner indi-
cated by Equ.(2.1).

2.2.2 Hydroelectric Power Plants and the Power of a 
Gravitational Process

We need a measure of the power of a fall of water, i.e., the rate at which energy is re-
leased in a gravitational process. By allowing water to accomplish a measurable result
at a certain rate, we can define the power of a fall of water. Data on hydroelectric pow-
er plants yields the information we need (Table 2.2). If we take the product of electric
current and voltage at the terminal of the generator as the measure of the rate of work-
ing of the water rushing down from the artificial lake to the turbine, we can see which
factors determine the rate at which a waterfall releases energy.

The results in Table 2.2 demonstrate that—except for an almost constant factor—the
current of mass of water (measured in cubic meters per second) and the vertical drop
of the water from the artificial lake to the turbine and generator station (measured in

Table 2.2: Examples of hydraulic power plants a

a. Hydraulic power plants with artificial lakes in Switzerland.

Hydraulic power 
plant

Current of 
Mass

Im / kg/s

Vertical fall of 
water

∆h / m

Voltage and 
current b

UIQ / V · A

b. Product of voltage and electric current measured for the generator.

UIQ / 
Im∆h

Bavona 18,000 890 137·106 8.6

Nendaz 45,000 1014 384·106 8.4

Handeck III 12,500 445 48·106 8.6

Chatelard 16,000 814 107·106 8.2

Tiefencastel 16,700 374 50·106 8.0

  P Pel el Q el QI U I= − =∆ϕ        or

IQ

1ϕ

2ϕ

Releasing
energy at

a rate
equal to Pel

Electric Process

Pel

Figure 2.8:  Energy released in 
an electric process. The rate at 
which energy is released (the 
power of the electric process) de-
pends upon the flow of charge 
and the potential difference.
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meters) determine the rate at which energy is released by the falling water. In fact, this
quantity depends linearly on both factors. Doubling the current of water, or doubling
the drop, will each lead to a doubling of the rate of release of energy.

Power of a waterfall. Specifying a waterfall first of all means quantifying the flow of
water falling down. This is done with the help of the current of (gravitational) mass
Im (measured in kilograms per second). The second obvious quantity determining the
properties of a waterfall is the vertical drop ∆h (measured in meters). 

The power of a waterfall, i.e., gravitational power, depends upon another parameter
which is suggested by the fact that the strength of the gravitational field g must play a
role. We expect the drop of water through a certain height to accomplish much less on
the surface of the Moon than on the surface of our planet. Now we are ready to calcu-
late the rate at which energy is released:

(2.2)

Potential. There is a simple graphical interpretation of the formula for the power of a
waterfall (Fig. 2.9). We combine the first two factors on the right side of Equ.(2.2) into
a new quantity which we call the level or potential of gravitational processes:

(2.3)

According to the results in Table 2.2, g should be somewhat larger than 8 N/kg. We
know from independent measurements that it is closer to 9.8 N/kg (Section 1.4.4). The
discrepancy is a result of the imperfection of the processes in power plants.

We may now write the power of the process as the product of the difference of the
gravitational potential and the current of mass falling through this difference of levels:

(2.4)

Note the analogy between this result and the one for electricity (Equ.(2.1)). The ex-
pression introduced for the gravitational potential is analogous to the one found in
Chapter 1 (see Fig. 1.26).

2.2.3 The Efficiency of Processes

Note that the experimental determination of the factor in the last column of Table 2.2
leads to values that are a little bit smaller than g. This is due to the fact that the pro-
cesses leading from the waterfall to the generator are not ideal: some of the energy re-
leased by the water is used for other purposes—mostly for the production of heat as a
result of friction.

Ideally, all the energy released in a process would be used for the desired follow up
process. Realistically, this does not happen, since parallel processes such as friction
bind part of the energy released (Fig. 2.10). To measure the efficiency of the transfer
of energy to the desired process, the ratio of the powers involved is used:

(2.5)

  
Pgrav mg hI= ∆

Im
Releasing
energy at

a rate
equal to Pgrav

Gravitational Process

Pgrav G G mI= − −( )ϕ ϕ2 1

G1ϕ
G2ϕ

Pgrav

Figure 2.9:  Energy released in a 
gravitational process. The rate at 
which energy is released (the 
power of the gravitational pro-
cess) depends upon the flow of 
mass and the gravitational poten-
tial difference.

ϕG gh=

  Pgrav G mI= −∆ϕ
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Figure 2.10:  In a non-ideal cou-
pling of processes, less than 
100% of the energy released is 
used in the desired process. 
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The power of an electric process is measured as the product of voltage and electric cur-
rent (Equ.(2.1)). Applying this rule to the values presented in Table 2.2 we see that the
overall efficiencies of modern hydroelectric power plants are quite high, of the order
of 80% to 90%.

2.2.4 Power of a Hydraulic Process

Analogical reasoning suggests, and experiments confirm, that the type of relation
found for the power of electric and gravitational potentials also holds for hydraulic
processes:

(2.6)

Just consider a turbine driving an electric generator. The electric process is found to
be identical as long as the product of the pressure difference and the flux of volume is
kept constant. In summary, all types of processes investigated demonstrate the same
basic structure (see Section 2.2.6 and Table 2.3): knowing one field of nature helps us
to understand other subjects.

2.2.5 Power in Inductive Processes

So far, we have studied devices such as pumps, turbines and generators, artificial lakes
and pipes, resistors, electric engines, etc. They all demonstrate that the release of en-
ergy is followed by its use when processes are coupled.

Inductive elements (Section 1.6) seem to confront us with a somewhat different case.
First, the other devices work strictly in one way—in resistors, volume or charge al-
ways flow “downhill”—while processes in inductors run both ways. Second, most of
the systems mentioned before can run in steady state without involving the storage of
energy; inductive devices, however, work dynamically only, and they also serve as en-
ergy storage devices. 

Third and most important, it is not readily apparent if there are two processes coupled
in such devices, one running “downhill”, driving the second one “uphill.” Closer in-
spection shows, however, that there are processes coupled to the obviously visible
electric or hydraulic ones. Let us see what they are in the case of electromagnetic in-
duction.

The phenomenon of electromagnetic induction is coupled to the growth or decay of
magnetic fields due to electric currents. The magnetic field acts as the storage system
for the energy (Section 2.4.5) which is released or bound by the electric current—de-
pending on whether the current is increasing in time, or decreasing. If the electric cur-
rent through an inductive device is increasing with time, i.e. if dIQ /dt > 0, it runs
“downhill” through the inductive potential difference ∆ϕL (Section 1.6). We have just
learned that this process is associated with the release of energy at the rate

(2.7)

There should be a process running “uphill” on the energy made available. This process
exists: it is the building up of a magnetic field which at the same time acts as the stor-
age device for the energy released in the electric process (Fig. 2.12a).

IV
Releasing
energy at

a rate
equal to Pfluid

Fluid Process

Pfluid VI= − −( )

Pfluid

P1

P2

P2 P1

Figure 2.11:  Energy released in 
a fluid process (hydraulic pro-
cess). The rate at which energy is 
released (the power of the fluid 
process) depends upon the flow 
of volume of fluid and the pres-
sure difference.

 Phyd VPI= −∆

Figure 2.12:  In an inductive 
electric process, energy is re-
leased or bound. The process is 
coupled to the creation or de-
struction of a magnetic field 
which acts as the storage device 
for energy in the inductive ele-
ment.
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If the electric current through the inductive element decreases with time, i.e. if dIQ /dt
< 0, the magnetic field decreases as well, releasing energy which is picked up by the
electric current. As a result, this current is driven “uphill” through the induced poten-
tial difference ∆ϕL (Fig. 2.12b).

The case of hydraulic induction is quite analogous. However, here we do not have a
magnetic field associated with the current. Rather it is the quantity of motion of the
flowing fluid which is built up or reduced in the device which acts similarly to the
magnetic field. 

2.2.6 Processes and Power in General

If a fluidlike quantity falls “downhill” it releases energy at a certain rate. This rate we
call the power of the process. The energy that is released drives a follow-up process
“uphill”, and it is said to be used by or bound to the flowing quantity (Fig. 2.13). The
law for the energy released or used is this:

The power of a process always depends on two factors—the potential differ-
ence and the current flowing through this potential difference:

(2.8)

The letter X stands for the flowing fluidlike quantity which determines the type of pro-
cess: mass, volume, and electric charge for gravitational, hydraulic, and electric pro-
cesses, respectively (Table 2.3). For a given process, we have to use the proper
fluidlike quantity and its associated potential. Thus, for a hydraulic process, X corre-
sponds to V, and ∆ϕX corresponds to ∆P.

Amounts of energy released or used in a process. Sometimes, we want to be able
to say “how much has happened” in a process. In other words, we want to know how
much energy has been released or bound as the result of a process lasting for a certain
period. The amount of energy released in a process—which is sometimes called
work3—can be obtained by integrating the power over time (Fig. 2.14). In general, this
quantity can also be calculated as the product of the amount Xe of the fluidlike quantity
flowing through a potential difference, and the potential difference ∆ϕ:

Table 2.3: Comparison of different processes

Flowing 
quantity

Current Potential
Potential 

difference
Power

Gravity Gravita-
tional mass 

Current of 
gravita-

tional mass 

Gravita-
tional 

potential 

∆ϕG – ∆ϕG Im

Hydraulics Volume of 
fluid 

Current of 
volume

Pressure ∆P – ∆P IV

Electricity Electric 
charge 

Current of 
electric 
charge 

Electric 
potential 

∆ϕel = – U – ∆ϕel IQ

= UIQ

IX

X1ϕ

X2ϕ

PX

IX
PX

X1ϕ
X2ϕ

Voluntary
process

Involuntary
process

Figure 2.13:  Processes and the 
power of processes. The same 
fundamental structure is discov-
ered in all physical processes. 

 PX X XI= −∆ϕ

t∆t

EX

PX

Figure 2.14:  The integral over 
time of the power of a process 
yields the energy released or used 
in that process.
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(2.9)

This expression is correct only if the potential difference stays constant during the pro-
cess. The relation is particularly simple to prove for a process running at a constant
rate. The unit of energy (released) is the Joule (1 J = 1 W·s).

2.2.7 Electric and Hydraulic Circuits: The Balance of Power

An indication of the balance of energy comes from the consideration of energy re-
leased or bound in closed electric and hydraulic circuits: the sum of all terms of elec-
tric or hydraulic power add up to zero.

This is a consequence of Kirchhoff’s second rule which we encountered in hydraulics
and electricity (Chapter 1). Consider a simple electric circuit containing a battery, a
resistor, and an electric motor (Fig. 2.15). The current of charge flowing through all
three elements is the same, and the voltages across them add up to zero:

(2.10)

The current is flowing through each of the elements leading to the release or binding
of energy. If we multiply Equ.(2.10) by the current IQ, we obtain UBIQ + URIQ + UMIQ
= 0. Since the terms represent the electric power in the elements, this is equivalent to

(2.11)

This means that the energy bound in the electric process in the battery is equal to the
energy released in the resistor and the motor combined as the consequence of the fall
of the electric charge. In everyday language we say that the energy delivered by the
battery is used by the resistor and the motor.

2.3 ENERGY TRANSFER AND ENERGY CARRIERS

Energy released in a process does not come out of the blue, and energy that is bound
does not disappear. Either it is transferred into or out of the system or it comes from
storage or will be stored (Section 2.4). Here we shall investigate the transfer of energy.
There is a simple form of coupling of the flow of the fluidlike quantities with the flow
of energy into and out of systems. It is as if mass, volume, and charge acted as carriers
of energy in the processes they are responsible for.

2.3.1 Energy Carriers, Potentials, and Energy Currents

A simple example demonstrates how nature works. Consider the steady-state flow of
a viscous fluid through a straight pipe as in Fig. 2.2. So far we have introduced the
concept of energy in the following manner: since the fluid flows from a point of high

3. The words power and work are used inconsistently in different fields of physics. In me-
chanics, for example, work means a quantity of energy transferred, not released.

W XX X e= −∆ϕ
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Figure 2.15:  The sum of the po-
tential differences in a closed 
circuit is always zero. Therefore, 
the sum of the electric power 
terms of all the elements com-
bined must be zero as well.
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pressure to a point of lower pressure, energy is released in the hydraulic process at a
certain rate (Fig. 2.16). The energy released is bound in the following thermal process.
Remember that the production of heat due to friction is all that happens in the pipe;
therefore, we assume that 100% of the energy released is bound in the follow up pro-
cess.

To be specific, let us introduce concrete numbers. Assume there is a fluid current of
0.10 m3/s, and a pressure drop of 0.50 bar. According to Equ.(2.6), energy must be re-
leased at a rate of 5.0 kW. In other words, 5000 J energy are released each second and
made available for the production of heat. We believe that the energy must be supplied
to the system. Since the only possibility for this to happen is through the flow of fluid
into—and out of—the pipe, we say that the fluid flowing under pressure carries with
it some energy: we associate an energy current with the fluid (Fig. 2.16). In this sense
we can call the fluid the energy carrier with respect to the system.

Naturally, we should expect the energy current to depend upon two factors. First, it
must be proportional to the current of fluid; two equal currents under identical condi-
tions will have twice the effect of a single one. Second, the pressure of the fluid must
play a role. Let us see how energy and carrier currents are related.

If a fluid flowing into the system at a certain level (pressure) carries energy, so must
the fluid flowing out of the system. Therefore, we assume that the rate at which energy
is released is the difference between the currents of energy into and out of the pipe due
to fluid flow. Since this makes the difference of the energy flows equal to the product
of the pressure difference and the volume current, i.e., 

the simplest expression for a single current of energy IE is the product of the flux of
volume and the pressure of the fluid as it enters—or leaves—the system:

(2.12)

There is a simple image which can be used to remember this relation. We may look
upon the pressure as the “load factor” of the “carrier current.” The current of volume
is “loaded” with energy according to the value of the pressure. The flux of energy
therefore is the product of a carrier current and its load factor.

Again, this is the structure of energy flow in all fields of physics. Consider the differ-
ent devices and processes studied so far—gravitational and electric ones in addition to
hydraulic: we always arrive at exactly the same relation for the expected energy cur-
rents.

The flux of a current of energy entering—or leaving—a system is the
product of the flux of the carrier current and its associated potential
(Fig. 2.17):

(2.13)

As we have seen in Chapter 1, the electric potential is not an absolute quantity. Values
of electric potentials must always be measured with respect to a chosen level, i.e., the
“ground.” The same is true for the gravitational potential; here on our planet we com-
monly measure levels or heights relative to sea level. Of the levels we know so far,
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Figure 2.16:  The energy re-
leased in the “fall” of fluid from 
high to low pressure must be sup-
plied to the system. Energy is 
flowing into—and out of—the 
device with the fluid under pres-
sure. The amount released and 
used flows out together with heat.
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only the hydraulic one is absolute. Fluxes of energy in electric and gravitational pro-
cesses therefore do not have quite the same independent meaning as in fluid flow.
Only the difference of two energy currents flowing into and out of a system together
with a single current of a fluidlike quantity is independent of arbitrarily chosen levels.
This difference is equal to the power of the associated process (Fig. 2.16).

This already tells us that the notion of energy being “carried” by the current of a flu-
idlike quantity should not bee taken too literally. In particular, as we shall see below,
“carried” does not mean that the carrier current “contains” the energy being supplied.
We should look upon Equ.(2.13) as meaning that energy always flows at the same time
as the fluidlike quantity—rather than together with or directly bound to the carrier. It
is certainly correct to state that energy never flows alone: at the same time, there must
always be one or more flows of other physical quantities.4

2.3.2 Energy Transfer in Compression

There is an example of energy transfer that will play a particularly important role in
our study of thermodynamics: energy flows associated with compression or expansion
of a (compressible) fluid.

Imagine an imaginary wall separating a gas inside a container from a liquid that flows
in or out so the gas is either compressed or expanded (Fig. 2.18). At the liquid-gas
boundary we have a flux of volume of liquid at pressure P (which is the pressure of
the gas enclosed by the liquid and the walls of the vessel). The current of volume of
the liquid is IV, so there is an energy flux IE = PIV entering the gas. At the same time,
the gas is compressed at a rate that equals the flow of volume of liquid. Since the vol-
ume of the gas is decreasing—we might say, volume of gas is “disappearing”—we de-
scribe the effect by a (negative) production rate of volume ΠV. In summary, a gas at
pressure P being compressed at rate ΠV receives energy at the rate equal to

(2.14)

2.4 ENERGY STORAGE AND THE BALANCE OF ENERGY

In some sense energy is like amounts of water: we can account for it. We have seen
this principle applied in the steady state processes investigated in the previous sec-
tions. Energy flows through chains of processes, and since we believe that it is a con-
served quantity, we know that the flow does not change in magnitude.

4. There is another point that needs to be taken into consideration. When we get into details
of transport processes in later chapters, we shall see that there are three fundamentally dif-
ferent types of flows: conductive (flow through matter, caused by a potential gradient), con-
vective (transport of a quantity stored in a fluid, as a consequence of fluid flow), and
radiative (transport of a physical quantity with radiation). The relation between energy
fluxes and fluxes of fluidlike quantities only holds for conductive transports. Conductive
currents are those that are associated with their (own) potentials, so Equ.(2.13) (or
Equ.(2.8), for that matter) make sense in this respect. A conductive current IX is a current
associated with or driven by the potential difference ϕX. As we shall see in Chapters 7 and
8, energy transfers in convection and radiation take different forms.

Liquid

Gas

Liquid-gas
boundary

IV

IE P

Figure 2.18:  A gas in a vessel is 
compressed by a liquid flowing 
in. The gas has a pressure P.
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Changes in the flows in the course of time are possible, however, if energy is stored
in systems. Only if we take into account storage of this quantity do we arrive at a gen-
eral law of balance.

2.4.1 The General Law of Balance of Energy

Unless we believe that energy is either generated or disappears if chains of processes
are interrupted, we must accept the idea that energy can be stored (Section 2.1). Bod-
ies—and physical systems in general—can contain energy, and they can absorb it and
emit it, thus changing the amounts stored.

As in the case of amounts of water—or amounts of electric charge—a law of balance
relates what happens to the quantity stored as the consequence of flow into and out of
the system. Because energy can neither disappear nor appear out of the blue, we know
that amounts stored can only be changed as the result of flows. This is what we call
the law of balance of energy for a system:

Energy can be stored and it can flow. The sum of all fluxes of energy
IE,net with respect to a system tell us how fast the amount of energy
stored will change:

(2.15)

(Fig. 2.19). This form holds for every moment. For a process lasting for
a certain period, we may also say that the change of the amount of
energy stored is determined by the total amount of energy Ee,net trans-
ferred into or out of the system:

(2.16)

Ee is called an amount of energy exchanged as the result of a process. Note that one of
the properties of energy—namely that it can be released and bound—does not appear
in a law of balance. Releasing and binding take place inside the system being consid-
ered whereas a law of balance only speaks of the relation between amounts stored and
amounts flowing into and out of the system.

2.4.2 Storing Energy with the Help of Gravity

We know how to calculate energy transfers. If we add to this the knowledge contained
in the law of balance, we can determine changes of quantities of energy contained in
particular systems. A particularly useful and graphically intuitive example is the stor-
age of liquids in containers in the gravitational field. If we fill a tank with water, we
add energy to the system along with the fluid, and this energy can usually be regained
if the water is let flow out.

Imagine a storage device such as an artificial lake having a certain shape. Water con-
tained in it can flow down to a power station which is located at a certain level H below
the bottom of the lake (Fig. 2.20). If we imagine a small amount of water having mass
∆m at level h lowered to h = 0, the quantity of energy flowing out of the system is equal
to Ee = gh∆m. This quantity is different for different layers of water in the lake. It is

E
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Figure 2.19:  The law of balance 
of energy resembles the law of 
balance of amounts of water. The 
energy content of a system can 
only be changed as the result of 
flows of energy into and out of 
the system. Bottom: Graphical 
representation of the law of bal-
ance in a system dynamics dia-
gram.
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artificial lake contains a certain 
amount of energy relative to an 
arbitrary zero level.
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quite intuitive that, on average, all the water is lowered from the level of the center of
mass of the liquid to the bottom. In other words, the water comes from an average level
H + hCM. The total energy that flows out, and therefore the change of the energy of the
storage system, equals

(2.17)

There is a special form of this for a straight walled tank sitting at level h = 0 and being
filled to level h0. With H = 0, hCM = h0/2, and m = ρAh0, Equ.(2.17) becomes

Here, A is the cross sectional area of the tank. If we introduce a gravitational capaci-
tance of the storage device:

the former expression can be converted to

(2.18)

2.4.3 Storing Energy in Pressure Vessels

The derivation for the change of energy of a pressure vessel resulting from the change
of volume of liquid stored in it, proceeds along similar lines to what we just did. Let
me do it here in the general form. A pressure vessel is described by its elastance or its
(hydraulic) capacitance CV(P) which, in general, is a function of pressure (see Section
1.4.2). If we add fluid to the vessel at pressure P, there is an energy current equal to
PIV accompanying the current of liquid. The integral of this energy flux over time
equals the energy communicated to the tank which is equal to the change of energy
stored:

or, after a transformation of the integral,

(2.19)

If we consider the case of constant capacitance, this results in

(2.20)

Compare this to Equ.(2.18). We see that it is equivalent to what we obtained for a
straight walled open tank in the gravitational field which corresponds to CG = const.
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2.4.4 The Energy Content of Capacitors

The derivation of the energy content (or the change of energy) of electrical capacitors
does not add anything new. The result for capacitors having constant capacitance C is:

(2.21)

We can now summarize the results for storage of energy in simple gravitational, hy-
draulic, or electric systems having constant capacitances (see Table 2.4). Note that the
results are given in terms of energy changes. Commonly, absolute energy contents are
not known and are not needed, but we can always speak of an energy content relative
to an arbitrarily chosen zero level.

2.4.5 Storing Energy in Inductors

Energy can also be stored in inductive electric and hydraulic elements. We can use
Fig. 2.12a to demonstrate how to calculate the energy content of inductors. The deri-
vation goes along the line of what we have seen in Section 2.4.3. The result for induc-
tors having constant inductance is:

(2.22)

Here, IX represents either the electric current IQ or the current of volume IV. In the
electromagnetic case, the energy is stored in the magnetic field. In a fluid system, the
energy is the energy of motion of the fluid.

2.5 ANALOGY ONCE MORE: SIMPLE ROTATIONAL MOTION

To demonstrate the power of analogical reasoning in physics once more, let us take a
brief look at some simple phenomena from rotation. Now we can include the energy
concept as well. If we restrict our discussion to the motion of bodies around a fixed
axis, models turn out to be particularly simple, having a structure very similar to those
we constructed for fluid and electric systems in Chapter 1. 

Rather than developing a formal description of concepts of rotation, I shall limit my-
self to the construction of a few dynamical models. Ideas will be discussed and listed
as we go along.

Table 2.4: Capacitors with constant capacitance

Gravitation Hydraulics Electricity

Capacitance CG CV C

Potential difference ∆(gh) ∆P U

Stored quantity ∆m = CG∆(gh) ∆V = CV∆P ∆Q = CU

Stored energy ∆E = 1/2CG∆(gh)2 ∆E = 1/2CV∆P2 ∆E = 1/2CU2

∆E C U Uf= −( )1

2
2

0
2

∆E L I IX X= −( )1
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2.5.1 Rotational Collision of Two Flywheels

A simple phenomenon demonstrates the nature of rotation or, put differently, the
source of a successful conceptualization of such phenomena. In an experiment, two
plexiglass disks are mounted on the same vertical axis (Fig. 2.21). They are attached
to the axis with ball bearings which allows them to spin more or less freely. The upper
wheel can be lifted slightly from the lower one. If it is made to rotate, the lower one
stays at rest. When the upper flywheel is let fall onto the second one, it interacts with
it in a way that the former slows down as the latter spins up (Fig. 2.21, center).

Figure 2.21:  Two identical plexiglass flywheels rotate about the same vertical axis and interact 
(photograph on left). In an experiment, one wheel makes a second one spin up as it is slowing 
down (see the graph at the center which shows the angular speed of the wheels; dots: experi-
mental data). Right: System dynamics diagram of a model of this system. Simulation of model: 
Solid lines in the graph (center).

Take a closer look at the data of the experiment in Fig. 2.21. The gross features are
these. The upper wheel spins at constant rate—its angular speed is (almost) constant.
When it touches the lower wheel, its angular speed goes down while the angular speed
of the lower flywheel goes up. Within a very short period of time the angular speeds
of the two wheels become the same, roughly half of the original speed. The wheels
continue to spin at constant angular speed.

A second look confirms the first with the exception of the fact that angular speeds are
not constant during the phases when the first wheel spins freely and when they spin
together. During these periods, the angular speeds decrease.

This looks suspiciously like phenomena we have seen before in fluid or electric sys-
tems. Think about it—which simple fluid system would yield data similar to the one
we have here? A little consideration reveals that the levels of a liquid in two commu-
nicating tanks each having an additional outflow will behave quite similarly.

All of this suggests that we can conceptualize rotational processes as follows. A spin-
ning body possesses a “quantity of rotational momentum,” the more it has the faster it
moves. This “quantity of rotational momentum” which is officially called spin or an-
gular momentum can be communicated to other bodies through rotational interaction.
The flow of angular momentum measures the strength of the interaction. So we expect
a law of balance of angular momentum for a body:

(2.23)
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L is the symbol for angular momentum (spin) and IL denotes fluxes of this quantity. In
the case of our experiment this means we should represent two storage elements for
spin with their associated flows (Fig. 2.21, right). There is the flow of angular momen-
tum from wheel to wheel and one flow from each wheel to the environment represent-
ing the effect of friction (we know that friction makes a wheel slow down):

(2.24)

We expect the fluxes of spin to somehow depend upon the speed of rotation. The speed
at which a wheel spins is called angular speed. The simplest idea for a relation between
spin and angular speed is

(2.25)

ω is the symbol for angular speed, and J (the moment of inertia) is the measure of how
much angular momentum a wheel needs to rotate at a given speed. The latter quantity
is clearly analogous to a capacitance (Section 1.4.2). The intuitive meaning of angular
speed is a level: levels adjust in communicating reservoirs. When Equ.(2.25) is applied
to both wheels, the angular speeds can be calculated from the angular momenta. 

This allows us to formulate ideas for the fluxes of angular momentum. If we simply
apply the ideas from fluids or electricity, we might start with linear relations between
flows and speed differences:

(2.26)

All we still need are proper initial values for the angular momenta of the two wheels.
These are chosen according to the observed initial angular speeds. Choosing values for
J and adjusting the flow constants k in Equ.(2.26), we can try to fit simulation results
to data as in the graph of Fig. 2.21 (center). Clearly, the agreement between model and
experiment is not bad at all. This does not mean, however, that we should already be
satisfied with details of the model such as the forms for the flows in Equ.(2.26). Ob-
servations are not detailed enough to make a final judgement, but we can be sure that
the structure of the model of rotational motion leads in the right direction. 

We need values for the moments of inertia of the wheels to actually make the calcula-
tions, but we know that we can choose them arbitrarily—a change of J translates into
a change of the flow constants k by the same factor. This means that, on the basis of
considerations from rotational mechanics alone, we could arbitrarily define units for
the moment of inertia or, equivalently, for angular momentum. However, rotation can
couple to other phenomena and if these have been specified already, unit values must
agree to make this coupling unique. 

We have seen in this chapter that energy provides for a means of quantifying this cou-
pling, so here is an example of the utility of the energy principle. Consider how we
might apply this principle. Simply on the basis of analogy, we can formulate the ex-
pression for the energy stored in a spinning wheel; it should take the form found in
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Table 2.4. Now we can write an expression for the balance of energy of the wheels be-
fore and after the interaction:

The energy of the spinning wheels is smaller after the collision: energy has been re-
leased and used to produce heat. If we could measure the energy released, say by mea-
suring how fast a body of water is getting warmer and comparing the result to what we
know from how electricity warms the water (Section 2.2.1), we have additional infor-
mation which lets us quantify the moment of inertia of the wheels.

2.5.2 Electric Breaking of a Flywheel

Here is a practical example that demonstrates the use of the energy principle in a dy-
namical model. A flywheel is attached to an electric generator (Fig. 2.22, left). It spins
and drives the generator. If we hook up a resistor to the generator, the wheel will spin
down as shown in Fig. 2.22 (right). As expected, the resistor will get warm. The an-
gular velocity of the flywheel is close to an exponentially decaying function. (The an-
gular speed is measured with the help of a second generator whose voltage is an
indication of how fast the wheel spins.) Let us build a model for this experiment and
experience how energy considerations become an integral part of the solution of the
problem.

The phenomenon reminds us of a container or an electric capacitor discharging. From
the previous model in Section 2.5.1 we can be assured that the idea of discharging can
be transferred to a spinning wheel as well. There are two phenomena affecting the be-
havior of the flywheel. First, the body would slow down even if we did not have a load
connected to the generator. There is friction which, by the way, could or even should
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be quantified in an independent experiment. Then there is the effect of the electric cir-
cuit upon the rest of the system which can be best understood if we draw a process
diagram of the devices making up the system (Fig. 2.23). The wheel emits angular mo-
mentum through the generator—this is why it decelerates. In the generator, the angular
momentum flows from the high level, i.e., the angular speed of the spinning body, to
the ground. If analogy can be used as a guide, energy must be released in this process
which then drives the electric process of the flow of charge through the resistors in the
circuit (there is the external load, but just as importantly, the wires making up part of
the generator have and electric resistance as well). Energy is released in the electric
process which is used to produce heat.

By applying the argument in reverse we can calculate the angular momentum flux
from the wheel through the generator. The angular momentum of the flywheel lets us
find the angular speed which converts to the open circuit voltage of the generator.
With values for the resistances in the electric circuit we calculate the electric current.
Finally, electric current and open circuit voltage of the generator yield the electric
power which is equal to the rotational power. The important new idea that completes
the model concerns the expression for rotational power:

(2.27)

By now we have become accustomed to formulating expression for the power of a pro-
cess (Section 2.2). Rotation is not any different. If angular momentum flows through
a difference of angular speeds, energy is released at a rate given by Equ.(2.27). The
idea is visualized by the standard waterfall diagram in Fig. 2.24.

2.6 THE EXCHANGE OF ENERGY IN MAGNETIC SYSTEMS

Consider the concrete example of a paramagnetic substance filling the interior of a
long straight coil. If we turn on an electric current through the coil, a magnetic field
will be set up which leads to the magnetization of the body inside. Naturally, this pro-
cess involves the transfer of energy to the magnetized body.

It is known from electromagnetic theory that the rate of transfer of energy may be ex-
pressed in terms of the product of the magnetic tension Umag and the Hertz magnetic
current Imag:

5

5. Herrmann and Schmid (1986).
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(2.28)

The magnetic tension and the magnetic current are defined as follows:

(2.29)

(2.30)

These definitions are similar to the quantities known from electricity. A and C stand
for surface area and curve, respectively. The former is the path integral of the mag-
netic field H, while the latter is the rate of change of the magnetic flux. Obviously, the
magnetic flux plays the role of the extensive magnetic quantity, and its rate of change
replaces the rate of flow of electric charge in this analogy.

Let us now derive these quantities for the special example mentioned above. The mag-
netic tension in the uniform field of the coil is equal to

(2.31)

where L is the length of the coil. Since the magnetic flux density B is taken to be uni-
form over the cross section of the coil, the magnetic current turns out to be

(2.32)

so that the magnetic energy current is equal to

(2.33)

With a paramagnetic substance in the field, the magnetic flux density may be ex-
pressed as follows:

(2.34)

M is the total magnetization of the body. If we consider only the body as the physical
system and neglect the field in empty space, the magnetic energy current associated
with the magnetization of the paramagnetic substance is

(2.35)

There is an interesting point to be made about the example just treated and the com-
pression of a gas (Section 2.3.2). The power involved in the compression of a simple
fluid and in the magnetization of a body involves the production rate or the rate of
change of an extensive quantity rather than the transfer of a quantity such as charge or
mass. Obviously, there are physical processes in which quantities are not transported.
Rather, they change their values directly at the locations where they are to be found.
Such processes may be interpreted in terms of the creation or the destruction of the
quantity involved. Production and destruction join transport processes in our descrip-
tion of nature. 
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EXERCISES AND PROBLEMS

1. Viscous oil is to be pumped from a shallow container into one lying 10 m higher up. The
pipe has a diameter of 5.0 cm and a length of 20 m. If the mass flux is required to be 10 kg/
s, how large should the power of the pump be? Draw the process diagram of the system and
the processes. Neglect the acceleration of the fluid. Take values of 800 kg/m3 and 0.20 Pa · s
for the density and the viscosity of the fluid, respectively.

2. A large oil tank is filled through a pipe at its bottom (see Fig. P.2). The flow of oil is as-
sumed to be laminar. (a) Derive the instantaneous power of the ideal pump in terms of the
length and the radius of the pipe, the viscosity and density of the oil, and the height of the
oil in the tank. (b) Express the energy needed to fill the tank up to a certain height in terms
of the hydraulic capacitance. (c) Where has the energy that was supplied gone to?

3. If you fill the tank of Problem 2 through a pipe which leads to the top of the tank (Fig. P.3),
how much energy is required? How does this compare to the results of those problems? Has
energy been lost?

4. Derive the expression for the energy stored in a charged capacitor by considering the pro-
cess of charging. Compare the result to the analogous hydraulic expression.

5. Consider two capacitors, one of them charged, connected in a circuit. (a) Calculate the final
charges and voltages of the capacitors in terms of the initial charge and the capacitances.
(b) Is the energy of the capacitors conserved? (c) Translate the problem into an equivalent
hydraulic one.

6. A capacitor (capacitance 150 µF) and a resistor (resistance 1500 Ω) are connected in series
to a battery (voltage 50 V) at time t = 0 s. The initial charge of the capacitor is equal to zero.
(a) Derive the equation of balance of the charge of the capacitor. Derive the formula for the
electric current as a function of time from its solution. (b) Draw the process diagrams for
the battery, the resistor, and the capacitor. (c) What are the values of the electrical power of
the three elements at 0.15 s? (d) What are the values of the corresponding electrical energy
currents at that point in time? (e) Calculate the rate of change of the energy of the capacitor.
(f) How large is the rate of change of the energy of the resistor?

7. A small photovoltaic panel consisting of 21 cells arranged in series is exposed to sunlight.
(The surface area of a single cell is about 15 cm2.) It is connected to a load resistor with
variable resistance. Voltage and electric current for the load resistor have been measured
for different values of the resistance (see Fig. P.7). Irradiation was about 60 W/m2 for the
first, 200 W/m2 for the second, and nearly 400 W/m2 for the third (the highest) curve. (a)
Calculate the electric power of the panel for a voltage of 4.0 V for the three characteristic
curves. (b) Determine the maximum values of the electric power for the three cases. What
are the values of the load resistance for the maximum power point for the three curves? (c)
Determine the efficiency of the panel for maximum power point conditions for the three
cases.

8. Imagine an artificial mountain lake in the shape of a cuboid of 10.0 km2 surface area, and
50 m depth. The turbine station of a power plant is located 150 m below the bottom of the
lake. Assume that the lake can be filled and drained once a year. (a) How large is the energy
stored with the water if we take the bottom of the lake as our reference level? (Assume the
lake to be full.) (b) How large is the energy stored with the water if we take the turbine sta-
tion as our reference level? (c) How large is the power of the water flowing out of the lake
to the power plant if the lake is full? If it is almost empty? Take a flow of 20.0 m3/s. (d)
How much energy is released by the water flowing out of the lake and down to the power
plant if the lake is drained completely once a year? (e) Now we cover the lake with photo-
voltaic cells. How much energy can we gain from them in one year if we assume the cells
to have an efficiency of 10%.

9. Assume that 4 capacitors of 1.0 F capacitance each are connected in parallel. We want to
charge them with the help of the photovoltaic panel of Problem 7 (Fig. P.9.1). The sun
shines at 400 W/m2 which yields the characteristic curve shown in the diagram (FIg. P.9.2).
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A resistor is between the panel and the capacitors. (a) Choose the resistor so that if it were
the only element in the circuit, we would have maximum power conditions. (b) What will
the electric current be right at the beginning (when the capacitors are still uncharged)?
What is the energy current flowing into the capacitors at that moment? (c) At a certain mo-
ment, the current through the circuit is 80 mA. What is the voltage across the capacitors at
that time? What is the energy current flowing into the capacitor at that time? What are the
electric power of the cells and the power of the resistor? (d) At a certain moment, the volt-
age across the capacitors is 5.0 V. What is the current through the circuit at that moment?
(You will have to solve a set of nonlinear equations.) What will the energy current flowing
into the capacitor be?

10. A large and shallow lake is going to be filled through a horizontal pipe with a length of 10
km. Initially, the lake is empty; in the end it is supposed to contain 105 m3 of water. Assume
the hydraulic resistance to be modeled by the law of Hagen and Poiseuille; i.e., take the
volume flux to be proportional to the pressure difference across the pipe. The pressure
drops by 102 Pa per meter of length at a volume flux of 1.0 m3/s. While the lake is being
filled, water evaporates from its surface at a rate of 0.10 m3/s. (a) If the volume flux is con-
stant and equal to 0.50 m3/s how much energy is required for pumping while filling the
lake? (b) How large should the (constant) volume flux be for the energy required to fill the
lake to be minimal?

11. Fig. P.11.1 shows a windkessel model of the systemic blood flow circuit. Resistances and
capacitance are assumed to be constant. The capacitance of the aorta is C = 2.0 · 10–9 m3/
Pa. The resistance between pump (heart) and container (aorta) is 4.0 · 107 Pa·s/m3, the one
for the systemic vessels is 4.0 · 108 Pa·s/m3. The diagrams (Fig. P.11.2) give data of a sim-
ulation of the model for one cardiac cycle of 0.60 s. In Fig. 11.2 (left), we see the pressure
at the exit of the pump (PV) and the capacitive pressure difference for the blood in the aorta
(∆PC). The volume currents out of the heart (IVH) and out of the aorta (IVs) are shown in
Fig. P.11.2 (right). Data apply to the case of a sheep. 

(a) Identify the functions in the diagrams. (b) Determine the energy current associated with
the blood flow from the heart and sketch the result as a function of time. Use this to deter-
mine the amount of energy flowing from the heart in one cycle. (c) How can the result from
(b) be used to estimate the energy released in one cycle by the heart? What is a realistic
value for the energy use of the heart of a sheep? (d) Determine the (lost) power for the flow
from the heart to the aorta and use this to calculate the energy lost due to friction. (e) From
when until when does the energy of the blood in the aorta increase? Determine the maxi-
mum change of energy of the blood in the aorta. (f) Formulate the law of balance of energy
of the blood in the aorta in instantaneous form and add constitutive expressions to the equa-
tion.

12. Derive the expression for the energy contained in an inductive element (consider the pro-
cess of starting a current flowing through a circuit containing a battery, an inductor, and a
resistor). Translate the result for hydraulics. Show that you can obtain the formula for the
inductance of a pipe with fluid by comparing the energy of the inductive element with the
kinetic energy of the fluid in the pipe.
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Rotation and translational motion can be treated analogously to the theories of fluids
and electricity presented in Chapter 1. This becomes particularly clear in single di-
mensional applications (motion along a straight line, rotation about a fixed axis; for
the latter see Section 2.5). Momentum and spin (angular momentum) are stored in
moving and rotating bodies, and they are exchanged with other bodies and the envi-

tween theories of motion and those of other fields. However, I am interested in aspects
of the conceptualization that demonstrate deep similarities. It is interesting to see how
far we can go in mechanics using ideas developed for fluids and electricity.

Apart from demonstrating the similarity between fluids, electricity, and motion, this
chapter serves a particular purpose. I will present elements of the transport of momen-
tum that go beyond what is known from fluids and electricity. Motion teaches us about
conductive, convective, and radiative types of transport which will play a central role
in a dynamical theory of heat. 
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Similarly to how I proceeded in the case of rotation (Section 2.5), I shall introduce sin-
gle dimensional translational motion informally by considering concrete phenomena
and building adequate explanatory models for the processes observed. The aim is to
create enough motivation for the image of a quantity of motion contained in moving

prepared for a more detailed discussion of transport phenomena (see Sections 3.2 –
3.4). Let me begin with the horizontal motion and collision of gliders on an air track.

 

3.1.1 Collision of Gliders With Magnets

 

Two gliders for an air track have been fitted with bar magnets that are oriented to repel
each other (Fig. 3.1). The motion on the air track is nearly frictionless, so we can study
the interaction of the gliders as they collide. One of the gliders has a larger mass than
the other one. They are moving toward each other, come closer and then move apart

73

ronment in mechanical processes. Naturally, there are many differences in detail be-
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bodies and communicated from body to body in mechanical interactions so that we are
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without directly touching. The distance between the centers of the bar magnets has
been measured from a movie of the motion (Fig. 3.1, center).

Let us conceptualize motion in terms of quantities of motion possessed by bodies in
the manner already done by Newton. The faster a body, the more momentum it has;
the heavier it is, the more momentum it possesses at a given speed. A mechanical pro-
cess leads to the exchange of momentum. In the experiment, quantity of motion is
clearly exchanged as a consequence of the magnetic interaction. Let us assume that
this is all that is needed to explain what is observed.

 

Figure 3.1:  

 

Two gliders on an air track, fitted with repelling magnets (left). The distance be-
tween the centers of the magnets has been measured as a function of time (dots, center) and sim-
ulated (solid line, center). Structure of a dynamical model (right). Note the representation of the 
balance of momentum of the gliders with a flow of momentum from one to the other represent-
ing the mechanical interaction. The elements denoted by x1 and dx1_dt symbolize the integra-
tion of the speed of a glider to yield a position (they are 

 

not

 

 laws of balance!).

 

Balance of momentum.

 

 As always, our dynamical model starts with an expression
of laws of balance of the fluidlike quantities we envision behind the phenomena. Here,
we have two possible repositories for momentum—the two gliders. As one of them
moves to the right, it is given a positive quantity of motion; the other, moving to the
left, obtains a negative amount of momentum. As they move closer together and the
magnets begin to affect the motion, the first one slows down and eventually reverses
its motion to the negative direction. The second one reverses its motion as well. Inter-
pretation of the observation tells us that the first glider loses momentum whereas the
second gains momentum. If we extend the interpretation, we are led to say that mo-
mentum flows through the magnetic field from the first to the second glider. In the
model diagram (Fig. 3.1, right) we connect the reservoirs for momentum of the bodies
by a momentum flow symbol. Expressed formally, we can say that

 

(3.1)

 

where

 

(3.2)
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or out of a body.

 

1

 

 We may call the expression in Equ.(3.2) the 

 

interaction law

 

 in trans-
lational mechanics (remember the discussion in Section 1.1.2 which shows that the
law of interaction is a general feature of our models of natural systems).

 

Capacitive relation.

 

 Everyday experience tells us that bodies interacting mechani-
cally equilibrate their speeds (if friction dominates the effects leading to repulsion and
oscillations). This is very much in accordance with what we know from all the other
phenomena we have investigated so far. In other words, speed takes the role of the
quantity that can be interpreted as the mechanical level (see Fig. 2.21 for rotation). If
we continue this line of argument, we are led to postulate the same type of relation be-
tween stored fluidlike quantity and level (intensive) quantity, meaning that the mo-
mentum of a body should be proportional to its velocity:

 

(3.3)

 

The factor of proportionality, the 

 

inertial mass

 

 of the body, is analogous to fluid or
electric capacitances or to the moment of inertia in rotation (Section 2.5). Since the
velocity of a body is given a sign depending upon the direction it moves in, momentum
can take positive or negative values as well.

 

A force law.

 

 Now we have to construct a model for the flow of momentum from one
magnet to another. Simple experiments with magnets tell us that the strength of repul-
sion grows with diminishing distance between them. We can try the assumption that
the momentum current as a measure of the strength of the interaction grows inversely
with some power 

 

n

 

 of the distance 

 

∆

 

x

 

CM

 

 between their centers:

 

(3.4)

 

k

 

 is a factor measuring the intrinsic strength of the magnets, and 

 

n

 

 is some as yet un-
determined exponent that describes the shape of the force-distance relationship for the
magnets. 

 

Kinematics.

 

 To complete the model, we have to find the positions of the gliders from
their speed, and with that the locations of the centers of mass of the magnets. Positions
are obtained by integrating the speeds (see the bottom part of the SD model in
Fig. 3.1). In the model, the relations are expressed by saying that the velocities are the
rates of change of positions:

 

(3.5)

 

1. If you are familiar with standard representations of mechanical phenomena, you may have
already guessed that what has been called a momentum flux here is a force. Equ.(3.1) are
Newton’s expressions for the motion of bodies—his Second Law. The fact that the momen-
tum current leaving the first body equals the momentum current entering the second is
commonly called the Third Law or law of action and reaction. The relation between mo-
mentum fluxes and forces is a little more intricate than I put it here. Details will be dis-
cussed in the following sections of this chapter.
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Simulation of the model.

 

 The equations of the model must be completed using initial
conditions for the speeds and the positions, and by the masses of the gliders with their
magnets. All these can be taken from the experiment. Once this has done, the model
is complete and can be simulated. With data available, we can fit simulation runs to
find best values for the interaction constant 

 

k

 

 and the exponent 

 

n

 

. It turns out that 

 

n

 

 =
5 yields the best result. Fig. 3.2 shows the momentum current.

 

The energy of the gliders and magnetic field.

 

 The analogy between translational
mechanics and fluids or electricity extends to the energy principle. Take the storage of
energy in a moving body. According to Section 2.4, we should expect that 

 

(3.6)

 

is the energy of a moving body. If we calculate the energy of both gliders together dur-
ing the collision, we find that the sum is the same (long) before the collision and (long)
after the collision (Fig. 3.3, left). During the collision, however, the energy decreases
to a minimum after which it recovers to the original value. Since we believe that en-
ergy does not vanish, we should find another storage element that temporarily takes
the missing energy.

Let us reconsider what is going on with momentum during the collision. Momentum
flows from glider 1 to glider 2. From Equations (3.1) and (3.2) we conclude that the
rate of change of momentum of both gliders combined is always zero, meaning that
their combined momentum is constant. Therefore, momentum simply flows through
the magnetic field during the collision; nothing else happens to momentum, in partic-
ular, it is not stored in the magnetic field.

During the first half of the collision, the speed of glider 1 is higher than that of glider
2 (Fig. 3.3, center). So we have momentum flowing from a body of high to a body of
low speed. Again, if analogy is a guide, we should conclude that energy is released
during this phase (Fig. 3.3, right). During the second half of the interaction, momen-
tum continues to flow from glider 1 to glider 2. This time, however, it flows uphill: the
speed of glider 2 is now higher than that of glider 1. Momentum is pumped which
means that energy is needed. It makes sense to assume that the energy released is used
to strengthen the magnetic field and it is stored in the field—very much like in a me-
chanical spring. During the later phase of the collision, the stored energy is given back
to the gliders, making momentum flow from the slower to the faster body. (Note that
springs act like inductive mechanical elements: momentum flows through them and
energy is released as long as there is a speed difference.)
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3.1.2 Steel Ball Falling in Oil

 

Here is a second example of single-dimensional translational motion. A small sphere
made of steel is let fall in rapeseed oil. The speed of the ball first increases and then
levels off (Fig. 3.4, left). Understanding this phenomenon involves new ideas for
types of momentum transfers. Beyond that, the model is standard (Fig. 3.4, right).
There is an expression for the balance of momentum of the body, speed is calculated
from momentum, speed and position are related by the well known kinematic rule, and
momentum fluxes are expressed in terms of circumstances. 

 

Momentum transfers.

 

 Since momentum flows as a consequence of mechanical inter-
action, we have to look for reasons for such interactions. We all are familiar with the
effect of gravity upon the motion of bodies, and we know that touch can lead to the
same results. There is a gravitational field, and there is oil touching the sphere. The
former interaction leads to momentum transfer that is proportional to the gravitational
mass 

 

m

 

 of the body:

 

(3.7)

 

where 

 

g

 

 denotes the strength of the gravitational field. If 

 

g

 

 is a positive quantity, the
sign of Equ.(3.7) means that we count the direction downward as positive. Gravity
supplies momentum to the body. Since gravitational and inertial mass are identical, we
can use 

 

m

 

 to also calculate the speed from the momentum.

The case of the oil is a little more tricky. First, it is important to note that there are two
types of interaction between steel sphere and oil. The first occurs only when the ball
moves, the second takes places also when the sphere is at rest in the oil. The former is
friction or 

 

drag

 

 which, most likely, depends upon the speed of the body in some man-
ner. The simplest possible case is a linear relation of the form

 

(3.8)

 

The negative sign means that, if speed is positive, momentum leaves the body; the
sphere would slow down if drag was the only effect upon it.

The second effect of the oil has to do with pressure. Since the pressure of the oil in-
creases downwards, the pressure upon the lower hemisphere of the ball is greater than
that upon the upper hemisphere. The difference leads to what is commonly known as

 

buoyancy
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(3.9)

 

Simulation.

 

 Using these ideas, the model yields very good results (Fig. 3.4, left). This
does not mean that all the expressions are well chosen. Equ.(3.7) and Equ.(3.9) turn
out to be adequate in just about all situations. Careful measurements reveal differences
between actual situations and the assumption for drag made in Equ.(3.8). Drag de-
pends sensitively upon the type of flow of a fluid around a body which is determined
largely by flow speed and viscosity of the fluid.

The result of the model can be understood by analogy to a simple fluid system. Con-
sider a straight-walled tank with a constant inflow of a liquid. The tank has an outlet.
As we pour liquid into the tank, the outflow increases with increasing level of fluid in
the tank. The resulting level as a function of time looks qualitatively like the speed of
the sphere measured in this experiment. The levelling off is a result of an outflow that
increases with increasing level—here it is the outflow of momentum due to drag that
is assumed to increase with increasing speed. The effect of buoyancy is proportional
to the effect of the weight of the sphere, so it does not change the appearance of mo-
tion. In summary, the equation of motion is

 

(3.10)

 

3.1.3 A Water Rocket Train

 

As a last example, let us consider the motion of a water bottle rocket mounted on a toy
train car moving on horizontal tracks (Fig. 3.5, left). It introduces a type of momentum
transfer unlike the ones we have seen so far. This one has to do with a fluid transport-
ing momentum across the system boundary which also leads to changes of the mass
of the system; the phenomenon is called 

 

convective transport

 

.

 

Figure 3.5:  

 

A water bottle serving as a rocket engine is mounted on a horizontally moving toy 
train car (left). Measurement (dots) and simulation (solid line) of the acceleration of the toy train 
(center). The diagram of the dynamical model (right) depicts two laws of balance: one is for the 
momentum and the other for the mass of the system.

 

Laws of balance.
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of balance have to be formulated. Since we are dealing with linear motion, we certain-
ly have to analyze the balance of momentum. However, rockets are examples of so-
called open systems that allow for the flow of matter across a system boundary. Our
system is a moving control volume. The system boundary is an imagined surface
around the car and bottle that is penetrated by the outlet pipe for the pressurized water.

There is a single flow of fluid which we can symbolize by a single current of mass of
fluid Im. There certainly are several momentum fluxes for the horizontal motion (not
to speak of those for the vertical component). However, if we neglect air drag and fric-
tion, there remains a single momentum current associated with the flow of water. If
we take the motion of the train as the positive direction of space, the water ejected ob-
viously flows in the negative direction giving it negative momentum. Therefore, neg-
ative momentum leaves the system which means that positive momentum enters: the
train will accelerate in the positive direction. In summary, the laws of balance are

(3.11)

(3.12)

A convective momentum current. The flux of momentum is due to the flow of flu-
id, and it will definitely be proportional to the flux of mass relative to the system. The
other factor determining the momentum of the water jet is the speed of the water rel-
ative to the observer:

(3.13)

(Since the mass flux is negative, and the flow is in the negative direction, the convec-
tive momentum current is positive.) The speed of the jet depends upon both the flow
speed relative to the system and the speed of the system itself:

(3.14)

vjet is the speed of the water relative to the observer, v is the velocity of the system,
and vexit is the exhaust speed of the water as it is expelled from the system.

Modeling the water flow. The hard part of the model is not so much the motion of
the rocket but the flow of water out of the bottle. The water rocket works by having
pressurized air on top of the water. When the valve is opened, the water is expelled by
the expanding air. We need an expression for the pressure of the air as a function of
its volume (the volume can be calculated from the remaining volume of water in the
bottle which we obtain from the law of balance of mass). This actually necessitates
knowledge of an interesting part of thermodynamics of gases which we are going to
study in Chapter 5. At this point, let me just say that there is a relatively simple relation
between volume and pressure of air in rapid expansion:

(3.15)

which is different from what we could have inferred for the isothermal case discussed
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Figure 3.6:  Open (flow) system 
with system boundary and fluxes 
of mass and momentum.
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in Section 1.4.4. If we take a simple relation for turbulent flow driven by the pressure
difference along the bent pipe (Section 1.4.1), we can complete the model presented
in Fig. 3.5 (right).

Simulation. The results of the model are acceptable, at least qualitatively (Fig. 3.5,
center). We now understand the motion of a rocket as the result of the convective mo-
mentum flux associated with the expelled fluid. Details of this experiment and the
model are less convincing. There are many factors that are difficult to measure (such
as the initial pressure of the air), and the flow of water is not easy to model. Measure-
ment of the acceleration can be tricky as well.

3.2 STRESS AND THE CONDUCTIVE TRANSPORT OF MOMENTUM

In the following sections, I will provide a more detailed description of mechanical pro-
cesses in terms of the transport of momentum. There are three fundamental modes of
transport: conductive (which is related to mechanical stress), convective (due to the
flow of fluids across system boundaries), and radiative (resulting from the interaction
of bodies and fields).

3.2.1 Pushing or Pulling Bodies

By pushing and pulling on an object we transfer momentum to it. The momentum
transferred comes from another system (us), or flows into some other body. Momen-
tum may be stored in the system under consideration. If it is, the velocity of the bodies
must change. It is possible, however, to leave the motion of the bodies unchanged, if
we pull and push equally hard. In this case, the momentum supplied will again flow
out of the system.

To avoid having to deal with three components of the vector of momentum, let us con-
sider cases of pure tension or compression only. Consider the process of pushing a
wooden block horizontally across a frictionless surface (Fig. 3.7). The block acceler-
ates, which means that you supply momentum to it through your hand. You can feel
the flow of momentum through your hand as compressional stress. 

Naturally, the momentum supplied must be distributed throughout the wooden block.
You may convince yourself that this flux has nothing to do with the motion of the body

Figure 3.7:  A block is pushed in 
the positive x-direction. It accel-
erates, which means that momen-
tum is supplied to it (a). If we 
also push equally hard from the 
other side, the block’s velocity 
remains constant (b). The mo-
mentum supplied from the left 
side has to leave at the right. In 
either case, momentum flows 
through the body itself. Note that 
in the case of compression, mo-
mentum flows through bodies in 
the positive direction. When mo-
mentum enters or leaves a body, 
we speak of a flux of momentum 
associated with the current.

a

 = constant

+ x

(a)

(b)v
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itself: momentum, except for the part stored in the body, does not flow with the body.
You may push equally hard on the other side of the block, in which case the block’s
velocity stays constant, while the momentum supplied at one end leaves at the other
end (Fig. 3.7b). In other words, momentum may be transferred even through station-
ary bodies. This is called conductive transport. This term is known from thermody-
namics, where we will encounter it again.

Summing up, we say that through direct contact, momentum may be transported
across system boundaries and through matter. Conductive transport makes itself felt
as stress. The flow of momentum across a part of a system’s boundary is measured in
terms of the flux of momentum Ip. If conductive transfer is the only mode of transport,
the momentum stored in a body can only be changed due to a net conductive flux:

(3.16)

This is the equation of balance of momentum for this case. Remember that momentum
is conserved. The conductive momentum flux is called a surface force Fs. Using this
interpretation, we arrive at

(3.17)

which is a form of Newton’s law of motion. Thus, Newton’s law is a particular case
of the general law of balance of momentum. So far it holds only for the case of con-
ductive transport, i.e., only for surface forces acting upon a body.

3.2.2 The Continuous Case

If, with the help of constitutive relations, we manage to specify the fluxes of momen-
tum with respect to a body, we can employ the law of balance of momentum and ki-
nematic relations to calculate the motion of the body’s center of mass. The momentum
of a body is related to the velocity of its center of mass. Equ.(3.16) represents the over-
all balance of momentum for an entire body subject to surface forces. However, this
is certainly not all that interests us in mechanics. For example, in the case of extended
systems, we would like to know things such as the state of stress at every point inside
a body. In other words, we view systems as being continuous, having properties that
vary throughout space. Here, we shall give only a qualitative description of what is a
major subject in continuum physics. The mathematical treatment of simple cases of
continuous processes is left to Parts III and IV. The example treated here is rather com-
plex in detail, however, it can be understood on a qualitative level.

The flux of momentum across a system boundary represents only a small part of the
information contained in the actual transport process (Fig. 3.7). The current of mo-
mentum is distributed over the surface, and there is a spatial flow pattern inside the
body. We must somehow be able to specify the spatial distribution of the flow, to fully
describe the continuous situation. To this end, a quantity related to momentum cur-
rents appropriate for continuum physics is introduced, namely the (surface) momen-
tum current density jp. In the simplest case of a uniform flow of momentum perpen-
dicular to a surface, the product of the current density and the surface area delivers the
flux of momentum through the surface:

˙ , ,p I p cond net=

˙ ,p Fs i

i

N

=
=

∑
1
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(3.18)

The momentum current density is commonly called stress in mechanics. Pressure, for
example, is the momentum current density in a fluid at rest (or what you measure if
you flow along with the fluid). 

Actually, the current density of every component of momentum is a vector which
specifies the spatial distribution of the flow of momentum, just as velocity vectors may
be used to visualize the flow pattern of water. In the general case we have to integrate
the current density over a surface to obtain the flux through the surface. For every
component, a flow pattern has to be drawn. We shall not treat the general theory here.
Fig. 3.8 shows an example of a finite element computation which represents the stress
inside a body as a flow field of momentum. Momentum current density vectors create
the image of this field.

3.2.3 Viscosity and Momentum Transport

In this section we will discuss a particular example of a constitutive law. We shall en-
counter relations of the same general form again and again in continuum physics.

Viscosity is the property of fluids that leads to flow resistance. It is quite clear that the
tank in Fig. 1.27 (top) drains more quickly if the oil is less viscous, and more slowly
if the liquid is more viscous. Castor oil, for example, is much more viscous than olive
oil, and olive oil is much more viscous than water. Therefore, viscosity critically in-
fluences the type of flow. Water flowing out of the tank in Fig. 1.27 would exhibit tur-
bulent flow whereas the flow of oil through the same pipe under similar conditions
would be laminar.

Consider a fluid such as oil between two large parallel plates (Fig. 3.9). We pull the
upper plate horizontally, while the lower one remains stationary. If the fluid were ideal,
the plate would simply slip on top of it. Since real fluids are viscous, however, they

I A jp p=

(a)

(b) (c)

y

x

Figure 3.8:  A flat strip of metal 
(a) with a notch on either side is 
set under tension. The two-di-
mensional stresses are represent-
ed by the flow patterns of two 
components of momentum (x and 
y) through the body. The shaded 
region was been analyzed by the 
finite element procedure. (b) y-
momentum is flowing in the neg-
ative direction, demonstrating 
tension. The notches lead to a 
channeling of the flow, with high-
er current density (higher stress) 
near the notch. (c) Transport of x-
momentum has been induced by 
the sideways flow of y-momen-
tum. The FE computation was 
performed by K. Bruggisser and 
interpreted by W. Maurer (1989, 
1990a).
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remain at rest with respect to the surfaces of bodies. In other words, the liquid will be
pulled along with the moving plate. Naturally, the velocity of the fluid with respect to
the lower plate has to be zero as well. Therefore, the magnitude of the fluid velocity
changes from the speed of the upper plate to zero. There is a velocity gradient dvx /dy
in the y-direction.

The dynamical situation is as follows: Layers of the fluid move past each other which,
because of viscosity, leads to friction in the fluid. We notice that we have to pull the
upper plate if we want to maintain a constant velocity. Pulling the body in the positive
x-direction implies that x-momentum is being supplied to it. In the steady state the
plate does not store any more momentum than it needs for its motion, so we end up
with a flow of momentum through the fluid from the upper to the lower plate. The low-
er plate conducts the momentum to the Earth. Here, we are confronted with the flow
of a component of momentum not in its own direction but perpendicular to it: x-mo-
mentum flows in the y-direction. The fluid experiences shear stress. Note that shear
stress, like tension or compression, is a case of conductive transfer of momentum. Mo-
mentum flows through matter, not with it. In the case being considered, the fluid ob-
viously does not move in the direction perpendicular to the horizontal plates.

The flow of momentum is properly described by its current density. Imagine x-mo-
mentum to be akin to some kind of “stuff” which may flow in any direction. Momen-
tum is transported down through the liquid from every point of the upper plate. The
distribution of the current over a horizontal surface is given by the momentum current
density, which represents the shear stress. This quantity is the y-component of the cur-
rent density vector of x-momentum, which may be abbreviated jpxy. (This is the nega-
tive shear stress component τxy.) Now, a constitutive relation for viscous flow should
allow us to relate this flux density of momentum to the kinematics of the flow and the
properties of the fluid. Put differently, we are looking for a law relating the velocity
gradient, the viscosity of the fluid, and the momentum current density jpxy.

A good number of common liquids and gases exhibit a rather simple constitutive re-
lation for viscous flow. The shear stress, i.e., the momentum flux density, is propor-
tional to the gradient of the velocity in the fluid:

x

y

y

x

Oil

Momentum
transport

v

v

Figure 3.9:  A viscous fluid is 
sandwiched between two large 
parallel plates. The upper plate is 
pulled to the right. Because of 
viscosity, the fluid does not slip at 
the solid surfaces. (In the photo-
graphs at the top we see bubbles 
being generated along a vertical 
line on the left moving to the 
right; they move faster the closer 
they are to the upper plate.) In the 
steady state, a velocity gradient is 
built up in the fluid. Momentum 
which is being supplied to the up-
per plate flows through the fluid 
from points of higher to points of 
lower velocity. In the simplest 
case, a constant gradient is estab-
lished
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(3.19)

The coefficient µ is called the dynamic viscosity of the fluid. The minus sign appears
since momentum flows (or is conducted, or diffuses) from points of higher speed to
points of lower speed. The relation is called Newton’s law (do not confuse it with the
law of balance of momentum, or the law of gravitation, which also carry Newton’s
name), and fluids obeying this rule are called Newtonian.2

The combination of the constitutive relation for viscous momentum fluxes and the ge-
neric law of the balance of momentum allows for the computation of flow configura-
tions. The law of Hagen and Poiseuille, for example, follows from the integration of
the velocity profile established in steady-state viscous laminar flow through a cylin-
drical pipe. Qualitatively, the situation is as follows: the fluid is under pressure, which
means that momentum is flowing through it in the positive direction; the pressure cor-
responds to the conductive momentum flux density in the direction of the axis of the
pipe. Since the pressure is higher at the inlet, and since the fluid is not accelerated, mo-
mentum must be leaving sideways through the fluid. Because of viscosity, the fluid
sticks to the walls of the pipe, leading to a velocity profile with a maximum magnitude
at the central axis. Due to the radial velocity gradient, momentum is transported to-
ward the wall, through which it leaves the system. A similar type of momentum flow
is established if we pull a crate over the floor. We supply momentum to the crate.
However, due to friction, momentum will flow vertically through the crate toward the
floor. In a narrow layer between the crate and the surface it slides on, momentum
flows from points which possess the speed of the crate to points whose speed is equal
to zero (which is the speed of the floor). We know that the fall of a fluidlike quantity
such as momentum from points of high potential to points of low potential releases en-
ergy (Chapter 2), and we know that this energy is used to drive a process, such as the
generation of heat through friction (more about this the chapters on thermal physics).

3.2.4 A Comparison of the Conduction of Momentum and Charge

Viscosity is responsible for establishing velocity gradients in a fluid, and these in turn
are responsible for the flow of momentum. We can compare this situation to what hap-
pens in an electric conductor such as a piece of wire. Charge is conducted through the
wire as a result of the gradient of the electrical potential: charge flows “downhill” from
points of higher to points of lower potential. The constitutive law appropriate for this
transport is Ohm’s law. Commonly, it is written in the form IQ = U/R, where R is the
electrical resistance. However, this is the definition of the resistance, rather than a con-
stitutive relation. Ohm’s law actually establishes the relationship between the flux of
charge, the properties of the conductor, and the electrical driving force responsible for
the flow. It is found that wires with twice the cross section simply conduct twice the
charge. This suggests that the flux per unit surface area, i.e., the charge flux density,
is equal in conductors of different cross section as long as all other factors are kept
constant. Therefore, the flux density jQ must be expressed by a constitutive law. If the
flux density is proportional to the gradient of the electrical potential, the resulting re-

2. Bird, Stewart, and Lightfoot (1960), Chapter 1.

j
d

dypxy
x= −µ

v



3.3  BODIES AND FIELDS: RADIATIVE TRANSPORT OF MOMENTUM

PART I 85

lation is called Ohm’s law:

(3.20)

Here, x is measured in the direction of the transport of charge, and σ stands for the
electrical conductivity.

Compare this to Newton’s law of viscosity in Equ.(3.19). Obviously, the viscosity has
the meaning of a momentum conductivity. The higher the viscosity of a fluid, the better
it conducts momentum down the velocity gradient. It is interesting to note that the
temperature dependence of the viscosity of water is similar to that of the electrical con-
ductivity of superconductors. Both increase with decreasing temperature and both
make a sudden jump to virtually infinite values at a critical temperature (Fig. 3.10).
Electrical conductors may become superconducting below the critical temperature,
while water becomes a superconductor for momentum when it freezes! In both cases
a phase transition is responsible for the abrupt change of properties. In mechanics this
viewpoint might appear unusual, but it agrees with the facts. In electricity and in me-
chanics, charge or momentum flow, respectively, without a potential difference in the
superconducting state. Indeed, in static mechanical situations, momentum is conduct-
ed through bodies without the bodies moving at all. And in both cases, the transport
phenomena are non-dissipative: they do not produce any heat.

3.3 BODIES AND FIELDS: RADIATIVE TRANSPORT OF MOMENTUM

Mechanical interactions of a body with its environment do not just take the form of
direct contact with other bodies. Bodies can interact indirectly via fields. In such cases,
the direct interaction is between bodies and fields.

3.3.1 Sources and Sinks of Momentum

Consider the simple example of free fall in a homogeneous field, which can tell us
much about the form of the transfer of momentum. It is clear that the body receives
momentum (if we count the direction of free fall as the positive one). Experience also
tells us that every part of a body will experience the same acceleration independently
of density and composition. This means that a particular part of a body does not push
or pull on other parts while in free fall. In other words, the interior of a freely falling
body does not experience mechanical stress. Since stress is associated with conductive
flow of momentum through matter, the absence of stress tells us that momentum can-
not be transported through the body in free fall. Rather, every part of a body must re-
ceive momentum at the rate necessary for its acceleration.

Since the parts of a body receiving momentum are of arbitrary size and shape, and
since there is no exchange of momentum between them, it is clear that momentum
simply appears inside the body at every point without being transported there through
other parts. This means that there are sources of momentum in the body itself. Momen-
tum appears in a body at a particular rate quantified by the source rate Σp. The case of
gravitation tells us that the source rate for a given part depends upon both the strength
of the gravitational field and the gravitational mass of the part in question. This is the
well known relation giving the weight of a body in terms of its gravitational mass:

j
d

dxQ
el= −σ

ϕ

Figure 3.10:  Reciprocal of the 
viscosity of water as a function of 
(Celsius) temperature. Since the 
viscosity is the momentum con-
ductivity, its inverse is a resistivi-
ty. When water freezes, the 
resistivity goes to zero, just like 
the electric resistivity of a super-
conductor.
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(3.21)

in a coordinate system pointing downwards. As always, g denotes the strength of the
gravitational field which is measured in N/kg.

How is momentum transported from a field to a body, or vice versa? First of all, mo-
mentum must come from, or go to, another body. As a consequence, it must be trans-
ported through the field. It enters bodies from the field, or bodies emit momentum to
the field. Consider a charged body in an electrical field. It is known from electromag-
netic theory that momentum flows through the field. Specifically, if there is no charge
in a region of the field, momentum entering the region must leave again (Fig. 3.11a).
If we place a charged body in this region of space, however, the body changes the field
so as to make the net flux of momentum through the region nonzero (Fig. 3.11b). In
other words, momentum disappears in a region of a field occupied by a body, but it
appears in the body. There are sinks of momentum in the field and sources in the body,
and vice versa. The interaction of bodies and fields takes the form of sources or sinks
rather than surface currents. This is so since bodies and fields “touch” in three dimen-
sions rather than in two as do ordinary bodies in contact. Both bodies and fields occu-
py the same regions of space at the same time. This form of interaction is well known
in the case of the transport of heat. Due to radiation, heat may enter or leave bodies
directly. For this reason I call this type of transfer of momentum radiative.3

The equation of balance of momentum for a body subject to surface and body forces
must now include a source term with the fluxes of momentum:

(3.22)

This is Newton’s law of motion including both surface and body forces:

(3.23)

since Equ.(3.22) only holds for a body which cannot change its mass. It is simply im-
possible to change the mass of a system if the only types of momentum transfer al-
lowed are conductive and radiative in nature. Equ.(3.22) would be wrong in classical
mechanics with the derivative of the momentum replaced by the ordinary derivative
of the product of mass and velocity. (The resulting equation is not Galilean invariant.4)
Obviously, cases with systems of variable mass must be treated differently; Section
3.4.) 

3.3.2 The Tides

The example of bodies moving in a gravitational field nicely demonstrates the power
of a qualitative solution of a problem in terms of flow patterns of momentum.5 Con-

3. Fuchs (1987b,e), Herrmann and Schmid (1985), Heiduck, Herrmann, and Schmid (1987).

4. Consider the equation from the point of view of another observer moving at speed v. The
terms representing mass, acceleration, rate of change of mass, and sum of all forces are the
same for all observers. The velocity multiplying the time derivative of the mass, however,
is not. The problem was posed in this form by R. Resnick (RPI).

Σ p mg=

Figure 3.11:  The total flux of 
momentum through a field is zero 
with respect to a region of space 
which is occupied by the field 
only (a). If we place a charged 
body in the electrical field, how-
ever, the situation changes (b). 
The body alters the field which 
leads to a net flux with respect to 
the region now occupied by 
charge. The change of the exter-
nal field leads to the interaction 
of body and field.

(a)

(b)

˙ , ,p I p cond net p= + Σ

m F Fs bv̇ = +
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sider a thin rod falling freely in a field whose strength increases downwards (see
Fig. 3.12). We found before that a body in free fall should not experience mechanical
stress. This is true only for motion in a homogeneous field.

We have concluded that momentum is supplied to every part of a body in a gravita-
tional field. The rate of supply certainly is higher where the field is stronger. If we now
consider the rod to be oriented along the field lines, we have to conclude that the
source rate of momentum is larger in the lower portions of the rod. Consider the rod
to be rigid, in which case every part of it experiences the same acceleration. Therefore,
the lower half receives more momentum than is necessary for free fall, while the upper
part receives too little. The body solves the problem by rearranging the momentum
supplied from the field: it allows the surplus of momentum to flow upwards through
the rod to achieve equal distribution. This transport is obviously conductive in nature.
Momentum flows through matter in the negative direction (Fig. 3.12), leading to ten-
sion in the rod, which may pull it apart. This phenomenon is known as tides. In the
case of the Earth falling in the gravitational field of the moon, we can see the origin of
the two tidal bulges on opposite sides of the fluid sphere. We can even say that the
effect of the tides will be largest in the middle of the rod, since all the momentum gath-
ering in the lower parts for upward transport must cross through the center of the body.
Beyond this point, the current density decreases.

3.4 THE TRANSPORT OF MOMENTUM WITH MOVING BODIES: 
CONVECTION

The problem mentioned at the end of Section 3.3.1 has a simple solution. Momentum
can also be transported with moving bodies. Since momentum is stored in moving
matter, the flow of water across a system boundary also transfers with it some momen-
tum. This mode of transport is called convection.

Consider a homogeneous flow field (Fig. 3.13). The speed of the flow of water is con-
stant over a surface perpendicular to the direction of flow. The flux of volume across
the surface is equal to the product of speed v relative to the surface and surface area.
If we multiply this quantity by the density of the fluid, we obtain the flux or current of
mass (n is the vector normal to the surface):

5. Fuchs (1987d).
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Figure 3.12:  A long rigid rod 
falls in an inhomogeneous gravi-
tational field. Tides are the result 
of such conductive rearrange-
ment of momentum. Momentum 
flow is indicated by arrows in the 
rod. If g varies linearly, the stress, 
which is measured by the mo-
mentum current density jp , is a 
quadratic function shown in the 
second graph on the right.
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(3.24)

The convective flux of momentum is simply obtained if we multiply this expression
by the speed of flow:

(3.25)

where vfluid is the speed of the fluid relative to the observer (which does not have to
be equal to the speed relative to the surface of the control volume). If we wish, we can
express the convective flux of momentum in terms of the transport of amount of sub-
stance, instead of mass. Now we can write the most general expression for the balance
of momentum for a region of space such as the one in Fig. 3.13. The rate of change of
momentum in this region must be equal to the sum of all fluxes of momentum, both
conductive and convective, and the source rate:

(3.26)

Here, dp/dt is the time derivative of the momentum contained in a control volume at
a certain instant. It is not the time derivative for a body of constant mass. The problem
mentioned after Equ.(3.23) is solved, since we now have a means for changing the
mass of a system as a consequence of a particular type of momentum transfer. We sim-
ply have to extend Newton’s law of motion to include convective momentum fluxes
which are not present in the original formulation of the law. This is why it can be ap-
plied only to the case of bodies of constant mass. In fact, I shall use the term body in
the sense of a portion of matter which is always identifiable and of constant mass.
Consider a body to be a piece of matter surrounded by a surface through which mass
may not be transported.

3.5 ENERGY IN MECHANICAL PROCESSES

The role of energy in mechanical processes is analogous to that known from fluids or
electricity, so we can discuss the basics very briefly. Then there are some special as-
pects relating to what came up in this chapter that are worth looking into. These are
the well known relation between energy and mass, the transfer of energy in the com-
pression of a fluid looked at from the viewpoint of mechanics, and the question of en-
ergy transfer related to the different transfer modes of fluidlike quantities.

3.5.1 Energy in Translational Processes

Power. Momentum is the fluidlike quantity of translational motion and speed is the
associated intensive quantity. Momentum can be transported and when it flows from
points of higher to points of lower velocity, energy will be released at a rate defined
by the momentum current and the difference of velocities:

(3.27)

Energy transfer. The case of energy transfer works quite analogously to the cases
known from fluids and electricity as well:

I Am = − ⋅ρ n v

I Ip conv fluid m, = v

Control volume

Flow lines of the
current of mass

n1 n2

Im1 Im2

Figure 3.13:  If matter is trans-
ported across the surface of a 
control volume, momentum is 
transferred along with it. This 
type of transfer is called convec-
tive.

˙ , ,p I Ip cond p conv p= + + Σ

Ip
Releasing
energy at

a rate
equal to Pmech

Mechanical Process

Pmech
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Figure 3.14:  Waterfall diagram 
of a mechanical process. Mo-
mentum flows from points of 
high to points of low speed and 
energy is released.

 Pmech pI= −∆v
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(3.28)

This expression also applies to radiative transfers of momentum (bodies in fields). In
cases of multidimensional motion we have to be careful of how we apply these rela-
tions (velocities and momentum fluxes are vectors, power and energy currents are sca-
lars). The simplest way to think of this is to consider each component of motion in
several dimensions separately. This is what we already did for the description of the
flow of momentum through matter (Section 3.2.2).

Energy storage and balance of energy. Assuming a body subject to mechanical in-
teractions (conductive and radiative momentum transfers), we can multiply the law of
balance of motion by the speed of the body and then integrate over time:

The last of these expressions is equal to the total energy transferred due to mechanical
interactions. The first term transforms into

which equals the difference of the kinetic energy of the body from beginning to end of
the motion. If we accept that the kinetic energy is the energy of the moving body, the
derivation presented is a proof of the law of balance of energy for purely mechanical
phenomena. Here, I have simply reversed the standard argument that takes the balance
of energy for granted and then derives other consequences.

Gibbs Fundamental Form. Consider a body receiving momentum and energy at the
same time. From the balance of energy and momentum, together with Equ.(3.28), we
have

In summary,

(3.29)

A relation of this type between rates of change of the energy of a system and the rate
of change of relevant extensive quantities such as momentum, charge, or volume is
called a Gibbs Fundamental Form.

3.5.2 Energy and Mass

Finally, let us discuss one of the most fundamental aspects of the nature of energy.
Since the beginning of the 20th century it has been known that energy and mass (as a
measure of gravity and inertia) are the same. This point will play a crucial role when
it comes to the question of the nature of heat (Chapter 4).

The observations made so far about energy and momentum suggest a simple deriva-
tion of the relationship between mass and energy. Inertial mass is nothing but the mo-
mentum capacitance; i.e., it tells us how much momentum a body has for a given
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velocity. Now we will apply this idea to the phenomenon of light. As you probably
know, light also carries momentum. Therefore, we may introduce the concept of mo-
mentum capacitance m of light, i.e. the quantity measuring the amount of momentum
of the system divided by its speed c :

(3.30)

The Gibbs Fundamental Form, Equ.(3.29), leads to the following expression for ener-
gy and momentum in the case of light:

(3.31)

which is well known from the theory of electromagnetism. (c is the speed of light.)
Combining both expressions finally leads to

(3.32)

So far this is not particularly important since it represents only the definition of the
momentum capacitance of light. However, if we apply the idea which is embodied by
Equ.(3.32) to normal bodies we end up with a very interesting result. If we assume the
momentum capacitance (i.e., the mass) of bodies and of light not to be two different
concepts we have to conclude that the mass of a body is another expression for its en-
ergy: mass, i.e., gravity and inertia, measures the amount of energy and vice versa. We
may therefore write the relation between momentum and velocity as follows:

(3.33)

If we set v = c in the case of radiation, this result holds for bodies and light. We can
use it in the calculation of the energy added to a body when its momentum is increased
from zero to p. Substituting Equ.(3.33) into Equ.(3.29), we obtain

(3.34)

If we integrate this equation with values of the energy changing from E0 (the rest en-
ergy of the body when its momentum is zero) to E (the corresponding amount of en-
ergy for momentum p), we end up with the general equation relating energy and the
momentum of bodies and light, namely

(3.35)

Again, this result also holds for light, since the rest energy of radiation is equal to zero.
From this equation you may derive the expression for the inertia or gravity (i.e., the
mass) of a body as a function of its velocity. Also, the classical expression for the ki-
netic energy of a body is the limiting case of the general relation if we allow only for
velocities which are small compared to the speed of light.

3.5.3 The Compression of a Fluid

At this point, we will derive the expression for the transfer of energy which results
from the compression or the expansion of a simple fluid. Consider a fluid such as air
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under pressure in a cylinder fitted with a piston (Fig. 3.15). In the rest position, mo-
mentum simply flows into and out of the system. Since the gas is not in motion, it does
not have any stored momentum. Even though momentum is transferred into and out
of the system, energy does not flow, since no part of the surface of the body of fluid
is in motion.

If we begin to push the piston, however, the situation must change (Fig. 3.15). First of
all, we are upsetting the previous balance of momentum. Now, during acceleration of
parts of the fluid, the body will store a certain amount of momentum. If we then hold
the speed of the piston steady, the momentum fluxes at the opposing faces of the cyl-
inder will be equal again. Let us consider this situation. Only one part of the surface
of the fluid is in motion, the part touching the piston. Since its speed is not zero, a flux
of energy appears that is equal to the product of the speed of the surface and the flux
of momentum across this part of the surface:

(3.36)

Since the momentum flux is equal to the product of the pressure of the fluid and the
surface area of the piston, we may transform Equ.(3.36) as follows:

(3.37)

This is equal to the product of the pressure of the fluid and the negative rate of change
of its volume:

(3.38)

This result holds in general for fluids of any shape in three dimensions. Since the rate
of change of volume of a compressible fluid is equal to the rate at which volume is
produced or destroyed, Equ.(3.38) is equal to the expression derived in Equ.(2.14). We
shall have ample opportunity to use it in the following chapters of the book.

3.5.4 Different Modes of Transport of Fluidlike Quantities

Care must be exercised in applying the relation between currents of fluidlike quanti-
ties, potentials, and the energy currents presented in Equ.(3.28). There are three fun-
damentally different types of transport processes for the fluidlike quantities, and
Equ.(3.28) only holds for one of them. Even though we will learn details about trans-
port processes in later chapters only, we should take a first look because of the impor-
tance for energy transfers.
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flow lines

System boundary

= 0v v Figure 3.15:  When a fluid is 
compressed, energy is supplied 
to the system as a result of the 
mechanical process. During ex-
pansion, energy flows out of the 
system.
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Conductive transports. The transport processes considered in Chapters 1 and 2 are
of a particular kind: they are the ones where a potential difference is required for a flu-
idlike quantity to flow by itself—a gravitational potential difference for currents of
gravitational mass, a pressure difference for currents of volume, and an electric poten-
tial difference (voltage) for currents of charge. Let us take a closer look at the last of
the three examples.

When electric charge flows through a conducting material, it does so on a “downhill”
path from higher to lower electric levels (Chapter 1). Charge flows by itself through
matter, not with matter. This type of transport is called conduction of electricity.

Even though it appears to be different at first sight, the flow of volume through pres-
sure differences is of the same kind. It is true that here matter is flowing as well. How-
ever, this is not the important point. Amounts of fluids are flowing as the result of
differences of their associated potential—pressure—and that is the hallmark of con-
ductive transports. The same is true of gravitational processes: gravitational mass
gives rise to gravitational fields and therefore to differences of the gravitational poten-
tial. Again, the flow of the fluidlike quantity is associated with its own potential.

Convective transports. Charge, for example, can be transported in a totally different
manner. Rather than flowing through a conductor, it can be stored in a body. When the
body moves, the charge it contains is also transported. The most important cases of
this type of transport occur in fluid flow. Fluids can contain other fluidlike quantities
such as charge, heat, or quantities of motion, so when the fluid flows, we do not only
have a flow of amount of substance or volume, but also transports of these other quan-
tities. Obviously, in this case, charge, heat, and motion do not have to flow by them-
selves through the fluid, they are transported with the fluid. 

Such transports are called convective. Here, the flow of a quantity such as charge is
not associated with a difference of the electric potential; charge flows because the flu-
id flows, and that is the result of a pressure difference! In summary, for convective
transports of fluidlike quantities, we do not need the differences of their associated po-
tentials.

Conductive transports of fluidlike quantities are associated with (differ-
ences of) their respective level quantities (Table 2.3). In convection, on
the other hand, the driving force is the one for the fluid containing some
other quantities which are carried along.

Radiation. Finally, some of the fluidlike quantities can be transported through empty
space with the help of radiation. Think of heat which flows from the surface of the Sun
toward our planet. Radiation can contain—and therefore carry away—heat. Also, if
the radiation is intercepted by a material body, it, and the heat it contains, can be ab-
sorbed. The transfer of radiation into a material system is of an altogether different na-
ture than the transfer by conduction and convection. Radiation is absorbed inside
bodies, not just at their surfaces. Just think of a glass sphere exposed to the light of the
Sun. In other words, quantities such as heat may be brought directly into the interior
of bodies with radiation without having to flow there through the material from the
surface.

Energy transports. In all three transports of fluidlike quantities energy flows as well,
but only in one case does the relation between currents and energy flow take the form
of Equ.(3.28)—namely for conductive transports. All the other cases, convection, ra-
diation, and absorption or emission of radiation, have to be studied separately.
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3.6 DERIVATION OF THE WAVE EQUATION

By combining everything we have done so far, we can treat an interesting example that
leads to a model of wavelike transports—the theory of transport of momentum in one
direction through a simple conducting medium. We will see that wavelike transport is
the result of the interplay of storage and transport of momentum, where the constitu-
tive relation for the transport is given by an inductance, while the storage is described
using the momentum capacitance of the system. This is in accordance with what was
briefly discussed in Section 1.6.4 for waves in fluid and electric systems.

Imagine a fluid under pressure. Momentum is transported through it in the positive x-
direction (Fig. 3.16). The equation of balance of momentum for this body is rather
simple. We consider the boundaries of the body to move with the fluid, which means
that there may be only conductive currents of momentum. Therefore, the law of bal-
ance takes the form

(3.39)

which is a special case of Equ.(3.16). Remember that the mass of the body is the mo-
mentum capacitance, and that the momentum current density jp is the pressure of the
fluid. Now, we shall introduce the momentum capacitance per length (mass per
length) . If ∆x and A are the length and cross section of the element of fluid in
Fig. 3.16, the equation of balance of momentum becomes

(3.40)

The particular form of the transport depends upon the type of constitutive relation sat-
isfied by the material. A body possesses resistance and inductance related to the trans-
port of momentum. Both quantities are introduced in analogy to what we know from
electricity or hydraulics. We shall neglect the resistance of the medium to the passage
of momentum. (The phenomenon of resistance would lead to an attenuation of the
wave traveling through the fluid.) To describe the other effect, the inductance per
length  will be introduced. The constitutive law of induction relates the difference
of speed of the two faces of the body of fluid in Fig. 3.16 to the rate of change of the
momentum flux through the body. 

(3.41)

This phenomenon results from the spring-like nature of the fluid: if there is a differ-
ence of speeds at the faces of the body, its density, and therefore its pressure, must
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change in time. Both Equations (3.40) and (3.41) must hold for arbitrarily small parts
of the fluid. Therefore, these expressions become partial differential equations:

(3.42)

(3.43)

The former represents the balance of momentum for the continuous case, while the lat-
ter is the law of (momentum) inductance. We may combine these equations in the fol-
lowing manner. Take the time derivative of Equ.(3.42) and the spatial derivative of
Equ.(3.43). In both expressions, derivatives of the momentum current density with re-
spect to both time and space occur. Relating these terms leads to

(3.44)

which is a simple wave equation for transport in one spatial dimension. The term 
represents the inverse of the square of the speed of sound in the fluid (Section 1.6.4).
If we manage to determine the inductance of the fluid, we can also compute the speed
of propagation of sound (Chapter 5).

The derivation of the wave equation for one-dimensional compressional waves can be
carried over to other fields of physics, such as electricity or heat. In electricity, we may
obtain the governing equation for a wave guide (telegrapher’s equation). Inclusion of
the resistance of the medium leads to the term responsible for dissipation and attenu-
ation of the wave. In thermodynamics, the result equivalent to this particular form of
Equ.(3.44) is not generally known. However, the phenomenon of thermal induction
exists and leads to interesting results, such as second sound (see Chapter 13).

EXERCISES AND PROBLEMS

1. A person is pulling a crate across the floor at constant speed via a rope (Fig. P.1). Take the
positive direction to coincide with the direction in which the body is pulled. (a) Identify the
closed circuit through which the horizontal component of momentum is flowing. (b) De-
termine the momentum fluxes (and their signs) with respect to the crate, the person, and
the earth, i.e., the floor. (c) There are several relationships between the different fluxes
identified in (b). Which of these have to do with the action-reaction principle (Newton’s
third law)? Which condition is expressed by the other relationships?

2. Repeat the previous problem with the positive x-direction reversed. Note that the closed
momentum current changes its direction while the fluxes change their sign. How could you
turn the expression for the momentum flux in Equ.(3.18) into a vector concept? If you draw
the fluxes in this and the previous problem as vectors, do they change direction upon
changing the sign of the x-coordinate? What is the relationship between the momentum
flux vectors and the forces customarily introduced in this mechanical situation?

3. A body with a mass of 2.0 kg is hanging from a rope. Take the downward direction as the
positive one. Determine the fluxes and the sources of the vertical component of momentum
with respect to the body. Sketch the flow of momentum through body and rope. How would
you introduce forces in this case? What is their relationship to the fluxes and sources ex-
pressed as vector quantities?
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4. A rope with a given (constant) mass per length is hanging from a hook. Express the equa-
tion of balance of momentum for small segments of the rope and derive the appropriate dif-
ferential equation for the continuous case. Then determine the momentum current density
in the rope as a function of position. How does this quantity relate to the mechanical stress
in the rope?

5. Consider a long bar falling in an inhomogeneous gravitational field increasing linearly
downward (Section 3.3.2). The body is assumed to be rigid. (a) Calculate the acceleration
of the body with the help of the equation of motion of the entire body. (b) Compute the
momentum current density through the body as a function of position in the body. (Hint:
set up the equation of balance of momentum for the spatially continuous case).

6. Two gliders with magnets move toward each other on an air track. When they move closer,
they are repelled. Friction is noticeable since the air stream is relatively weak. In the fol-
lowing diagrams, Fig. P.6, you can see the distance between the gliders and their velocities.
Data: Mass of glider 1: 0.868 kg; mass of glider 2: 0.618 kg. (a) Which of the velocity func-
tions belongs to the smaller of the gliders? a or b? Why? (b) Assume a constitutive law of
the form IpR = µIpN for the momentum transfer due to friction with a coefficient of dynamic
friction µ  and the normal force IpN (i.e., friction is assumed to be constant). Determine the
coefficient of friction. (c) Determine the momentum current through the magnetic field at
the time of the shortest distance between the gliders. (d) If you look at a single magnet,
what is the type of momentum transfer with respect to the material?

7. A tennis ball rests atop a soccer ball. Both are dropped together. In the diagram, Fig. P.7,
you see the data of the positions of the centers of the two bodies as functions of time. Mass
of the soccer ball: 442 g. Mass of the tennis ball: 56 g. Neglect air resistance in your anal-
ysis. (a) Construct the free body diagrams of the balls (separately) for the duration of the
impact with the floor. Identify all momentum transfers with respect to the bodies. We as-
sume that the tennis ball touches the soccer ball during the impact with the floor. (b) De-
termine the speeds of the bodies shortly before and shortly after the impact with the floor.
Determine the momenta of the bodies. (c) How much momentum was exchanged with the
ground? If the collision lasts for about 4 ms, what was the average momentum current? (d)
How much energy was dissipated? (e) If the processes were dissipationless, would the mo-
mentum exchanged with the floor be larger, equal, or less than for the real case? 

8. A buffer for train cars is designed and simulated with the help of a model. A train car hav-
ing a mass of 10 tons moves on a horizontal track and hits a hard obstacle at a speed of 5
m/s. The elastic properties of the buffer are modeled as a linear spring having a length of
0.50 m. Internal friction is modeled as a constant force having the same value for compres-
sion and expansion. (a) If the car hits the obstacle at 5 m/s, the spring may not be com-
pressed more than its length, even if we neglect internal friction. What is the minimum
value of the spring constant? (b) Again, neglect internal friction in the spring. What is the
duration of the collision? (c) The diagram shows the simulated acceleration of the car. Ex-
plain the result formally. (Friction due to the rails and air resistance are neglected.) Deter-
mine the value of the damping force.
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9. A liquid having a density of 920 kg/m3 is flowing through a pipe whose diameter decreases
from 3.0 cm to 1.5 cm (Fig. P.9). The speed of flow at the smaller exit is 4.82 m/s. (a) Com-
pute the convective momentum fluxes at the inlet and the outlet. (b) The pressure of the
fluid at the inlet is 1.10 bar. Calculate the conductive momentum flux at the entrance. Com-
pare the magnitude of the convective and the conductive fluxes.

10. In the previous problem compute the force which holds the pipe in place. The pressure of
the surrounding air is 1.0 bar. Take the flow through the pipe to be ideal.

11. A rocket is moving through space far from any gravitational fields and at constant speed v0
with respect to an observer. The engines are ignited so that the flux of mass out of the rocket
is constant, and the speed of the gases is vg with respect to the engines. (a) Formulate the
equation of balance of momentum for the rocket with respect to the observer. (b) Solve the
equation of motion.

12. An open car moves underneath a vertically falling current of water (Fig. P.12). At the same
time, the car loses water through a hole at the bottom at the same rate at which it picks up
water. Set up the equation of motion for the car and determine its speed as a function of
time. Assume friction to be negligible.

13. A Scout X1 rocket of NASA with a total mass of 16 tons stands upon the launch pad. After
ignition, 220 kg gas per second flows out of the engine at a speed of 2100 m/s. Information:
Disregard air resistance and take a value of 10 N/kg for the strength of the gravitational
field. (a) Write the law of balance of momentum for the rocket as a system. Why is the rate
of change of momentum not equal to the mass times acceleration? (b) What is the rocket’s
acceleration right at the beginning? What is the acceleration after 40 seconds of engine fir-
ing? (c) What speed does the rocket reach after the 40 seconds of firing the engines?

14. A flat plate with a surface area of 0.50 m2 is pulled horizontally over another plate with a
film of oil between them. The film has a thickness of 4.0 mm. To move the plate at constant
speed of 1.0 m/s, one has to pull with a force of 25 N. What is the viscosity of the oil?

15. A fluid is confined between the walls of two concentric cylinders (Fig. P.15). The gap be-
tween the cylinders is very narrow. The inner cylinder can be rotated, and the torque upon
it and the angular velocity can be measured. Determine the viscosity of the fluid.

16. Show that if you use momentum as the fundamental quantity, a (linear) spring is an induc-
tor. Determine its inductance. Show that a body hanging from the spring has the property
of a capacitor. Now determine the frequency of oscillation from the capacitance and the
inductance of the system.

17. Set up the equation of motion of a body hanging from a (linear) spring. Solve it and show
that you get the same expression for the frequency of oscillation as that found in the previ-
ous problem.

18. Use the expression for the power of a process for calculating (a) the energy required for
lifting a body of mass m a certain distance h at the surface of the earth, and (b) the energy
released from an electric field when an electron moves through a given voltage U in the
field.

19. A car moving horizontally at a constant speed of 120 km/h is using 8.0 liters of gasoline
for a distance of 100 km. The mechanical efficiency of the engine is 0.20. Draw a process
diagram for the car as the system, depicting energy carriers, energy currents, and power.
How large is the magnitude of the sum of all resistive forces acting upon the body? Repeat
the flow diagram with the engine as the system.

20. A linear spring is attached to a wall on one side. As it is stretched, determine all energy
fluxes with respect to the spring. Calculate the change of the energy content of the spring
as a function of the stretching.

Figure P.9
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Thermodynamics is the science of heat and hotness, of how bodies and other physical
systems respond to heat, and of how heat can be used to drive other processes. In this
chapter, I will introduce the fundamental quantities and concepts of thermodynamics
and create dynamical models of some interesting phenomena. I shall justify the gener-
ic laws of thermal physics which we are going to use throughout this book. Constitu-
tive laws will be introduced on an informal basis when needed for getting answers to
some special problems. They will be treated in great detail in the following chapters. 

I will take a practical approach to thermal processes by creating dynamical models of
the heating and cooling of simple materials, the storage of heat in such materials, the
flow of heat through walls, production of heat, and the operation of heat pumps and
heat engines. This development will be guided by the balance of quantities of heat, by

Carnot’s comparison of waterfalls and heat engines to motivate the relation between
heat, hotness, and power. First however, let us take a look at what kinds of images and
concepts can be formed about heat and hotness from our everyday knowledge of ther-
mal processes.
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Thermal phenomena are part of our everyday experience. They allow us to conceive
of the quantities which are necessary for a theory of thermal physics. Nature tells us

cepts which we do not derive from anything else, i.e., those which are truly fundamen-
tal. I shall take these to be 

 

hotness

 

, 

 

heat

 

, and 

 

energy

 

. We intuitively know the first two

weaving the elements into a theory of thermal processes, and by comparing the pre-
dictions of the theory with new phenomena, we will find out whether our ideas are cor-
rect.

Assuming that you probably have had at least a moderate exposure to thermal physics,
you might find this section the most demanding of all, even though there will not be a
single equation to set up or to solve. It is imperative that you see very clearly how com-
mon sense reasoning and analogies can be used to understand the meaning of heat and
hotness before we go on with the formal story.

99

the interpretation of temperature differences as the thermal driving force, and by Sadi

We have become familiar with energy through our study of other parts of physics. By
of these quantities, even though our knowledge is not precise in any scientific sense.

and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_5, 

where to begin and what to look for. On the basis of experience, we construct the con-

  A Unified Approach to ThermodynamicsH.U. Fuchs, The Dynamics of Heat:
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4.1.1 Some Phenomena and Word Models

 

This subsection serves a simple purpose: To create word models of some basic thermal
phenomena. These models which are created almost effortlessly on the basis of con-
ventional language will demonstrate everyday conceptualizations of processes involv-
ing heat and hotness. The result is a language which could just as easily be used to
speak about fluid and electric processes. There is a quantity of heat residing in bodies,
making them warm, letting them expand or melting them. It is capable of flowing into
or out of these bodies; it can be produced by fire, electrically, or by rubbing, and it can
be used to drive engines. Temperature differences make all these things happen. 

 

Two bodies of water in thermal contact.

 

 Water is poured into two identical com-
partments of a container separated by a thin metal wall. In one of the compartments
there is hot water, in the other one the water is cold. The container is well insulated
and covered by a styrofoam lid. The bodies of water are stirred continuously, so there
is a uniform temperature for each body. It is found that the temperature of the hot water
goes down whereas the temperature of the cold water rises. This continues until both
temperatures are the same and pretty much equal to the average initial temperatures.

Temperatures equilibrate for bodies made of different materials and sizes as well. Data
has been taken for a block of cold copper in hot water (Fig. 4.1). In general, the final
temperature lies somewhere between the initial values for the bodies in thermal con-
tact.

 

Interpretation

 

. For a body of water to get colder, it has to lose heat, for it to get warm-
er, it must gain heat (Fig. 4.1, right). We say that heat flows from the hotter body of
water to the colder one as long as there is a temperature difference. We interpret tem-
perature differences as the 

 

driving force for the flow of heat

 

 and 

 

temperature as the
thermal level 

 

because the behavior of the temperatures resembles that of water levels
in communicating tanks, or of voltages of capacitors connected by a resistor (Fig. 1.1
or Fig. 1.3). The example in Fig. 4.1 demonstrates that thermal levels become equal,
not quantities of heat residing in the bodies making them warm. Put differently, tem-
perature does not measure quantities of heat, it tells us 

 

how warm

 

 a material is.

The water in the container would lose heat to the cool environment and the tempera-
tures would drop further were it not for the insulation. Styrofoam insulation makes it
difficult for heat to flow out of warm bodies.

 

Thermocouples, resistors, and air thermometers.

 

 

 

Different devices and materials
can be used to measure temperature. Basically, whenever we have a process or a ma-
terial property dependent upon temperature or temperature differences, these can be
exploited to build thermometers. Simple combinations of two metals—so-called ther-

Figure 4.1:  A hot body of water 
in thermal contact with a cold 
copper cylinder inside a well in-
sulated container (left). The tem-
peratures adjust until they have 
become equal (right).
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mocouples, which are actually thermoelectric generators (see below in Fig. 4.11)—
can be used to measure temperature differences. The resistance of electric resistors
commonly depends upon temperature (Fig. 4.2, left), so we can build resistive thermo-
meters. An important type of thermometer is made from a simple gas such as air whose
pressure depends upon its temperature (Fig. 4.2, right).

 

Interpretation

 

. Using the gas thermometer, the pressure of a dilute gas such as air at
standard conditions is measured at constant volume. It is found that—if the tempera-
ture is not too low—the pressure is a linear function of temperature. This relation is
extrapolated backwards to a pressure of zero. The same temperature is found for zero
pressure independent of the type of substance that is in a gaseous state; the result is a
temperature of – 273°C, therefore it is assumed that this constitutes a special point.
Since lower temperatures than the zero point of the air thermometer have never been
found in any experiment, it is believed that it represents the lowest possible tempera-
ture that can be attained. The 

 

Kelvin temperature scale

 

 uses the zero point of the air
thermometer as its starting point.

 

Compressing air.

 

 Air can be compressed quickly in a bicycle pump. If we do this re-
peatedly, the end of the pump becomes quite warm. We can perform the same process
in a cylinder with a piston and put a small piece of tinder in the cylinder. Already after
a single quick stroke the tinder is observed to ignite in a flash.

 

Interpretation

 

. The fact that the tinder ignites tells us that the air has become very hot.
This explains why a bicycle pump becomes hot after a few strokes. Heat flows from
the hot air through the pump casing into the surroundings.

Why does the temperature of the air rise so dramatically as the result of a quick, strong
stroke? After all, there is no fire to heat the air, heat cannot flow from the surroundings
into the air (the air is hotter than the surroundings!). So we do not add heat from out-
side. There could be friction in the air, and indeed there is, but its effect is very small
(this is explained by noting that the compressed air is almost ideally elastic, the vol-
ume would be restored if we just let the piston move out again). Since we do not add
heat, and since heat is not produced, the quantity of heat of the air stays constant. The
temperature of the air rises because its heat is compressed into a much smaller space;
the heat of the air is lifted to a higher level (Fig. 4.3).

This example demonstrates very convincingly that temperature and heat cannot be the
same quantity—remember, we already concluded this by observing that temperature,
not heat, equilibrates. When air is compressed quickly, the quantity of heat stays con-
stant while temperature rises dramatically. 

 

Cooling and heating water in a can.

 

 Hot water is poured into a thin aluminum can.

Figure 4.2:  Resistance of a resis-
tor as a function of temperature 
(left), and pressure of air at con-
stant volume as a function of 
temperature (right; the relation is 
extrapolated backwards to zero 
pressure).
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Figure 4.3:  Process diagram of 
compression of air without heat-
ing or cooling. The temperature 
of the air rises. Figuratively 
speaking, the heat of the air is 
lifted to a higher level.
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The water is stirred continuously with the help of a magnetic stirrer, and its tempera-
ture is recorded (Fig. 4.4, top left). The temperature drops quickly at first, and more
slowly later on. Finally, it reaches a constant value; interestingly this value is higher
than the temperature of the environment.

If very cold water in a drinking can is left standing in a warm room, its temperature
rises quickly at first, and then more slowly (Fig. 4.4, top right). In the case presented
here, the drinking bottle is inside an insulating jacket, and the water is stirred during
the observation. Note that the temperature of the water rises above that of the room.

 

Interpretation

 

. Hot water loses heat to the environment through the wall of its contain-
er (Fig. 4.4, bottom left). The difference of temperatures between the water and the en-
vironment serves as the 

 

driving force

 

 for the flow of heat. If the driving force is
greater, the loss of heat is greater, letting the temperature go down faster. This explains
the shape of the measured curve (see also Fig. 4.1). The magnetic stirrer used to stir
the water produces some heat. That is why the temperature of the water settles above
the temperature of the environment: In the end, the heat produced by the stirrer must
leave the container, so there needs to be a temperature difference.

If the water is colder than the environment, heat will flow from the environment into
the cold water (Fig. 4.4, bottom right). Again, if the temperature difference is high, the
flow will be strong, the temperature of the water will change fast. Since heat is gener-
ated by the stirrer, the final temperature of the water will be above that of the environ-
ment (Fig. 4.4, top right).

 

Heat flows through a metal bar.

 

 A section of a copper bar is inserted into water in a
glass. The rod is heated by a candle at the other end (Fig. 4.5, left). Over time, the tem-
perature of the water rises. In a somewhat more sophisticated experiment, one end of
a long, thin copper bar is stuck in ice water, and the other end is heated electrically.
The bar is not insulated from the surrounding air. The temperature of the metal is mea-
sured at eight points along its length (Fig. 4.5, right). Temperatures first drop a little.
Soon after the heater is turned on, the temperatures rise. The parts of the copper bar
near the end that is heated become hot first. For the other points there is a more or less
prolonged delay in response.

Figure 4.4:  Top left: Tempera-
ture of hot water left standing in a 
thin-walled aluminum can. The 
final temperature is above the 
temperature of the environment 
(here about 20°C). Top right: 
Temperature of cold water left 
standing in an insulated drinking 
bottle. The final temperature is 
above the temperature of the en-
vironment (the curve that starts at 
about 23°C). Bottom: Process di-
agram for heat flowing into or out 
of a storage element. A tempera-
ture difference drives the flow.
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Interpretation

 

. Heat is produced by the candle and transferred through the copper rod
into the water. The flame is very hot, the copper rod is pretty hot at the heated end and
cooler at the end stuck in the water; the water is cooler still. Heat flows from hot bodies
to colder ones. Heat accumulates in the water and as a result, the temperature rises.

In the second case, some heat slowly flows out of the copper bar (which is at room
temperature) into the ice water. If heat has to flow from points farther away, those
parts get colder more slowly. When the electric heater is turned on, heat is produced
(see Fig. 4.9) and it travels through the length of the bar toward the end stuck in the
water. The parts of the bar closer to the heater receive the heat first, so their tempera-
ture rises most quickly. The rise of temperature is delayed in the sections of the bar
farther away from the heated end. As time progresses, a fixed temperature gradient
from hot to cold is established.

The process of migration of heat through a material is called 

 

conduction

 

. It is analo-
gous to the conduction of electricity in metals. As the curves in Fig. 4.5 suggest, it is
also similar to the flow of water through a chain of tanks, or the transport of charge
through a chain of 

 

RC

 

 systems (Fig. 1.28).

 

Melting ice and freezing water.

 

 Ice placed in a warm environment melts. Alterna-
tively, we can actively heat ice in a test tube placed in warm water and monitor the
temperature of the mixture of ice and water forming from the ice, and of the water bath
(Fig. 4.6). It is found that the temperature of a cold block of ice first rises to 0°C. Then
the ice-water mixture in the test tube stays at a constant 0°C until all the ice has melted.
Only then, upon further heating, does the temperature of the water in the test tube rise
as expected. The temperature of the water bath decreases all the time.

When water is placed in a cold environment (considerably colder than 0°C), the re-
verse happens. The temperature of the water drops to 0°C. Now ice starts to form and

Figure 4.5:  Left: A candle heats 
water indirectly. A copper rod 
transfers the heat produced by the 
candle to the water. Center: Tem-
peratures of a long copper bar at 
different points as functions of 
time. First, the bar is at room 
temperature. One end is placed in 
cold water. Starting at t = 700 s, 
the other end is heated electrical-
ly. Right: Process diagram of 
heat flow.
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Figure 4.6:  A test tube filled 
with cold ice is placed in water, 
everything is in a well-sealed 
glass container. Temperatures of 
the water bath (upper curve) and 
of the ice-water mixture in the 
test tube (lower curve) are re-
corded.

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

[

[
[
[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[
[[[
[[[[[
[[
[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

-20

-10

0

10

20

0 1000 2000 3000

T
em

pe
ra

tu
re

 / 
°C

Time / s



 

C

 

HAPTER 

 

4.  S

 

TORAGE

 

, F

 

LOW

 

, 

 

AND

 

 P

 

RODUCTION

 

 

 

OF

 

 H

 

EAT

 

104

 

T

 

HE

 

 D

 

YNAMICS

 

 

 

OF

 

 H

 

EAT

 

the temperature of the freezing substance stays constant at 0°C. Finally, when there is
only ice, the temperature continues to sink below the freezing point.

 

Interpretation

 

. Obviously, heat is needed to melt ice. First, heat coming from the
warm water raises the temperature of the cold ice to 0°C. Then the temperature of the
substance in the test tube (Fig. 4.6) stays constant for quite a while. During this phase
of constant temperature, ice transforms into water. Since the mixture is colder than the
surrounding water, heat continues to flow into the melting mixture. In this case, heat
does not raise the temperature of the material. Rather, it leads to the transformation of
ice to water.

Again we have an example that demonstrates very clearly that heat and temperature
are totally different concepts. While the temperature stays constant, the quantity of
heat of the substance in the test tubes increases.

 

Vaporization of water.

 

 Water is placed in an open but otherwise well insulated can
on top of a scale. The water is heated with an immersion heater. At a temperature of
almost 100°C, it starts to boil. The power of the heater is kept constant. Temperature
and mass of the water are recorded. We find that the temperature stays constant during
vaporization, whereas the mass of the water decreases continually (see Fig. 4.7).

 

Interpretation

 

. Again, we have a phase change that requires heat while the temperature
of the substances undergoing the change (water and steam) stays constant. Heat is pro-
duced at a constant rate by the immersion heater. Since the mass of the water decreases
linearly, we conclude that equal amounts of heat produce equal quantities of steam.

 

A Peltier cooler.

 

 Two bodies of water inside a well insulated tank are separated by a
so-called Peltier device (Fig. 4.8, left; see also Fig. 4.11, left). This is a particular type
of thermoelectric device. It can be hooked up to an electric power supply. If we set up
a voltage across the device, we observe that one of the bodies of water becomes colder
whereas the other one gets warmer (see the diagram in Fig. 4.8, right). Overall, the
system gets warmer if the tank is sealed.

 

Interpretation

 

. The body of water getting warmer is gaining heat, the other one is los-
ing heat. It makes sense to assume that the heat added to the former is taken from the
latter. Since heat goes from a cold to a hot body, it does not flow by itself as in con-
duction (Fig. 4.5). Heat is said to be 

 

pumped

 

 by the thermoelectric device. Like any
other pump, this one also needs energy to do its job (Fig. 4.8, bottom left).
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Figure 4.7:  Water is vaporized in 
a can on top of a scale. The mass 
of the water is recorded as a func-
tion of time. (The temperature 
stays constant during vaporiza-
tion.)

Figure 4.8:  Two bodies of water 
inside an insulated tank are sepa-
rated by a Peltier device (top left, 
see also Fig. 4.11). When operat-
ed, the Peltier device cools one 
body of water and heats the other. 
Bottom left: Process diagram of 
Peltier heat pump. Electric 
charge flowing from higher to 
lower electric potential releases 
energy which is used to drive the 
pump and to produce more heat.
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The Peltier device also produces heat; the material through which the electric charge
flows has a certain resistance and heat is produced as it is in any electric resistor. As
a consequence, the heat of the two bodies of water taken together increases, and the
average temperature rises.

A thermoelectric device is a material that conducts electricity (electric charge) and
heat. There are no moving parts, and no fluids transporting heat. Therefore, it appears
that in a thermoelectric device electric charge can transport heat.

 

Immersion heaters.

 

 One of the simplest thermal devices is an electric heater to heat
water. If it is immersed in water, and as long as it is operated, the water either gets
warmer or boils away (Fig. 4.9, left).

 

Interpretation

 

. We know from the foregoing discussions, that water needs heat if it is
to get warmer or boil. Obviously, the heat must be supplied by the electric immersion
heater. Since the heater can be operated almost indefinitely, it cannot supply the heat
from its own store—there simply cannot be enough of it in the wire. We conclude that
an electric heater produces heat, a process we have seen to be operating in many other
cases as well. The process diagram of the heater (Fig. 4.9, right) explains how this is
to be understood. Energy is released in the electric process and made available to a fol-
low up process which is the production of heat. Heat is produced out of nothing, but
not by itself—there has to be a process providing energy.

 

A Stirling engine.

 

 A Stirling engine is a classical heat engine. The engine is heated
from outside (any type of heating will do: a fire, electrical heating, heating by concen-
trated solar radiation, etc.), and cold water is passed through it to cool the engine (the
water leaving the engine is warmer than the water entering). When operated like this,
the engine can drive mechanical processes (Fig. 4.10, left). The “working fluid” is air
or some other simple gas. When the flow of cooling water is reduced, say, by a factor
of two, the temperature difference of the fluid also changes by a factor of two, and the
engine works somewhat less efficiently.

Figure 4.9:  Left: An immersion 
heater heats water which starts to 
boil. It provides heat to the liquid. 
Right: Process diagram of an 
electric heater. Note the differ-
ence to the diagram of a Peltier 
device (Fig. 4.8): Heat does not 
flow in from a cold place.
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Figure 4.10:  Left: The mechani-
cal part of a Stirling engine. 
When the engine is heated and 
cooled, the wheels drive a me-
chanical process. Right: Process 
diagram: Heat falls from high to 
low temperature, thereby driving 
a rotational process.
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Interpretation. The following interpretation is motivated by Sadi Carnot’s explanation
from his famous book The Motive Power of Heat (1824).1 Heat (he also called it ca-
loric) falls from the high temperature of the furnace to the low temperature of the cool-
er. Doing so it releases energy used for driving the mechanical process of the engine.
All the heat supplied by the furnace has to leave through the cooler into the environ-
ment. This explains why the temperature of the cooling water rises more if its flow
through the engine is smaller. And it explains why the engine is less efficient: The
temperature drop from the furnace to the cooling water is smaller.

Note that the process diagram on the right in Fig. 4.10 is essentially the reverse of the
one for the Peltier heat pump in Fig. 4.8. Stirling engines, by the way, make great heat
pumps or refrigerators. They just have to be operated in reverse, i.e., they have to be
driven mechanically.

Thermoelectric generator. A Peltier device can be run in reverse in which case it
functions as a heat engine—in this case as an electric generator. Placed between a hot
and a cold body of water, a voltage develops across the terminals of the device. If we
attach a load to the device, it drives an electric process whose power can be measured
from voltage and electric current (Fig. 4.11). Compared to mechanical heat engines
operating between similar temperatures, the efficiency of the Peltier device is quite
low.

Interpretation. The process diagram explains the operation of the Peltier heat engine.
Note that it is fundamentally similar to the one for the Sterling engine (Fig. 4.10). Heat
falling from higher to lower levels releases energy which is used to drive the desired
process, i.e., the flow of electric charge from lower to higher potentials. Here, howev-
er, it is quite clear that only a fraction of the energy released is used to drive electricity.
Much of it is used to produce more heat; this is a consequence of the particular struc-
ture of the thermoelectric device.

1. S. Carnot (1824).

Figure 4.11:  Photographs of a 
Peltier device. The electric power 
of a thermoelectric generator (a 
Peltier device between two heat 
reservoirs at different tempera-
tures) is proportional to the 
square of the temperature differ-
ence. Bottom right: Process dia-
gram of the Peltier generator.
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The measured power is proportional to the square of the temperature difference be-
tween the hot and the cold water (Fig. 4.11). This is analogous to what we know of the
power of an electric load resistor which is proportional to the square of the voltage.
Assume the energy released by heat to be proportional to the temperature difference.
If the flow of heat is also proportional to the temperature difference, the resulting de-
pendence of power on the temperature difference is what we observe in Fig. 4.11.

Reversing the operation of an electric water pump. In an electric pump, the elec-
tric process drives the hydraulic one (Fig. 4.12, left). At the same time, the device be-
comes warm: heat is generated. The system can be reversed. A system of turbine and
generator reverses the electric and hydraulic processes (Fig. 4.12, right). When it is
running, it becomes warm: heat is generated.

Interpretation. Physical processes can be reversed, with one exception. This is the pro-
duction of heat. If we had to reverse all the processes of a heat producing system, we
would have to destroy heat. This does not happen. Instead, heat is again produced. We
conclude that heat is a quantity that can be produced but not destroyed.

1. Why does the phenomenon shown in Fig. 4.1 show that temperatures rather than quantities
of heat equilibrate when bodies are in thermal contact?

2. What does temperature measure?

3. In Fig. 4.1, the temperature reached by copper and water (diagram on the right) is above
the average of the initial temperatures of the two bodies. Why is this so? How does this
compare with similar phenomena in hydraulics or electricity?

4. What does the example of conduction of heat through a metal bar (Fig. 4.5) tell us about
the role of temperature and the flow of heat?

5. Does heat always make a body warmer? Do we always need heat to make a substance
warmer?

6. Why do the processes of melting (or of vaporization) and of compression of air demon-
strate clearly that heat and temperature cannot be the same quantity?

7. To make water warmer, we need heat. Where can the heat come from? Does it matter for
the water where the heat comes from?

8. What is the role of energy in the Peltier heat pump of Fig. 4.8? Why does the production
of heat make the device less efficient?

9. Why does measuring the power of a Peltier generator (Fig. 4.11) suggest that the power of
heat is proportional to the temperature difference through which heat flows?

10. What are some means of producing heat?

11. What kinds of processes can be reversed? Which ones cannot?

Figure 4.12:  Process diagram of 
an electrically driven pump (left) 
and its reverse, a system of tur-
bine and generator. Both systems 
produce heat. The production of 
heat cannot be reversed—this is 
what we mean by irreversibility.
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4.1.2 Hotness and Temperature

In this and the following subsections I am going to summarize the experience from the
word models of thermal phenomena presented above and provide some additional
background on the choice of primitive quantities—heat, hotness, and the power of
thermal processes—to build the dynamical theory of heat for this book.

One of our most direct experiences with thermal phenomena is the observation that
objects feel hot, warm, or cold. We have a sensation which allows us to place objects
in a sequence which we label cold, cool, warm, hot, or very hot. From the sensation of
hotness we abstract a primitive quantity which we call hotness. A primitive quantity
is one which we do not derive in terms of other more fundamental quantities. 

The concept of hotness goes back to E. Mach.2 He considered it to be natural and fun-
damental, like so many other concepts upon which we build the foundations of sci-
ence. Imagine it to be something like a line on which we organize bodies according to
how hot they are, just like beads on a string. Mach wrote:3

Among the sensations by which, through the conditions that excite them, we perceive
the bodies around us, the sensations of hotness form a special sequence (cold, cool,
tepid, warm, hot) or a special class of mutually related elements … . The essence of
this physical behavior connected with the characteristic of sensations of hotness (the
totality of these reactions) we call its hotness … . The sensations of hotness, like ther-
moscopic volumes, form a simple series, a simple continuous manifold … .

The sensation of hotness might serve as a first measure of the physical quantity, albeit
not a very reliable one. Naturally, we would like to learn how to determine hotnesses
reliably. There are measures of hotness which are more useful than our senses, such
as the volumes of bodies which change with the hotness. We can build simple devices
to tell how hot an object is. These devices are thermometers, with which we measure
temperatures. Now, what does temperature have to do with the concept of hotness?
There is a simple image which explains the relationship. Temperature is like a coordi-
nate on the hotness manifold; it is a numerical indicator of hotness. This, by the way,
lets us expect that there may be many possible temperature scales, just as there are
many possible ways of introducing coordinates along a line. According to Mach:4 

The temperature is … nothing else than the characterization, the mark of the hotness
by a number. This temperature number has simply the property of an inventory entry,
through which this same hotness can be recognized again and if necessary sought out
and reproduced … . This temperature number makes it possible to recognize at the
same time the order in which the indicated hotnesses follow one another and to rec-
ognize between which other hotnesses a given hotness lies.

2. E. Mach (1923) analyzed the development and the logical foundations of thermal physics.
An interesting passage in his book compares the potentials associated with different phe-
nomena (velocity for translational motion, electric and gravitational potentials, and tem-
perature).

3. E. Mach (1923), p. 43. With the exception of the choice of a term the translation is from C.
Truesdell (1979).

4. E. Mach (1923), p. 44. In recent years, efforts have been made to base the foundations of
thermodynamics upon the hotness as a primitive concept (Truesdell, 1979, 1984; Pitteri,
1982).
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There is an interesting and important feature of hotness: it has a lower limit. Experi-
ence tells us that this should be the case. Bodies cannot get colder than “really cold.”
We have never found bodies with a hotness below a certain level, which we call the
absolute zero of hotness. Put differently, we can say that hotnesses are strictly positive.
In fact, the point of absolute zero cannot be reached; it only can be approached. This
has been done in experiments to an ever increasing degree. Nowadays, temperatures
within a small fraction of one unit (1 Kelvin) from absolute zero can be reproduced.

4.1.3 Heat and Hotness

So far we have heat and hotness as the two primitive concepts for building a theory of
thermodynamics. Still, many people do not consciously distinguish between the sen-
sation of hotness, and amounts of heat. The term heat is often used in the sense of
something being hot. Therefore it is important to stress again the difference between
these concepts, and then say positively what we believe the properties of heat to be.

Heat and Hotness. Simple observations tell us that the two quantities cannot be the
same. Take an amount of water. We assume that it contains a certain amount of heat.
Divide the water into two equal volumes. What can you say about the heat contained
in each part, and the sensation of hotness of the parts? Experience tells us that their
hotnesses are equal and the same as that of the original body of water. However, the
heat content has been divided equally among the parts. Therefore the sensation of hot-
ness and amount of heat are clearly two different things. Hotness is called the intensive
thermal quantity while heat is the extensive one.

Two phenomena demonstrate beyond any doubt that heating is not just another word
for change of hotness (in which case there would not be any need for a new quantity!).
The first is the melting of ice. When ice is heated, it melts, but its hotness does not
change as long as there is a mixture of ice and water. The second one is the fast com-
pression of air without heating or cooling (without adding or withdrawing any heat).
The temperature of the air rises greatly whereas the heat of the gas is not changed.

Temperature differences as the thermal driving force. Consider the following ex-
ample that serves to illuminate the role of hotness even further. Place two bodies at
different temperatures in thermal contact and monitor their temperatures. We know
what will happen. In the course of time the hotter body will cool down while the cooler
one must heat up. Experience tells us that this continues as long as the temperatures
are different. Finally, after some time, the hotnesses have become equal and the pro-
cess stops (Fig. 4.1). Another interpretation of this phenomenon is to say that heat
flows by itself from the hotter to the cooler body as long as there is a difference of tem-
peratures. 

We have seen analogous processes in other fields of physics (Table 4.1). Two contain-
ers filled with water and connected by a hose, or two charged bodies connected by a
wire, behave similarly. In those cases we speak of the flow of a certain physical quan-
tity as a consequence of a driving force. We have defined driving forces as the differ-
ence of potentials between the physical systems. If we take these phenomena as a
guide, we can interpret a difference of temperatures as the thermal driving force and
hotness as the thermal potential. In graphic language, hotness takes the role of the
thermal level.

The driving force determines the type of process taking place. In this sense we say that
a thermal process is one in which heat flows due to a difference of temperatures. Note
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that not every mode of heat flow is a thermal phenomenon according to this definition.
Witness the following example: you can carry around a bucket of hot water, which
means that heat is being transported. But certainly this is not a thermal process. Hot-
ness plays a central role in what we call a thermal phenomenon, and we may not forget
the qualifier given in the definition above.

4.1.4 The Properties of Heat

There are two important points to consider at the beginning of any discussion concern-
ing the nature of heat. First, we would like to know what is responsible for making a
stone warm or for melting a block of ice. Second, we have to recognize the difference
between a moving body, a charged sphere, and a hot stone, as well as how this differ-
ence can be expressed in a theory of physics.

It is quite clear that heat makes a stone warm and melts an ice cube. We put more heat
into a body such as a stone to make it warmer; taking heat out of the stone will make
it cool down. If we put ice in a warm place, heat will enter the body and make it melt.
Heat is the perfect quantity for describing what is happening in these situations.

What heat is not. The second question goes to the core of what heat is not. First try
and answer this question: What do the moving, charged, and hot body have in com-
mon? Again the answer is quite clear this time for those who have studied physics. In
all three situations the body has received energy (Fig. 4.13). In each case, the system
contains more energy than if the body were not moving, if it were not charged, or if it
were not hot. Seen from the viewpoint of energy, the situations are all the same, and
we should rather ask about how a stone which is moving differs from a stone which is
hot. We might learn more about how nature works from the answer to this question.

We could say that the difference lies simply in the fact that the moving body has re-
ceived an amount of motion while in the case of the hot body we have added some heat
(Fig. 4.13). We have learned that amounts of motion are measured in terms of momen-
tum. Changing the motion of a body requires that we change its momentum. True, we
also change the energy of the body at the same time, but knowing that the energy of a
system can be different for many different reasons, we take momentum as the quantity
which tells us why the body is moving rather than becoming hot.

Applying this argument to the hot body, we have to conclude that the stone is hot not
because it contains energy but because it has more heat than if it were colder. A stone
gets hot and an ice cube melts because of heat. Even though energy accompanies all
processes, heating included, it cannot distinguish between them. The point is this: heat
is not energy.

Table 4.1: Comparison of some processes

Quantity Potential

Water containers joined 
by a hose

Water Water level

Charged spheres in 
contact

Electric charge Electric potential

Bodies at different 
temperatures

Heat Hotness

Heating

Heat

Accelerating

Momentum

Energy

Energy

Figure 4.13:  Two processes 
compared. In the first we acceler-
ate a stone. In terms of physics, 
we say that momentum is added 
to the body, which makes it move 
faster. We know that energy is 
added to the stone at the same 
time. In the second case, the 
stone is heated rather than accel-
erated. The difference between 
the situations is that now we add 
heat rather than momentum. Heat 
is responsible for making the 
stone warmer.
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The laws of physics help us to assure ourselves of this point. You know that energy is
a different measure of gravity or inertia (Chapter 3). Increasing the energy of a system
means increasing its mass. It does not mean that the body has necessarily become fast-
er, hotter, or both; it might just as well have become electrically charged. Energy, i.e.,
mass, cannot be used to distinguish between different processes. We absolutely need
other quantities such as momentum or charge, if we wish to state what has happened
to a body. Applied to thermal processes this means that if heat is the quantity respon-
sible for warming a stone or melting ice, rather than making the bodies heavier, then
heat cannot be energy.5

Heating and cooling: Transport of heat. Clearly, the hotness of objects can change.
The sand at the beach is hot at noon, and cool at night. We can get hot water for coffee
by heating it. Ice is produced by cooling water.

Therefore, there is more to thermal phenomena than just the hotness. We definitely
need a means for changing this quantity. Again, on the basis of every-day experience,
we can introduce the notion of heating (or cooling). We can heat bodies slowly or
quickly; hence we often speak of the rate of heating. However, we have used the word
heating already in the sense of a rate, namely the rate of transfer of heat to a body.
Cooling stands for the rate of transfer of heat out of a body (Fig. 4.14). We clearly
have to distinguish between heating and cooling on the one hand, and getting warmer
or getting colder on the other.

Obviously, heat can be transported. Heat from the sun arrives at the Earth, where it is
distributed in the atmosphere before it is radiated back into space. Heat flows out of
the depths of the Earth to the surface. A metal bar which is heated at one end also gets
hotter at the other end, which demonstrates that heat becomes distributed throughout
the body. Large amounts of heat are transported from the Gulf of Mexico to Europe
with the help of the Gulf Stream. Central heating systems transport heat from the burn-
er to the radiators from where the heat flows into rooms. There are many aspects of
life which are influenced by the flow, transport, or distribution of heat. We will there-
fore study this aspect of thermal physics in detail. Here, we will briefly introduce the
three modes of heat transfer:

• Conduction. There is one class of phenomena in which heat flows through bod-
ies. The bodies do not have to move for heat to get from one place to another.
Experience tells us that heat flows only from places which are hotter to those
which are cooler. A difference of hotness is needed for maintaining such a flow.
Indeed, bodies in thermal contact stop exchanging heat when they are equally
hot. This type of transport is called conduction of heat. 

• Convection. Heat can be transported with bodies. There are many examples,
such as the Gulf Stream, heated water flowing from a burner to a radiator, or hot
air rising up in a chimney. In this case heat does not have to flow through the
bodies. Heat which resides in bodies flows because the bodies themselves are

5. Obviously, then, you will have to look elsewhere for the quantity called heat. This is pre-
cisely what we will do in this section. Please be patient if I use the term heat for the quan-
tity which makes your room warm, which is responsible for melting ice or metal, and
which drives so many of the other processes going on around us. For the impatient among
you, the property emerging from our knowledge of everyday phenomena is entropy. I hope
to motivate the properties of this fundamental thermal quantity by tying it to the concept
of heat before we start using the formal term entropy.

Heating

Cooling

Heat

Heat

Figure 4.14:  Heating and cool-
ing. By heating we mean the flow 
of heat into a body. In the case of 
cooling, heat flows out of the 
body. We assume that heat is a 
quantity which can flow. Also, 
we believe that heat can be stored 
in bodies.
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transported. The driving force of the process must be the one associated with the
flow of matter, for example a pressure difference. If heat is transported in this
manner we speak of convective transport of heat.

• Radiation. There must be a third type of transport which, for example, manages
to get heat all the way through empty space from the sun to the Earth. You can
feel this kind of heat flow when you sit near a fire, or behind a window with the
sun shining on you. There is no need for the air to transport heat to you. More-
over, air conducts heat much too little for this to be of any effect. Therefore, heat
must flow through another medium, namely a radiation field. This type of trans-
port is called radiation of heat.

Storage of heat. If heating is the rate of transfer of heat, then some quantity of heat
is transferred in a process. If we heat a body in a particular manner, we transfer more
heat the longer we allow the heating to occur. The amount of heat communicated to a
body can therefore be calculated simply from the heating. In this sense, heat is a quan-
tity which can be derived from heating; it is not new or independent of what we al-
ready have introduced.

Still, there is something new about the notion of heat, something which is not trivial
at all. Heating is taken as a term for describing a process or an action. The word heat,
on the other hand, suggests the image of something tangible, something we can mea-
sure as it flows past us when heating occurs. There is an amount of something, like an
amount of water, or more like an amount of electricity which can be stored in bodies.
Where else should the heat be after it has been transferred to an object in the process
of heating? Why would a little child ask whether a baked potato is heavier than a cold
one, if it were not for the additional heat it contains when it is hot? For this discussion
we shall accept the following: 

Heat is a quantity we can imagine as being stored in bodies, and as
being capable of flowing from body to body. 

Consequently, we can say that bodies contain a certain amount of heat, and this
amount can change as a consequence of heating or cooling, i.e., as a consequence of
the flow of heat. For a physicist, this suggests comparisons with other quantities which
have been introduced in other theories, notably those of electricity and motion (Pro-
logue). In this sense, heat is the extensive or fluidlike thermal quantity (Table 4.2).

Remember what I said in the first three chapters about fluidlike quantities such as elec-
trical charge or momentum. These quantities are abstract; they are not material in any
sense of the word. Still, we can profit tremendously from forming simple graphical

Table 4.2: Fluidlike quantities

Process Quantity

Electric Electric charge

Gravitational Gravitational mass

Translational motion Momentum

Rotational motion Angular momentum

Thermal Heat
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images such as the ones used in this section. If we think of heat as an abstract “fluid,”
we will be led easily and directly to the formal mathematical laws that govern it. We
just have to be careful not to take the naive picture too literally. Heat does not add
weight to a body, it cannot be seen, nor can it be touched and, most interesting of all,
heat can be produced. As we will find out shortly, this quantity is not conserved.6

The production of heat. We have not discussed an important question yet: Where
does heat come from? Nature tells us that there must be sources of heat. In some cases
heat simply flows out of bodies in the process of cooling. However, there are examples
which are more interesting. Heat can come from the Sun, or out of the Earth. Heat is
produced in a fire, by rubbing our hands, or by letting electricity flow through wires. 

There appears to be a distinct difference between the first process, and the other ones
listed above. In cooling, an object loses the heat it received in a process of heating. The
body simply undergoes the reverse of the previous process. In the other cases, the body
emitting the heat does not have to change its hotness. As far as we know, the degree
of heat of the interior of the sun does not change much as it pours out vast amounts of
heat (in fact, it gets even hotter). An electrical heater does not get cold as it heats water.
And the heat produced by rubbing your hands has not been put into them previously.
So, where does the heat come from in these cases?

We might believe that the amount of heat contained in bodies is always so large that
the emission of some of it will not change their hotness. However, this is rather un-
likely. Clearly there must be sources of heat in the true sense of the word. Heat which
was not there before is pouring out of the body. Why does the electrical heater cool
very noticeably when the electricity is turned off? Certainly, after switching off, it
emits only a small amount of heat compared to what it emits while working. Why does
the hotness change in the former case and not in the latter?

About two hundred years ago two sets of experiments were performed which were be-
lieved to demonstrate beyond any doubt that heat cannot be a conserved quantity. The
first, the cannon-boring experiments of Count Rumford, have much in common with
the electrical heating described above. Heat is produced by friction as long as the bor-
ing process is going on; so where does all this heat come from? The second experi-
ment, by H. Davy, was thought to be even more important.7 We can melt two blocks
of ice by rubbing them against each other. Water which results from rubbing the ice
certainly contains more heat than the ice it came from, because we need heat to melt
ice. If we perform the experiment in an environment whose temperature is lower than

6. We are in good company with these assumptions about heat. The Greeks used a similar pic-
ture, and in early modern times up to 1850, physicists used pretty much the same ideas.
Back then, heat often was called caloric (remember Carnot’s description of the operation
of heat engines; Section I.3). There are several other terms which aptly describe what we
mean by heat: thermal element (because of the similarity to Greek thinking), or thermal
charge (in analogy to electricity; see McGraw-Hill Encyclopedia of Science and Technol-
ogy). Heat, caloric, thermal element, and thermal charge, refer to the same thing, namely,
the fluidlike thermal quantity which flows into bodies and is stored there if the bodies are
heated, and which flows out of the bodies if they are cooled.

7. A critical reappraisal of the experiments shows that a proof of Davy’s claim (Davy, 1839)
was almost impossible (D. Roller, 1950). The question of where the heat comes from for
melting the ice is less than trivial. However, if we could take care of all possible interfer-
ences, we would have no doubt as to whether or not we can melt ice by friction; it is cer-
tainly possible.
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that of the melting ice, the heat added to the water cannot have come from outside. We
have to conclude that after the process there is more heat in the world than before: the
surroundings of the ice and water have not lost any heat, while the system contains
more heat than before. Even though Rumford’s reasoning is not tight, and Davy’s ex-
periment is difficult to perform in any quantitative manner,8 we shall accept the evi-
dence offered by nature: heat can be created. 

Irreversibility. Heat can be created. Does this mean it can be destroyed as well? Since
we have had to conclude that it is not a conserved quantity, the question is realistic. If
we consider the evidence offered by nature, we come to the conclusion that heat can-
not be destroyed; it can only be distributed to colder places. Heat which leaves a body
goes into the surroundings to heat them. The reason why we often do not notice this
effect on the surrounding bodies is simple: they usually are very much larger than the
body which is losing heat. 

Again, you can use your general knowledge of natural or man-made processes to come
to far-reaching conclusions. You know that certain processes run one way but not nec-
essarily in the reverse. Or if you make them run in the reverse, something else will
change because of it. Real processes are said to be irreversible. If heat did not exist
already, you would have to invent a physical quantity with its properties to account for
irreversibility.

A simple example explains the meaning of irreversibility. A moving wooden block
comes to rest on a horizontal surface. The reason is clear: friction hinders the motion
and finally lets it “die.” Friction also creates heat, so the production of heat is coupled
to the block coming to rest. 

What is irreversible out this? At first sight, irreversible should mean cannot be re-
versed. But the motion of the block can be reversed! We simply have to push the body
across the surface, thereby accelerating it. Something, however, cannot be changed
here: heat will also be created during the reversed motion; friction makes sure heat will
be generated. You have never seen a block absorbing heat from the surroundings and
destroying it, thereby starting to move by itself. This is what we mean when we say
that a process is irreversible.

Another good example of irreversibility is the case discussed in Fig. 4.12. The opera-
tion of an electric water pump can be effectively reversed except for one crucial fea-
ture: the production of heat. The system that results from reversing the pump gets
warm as well. Engines have to be cooled, not heated, pointing to the equivalence of
irreversibility and the production of heat. Again, we can understand the behavior of
some aspect of nature on the basis of the properties of heat. We now make the follow-
ing definition:

An irreversible process is one during which heat has been created. A
process without the creation of heat is called reversible.

The term irreversible is somewhat unfortunate in the light of the examples given, con-
sidering that processes can be reversed with the exception of the production of heat.
Another descriptive term has been coined for processes which produce heat: they are
called dissipative.

8. D. Roller (1950).
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The balance of heat. All in all, we form a mental picture of heat as something like a
“substance” or a “stuff.” We picture bodies as reservoirs for heat, we may speak of
the heat content of an object, which will be described by a function of the independent
variables of the body. Also, this “substance” flows into and out of bodies. The process
of the flow of heat into a body is called heating. (The opposite is called cooling, or neg-
ative heating.) By stating such ideas we add heat to the list made up of electric charge,
gravitational mass (gravitational charge), momentum, and angular momentum (see
Table 4.2). Heat is another fluidlike quantity which simply means that heat can be pic-
tured to be contained in bodies and to flow from one body to another. No further as-
sumptions are made. Specifically, heat is not conserved! 

All of this tells us that we should deal with heat as we do with other fluidlike quantities
and formulate a law of balance to deal with its dynamics. We know how to do this
from fluids, electricity, and motion (Chapters 1-3), and this will be the first step in cre-
ating a formal theory in this chapter. In contrast to the laws of balance of charge or
momentum, this law will include a production term. What this means, and how this is
done, will become clear in Section 4.3 and beyond.

Quantifying heat, heating, and producing heat. It is instructive to list amounts of
heat to get better acquainted with this quantity (Table 4.3). As always, a physical quan-
tity has a unit. Since heat is a new and fundamental quantity which is not associated
with anything else we know so far, it should have its own unit. Let us therefore intro-
duce the unit of heat called the Carnot (Ct) which we are going to use for now.9

4.1.5 The Power of Heat

“Every one knows that heat can produce motion. That it possesses vast motive-power
no one can doubt, in these days when the steam-engine is everywhere so well known.

9. For historical reasons, the unit of heat is normally given in terms of other units. In Section
4.4 we will find that it should be expressed as 1 Ct = 1 Joule/Kelvin, where Joule and
Kelvin are the SI units of energy and temperature, respectively.

Table 4.3: Amounts of heat (rough values in Ct)

Process or state S / Ct

Heat necessary to melt 1 cm3 of ice 1

Heat added when heating 1 cm3 of water from room temperature to boiling 1

Heat needed to vaporize one cm3 of water 6

Heat content of 1 liter of gas at normal pressure and temperature 10

Heat content of 1 mole of argon gas at room temperature 102

Heat produced by a water heater in one minute 102

Heat generated when a fast travelling car brakes 103

Heat content of 1 liter of liquid or solid at room temperature 104

Heat generated in burning 1 kg of coal at room temperature 105

Heat escaping a standard home in one our in winter 105

Heat produced by 1 m2 of a solar water heater on a sunny day 105
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To heat also are due the vast movements which take place on the earth. It causes the
agitations of the atmosphere, the ascension of clouds, the fall of rain….”10

We have seen for ourselves that heat can produce or drive other phenomena. As be-
fore, we take this as an indication of the need for a new concept, namely energy, that
stands in a particular relationship with the quantities we use to understand a phenom-
enon. It is fitting that we finally deal with the field where the form of the relationship
stems from: Sadi Carnot’s thermodynamics. His image of the fall of water as an anal-
ogy to the operation of heat in a heat engine (Section I.3) has served us well so far in
fluids, electricity, gravity, and motion. Why shouldn’t it serve us even better in its field
of origin?

The process diagrams that accompany the interpretations of phenomena discussed in
Section 4.1.1 (Fig. 4.8 through Fig. 4.11) tell the story. There is not much to be add-
ed.11 When heat flows from a point of high to a point of low temperature, energy is
released at a rate we assume to depend upon the flow of heat and the temperature dif-
ference (Fig. 4.15, top).12 We shall call this rate thermal power; it is Sadi Carnot’s
Puissance du Feu, the Power of Heat. If heat is to be pumped from a lower to a higher
temperature, we need energy at a rate that depends upon the rate at which heat is
pumped and the temperature difference through which it is pumped (Fig. 4.15, bot-
tom). See Section 4.4 for a quantitative discussion.

4.1.6 Heat, Thermal Processes, and the Properties of Bodies

So far, we have talked only about the generic properties of heat: it can be stored, it can
flow, and it may be produced. These are the things that happen in thermal processes
as far as heat is concerned. However, the interesting details of processes depend not
upon heat so much as upon material bodies or systems being heated or cooled. There-
fore, we will have to study in detail the special behavior of different types of physical
bodies.

Different bodies contain different amounts of heat under given conditions, and differ-
ent substances require different amounts of heat for melting. The form of heat flow
and heat production, even the question of whether heat is produced in a particular pro-
cess, will be found to depend upon the properties of the bodies suffering change. If
you prefer, the answer to such questions depends upon the models we construct of the
bodies undergoing processes.

4.1.7 Heat, Caloric, Entropy

The quantity I have been calling heat in the interpretations of thermal processes was
called caloric by Sadi Carnot and his contemporaries. This easily visualized and intu-
itively understood quantity best fits what after 1850 was called entropy in physics,
chemistry, and engineering. Therefore, the concept of entropy which, in standard pre-
sentations of thermodynamics is considered to be formal, derived, and non-intuitive,

10. S. Carnot (1824), p. 3. 

11. Actually, there is one thing that will be new to us, namely how to deal with the production
of heat: How do we relate energy to the process of producing heat? See Section 4.4.

12. Read Carnot’s words in the Introduction (Fig. I.3).

Heat

T2
T1

System

System

Heat

T2T1

Pth

Pth

Figure 4.15:  Process diagrams 
that explain the basic relationship 
of heat and energy. Top: Energy 
is released when heat “falls” 
from high to low temperature. 
Bottom: Energy is used when 
heat is pumped. The rate at which 
energy is released or used is 
called thermal power, Pth .
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has simple and intuitive roots. It is analogous to volume and to charge in fluids and
electricity, respectively.

What I have constructed is a generalized version of the fundamental quantity called
entropy. In fact, the concept of heat used here is general enough for us to build modern
continuum thermodynamics upon. The procedure is very simple. Let us accept that
heat (entropy) has the properties of a non-conserved fluidlike (i.e., extensive) quantity.
This will lead immediately to a law of balance of heat (entropy) as the most important
expression of our assumptions about thermal processes. 

From now on, the formal term entropy will be used for the quantity of heat. However,
when speaking colloquially, I will always mean a quantity of entropy when referring
to heat. In expressions such as “the body has been heated” or “in this process heat has
been produced,” heat will continue to stand for its formal equivalent, namely for en-
tropy. Otherwise I will drop the word heat, i.e., I will not use it for the only acceptable
meaning in traditional thermodynamics, namely amounts of energy exchanged in
heating.

If you still believe that using the concept of entropy from the start is too difficult, con-
sider what J. W. Gibbs once wrote:13 

One of the principal objects of practical research … is to find the point of view from
which the subject appears in its greatest simplicity. … a method involving the notion
of entropy … will doubtless seem to many far-fetched, and may repel beginners as
obscure and difficult of comprehension. This inconvenience is perhaps more than
counter-balanced by the advantages of a method which makes the second law of ther-
modynamics so prominent, and gives it so clear and elementary an expression … . If,
then, it is more important for purposes of instruction and the like to familiarize the
learner with the second law, than to defer its statement as long as possible, the use of
the entropy-temperature diagram may serve a useful purpose in the popularizing of
this science.

12. When air is compressed quickly, its temperature rises. Why shouldn’t we say that the air
has been heated? What could we say has happened to the air instead?

13. If a body receives 10 Ct entropy and does not lose any, does it mean that its entropy content
changed by 10 Ct?

14. What is the meaning of the thermal power of a heat pump?

15. For a certain temperature difference and current of entropy, a thermoelectric device has an
electric power of 1.0 W. A different thermoelectric device has an electric power of 1.2 W
for the same thermal conditions. Is the thermal power different or the same in these cases?

16. A battery with an open circuit voltage of 4.5 V pumps an electric current of 1.0 A. The in-
ternal resistance of the battery is 1.0 Ω. What is the thermal power of the device? Where
is the energy released/used that corresponds to this quantity?

17. When entropy flows through a copper bar, is there a measure we can call thermal power?

18. How much coal has to be burned to keep the home mentioned in Table 4.3 warm during a
winter day?

13. J. W. Gibbs (1873).

QUESTIONS
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4.2 A DYNAMICAL MODEL OF COOLING

Before we delve into a quantitative and more formal discussion of thermal processes,
a dynamical model will be created for a concrete case—the cooling of hot water in a
thin-walled aluminum can (Fig. 4.4, left). This should give us a better feeling for some
of the questions we have to deal with in this chapter.

Hot water is poured into an aluminum can (a typical 0.5 L soda or beer can which was
stripped of all its paint to reveal a polished aluminum surface). The can is placed on
top of a magnetic mixer and a bar magnet is used to stir the water continuously to en-
sure uniform conditions. The idea is to have a single temperature of the body of water
for us to deal with. The temperature is recorded as a function of time. Since the exper-
imental result looks suspiciously like that of discharging a container or a capacitor, a
model similar to those for an RC system (Section 1.5) might be what we need to un-
derstand the thermal phenomenon.

As before, we start constructing the dynamical model by considering appropriate laws
of balance (Fig. 4.16, center). It appears that a single such expression will suffice. All
we need to know is what happens to the entropy of the water. A reservoir (S_water)
symbolizes the entropy of the water, and inflows and outflows represent thermal pro-
cesses. 

There are two processes to consider: The flow of entropy out of the system (I_S_loss)
which is a consequence of the difference of temperatures between water (T_water) and
environment (T_amb), and the rate of production of entropy as a result of mechanical
stirring (Pi_S_mixer). The former leads to the (almost perfect) exponential decay of
the temperature, the latter ensures that there is a constant final temperature above that
of the environment (entropy produced must leave the system). Note that we can deal
with the production rate of entropy as we do with an inflow; as far as the water is con-
cerned, produced entropy is as good as entropy transported in from outside. All in all,
this looks very much like a system composed of a water tank losing water through a
pipe at the bottom and receiving water through a (fixed) inflow at the top (Fig. 4.15,
left). This completes the expression of the law of balance of entropy for the system of
hot water:

(4.1)

S is the standard symbol for entropy. This makes IS an entropy current analogous to
currents of other fluidlike quantities such as charge or momentum, and ΠS is an entro-
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Figure 4.16:  Diagram of a sys-
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data and simulation result (right) 
for the cooling of hot water in an 
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py production rate that measures how many units of entropy are produced every sec-
ond (Π is the symbol used for production and destruction rates in this book). 

At this point we need to construct ideas for the processes identified in the first step of
systems analysis. From what we know of the behavior of hydraulic or electric systems,
the simplest model for the loss of entropy is to make it proportional to the difference
of temperatures between water and environment:

(4.2)

with a flow factor GS (which, for obvious reasons, can be called an entropy conduc-
tance) as the factor of proportionality. This is the basic form of a model of a resistive
transport (Section 1.4.1). 

We do not yet have any experience with entropy production, so let our experience with
hydraulic models be our guide to how we might get the appropriate behavior of the
temperature of the system for large times (see the graph in Fig. 4.15 on the right). If
we have a constant inflow that is smaller than the outflow at t = 0, we should expect
an exponentially decreasing curve that settles above the level of the environmental
temperature. So let ΠS be some constant to be determined by simulation.

This leaves the problem of how to determine the temperature of the water. We know
from experience that the more entropy that is stored in the water, the higher its tem-
perature must be. Clearly, we shall have to study this point in more detail and derive
temperature–entropy relations for the materials that are of interest to us. Part of this
chapter will deal with this question. The simplest possible relation is linear, meaning

(4.3)

Again for obvious reasons, we should call the factor of proportionality Κ entropy ca-
pacitance. Remember the description of pressure–volume and voltage–charge rela-
tions for containers and capacitors, respectively (Section 1.4.2).

There are three parameters in this model which have to be determined if we want to
compare simulations to experimental data. When we attempt simulations, a problem
turns up: there is not enough information to find all three parameters independently.
Say we fix the entropy production rate, we can then find the entropy conductance in
this model in terms of ΠS. All we have to do is consider the steady-state toward the
end of the period of the experiment when the water temperature has become virtually
constant. In the steady-state, the rate of change of entropy must be zero which makes
IS the negative of ΠS. Since we know the final temperature difference Tamb – Twater,
we can determine GS. Once we have this, simulation of the dynamical model lets us
set an appropriate value of the entropy capacitance. The results of this procedure are
very encouraging (see the graph in Fig. 4.15 on the right). We get a very close agree-
ment between data and simulations. Even though we do not have actual values of the
physical parameters of the system, the ideas implemented in the constitutive laws are
at least a good start.

Apparently, everything depends upon knowing how to calculate an entropy produc-
tion rate which means knowing how to quantify amounts of produced entropy. Natu-
rally, we could have started at a different point, say, by fixing the capacitance and then
determine the other parameters. Either way, we need to have a clearer understanding
of how bodies respond to heat. We should learn how to quantify amounts of entropy,

I G T TS S amb water= −( )

S T= Κ
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how to determine temperature–entropy relations for simple materials, and how to find
conductances for simple conductors. This is what we are going to do in more detail in
the subsequent sections of this chapter.

4.3 ENTROPY AND TEMPERATURE

Hotness, or its quantitative measure called temperature, and entropy are the basic con-
cepts we use to build thermal models. In this section, some of their formal aspects will
be described, and examples of processes that can be visualized in temperature–entropy
diagrams will be discussed. The examples are designed to give us an initial under-
standing of the use of the fundamental thermal concepts.

4.3.1 Temperature and Thermometry

Temperatures can be measured quite easily. Still, the concept of temperature is any-
thing but trivial. In particular, we will not be able to find the temperature scale, i.e.,
the one and only scale which reads the “true” temperature. If there is anything like an
absolute temperature independent of materials we cannot say yet. For now, we have
to be satisfied with a couple of empirical scales. Some values of temperature can give
us a feeling for the range of values (Table 4.4).

The Celsius temperature scale. We are quite accustomed to measuring temperatures
in everyday situations. For example, if you take your temperature you might use a
thermometer based on the expansion of mercury in a thin capillary. Mercury expands
when it is heated, and the expansion is measured and used to fix the temperature.
When bodies are heated, the rise in temperature is accompanied by changes in one or
more properties. Change in volume is just one of those possible changes. Others in-
clude changes in length, electrical resistance, color, and pressure of gases.

The change of volume of a liquid can be observed using a simple device (Fig. 4.17).
Fill a small bottle with the liquid and close it with a cork through which a long and
thin capillary has been fitted. Allow the liquid to fill the bottom of the capillary. If you
hold the bottle in your hands for a while, the liquid in the capillary will climb (in most
cases). How does this work? Heat flows from your warm hands to the colder liquid,

Table 4.4: Some temperatures (in °C)

Boiling point of helium – 269

Boiling point of nitrogen – 196

Melting point of carbon dioxide – 79

Melting point of mercury – 39

Melting point of ice 0

Temperature of human body 37

Boiling point of water (1 bar) 100

Melting point of iron 1535

Surface temperature of sun 5800

Central temperature of sun 13 · 106

Liquid in
capillary

Figure 4.17:  Thermometer 
based on the expansion of a liq-
uid. The small changes of the 
volume of the liquid are made 
visible by the capillary.
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which expands. The change in volume is usually very slight, but it can be made visible
by the capillary: since the capillary is very thin, even small changes in volume trans-
late into large changes in the height of the column of liquid.

Historically, the first useful thermometers were based on this type of device. Today,
we use mercury as the liquid (which we call a thermometric substance). On the basis
of such thermometers, we may introduce a temperature scale, the Celsius scale. We
measure the length of the column for two different temperatures, e.g., those encoun-
tered when water freezes and boils. The first point is assigned the temperature 0°C (ze-
ro degrees Celsius); the second corresponds to 100°C. The interval in the length of the
column of mercury is divided into 100 equal parts, each part corresponding to a
change in temperature of 1°C. The Celsius scale is not the one and only absolute co-
ordinate system on the hotness manifold. Rather, we have arbitrarily set a certain
change of temperature to be proportional to the change of length of the mercury col-
umn in the capillary.

We cannot be sure that other thermometric substances will deliver scales proportional
to the one introduced on the basis of the expansion of mercury. We cannot even be
sure that volume or length will always increase when the hotness increases! Water is
a beautiful counterexample. Water exists in the range of temperatures spanning 0°C to
100°C. At low temperatures, near its freezing point, the volume of water first decreas-
es, reaching a minimum at 4°C before finally increasing (Fig. 4.18). At temperatures
above 4°C, water behaves as we might expect of a “normal” substance. The behavior
of water at low temperatures is called an anomaly. This anomalous behavior prevents
lakes from freezing totally, which saves the fish in them in winter.

Water, therefore, could not be used as a thermometric substance. While we would get
meaningful results out of a water thermometer in the range of temperatures from 4°C
up to 100°C, the same would not be true if we included the density extremum. (The
question of why we should not use water as a thermometer in the range between 0°C
and 4°C is more subtle.)

Thermal expansion. Bodies expand or shrink when their temperature is increased.
Fig. 4.18 shows the result of measurements of the thermal expansion (or shrinking) of
water. In Fig. 4.19 the change of the length of a bar is indicated. To describe the
change mathematically, it is customary to introduce a temperature coefficient of (lin-
ear) expansion αl. This coefficient is defined as the relative rate of change of length l
of a body with (Celsius) temperature θ. This means that the relative change of length
is obtained if we integrate the coefficient over temperature:

(4.4)

We can approximate the length of such a bar over a small range of temperatures by a
linear relation. In other words, we may choose the constant value αl0 at θ0 for αl. In
this special case, the relative change of length of a body is given by

(4.5)

Here, l0 is the length of the body at a reference temperature θ0 (which might be 0°C).
Values of the coefficient of expansion for some materials are listed in Table 4.5. Note
that αl has the unit 1/K (which is introduced below).

Figure 4.18:  Variation with tem-
perature of the density of water. 
The variation around 4°C is 
shown in some detail. The pres-
sure is constant and equal to at-
mospheric pressure.
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In analogy to the formula for the change of length, the change of volume with temper-
ature is often approximated by a linear expression:

(4.6)

Here, αV is the temperature coefficient of volume expansion; values for some materials
are listed in Table 4.5. This coefficient has the unit 1/K.

Electric resistance. Another property which in many cases changes with the hotness
is the electric resistivity of a material. Thus it can be used for thermometry as well. A
widely used thermometer is based upon the electrical properties of platinum. This
thermometer is applied for accurate measurements in the range from 253°C below
freezing to roughly 1200°C. Very often, the empirical relationship between tempera-
ture and resistance is represented by a quadratic equation of the form

(4.7)

αR and βR are the linear and quadratic temperature coefficients of resistivity, respec-
tively. There is nothing deep or fundamental about the form of this relationship; it is
a representation of empirical data just like Equations (4.5) or (4.6). The example of
tungsten is given in Fig. 4.20. However, these equations are important in a different
sense: they are examples of constitutive relations. See Table 4.6 for some data.

The ideal gas temperature. The Celsius scale of temperature is only one of many we
could construct. We will now introduce another scale that will be of great use in ther-
modynamics, namely the Kelvin scale, which is based on the ideal gas temperature
and which is independent of the particular thermometric fluid. However, we will be
able to demonstrate this feature only after we have discussed thermodynamics of gases
in Chapters 5 and 10.

It is a common experience that the pressure of gases increases if they are heated while
the volume is kept constant. For example, consider the build-up of steam pressure in

Table 4.5: Linear coefficient of expansion

Substance ααααl / 10–6 K–1 Substance ααααV / 10–6 K–1

Copper 16.8 Alcohol 1100

Glass (pyrex) 3.2 Gasoline 1060

Glass (quartz) 0.45 Glycerine 500

Granite 3…8 Mercury 181

Ice (0°C) 0.502 Sulfuric acid 570

Iron 12.1 Water 207

Lead 29

Sandstone 7…12

Sodium 71

Steel 10–16

Teflon 60–100

Titanium 9

V V Vθ α θ θ( ) = + −( )( )0 01

Figure 4.20:  Relative electric re-
sistivity of tungsten as a function 
of Celsius temperature. The ref-
erence point is 0°C.
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a pressure cooker: the volume does not change, and the pressure increases with in-
creasing temperature. Somehow, the pressure of a gas must be related to its tempera-
ture. A simple setup called an air thermometer (Fig. 4.21) can be used to measure the
temperature and pressure of a gas whose volume is kept constant. Fig. 4.22 shows the
nature of the results one commonly obtains from measurements made with this appa-
ratus (see also Fig. 4.2, right). If we draw the values of pressure as a function of (Cel-
sius) temperature, we will find that the actual data closely follows a straight line. This
behavior is interesting. (It is called the Law of Gay-Lussac.) Assume that air will be-
have in this manner at all temperatures. As a consequence, we can write the relation-
ship between pressure and (Celsius) temperature θ in the following form:

(4.8)

where P0 is the pressure of the gas at 0°C, and β is called the temperature coefficient
of pressure. If we know this relationship, we can use the pressure as a measure of tem-
perature in the interval covered by the experiment.

Now there must be a temperature for which the pressure of the gas becomes zero. We
find this point by extrapolating the straight line in Fig. 4.22 to lower temperatures. The
pressure of a gas cannot vanish, and certainly, it cannot take on negative values. We
have to conclude that this particular point must constitute a lower limit for the temper-
ature of air. 

This is quite surprising in itself. It is more interesting still when we observe that all
dilute gases show this behavior (in fact this even includes substances dissolved in oth-
ers, such as sugar in water), and moreover, all extrapolated curves intersect the line of
zero pressure at the same point. Measurements put the value of the temperature coef-
ficient of pressure at 1/273.15°C for all dilute substances. This means that for gases
showing this type of behavior irrespective of their chemical composition, there is a
hotness below which the ideal gas cannot exist and this temperature is the same for all
such substances! From the value of β we find that this value must be 273.15°C below
the freezing point of water.

Our experience with gases which behave in this simple manner (i.e., those whose P-θ
curve is a straight line) is a strong indication that the temperature found by extrapolat-

Table 4.6: Resistivity and temperature coefficients of resistivity (at 20°C)

Substances Resistivity
Temperature 

coefficient
Temperature 

coefficient

ρ / 10–8 Ω · m αR / 10–3 K–1 βR / 10–6 K–2

Aluminum 2.8 3.9 0.6

Carbon 3500 – 0.5

Copper 1.7 3.9 0.6

Iron 9.8 56 6.0

Platinum 10.5 3.0 0.6

Silver 1.6 3.8 0.7

Tungsten 5.6 4.1 0.96

Figure 4.21:  Glass bulb contain-
ing air serving as an air ther-
mometer. The bulb is in a glycol 
bath whose temperature can be 
adjusted. The pressure of the air 
is measured via the capillary 
tube visible in the top left corner.

P P( )θ βθ= +( )0 1

Figure 4.22:  For simple dilute 
gases, the pressure is a linear 
function of temperature at con-
stant volume. If we plot mea-
surements for two different 
dilute gases, we obtain two 
straight lines for which P = 0 at 
the same temperature. This type 
of behavior is found in all gases 
which are sufficiently dilute and 
hot. The straight lines interpolat-
ing and extrapolating actual 
measurements represent the 
model of the ideal gas.
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ing measurements constitutes a point of “absolute zero” for these kinds of fluids. This
does not mean, however, that this temperature has any special meaning for other ma-
terials. Only further evidence can show if there are bodies which are capable of attain-
ing hotnesses below the lowest one for dilute substances. Since we have never found
such a case we believe that the value of – 273.15°C constitutes the lowest possible val-
ue for hotnesses. 

Therefore, a natural scale of temperature would be one for which the temperature is
taken to be zero at this lowest point, i.e., at – 273.15°C, and which is measured by the
gas thermometer. This is done in the Kelvin scale which is defined on the following
basis: zero Kelvin (0 K) corresponds to the point of absolute zero, and the interval of
1 Kelvin (1 K) corresponds to a change in temperature of 1°C. Therefore, we can con-
vert Celsius temperatures θ into Kelvin temperatures T by:

(4.9)

If we use the Kelvin scale, the relationship between the pressure and temperature of
gases just demonstrated takes on a particularly simple form:

(4.10)

We call the temperature measured by the gas thermometer the ideal gas temperature
because it is based upon the ideal behavior of dilute gases (Chapter 5). The Law of
Gay-Lussac is one property of such gases. As we shall see in Chapter 5, the tempera-
ture introduced here has an important additional feature: it can be taken as the basis of
a scale which is independent of the thermometric substance. It is an absolute scale.

Thermal driving force. The last point takes us back to the fundamental property of
temperature. Temperature is the measure of hotness, i.e., it tells us how warm a body
is; it is the intensive thermal quantity. Temperature differences serve as the “driving
force” of the flow of entropy (by itself, entropy flows from hotter to colder places;
Fig. 4.23). Expressed still differently, temperature is the thermal potential, and the
measure of hotness introduced in the relations of ideal gases such as Equ.(4.10) serves
as the proper measure of this potential. The relation between entropy and energy will
be based upon it (Section 4.4).

4.3.2 Entropy

Entropy—what in lay terms would be called heat, or Carnot’s caloric—is the funda-
mental thermal property that is stored in bodies (to make them warm, melt them, ex-
pand them…), flows from system to system, and is produced in irreversible processes.
I am going to list some features of entropy and discuss the only relation that deals with
entropy proper and nothing else, i.e., the law of balance of this quantity. Applications
in the rest of this chapter and this book will show the power of this concept.

Some general properties. Thermal phenomena can be understood in terms of entro-
py and temperature. Entropy is the technical term for what we would call heat in ev-
eryday life. It is the fluidlike thermal quantity that obeys a law of balance. The most
important properties of entropy are:

R it can be stored in bodies, 

R it can flow into and out of bodies,

T = ° +θ K C K273 15.

P P T= 0β

Figure 4.23:  Symbolic repre-
sentation of a temperature differ-
ence as the thermal driving force 
(of a flow of entropy).
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R it can be produced in irreversible processes (friction, burning, electric conduc-
tion, heat flow, diffusion, absorption of light…),

R it makes bodies warm, or is responsible for melting and evaporation, or it lets
air expand…

R it can work (it can release energy and drive other processes),

R or it can be pumped if energy is available (heat pump).

The first three entries in this list will appear in the law of balance of entropy. All the
others relate entropy either to concrete materials and processes, or to energy.

Balance of entropy. If entropy could be stored in systems and be transported, there
would be a law of balance of the forms we have seen in Chapters 1–3: The rate of
change of the stored quantity is equal to the sum of all terms that quantify transfer pro-
cesses. In the case of entropy, this means

(4.11)

(Fig. 4.24). IS, net is the sum of all entropy currents with respect to a chosen system.
From our study of fluid, electric, and mechanical processes, we know the meaning of
dS/dt and of a current of S. If the rate of change of the entropy is known, the change
of entropy of the system is calculated by its integral:

(4.12)

As before, integrals of currents over time denote quantities transported or exchanged.
In this case, the entropy exchanged Se:

(4.13)

This definition holds separately for every current as well as for the net flux (the net
current yields the net amount of entropy transferred during a period of time). If we in-
troduce Equations (4.12) and (4.13) into the instantaneous (dynamical) form of the
law of balance, we obtain the expression of balance of entropy valid for a period of
time:

(4.14)

Naturally, in Equ.(4.11), we have to include all types of transfer processes having to
do with conduction, convection, and radiation. We will see later (Chapter 7) how to
distinguish between these different modes in the law of balance. For now, we simply
assume that expressing transports in terms of entropy currents IS is all we need.

Entropy production and the law of balance. Entropy can be produced, and this
must be apparent in the law of balance. Having a non-conserved quantity is new to
us— charge, momentum and angular momentum are conserved and we assumed the
same to be true for volume in the fluid processes we considered. In other words, there
are no production terms in the laws of balance of those fluidlike quantities. So we have
to learn how to handle production of a quantity such as entropy.
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Production adds to a system just as inflow does. From the viewpoint of the balance for
the system there is no difference, so a production rate is a process quantity just like a
current or flux, and it is added to a law of balance like a flux. There are two important
differences between production rates and currents, though. The first has to do with
where the quantity accumulating in the system is coming from. In the case of a current,
the quantity stems from a different system which means that it will be missing there
where it comes from. When a quantity is produced, though, it will not be missing any-
where else; it literally comes from nowhere and simply appears on the scene. The sec-
ond distinction between currents and production rates is mathematical. Production
happens inside a system, and it is distributed over the inside, normally over a volume.
A current, on the other hand, quantifies a transport across the systems’ surface (a 2D-
boundary). When we treat spatially non-uniform (continuous) systems in Parts III and
IV, this distinction will become crucial. It means that a production rate has a (volume)
density, whereas a surface density is associated with a current.

The process of entropy production can be quantified by a production rate ΠS and by
the entropy produced in a process during a specified period of time for which I use the
symbol Sprod. The two are related by

(4.15)

The law of balance of entropy can now be expressed in dynamical form (Fig. 4.24):

(4.16)

and in integrated form as it applies to a period of time:

(4.17)

These are general forms of the law of balance of entropy (for the moment we disregard
the question of how different transfer processes should be dealt with, Chapters 7-8).

Entropy producing processes. Where, when, and how is entropy produced? Every-
day experience is a relatively good guide when it comes to identifying entropy sourc-
es. The major culprits are clear: mechanical friction, letting electricity flow through
wires, and burning fuels. Several of the remaining important entropy producing phe-
nomena can be identified by analogy with the flow of electricity and with friction. We
know that heat is produced in resistive processes which we have been able to explain
in terms of conductive transports of momentum and electricity (Chapters 1 and 3). If
we take these processes as a guide, two more phenomena turn up as producing heat:
the conductive transports of heat and of substances, i.e., diffusion of heat and sub-
stances. The former will play an important role in this and some of the following chap-
ters in our treatment of heat transfer; the latter is central in physical and living systems
and will be dealt with in Chapter 6. This leaves one highly irreversible processes to be
listed: the absorption and emission of radiation which is fundamental to an under-
standing of the interaction of our planet with solar radiation (Chapters 7 and 15).

Since entropy production requires a driving process that makes energy available, the
relation between energy and entropy lets us be precise about how to identify and quan-
tify irreversibility. This issue will be taken up below in Section 4.4.

S t dtprod t t S
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Figure 4.24:  Balance of entropy. 
Top: Process diagram showing 
storage, flows, and production of 
entropy. Bottom: System dynam-
ics diagram of the corresponding 
law of balance.

S
IS 1

IS 2

Pi S

SYSTEM

S

Π S

IS1

IS2

dS

dt
IS net S net= +, ,Π

∆S S St t e net t t prod net t t1 2 1 2 1 2→( ) →( ) →( )= +, ,



4.3  ENTROPY AND TEMPERATURE

PART II 127

4.3.3 Thermal Processes and TS Diagrams

In this section I will describe a few simple thermal processes. By looking at some in-
teresting cases we will learn to better understand the nature of heat (entropy). As ex-
amples, I shall choose two classes of thermal processes that have played a major role
in the early development of thermodynamics. 

Our first example is heating or cooling of simple fluids, such as air, whose volume and
temperature can be changed. If we put air in a cylinder having a piston we have a de-
vice which lets us compress or expand the gas. At the same time, the air might be heat-
ed or cooled. (See Fig. 4.25.) We are interested in the exchange of entropy, and the
change of the entropy content; i.e., we will try to account for amounts of entropy. Nat-
urally we also want to know what happens to the hotness of the fluid. To make things
as simple as possible, we shall conceive of reversible operations, i.e., processes which
conserve entropy. 

The second example is the melting or vaporization of single substances. Again we
want to understand what happens to the entropy and temperature of the materials.

Adiabatic compression and expansion. Let me begin with a phenomenon which
might appear rather surprising at first. Consider the special case of air in a cylinder
having a piston. The setup is assumed to be perfectly insulated which makes the ex-
change of entropy impossible. We are allowed only to compress or expand the air. If
this condition is satisfied, we say that the fluid may undergo only adiabatic processes.
We know from experience with bicycle pumps that upon sudden compression, the
temperature of the air rises abruptly (Section 4.1.1, Fig. 4.3). On the other hand, if the
gas is allowed to expand under such circumstances it is found that the temperature
drops steeply. In other words, in adiabatic compression or expansion of a fluid such as
air, its hotness changes without heating or cooling.

To many observers this is surprising indeed. Would we not automatically believe that
some heating must have occurred for the temperature of a body to increase? Heat has
not been exchanged because of the perfect insulation, which in the case of a bicycle
pump, may be simulated by performing the compression so suddenly that heat does
not have any time to flow. We also assume that there are no sources of entropy as a
result of friction. The theory of adiabatic reversible processes presented in Chapter 5
shows that the changes of hotness are a natural result of the change of volume of a flu-
id. Experiments beautifully verify this point.

In summary, the temperature of air changes upon compression or expansion without
any heating having taken place and without any internal sources having supplied en-
tropy. In other words, the entropy content of the gas must remain constant during adi-
abatic reversible changes. This is a simple case of accounting for amounts of entropy:
nothing has gone in, nothing has come out, and nothing has been produced inside.
There is a simple and useful tool which allows us to describe this phenomenon graph-
ically, namely the temperature-entropy diagram (or TS diagram) of the process
(Fig. 4.26). Since the entropy content of the body remains the same, the curve repre-
senting the process must be a vertical line in the diagram. The temperature rises upon
compression, and it decreases as a result of expansion of air.

If for any reason the process considered is not reversible, i.e., if heat is generated in
the fluid, the representation of an adiabatic change in the TS diagram will differ from
the one in Fig. 4.26.

Heating at constant volume. Next, consider the heating of air if its volume is kept

Figure 4.25:  A simple device 
which allows us to put a fluid 
such as air through thermome-
chanical processes, i.e., process-
es which couple thermal and 
mechanical operations only. The 
volume may be changed with the 
help of the piston, and heating 
and cooling may be present.

Figure 4.26:  Adiabatic com-
pression and expansion in the 
temperature-entropy diagram. 
This diagram is a valuable tool in 
thermodynamics as was ob-
served by J.W. Gibbs (see Sec-
tion 4.1.7).
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constant. We say that under these circumstances the fluid undergoes an isochoric pro-
cess. It is very simple to keep the volume constant in the case of gases heated or
cooled. Heat does what we usually believe it does. A body which is heated at constant
volume gets hotter. Experience tells us that no matter what kind of body is heated at
constant volume its temperature must increase if heat is absorbed, and it must decrease
if heat is emitted.

Again, we can try to exhibit the process in the temperature-entropy diagram. Only here
we have a real problem which cannot be solved without knowledge of the constitutive
properties of the body: What is the concrete relationship between temperature and en-
tropy content as entropy is added or removed? Since we do not have this information
at this point, all we can do is give a qualitative impression of what the relationship
might look like (Fig. 4.27). Below we will introduce a constitutive quantity which de-
scribes bodies heated in such a manner. This quantity is called the entropy capaci-
tance. It measures how the temperature changes with the change of the entropy of the
body.

Since we assume entropy to be conserved we know that the amount of entropy com-
municated to the body is equal to the change of its entropy content. Again, this is a
particular case of accounting for entropy: the entropy content of a body can change by
transfer only, since nothing is produced inside. The sum of what has been absorbed
and emitted must be equal to the change of the contents. 

Isothermal processes. Another interesting process is the heating of air at constant
temperature. We speak of isothermal processes in this case. Since the temperature of
air changes if it is heated at constant volume, we obviously have to let the volume
change for an isothermal process to take place. On the other hand, we have seen that
the temperature changes if the volume is changed without heating (adiabatic process-
es). Combining these experiences we can come up with the answer of how to perform
an isothermal process. We may heat a body which would normally increase its tem-
perature; if we let the fluid expand, its temperature should drop. We only have to com-
bine and fine-tune the rates of heating and of expansion for the temperature to remain
constant (Fig. 4.28). On the other hand, the hotness of air rises if it is compressed with-
out heating. Therefore, we must cool it at just the right rate during compression for the
temperature not to change. In summary, if a fluid such as air is to undergo an isother-
mal expansion it has to be heated at the same time; during an isothermal compression
it has to be cooled. Therefore, if the volume of air increases isothermally its entropy
content increases; entropy is literally sucked up by the gas. If the volume decreases the
entropy content decreases; entropy is pressed out of the fluid like water out of a
sponge.

There is an important exception to the details of adiabatic and isothermal processes
just presented. Water in the range of temperatures between 0°C and 4°C behaves dif-
ferently. Take the isothermal changes first. Water will be found to emit heat when ex-
panding at a temperature in this range. Also, for part of an adiabatic compression the
temperature decreases as the volume is decreased, only to go through a minimum
whereupon it increases as is normally expected.14 Even though there are very few cas-

14. Kelvin was one of the first to discuss the significance of this behavior for thermodynamics
(see Truesdell, 1980). A theory of classical thermodynamics allowing for the anomaly was
first presented by Truesdell and Bharatha (1977).
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Figure 4.27:  Heating at constant 
volume. If entropy is added, the 
temperature of the body must in-
crease. How it increases depends 
on the properties of the body.
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Figure 4.28:  If a gas is to expand 
or contract at constant tempera-
ture, it has to be able to exchange 
entropy with the surroundings. 
The processes of isothermal ex-
pansion or compression are rep-
resented by horizontal lines in the 
TS diagram. On expansion, fluids 
usually absorb entropy. However, 
this does not always have to be 
the case: water in the range of 
temperatures between 0°C and 
4°C behaves differently!
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es of anomalous behavior, the example of water demonstrates that we cannot simply
leave it out of our considerations. Water is too important a fluid.

We would like to know how much entropy is required for a given change in volume
of the fluid. Again this question is answered by a particular constitutive quantity,
which is called latent entropy. It will be introduced in Chapter 5.

Melting and vaporization. Finally, let us take a brief look at phase changes. When a
block of ice having a temperature below the freezing point is heated, we first observe
a rise of temperature of the body (Fig. 4.6). The process is analogous to the heating of
a fluid at constant volume (Fig. 4.27). The water which is produced from the ice by
melting behaves similarly. We also know that water eventually turns into steam,
which can be heated further at constant volume if we like. But what about the process-
es which turn ice into water, and water into steam?

If we monitor the temperature of ice, water, and steam as we add heat (see Fig. 4.6 and
Fig. 4.29), we observe that the melting of ice and the vaporization of water take place
at constant temperatures: they are isothermal processes. Again, this is a rather surpris-
ing result. Without thinking about it we often assume there to be a change of temper-
ature during the heating of a mixture of ice and water, or of water and steam. However
this is not true. As in the case of the isothermal heating of fluids, the entropy entering
a body does not do what we think it normally does: it does not raise the temperature
of the body.

The melting of ice has played an important role in the history of the theory of heat.
The process served as a means for constructing ice calorimeters, and the melting of ice
by rubbing two blocks of it against each other provided strong evidence that entropy
can be created (Section 4.1.4).

As we have seen several times, the examples of adiabatic and isothermal changes
clearly demonstrate that heat and hotness cannot be the same quantities. In one case,
the hotness changes even though the entropy content does not; in the other, the amount
of entropy in a body changes while the temperature remains constant. 

19. What relations from electricity are analogous to Equ.(4.2) and Equ.(4.3)?

20. What observation suggests that an expression of the form given in Equ.(4.2) might be ap-
propriate for a flow of entropy out of a hot body?

21. Why is water a bad thermoscopic material?

22. What observations suggest that hotness has a lowest possible value? Is an “absolute zero”
point a general property of intensive quantities known from fluids, electricity, or motion?

23. Why does it make sense to assume that diffusion is an entropy producing process?

24. If there is a net inflow of entropy into a body, is it possible for its entropy to decrease?

25. If the sum of all currents of entropy with respect to a body is positive, is it possible for the
body to get colder?

26. What is the TS diagram of adiabatic compression of a gas with internal friction?

27. Why is the representation of isothermal expansion of a gas a horizontal line to the right in
the TS diagram?

28. What is the TS diagram of freezing of water? What does this mean for the entropy content
of the system and entropy exchanged by the system with its environment?

Figure 4.29:  Relationship be-
tween temperature and entropy 
for melting or vaporization of ice 
and water. During the change of 
phase, the temperature of the 
body stays constant. The diagram 
gives only a qualitative represen-
tation of the relationships. (Tf : 
melting point, Tv : temperature of 
vaporization.)
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EXAMPLE 4.1. Accounting for entropy.

Due to some irreversible process, entropy is produced in a body of water at a rate that increases
linearly from 1.0 Ct/s to 1.5 Ct/s in 100 s. It is observed that the temperature of the water does
not change (there are no phase changes!). (a) What is the rate of change of entropy of the body?
(b) Are there any entropy currents with respect to the body of water? If so, how large are they?
(c) How much entropy has been produced in these 100 s? (d) How much entropy has been ex-
changed with the environment? (e) What happens to the entropy of the body if it is thermally
insulated?

SOLUTION: (a) Since water is a material whose temperature only changes if its entropy is
changed, constant temperature means constant entropy. The rate of change of entropy is equal
to zero. (Water has a very small compressibility which changes the result slightly.)

(b) If the rate of change of entropy is zero, the (net) entropy current is equal to the negative en-
tropy production rate:

(c) The entropy produced equals the integral over time of the production rate. Here, the integral
of the entropy production rate over time is equal to 125 Ct. 

(d) We can integrate the (net) entropy flux to obtain the entropy exchanged. Alternatively, we
can apply the integrated form of the law of balance:

(e) Thermal insulation prevents the exchange of entropy of a body with its environment. If the
body of water is thermally insulated, and if we have the entropy production rate as described
here, the entropy of the body must change according to

In 100 s, the entropy of the body increases by 125 Ct.

EXAMPLE 4.2. Replace an adiabatic process by isochoric and isothermal steps.

Air in a bicycle pump is compressed adiabatically. How can the air be brought back to its orig-
inal state if we first wait for the air to cool in the pump? Draw the steps performed in a TS dia-
gram.

SOLUTION: If we compress air adiabatically, we raise its temperature without changing its en-
tropy content (see figure). If we now wait for the air to cool without the piston being moved, the
following will take place: Entropy flows out of the air at constant volume, thereby reducing its
temperature. This step restores the initial temperature to that of the surroundings, but it reduces
the entropy of the air. Therefore, as a last step, we have to increase the entropy content to its
original value without changing the hotness of the system. This is achieved by isothermal heat-
ing which also brings the volume of the air back to its initial value.

EXAMPLE 4.3. Irreversible adiabatic processes.

A certain amount of gas is put in a cylinder having a piston and which is perfectly insulated
against the flow of heat. The gas is first compressed and then allowed to expand again to the
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point where the temperature regains its initial value. The processes undergone by the gas are
supposed to be irreversible, possibly because of viscous friction in the fluid. Is the volume at
the end smaller than, equal to, or larger than that at the beginning? Write the equation of balance
of entropy for adiabatic irreversible processes, and display the operations in the TS diagram.

SOLUTION: Because of the ideal insulation, the processes are adiabatic; i.e., there is no ex-
change of entropy. For this reason, the flux term in the equation of balance of entropy is equal
to zero. The production term is not equal to zero, though, which leads to the following equation
of balance of entropy:

Thus, the entropy of the body can only increase. 

In a gas, the temperature increases as the result of adiabatic compression. Entropy is produced
at the same time. Therefore, the amount of entropy in the system increases as the temperature
rises, and the process is represented by a curve such as the one shown in the TS diagram. (Note
that we do not have any information regarding the properties of the gas. For this reason we can-
not actually calculate the details of the processes. The curves displayed in the TS diagram are to
be taken only as a qualitative description of what is happening.)

The second step is an adiabatic expansion, which leads to a lower temperature. Again the pro-
cess is irreversible, which causes entropy to be produced. When the initial temperature is
reached, it stops. Compared to the beginning, there is more entropy in the gas at the same tem-
perature. We have seen in Section 4.3.3 that for most substances (with the notable exception of
water in the range between 0°C and 4°C) the volume increases if entropy is absorbed at constant
temperature. The combined adiabatic irreversible steps are actually equivalent to isothermal
heating. Therefore, the volume is expected to be larger at the end than at the beginning.

4.4 ENERGY IN THERMAL PROCESSES

There are two main points to be discussed when energy is introduced to a new field.
First, what is the relation of energy to the basic quantities used to model processes in
the new field? Here, these quantities are entropy and temperature. Second, we have to
answer the question of how the law of balance of energy changes if thermal processes
are included. The former question is answered by appealing to analogies of thermal
processes with other phenomena. The latter has an even simpler answer: Thermal pro-
cesses, like any other phenomena, allow for the exchange of energy. Therefore we
simply include a new type of energy exchange in the law of balance of energy by add-
ing a term.

4.4.1 Balance of Energy Including Thermal Processes

Why can we be certain that thermal processes involve energy exchanges? The reason-
ing is simple. Thermal processes couple to other phenomena. Take the example of
electric heating at one end of a copper bar (Fig. 4.5). If we do not want to suddenly
change what we believe applies to energy in electric processes, we must conclude that
energy is transferred from the electric wires together with the entropy produced in
these wires. The balance of energy for the electric heater tells us this much. So if we
consider the transfer of the entropy produced in the wires a thermal process, we can
say that energy is transferred in thermal phenomena as well. The story can be contin-
ued by considering what happens to the entropy passed from the electric system to the
heated end of the copper bar. Conduction in the bar tells us that entropy flows from a
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hotter to a colder element. It should not matter if an element is heated electrically or
by contact with a hot part. If energy is transferred with entropy in the first case, it will
be transferred in the second example as well.

In summary, energy transfer accompanies entropy transfer in thermal processes. The
change of the law of balance of energy including thermal phenomena is simple and
minimal: We have to add an energy transfer term for the new type of phenomenon. We
have used energy currents in fluid, electric, or mechanical phenomena to quantify en-
ergy transfer. Now we add a current of energy to quantify energy transfers as a conse-
quence of heating or cooling:

(4.18)

IE,th represents the new term which refers to energy transfers in heating and cooling;
E is the energy stored in the system whose energy balance is being considered. Re-
member that heating and cooling refer to entropy flows from hotter or to colder bod-
ies—relative to the body we are dealing with.15

As with all laws of balance, there is an integrated form which may be applied to pro-
cesses lasting for a certain period of time t1 → t2:

(4.19)

The remarks made about IE,th also apply to Eth. So far, the term Ex has been used to
denote quantities of energy transferred in a process (Section 2.4.1). This usage will be
continued with thermal processes. Therefore, Eth is the symbol for amounts of energy
transferred in heating or cooling of bodies.16

4.4.2 Entropy, Temperature, and Energy

We might expect to be able to learn more about entropy if we manage to clarify its
relation to energy in thermal processes. In his investigation of the motive power of
heat, Carnot was the first to see this important point. We shall attack the problem head
on by employing the full power of his comparison of heat and water (Section I.3 and

15. This statement is not as innocent as it may sound. What is a thermal process actually is
open to debate. Should we include the transfer of entropy stored in a heated fluid together
with that heated fluid, as in a central heating system? Or should this be regarded a fluid pro-
cess? In fact, it is simpler to take the latter point of view and to exclude fluid transfer and
even radiation from the list of proper thermal processes. This leaves conduction of entropy,
and this is how IE,th in Equ.(4.18) will be interpreted: it is the energy current accompanying
conductive entropy transfers. Conduction of entropy is the narrowest but simplest and
clearest definition of heating and cooling.

16. After about 1850, the quantity Eth , which denotes amounts of energy transferred in heating
or cooling, was given the name “heat.” The symbol Q is commonly used for this quantity
in thermal physics. Since I do not associate more meaning with an amount of energy trans-
ferred in heating or cooling than with any other quantity of energy transferred in whatever
process we might study, I refrain from using specialized symbols. More importantly, how-
ever, it is less than helpful to use the conventional word heat for the last term in Equ.(4.19),
i.e., for a quantity having to do with energy. As discussed in Section 4.1.4, energy plays an
altogether different role than the one associated with it in traditional thermodynamics. 
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Section 4.1.5). We will assume that the role of energy in thermal processes is the same
as that known from other fields of physics as discussed in Chapter 2. In summary, Car-
not’s investigation of the principle of operation of heat engines will deliver the follow-
ing results:

1. A heat engine absorbs entropy from the furnace at higher temperature; if it
could be operated reversibly, the same amount of entropy would be transferred
to the cooler, i.e., to the environment at lower temperature.

2. By lowering entropy from a point of higher temperature to a point of lower tem-
perature, energy is released at a certain rate (thermal power); this energy drives
the mechanical process.

3. The energy released when entropy falls is supplied to the engine with entropy
from the furnace. More generally, energy is transferred together with entropy in
heating and in cooling.

In short, we simply add thermal phenomena to the list of processes known from other
areas of physics. Accepting this, we will be able to directly state the formula for the
motive power of heat, which will provide for the simplest possible entry into thermo-
dynamics. (A derivation on the basis of some other assumptions can be found in Chap-
ter 10.) The consequences of this idea will be developed for ideal engines and for
entropy production in the present section.

Thermal power. On the basis of these observations regarding the operation of heat en-
gines, Carnot was able to suggest a theory relating heat and energy. We already have
presented the basic idea of how such engines work, by the usual waterfall diagram and
associated process diagrams in Fig. 4.15. Therefore, in analogy to other fields of phys-
ics, we should expect the motive power of heat engines to be strictly proportional to
the drop of the thermal potential. Compare the process depicted in Fig. 4.30 to the op-
eration of a hydromechanical engine, i.e., a water turbine which is driven by water fall-
ing from an artificial lake at a high level, or any other type of engine. This immediately
lets us write the thermal power in the form

(4.20)

Entropy can be pumped like water, and as in the case of water the rate at which energy
is used to pump a current of entropy is also given by Equ.(4.20).

Energy transfer in heating and cooling. A few simple but important facts are known
about heat engines: First, they need a furnace and a cooling device; i.e., they operate
between two environments at different temperatures; they absorb heat from the fur-
nace, and they emit heat to the cooler. Second, the motive power of such engines de-
pends on the temperatures of the furnace and the cooler; indeed, their power increases
with an increasing difference between the upper and the lower temperatures.

Let us now turn to the first of these observations. Heating the engine first of all means
that entropy is taken in from the furnace at the higher temperature. Since entropy can-
not disappear, it has to be emitted if the engine is to operate steadily. This is accom-
plished with the help of the cooling device receiving the entropy rejected by the
engine. We know from the properties of entropy that the current leaving the engine
must be equal to that entering if all the operations are reversible, i.e., if entropy is not
produced in the system. Since cooling takes place at a lower temperature, entropy
flows from the hot furnace to the cooler and we say that heat engines are driven by the
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Figure 4.30:  Waterfall image of 
a thermal process: Entropy falls 
from a point of high temperature 
T1 to a point of lower temperature 
T2 , thereby releasing energy at a 
well defined rate.

 Pth ST T I= − −( )2 1



CHAPTER 4.  STORAGE, FLOW, AND PRODUCTION OF HEAT

134 THE DYNAMICS OF HEAT

fall of heat (entropy). Temperature therefore plays the role of the thermal potential.

This we have seen already, but the discussion points to an additional aspect of energy
in thermal phenomena. The entropy that is taken from the furnace carries with it some
energy (Fig. 4.31), and the entropy emitted to the cooler also takes some energy along.
If this were not the case, where would the energy released in the fall of entropy come
from? 

It makes sense to assume that the energy released is the difference of energy delivered
and removed at high and low temperature, respectively. Therefore, we should calcu-
late an energy current carried by an entropy current in heating or cooling of bodies by:

(4.21)

This is in complete analogy to what we have used in fluid, electric, and mechanical
processes before (see Chapters 2 and 3). So there is an additional interpretation of en-
tropy: it is the carrier of energy in heating and cooling.

If we wish to know how much energy has been transferred in a process of heating or
cooling, and if we want the relation of this quantity to entropy and temperature, we
simply integrate Equ.(4.21) over time:

(4.22)

Entropy production and dissipation. The qualitative discussion of entropy produc-
tion and irreversibility in Section 4.1 should have made it clear that while entropy ap-
pears out of the blue, it does not do so on its own. There have to be processes that drive
the production of entropy. Such processes are called irreversible or dissipative.

Generally, voluntary processes cause more than a single phenomenon. A water pump
is built to pump water, and the energy released by the driving process is expected to
go mostly toward the process the device was designed for. Invariably, however, part
of the energy released drives the production of entropy—engines heat up and they
have to be cooled. The part of the energy made available that is used for entropy pro-
duction is said to be dissipated. 

Equations (4.20) and (4.21), i.e., the relations for thermal power and energy currents
in heating and cooling, allow us to calculate the energy needed to produce entropy at
a given temperature. Consider a totally dissipative device such as an electric heater
whose process diagram is shown in Fig. 4.32. Energy is supplied to the heater and is
released in an electric process. Since the heater drives a single process—entropy pro-
duction—all the energy released is dissipated; it drives the thermal process of produc-
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ing entropy. As a consequence, the rate at which energy is dissipated is known; it is
the thermal power of the process. The dissipated energy is then emitted by the heater
together with the entropy that was produced. In summary, we can say that

(4.23)

When entropy is produced at temperature T at a rate ΠS, we need energy at the rate
given by Equ.(4.23); this is called the dissipation rate Pdiss .

17 

4.4.3 Heat Engines and Heat Pumps

Combining everything we have learned so far—balances of entropy and of energy,
and the relation between entropy, temperature, and energy—will allow us to come up
with some rather interesting and useful results regarding the operation of thermal en-
gines in spite of the generality of the relations. More detailed models will require the
study of particular constitutive laws of components making up real engines (see Chap-
ters 9 and 15).

Ideal heat engines and heat pumps. When entropy flows through an engine from
points of high to points of low temperature (from a burner to a cooler), energy is re-
leased (see Fig. 4.30). If all the energy that is released is used to drive the desired pro-
cess (mechanical, electrical, etc.), the engine is said to be ideal. Ideal engines are non-
dissipative. In this case, the process diagram of a heat engine takes the form shown in
Fig. 4.33 (left). For heat pumps and refrigerators where entropy is pumped from lower
to higher temperature, all we have to do is reverse the flows of fluidlike quantities and
change the signs of potential differences (Fig. 4.33, right). If all the energy released
by the driving process is used to pump entropy, the heat pump is said to be ideal.

Here is a complete analysis of the ideal heat engine at the level of general relations
discussed so far. There is one expression for the balance of entropy and three relating
to the energy principle:

(4.24)

17. To end up with proper signs, the dissipation rate has to be defined as the negative thermal
power of the process of producing entropy. When entropy falls and releases energy
(Equ.(4.20)), the power is positive, so in an involuntary thermal process where energy is
used the power is negative. The dissipation rate, however, needs to be a positive quantity.

  Pdiss ST= Π

Figure 4.33:  Process diagram of 
an ideal heat engine (left) and an 
ideal heat pump (right). Ideal 
means that there is no entropy 
production in the engines.
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(4.25)

(Note that these relations hold for the steady-state.) We add to this the relations be-
tween entropy currents in heating and cooling and the associated energy currents:

(4.26)

Efficiencies. It is customary to introduce two measures of efficiency that can be de-
rived from the foregoing. The first is the ratio of useful energy current to energy sup-
plied by the burner (called the thermal efficiency or first law efficiency):

(4.27)

The second is the ratio of useful power to thermal power (called the second law effi-
ciency):18

(4.28)

For an ideal heat engine (Fig. 4.33, left), the second measure of efficiency is equal to
1. It seems to be the more natural and intuitive of the two measures. It tells us how well
the engine performs, measured relative to what nature allows. We can only use the en-
ergy made available by the fall of entropy, i.e., Pth.19 If we can use all of it, we have
designed a perfect engine. Moreover, Equ.(4.28) represents the same type of efficien-
cy measure as those used in other devices such as pumps, turbines, motors, etc.

The so-called first law efficiency or thermal efficiency is commonly used to report the
performance of heat engines; for example, the thermal efficiency of a large nuclear
power plant is little more than 30%. For ideal engines, the efficiency is given by
Equ.(4.27) which is called the Carnot efficiency ηC of heat engines. It is the highest
possible value of thermal efficiency that can be achieved by any thermal engine run-
ning between a furnace at TH and a cooler at TL (H and L stand for high and low, re-
spectively). This point will be discussed further below and again in Chapter 5. 

It is important to realize that ηI is smaller than 1 no matter what we do unless we could
build a cooler at the lowest possible temperature of 0 K. This is true even for non-dis-
sipative engines, and, as we shall see shortly, even for the best of them, the Carnot en-
gine. The reason for this is simple to understand if we consider the balance of entropy
rather than just the balance of energy. Since the entropy supplied to an engine has to
be emitted to the cooler, it will take a current of energy equal to TLIS into the environ-

18. In Section 4.4.5, a brief description of what are termed First Law and Second Law of ther-
modynamics will be given. This should explain where the names first law efficiency and
second law efficiency come from.

19. In a fall of water in the Swiss Alps, we can only use the energy released which is propor-
tional to the height difference. The level of the environment at the foot of the mountains
defines the lowest possible point water can reach even though we can imagine the water to
fall still further on its way in the river to Holland.
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ment (Fig. 4.33, left). This is simply unavoidable.20 It is not the fault of engineers who
do not understand nature well enough.

There is actually a good reason for using the first law efficiency in Equ.(4.27) along-
side the more intuitive measure in Equ.(4.28). The loss of energy to the environment
actually starts when we produce the entropy that runs the heat engine by burning some
fuel or splitting nuclei. The entropy produced must end up in the environment eventu-
ally. There is irreversibility here, just not in the engine but in the furnace. Carnot’s for-
mula accounts for this in the case of ideal engines, where “ideal” means that the core
of the engine is non-dissipative.21

Coefficient of performance. Let us now briefly turn to heat pumps. For heat pumps,
one introduces the coefficient of performance which is the ratio of the useful energy
current—the energy current accompanying the entropy flow that heats the warm space
(Fig. 4.33, right)—to the power of the driving process. If we perform a derivation
analogous to what was done for engines, we get the coefficient of performance (cop)

(4.29)

which is the inverse of the Carnot efficiency in Equ.(4.27). The result has been derived
for ideal engines (real heat pumps do not even come close to this value). For refriger-
ators, the figure of merit is the ratio of the energy current removed from the cold space
to the driving power, so the equations is different from Equ.(4.29).

Just as the first law efficiency η1 of a heat engine, Equ.(4.27), might give the wrong
impression of the performance of a thermal engine, the coefficient of performance in-
troduced in Equ.(4.29) tells only half the story. A better way of measuring the efficien-
cy of heat pumps and refrigerators is to compare the thermal power for lifting entropy
to the actual mechanical or electrical power of the engine:

(4.30)

This is a figure analogous to the second law efficiency of heat engines. Note that it is
the inverse of what was defined in Equ.(4.28), just as the coefficient of performance
is the inverse of the Carnot efficiency. Naturally, for ideal heat pumps and refrigera-
tors, the efficiency ηII is equal to 1; otherwise it is lower than 1.

20. This non-intuitive measure(ηI) has caused people to wonder why this should be so, or if it
should be so at all. A cottage industry of inventors has developed that tries to design en-
gines that use more than the fraction of energy supplied to the engine calculated by
Equ.(4.27). Since traditional explanations of thermal phenomena are based almost exclu-
sively on the energy concept, these inventors ask why it should be forbidden to make use
of a higher proportion of the energy supplied to an engine. Simply shaking one’s finger at
them and appealing to the “Second Law of Thermodynamics” that “forbids” their dream
to come true does not seem to help. This is one of the problems we created for ourselves
when we started conceptualizing heat as a form of energy. There is simply no simple way
out of this seeming paradox in traditional representations of thermal phenomena.

21. Note that the term engine is used for the central element of an entire thermal engine shown
in Fig. 4.31, not for the complete system including the furnace and the cooler. Here, the
engine is the part of the system that is designed to lower the entropy from high to low tem-
perature and make use of the energy released in the fall of entropy.
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Carnot engines. The results derived in this section apply only to reversible devices
and to what we might call Carnot engines. (There are reversible engines that are not
Carnot engines, see Chapter 5.) An engine’s task is to transport heat, i.e. entropy, from
the furnace to the cooler. How can this be achieved? Consider, as Carnot did, an en-
gine that absorbs entropy at constant temperature from a furnace. Then the absorbed
entropy is lowered to the temperature of the cooler whereupon all the entropy (heat)
is emitted, again at constant temperature. A heat engine operating in the manner de-
scribed is called a Carnot engine. Actually, for us the engine is the working fluid em-
ployed, such as air or steam. The fluid operating in such an engine undergoes a cyclic
process called a Carnot cycle, whose steps we can describe qualitatively in terms of
the simple changes discussed in Section 4.3.3 (see Fig. 4.34). To be specific, let us as-
sume the agent of the engine to be air. The first step in the cycle described above must
be an isothermal expansion of the fluid. If air expands isothermally, it absorbs entropy
at constant temperature. This is exactly what we want. Now the temperature of the air
has to be lowered to the hotness of the cooler; this process has to take place without
any heat being exchanged. Therefore this step must involve an adiabatic expansion. In
other words, the air expands during the first two steps of the Carnot cycle.

Now the fluid has to emit the entropy it absorbed in the first step. Since the emission
is to take place at constant temperature, this step must be an isothermal compression.
In the end, we only have to return the agent to the starting point for it to be able to be-
gin another cycle of operation. The final process is an adiabatic compression, which
raises the temperature to the desired level, namely to the temperature of the furnace,
without adding or removing entropy. 

It might be instructive to quickly discuss the idea of a non-Carnot heat engine. Such a
device absorbs and emits entropy at variable temperatures; most engines are designed
in such a way that absorption and emission of entropy do not take place at constant
temperature. If we call TH the highest temperature during uptake of entropy, and TL
the lowest temperature during emission, the efficiency of an ideal heat engine is less
than the Carnot figure, i.e., less than the famous factor (TH – TL)/TH.

Dissipative heat engines. Real heat engines and heat pumps are dissipative. Entropy
production can have several reasons, the main being heat transfer (we are going to dis-
cuss this in Section 4.6.3). We can neglect the actual sources of irreversibility for the
moment and simply include a general source of entropy in an engine of the type de-
picted in Fig. 4.33; see Fig. 4.35. Adding entropy production to the model has impor-
tant consequences. Some of the energy released in the fall of entropy from TH to TL
will now be used for the process of producing entropy. The entropy resulting from dis-
sipation must be emitted to the cooler and to the environment in addition to the entropy
absorbed by the engine from the furnace. If we assume the temperature of the cooling
process TL to remain the same, the energy current to the environment will be larger
than in the reversible case. This means that the energy available for the desired process
is less than in a non-dissipative engine.

The real second law or first law efficiencies can be derived in analogy to Equ.(4.24)
and Equ.(4.25). The equations that change are

It turns out that both efficiencies are reduced from their maximum values by amounts
proportional to the ratio of entropy production to entropy absorbed from the furnace.

Figure 4.34:  Carnot cycle in the 
TS diagram. It consists of four 
steps, two of them isothermal, 
the other two adiabatic. If the 
steps are performed ideally, i.e., 
if no entropy is produced in the 
agent, the cycle has the simple 
form of a rectangle. In the case of 
a Carnot heat pump, the cycle is 
traversed in the opposite direc-
tion (counterclockwise).
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Available power and loss of power. The power of a fall of heat through a given tem-
perature difference has been introduced in Equ.(4.20). It is often calculated with the
temperature of the environment T0 replacing the temperature of the cooler TL. The
power thus calculated is the maximum which can possibly be derived from a current
of entropy emitted from a reservoir at temperature T in a given environment. For this
reason it is called the available power Pav (or the exergetic power) of entropy:

(4.31)

Similarly, the loss of power due to irreversibility, i.e., as a consequence of entropy
production, is expressed relative to the temperature of the environment T0. The results
introduced above show that there is a simple relation for the loss of power L , i.e., the
quantity by which the power of an engine is reduced relative to its maximum possible
value for reversible operations:

(4.32)

Equ.(4.32) is simple to put into words, and simple to understand. If entropy is pro-
duced at a rate ΠS in an engine in an environment having temperature T0, the entropy
current from the device to the environment must be increased by ΠS. There is therefore
an additional energy current to the environment, i.e., a loss, that is equal to T0ΠS. This
is what we call lost power.

Now we can understand why the Carnot efficiency, Equ.(4.27), is smaller than 1 (re-
member this is for an ideal engine). The power of the ideal engine is

i.e., it is smaller than the energy current supplied to the engine by the loss of power
due to entropy production in the furnace.

4.4.4 Thermal Potential

When temperature and temperature scales were discussed in Section 4.3.1, the ques-
tion was raised of whether any of them could represent a “true” thermodynamic tem-
perature. If we take the conceptualization of the intensive thermal quantity seriously,
the simplest meaning of “true” would be what we called thermal potential. The ideas
of how entropy, temperature, and energy are related, and the results concerning en-

Figure 4.35:  Process diagram of 
a dissipative heat engine. The 
difference between this and an 
ideal engine starts with an entro-
py production term. Adding this 
term changes all the quantities 
on the right side of the diagram. 
In particular, it reduces Pel.
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gines can be used to make the concept of thermal potential more precise. Take the for-
mula for the Carnot efficiency in Equ.(4.27). This quantity depends only upon
temperatures. If we assume this measure of efficiency to have concrete meaning, if we
want it to take a unique value for a concrete case of an engine, then the quantity in the
formula—temperature—obtains meaning independent of special materials and pro-
cesses. This leads to the concepts of absolute temperature, absolute in the sense of in-
dependent of a thermometric substance. It appears we can use the quantity T in our
relations as a measure of the thermal potential.

There is commonly a second meaning to the word “absolute” in the term absolute tem-
perature. We often mean that there is an absolute zero point of hotness. Entropy pro-
duction and the Carnot efficiency both indicate that this must be so. Take Carnot’s
formula first. If T were not fixed on an absolute scale, results for the efficiency would
depend upon the particular scale chosen. 

The relation between the energy dissipated and the entropy produced could not be ap-
plied unambiguously either. Imagine there were negative temperatures, so Equ.(4.23)
would predict negative entropy production rates which contradicts what we have been
assuming. Fluidlike quantities that can be created and/or destroyed must have an ab-
solute potential.22 

For an entropy production rate to have an unambiguous meaning, the temperature
must always be positive. Note that the relation between power, entropy production rate
and (absolute) temperature, Equ.(4.23), tells us that the energy needed to produce one
unit of entropy is the same as that needed to pump one unit of entropy from 0 K to the
same temperature at which entropy that is produced appears in the world.

4.4.5 First and Second Laws of Thermodynamics

The presentation of thermodynamics in this chapter makes use of old forms of thought,
namely, what we find in Sadi Carnot’s work. However, it is not historical since it does
not use the concepts and terms developed in traditional thermodynamics after 1850.
Anyone who has learned some thermal physics before will wonder where I have been
hiding the First and Second Laws of thermodynamics.

The First Law appears in a strongly generalized form as the law of balance of energy
in Equ.(4.18) or Equ.(4.19). The traditional form of the First Law is the law of balance
of energy for systems that exchange energy in thermal and mechanical processes.
Since dynamical representations are rarely used, the presentation is in the form of an
integrated balance: the change of energy of a system equals the energy exchanged in
heating and cooling plus the energy exchanged mechanically. The first term (the en-
ergy of the system) is called internal energy, the energy exchanged in heating and
cooling is called heat, and the third (energy exchanged mechanically) is called work.
Thus, the traditional form reads: Change of internal energy equals heat plus work.23

The case of the Second Law of Thermodynamics is more intricate. In the literature, we

22. Take volume and pressure. Volume can be produced or destroyed by compression or ex-
pansion of a fluid, and pressure obviously has an absolute zero point.

23. Some authors add a twist to this by using different signs for energy exchanged thermally
and mechanically. We might say “heat added to a system” and “work done by the system.”
So the former term receives a positive sign in the First Law, the latter gets a minus sign. 
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find countless different forms of “the” Second Law in the introductory course. Need-
less to say, it is highly unlikely that all the forms express the same concepts and de-
tails, so we are left wondering what “the” Second Law actually is. The best that can
be said is that the forms are variations of our law of balance of entropy (Section 4.3.2)
or a relation between entropy, temperature and energy similar to Equ.(4.22), or com-
binations thereof.

For our purposes, it suffices to know that the First Law has something to do with en-
ergy balances, and the Second Law is somehow related to entropy. This explains the
terms first law efficiency (Equ.(4.27)) and second law efficiency (Equ.(4.28)) of ther-
mal engines. 

29. How does the law of balance of energy change if thermal processes are included?

30. The Stirling engine in Fig. 4.10 is cooled by letting water from a faucet flow through the
cooler of the engine. What happens to the operation of the engine if the flow of water is
increased?

31. Why does the result of measurements for the power of a thermoelectric device (Fig. 4.11)
suggest that thermal processes (in particular, the relation between thermal processes and
energy) can be described in analogy to electric processes?

32. What are the units of entropy, entropy currents, entropy production rates?

33. How big does an entropy current flowing from a point at 500 K to one at 300 K have to be
for the thermal power to measure 1.0 MW?

34. A typical nuclear power plant is a thermal engine running between an upper and a lower
temperature of about 600 K and 300 K, respectively. What is the ideal thermal efficiency?
The real thermal efficiency is more like 30%. What is the real second law efficiency in this
case?

35. In what way are the relations for thermal power and for a thermal energy current related?

36. Why is it possible to conceptualize the production of entropy as a pumping of entropy from
absolute zero temperature?

37. An immersion heater is operated at an electric power of 400 W. It has a temperature of 400
K. What is the entropy production rate in this heater? What are the entropy current and the
energy current emitted by the heater in steady state?

38. To keep the interior of a home at 27°C in winter, the heating power of the heater is 6 kW.
What is the entropy current leaving the home?

39. How are the thermal power and the useful power of an ideal heat engine related?

40. Why is the thermal efficiency of an ideal heat engine smaller than 1?

41. What is the cop of an ideal heat pump operated between 270 K and 300 K?

42. Real engines have efficiencies that are smaller than those of ideal ones. Why does this tell
us that the entropy production rate must be non-negative?

43. Why should hotness have an absolute zero point?

EXAMPLE 4.4. The current of entropy through an ideal Carnot engine.

Consider a Carnot engine working between a furnace at 300°C and a cooler at 40°C. This ideal
engine is known to have a mechanical power equivalent to 5.0 MW. (a) How large must the cur-
rent of entropy through this engine be? (b) If the current of entropy is unchanged, how large
must the temperature difference be for a power of 4.0 MW?

QUESTIONS
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SOLUTION: (a) This is a direct application of the relation for the motive power of a heat engine.
First we have to conclude that the thermal power of the engine is equal to its mechanical coun-
terpart, namely 5.0 MW. The thermal levels, i.e. the temperatures, are given. Therefore:

W/K (= Ct/s) is the SI unit of a current of entropy.

(b) The motive power depends linearly upon the difference of temperatures between the furnace
and the cooler. For a power which is only 4/5 of the original one, it suffices to have a tempera-
ture difference equal to 80% of the original one, i.e. 208 K.

EXAMPLE 4.5. The current of entropy absorbed by a river cooling a thermal power plant.

It is known from the operation of a thermal power plant that the water of a river used for cooling
carries away an energy current of 600 MW. (a) How large is the current of entropy entering the
environment if the temperature of the water is taken to be equal to 27°C? (b) Express the entropy
absorbed by a reservoir at constant temperature in terms of the energy exchanged in heating or
cooling and the temperature, and (c) for the power plant given here calculate the entropy ab-
sorbed by the river in one day.

SOLUTION: (a) Assume the temperature of the water to remain constant. The amount of water
used for cooling is so large that its temperature does not change very noticeably. In this case,
the temperature remains constant and the current of entropy is given by

The law relating currents of entropy and of energy describes an instantaneous situation. It is val-
id for any temperature, and for non-constant values as well. The currents will therefore gener-
ally change in time. 

(b) Since the temperature of the water is constant during absorption of entropy, the amount ex-
changed can be computed easily according to Equ.(4.22):

Since entropy flows into the body of water at constant temperature, i.e., at a constant level, the
energy exchanged is simply equal to the product of entropy exchanged and the temperature at
which the exchange is taking place. 

(c) The amount of energy exchanged in one day is equal to 600 MW · 86400 s = 5.2 · 1013 J, and
the numerical value for the entropy exchanged is 5.2 · 1013 J / 300 K = 1.7 · 1011 Ct (Ct = J/K).

EXAMPLE 4.6. Energy dissipated in an immersion heater.

An immersion heater is placed in water and hooked up to a voltage of 110 V. The electric current
is measured to be 1.5 A. How large is the rate of production of entropy in the heater and water
combined if the temperature is 20°C? How much entropy is created in 10 s if the temperature
changes linearly to 22°C during this period? The electrical quantities remain constant.

SOLUTION: The energy current given off by the heater is equal to
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which is equal to the rate of dissipation of energy. Therefore:

The amount of entropy produced in this process is

which is equal to

Since the temperature is almost constant, the result is very nearly equal to ΠS ∆t, with a constant
rate of generation of entropy.

EXAMPLE 4.7. A thermal power plant.

The thermal energy current due to burning of coal in a thermal power plant is 1.5 GW, while
the mechanical energy current leaving the turbines is 0.6 GW. The steam driving the engine is
emitted at a temperature of 50°C. If the turbines operate as an ideal engine, what are (a) the cur-
rent of entropy flowing through the engine, (b) the temperature of the furnace, and (c) the Carnot
efficiency?

SOLUTION: (a) The thermal energy current emitted with the steam is equal to the difference
between the energy current entering the engine and the one driving the generator. In other
words, it is 0.9 GW. At a temperature of (273 + 50) K, the current of entropy associated with
this thermal energy flux is

(b) The temperature of the furnace can be calculated in terms of the currents of entropy and en-
ergy absorbed by the engine:

(c) According to Equ.(4.27), the Carnot efficiency is equal to

The same result could also have been obtained with the help of the energy currents:

Note that in these equations the magnitudes of the fluxes have been used. The second law effi-
ciency is naturally equal to 1.0. 
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EXAMPLE 4.8. Heating water with a heat pump.

Assume that a heat pump has been installed that requires an energy current of 165 W for oper-
ation. The pump takes entropy out of the ground in winter for heating water. (The temperature
of the ground is 2°C.) (a) How large is the entropy current at the beginning, with 20°C water?
(b) How large is the current when the temperature of the water has reached 100°C? (c) How
large are the energy currents entering the water in these two cases?

SOLUTION: (a) The current of entropy is calculated to be

if the water has a temperature of 20°C. 

(b) If the water has reached a temperature of 100°C, the current of entropy diminishes to 165
W/ 98 K = 1.68 W/K. With the same amount of energy, less entropy can be pumped through a
larger temperature difference. (This result should be compared to the entropy current out of an
immersion heater having a power of 165 W, which according to Example 4.6 is equal to 0.56
W/K at 20°C.)

(c) The energy current leaving the heat pump at 20°C (and entering the water) will be

In the second case, it decreases to 627 W. Obviously, heating with an ideal heat pump must be
more efficient than heating with an immersion heater. 

EXAMPLE 4.9. The production of entropy in a non-ideal Carnot engine.

(a) For an engine with ηΙ < ηC , calculate the rate at which entropy is produced in the engine.
Compute the numerical value for an engine operating between reservoirs at 600 K and 300 K,
respectively, and which has an observed efficiency of 0.30. The thermal energy current entering
the engine is 1.0 GW. (b) Show that there is a loss of available energy, and express the rate of
loss in terms of the rate of production of entropy. How large is the loss for the engine described
in (a) for one day?

SOLUTION: (a) In an engine which is operating in a steady state, the rate at which entropy is
produced must be the difference between the rate at which entropy is emitted and the rate at
which it is absorbed. Expressed more formally, according the law of balance of entropy
Equ.(4.16) in the steady state (dS/dt = 0):

This equation can be transformed using the relations between currents of entropy and energy in
heating. If we also use the expression for the efficiency of an ideal Carnot engine, Equ.(4.27),
this changes to:
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If we introduce numerical values we obtain

The value of 0.5 is the Carnot efficiency of the engine operating between 600 K and 300 K. The
rate at which entropy is absorbed is

which is 2.5 times larger than the rate of production.

(b) The loss of available power is the difference between the power available hypothetically and
the actual mechanical power of the engine. According to the definition of the available power
in Equ.(4.31), and the Carnot efficiency Equ.(4.27), we have:

This can be expressed using the result obtained above:

This result is important. It demonstrates that the loss of power due to dissipation is directly pro-
portional to the production of entropy. At second glance, this is not so surprising. After all, the
non-conservation of entropy leads to the loss in the first place. In one day, the loss is equal to
300 K · 0.67 MW/K · 86400 s = 1.74 · 1013 J, which is equivalent to 4.8 · 106 kWh of energy. See
Section 4.4.3 for an analysis of the loss of power and production of entropy.

EXAMPLE 4.10. Efficiency of a dissipative heat pump.

(a) Determine the coefficient of performance (cop) of a dissipative heat pump operating be-
tween the environment at temperature T0 and a body to be heated at T. Show that it is smaller
than that of an ideal pump. (b) Derive the relationship between the cop and the second law ef-
ficiency.

SOLUTION: (a) We start from the definition of the cop for heat pumps. It is the ratio of the heat-
ing power at temperature T and the mechanical power necessary for driving the pump. Taking
into consideration the signs of the fluxes with respect to the pump we have:

The last expression is the cop of an ideal heat pump; it is clearly larger than the actual value.

(b) According to the definition of the second law efficiency, the actual cop must be equal to the
product of the ideal cop and the second law efficiency:
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We could calculate the second law efficiency from the result for the cop given in (a). This must
agree with the direct definition, which leads to:

Note that the second law efficiency of a heat pump is the inverse of what we defined for a heat
engine in Equ.(4.28).

4.5 ENTROPY-TEMPERATURE CHARACTERISTIC 
OF SIMPLE FLUIDS

So far, the discussion of thermal processes has centered upon generic relations such as
the laws of balance of entropy and energy, and the properties of hotness. Results for
engines were derived that depend only upon this type of relation, not upon details of
materials used in actual devices. In this and the following sections, we will finally turn
to some constitutive relations in their simplest forms. Still, the results will allow us to
work on some interesting and real cases of thermal dynamical processes. 

In this section we will discuss a common problem—the heating of solids and liquids—
in a greatly simplified manner. We shall construct a model of a body of uniform tem-
perature which is undergoing processes of heating. Indeed, heating and cooling are as-
sumed to be the only phenomena which can be associated with such systems. Their
volume will be assumed to remain constant. Therefore, in the simplest case, there will
be only one independent variable—one function of time—which determines the prop-
erties of such a body. We can take this function to be the temperature T(t). Other choic-
es are possible, namely quantities which are related to and change with temperature.
Obviously, these must be the entropy content and the energy of the system. A first
question must be asked, namely, how temperature and entropy content of a body are
related. We will answer it by introducing the entropy capacitance. Using the generic
laws of balance of entropy and energy, we hope to find the solution of the problem
posed, namely the functions T(t), S(t), and E(t), and expressed in terms of these the
flux and the rate of production of entropy.

4.5.1 The Model of Uniform Heating

The model that will be constructed is one of uniform reversible heating or cooling.
What this means is simple to express: When heated, a body receives entropy (and en-
ergy), but entropy may not be produced in the body as a consequence of this heating
(Fig. 4.36). If this applies, and if it applies to cooling as well, entropy added to a body
will be emitted in the reverse process. In between, it is stored in the system.

Is such a model realistic? In the Introduction, Section I.5, I discussed this question in
some detail, so I can keep things short here. Commonly, entropy is produced when it
spreads inside a body—we will understand this and be able to calculate entropy pro-
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duction rates for this process later in this chapter (Section 4.6). This means that we
have to make assumptions as to the properties of the materials being heated. We need
a material that lets heat (entropy) pass easily without producing any. A similar situa-
tion is called superconductivity in electricity. Charge flows without needing a driving
force—an electric potential difference—and without producing entropy. Even though
it is not correct, we apply this behavior to models of electric circuits where wires are
treated as if they were superconductors. This is exactly what we are going to do for
reversible heating and cooling. We assume that entropy can spread inside a body being
heated without needing a temperature difference for the transport of entropy. There-
fore, we have a condition of uniform reversible heating: A thermal superconductor
having a single temperature throughout which stores the entropy it receives without
producing any.

In real life, stirred liquids that are heated or cooled come close to this model. As ex-
amples will show, the model can be applied successfully to the dynamics of such ma-
terials. If the heater is placed somewhere in a liquid, stirring it will lead to an even
distribution of the entropy. If the body cools through its surface, stirring ensures that
the outer layers do not get colder than the inner ones. Naturally, solids do not heat or
cool in this manner. However, if the solid has a relatively high conductivity for entro-
py, and if we are not interested in very short term behavior, we can still apply our mod-
el of uniform heating (for an example, see the heating of copper Fig. 4.1).

Balance of entropy and of energy. The model discussed here is represented sym-
bolically by the process diagram in Fig. 4.36. If heating and cooling are reversible, the
law of balance of entropy for the body takes the form

(4.33)

(see Equ.(4.11)). Since heating and cooling are the only processes allowed, the bal-
ance of energy is

(4.34)

The relation between entropy and energy fluxes in heating (Equ.(4.21)) let us combine
these laws of balance. This leads to a relation between how the entropy and the energy
of the simple materials discussed here change:

(4.35)

This is an example of what is generally called a Gibbs Fundamental Form. We will
encounter GFFs again and again in different applications throughout this book. Note
that this is a relation between quantities describing a system—it does not contain any
terms referring to processes such as fluxes or production rates.24 If we want to recover
processes from our model, we need to combine the laws of balance with the Gibbs fun-
damental form.

24. There are some aspects of the model presented here that need to be investigated in more
detail, such as the use of time derivatives in the GFF, or the tacit assumption that the simple
materials being heated go through reversible changes (this is part of the assumptions that
led to Equ.(4.35)). These points will be discussed more fully in Chapter 5.
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4.5.2 Adding Entropy to a Liquid

Consider electrical heating of water or ethylene glycol in an (almost) perfectly insu-
lated container. This is achieved by thick insulation, but we also have to assume that
inner layers of the container do not take up noticeable amounts of entropy. The electric
heater produces entropy that is emitted to the liquid together with energy (Fig. 4.36).
As a consequence, the temperature of the material changes.

The results of Section 4.4 allow us to determine the entropy produced and communi-
cated to the liquid. To do so we need the electric power of the heater and the temper-
ature of the water as functions of time. As in Example 4.6, the entropy production rate
is calculated from the instantaneous values of dissipation rate and temperature, and the
entropy production rate is integrated over time to obtain the (change of) entropy of the
liquid. If we assume a certain value of entropy at a reference temperature, changes of
entropy can be converted to entropy content. (In mechanical engineering, it is custom-
ary to set the entropy of materials equal to zero at 0°C.) 

If we did the same experiment for 1 and 2 kg of a liquid, we would notice that the tem-
perature rises more slowly in the second case (twice as slowly, to be precise). To make
the results independent of the amount of the material and to get a temperature–entropy
relation that is indicative of the material and not its amount, the measurements of the
entropy of the body are referred to unit mass. This is called the specific entropy s of
the material:

(4.36)

In this way, the temperature of the material is made a function of its specific entropy.
The relation between specific entropy and temperature can be represented graphically
as a Ts–diagram (Fig. 4.37), in a table, or by an analytical approximation.

Experimental results for water and for ethylene glycol show two interesting features
(Fig. 4.37). We need less entropy to make 1 kg of glycol warmer by 1 K than we need
for water; and the shape of the temperature-specific-entropy or Ts characteristic of the
materials is different. While it is close to being a linear function in the case of glycol,
it is more of an exponential function for water.

4.5.3 Warming Factor and Entropy Capacitance

The meaning of the Ts characteristic for simple materials is analogous to that of a pres-
sure-volume or voltage-charge characteristic of a tank or a capacitor, respectively (see

s S m=

Figure 4.37:  Experimental Ts-
diagram of water and of ethylene 
glycol. The relation for glycol is 
almost linear, whereas the one 
for water resembles an exponen-
tial function. The entropy of the 
materials is arbitrarily set to zero 
at T = 273 K. 280
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Section 1.4.2). Therefore, it can be described analogously to how this was done in hy-
draulics and electricity. The most significant feature of a material in the Ts-diagram is
the slope of the T(s) curve. It tells us how fast the temperature rises as a function of an
increase in entropy. This slope is called the warming factor αS (Fig. 4.38):

(4.37)

The warming factor tells us how easy it is to warm a material; the larger the easier.
Compare this to the definition of elastance of containers and fluids, or of capacitors.
If T(s) is a straight line in the Ts-diagram, the temperature can be calculated easily with
the help of the warming factor:

(4.38)

Glycol is an example of a material having a constant warming factor which leads to
the linear temperature–entropy characteristic demonstrated experimentally in the data
of Fig. 4.37.

Entropy capacitance. The inverse of the warming factor is commonly used to rep-
resent the relation between temperature and entropy of a material. The inverse of the
heating factor is called the specific entropy capacitance κ :

(4.39)

The entropy capacitance, Κ = mκ, has the usual meaning of a capacitance, as in hy-
draulics or electricity. In general, the entropy capacitance depends upon the tempera-
ture of the material. The change of entropy of a body can be calculated graphically
from the temperature – capacitance diagram (Fig. 4.39).

4.5.4 The Energy of Simple Materials

It is common to introduce the specific temperature coefficient of energy (specific
heat25) c which is calculated from the specific entropy capacitance by multiplying the
latter by the temperature of the material (c = Tκ). It allows us to directly determine the
change of the energy of the simple materials discussed here (see the derivation below):

(4.40)
where

25. The name specific heat (or specific heat capacity) is derived from the traditional usage in
thermodynamics where a quantity of heat is measured in terms of energy. This usage is a
remnant of the caloric theory in the thermodynamics formulated after 1850. Note that in
the caloric theory, as in our conceptualization of thermal processes, the derivative of heat
(caloric, entropy) with respect to temperature is a capacitance. The factor c = Tds/dt, how-
ever, is not.
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Figure 4.38:  The slope of the 
Ts-relation tells us how easy it is 
to warm a body by heating.
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(4.41)

Here, e = E/m, the energy per mass, is called the specific energy of the material. The
specific heat of materials generally depends upon the temperature of the material. The
change of energy of a body can be determined graphically from the specific heat –
temperature diagram (Fig. 4.40).

Equ.(4.40) is derived simply from the balances of entropy and energy with the help of
the relation between energy currents and entropy fluxes in heating, and Equ.(4.39):

It is quite common to report the values of specific heats of materials in tables and
graphs. They are determined in the manner described above, by getting the tempera-
ture–entropy characteristic from which the entropy capacitance and the specific heat
can be derived. Results for water (between 0°C and 100°C) and for some metals (down
to 0 K) are shown in Fig. 4.41.

At high temperatures, which often mean room temperature or higher, c is a constant
for solids. However, if we go to lower temperatures it becomes evident that c changes
drastically. Specifically, at 0 K, entropy capacitances (and with them the values of c)
become zero. This finding is equivalent to saying that it is impossible to reach 0 K in
any experiment. Either statement is often called the third law of thermodynamics. In
Fig. 4.41, values of c for some metals are shown. Table 4.7 lists values of κ and c for
some liquids and solids for 20°C.

4.5.5 Materials With Constant Temperature Coefficient of Energy

Some materials (water, solids at high temperature) have almost constant specific
heats. For these materials, entropy and energy can be calculated easily:

(4.42)

(4.43)

The derivation of Equ.(4.42) follows from Equ.(4.39)1 together with the definition of
the temperature coefficient of energy c = Tκ :

c T= κ

Figure 4.40:  Temperature coeffi-
cient of energy (heat capacity) as 
a function of temperature, and 
energy change of a body.

C

T

C = TK

∆E

˙ ˙ ˙ ˙
,E me I T I T S Tm TE th S= = = = = κ

0.0 0.5 1.0 1.5 2.0 2.5
0

10

20

30

3R

T�/�TD

c�
/ J

/(
K

�·�m
ol

e)
–

4.15

4.17

4.19

4.21

4.23

4.25

0 2 0 4 0 6 0 8 0 100

c 
/ k

J/
(K

�·�k
g)

T / °C

Figure 4.41:  Left: Specific heat 
of water. Right: Molar specific 
heat for several solids. 
At high temperatures, reaches 
roughly 3R for most solids, 
where R = 8.31 J/(mole · K) is the 
universal gas constant. TD is the 
Debye temperature which differs 
for different solids. (For copper 
and silicon the values are 343 K 
and 640 K, respectively.)

c T k= ,
c

s s c T Tref ref= + ( )ln

e e c T Tref ref= + −( )



4.5  ENTROPY-TEMPERATURE CHARACTERISTIC OF SIMPLE FLUIDS

PART II 151

Equ.(4.43) is derived even more easily. All we have to do is integrate Equ.(4.40) for
a constant value of the temperature coefficient c.

Now we can understand the form of the temperature – entropy characteristic of water
which can be seen in Fig. 4.37. According to Equ.(4.42), the temperature T is an ex-
ponential function of the specific entropy s of water.

4.5.6 Dynamical Models, Entropy, and Temperature

The temperature of a body is a central quantity in any dynamical model of a thermal
system. It can be calculated from the entropy of the body in two steps, first by com-
puting the specific entropy, and then by applying the temperature – entropy character-
istic of the material. Alternatively, we can apply concrete relations of the type found
in Equ.(4.38) or Equ.(4.42). The part of a dynamical model that calculates the temper-
ature may look like the one shown in Fig. 4.42.

Table 4.7: Entropy capacitance and temperature coefficient of energy at 20°C

Substances
Specific entropy 

capacitance
Molar entropy 

capacitance

Specific 
temperature 
coefficient of 

energy

κκκκ / J · K–2kg–1 κκκκ / J · K–2mole–1 c / J · K–1kg–1

Aluminum 3.06 0.0826 896

Concrete 2.87 840

Copper 1.31 0.0837 383

Glass (pyrex) 2.87 840

Granite 2.56 750

Ice (0°C) 7.69 0.123 2100

Iron 1.54 0.0864 452

Lead 0.44 0.0911 129

Lithium 1.16 0.0080 339

Sand (dry) 2.87 840

Silicon 2.40 0.0672 703

Sodium 4.16 0.0958 1220

Steel (average) 1.57 460

Wood (average) 8.53 2500

Mercury 0.47 0.0954 139

Petroleum 7.30 2140

Water 14.26 0.257 4180
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44. Why do we have to exclude compression or expansion from the model of heating or cool-
ing of simple materials considered in this section?

45. Why is the warming factor of glycol constant? Does this mean that the entropy capacitance
of glycol is constant as well?

46. The warming factor of glycol is about 0.13 K2kg/J. What is its entropy capacitance?

47. What is the warming factor of a mixture of ice and water undergoing phase change?

48. Between 20°C and 30°C, the specific entropy capacitance of water is about 14 J/(K2kg).
How much entropy has to be added to 10 kg of water to change its temperature from 20°C
to 30°C? How much energy is added to the water at the same time?

49. Why does Fig. 4.40 tell us that for water ∆E = mc∆T?

50. Consider the temperature – entropy characteristic of water in Fig. 4.37. Does the warming
factor increase or decrease with temperature? What does this mean for the entropy capac-
itance of water?

51. How does the entropy capacitance of water depend upon temperature? How can this be de-
rived from Equ.(4.42)?

EXAMPLE 4.11. Measuring the entropy capacitance of water. 

Assume that two liters of water inside an insulated bottle are being heated by an immersion heat-
er. The voltage and electrical current are kept constant at 220 V and 1.36 A, respectively. The
temperature of the water is monitored. It is found that the temperature is quite nearly a linear
function of time, with dT/dt = 0.0356 K/s. Determine K(T) and C(T), and calculate the entropy
capacitance and the temperature coefficient of energy per mass for a temperature of 20°C.

SOLUTION: dT/dt is constant, with a value of 0.0356 K/s. The energy current is constant as
well:

Consequently, the temperature coefficient of energy is a constant (or nearly so) for water:

The experimental results make C = TK = 8400 J/K for this body of water. The entropy capaci-
tance of two liters of water is therefore equal to

while the temperature coefficient of energy is constant and equal to C = TK = 8400 J/K. The
entropy capacitance per unit mass at 20°C is κ = 8400/(2 · 293) J/(K2 · kg) = 14.3 J/(K2 · kg). The
temperature coefficient of energy per unit mass is c = 8400/2 J/(K · kg) = 4200 J/(K · kg). Note
that accurate measurements of the value of c = Tκ show that it is almost constant over the range
of temperatures given (see Fig. 4.41, left).

EXAMPLE 4.12. The entropy of solids.

According to a constitutive law named after P. Debye, the molar entropy capacitance of a solid

QUESTIONS
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obeys the following relationship at very low temperatures:

Here,  is the molar entropy capacitance (entropy capacitance per unit amount of substance n;
see Chapter 6), and TD is the Debye temperature. The temperature of the solid must be much
smaller than this critical value for the formula to hold; i.e., T « TD (Fig. 4.41, right). (a) If the
entropy of a solid is equal to zero at 0 K, how large is the entropy content of one mole of such
a body at a temperature T ? (b) What is the temperature coefficient of energy of this body?

SOLUTION: (a) According to Equ.(4.39) we obtain for the entropy content

Note that this quantity actually corresponds to the change of entropy content due to heating from
absolute zero. In writing this we have set the entropy content equal to zero at 0 K. 

(b) The temperature coefficient of energy is defined as the product of temperature and entropy
capacitance. Therefore we have

EXAMPLE 4.13. The temperature coefficient of energy (specific heat) of glycol.

According to the data in Fig. 4.37, the temperature of glycol is nearly a linear function of the
specific entropy given by 

Determine the specific entropy capacitance and the specific temperature coefficient of energy
(specific heat) as functions of temperature for the range for which data has been taken.

SOLUTION: The specific entropy capacitance is the inverse of the warming factor αS . Since αS
is constant, κ must be constant as well:

The temperature coefficient of energy is equal to the entropy capacitance multiplied by the
(Kelvin) temperature. Thus:

Therefore, the specific heat c (specific temperature coefficient of energy) varies between 2240
J/(K · kg) at 20°C and 2850 J/(K · kg) at 100°C.

EXAMPLE 4.14. The time required to heat water using a heat pump.

Calculate the times needed to heat the same amount of water (a) using an ideal heat pump, and
(b) using an immersion heater, if the electric power of both devices is the same.

SOLUTION: According to Equ.(4.34) and Equ.(4.40), the thermal energy current entering water
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during heating is proportional to the time rate of change of the temperature:

with C constant.

(a) Consider the energy current to be delivered by an ideal heat engine. According to Equ.(4.29),
it is given by

If we combine this with the constitutive law stated above, we get the differential equation

The entropy delivered by the heat pump is taken out of the ground at constant lower tempera-
ture, while the upper temperature varies from the initial temperature Ti ≥ TL of the water to the
final temperature Tf . Under these conditions, the solution of the differential equation delivers
the time for heating using the heat pump:

(b) In the case of the immersion heater, the thermal energy current heating the water is equal to
the electrical energy current of the immersion heater. Therefore the time required for heating is

This value is definitely larger than the one obtained for the heat pump.

EXAMPLE 4.15. The availability of a body of water.

Take a body of water of mass m at temperature Ti. How large is its availability in an environment
at temperature T0?

SOLUTION: The availability of a body is defined as the amount of energy
which may be released by letting its entropy fall to the level of the environ-
ment. With the expression for the available power (Equ.(4.31)),

and the balance of entropy and the definition of the entropy capacitance, we
obtain

The availability Eav is computed as follows:
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which leads to

This is how much energy can be released by an ideal heat engine from a body of water at tem-
perature Ti in an environment at temperature T0 . The term proportional to Ti – T0 is equal to the
change of the energy of the body while the second term represents the energy emitted to the en-
vironment together with the entropy which has been withdrawn from the body. You can calcu-
late the result directly by considering these integrated quantities. (See Example 4.16 for how to
do this.)

EXAMPLE 4.16. Heat transfer (between two equal amounts of water) using a heat engine.

Consider two bodies having identical and constant temperature coefficients of energy C. Their
initial temperatures are assumed to be T1 and T2 < T1. Entropy is transferred from the hotter to
the cooler reservoir using an ideal heat engine. What is the value of the final temperature at-
tained by the bodies, and how much energy is given off by the heat engine in the mechanical
process?

SOLUTION: In this case no entropy is produced, which means that the change of the entropy
content of the two bodies is zero. Put differently:

or

which leads to

The geometric mean is always smaller than or equal to the arithmetic mean. The energy released
in the fall of entropy must be equal to the difference of the energy contents of the reservoirs at
the beginning and at the end:

Since this quantity is negative, the bodies lose energy in the mechanical process.

EXAMPLE 4.17. Equilibrating temperatures in bodies in thermal contact.

Two bodies of water having equal mass and initial temperatures T1i and T2i , respectively, are
brought in thermal contact. Otherwise, they are perfectly insulated from the environment. What
is the final temperature reached, and how much entropy is produced in this process?

SOLUTION: Water is a substance having constant temperature coefficients of energy (specific
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heats). For two equal amounts, the CT diagram (Fig. 4.40, Fig. Ex.17) is the same horizontal
line. Using the balance of energy on the entire process from beginning (i) to end (f), we see that

which we can read off the CT diagram shown here. The associated ΚT diagram (Fig. 4.39, Fig.
Ex.17) shows, that the change of entropy of the two bodies together is greater than zero: entropy
has been produced:

4.6 ENTROPY TRANSFER IN HEATING AND COOLING

Now that we know how to calculate the temperature of simple materials if their entro-
py is known, we can turn our attention to the second main job of creating dynamical
models of thermal systems: how to find expressions for entropy currents heating or
cooling a body. In this section, overall heat transfer (entropy transfer) through layers
separating a body from its environment, or two bodies in thermal contact, will be stud-
ied. A simple example of the former situation is a well stirred body of water inside a
container in an environment (Fig. 4.4); the latter case is exemplified by two bodies of
water separated by a thin wall, or a body such as a copper cylinder submerged in water
of a different temperature (Fig. 4.1).

There are two main findings of this study. First, we will see that a simple expression
for overall entropy transfer through layers can model realistic situation very well—we
do not have to consider details to obtain some useful results. Second, and most impor-
tantly for our understanding of the dynamics of heat, we will recognize that heat trans-
fer is dissipative, i.e., that entropy is produced when it flows through materials.

4.6.1 Thermal Driving Force and Overall Entropy Transfer

When entropy flows we normally speak of heat transfer. Entropy flows as the result
of (1) spontaneous flow through matter due to a temperature difference, (2) convective
transport with fluids, or (3) radiation. If one or all of these processes lead to a flow
through a series of layers from a hot body to a colder body, we speak of overall entropy
flow. The entropy flux IS is expressed in terms of an overall entropy conductance GS
and the temperature difference (Fig. 4.43):

(4.44)

Here, Ta is the temperature of the environment of the body whose temperature is equal
to T. The equation is written with respect to the body gaining or losing entropy. When
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we have identical conditions, but twice the surface area of transfer layers for entropy
to flow through, the current doubles. Therefore, the conductance is written in terms
the product of an overall entropy transfer coefficient hS and the surface A through
which the flow takes place:

(4.45)

The entropy flux through a surface is related to its associated energy current by the
temperature T at the surface of the body (Fig. 4.43):

(4.46)

GE = TGS is called the overall energy conductance. The product of the entropy transfer
coefficient and temperature,

(4.47)

is called the overall heat transfer coefficient.26 Therefore, the energy current accom-
panying the entropy flow is

(4.48)

Thermal interfaces and transfer layers. What are heat transfer layers made of? What
types of layers are there, and how might they be arranged? Most importantly, how can
they be identified? The answer given here is preliminary and essentially qualitative.
To understand details of transfer layers we need to study heat transfer in considerably
more details. This we will do in Chapter 7.

Consider the case of the flow of heat through a wall of a building in winter. It is warm
inside and cold outside, and there are two fluids (air) separated by solids. Clearly, the
basic condition for the existence of a thermal interface between two bodies whose dy-
namics we are interested in, is a temperature difference from one side to the other of
the layers that make up the interface.

So the wall—which may be made up of several different layers—must be warmer on
the inside than on the outside. The temperature drops in the materials in the direction
to the cold environment: There are temperature gradients in the layers (Fig. 4.44), and
entropy is transferred by conduction. These gradients depend not only upon the overall
temperature difference but upon the type of material a layer is constructed of as well. 

This is not the whole story, though. When you touch the surface of the wall or window
on the inside of the building, you may notice that it is cooler than the air of the room;
measurements will confirm this impression. Clearly, there is a temperature drop from
the inside air to the inside surface of the wall (Fig. 4.44). Since the air in the room is
more or less well mixed, the temperature should be about the same throughout. How-
ever, in a thin layer near the solid interface, there is a so-called convective transfer lay-
er (Fig. 4.45) in which the temperature changes in the direction of the flow of entropy.

26. Remember that the word heat has been used for energy transferred in heating or cooling
since about 1850. That is why the term heat is associated with transfer coefficients for en-
ergy flowing with entropy.
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The nature of entropy transfer through a convective layer is very complex. There is
conduction immediately where the fluid touches the solid. The entropy transferred to
the fluid is then carried away—how this happens depends upon the details of fluid
flow in the transfer layer (Fig. 4.44). Simultaneously, radiation may contribute to the
loss of entropy from a warm surface or a body. In practice, we often include the effects
of radiation in a combined expression for the transfer at the surface of the solid inter-
face. So, we should actually speak of a convective-radiative transfer layer.

Naturally, we expect a similar convective layer on the outside surface of the wall.
Again, there is a temperature drop in the direction of the transfer. In summary, we can
say that the temperature drops in several steps through a composite interface. There
are several layers in series through which heat flows. And if we take into consideration
different walls and windows simultaneously, we say that these are arranged in parallel.
This sounds very much like the situation we might encounter in an electric circuit with
conductive elements (resistors) combined in series and in parallel. Indeed, a particular
layer in a heat transfer interface may be considered a thermal resistor (Fig. 4.44).

4.6.2 An Example of a Dynamical Model

As we have already seen in Section 4.2, combining this simple expression of an entro-
py current through a series of layers with the relation of entropy and temperature of a
body, and the entropy balance for that body, leads to useful dynamical models for the
cooling or heating of uniform bodies (Fig. 4.46). Here, I am going to add the details
of entropy flow and storage discussed in this and the previous section to the model cre-
ated in Fig. 4.16, and I will apply it to the examples of cooling and heating of a single
body of water already discussed in Fig. 4.4 and in Section 4.2.

Take the concrete case of cold water in a drinking bottle sitting in a warm room. The
water is stirred continuously. As always, we start with considering the balance of the
relevant fluidlike quantity. Here it is the balance of entropy of the uniform body of wa-
ter. Since there is a temperature difference between water and environment, entropy
will flow; and since the water is stirred, there will be entropy produced inside the bot-
tle. In summary, we have 

(4.49)

We need three constitutive laws to complete the model: (1) An expression for the re-

Figure 4.46:  Left: SD model di-
agram of the cooling (or heating) 
of a uniform body at temperature 
T. Right: Application to the heat-
ing of cold water in a drinking 
bottle. The water is stirred, the 
aluminum bottle is inside an in-
sulating bag. The simulation re-
sult (solid line) is barely visible 
since it fits measured water tem-
peratures (dots) almost perfectly.
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lation between entropy and temperature of the system (body of water), (2) a relation
for the entropy current expressed in terms of the temperature difference between in-
side and outside, and (3) the expression that relates entropy production and dissipation
rate:

(4.50)

The first relation derives from Equ.(4.42) with Tref = 273 K and sref = 0 Ct/kg. The
second was just introduced. For a specific case of the third relation, let me assume a
process at constant mechanical (stirring) power. Ta is taken from experimental data re-
ported in Fig. 4.46. The law of balance and the constitutive relations have been imple-
mented in the system dynamics model in the same figure (Fig. 4.46, left). Simulation
of the model and comparison with measured water temperatures lead to Pdiss = 0.28
W and hS = 0.0145 W/(K2m2). 

The exactly same model can be applied to the case of cooling of hot water in an unin-
sulated aluminum can (see also Section 4.2). In contrast to the slightly simplified mod-
el in Fig. 4.16, this one delivers even better results; there is virtually no difference
between measured water temperatures and a simulation if we use Pdiss = 1.7 W, hS =
0.023 W/(K2m2).

The difference between the entropy transfer coefficients is a consequence of the insu-
lation used in the case of the cold water in the drinking bottle. In Chapter 7, we will
study how to use the results of overall transfer coefficients and theory regarding dif-
ferent types of heat transfer through different layers to obtain material properties such
as entropy conductivities or convective transfer coefficients. At this point it suffices
to say that we understand why the overall entropy transfer coefficient of the case of
the drinking bottle is smaller than that of the uninsulated can: In the former case, there
is an additional layer for entropy to cross, so the flow will be smaller for the same tem-
perature difference.

According to Equ.(4.47), the heat transfer coefficient is related to the entropy transfer
coefficient by the temperature of the water. If we use an average value, we obtain h =
7.6 W/(K·m2) for the case of the polished aluminum can. This value must represent
the heat transfer from the surface of the can to the outside since transfer from water to
metal and through the thin metal are much more efficient than transfer through the sur-
face air layer. (When there are a few efficient layers and one bad one, the latter dom-
inates the value of the entropy or heat transfer coefficients.) When we look in tables
we find values of 12 – 14 W/(K · m2) for heat transfer coefficients from surfaces to
(still) air. The one measured in our experiment is considerably smaller. The reason for
this will become clear in Chapter 7: In most situations, radiation from a surface adds
to entropy transfer due to the direct contact of surface and air, making the transfer co-
efficient larger. The polished aluminum surface, however, is like a mirror which is a
poor emitter for thermal radiation (Chapter 7).

An analytic model. The simplest models of cooling of bodies making use of partic-
ular material properties lead to an exponentially decreasing temperature. This hap-
pens, for example, in the case of a hot fluid in a can having constant values of entropy
capacitance and entropy transfer coefficient, or in a model using constant energy re-
lated values (temperature coefficient of energy and heat transfer coefficient). In the
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latter case, the model equations are

with constant C and h. The second and third equations are inserted into the law of bal-
ance of entropy to yield

The solution of this differential equation with its initial condition is

(4.51)

τ is the time constant of this system, and Ah may be considered a thermal resistance.
This behavior is analogous to what we know from simple RC systems in fluids, elec-
tricity, or mechanics.

4.6.3 Uniform Bodies in Thermal Contact

Imagine two bodies of different temperatures in thermal contact. Entropy flows from
the hotter to the colder, and temperatures equilibrate (Fig. 4.1). However, this is not
the entire story. When entropy flows from a hotter to a colder body, more entropy is
produced; this means that the entropy current increases in the direction of flow.

In common language, we would say that heat is produced when heat flows. The phe-
nomenon is not as obvious as the production of heat in a fire or as a consequence of
mechanical friction, but the conclusion is unavoidable. We can list many reasons that
should convince us of the irreversibility of entropy transfer through a series of layers
between bodies at different temperatures. For one, conduction of entropy is analogous
to conduction of charge or momentum which are entropy producing processes. A ther-
mal conductor is a thermal resistor just as an electric conductor has resistive proper-
ties. Secondly, real heat engines are not nearly as efficient as the formula for ideal ones
would indicate. Their irreversibility is mostly due to heat transfer through the heat ex-
changers between furnace and working fluid, and fluid and cooler (mechanical and
other operations in classical heat engines can be designed relatively close to ideal con-
ditions).

Lost power in thermal conduction. The most convincing argument may be this. In
the conduction of entropy through a thermally resistive material, energy is released as
a consequence of the fall of entropy. There is thermal power accompanying the phe-
nomenon (Fig. 4.47)—this is equal to the power of an ideal Carnot engine driven by
the fall of entropy from T1 to T2. Energy released can drive another process. In a sim-
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ple conductor that cannot undergo any other process (chemical, electrical, mechanical,
etc.), the energy made available is completely dissipated—it is used to produce entro-
py. In the language of Section 4.4.3, we can speak of lost power:

On the other hand, the lost power is proportional to the entropy production rate and
the temperature at which the entropy is emitted (here, this is T2, see Fig. 4.47 and
Equ.(4.32)):

Combining these expressions for lost power leads to

(4.52)

Alternatively, this relation can be derived by combining the expressions for the bal-
ance of entropy and energy, and relations between energy and entropy currents. Note
that the energy current passing through a series of transfer layers is constant in steady-
state.

Entropy is always produced if entropy flows from a hotter to a colder place without
driving another process. This effect has to be taken into account in dynamical models
involving more than one body, i.e., as soon as we have two or more bodies in thermal
contact whose thermal processes we want to understand. 

Dynamical models of thermal capacitors and resistors. There appears to be an in-
surmountable obstacle to constructing simple dynamical models of entropy transfer
between bodies at different temperatures. At least it seems that we cannot simply ap-
ply what we have already done, namely create models of spatially uniform dynamical
systems. When entropy flows through bodies—specifically through solids—tempera-
ture changes from point to point, and so do the entropy currents. We will solve this
problem later by producing continuum models (Chapter 13). 

However, there is a simpler solution which combines ideas already used. Imagine two
bodies of water which can be stirred to ensure homogeneous conditions. These bodies
are separated by a solid wall through which entropy can flow. This system suggests a
simple model: there are two spatially uniform bodies that store entropy and since they
are supposed to be homogenous, let entropy pass easily. We have discussed this idea
already: We may speak of thermal superconductors that store entropy—they are ideal
thermal capacitors. These capacitors are joined by a thermal resistive element that
conducts entropy as a consequence of a temperature difference but does not store en-
tropy: The wall is a thermal resistor. A process diagram of this system is easily drawn;
it explains in graphical terms what is meant by the model of uniform dynamical sys-
tems in thermal contact (Fig. 4.48). As the temperatures of the bodies of water equil-
ibrate, this simple aggregate dynamical model produces the same amount of entropy
as that calculated from the changes of state alone (see Example 4.17). Only, here we
are able to follow the temperatures of the thermal capacitors in the course of time.

A possible representation of entropy production due to entropy transfer in a system dy-
namics model is shown in Fig. 4.49. The storage element in the middle is a symbol for
the entropy of the transfer layer between the bodies. Since the transfer layer is a resis-
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tor, it does not store entropy. Therefore, the flow out of this element equals the sum of
the flow into and the entropy production rate in the element:

(4.53)

This is equivalent to the junction rule known from electric or hydraulic circuits. If the
model in Fig. 4.49 is applied to the equilibration of temperatures of two bodies of wa-
ter that are perfectly insulated from the environment, we obtain very good results. If
we were to neglect entropy production due to heat transfer, the computed final tem-
perature would be noticeably too low.

4.6.4 Thermal Conductances for Composite Interfaces

The entropy conductance GS is the factor describing entropy transfer through layers
(Equ.(4.44)). An interface between two bodies in thermal contact may be thought of
as a combination of conductors in series and in parallel (Fig. 4.50). If the conductances
are independent of temperature, there are simple rules for combining them. In the case
of two parallel layers between the same temperature difference, the combined conduc-
tance is

(4.54)

This is what we already know from electricity. The case of series connections is a little
different because of the production of entropy in the elements (Fig. 4.50, bottom).
With the relations used in this section and with a little algebra, we arrive at:

(4.55)

I IS S S2 1= + Π

Figure 4.48:  Model of two spa-
tially uniform bodies in thermal 
contact. Processes in these bod-
ies are assumed to be reversible. 
Irreversibility originates in the 
interface between the bodies.
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The factor T/T1 is different from the corresponding relation that applies to electric cir-
cuits; the difference is to be found in the fact that electric charge is conserved whereas
entropy is not. 

We could also write combinations of thermal (energy) conductances. Again, if they
are independent of temperature, a relation analogous to Equ.(4.54) holds for parallel
layers. The relation for layers stacked in series is simpler than Equ.(4.55); in fact, it
takes the same form as in electricity, since the energy is conserved in its transit through
transfer layers:

(4.56)

It is not possible for entropy conductances and energy conductances to be both inde-
pendent of temperature. In real life, neither quantity will be constant. Still, either one
of the assumptions—constant GS or constant GE—will suffice for many applications.
Finding the one that delivers better results is a matter of trying them out.

52. What observations suggest that entropy currents through a heat transfer layer might be pro-
portional to the temperature difference across the layer?

53. Why is heat transfer an entropy producing process?

54. Entropy flows through a layer from 600 K on the hot side to 300 K on the cold side. By
what fraction does the entropy current increase?

55. Why does Equ.(4.53) apply to an entropy junction (node)?

56. For a given entropy current through a temperature difference, does the rate of entropy pro-
duction only depend upon the temperature difference or does it matter at what level the
temperatures actually are?

57. Why is the relation for combining conductances for transfer layers in series different from
the form known to apply to electric circuits?

EXAMPLE 4.18. Response of a temperature probe to changing environments.

A temperature sensor is in air at room temperature. It is suddenly put into hot water. After the
temperature reading has stabilized, it is taken out of the water, dried, and left lying in air at room
temperature (data of process is shown in the diagrams of Fig. Ex.18.1; an enlargements of the
initial rise is seen in the diagram on the right).
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(a) Determine the time constant by hand (without transforming the graph) for the temperature
sensor in water. How could you do this most easily? What is the time constant? (b) Create a
graph from the temperature data for the equilibration in air (after 120 s) in which the tempera-
ture might most likely be a linear function. Use this diagram to determine the time constant of
the thermometer in air. What is the value of this time constant? (c) Assume the heat transfer co-
efficient from the thermometer (steel) to air to be about 14 W/(K · m2). How large is the heat
transfer coefficient from water to the thermometer? (d) The thermometer is taken from the
kitchen at 20°C and placed into an oven at 180°C for 1.5 minutes. Then it is placed in the kitchen
again. Sketch the expected behavior of the temperature reading as a function of time (use nu-
merical values where necessary and possible).

SOLUTION: (a) The time constant corresponds to the time it takes for the temperature to rise to
63% of the initial temperature difference. This difference is 49°C – 25.5°C = 23.5 K. 63% of
this is 15 K. Therefore, after one time constant, a temperature of 25.5°C + 15°C = 40.5°C should
be reached. We can simply count the points in the diagram in Fig. Ex.18.1 (right). After about
10 data points, the temperature is a little above 40°C. Therefore, the estimate of the time con-
stant for the thermometer in water is 5.0 s.

(b) We prepare a graph for the decreasing temperature with a logarithmic scale for the temper-
ature. This can be done by using the (relative) difference of the temperature of the thermometer
and the surrounding air:

We expect T(t) to be an exponentially decaying function:

The slope of the logarithmic relation in Fig. Ex.18.2 is 0.010 s–1, so τ = 100 s.

(c) If we take as the dynamical model of the thermometer a uniform body having a certain en-
tropy resistance from its surface to the environment, and having a certain entropy capacitance,
the time constant of the system must then be 

Since Κ is the same for both phases of the process, the entropy resistance from water to ther-
mometer must be 100/5.0 = 20 times smaller than that for air to thermometer. Therefore, the
conductance must be 20 times larger. This applies to the energy conductance as well, or to the
energy transfer coefficient. Therefore, h = 20 · 14 W/(K · m2) = 280 W/(K · m2) for the transition
from thermometer to air.

(d) For the dynamics of the thermometer, the behavior in air is required. The thermometer reacts
to a sudden temperature change with a time constant of 100 s. Therefore we should have a re-
sponse like the one constructed in the diagram on the right of Fig. Ex.18.2.
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EXAMPLE 4.19. Heating a home and estimating entropy production in heat transfer.

Consider a home having a thermal conductance of 300 W/K to be heated in winter. In steady
state, temperatures are 20°C and 0°C on the inside and the outside, respectively. (a) Estimate
the entropy conductance of the home and the entropy current leaving the home. (b) If the radi-
ators supplying the entropy are to have a surface temperature not exceeding 60°C, what must
their surface area be? (The heat transfer coefficient from their surfaces to the air in the rooms is
14 W/(K · m2). (c) What is the relative error made in calculating entropy currents (from the ra-
diators to the rooms, from the rooms to the outside environment) if entropy production due to
transfer is neglected?

SOLUTION: (a) Entropy conductance and thermal (energy) conductance are directly related by
temperature. If we take the temperature of the inside of the home, we have

This leads to an entropy current of

leaving the inside of the home. The associated energy current is roughly equal to 300 K · 20 W/
K = 6000 W.

(b) According to Equ.(4.45), the entropy current from the radiators into the rooms is related to
the temperature difference between radiators and rooms, the entropy transfer coefficient, and
the surface area through which the current enters the space inside the home. If we assume the
entropy current leaving the home to be equal to the one coming from the radiators, we have:

(c) First, take the case of radiators and rooms. The entropy current entering the room is greater
than the one leaving the radiators by the entropy production rate. The relative value of the error
is

(see Equ.(4.52); this means that we have overestimated the surface area of the radiators in (b)
by about 10%). The corresponding relative error for entropy transfer from the home to the en-
vironment is 0.07.

EXAMPLE 4.20. Conductors in series.

Very cold water is filled into an insulated aluminum bottle which is then sealed. The bottle is
allowed to stand in a warm room for about one day. The water is constantly stirred by a magnetic
stirrer. In the diagram (Fig. Ex.19) one sees the temperatures of both the water and the environ-
ment. 

Use the experimental results to estimate the missing parameters of a model of the processes un-
dergone by the water (power of the stirrer and overall entropy transfer coefficient). Use this to
estimate the entropy transfer coefficient of the insulation.

Information: Height of the container: 15 cm, inner radius: 3.5 cm, thickness of the aluminum:
very thin, thickness of the insulation: 6 mm. The lid and the bottom are perfectly insulated. The
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inner heat transfer coefficient from the water to the container is very high. The outer one from
the insulation to the air is 12 W/(K · m2). Treat the insulation as a flat layer.

SOLUTION: The law of balance of entropy of the body of water includes the transfer of entropy
from the environment and the entropy production rate:

The rate of change of entropy can be related to the rate of change of the temperature of the body
of water:

The entropy capacitance can be calculated from the specific entropy capacitance and the mass
of the body of water which is equal to 0.15 · π · 0.0352 · 1000 kg = 0.58 kg. Therefore, we find Κ
= 14 · 0.58 J/K2 = 8.1 J/K2. 

Entropy current and entropy production rate are expressed by

If we take two pieces of data from the experiment, the missing parameters can be determined.
A first one can be obtained from conditions at t = 0 s:

The rate of change of temperature at t = 0 s can be estimated graphically, and so can the relevant
temperatures. For large times around 80,000 s we have

For steady-state, the rate of change of entropy equals zero. Temperatures have again to be taken
from the experimental results. Now there are two linear equations for G and P which turn out to
be equal to 4.6 · 10–4 W/K2 and 0.30 W, respectively. The entropy transfer coefficient turns out
to be equal to 4.6 · 10–4 W/K2 / (2π · 0.035 · 0.15) m2 = 0.014 W/(K2 · m2) (compare these results
to the ones obtained from the dynamical model in Section 4.6.2).

The entropy transfer coefficient for the insulation alone is obtained as follows. Since the tem-
peratures involved are not very different, we can simply add the inverse values of the conduc-
tances to obtain the inverse of the total conductance (Equ.(4.55)). Since the surface is (nearly)
the same everywhere, this also holds for entropy transfer coefficients. Therefore, 1/0.014 = 1/
GS + 1/(14/295), or GS = 0.020 W/(K2 · m2).
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EXAMPLE 4.21. Laws of balance of entropy in a model of equilibration.

Consider the experiment shown in Fig. 4.1. A copper block is submerged in water which is in-
side a jar made of glass. The jar is insulated from the environment, but the insulation is not per-
fect. Formulate all relevant laws of balance of entropy for a dynamical model of this system.
Treat glass, water, and copper as three uniform bodies.

SOLUTION: There are three entropy storage elements (copper: c, water: w, glass: g) and two
entropy transfer interfaces (between c and w, and w and g, respectively). The entropy transfer
layers between glass and environment need not be included in the model. Combining these as-
sumptions leads to a model diagram of the form shown in Fig. Ex.21.

The laws of balance of entropy for the storage elements are:

For the transfer layers they take the form of junction rules (Equ.(4.53)):

Note that laws of balance do not include constitutive information concerning flows etc.

4.7 THERMAL ENGINES AND HEAT TRANSFER

Thermal engines in general, and heat engines in particular, do not work reversibly.
There are many reasons for concrete irreversibilities, i.e., for entropy production. If we
disregard the origin of the entropy that drives the engine, the most important entropy
producing processes are friction and heat transfer, and among these heat transfer dom-
inates in a typical heat engine.

In this section, a simple model of a Carnot engine with heat transfers through sizeable
temperature differences will be created. This prepares the ground for an interesting
idea we will take up again in detail in Chapter 9, namely that processes should be de-
signed in such a way that they minimize entropy production. Since entropy production
in an engine means loss, this idea is certainly not farfetched. Then, thermoelectric de-
vices will be modeled. We have advanced to a point in the theory of dynamical thermal
processes where we can discuss in a rather simple manner a phenomenon that is com-
monly considered difficult to understand and model.
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4.7.1 A Carnot Engine Between Heat Exchangers

The central part of a heat engine—the working fluid—operates by lowering entropy
from a high to a low temperature. As we will see, the entropy transfer to and from this
part of the engine is the source of the greatest irreversibility. Let us consider a Carnot
engine, i.e., a device that receives entropy at constant high temperature T1E (Fig. 4.51)
and gives it up at constant low temperature T2E (the index E denotes the actual en-
gine). The lowering of the temperature of the working fluid—and therefore the lower-
ing of the entropy from T1E to T2E—is the result of expansion of the gas in the engine.
If we assume, as is fairly reasonable, that the mechanical operations in the engine are
reversible, the core of the thermal system operates reversibly.

Now we have to take a close look at how entropy enters and leaves the reversible en-
gine. Clearly, entropy comes from the furnace and goes to the cooler (Fig. 4.51). If we
want heat transfer to happen in finite time, there need to be temperature differences
across the heat exchangers that facilitate the flow of entropy to and from the engine.
A zero temperature difference—which would be ideal for the engine so it could utilize
the entire temperature range from T1 to T2 (Fig. 4.51)—leads to entropy currents that
are zero. Completely perfect engines would simply not run.

If there are temperature differences that allow the engine to run at realistic speeds,
there will necessarily be entropy production and, in the end, loss of power. This loss
can be quantified by adding the entropy production rates in the heat exchangers and
multiplying this sum by the lowest temperature of the system:

(4.57)

Heat exchangers. The process diagram in Fig. 4.51 demonstrates, in a strongly sim-
plified manner, how we can understand the function of actual heat exchangers. Ac-
cording to this model, they are nothing but a heat transfer interface between two
bodies at different temperatures. Entropy flows through them, which causes more en-
tropy to be produced. The transfer rate (current) depends upon the temperature differ-
ence across the exchanger and the heat transfer properties quantified by the entropy
conductance of the device. The theory of heat exchangers according to this model is
contained in the equations presented in Section 4.6. If we combine this theory with
what we know about reversible engines, the model in Fig. 4.51 can be quantified.

An optimal endoreversible engine. As mentioned above, the main contribution of
entropy production stems from heat transfer which takes place during heating and
cooling of the working fluid. To effect this heating and cooling, heat exchangers are
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added between the furnace and the fluid, and between the fluid and the cooler. In the
simplest model of this kind, the fluid is assumed to operate reversibly. All irreversibil-
ities take place in the heat exchangers (Fig. 4.51). Such a model engine is called en-
doreversible.

With T1, T2, and IS1 held fixed, the model can be optimized (see Chapter 9) by deter-
mining the condition of minimal entropy production rate (which coincides with max-
imum useful energy current). This leads to the so-called Curzon-Ahlborn efficiency:27

(4.58)

This is a much more realistic estimate of the actual efficiency than the Carnot efficien-
cy derived in Equ.(4.27). It will be derived in Chapter 9, together with several other
interesting applications of the concept of minimization of entropy production. To see
how well it works, take the example of a large nuclear power plant. Data shows a ther-
mal (first law) efficiency of 30% with upper and lower temperatures for the system of
300°C and 30°C. The Curzon-Ahlborn estimate yields a value of 28%. Compare this
to a value of 47% obtained from Carnot’s formula.

4.7.2 Thermoelectric Generators and Coolers

Thermoelectricity provides a beautiful example of thermal engines coupled with en-
tropy transfer. The theory of thermoelectric effects is commonly considered an ad-
vanced topic, but you will see that we already know enough to produce a dynamical
model of thermoelectric devices. It will provide an understanding of the overall func-
tion of a complete device without regard to material details of the processes (a brief
description of the structure of thermocouples is given in Section 4.7.3). A more de-
tailed study of thermoelectricity will be undertaken in Chapter 13.

Observations. Two observations regarding thermoelectricity let us understand the ba-
sic aspects of the phenomenon. First, if we place a thermoelectric device—a Peltier
device as in Fig. 4.11—between two bodies at different temperatures, it operates as an
electric generator that can drive an engine. Temperature differences produce a voltage
(an open circuit voltage, if we do not connect a load). Observation shows that the open
circuit voltage—the thermoelectric voltage UTE —grows in proportion to the temper-
ature difference across the device:

(4.59)

The coupling factor ε in this relation is called the Seebeck coefficient. UTE can be
viewed as the “electromotive force” as in a battery. In this case, chemical reactions are
responsible for this voltage. Here, the temperature difference causes a conductive flow
of entropy through the device from hot to cold which somehow must lead to an electric

27. The type of heat engine called endoreversible was first proposed and analyzed by Curzon
and Ahlborn (1975). They calculated the power of the engine and determined the condition
for its maximum. The efficiency at maximum power, Equ.(4.58), has since been called the
Curzon-Ahlborn efficiency. A simpler derivation was given by DeVos (1985). The problem
was later investigated from the point of view of the minimization of the production of en-
tropy (Salamon et al., 1980; Andresen et al., 1984).

ηI,CA T T= −1 2 1

U T TTE = −( )ε 2 1



CHAPTER 4.  STORAGE, FLOW, AND PRODUCTION OF HEAT

170 THE DYNAMICS OF HEAT

effect. This suggests that the thermoelectric effect is the result of a coupling of trans-
ports of entropy and of charge: As entropy flows through the device, charge is swept
along leading to an electric field and a voltage. When the circuit is open, the flow of
charge will stop and a certain voltage will have been established; this is UTE. Remem-
ber that the voltage measured at the terminals will be different from the open circuit
voltage if charge flows through the generator (see Equ.(4.63) further below).

The second observation confirms this basic idea. We can operate the Peltier device as
a heat pump by driving it electrically. This means that we force an electric current
through the element that leads to a flow of entropy in the direction opposite to its spon-
taneous flow. In other words, entropy is pumped. Consider the special case of starting
the pumping of entropy when the temperature difference across the device is zero—
so there is no conductive entropy current from hot to cold. Experiments show that the
entropy current coupled to the charge current (IS,TE) grows proportionally to the flow
of charge (Fig. 4.52):

(4.60)

The coupling factor α is called the Peltier coefficient. It turns out that Seebeck and
Peltier coefficients must be equal: 

(4.61)

If they were not equal, the energy principle for the thermoelectric processes taking
place would be violated. The validity of this statement will be demonstrated further
below when we take a look at the power of thermoelectric devices.

Seebeck and Peltier coefficients can be positive or negative. The sign depends upon
the sign of the charge being swept along with entropy through the conductor.

Dynamical model of a Peltier device. The observations discussed above concern
the “pure” effects: thermoelectric voltage at zero electric current, and entropy pumped
at zero temperature difference. In general, the special conditions will not hold and we
have to deal with the conductive effects of the flows of entropy and charge as well. To
understand this better, let us construct the simple dynamical model I have been men-
tioning. The starting point is the simple observation that under general conditions, a
Peltier device looks like a panel having a hot and a cold side. At the same time, it has
a side that is at high electric potential and one that is at lower potential. This suggests
the following model. The device consists of two entropy storage elements (for the cold
side and the hot side, respectively; entropy stored in bodies makes them warm), and
two electric capacitors (for the high potential and the low potential, respectively; the
charge of a capacitor leads to its electric potential). 

A graphical representation of these ideas is presented in Fig. 4.53. Between the elec-
tric capacitors we have an electric generator responsible for UTE and resistor for the
conductive transport of charge—just like in a battery. Between the thermal capacitors
there is a thermal resistor for the conductive flow of entropy from hot to cold. The cou-
pled flows of entropy and charge that are responsible for the thermoelectric effect are
like a bypass to this thermal resistor. There is a non-dissipative transport of entropy
that is directly coupled to the electric current.

This model lets us construct the general equations for entropy transport through and
voltage across the thermoelectric device. If there is no conductive transport of entropy,
i.e., if the temperature difference across the Peltier device is equal to zero, there is only

Figure 4.52:  Rate of change of 
temperature of the cold body of 
water shown in Fig. 4.8, as a 
function of the electric current 
through the Peltier device for ∆T 
= 0 K. The rate of change of tem-
perature is proportional to the 
entropy current withdrawn from 
the body of water.
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a single entropy current, namely, the one given in Equ.(4.60). In general, however, the
current of entropy is the sum of thermoelectric and conductive currents:

(4.62)

GS is the entropy conductance of the device. The thermoelectric voltage in Equ.(4.59),
on the other hand, is the only electric potential difference between the electric capac-
itors if there is no flow of charge in the electric circuit. This is the case for open circuit
conditions. Otherwise, the potential difference is the sum of thermoelectric and resis-
tive parts:

(4.63)

(This equation is analogous to what we have in the case of a battery having an internal
resistance Ri . Note that a voltage is a negative electric potential difference.) The last
two equations are the integral forms of the usual partial differential equation represen-
tation of thermoelectric processes (see Chapter 16).

Naturally, we have to add relations for the irreversible effects of conductive transports
of entropy and of charge as well as laws of balance of entropy and charge for the ca-
pacitors in the model of Fig. 4.53. The former lead to

(4.64)

whereas the latter are best visualized in a complete system dynamics model diagram
of a thermoelectric device. Fig. 4.54 provides an overview of the approach to thermo-
electricity discussed here. Note the analogy between the structure of reservoirs and
flows in the SD diagram and the capacitors and flows symbolized in Fig. 4.53.

Application of the dynamical model. The model presented in Fig. 4.54 is for a Pelt-
ier device such as the one pumping entropy from one body of water to another (see
Fig. 4.8). To make use of the model it has to be completed by the dynamics of the bod-
ies of water, entropy transfer to and from the device, entropy transfer to and from the
environment, and data concerning the electric power supply used for driving the Pelt-
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Figure 4.53:  A dynamical mod-
el of a thermoelectric device. 
There are two storage elements 
for entropy (defining the temper-
atures of the cold and the hot 
end, respectively), and two ca-
pacitors (they define the high and 
low electric potentials). The ele-
ments comprise an electric gen-
erator (“electromotive force”), a 
coupled flow of charge and en-
tropy, and conductive entropy 
and charge currents.
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ier heat pump. Entropy transfer from water to the device is modeled according to what
we have discussed above in Section 4.6.3 (see Fig. 4.49). There is also an entropy
transfer “bypass” from the hotter to the colder fluid between the Peltier device and a
lid on the double chambers of the container in Fig. 4.8. The parameters determining
the thermal behavior of the tank in its environment can be obtained by an experiment
that investigates the passive phenomena (thermoelectric device turned off) if we sim-
ply fill hot and cold water into the chambers and close the tank with a lid.

It does not make much sense to present data and simulation28 together since agreement
between the two is so close that the difference cannot be seen very well in a graph such
as the one showing cooling of a body of water in Fig. 4.8. 

Energy in thermoelectric processes. So far we have been able to analyze a thermo-
electric device without recourse to energy considerations. We can hope to gain addi-
tional insight by appealing to the energy principle. Indeed, we will be able to derive
the statement of the equality of the thermoelectric coupling coefficients (Seebeck and
Peltier coefficients, see Equ.(4.61); this is called a reciprocity relation). 

28. There is an important numerical problem to consider when one attempts to perform a sim-
ulation of the model in Fig. 4.54. Realistic estimates of entropy and charge capacitances
yield values that are many orders of magnitude apart (the electric capacitances are exceed-
ingly small). This leads to stiff differential equations that can be solved successfully (and
accurately) with dedicated numerical methods but not with standard explicit codes.

Figure 4.54:  Diagram of a sys-
tem dynamics model of a ther-
moelectric device. The structure 
of the model is depicted in 
Fig. 4.53. Note the representa-
tions of the four storage ele-
ments, two for entropy (hot and 
cold sides of the device) and two 
for electric charge (high and low 
electric potentials). There is a 
node taking the entropy produc-
tion (Fig. 4.49) resulting from 
the conduction of entropy and 
charge. PC: Peltier coefficient, 
SC: Seebeck coefficient. R_S: 
entropy flow resistance; R_i: 
electric internal resistance. 
U_PE: terminal voltage of the 
device; U_TE: thermoelectric 
emf (Equ.(4.59)). IS_TE: non-
dissipative entropy current cou-
pled to electric current 
(Equ.(4.60)). R_ext: Resistance 
of external electric circuit. U_B: 
voltage of external power supply 
(in pumping mode).
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To be specific, consider a Peltier device in generator mode (Fig. 4.55). It is operated
between temperatures T1 and T2. Entropy production due to transfer to and from the
device is assumed to be external to the system being analyzed, and the production of
entropy due to electric conduction has been drawn separately to clarify the role of UTE
as the direct result of the thermoelectric effect. Entropy flows through the device as a
consequence of the driving temperature difference. Now we must distinguish between
two components of this entropy flux: the conductive current IS,c and the thermoelectric
current IS,TE; the latter is coupled to the current of electric charge according to
Equ.(4.60). The conductive current is purely dissipative, the energy released due to its
fall from T1 to T2 is used to produce entropy. This is different for IS,TE, its fall is non-
dissipative, the energy released is used to drive the electric current through the poten-
tial difference UTE. 

Equality of Peltier and Seebeck coefficients. This concludes the conceptualization
of the role of energy in a thermoelectric process. We can now turn to a simple proof
that the thermoelectric coupling coefficients α and ε should be equal. The thermal and
electric thermoelectric powers are expressed by

Since these expressions are equal, and since Equ.(4.59) and Equ.(4.60) hold for UTE
and IS,TE, respectively, we have

which proves the assertion that the Peltier and Seebeck coefficients must be equal.29 

29. This is an example of what is called Onsager’s reciprocity relations for “phenomenologi-
cal” coefficients in coupled transports (such as thermo-diffusion and thermoelectricity). It
is commonly assumed that the Onsager relations have to be proved by microscopic argu-
ment; see Jou et al. (1996), Woods (1975, Chapter 7). Thomson’s (Lord Kelvin’s) original
argument (1882) bears some similarity to the one given above. The reason why the deriva-
tion is so simple here is the straightforward identification of the roles of Pth,TE and Pel,TE.
which parallels the distinction between entropy producing and non-dissipative processes
in thermoelectric systems.

Figure 4.55:  Process diagram of 
a thermoelectric generator. The 
electric (internal) resistor has 
been drawn separately to make 
the role of UTE clear (note that 
IE,el < Pel,TE). Pth(c) is the power 
of the conductive current of en-
tropy, Pth,TE is associated with 
the entropy current that is cou-
pled to the flux of charge.
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Second law efficiencies of thermoelectric devices. In Section 4.4.3, the Second
Law efficiency was introduced as a natural measure of how well a device performs.
For a simple engine such as in Fig. 4.35, it is equal to the power of the useful process
divided by the power of the fall of entropy that drives the engine. This idea can be
transferred to the case of thermoelectric generators (Fig. 4.55) and coolers (Fig. 4.56).

For a generator, the definition is straight forward. The second law efficiency equals
the useful electric power (thermoelectric power minus power of electric resistive pro-
cess) divided by the power of the fall of the entropy current IS1 from T1 to T2:

(4.65)

This is the result for an ohmic load connected to the output of the thermoelectric gen-
erator. RL is the electric resistance of the load (resistor), and Ri, GS, and ε are the three
parameters of the device (internal electric resistance, entropy conductance, and See-
beck coefficient, respectively). This result allows us to discuss how we might improve
the efficiency under certain circumstances. For a given generator, we would want to
find the load that optimizes the second law efficiency. Or given a certain type of ap-
plication (load) we want to design the generator characteristics in order to improve the
system performance.

The case of a thermoelectric cooler is similar. The Second Law efficiency can be de-
fined as the ratio of the (useful) power of pumping the entropy current IS1 from T1 to
T2 and the driving electric power UextIQ (see Fig. 4.56):

(4.66)

After inserting the constitutive relations, we obtain an expression for ηII for given IQ:

(4.67)

It is important to note that these equations denote the Second Law efficiencies calcu-
lated for the thermoelectric generator and cooler not taking into account entropy trans-
fer to and from the devices (such as in Fig. 4.51). If we include the latter, the results
will be considerably lower.
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4.7.3 Structure of Thermocouples and Peltier Coolers

The foregoing discussion of the function of thermoelectric devices suggests that basi-
cally any single conductor should exhibit the features listed in Section 4.7.2. A wire
made of copper going from a hot to a cold body transports entropy and charge, and the
transports are (partly) coupled. However, it is clear that we cannot build an operating
device in this manner. To let electricity flow, we need a closed circuit, so there needs
to be a second conductor leading back from cold to hot (Fig. 4.57, left). If the second
conductor is made of the same material it reverses the effect of the first; the same tem-
perature difference will produce the reversed voltage making the device—called a
thermocouple—electrically ineffective.

Clearly, we must use a different material having a different Seebeck coefficient do
have an effect. In Fig. 4.57, if εA > εB, electric charge can be conducted counter-clock-
wise. (Values of Seebeck coefficients for some metals and semiconductors are given
in Table 4.8.)

Table 4.8: Seebeck coefficients at 0°C (relative to Platinum)a

a. The absolute Seebeck coefficient of Platinum is roughly 5 µV/K.

Metals
Seebeck 

coefficient Semiconductors
Seebeck 

coefficient

εεεε / µV/K εεεε / µV/K

Aluminum 3.5 Ge 300

Bismuth – 72 Se 900

Constantan – 35 Si 440

Copper 6.5 Te 500

Gold 6.5 PbTe – 180

Nichrome 25 Bi2Te3 (n-type) – 230

Nickel – 15 Sb2Te3 (p-type) 185

Platinum 0

Silver 6.5

Tungsten 7.5
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Figure 4.57:  Left: A thermocou-
ple is made of conductors of two 
different materials. Between two 
bodies at different temperatures 
TH and TL, it functions as a gen-
erator or a thermometer. (Entropy 
source and sink have to be insu-
lated electrically from the ther-
mocouple.) Right: Open-circuit 
voltage versus temperature dif-
ference for a T-type thermocou-
ple made of copper and 
constantan (note that the relation 
is not perfectly linear).
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The discussion shows that the effective Seebeck coefficient of a thermocouple is the
difference between the coefficients of the two materials employed. This is called the
differential Seebeck coefficient (this is the coefficient ε in Equ.(4.59)). If we used just
one conductor, say gold, and copper wires on a voltmeter, we could not even measure
anything since copper and gold have effectively the same thermoelectric properties
(see Table 4.8).

The effect becomes more pronounced if materials having positive and negative See-
beck coefficients can be used. This is the case for copper and constantan, to give just
one example. The differential Seebeck coefficient of this combination is slightly more
than 40 µV/K. A thermocouple made in this manner can be used as a thermometer.

Combining two strongly differing materials becomes essential if one wants to build
thermoelectric coolers—otherwise the effect is just too small. Modern Peltier coolers
are built with semiconductors where one leg of a thermocouple is a p-type and the oth-
er is an n-type conductor. If several or even many couples can be combined in series
electrically and in parallel thermally, one obtains effective solutions for thermoelectric
coolers (Fig. 4.58).

Take a closer look at a single thermocouple in Fig. 4.58. As charge flows through both
legs of the couple to form a circuit, it flows up in one and down in the other. Since the
first is an n-type material with negative Seebeck coefficient, entropy is pumped oppo-
site to the flux of charge—here, this is downward from the colder to the hotter body.
In the p-leg, entropy is carried in the same direction as charge flows. So both in the n-
type and p-type semiconductors, entropy is pumped in the same direction.

58. If we have a furnace at T1 and a cooler at T2, why can a heat engine not make use of the
maximum temperature difference T1 – T2?

59. What does it mean to have an endoreversible engine? What is reversible in this case? How
realistic is this model?

60. What does it mean to model the working fluid of a heat pump as a Carnot engine?

61. What is the main assumption concerning thermoelectric devices leading to the proof of
equality of Seebeck and Peltier coefficients?

62. Why would a Peltier cooler with low entropy conductance be better than one with high
conductance?
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Figure 4.58:  A combination of 
thermocouples made of n-type 
and p-type semiconductors can 
serve as an effective Peltier heat 
pump. Solid arrows: flow of en-
tropy; dashed arrows: flow of 
electric charge. Note that the con-
ductive flow of entropy which 
would be from the hotter to the 
colder body is not shown.
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EXAMPLE 4.22. Cooling water in a refrigerator.

Five liters of water having a temperature of 25°C are placed in a refrigerator. They should be
cooled at a constant rate to 8°C in 2 hours. Construct the following model. The working fluid
of the refrigerator takes the entropy of the water from the cold space which is at 4°C. The fluid
itself is then at a temperature of – 10°C. It emits entropy to the kitchen which has a temperature
of 25°C. Assume the heat exchangers at the cold and the hot ends to have essentially equal di-
mensions. The thermal engine is supposed to operate endoreversibly. (a) Draw a process dia-
gram of the system. (b) What is the entropy current emitted by the water at the beginning and
toward the end of the process? (c) What is the entropy current entering the cold space and the
working fluid? (d) What must the upper temperature of the working fluid be during rejection of
the entropy taken up? (e) What must be the power driving the refrigerator? What is the cop?
How does it compare to the cop of a completely reversible process?

SOLUTION: (a) The idea for the process diagram can be taken from Fig. 4.51. Here, entropy is
pumped by the refrigerator. As always, entropy flows downward in the heat exchangers.

(b) The dynamics of the water is modeled according to Section 4.5 which yields

at t = 0 s. Toward the end, the temperature of water emitting entropy has changed to 8°C which
gives a value of – 0.177 W/K for the entropy current.

(c) This current of entropy flows into the cold space and then through the heat exchanger at the
cold end. Because of entropy production, the current entering the cold space will initially be 

This value remains constant throughout the process (the energy current leaving the water is con-
stant and it arrives at a constant 4°C). The current entering the working fluid at – 10°C is calcu-
lated in the same manner; the value obtained is 0.188 W/K.

(d) The entropy current rejected by the refrigerator is equal to the value calculated in (c). This
current has to go through a heat exchanger equal to the one built at the cold end. The temperature
difference needed for transfer is slightly higher than at the cold end:

So the temperature at the high end needs to be T2E = 25°C + 14.7°C = 39.7°C.
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(e) The entropy current IS1E must be pumped from T1E to T2E. The power of this process is

The definition of the cop of a refrigerator differs slightly from that of a heat pump given in
Equ.(4.29). Here it is

The cop of a completely reversible refrigeration process between TL and TH is

If entropy leaves the water to be cooled at 25°C and enters the kitchen at 25°C, the cop should
theoretically be infinitely high. Toward the end with the water at 8°C the cop becomes 16.5.

EXAMPLE 4.23. Cooling water with a thermoelectric cooler. 

In the experiment reported in Fig. 4.8, water in a sealed chamber is cooled with the help of a
Peltier device (the water is stirred). The entropy is rejected to a second body of water in the same
container. Manufacturer data and experimental data is given in the box on the side. (a) Sketch
a qualitative temperature position diagram going from the first to the second body of water. (b)
Determine the thermoelectric voltage of the device and use this to find the temperature differ-
ence from one side to the other of the cooler. (c) Determine the entropy current leaving the first
body of water at t = 1000 s. Note that there is a leak around the Peltier device going from the
warmer body of water to the colder one; the leak can be quantified by an entropy conductance
of 2.0 · 10–3 W/K2. (d) What is the entropy current through the Peltier device coupled to the elec-
tric current? Use this to find the conductive entropy current through the cooler and the entropy
conductance of the device. (e) Estimate the entropy and energy transfer coefficient from water
to the Peltier device. (f) Calculate the energy current emitted by the cooling water and determine
the cop of the process.

SOLUTION: (a) The temperature of the water is uniform. The temperature must drop from the
cooling water to the surface of the Peltier device for entropy to flow out of the liquid. In the
device, the temperature rises to a value above that of the body of water that accepts the entropy.
So the temperature drops from the warm surface of the thermoelectric cooler to the second body
of water.

(b) In the experiment, both the total voltage across the Peltier device, Uext, and the electric cur-
rent IQ were measured. Since the internal resistance Ri is specified by the manufacturer, we can
calculate the voltage of the thermoelectric generator UTE from simple circuit theory:
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Once the thermoelectric voltage is known, the associated temperature difference across the de-
vice (from C to D in Fig. Ex.23.1) can be calculated:

(c) To obtain the entropy current pumped from the body of water being cooled, we start with
the law of balance and the constitutive capacitive and resistive relations:

The mass of the body of water, its temperature and rate of change of temperature at t = 1000 s
have been obtained from the experiment. Together with the conductance of the entropy leak be-
tween the bodies of water we have:

(d) The Peltier cooler pumps an entropy current equal to

from C to D in Fig. Ex.23. Since the current leaving the water at point B is only 16.4 mW/K,
there must be a conductive flow of entropy through the cooler (from D to C) as a result of the
temperature difference TD – TC. If we assume the entropy production due to transfer from the
water to the cooler to be negligibly small, we have

This allows us to find the conductance of the cooler:

(e) The temperature drops from the first body of water to the cooler, and from the cooler to the
water at higher temperature. From B to C and from D to E we have two convective transfer lay-
ers. It is reasonable to assume that the temperature differences across the layers are the same at
the cool and the warm ends. Since we have 7.8 K from C to D, and 4.0 K from B to E, there is
a temperature drop of 1.9 K for each of the convective layers:

The entropy transfer coefficient can easily be converted to the equivalent energy transfer coef-
ficient:
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(f) The energy current from the body of water to the Peltier device is obtained from the entropy
current and the associated temperature:

The cop is defined as the magnitude of this current divided by the power of the electric process
driving the pump:

This compares to a cop of 74 for a completely reversible process of pumping entropy from the
cool to the warm water.

4.8 ENTROPY PRODUCTION, SYSTEMS, AND WALLS

Now that we have seen how a theory of the dynamics of heat can be constructed and
applied in simple settings, let me return to some general considerations concerning
thermal systems and how to analyze them.

In any physical analysis, there is always an important element to be considered. The
analyst has to be clear about which system or body is being studied. Only then can the
application of a law such as the law of balance of entropy work out successfully. In
many situations, it is quite clear which system has been chosen for investigation, and
we do not have to be particularly explicit about our choice. However, nowhere is it
more important to be precise and explicit about which part of the world we are going
to study than in thermodynamics. The very nature of heat — its tendency to increase
through production — calls for careful analysis. We cannot be vague about where the
production of entropy occurs in a given situation. Careless treatment of this problem
has caused many confusing statements about thermal processes.

The first point to be kept in mind is that analysis of a situation applies only to the sys-
tem chosen and to nothing else. Specifically, this means that the production of entropy
takes place inside the system. No matter what might happen in the surroundings of the
system, dissipation is related to that particular system only. If a body undergoes re-
versible changes while entropy is being created outside of it, we have to conclude that
as far as our equations are concerned, entropy has not been produced. Our analysis
cannot make a statement about anything but the body being studied. Conversely, if a
process is irreversible, dissipation must have occurred in the body or we would not
know about it.

This raises a second point. Consider a body at a uniform temperature in an environ-
ment of uniform, but different, hotness. Body and environment touch at the surface of
the body. The surface is shared by both the system and its surroundings so you might
ask, what is the temperature of the surface? Is it the temperature of the body, or of the
environment? The problem becomes more acute if we consider the balance of entropy
for a current across this surface. The geometrical surface certainly does nothing to dis-
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turb the flux of energy accompanying the current of entropy. In other words, the cur-
rent of energy must be continuous across the surface (Fig. 4.59). Therefore the current
of entropy must be discontinuous; it increases in the direction of flow from the hotter
to the cooler body. But then, where has entropy been produced? Where is the seat of
dissipation? Unless we are prepared to treat the boundary between body and environ-
ment as a physical system in its own right, there is no system which can account for
the production. Dissipation must take place in a proper physical system. Therefore, we
are led to introduce surfaces or ideal walls across which temperature, entropy flux, and
flux of energy are continuous. Such walls do not add to the processes occurring inside
a system, particularly to the production of entropy.

The puzzle presented by two systems at different temperatures can be solved in a num-
ber of ways. The ideal system wall may be placed in such a way that the dissipation
takes place inside the system. Alternatively, we may exclude the drop of temperature
from the system, thereby putting the burden on the analysis of the environment as a
physical system. Finally, we may introduce a third system, a finite three-dimensional
wall separating the first system and its surroundings. This third body is made respon-
sible for the production of entropy due to the flow of heat from the hotter to the cooler
body. The finite wall cannot have a uniform temperature. It exists for communicating
between the system and its environment in a physically acceptable way. It is a body
with all the physical attributes of the systems we are studying in this book. Like every
proper system it, too, is assumed to be surrounded by an ideal wall.

In essence, then, we consider physical systems having ideal walls. Transfer of entropy
and energy across such a wall into or out of the body is governed by the basic relation-
ship between entropy flux, temperature, and associated energy current, Equ.(4.21): 

At the surface of a system, the current of entropy and the flux of energy
associated with it are related by the temperature at the surface accord-
ing to Equ.(4.21). Possible production of entropy may take place inside
the system, but not at its ideal wall. 

The assumptions stated here are fundamental for thermodynamic analysis. They facil-
itate the understanding of where and how dissipation may occur. In particular, they do
away with statements about thermal energy being added to bodies reversibly or irre-
versibly. There is no such thing as an irreversible exchange of entropy and energy. The
exchange takes place across an ideal wall and is always governed by Equ.(4.21), and
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Figure 4.59:  If we allow for the 
system and its environment to be 
separated by a wall across which 
the temperature is discontinuous, 
a current of entropy crossing this 
boundary will have to be discon-
tinuous as well. Since this brings 
up the problem of where entropy 
has been produced, we conceive 
of ideal walls which do not add to 
dissipation. Temperature, entro-
py flux, and flux of energy are all 
assumed to be continuous across 
such a wall.
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by nothing else. If any entropy has been produced, it will have taken place inside the
system being analyzed.

By the way, if ideal walls did not exist, it would be hard to imagine how temperatures
could be measured. A thermometer is a physical system. If its surface were not ideal
it might show a different temperature from that of the immediate neighborhood. This
point will be of great importance when we create a formal theory of the dynamics of
heat in Chapters 10-12.

EXERCISES AND PROBLEMS

1. In what sense is hotness the intensity of heat? Why do we have to distinguish it from quan-
tities of heat? What other quantities in physics may the intensity of heat be compared to?

2. Consider a moving body that splits into two halves which continue moving along together.
Which mechanical quantity is divided among the bodies? Which other mechanical variable
is not divided up, leaving each of the parts with its initial value? Compare electrical and
thermal phenomena to this mechanical example. Which electrical or thermal quantities
correspond to the mechanical variables?

3. List everyday phenomena which are responsible for our intuitive notion of heat content of
bodies. Can you turn the qualitative idea into a physical quantity having a precise meaning?

4. Why shouldn’t we think of energy as a mechanical, electrical or thermal quantity? Why
would it be particularly wrong to identify stored energy as mechanical, electrical, thermal
or other? What consequence does this have for identifying “heat” as stored energy?

5. What happens to all bodies under all circumstances if their energy is increased? Which
physical quantity changes if this happens? What kind of conclusions cannot be drawn from
the statement that the energy of a body has changed?

6. With the help of physical quantities, explain the difference between making a body rotate
and making it warmer.

7. Compare different fluidlike physical quantities such as momentum, charge, amount of sub-
stance, and entropy. Which two properties do they all have in common? What are possible
differences between the quantities listed?

8. Rephrase the following expressions in terms of entropy. In which cases would reference to
energy be clearly wrong? Do any of the terms and expressions have nothing to do with en-
tropy? (a) heat engine, heat pump; (b) heat exchanger; (c) heating and cooling; (d) heat
flow, transfer of heat; (e) convective heat flow; (f) heat source; (g) storage of heat, heat res-
ervoir; (h) phenomena in which heat causes motion; (i) solar heater; (j) production of heat;
(k) heat transfer coefficient; (l) pumping heat from the cold enclosure; (m) heating power.

9. A copper bar having a constant cross section and length lo is rigidly attached between
walls. Assume it to be free of stress at a given temperature. If the temperature changes, the
length of the bar changes, and momentum currents due to compression or tension are set
up in the bar. Calculate the thermal stress resulting from a change of temperature of
± 30°C. Young’s modulus for copper is equal to 12.3 · 1010 N/m2.

10. Assume that a solid cube expands by expanding along each of its three axes equally. Show
that the coefficient of volume expansion equals 3αl in this case, where αl is the (linear) co-
efficient of expansion. What is the relative change of volume per degree Celsius of a cube
of 1 kg copper?

11. It is found that the current through the tungsten filament of a light bulb is 0.010 A at a volt-
age of 1.0 V. At 150 V the current is equal to 0.50 A. What is the temperature of the fila-
ment at the higher reading, if the experiment is performed at room temperature (20°C)?
The temperature coefficients are α = 4.11 · 10–3 K–1 and β = 9.62 · 10–7 K–2 for the tungsten
filament.
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12. Measurements demonstrate that dilute gases show a linear relationship between volume
and temperature, if the pressure is kept constant. (a) Express the law in a form equivalent
to that of Equ.(4.8). Compare it with the linear approximation to the law of expansion of
liquids and solid s and calculate the coefficient of expansion with respect to a temperature
of 0°C. Is the coefficient independent of temperature? (b) It is found by measurement that
α*(0°C) = 1/273.15 K. Show that the ratio of the volumes at different temperatures (for
equal pressure) is given by the ratio of the Kelvin temperatures.

13. Formulate the law(s) of balance of entropy in instantaneous (dynamical) and integrated
forms for the following situations. (a) A uniform material is heated but not cooled. (b) Wa-
ter in an open container is heated electrically and stirred at the same time. (c) A liquid in a
well insulated container is stirred mechanically. (d) A viscous gas is compressed in a well
insulated cylinder. (e) A hot stone cools in cold water inside a well insulated container.
Take the stone and water first as separate systems, then as a single system. (f) Hot water
cools in a thick walled container in a cool environment (take water and container as sepa-
rate systems). (g) Water is heated in a tea kettle but it is not getting any hotter.

14. A body is heated and cooled at the same time. At one end, entropy flows into the body at a
rate of 300 W/K. At the other end, entropy is removed at a rate of 200 W/K. What is the net
heating, or the net entropy flux for the body? At what rate does the entropy content of the
body change? Assume that entropy is conserved in this process.

15. A constant flux of entropy of 200 W/K leaves a system, while a current entering the system
changes according to – 20 W/(K · s) · t. (a) How much entropy is absorbed and emitted in
the first 15 s? Refer the absorbed entropy to the current flowing into the system, and the
emitted entropy to the current flowing out of the body. (b) How much entropy is exchanged
in total? (c) What is the change of the entropy content of the body?

16. A body which is being heated undergoes an irreversible process. The net current of entropy
changes from – 100 W/K to zero in 20 seconds. During this time, the rate of creation of
entropy is equal to 30 W/K. (a) What is the rate of change of the entropy in the body? (b)
How large are the exchanged entropy and the change of entropy content in the first 20 s?

17. Give a graphical interpretation of the energy exchanged in thermal processes during the
ideal Carnot cycle and represent the thermal work in the TS diagram.

18. (a) Consider a Carnot cycle, i.e. a cycle where entropy is absorbed and emitted at constant
temperatures, for which the adiabatic expansion is dissipative. Draw the TS diagram and
indicate the energy exchanged in the thermal processes. (b) Why is the cycle less efficient
than its reversible counterpart? (c) Identify the lost available energy in the TS diagram.

19. An immersion heater has a temperature of 120°C as it emits an energy current equal to 0.80
kW. (a) How large is the current of entropy flowing across the surface of the heater? (b) If
the temperature of the water receiving the heat is equal to 80°C, how much entropy flows
into the water?

20. Consider water being heated by an immersion heater. (a) If you consider the body of water
as a system, what is its equation of balance of entropy? (Assume the distribution of entropy
through the system to take place reversibly; what does this mean for the conduction of en-
tropy through the system?) (b) Answer the question for the case in which you take the sys-
tem to be made up of water plus heating coil.

21. A metal bar conducts entropy from a container of boiling water to a mixture of ice and wa-
ter. It is found that in the latter container, ice melts at a rate of 10.0 g per minute (see
Table 4.3). Compute the rate at which entropy is produced in the conductor.

22. A small steel sphere falls in oil. The frictional force is calculated according to Stokes’ law.
What is the maximum rate of creation of entropy if the temperature of the medium is 20°C?
Take the radius of the sphere to be 1 mm. The densities of steel and oil are 7700 kg/m3 and
960 kg/m3, respectively. The dynamic viscosity of oil is 0.99 Pa · s.

23. A large thermal power plant (such as a nuclear power plant) takes its entropy from a reactor
at 600 K. The entropy is emitted again to the cooler at 300 K. The measured useful power
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is 1.0 GW. (a) Sketch a process diagram (with carrier and energy currents) for the system
(the system between reactor and cooler). (b) If the heat engine could operate ideally, what
would be the entropy current through the engine? (c) The thermal efficiency of the power
plant is only 30%. What must the real entropy current and energy current from the reactor
to the heat engine be? (d) What is the entropy production rate in the heat engine (i.e., be-
tween the reactor and the cooler)? (e) What is the total entropy production rate (i.e., includ-
ing the one in the reactor)? 

24. A car engine is running at steady-state. Gasoline provides energy at a rate of 400 kW, the
measured mechanical power of the engine is 100 kW. The entropy is provided at a temper-
ature of 900 K and cooling takes place at 300 K. (a) Sketch a process diagram for the en-
gine as a single system between “furnace” and “cooler.” (b) What is the entropy current into
the engine? (c) What is the thermal power? (d) What would the entropy current to the cool-
er be if the engine were operating ideally? What would the energy current to the cooler be?
(e) What is the actual energy current to the cooler? (f) What is the entropy production rate
in the engine? 

25. A heat pump is used to heat water at 60°C. Heat is taken from the ground at 2°C. The ob-
served coefficient of performance is 2.2 while the energy current associated with heating
has a magnitude of 1.0 kW. (a) How large is the rate of production of entropy? (b) How
large is the loss of available power? Show that it is equal to the product of the rate of gen-
eration of entropy and the temperature of the environment. (c) How large is the second law
efficiency of the heat pump?

26. The temperature inside a freezer is kept at a constant – 23°C. The ambient temperature is
20°C. According to the technical information booklet, the freezer uses 1.2 kWh of electri-
cal energy per day. We model the freezer as a coupled system (insulation, container, ideal
heat pump, and heat exchangers). The heat pump pumps the heat reversibly from – 38°C
to 42°C. (a) Calculate the entropy flow through the heat pump. (b) What is the energy cur-
rent flowing into the freezer due to the temperature difference to the environment? (c) In
our model, entropy is produced in three processes. Show where this happens in your sketch
of the model. (d) What is the total rate of entropy production?

27. Determine the mechanical power of a thermomechanical engine undergoing a steady-state
cyclic process. The engine works irreversibly. It is in contact with n heat reservoirs of con-
stant temperatures, and with the environment at temperature To. Identify the loss as a result
of dissipation, and compute the second law efficiency of the heat engine.

28. Not all types of solar heating are created equal (Fig. P.28). Consider the following means
of keeping a supply of domestic water at 60°C. In a first setup (A), solar radiation is used
directly to heat the water. In a second (B), solar radiation is used to heat a furnace to 700°C.
The entropy from the furnace drives an ideal Carnot engine (ICHE) which rejects the en-
tropy to the water at 60°C. The energy released by the engine is used to drive an ideal Car-
not heat pump (ICHP) which pumps entropy from the environment at 0°C into the water
at 60°C. Calculate the ratio of the rates of heating of the two processes. Take IE1 to be equal
in both cases.

29. We are given a certain amount of hydrogen which we are to use for heating water. The wa-
ter is to be kept at a constant temperature T which is higher than that of the environment
(Ta), and lower than a possible flame temperature if we decide to burn the hydrogen. (a)
Calculate the heating power for the water in terms of the energy released by the chemical
reaction of hydrogen with oxygen for the following three modes of heating: (A) direct heat-
ing by burning the hydrogen; (B) heating with the help of an ideal heat engine driven by
entropy from a furnace at temperature Tf which receives its entropy from burning of hydro-
gen, and an ideal heat pump driven by the heat engine (scheme B of Problem 28); (C) heat-
ing with the help of an ideal heat pump driven by an ideal fuel cell which uses the
hydrogen. (b) Calculate the loss of power for scheme A, and show that it is equal to the
product of the temperature of the water and the rate of production of entropy.

30. Measurements put the value of the entropy capacitance of 1 kg of ice at 8.1 J/K2 at a tem-
perature of 13°C below freezing, and at 7.7 J/K2 at a temperature of 0°C. (a) Calculate the
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current of entropy which is needed if a lump of ice having a mass of 1kg at a temperature
of –13°C is to be heated so that its temperature rises by 1 K per minute. (b) Estimate the
total entropy transmitted to the body if it is to be heated up to a temperature of 0°C.

31. How much entropy and energy are added to 1.0 kg of silicon if the body is heated from 160
K to 640 K? (See Fig. 4.41 for properties of silicon.)

32. A body made of a material having (known) variable entropy capacitance is heated (the cur-
rent of entropy is assumed to be prescribed). (a) Represent the process by a system dynam-
ics model diagram. (b) Write all the equations and derive the differential equation for the
temperature of the body.

33. A rigid body has a constant entropy capacitance in a particular range of temperatures. How
much energy does it emit if its temperature drops from Ti to Tf?

34. An ideal Carnot engine is driven with the heat from 2000 liters of water at 90°C. Entropy
is rejected to the environment at a temperature of 20°C. How much energy does the engine
release for mechanical purposes?

35. In an experiment, glycol was heated electrically in a perfectly insulated container. Electric
power and temperature of glycol were recorded as functions of time. The mass of the glycol
was measured. The experiment was used to determine the temperature – specific entropy
diagram (see Fig. P.35.1). (a) Explain how the Ts diagram can be determined from the data
of the experiment. (b) Determine the specific entropy capacitance of glycol at 300 K, 340
K and 380 K. What is your observation? (c) Use the results to determine the specific heat
(specific temperature coefficient of energy). Is this quantity constant or does it increase or
decrease with temperature? (d) Glycol is heated electrically at constant power in a perfectly
insulated container. What would the temperature as a function of time be (qualitatively)?
Why? (e) Glycol having a mass of 0.50 kg is heated at constant electric power of 20 W in-
side a sealed aluminum can. The temperature of the environment is 295 K. Explain why
we get the measurements (temperature as a function of time) as shown in the graph (Fig.
P.35.2). (f) Use the data to determine the entropy conductance of the aluminum can. 

36. Hot water is filled into a thin-walled polished aluminum can. The water is stirred continu-
ously. Data: Radius of can: 3.3 cm; height of can: 15.0 cm; mass of water: 490 g. The inside
heat transfer coefficient is very high, the metal sheet is very thin. Lid and bottom are insu-
lated. Power of the mixer: 2.0 W; temperature of the ambient is a constant 19°C. The tem-
perature of the water has been measured as a function of time (see Table 4.9). (a) Explain
the experimental data. (b) Sketch a diagram of a system dynamics model of the system and
processes. (c) Write down all the equations of the model. (d) Determine the convective en-
tropy and heat transfer coefficients at the outside surface of the polished can, and the power
of the magnetic bar used for mixing.

37. The inside and the outside of a house are at temperatures of 25°C and 35°C, respectively.
If all doors and windows are closed, the home has an energy conductance of 300 W/K.
There is no sunlight getting inside. (Imagine the house as an airtight and opaque box.) If
we do not cool the house, the inside temperature will be 31.3°C after 10 hours. (a) Deter-
mine the entropy capacitance and the temperature coefficient of energy of the house. (b)
What is the entropy current arriving inside at 25°C? (c) A heat pump is used to keep the

Table 4.9: Water temperature

t / s  T / °C t / s  T / °C t / s  T / °C

0 86.84 25000 30.74 50000 27.10

5000 58.44 30000 29.34 55000 27.05

10000 44.54 35000 28.45 60000 27.00

15000 37.30 40000 27.80 65000 26.95

20000 33.32 45000 27.40 70000 27.00

Figure P.35.1
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inside at 25°C. If the heat pump worked ideally, what would the power driving it be? (d)
The coolant of the heat pump takes up entropy in the house at 10°C. It emits it at 45°C.
What is the (minimal) real power for driving the pump? 

38. Two amounts of water having equal mass of 0.951 kg each are inside two chambers sepa-
rated by a thin metal wall. The dimensions of the chambers are 10 x 10 x 10 cm. The con-
tainer chambers are well insulated from the environment. Hot water is filled into one of the
chambers, cold water into the other. The water is thoroughly mixed the whole time. The
temperatures are measured as functions of time (Fig. P.38). (a) What is the convective heat
transfer coefficient from the water to the metal wall? Note that the thermal resistance of the
metal wall is itself very small. (Use the data of the experiment and neglect heat loss to the
environment and the effect of the mixer). (b) What is the change of energy of each of the
bodies of water during the first 500 s? (c) Use the data to determine as carefully as possible
the entropy conductance (or the energy conductance) for heat loss to the environment for
the entire container. The power of the mixers in the two chambers adds up to 1.0 W, and
the ambient temperature is equal to 22°C.

39. Two different experiments are performed with a thick-walled PVC container. They are
used to determine the specific heat (specific temperature coefficient of energy) and the ther-
mal conductivity (energy conductivity) of PVC. When you have found these values, also
determine the specific entropy capacitance and the entropy conductivity. Data for the con-
tainer: Inside radius: 3.0 cm, outer radius: 4.65 cm, inside height: 0.105 m, density: 1400
kg/m3.

Experiment 1: The container is completely insulated from the environment. It has an initial
temperature of 23.4°C and is filled with hot water having a temperature of 89.5°C. Every-
thing is now sealed, and the water temperature and the temperature at the middle of the
container wall are measured (see graph Fig. P.39, left). 

Experiment 2: Lid and bottom are perfectly insulated. Water and container have an initial
temperature of 23.4°C, the same value as the (constant) temperature of the environment.
The mixer dissipates energy at a rate of 2.0 W. Take values of 200 W/(K · m2) and 13 W/
(K · m2) for the heat transfer coefficients on the inside and the outside of the PVC container.
Fig. P.39, right, shows the water temperature as a function of time. 

40. A container consists of three chambers made of thin metal sheets. Each chamber has a a
size of 10 by 10 by 10 cm. The chambers are touching as shown in the figure. Each of them
is filled with one liter of water. The initial temperatures are 80°C, 20°C, and 50°C, respec-
tively. The assembly is perfectly insulated from the environment. Neglect dissipation due
to stirring. (a) What does “thermally insulated” mean in a formal model? Explain using
words and equations. (b) Is there entropy production in this system if we neglect stirring?
(c) Sketch the diagram of a system dynamics model that can be used to simulate the behav-
ior of the system. Use the energy representation. (d) The convective heat transfer coeffi-
cient from water to metal is 400 W/(K · m2). Determine the (energy) conductance from the
water in one chamber to the water in the adjacent chamber. (e) Determine the rates of
change of the three temperatures right at the start. (f) Sketch the temperatures as functions
of time. Use calculations to make the sketch as realistic as possible (show time constants).

Figure P.38
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41. A person is taking a shower and changes the position P of the lever of the shower mixer to
adjust the temperature of the water (water is mixed from cold (TC) and hot (TH) water). The
mixing temperature is given by

where P is a number between 0 and 1. Zero means that only cold water is used, one means
that only hot water comes out of the shower. In the figure, you see a diagram of a possible
model of how the position P is adjusted by the person to a desired water temperature (TD).

(a) Derive the equation presented above for the mixing temperature of water. (b) The per-
son changes the position P of the lever at a rate roc_P that depends linearly upon the dif-
ference of desired and actual temperatures. In the model, the process of adjustment
introduces a kind of inertia tA (larger inertia means slower adjustment). Formulate the
equation for roc_P that corresponds to these ideas. (c) Formulate all the equations of the
model. (d) Transform these equations into a single differential equation for the position P
of the lever. (e) Assume 20°C and 60°C for cold and hot water, respectively, and 40°C for
the desired temperature. Take a value of 50 K · s for the factor of inertia tA. What is the time
constant of this model? (f) Sketch the temperature of the water for the parameters accord-
ing to problem (e) (show time constant and asymptote). Assume the initial condition to be
T(0) = 20°C (Position P(0) = 0).

42. Two bodies of water of 0.50 kg each are separated by a Peltier device. The bodies are com-
pletely insulated from the environment. The Peltier device is driven electrically. It pumps
entropy from the colder into the warmer water. The device works by creating a cold and a
hot side. We consider a certain moment. Values of temperature, electric current and resis-
tance are given in the table. 

(a) Estimate the entropy production rate due to the electric process. (b) The entropy current
leaving the cold water is 0.0122 W/K, the current into the warm water is 0.0169 W/K. What
is the total entropy production rate in the system? What is the fraction due to electric dis-

Table 4.10: Data for water and Peltier device

Cold Hot

Temperature of water 295.7 K 301.7 K

Temperature of Peltier device 294.5 K 303.4 K

Entropy current into/out of water 0.0122 W/K 0.0169 W/K

Electric current through device 1.02 A

Electric resistance of device 0.98 Ω

T T T T PC H C= + −( )
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T D

T diff
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Figure P.41
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sipation? (c) If the entire process were completely reversible, how much energy would be
needed per second to pump the entropy current of 0.0122 W/K from the cold into the warm
water? (d) The voltage that powers the Peltier device is 1.5 V. What is the efficiency of the
device? 

43. A Peltier device is used to separate two bodies of water in an otherwise perfectly insulated
container (see Example 4.23). The Peltier device is operated as a heat pump. In the dia-
gram, the temperatures of the two bodies of water are shown as functions of time. Data:
Mass of a body of water: 0.50 kg; electric current through Peltier Device: 1.03 A; voltage
across Peltier device: 1.37 V. In the following, consider t = 1000 s. (a) How large would the
entropy current be if the Peltier device could pump entropy directly and without any dissi-
pation from the body of water on the left to the one on the right? The water temperatures
are to be found in the second diagram. The electric data are given above. (Hint: Determine
the power of the Peltier device.) (b) What is the actual entropy current out of the water in
the left chamber? Neglect the effect of the mixer and all losses of heat. Entropy flows only
through the Peltier device. (Hint: Determine the rate of change of the temperature of water
in the left chamber using the diagram.) 

44. A Peltier device serves as a separating wall between two chambers in an insulated contain-
er. Hot water is poured into the left chamber, cold water into the right one (0.50 kg each).
The water is stirred mechanically. A resistor is connected to the cables of the Peltier device.
The lid of the container is closed. The temperatures of the two bodies of water and the volt-
age across the resistor are measured. The resistor has a resistance of 1.29 Ω . (a) Formulate
the instantaneous form of the law of balance of entropy for one of the bodies of water. Ex-
plain. (b) Determine the rates of change of temperature of the bodies of water right at the
beginning (at t = 0 s). (c) Estimate the entropy current through the Peltier device right at
the beginning (at t = 0 s). (d) Determine the temperature difference between left and right
and the electric power of the Peltier device for about 6 points (500 s, 750 s, …, 1750 s).
Create a graph of the power as a function of the square of the temperature difference. (e)
Explain why we should expect the result of problem d (i.e., interpret and explain what you
obtained). (f) Compare the electric power to the ideal thermal power we should expect for
the temperature difference between the right and the left sides (for t = 0 s).
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In this chapter I will present theories of the thermodynamics of some spatially uniform
materials that are more complex than the one treated in Chapter 4. There we worked
with a material that responds to entropy by changing its temperature only (Section
4.5). The approach taken and the basic ideas assumed to be valid are the same as those
developed in the previous chapter; only the form of the constitutive relations changes.
The following sections are devoted to materials undergoing simple phase change, the
ideal gas, blackbody radiation, and magnetizable substances. 

The case of the ideal gas is particularly interesting and important. This gas is a simple
model fluid which can undergo changes of temperature and of volume. We will be
able to compute adiabatic, polytropic, and more general processes undergone by this
fluid. The model chosen allows only for reversible processes which means that we can
actually set up a thermodynamics of non-dissipative processes. The ideas developed
will be applied to blackbody radiation and to paramagnetic substances.

10). There I will develop an approach to irreversible processes in spatially uniform
systems that resembles the form of theories of continuum thermodynamics but is
much simpler mathematically. This will lead to a derivation of the relation between
currents of entropy and of energy in heating which has been assumed to be self-evident
in this part of the book (its validity is suggested to us by analogical reasoning).
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In the introductory sections of Chapter 4, materials undergoing phase change, i.e.,
melting and vaporization, were described informally. You should briefly review the
experiments listed in Section 4.1 (Fig. 4.6 and Fig. 4.7), the discussion in Section
4.1.4 and the construction of 

 

TS

 

 diagrams in Section 4.3.3 (see Fig. 4.29). Here, I am
going make the description more formal, and I will apply the simple constitutive rela-
tions for melting and freezing to an interesting dynamical case of thermal engineer-
ing—so-called latent heat storage. Still more material is found in Chapter 15.

 

5.1.1 Latent Entropy of Fusion and of Vaporization

 

The most important observations and interpretations regarding melting or vaporiza-
tion are these: If we want a material to change from the solid to the liquid state or from
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the liquid to the gaseous phase, it has to take up entropy. Put in everyday language, to
melt or to vaporize a material heat is required. The entropy communicated to a melting
body or to a system undergoing vaporization is to be found within the system. Inter-
estingly, the temperature of the material does not change during the phase change; the
process is isothermal. These are the observations and interpretations that go into the
construction of the 

 

TS

 

 diagram of H

 

2

 

O going from cold ice to hot steam (Fig. 5.1; see
also Section 4.3.3). The temperature at which phase change takes place is called 

 

tem-
perature of fusion

 

 

 

T

 

f

 

 in the case of melting or freezing and 

 

temperature of vaporization
T

 

v

 

 for vaporization or condensation.

 

Amounts of substance during melting and vaporization.

 

 The term 

 

melting

 

 (

 

fusion

 

)
means that a solid material is transformed into a liquid whereas 

 

vaporization

 

 is the
transformation of a liquid into a gas. During fusion, solid disappears and liquid is pro-
duced, and during vaporization, liquid disappears and gas is produced. The reverse
processes are 

 

freezing

 

 (

 

solidification

 

) where solid forms from liquid and 

 

condensation

 

where gas changes to liquid.

Phase changes can be considered chemical reactions (Chapter 6). When one unit of
solid disappears in melting, one unit of liquid is produced. If we measure the quantities
of materials by the amount of substance 

 

n

 

 (Section 1.3.1), we can express the rates of
processes by introducing 

 

rates of production

 

 (or destruction) of amount of substance
of solid (

 

s

 

), liquid (

 

l

 

), and gas (

 

g

 

). These we call 

 

Π

 

n,s

 

, 

 

Π

 

n,l

 

, and 

 

Π

 

n,g

 

. Since the rate of
production of solid has the opposite sign of the rate of production of liquid during
melting or fusion, and the rate of production of liquid is the negative of the rate of pro-
duction of amount of gas during vaporization or condensation, we have

 

(5.1)

 

We know the meaning of a production rate from the production of entropy (Section
4.3.2). This meaning is transferred to the present case, only here we have negative pro-
duction rates as well, i.e., 

 

rates of destruction

 

 of amount of substance.

 

Entropy in phase change.

 

 As with the heating or cooling of simple uniform materi-
als that respond to entropy by changing their temperature (Section 4.5) we assume the
processes considered here to be reversible. Entropy enters or leaves the materials eas-
ily—there are no temperature differences inside the bodies—which means that letting
entropy flow in or out is not dissipative. More importantly, however, experience tells
us that the processes of phase change are reversible as well. Making water out of ice
takes as much heat as is emitted when water changes to ice. Therefore, we have a sim-
ple form of the law of balance of entropy: rate of change equals rate of transfer.

The constitutive relation for phase change is simple. All we need to know is how much
entropy it takes to melt or to vaporize a unit of amount of a certain substance. Clearly,
the quantity of entropy needed depends upon the amount of substance; double the en-
tropy will melt or vaporize double the amount of a given material. Expressed as a dy-
namic relation, this means that

 

(5.2)

 

for melting and for vaporization, respectively. In simple words, the current of entropy
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Figure 5.1:  Relationship be-
tween temperature and entropy 
for melting or vaporization of ice 
and water. During the change of 
phase, the temperature of the 
body stays constant. The diagram 
gives only a qualitative represen-
tation of the relationships. (Tf : 
melting point, Tv : temperature of 
vaporization.)
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of the system is proportional to the rate at which the quantity of one of the phases
changes. The indices 

 

f

 

 and 

 

v

 

 stand for fusion and vaporization, respectively. So,
Equ.(5.2)

 

1

 

 tells us that the system has to be heated when liquid is produced during the
solid-liquid transition and that it has to be cooled when solid is formed during the re-
verse liquid-solid transition. Because we assume reversibility of absorption or emis-
sion of entropy and of the phase changes themselves, we can express Equ.(5.2) in
terms of rates of change of entropy as well.

 

Latent entropy.

 

 The factors of proportionality in Equ.(5.2),  and , are called 

 

mo-
lar latent entropy of fusion

 

 and 

 

molar latent entropy of vaporization

 

, respectively.
Molar stands for the fact that we report these values with respect to amount of sub-
stance. For example, the molar entropy of fusion of ice is about 22 J/(K

 

 

 

·

 

 

 

mole) which
means it takes a quantity of entropy equal to 22 J/K to melt one mole of ice at 273 K.
Values of entropies of fusion for different materials are listed in Table 5.1 (see
Table 5.2 for values of latent entropies of vaporization). If we want to refer amounts
of latent entropy to mass instead of amount of substance, we introduce 

 

specific latent
entropies

 

 (of fusion or vaporization) that are calculated from the molar values with the
help of the molar mass of the material.

   

Substance Molar mass
Temperature 

of fusion
Molar Entropy 

of fusion
Molar Enthalpy 

of fusion

 

M

 

0

 

 

 

/ kg/mole

 

T

 

f

 

 

 

/ K

 

 

 

/ J/(K

 

 

 

·

 

 

 

mole)

 

 

 

/ J/mole

Aluminum 0.027 887 12.1 10720

Copper 0.064 1356 9.68 13120

Gallium 0.070 303 18.7 5656

Gold 0.197 1336 9.69 12943

Iron 0.056 1808 8.58 15512

Lead 0.207 600 7.94 4761

Mercury 0.201 234 10.1 2372

Platinum 0.195 2042 10.6 21645

Silicon 0.028 1693 2.17 4592

Sodium 0.023 371 7.01 2599

Tungsten 0.184 3653 9.67 35300

Water 0.018 273 22.0 6010
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a. Phase Change Material for latent heat storage in heating and cooling applications
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/ J/kg

PCM salt
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b. www.pcmenergy.com

300 630 188000

Sorbitol 360 513 185000

Paraffin 
C22-C45

330–333 570 189000

l f lv

l f q

Table 5.1: Latent entropy and enthalpy of fusion at 1 bar

http://www.pcmenergy.com
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The term 

 

latent

 

 denotes the property of entropy 

 

not

 

 to affect the temperature of the
system during phase change. This is an old term that was coined to describe the effects
of heat in isothermal processes (see Section 5.2 for another important application of
the concept). Our common sense understanding of heat (entropy) is that it changes the
temperature of a material, so when it does not it is termed 

 

latent heat

 

 in contrast to

 

sensible heat

 

.

 

5.1.2 Energy Transferred in Phase Change

 

The latent entropies generally change when the pressure at which phase change takes
place is raised or lowered. This is particularly evident for evaporation where a gas is
produced and the volume of the system changes drastically. The reason for this is that
entropy drives the change of volume as well, and since this change depends upon the
pressure of the fluid, so does the quantity of entropy associated with phase change at

 

Table 5.2: 

 

Latent entropy and enthalpy of vaporization at 1 bar

 

Substance Molar mass

Temperature 
of 

vaporization
Entropy of 

vaporization
Enthalpy of 
vaporization

 

M

 

0 / kg/mole Tv / K  / J/(K · mole)  / J/mole

Aluminum 0.027 2720 108 294000

Copper 0.064 2860 107 306000

Gallium 0.070 2500 102 255000

Gold 0.197 2950 110 325000

Iron 0.056 3000 118 354000

Lead 0.207 2020 880 1780000

Mercury 0.201 630 91 57300

Platinum 0.195 4270 105 448000

Silicon 0.028 2900 136 394000

Tungsten 0.184 5770 139 802000

Argon 0.040 87 75 6520

CO2 0.044 195 30.9 6020

Chlorine 0.035 239 42.5 10200

Helium 0.004 4 20.5 82

Hydrogen H2 0.002 20 45.4 908

Krypton 0.084 120 75.6 9070

Neon 0.020 27 67.6 1820

Nitrogen N2 0.028 77 72.0 5540

Oxygen O2 0.032 90 75.7 6820

Water 0.018 373 109 40700

lv r



5.1  MATERIALS UNDERGOING PHASE CHANGE

PART II 193

different pressures. This observation is important for understanding the role of energy
in phase change, particularly in vaporization or condensation (see Chapter 15).

Enthalpy of fusion and vaporization. When a material is melted or vaporized, it has
to be heated meaning that entropy is absorbed together with energy at the temperature
of the system (Fig. 5.2). We have

(5.3)

for fusion and for vaporization, respectively. The factors are the energy transferred in
melting ( ) or vaporization ( ) of one mole of the material. For reasons that will be-
come clear later in Section 5.3, these quantities are called molar enthalpy of fusion or
molar enthalpy of vaporization. The energy current is directly related to the flux of en-
tropy by the temperature, so we have

(5.4)

Values of molar enthalpies are listed in Table 5.1 and Table 5.2.

Energy and change of volume. Unlike the entropy added during melting or vapor-
ization which is to be found in the new material that underwent phase change, the en-
ergy added with entropy is not in the system, at least not all of it. A material normally
changes its volume while it goes from solid to liquid or from liquid to gas. This is par-
ticularly obvious in the case of vaporization. The process of volume change is accom-
panied by an exchange of energy (Fig. 5.2) as we will see more clearly in later sections
of this chapter. It is important to understand that the change of energy of the material
as a result of phase change is not equal to the energy transferred as a consequence of
heating (or cooling). So while Equ.(5.2) holds for the change of entropy of the system
as well, Equ.(5.4) does not hold for the change of the energy of the system.

When a person says that a material needs heat to melt, the expression makes sense if
we mean the entropy. This point is brought home quite clearly by the altogether dif-
ferent role of energy in physical processes. The meaning of entropy for phase change
is underlined by the values of latent entropies found in Table 5.1 and Table 5.2. We
see that they do not vary that much for different substances. This is quite different for
molar enthalpies which can vary by an order of magnitude or more.

5.1.3 Latent Heat Storage in Heating Systems

Phase changes play an important role in nature and machines. A simple application of
the ideas presented above can be found in latent heat (entropy) storage systems that
are being designed for a supporting role in heating and cooling systems. Storage of
heat and cold can considerably improve the operation and efficiency of such systems
(“storing cold” means readying a cold space—a space colder than the environment—
that can absorb entropy).

Water is a preferred medium for storing (and transporting) entropy in domestic and in-
dustrial applications. The quantity of entropy that can be stored per unit mass per unit
temperature is given by the specific entropy capacitance. Imagine that we need entro-
py at temperatures between – 10°C and + 10°C. If H2O were liquid water in this range,

Figure 5.2:  Process diagram of 
heating of a body at temperature 
T. Energy flows together with en-
tropy. Simultaneously, energy is 
exchanged if the volume of the 
material changes. ΠV is the rate 
of production of volume (see 
Equ.(2.14)).
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the amount of entropy that could be stored in one kilogram of the substance would be
about 300 Ct (Section 4.5). Since there is a phase change in this temperature range, the
entropy taken up by 1 kg of water between – 10°C and + 10°C is actually increased by
the latent entropy which is a full 1200 Ct. So with the transition from ice to water in-
cluded, water would be five times as efficient as an entropy storage material in the
temperature range chosen here. 

This is the idea behind latent heat storage systems that make use of phase change ma-
terials (PCMs) that undergo melting and solidification.1 A PCM has to satisfy a num-
ber of requirements to be suitable for a particular application. For one, the temperature
range has to fit the application (for domestic hot water we want a temperature of fusion
somewhere in the range of 50°C to 60°C). For entropy to enter or leave the system
quickly enough, the conductivity of the material must be as high as possible, and the
material must keep its properties for many cycles of melting and freezing. Finally we
would like the latent entropy and the entropy capacitance to be high enough so that the
size of a storage element can be kept reasonable.

A dynamical model for a small experimental system. Let me build a dynamical
model to explain the phenomenon observed when liquid paraffin wax in copper tubes
submerged in hot water cools in the environment. A small experiment demonstrates
the effect of freezing of wax (Fig. 5.3).

The idea for the model is quite simple. We have two bodies, wax and water, which we
will treat as spatially homogenous systems. This is easily ensured in the case of the
water by stirring it but will be impossible to obtain in the case of the wax. By building
the PCM store from many thin copper tubes that are surrounded by water we can come
closer to the ideal of homogeneous conditions. There is also some copper but the
amount is kept small and its temperature will follow that of wax and water closely, so
we can neglect this element in our model. As the water cools in the environment its
temperature drops below that of the wax which will lose entropy to the water. Leaving
out the phase change, the model is one we already know from Chapter 4. It is similar
to the one in Fig. 4.49 for two bodies in thermal contact (wax and water) with an ad-
ditional outflow for entropy from the second storage element (water). If we neglect en-
tropy production due to transfer from wax to water, the central part of the model
obtains the structure shown in Fig. 5.4.

The laws of balance of entropy for the bodies of wax and water are determined by the
processes taking place:

1. Such systems are discussed and designed in regenerative energy engineering; see Duffie
and Beckman (1991), Sections 8.8 and 13.7.
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Figure 5.3:  Data of temperature 
of water (right) surrounding 
tubes containing wax (left), in-
side an uninsulated container. 
The dashed line is the estimated 
temperature for the system if the 
wax did not freeze. The system is 
allowed to cool in the environ-
ment.
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(5.5)

The body of wax is assumed to undergo reversible cooling whereas the water receives
entropy from the wax and loses it to the environment. Additional entropy is produced
in the water because of mechanical stirring (Fig. 5.4).

The constitutive laws for the process quantities in Equ.(5.5) are well known from pre-
vious models. They are

To calculate the temperature of the body of water, we make use of the standard relation
between temperature and specific entropy known for materials having constant specif-
ic heat (Equ.(4.42)). This simple approach breaks down for the temperature of the
body of wax because of the phase transition, and this is where we finally have to deal
with what is new about the model of cooling of wax. Rather than using three analytic
expression for the temperature-entropy relation for liquid, freezing, and solid paraffin,
we can create the temperature–specific-entropy diagram for this material (see the dia-
gram on the left in Fig. 5.4 and Example 5.2) and insert it into the modeling software.
All we have to do is calculate the specific entropy of wax, s = S/mwax , from the entropy
stored in the PCM. The temperature will be determined from the Ts diagram.

The model is completed by the law of balance of (liquid) wax and the expression for
the rate of destruction of this material:
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(5.6)

(5.7)

We have to make sure to apply Equ.(5.7) only when the temperature of fusion has been
reached, and only for as long as there is liquid paraffin.

The model works quite well (Fig. 5.5) if we make the entropy conductance GS,ww for
transfer from wax to water dependent upon the state of the paraffin in the tubes. I chose
to make it high for liquid and low for solid paraffin with a linear transition between
the values dependent upon the amount of liquid wax left as the freezing progresses.
The temperature of fusion chosen in the model is 52°C which agrees fairly well with
data for different types of paraffin. Note the horizontal line in the temperature of wax
resulting from the simulation of the model.

Actually, wax is a relatively complex substance that does not melt or freeze at a well
defined temperature. Wax is a poorly defined material made up of different versions
of paraffin which means that different components melt or freeze at (slightly) different
temperatures. For this reason, the function having a plateau at 52°C (Fig. 5.5) does not
represent the actual temperature of the wax very well. To include this effect in a simple
model would have been too complicated, still the result of the simplifying assumptions
are encouraging. The model is definitely good enough for prototyping.

1. Steam condenses to water. What happens with the entropy of the steam, the water, the en-
vironment?

2. Why does the temperature of the water in the graph of Fig. 5.3 have a plateau between
about 3000 s and 7000 s?

3. The constitutive law for phase change, Equ.(5.2), has been formulated in terms of the rate
of production or destruction of a phase involved in the process. Is the rate of production of
a phase always equal to the rate of change of the amount of that phase?

4. The constitutive law for phase change, Equ.(5.2), has been formulated in terms of the ex-
change of entropy between system and environment. Is the current of entropy in Equ.(5.2)
equal to the rate of change of entropy of the system undergoing phase change?

5. To melt ice, entropy has to be added to the system. Energy accompanies the entropy flow-
ing in. What happens to the energy?

6. What is the specific latent entropy of fusion of paraffin according to the graph in Fig. 5.4?

7. Why might a domestic hot water store using not just water but also a phase change material
make practical sense? What value of the temperature of fusion of the phase change material
should we choose?

8. Why are the entropy and the enthalpy of fusion related by the temperature of fusion?

EXAMPLE 5.1. Latent entropy of fusion and vaporization of water.

Use data of the experiments reported in Fig. 4.6 and Fig. 4.7 to determine (a) the latent entropy
of fusion of ice-water and (b) the latent entropy of vaporization of water-steam. 
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SOLUTION: (a) We estimate that ice in the test tube is melting from about 100 s to 2000 s (see
the diagram on the left in Fig. Ex.1). It probably starts a little earlier than the time when the ther-
mometer in the ice shows 0°C (the thermometer is at the center of the cylinder of ice). During
this period, the temperature of the water (and therefore also of the glass container) decrease
from 15.7°C to 9.0°C. Entropy is produced because of stirring. The balance of entropy of water
and glass container is

where Se,ice is the entropy lost by the water to the ice which equals the entropy received by the
ice (if we neglect entropy production due to heat transfer). The change of entropy of water and
glass and the entropy produced are calculated from

This yields the entropy lost by the water to the body of ice during melting:

The ice received 101.5 J/K of entropy. This makes the specific entropy of fusion equal to

which is about 10% smaller than the value found in tables (Table 5.1).

(b) From the graph in Fig. Ex.1.1 (right) we read the rate of change of mass of the body of water
being heated and vaporized. This value equals – 0.189 g/s. With a rate of production of entropy
equal to ΠS = 438 W / (273.15 + 98.1) K = 1.18 W/K, we obtain

which is slightly higher than tabulated values for vaporization of water at 100°C (Table 5.2).

EXAMPLE 5.2. Constructing a Ts diagram for paraffin.

Construct a temperature–specific-entropy diagram for paraffin using the following data. Solid
and liquid paraffin have similar entropy capacitances (see the table of values on the side). The
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material melts between 50°C and 55°C with a specific entropy of fusion of about 570 J/(K · kg).

SOLUTION: Let us choose a value of 0 J/(K · kg) for the specific entropy of the material at 0°C
(273 K). The temperature will increase (almost linearly) with entropy up to 323 K. At this point,
the specific entropy should be

The simplest approximation to a function T(s) for melting with increasing temperature is a linear
function, so we have a specific entropy of (400 + 570) J/(K · kg) = 970 J/(K · kg) at 328 K. From
there, the temperature rises again (almost) linearly with entropy so that

The Ts diagram representing this data is shown in the graph of Fig. Ex.2. Compare this to the
diagram in Fig. 5.4.

EXAMPLE 5.3. Freezing water in a freezer.

One liter of water (which already has a temperature of 0°C) is frozen in a freezer which we as-
sume to function as an ideal heat pump. The temperature in the freezer has to be maintained at
a temperature of 0°C. How much entropy is extracted from the water, and how much energy is
needed to emit this entropy to the kitchen at a temperature of 22°C? 

SOLUTION: The amount of entropy emitted when water is turned into ice is determined by the
constitutive law of fusion:

This amount of entropy flows into the freezer and has to be removed. The energy needed to op-
erate the freezer while the water is freezing is equal to the energy Eth needed to lift this amount
of entropy from a temperature of 0°C to one of 22°C:

5.2 THERMOFLUID PROCESSES OF THE IDEAL GAS

In terms of the concepts introduced so far, the problem of thermodynamics is the de-
termination of the currents and the rates of generation of entropy. We have approached
this problem by discussing some very simple constitutive laws, namely those govern-
ing the heating of ideal bodies at constant volume (Section 4.5), overall entropy trans-
fer (Section 4.6), and the change of phase of a substance such as water (Section 5.1).
By restricting our attention to processes at constant volume we have essentially ex-
cluded gases. In this and the following sections we shall extend the analysis to bodies
which can change their volumes and their temperatures. The ideal gas and blackbody
radiation (Section 5.4) will serve a examples of such materials. 
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We begin by formulating the laws of balance pertaining to fluids that can undergo
heating and volume change and add the relations for energy transfers having to do with
these processes. Then we continue by stating a first constitutive law, the thermal equa-
tion of state of the ideal gas, which relates the pressure of the fluid to its temperature
and its volume. Heating will be represented by a constitutive relation which introduces
the latent entropy and the entropy capacitance, and volume change is described sim-
ply by the production rate of volume. As we will see, the model allows only for re-
versible processes of the ideal gas.

5.2.1 Laws of Balance and Energy Relations in Thermofluid Processes

A body of air is more interesting than a stone from the viewpoint of thermodynamics
since it couples thermal processes of heating or cooling to fluid (or mechanical) pro-
cesses of expansion or compression. This coupling leads to new effects that can be un-
derstood if we manage to clearly distinguish the underlying processes (Fig. 5.6).

Laws of balance for ideal fluids. As always, we need to formulate the laws of balance
pertaining to the processes a system can undergo. Since a simple gas couples thermal
and fluid phenomena, we should expect two expressions, one for the balance of entro-
py and the other for the balance of volume.

When we deal with entropy we have to be clear how we want to handle possible irre-
versibilities. In the case of a gas, there are two possible sources of entropy production.
The first is the spreading of entropy through the body as a result of heating or cooling;
the second is friction in the fluid as it undergoes compression or expansion. Since we
want to model the simplest thermal processes, i.e., spatially uniform ones, we again
assume that heat can spread easily through the body making entropy production due
to transfer equal to zero. The case of internal friction is handled similarly. It is quite
acceptable to assume that friction in a body of air is small as it is compressed or ex-
panded. In summary, we assume that

(5.8)

which leads to the law of balance of entropy for reversible processes:

(5.9)

Only heating or cooling can change the entropy of the model gas we are going to con-
sider here.

The balance of volume is rather simple as well. In this chapter we will neglect transfer
of matter into or out of a system, so the systems chosen are made of fixed amounts of
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Figure 5.6:  Process diagram of 
an ideal fluid undergoing heating 
or cooling and compression or 
expansion. Heating means entro-
py transfer and compression de-
notes destruction of volume. ΠV 
is the production rate of volume.

Π ΠS heat transfer S friction, ,+ = 0
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substance. Since the material is assumed to be compressible, its volume is not con-
served. The volume changes due to creation (expansion of the gas) or destruction
(compression) for which we introduce a production rate ΠV. Therefore:

(5.10)

We also have to consider the balance of energy—remember that we make energy re-
sponsible for the coupling of processes. Since a simple gas undergoes two types of
processes we should expect two types of energy transfer, one associated with heating
and the other with compression. Therefore, the law of balance of energy includes two
expressions for energy fluxes:

(5.11)

Energy relations. IE,th denotes the energy flux that accompanies the entropy transfer
in heating and cooling and IE,comp is the rate at which energy is transferred as a result
of production of volume. According to Chapters 4 and 2, these fluxes are

(5.12)

(5.13)

where T and P are the temperature and the pressure of the gas, respectively.2 The neg-
ative sign in Equ.(5.13) tells us that the body of gas receives energy when it is com-
pressed (negative ΠV) and it loses energy when it expands (positive ΠV).

This completes the generic laws and the generic energy relations. The rest of the mod-
el of the thermofluid processes of the ideal gas must come from constitutive relations.

5.2.2 Heating of an Ideal Fluid

As before, heating means absorption of entropy by a body; cooling means that the
body loses entropy; the terms heating and cooling do not refer to any other circum-
stances. So the question we are dealing with is how a gas responds to entropy. Every-
day experience tells us that a typical fluid either expands or gets warmer when its
entropy increases.3 The type of fluid considered will be an ideal one where ideal is de-
fined by Equ.(5.8) and therefore by Equ.(5.9). There is no entropy production in the
fluid, and the entropy current in heating or cooling equals the rate of change of entropy
of the body.

Isothermal heating of an ideal fluid. Let us now turn to the constitutive problem of
the heating of a fluid such as the ideal gas (whose other properties we will define in

2. The derivation of Equ.(5.13) suggests that we look upon compression and expansion of a
body of gas as a fluid (hydraulic) process. We may just as well consider it a mechanical
process where the transfer of momentum through the body is accompanied by the motion
of its surface (Chapter 3). The result for energy transfer, Equ.(5.13), is the same.

3. A fluid need not expand when it takes up entropy. A notable and most important exception
to the rule is water which contracts if it is heated at temperatures between 0°C and 4°C. In
this chapter we will consider only the ideal gas that expands upon heating.

V̇ V= Π

˙
, ,E I IE th E comp= +

I T IE th S, =

I PE comp V, = − Π
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Section 5.2.3). In Section 4.3.3 we discussed the problem of heating or cooling of a
fluid at constant temperature. A fluid can be expanded or compressed isothermally if
it is heated or cooled at the appropriate rate. The entropy therefore has the effect of
changing the volume of the body. It does not do what we expect heat to do: it does not
increase the temperature of the body. For this reason the term latent heat was coined
to denote the heat absorbed in an isothermal process. It is instructive to hear how this
name was used more than 180 years ago by J. Ivory:4

The absolute heat which causes a given rise of temperature, or a given dilatation, is
resolvable into two distinct parts; of which one is capable of producing the given rise
of temperature, when the volume of the air remains constant; and the other enters into
the air, and somehow unites with it while it is expanding … . The first may be called
the heat of temperature; and the second might very properly be named the heat of ex-
pansion; but I shall use the well known term, latent heat, understanding by it the heat
that accumulates in a mass of air when the volume increases, and is again extricated
from it when the volume decreases.

Here we will formalize the definition of latent entropy. It is the factor ΛV which relates
rates of change of entropy content to rates of change of volume, i.e., it tells us how
much entropy is needed to let a gas expand at constant temperature:

(5.14)

We will call this new quantity the latent entropy with respect to volume. It tells us how
much entropy we need to let a body expand by one unit of volume. Since we are con-
sidering ideal fluids, the rate of change of entropy equals the flux of entropy in heating
which means that:

(5.15)

It is instructive and useful to exhibit the process of isothermal heating in the TV dia-
gram (Fig. 5.7).5

We can easily calculate the amount of entropy exchanged in an isothermal process, or
the change of the entropy content, by integrating the current of entropy from an initial
point in time ti to a final point tf :

(5.16)

or

4. J. Ivory (1827), quoted by Truesdell (1980), p. 17. Much more information regarding the
caloric theory may be found in Fox (1971).

5. The use of TV diagrams was customary in the original development of thermodynamics.
Today’s custom of using PV diagrams does not make nearly as much sense. To use two
fluid (or mechanical) variables, i.e., pressure and volume, for thermodynamics might give
us the mistaken impression that a science of heat does not have to make use of thermal
quantities. The old choice of temperature and volume was fortunate since it is the only one
that allows for a complete mathematical theory of thermodynamics of fluids including wa-
ter with its anomaly. See Truesdell (1979) and Truesdell and Bharatha (1977) for a detailed
discussion of this matter.
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(5.17)

We have not really solved the constitutive problem yet. The burden of calculating the
current has been placed on the determination of a new quantity, namely the latent en-
tropy. We can calculate the process of heating at constant temperature only if we know
this constitutive quantity. We could try to measure it in a manner analogous to what
we did for the entropy capacitance of incompressible materials (Section 4.5.3). In
practice, however, it is very difficult to measure the latent entropy of gases since they
take up very little entropy in comparison to measuring devices and containers. For this
reason, it would be nice if we could find new ways of dealing with the constitutive
problem. Fortunately, the relationship between entropy and the power of a fall of en-
tropy through a temperature difference, which we have not exploited yet, introduces
severe restrictions on the constitutive relations. These restrictions will reduce the bur-
den of measurement: we will be able to determine the latent entropy of the ideal gas
using theoretical arguments (see Section 5.2.6). 

Heating of the ideal gas at constant volume. J. Ivory spoke of two effects of heat-
ing. If you add heat to a body, either the volume or the temperature (or both) will
change. Here, we will investigate the second possibility, namely a change of temper-
ature alone. This can happen only if the volume of the body is forcibly kept constant.
With solids or liquids this condition is automatically satisfied to a high degree. Gases
have to be put in an airtight container. 

As in the case of heating of solids or liquids, we introduce the entropy capacitance at
constant volume, i.e., the coefficient ΚV which relates rates of change of the entropy
content to rates of change of temperature:

(5.18)

Here we refer explicitly to the condition of heating at constant volume, since the vol-
ume of a gas does not stay nearly constant as in the case of solids or liquids. Again,
we assume we are dealing with an ideal fluid, so:

(5.19)

As in the case of isothermal heating, it is instructive to represent the process in a TV
diagram (Fig. 5.8). In general the entropy capacitance is a function of both the volume
and temperature of the body. We can determine the amount of entropy exchanged dur-
ing heating at constant volume:

(5.20)

or

(5.21)

Direct measurements of the entropy capacitance at constant volume of gases are not
so simple to do since the values are rather small compared to those for the measuring
apparatus. We will be able to solve the constitutive problem in a combination of the-
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oretical and experimental steps (Section 5.2.8). Theory allows us to relate the quanti-
ties we seek to others that might be simpler to measure.

The general process of heating of an ideal fluid. In general, a body which is heated
undergoes changes of volume and of temperature simultaneously. For this reason, the
entropy content must depend on both the volume and the temperature. Its rate of
change must depend upon the rates of change of the independent variables. In other
words,

(5.22)

The coefficients are the latent entropy with respect to volume and the entropy capac-
itance at constant volume, respectively. For ideal fluids the rate of change of entropy
equals the entropy current in heating or cooling, so we have:

(5.23)

We shall see in one of the following sections (Section 5.2.7) how this law can be ex-
ploited in the case of adiabatic processes undergone by the ideal gas, without us even
knowing the form of the constitutive quantities. This will prove an important step in
solving the constitutive problem of the ideal gas.

5.2.3 The Thermal Equation of State of the Ideal Gas

The ideal gas is a system which can change its volume and temperature. These two
variables are related to a third property of the gas, namely its pressure. In Section
4.3.1, we encountered the law of Gay-Lussac which is obeyed by dilute gases. It states
that the pressure of the fluid is a linear function of temperature if it is heated at constant
volume. One finds that such gases have another simple property. Experiments demon-
strate that the pressure and volume of a gas such as air at room temperature are in-
versely proportional if the temperature is kept constant (Fig. 5.9):

(5.24)

This relation is called the law of Boyle and Mariotte. The laws of Gay-Lussac and of
Boyle and Mariotte together define the ideal gas as the fluid having the following ther-
mal equation of state:6

(5.25)

Here, R = 8.314 J/(mole · K) is the universal gas constant, and n is the amount of sub-
stance measured in moles.7 

The amount of substance comes into the equation of state of the ideal gas in the fol-
lowing way. It is found that the law holds with a single (universal) value of the gas
constant if certain mass ratios of different gases are used. For example, 16 g of oxygen
gas turn out to be equivalent to 1 g of hydrogen gas. These amounts also turn out to be
chemically equivalent in the sense that simple fractions or multiples of these numbers
occur in chemical reactions using up all of the reactants. Since the amount of sub-
stance is the fundamental measure of how much stuff is participating in chemical re-
actions, the coefficient n appearing in the equation of state also measures the amount
of substance.
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Gases obeying both the laws of Gay-Lussac and of Boyle and Mariotte do not really
exist in nature. Rather, a real gas approximates the behavior of an ideal fluid called the
ideal gas if its temperature is high and its density low. What can be understood as suf-
ficiently high or low needs to be determined by experience. Basically, gases follow the
ideal law for temperatures which are high compared to the point at which they liquefy.
The material at the center of the Sun behaves as an ideal gas despite its high density.

It is often useful to write the equation of state of the ideal gas in terms of density in-
stead of volume. We express the volume of the body by its density and its mass: V =
m/ρ. Further, we have the following relationship between the mass and the amount of
substance of the fluid: m = M0n. Here, M0 is the molar mass (mass per unit amount of
substance) of the gas. Using these relationships, the equation of state of the ideal gas
becomes

(5.26)

5.2.4 Transformation of the Constitutive Relation for Heating 
of the Ideal Gas

In Section 5.2.2, the constitutive relation for the response of an ideal fluid to entropy
was formulated by considering the general case of a combination of heating at con-
stant volume and at constant temperature. In other words, we used temperature and
volume as the independent variables of the formulation. Since a fluid has a third im-
portant property, i.e., its pressure, we could write the constitutive relation with the help
of pressure and temperature. Since we have a relation between P, V, and T for the ideal
gas (Equ.(5.25)), we can solve the problem for this fluid.

We would like to introduce the expression for the heating (Equ.(5.23)) in a form in-
volving pressure and temperature, instead of volume and temperature. In practice,
heating often occurs at constant pressure, which makes the new form particularly use-

6. Proof of Equ.(5.25): Since P is proportional to 1/V at constant T (Boyle’s relation), the
product PV is a constant that depends only on the temperature of the gas:

Here, f(T) is an unspecified function. Also, since P is proportional to T at constant volume,
P/ T is a constant which depends on the volume only. Therefore, P/ T is some other function
g(V) of the volume:

If we divide the first equation by T and multiply the second one by V we get

This implies that the quantity PV/ T is a function of T alone and a function of V alone.
Therefore, it cannot be a function of either T or V, which means that it is constant: PV/ T =
constant.

7. See Chapter 6 for more details on the subject of the amount of substance.
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ful for some applications:

(5.27)

The new constitutive quantities are called the latent entropy with respect to pressure
ΛP , and the entropy capacitance at constant pressure ΚP , respectively. For the ideal
gas, it is simple to relate them to quantities involving the volume of the body. We de-
rive this relationship with the help of the time derivative of the equation of state:

(5.28)

This allows us to replace the time derivative of the volume in Equ.(5.23):

(5.29)

If we compare this to the expression of the heating involving the pressure, Equ.(5.27),
we find that

(5.30)

(5.31)

This result demonstrates that knowledge of both entropy capacitances is equivalent to
knowing the capacitance at constant volume and the latent entropy with respect to vol-
ume. Since the measurement of the (ratio of the) entropy capacitances will prove sim-
pler than that of the latent entropy in many cases, the relationships just derived are of
particular importance. 

5.2.5 Energy Exchanged in Isothermal Compression

There is one more important element of preparation before we can tackle the constitu-
tive problem of the ideal gas in Section 5.2.6. We know from fluids and mechanics
how to find the energy exchanged during compression or expansion of an ideal fluid.
The general form is given by Equ.(5.13). From what we already know about the ideal
gas we can find the energy exchanged in isothermal compression or expansion. We
use the law of balance of volume (Equ.(5.10)) and the equation of state of the ideal gas
(Equ.(5.25)) and insert both in Equ.(5.13):

This can be integrated over a period of time to yield
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and finally

(5.32)

Note that the result does not depend on the absolute values of the volumes involved
but rather on the ratio of final to initial volume. A doubling of the volume of one mole
of a gas at room temperature means that about 1.7 kJ are emitted by the gas to the en-
vironment.

5.2.6 The Constitutive Problem of the Ideal Gas

The ideal gas is described by three functions, pressure (Equ.(5.25)), latent entropy
(Equ.(5.14)), and entropy capacitance (Equ.(5.18)). We know the first of these three
relations, but not the latter two. We can gain additional information on the latent en-
tropy based upon theoretical considerations alone. In this subsection we shall give a
brief account of the theory along the lines of what Carnot did some 180 years ago. The
entropy capacitances will be found after considering adiabatic processes in Section
5.2.7. When we have finally solved the complete constitutive problem of the ideal gas,
we will be able to discuss in detail the operations undergone by a fluid serving as the
driving agent in a heat engine (Section 5.3). 

By applying the relations developed up to this point to the operation of a Carnot engine
(see Section 4.4.3 and Fig. 4.34), we will be able to determine the latent entropy of the
ideal gas. For this purpose we have to discuss how the ideal gas is used as the driving
agent of a Carnot engine. Absorbing entropy from a furnace at constant temperature
is achieved by letting the ideal gas expand isothermally (step 1, from points 1 to 2 in
Fig. 5.10). The second step must be an adiabatic expansion, which serves to lower the
temperature of the gas to equal that of the cooler. During step 3 the entropy absorbed
must be discharged. This is done by compressing the fluid isothermally. Finally, in
step 4 (between points 4 and 1), the gas is compressed adiabatically. As a conse-
quence, the temperature of the working agent is raised back to its initial value. The
four-step cycle just outlined is called a Carnot cycle.

To obtain a restriction on the constitutive quantities of the ideal gas we proceed as fol-
lows. (This pretty much corresponds to what Carnot did in his theory of heat engines.)
Consider a Carnot cycle operating with a very small difference of the temperatures be-
tween the furnace and the cooler:

(5.33)
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In this case the adiabats of the ideal gas in Fig. 5.10 are very short, which means that
they do not contribute to the exchange of energy in the mechanical process. For this
reason we do not have to know more about adiabatic processes yet. The energy ex-
changed in compression and expansion in such a Carnot cycle is determined by the
isotherms alone. According to Equ.(5.32), this quantity must be equal to

(5.34)

The last step is a consequence of the fact that for a Carnot cycle having short adiabats
the corresponding volumes must be nearly equal (Fig. 5.10), i.e., V3 = V2, and V4 = V1.
From what we know about the motive power of a Carnot engine (Chapter 4) we can
say that the energy released by the engine in one cycle is given by

(5.35)

If we combine Equations (5.34) and (5.35), we see that the entropy absorbed from the
furnace must be

(5.36)

On the other hand, the entropy absorbed in the isothermal expansion, Se , is equal to
the integral of the latent entropy over the volume, Equ.(5.17). This is possible only if
the latent entropy of the ideal gas is given by

(5.37)

In summary, the theory of thermodynamics—the relationship between entropy and en-
ergy—determines one of the constitutive quantities of the ideal gas. Note that ΛV is
proportional to the molar density (concentration) of the gas.

5.2.7 Adiabatic Processes of the Ideal Gas

In Section 4.3.3 we saw that the temperature of a compressible fluid can be raised by
compression alone without heating. Processes in which heating is absent are called
adiabatic. They play a major role in natural and man-made phenomena such as the
propagation of sound, the transport of heat by convection in the Earth’s atmosphere,
or cycles in heat engines and refrigerators. Since adiabatic processes allow us to mea-
sure a constitutive quantity of the ideal gas, namely, the ratio of its entropy capacitanc-
es, we will be able finally to compute all quantities determining its behavior (Section
5.2.8). 

Description of adiabatic motion. If you suddenly compress air inside a cylinder, its
temperature increases; if the air is expanded, its temperature decreases (Fig. 5.11).
These changes occur without heating or cooling which can be achieved by insulating
the cylinder against the flow of entropy.
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The term adiabatic simply means that no entropy has been exchanged between the
body and its surroundings. In other words, entropy currents across the surface of the
system are equal to zero. It is convenient to display adiabatic processes in a TV dia-
gram or in the TS diagram (Fig. 5.12, see also Chapter 4, Fig. 4.26). The temperature
of the ideal gas rises if the fluid is compressed and it drops when the fluid is allowed
to expand. Remember that the material can undergo reversible processes only. For this
reason, the amount of entropy stored in the gas remains constant while the temperature
changes. We have to conclude that the curve representing adiabatic compression in the
TS diagram is a vertical arrow pointing up. The reverse, adiabatic expansion, results
in a drop of temperature at constant entropy. Therefore, the representative curve in the
TS diagram will be a vertical arrow pointing down.

How does this change arise? Our simple descriptions of isochoric and isothermal pro-
cesses contain the seeds of an understanding of adiabatic operations. In real life, heat-
ing at constant volume and heating at constant temperature usually do not occur
separately. The entropy content of a body changes when its volume and temperature
change. Part of the added entropy increases the temperature, and part of it is changes
the volume. In adiabatic changes, however, entropy does not cross the boundary of the
body. Therefore the entropy normally emitted in the isothermal compression of the gas
cannot leave the system. As a consequence, it raises the temperature. In somewhat
oversimplified terms, we could say that in adiabatic compression some latent heat has
been “converted” into sensible heat. (Do not take this literally; there only is one type
of entropy inside a body!) A better way to explain the phenomenon graphically may
be to say that the entropy of the gas is squeezed into a smaller space.

We can give a mathematical statement of the fact that heat does not cross the surface
of the system under consideration. The current of entropy vanishes, which means that

(5.38)

which according to Equ.(5.23) is equivalent to

(5.39)

or

(5.40)

This is the fundamental equation of adiabatic change of ideal fluids including the ideal
gas. In principle, we can solve the differential equation if we know the ratio of the la-
tent entropy and the entropy capacitance of the fluid. 

Solution to the problem of adiabatic motion of the ideal gas. We can derive the
theory of adiabatic changes for the ideal gas. As a first step, the expression for the en-
tropy current has to be transformed so that it contains the two entropy capacitances.
The equation of state is used to eliminate the rate of change of temperature in
Equ.(5.23). From Equ.(5.28) we obtain

(5.41)

Now, the entropy current takes the following form:

Figure 5.12:  TV and TS diagrams 
of adiabatic compression and ex-
pansion. The term adiabatic 
means that entropy cannot be 
transmitted across the boundaries 
of the body. The temperature of 
most fluids, such as the ideal gas, 
decreases as a consequence of 
adiabatic expansion. The curve in 
the TV diagram is typical of the 
ideal gas.
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(5.42)

Using the relationship between ΚP and ΚV, Equations (5.30) and (5.31), we conclude
that

(5.43)

If we now apply the condition of adiabatic change, Equ.(5.38), we get a simple differ-
ential equation for pressure and volume. With the ratio of the entropy capacitances
defined by

(5.44)

this equation takes the form

(5.45)

Naturally, the equation of adiabatic change can be integrated only if the constitutive
quantities themselves, or their ratio γ, are known for the ideal gas. Fortunately, we
have independent information concerning the ratio of the entropy capacitances. Dif-
ferent types of measurements, which do not involve measuring amounts of entropy,
all indicate that for the ideal gas this ratio must be constant:

(5.46)

Also, this constant is larger than 1, which means that more entropy is needed to raise
the temperature of the ideal gas by one degree in an isobaric process than in an isoch-
oric one. An example of how to measure this important ratio is presented in Section
5.2.9. More important still is the propagation of sound in the ideal gas (Example 5.5)
which gives the same result. Now the solution of the problem of adiabatic motion of
the ideal gas is very simple. Integration of the differential equation gives the law of
Poisson and Laplace:

(5.47)

Using the thermal equation of state of the ideal gas, PV = nRT, this relation can be
written with different variables:

(5.48)

or

(5.49)

Remember that all of these equations hold for the ideal gas only. The curves represent-
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ing adiabatic change in a pressure-volume (PV) diagram, which are usually found in
books on thermodynamics, are derived from the form just calculated. For different
types of fluids there may be completely different adiabats which do not even faintly
resemble those for the ideal gas (Fig. 5.13). Existence and form of the adiabats are
constitutive properties. Since the adiabatic exponent γ > 1, adiabats of the ideal gas in
the PV diagram are steeper than isotherms.

5.2.8 Determining the Entropy Capacitances of the Ideal Gas

In Section 5.2.6 we determined the latent entropy of the ideal gas on the basis of the-
oretical considerations. The missing piece of information, i.e., the entropy capacitanc-
es of the ideal gas, can be calculated if we know their ratio. Above in Section 5.2.7,
we have found that this ratio must be constant and that it can be measured in a number
of ways. According to the results of Sections 5.2.4 and 5.2.6, Equations (5.30), (5.31)
and (5.37), we obtain

(5.50)

(5.51)

From this the molar capacitances can be calculated. Note that the entropy capacitances
of the ideal gas are inversely proportional to its temperature.8 There is a simple rela-
tionship between the molar capacitances:

(5.52)

A proof of this relation is given in Example 5.7. Remember this holds for the ideal gas.

Temperature coefficients of energy and enthalpy. The product of an entropy ca-
pacitance and the temperature of the material is often used in place of the entropy ca-
pacitance. Here we have two such products:

8. This is one of the reasons why Carnot’s thermodynamics met with resistance. According
to common prejudice, the heat capacitance of the ideal gas should be constant since
“…facts have lately become known which support the view that heat […] consists in a mo-
tion of the least parts of bodies.” (R. Clausius, 1850). On the mechanical theory of heat
where heat is (a form of) energy, and assuming a kinetic theory, the heat capacity of the
ideal gas turns out to be constant.
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Figure 5.13:  A strange Carnot 
cycle resulting for a fluid having 
an anomaly such as water 
(curved parts are adiabats). For 
water, the latent entropy is posi-
tive above 4°C and negative be-
tween 0°C and 4°C. At the 
maximum density at 4°C, ΛV = 0. 
When ΛV < 0, entropy is emitted 
when the body expands at con-
stant temperature. See Thomsen 
and Hartka (1962).
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(5.53)

(5.54)

We will call the former the temperature coefficient of energy (just as in the case of
pure heating discussed in Section 4.5.4), while the latter is the temperature coefficient
of enthalpy. These names will be explained in Section 5.3. Traditionally they are
called the heat capacity (specific heat) at constant volume and the heat capacity (spe-
cific heat) at constant pressure, respectively, since they are related to quantities of en-
ergy exchanged in heating at constant volume and at constant pressure.

Actual values of temperature coefficients. Since the entropy capacitances of the
ideal gas are inversely proportional to the temperature of the body, its temperature co-
efficients must be constant. According to quantum theory, we would expect only two
or three discrete values for the molar temperature coefficient of energy:

(5.55)

The factor f is called the number of degrees of freedom. Monatomic gases have the
value f = 3 at all temperatures, while many diatomic molecules exhibit f = 5 at room
temperature; f = 7 is found for larger molecules. The gases found in nature agree with
this rule to a modest extent (Fig. 5.14). The best agreement is found for the noble gas-
es, which are monatomic molecules. Hydrogen gas displays the transition from f = 3
to f = 5 between 100 K and 400 K, after which a constant value of the temperature co-
efficient is maintained for several hundred Kelvin. Roughly speaking, this behavior is
attributed to the “unfreezing” of internal modes of motion, rotation, and vibration, as
the temperature increases.

5.2.9 A Dynamical Model of the Ideal Gas

Now we are ready to create a dynamical model of a body of (ideal) gas in a rather sim-
ple manner. As we have done in the previous sections, we start with the laws of bal-
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ance of entropy and volume and add the constitutive laws, namely, the relation for the
heating of the gas as in Equ.(5.22) and the equation of state (Equ.(5.25)). Naturally,
we need the constitutive quantities of the gas as well, i.e., latent entropy (Equ.(5.37))
and entropy capacitance. The latter will be applied in the form of Equ.(5.50) with the
adiabatic exponent as a parameter of the model. By rendering the relations in graphical
form (Fig. 5.15) we might gain additional insight into the ideas that make up the model
of the ideal gas. Once we have this model we can apply it to a couple of concrete cases
such as Ruechardt’s experiment for measuring the adiabatic exponent or the propaga-
tion of sound in a one-dimensional gas.

A basic model. To be concrete, let us consider a body of gas having a fixed amount
of substance n with initial conditions for volume and temperature (there is a second
form of the model where we prescribe temperature and pressure; this corresponds to
the second form of heating in Equ.(5.27)). Heating/cooling and compression/expan-
sion will be determined by the environment which means that the model should pre-
dict volume, entropy, temperature, and pressure as functions of time. The laws of
balance of volume and entropy are simple—there is a production rate of volume, and
heating is determined by a flux of entropy (Fig. 5.15). The remaining elements of the
model are the expressions for the relation of volume and temperature with entropy and
the equation of state. The former is applied in the differential form of Equ.(5.22)
(yielding an expression for the rate of change of temperature which has to be integrat-
ed, see the center of the diagram in Fig. 5.15). The latter is used to calculate the pres-
sure of the gas from volume and temperature.

Rüchardt’s experiment. There is a simple small experiment that allows us to measure
the ratio of the entropy capacitances, i.e., the adiabatic exponent γ (Equ.(5.44)). A ver-
sion of this experiment was already mentioned (Section 5.2.7 and Fig. 5.11). Here is
an even simpler one. A large glass bottle is fitted with a long thin glass pipe sitting
vertically at the top of the bottle (Fig. 5.16). If a steel ball is dropped into the pipe, it
moves down and back up a few times before dissipation makes the oscillatory motion
of the ball die down. The ball has to fit in the pipe very well so air does not escape and
friction is not too great.

The model of this phenomenon consists of two parts, one for the body of air in the bot-
tle (and in the pipe below the ball) and the other for the ball. The dynamical model for
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Figure 5.15:  System dynamics 
diagram of the dynamics of an 
ideal gas. There are two laws of 
balance for entropy and for vol-
ume. Note that the structure that 
leads to the temperature of the 
gas is not a law of balance. It sim-
ply integrates the rate of change 
of temperature which follows 
from the constitutive law for the 
heating of the gas (Equ.(5.22)). 
The entropy current is calculated 
from the temperature difference 
and a conductance (not shown).

Ball
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Figure 5.16:  Ruechardt’s experi-
ment. A steel ball is dropped in a 
vertical glass pipe fitted to the top 
of a large bottle.
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the air has already been constructed (Fig. 5.15). The part for the ball is standard for
translational motion (Fig. 5.17, right). We formulate the law of balance of momentum
of the ball. There are four momentum transfers affecting the motion: the one due to
gravity, those resulting from the pressure of the air in the pipe above and below the
ball, and finally the one due to friction. The momentum of the ball lets us calculate its
speed. This concludes the second part of the model.

The interesting part of the combined model is the interaction of the motion of the ball
with the dynamics of the air. As the ball moves down or up it compresses the air or
lets it expand. In other words, its motion (its speed) determines the rate of production
of volume of air by

(5.56)

where A is the cross section of the pipe and v  denotes the speed of the ball (positive if
it moves downward). The second interaction goes from the air to the ball: The chang-
ing pressure of the air in the bottle defines the variable force on the ball from below:

(5.57)

The complete model diagram is shown in Fig. 5.17. It shows how the model is com-
posed of two distinct parts and how the elements interact. Simulation of the model and
comparison of the results with data of the motion of the ball can be used to determine
the adiabatic exponent of air (other parameters such as the volume of air in the bottle
and initial temperature and pressure are measured directly in the experiment). The nu-
merical result is 1.4 which agrees closely with other measurements and the expecta-
tion from Equ.(5.55).

If the motion of the gas is made adiabatic (IS = 0 in Fig. 5.17, bottom left) and friction
is turned off, the oscillation of the ball is an undamped harmonic motion since the am-
plitudes are small compared to the actual values of the variables (the volume of air in
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Figure 5.17:  System dynamics 
model diagram for Ruechardt’s 
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the bottle needs to be large compared to that in the pipe). The oscillatory period is di-
rectly coupled to the adiabatic exponent, so a calculation by hand can yield the desired
result. What we do not find in this manner is the actual damped motion of the ball and
the fact that entropy transfer affects this motion considerably. In fact, entropy transfer
into and out of the air in the bottle leads to damping of the oscillatory motion—even
without any friction present. This is a nice example of the effect of thermal dissipation
(entropy production) in one part of the system that affects a totally different element
of this system.

The propagation of sound in air. Another interesting application of the dynamics of
a simple gas concerns the propagation of sound. Consider air at rest in a long cylindri-
cal container with a source of sound at one end. Sound waves are longitudinal pressure
waves (Section 3.6). Imagine two parcels (elements) of air (Element 1 and Element 2
in Fig. 5.18) moving back and forth as a consequence of the wave travelling through
it. The motion of an element is modeled with the help of the balance of momentum
(upper part of the system dynamics model diagram in Fig. 5.18). As the centers of
mass of the elements move at different speeds, the air between them (Element 12) is
compressed or expanded:

(5.58)

In this manner, we can couple the motion of elements to the thermodynamics of the
gas in intermediate elements.

The second part of the model represents the thermodynamics of an intermediate ele-
ment (see Fig. 5.15). It couples back to the mechanical part of the model via its pres-
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Figure 5.18:  Diagram of a sys-
tem dynamics model for a long 
line of gas divided into several el-
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the boundary condition for a 
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have to add a boundary condition 
at the right end of the line that 
corresponds to the concrete situa-
tion there (for example, a condi-
tion for the flow of momentum 
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sure which is equal to the momentum current density on the boundary between
elements. If we divide the column of air into as many elements as is practical, we get
a fairly useful representation of the dynamics of the complete system. Each element
receives a model part as described and these parts are joined (Fig. 5.18). All we have
to do to complete the model is to add proper boundary conditions at both end.

As speeds or pressures of subsequent elements are investigated during a simulation of
the model, one can note shifts in peaks of the functions that tell us how long it takes
for a disturbance to travel through a line of air. Correspondence with reality is fair—
it depends to some degree upon the number of elements chosen to represent the phys-
ical system. If we assume the motion of the air to be adiabatic (zero entropy flow in
the model), we get good results. Entropy transfer, on the other hand, leads to dissipa-
tion and damping of the waves, and to changes of the speed of sound.

5.2.10 Polytropic Processes

To conclude this section, let us consider a general kind of heating or cooling of which
adiabatic or isothermal processes are special cases. Remember that in adiabatic pro-
cesses, heat transfer vanishes while for isothermal changes, it takes a special value. In
practice, it might take some intermediate value. For this reason, we write the current
of entropy in the form

(5.59)

An operation conforming to this type of heating is called a polytropic process. Κ is a
quantity resembling a generalized entropy capacitance. A number of practical process-
es may be modeled as polytropic changes, including a gas being compressed in a cyl-
inder and being allowed to exchange entropy with the cylinder walls only, or the
adiabatic convection of moist air. (In both these cases, the air is in contact with another
material—container wall or water vapor—and by defining a polytropic process we can
deal with the two components as a single system; see Example 5.8.)

This definition will now be applied to the ideal gas. Remember that this fluid can un-
dergo only reversible processes. Now, with the rate of change of the entropy content
expressed in terms of the entropy capacitance and the latent entropy, Equ.(5.22), and
with the heating assumed for polytropic processes as in Equ.(5.59), we obtain the fol-
lowing equation of balance of entropy:

(5.60)

The latent entropy can be replaced by an expression involving both entropy capaci-
tances (Equ.(5.31)) which leads to the differential equation for polytropic processes:

(5.61)

We can recover adiabatic and isothermal processes if we set

(5.62)
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For the general polytropic process, Κ takes an intermediate value. If we introduce the
polytropic exponent

(5.63)

Equ.(5.61) becomes equivalent to the differential equation of adiabatic motion, which
leads to the Poisson-Laplace law with γ replaced by γ *. The polytropic exponent is a
generalization of the adiabatic exponent. We shall always take it to be a constant, just
as in the case of the ideal gas. The solution of Equ.(5.61) is a form of the law of poly-
tropic processes of the ideal gas:

(5.64)

which holds only if γ * is a constant. Its form is equivalent to the laws of adiabatic mo-
tion of the ideal gas. Remember that it corresponds to a process in which the fluid is
being heated in a particular way.

9. How does a gas respond to heat (entropy)?

10. What is the meaning of latent entropy in the case of a fluid not undergoing phase change?

11. What is the meaning of entropy capacitance at constant volume?

12. Air in our atmosphere is heated by the Sun. Is this process closer to heating at constant vol-
ume or at constant pressure?

13. What everyday observations can tell us that the entropy capacitance at constant pressure
should be larger than the entropy capacitance at constant volume? 

14. How do the curves for heating of the ideal gas at constant volume and at constant pressure
compare in the TS diagram?

15. Why does a gas that is suddenly compressed get hot?

16. If air rises in the atmosphere, is the process isothermal or adiabatic?

17. A snugly fitting steel ball is dropped in a glass pipe that is sealed at the bottom. The air is
compressed. Consider either isothermal or adiabatic compression of the air. In which case
does the air get compressed more?

18. Bicycle pumps get hot when we quickly compress the air inside them. Does this mean the
compression is not adiabatic?

19. In adiabatic processes, Equ.(5.39) tells us that the temperature of a body of gas should be
at its maximum when the volume is smallest. Why? Why is this not true any longer if the
gas is heated or cooled during compression or expansion?

20. Water between 0°C and 4°C shrinks when heated. What does this tell us about the latent
entropy of water? What does this mean for the adiabats of water in the TV diagram?

21. Why is the difference between molar temperature coefficients of enthalpy and of energy
equal to the gas constant?

22. On the basis of data in Fig. 5.14, what is the value of the temperature coefficients of energy
and enthalpy of air at standard conditions? What does this mean for the expected value of
the adiabatic exponent (ratio of the entropy capacitances) for air?

23. Why is the motion of the steel ball in Ruechardt’s experiment (Fig. 5.16) damped if there
is heat transfer between the air in the bottle and other bodies?

24. If moist air is compressed or expanded without heating or cooling, why is the process not
adiabatic for the “dry” part of the air?

γ* =
−
−

Κ Κ
Κ Κ

P

V
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QUESTIONS
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EXAMPLE 5.4. Change of the entropy content of the ideal gas.

Calculate the change of the entropy content of the ideal gas as a function of volume and tem-
perature from the knowledge of the latent entropy and the entropy capacitance. 

SOLUTION: According to Equ.(5.22), the rate of change of entropy of the gas is related to the
rates of change of volume and temperature by the latent entropy and the entropy capacitance at
constant volume. These are given by Equ.(5.37) and Equ.(5.53):

Integration leads to

The change of the entropy content does not depend on the initial values of volume and temper-
ature, but rather on the ratio of their values at the beginning and the end.

EXAMPLE 5.5. The speed of sound in the ideal gas.

(a) Derive the formula for the speed of sound propagation in a fluid on the basis of the theory
given in Chapter 3 (Section 3.6). (b) Use this result to derive the speed of sound in air for iso-
thermal and adiabatic pressure waves, respectively. Measurements put the speed of sound in air
at standard conditions at about 345 m/s. What does this mean for the type of process leading to
the propagation of sound? Is it due to isothermal or adiabatic phenomena in air?

SOLUTION: (a) We have to compute the capacitance per length and the inductance per length
of a fluid to compute the speed of sound according to Equ.(3.44) of Chapter 3. The capacitance
per length is equal to the mass per length, which is

The inductance per length, on the other hand, may be calculated using Equ.(1.34) of Chapter 1.
The momentum current density jp is equal to the pressure P of the fluid. If there is a difference
of speeds at the ends of a column of fluid of length ∆x and cross section A, its volume is bound
to change at a rate

According to Equ.(3.41), we obtain

which may be solved for the inductance per length:

The square of the speed of sound is equal to the inverse of the product C’L’. If we also change
the derivative from volume to density we finally obtain
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for the square of the speed of propagation of sound in a simple fluid. 

(b) The derivative of the pressure of the fluid with respect to its density has to be evaluated for
the cases of adiabatic and isothermal compression. For the former we have the relation

between pressure and density; see Equ.(5.47). The derivative is computed simply, and we obtain
the final result

This expression is a result of the equation of state of the ideal gas, Equ.(5.26). Isothermal pro-
cesses, on the other hand, lead to

The numerical value for isothermal sound waves in air at 25°C turns out to be about 290 m/s
(the molar mass of air is 0.029 kg/mole). This shows that sound waves travel about twenty per-
cent faster than isothermal ones in air. The difference between the theory based on isothermal
oscillations and actual measurements led Laplace to propose that sound waves are adiabatic.
Data and theory lead to a value of the adiabatic exponent of air of 1.4.

EXAMPLE 5.6. The adiabatic temperature gradient in a gravitational field.

Air ascends and descends constantly in the Earth’s atmosphere leading to a temperature gradient
where temperature, pressure, and density of the gas satisfies adiabatic conditions. Show that in
the Earth’s atmosphere the adiabatic temperature gradient is constant. Compute its value for
air, for which the ratio of entropy capacitances is 1.4.

SOLUTION: According to Equ.(5.48), the relation between pressure and temperature for adia-
batic conditions is

The temperature gradient dT/dz can be derived directly from this in terms of the pressure gradi-
ent dP/dz:

This gradient is commonly called the adiabatic temperature gradient. We can calculate the
pressure gradient in the Earth’s atmosphere according to the law of hydrostatic 

where g = 9.81 N/kg is the gravitational field strength. If we replace the density, using the adi-
abatic relation
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we obtain for the gradient

which obviously is constant. The numerical value for air is

This value is normally too large since humidity in the air changes the conditions. A correction
can be made using the theory of polytropic processes (Section 5.2.10). A better value for the
actual temperature gradient is – 0.006 K/m.

EXAMPLE 5.7. Temperature coefficient of enthalpy of the ideal gas.

(a) Express the molar entropy capacitance at constant pressure in terms of the entropy capaci-
tance at constant volume. Transfer the result to the molar temperature coefficient of enthalpy.
(b) Calculate the value of the temperature coefficient of enthalpy for a monatomic gas such as
helium. Compare the result with measurements of the ratio of the entropy capacities, which is
1.66 for helium. 

SOLUTION: (a) We use the relation between the entropy capacitances in the form of Equ.(5.31)
and introduce the value of the latent entropy (Equ.(5.37)):

For the last step, the equation of state of the ideal gas was used. For molar quantities this yields:

The temperature coefficients are related to the capacitances by the temperature of the gas
(Equ.(5.53) and Equ.(5.54)). Therefore:

(b) We obtain the numerical value of the temperature coefficient of energy for a gas whose mol-
ecules are single atoms from the expression in Equ.(5.55). With f = 3, the value is 3R / 2 + R =
5R / 2 = 20.8 J/(K · mole), which agrees closely with observation. With the ratio of the entropy
capacitances measured, we determine the temperature coefficient of enthalpy (or of energy) ac-
cording to Equ.(5.51). With the definition in Equ.(5.54) we have

EXAMPLE 5.8. Polytropic compression of a body of ideal gas in a container.

Consider a certain amount of an ideal gas (body 1) which is enclosed in a cylinder having a pis-
ton (body 2). The cylinder and the gas are insulated from the environment; however, they may
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exchange entropy with each other. Derive the relation between the pressure and the volume of
the gas if it is compressed. The temperatures of the gas and the cylinder walls are assumed to
be equal during the process. The cylinder walls have an entropy capacitance Κ2. (The associated
temperature coefficient of energy is assumed to be constant.)

SOLUTION: We model both bodies as spatially uniform. Their heating takes the forms

Such bodies can undergo only reversible processes. Since their temperatures are equal at all
times, the current of entropy leaving the gas is equal to the flux entering the walls. This leads to
the following differential equation:

or

Now we replace the rate of change of temperature by the rate of change of pressure, using the
equation of state of the ideal gas. We obtain

This is the differential equation of a polytropic process with the following polytropic exponent:

Without the temperature coefficient of energy of the walls, i.e., without the effect of exchange
of entropy between the gas and the walls of the enclosure, the process would be adiabatic. Here,
the polytropic exponent of the gas is smaller than its adiabatic counterpart.

5.3 THE ENERGY OF THE IDEAL GAS

In the previous sections we solved the constitutive problem of the ideal gas. In other
words, we have the thermal equation of state of this fluid, and we determined its latent
entropy and entropy capacitance. Now the energy of the ideal gas can be derived and
the enthalpy—an energy related quantity—can be defined. When we consider energy
transfers in heating we will finally understand the meaning of the temperature coeffi-
cients of energy and enthalpy. Our knowledge will then be applied to computing some
cyclic processes undergone by the ideal gas. 

5.3.1 The Energy and the Enthalpy of the Ideal Gas

Now that we have determined all the constitutive quantities of the ideal gas we should
expect to be able to calculate other properties of this simple fluid. We have found the
entropy of the ideal gas as a function of volume and temperature (Example 5.4). The
energy function is just as interesting. How does the energy of the ideal gas depend
upon the independent variables?
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Also, other functions derived from the energy function are used to facilitate some
computations. They are called thermodynamic potentials; among them are quantities
such as enthalpy, free enthalpy, and free energy. In this section we will introduce the
enthalpy of a fluid, and explain where the names temperature coefficient of energy or
temperature coefficient of enthalpy come from.9

The Gibbs Fundamental Form of ideal fluids. We take the balance of energy in the
form of Equ.(5.11) for granted. If we introduce the expressions for energy transfers,
Equ.(5.12) and Equ.(5.13), and make use of the laws of balance of entropy and vol-
ume, we obtain

or

(5.65)

This is called the (dynamical expression of the) Gibbs Fundamental Form for a fluid
that can undergo heating and compression. It is analogous to Equ.(4.35) for bodies that
can undergo only heating and cooling. It relates quantities of the system only; there is
no reference to processes (quantities exchanged) any longer. Here it has been derived
on the basis of the theory of reversible processes of ideal fluids. It is interesting to note
that this relation between system quantities (often called state variables) also applies
to uniform irreversible processes as we shall see in Chapter 10.10

The energy function. Now we can prove an interesting and somewhat surprising re-
sult: the energy of the ideal gas depends only on the temperature. In other words, the
values of the volume and pressure do not matter. As long as the temperature remains
constant, the energy remains constant as well, and a change of the energy content of
the gas depends only on a change of temperature. To prove this, let us start with the
Gibbs fundamental relation for the ideal gas, Equ.(5.65). The rate of change of the en-
tropy of the body is given by Equ.(5.22). Therefore,

(5.66)

Because of the form of the latent entropy in Equ.(5.37), the dependence of the energy
upon volume vanishes. Therefore,

9. Thermodynamic potentials such as the enthalpy are basically unnecessary constructs that
have arisen in traditional thermodynamics. The reason is simple: If we try to base the entire
theory essentially upon energy, energy related quantities spring up and create an unwieldy
formalism. Since we encounter these terms in traditional representations of thermodynam-
ics we have to be aware of how to use them in some cases. I will restrict use of traditional
terms to a minimum.

10. Gibbs Fundamental Forms (GFFs) are traditionally assumed to be valid in different forms
for different materials. Traditional thermodynamics—which basically is a theory of the
statics of heat—is derived from these forms. They are commonly written as follows:

so time has all but vanished from thermodynamics (Callen, 1985). In a dynamical theory
of heat, however, GFFs are derived from laws of balance and constitutive relations for par-
ticular materials. This makes the theory much more flexible and has led to models for many
more processes including those far from equilibrium (Müller, 1985; Jou et al., 1996).
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(5.67)

or in integrated form,

(5.68)

which holds since CV = TΚV is constant for the ideal gas. (Now we understand the term
temperature coefficient of energy for CV.) This result is important since it allows us to
calculate processes undergone by the ideal gas in terms of a change of temperature
only. We do not always have to follow the details of a process.

Enthalpy. The treatment of the constitutive problem of the ideal gas demonstrated the
utility of the transformation of expressions to a form where pressure and temperature
(rather than temperature and volume) are the independent variables. We can write the
GFF in Equ.(5.65) with the help of Equ.(5.27) which yields:

(5.69)

If we add the term VdP/dt to this relation, we obtain

The last line is a consequence of the equation of state of the ideal gas. If you introduce
a new quantity defined as follows:

(5.70)

you can see that 

(5.71)

for the ideal gas. The quantity H = E + PV is called the enthalpy of the fluid. We should
not try to associate any graphical intuitive meaning with this term. Its utility becomes
clear because of Equ.(5.71) for the ideal gas and relations commonly used in systems
that exchange matter with their surroundings (Chapter 8). The term temperature coef-
ficient of enthalpy for CP is now obvious from Equ.(5.71).11

5.3.2 Energy Transfer in Heating

The foregoing allows us to calculate energy transfer due to heating and cooling at con-

11. Again, because of the identification of the energy transferred in heating with “heat” in tra-
ditional thermodynamics, the coefficients CV and CP have acquired the names heat capac-
ity at constant volume and heat capacity at constant pressure, respectively, leading to
considerable confusion as to the meaning of what is supposed to be a quantity of heat.
Chemists often call the enthalpy the “heat content of a body.”
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stant volume or at constant pressure. In the former case we have

or

(5.72)

This follows from the fact that, for constant volume, there is no energy exchanged as
a consequence of compression or expansion. When we perform the same calculation
for constant pressure, we find

or

(5.73)

If heating occurs at constant pressure, the energy added does not all stay in the system
(remember the discussion of energy in phase changes, Section 5.1.2). So the energy
added is not equal to the change of the energy of the body, rather it is equal to the
change of its enthalpy.

Since for constant volume, ∆E = Eth, Equ.(5.72) often leads learners to think that
Equ.(5.68) holds only for processes at constant volume. Remember that Equ.(5.68)
holds in general for the ideal gas, irrespective of the type of process undergone by the
gas. Since the energy of the ideal gas depends upon the temperature only, its change
is always calculated from the associated change of temperature.

5.3.3 Stirling and Otto Cycles

The thermodynamics of the ideal gas derives some of its significance from the fact that
this gas can serve as a model fluid for practical power cycles. Put differently, the ac-
tual operations taking place in a variety of thermal engines may be modeled in terms
of ideal gas processes. Since this fluid may undergo only reversible operations, the
analysis of power cycles will deliver upper bounds for their performance. Here we
shall discuss two important types of engines, the Stirling and the Otto engines. The
former is an example of external combustion processes, while the latter uses internal
combustion.

Stirling cycle. The Reverend R. Stirling invented an engine in which a gas such as air
undergoes cyclic processes in a closed environment.12 Two cylinders, a heater and a
cooler, and a regenerator, make up the device. Burning of fuel for heating takes place
externally and continuously, which in practice allows for much better control of the
chemical process. This is important for pollution and noise control. Even though it is
relatively difficult, and therefore expensive, to build, the Stirling engine has attracted
renewed attention in recent years because of its inherent positive properties.

12. See for example G. Walker (1973 a,b) and J. Walker (1985).
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It is convenient to discuss the operation of such an engine directly in terms of the mod-
el processes through which the ideal gas runs (Fig. 5.19). Let us begin with the heating
of the fluid. The gas is heated, and expands at a constant temperature TH. The entropy
and the energy absorbed are simply related by this temperature. In the second step, the
fluid is cooled at constant volume so that the temperature reaches its lower operating
level, TL. The entropy is discharged to the regenerator, a fact which will become im-
portant later in the cycle. Now the ideal fluid is cooled further at constant temperature,
which means that its volume must be reduced; here the entropy is discarded through
the cooler to the environment. In the final step, the gas is heated once again, this time
at constant volume, to reach its initial temperature TH. The entropy needed in this step
is taken from the regenerator.

The regenerator’s significance lies in increasing the thermal efficiency of the cycle. If
we look only at the gas, two of the steps are the same as those in the Carnot engine. In
the isochoric operations, however, additional entropy is exchanged between the envi-
ronment and the fluid, thus reducing the efficiency of the engine compared to that of
a Carnot cycle. If, however, the isochoric heating and cooling can be made internal to
the system, we do not have to supply and waste extra entropy (and energy). In fact, a
Stirling cycle having an ideal regenerator will achieve the Carnot efficiency. This is
so because the same amount of entropy is emitted during the second step as is ab-
sorbed in the fourth (heating or cooling at constant volume between the same initial
and final temperatures). If we include the regenerator in the system being considered,
we have to model it as a body which always undergoes reversible operations at the
same instantaneous temperature as the gas. In practice, the regenerator will be one of
the weak links of the design: it will be difficult to minimize the production of entropy
in this device. For modeling purposes we may consider it to be an ideal counter flow
heat exchanger (Fig. 5.19).

Otto cycle. An example of an internal combustion engine is given by a fluid going
through an Otto cycle. The gas is assumed to be air, and it is modeled as an ideal gas.
In the first step the fluid is compressed adiabatically in a cylinder having a piston
(Fig. 5.20). The temperature rises from its lowest value to the highest value achieved
in the cycle. During step 2, the air is heated at constant volume as a consequence of
the burning of fuel which has been mixed in with it. The final temperature is the high-
est in the complete cycle. Then the gas expands adiabatically, whereupon in a final
step, it is cooled at constant volume.

The idealized cycle neglects several features which are a consequence of the internal
combustion of the fuel. First of all, the production of entropy is modeled as taking

Figure 5.19:  The Stirling engine 
consists of an expander, a com-
pressor, and a regenerator. The 
fluid in the engine is expanded 
and heated at constant upper op-
erating temperature TH. The en-
tropy emitted in the step 2 
(constant volume cooling) is giv-
en back to the gas in step 4 with 
the help of a heat exchanger (the 
regenerator). Before that, the gas 
is compressed and cooled at con-
stant lower operating tempera-
ture TL. The ideal cycle is 
depicted in the TV diagram.
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place outside the fluid. We assume that the air absorbs the entropy released by the
burning fuel as if it was isolated from it. The heating of the air is then assumed to pro-
ceed according to the laws laid down in this chapter. Also, in the real engine, air is tak-
en up in each cycle, mixed with fuel, and expelled again from the cylinder with the
products of the combustion. The air does not remain enclosed in the engine, and not
just air runs through the steps of the Otto cycle. Rather, we have a mixture containing
other components as well. In the model we neglect these facts. Still, the ideal Otto cy-
cle is used as a first approximation of the real processes taking place.

5.3.4 Irreversible Processes, Constitutive Laws, and Time

Processes in nature are irreversible, but the theory laid down so far is one of reversible
changes only. This is a direct consequence of the model of the ideal fluid I have chosen
as a basis. The model is specified by the constitutive laws describing the body under
investigation. Therefore the constitutive laws are responsible for the fact that the the-
ory permits only reversible processes. As a consequence, a process undergone by a
fluid can run at any speed with the same outcome—it is as if time did not really matter.

If we want to break out of the confinement of ideal processes, we have to change the
model of the bodies undergoing thermodynamic processes. In other words, we have to
enlarge the class of materials we are considering. The ideal gas defined by the thermal
equation of state derived in Equ.(5.25) and the expression for heating as in Equ.(5.23),
does not allow for anything but reversible changes. However, if we change the laws
just a little bit we will find that thermodynamics is different. 

An example of a simple body which is capable of irreversible changes is that of a vis-
cous fluid (Chapter 10). Viscosity leads to the creation of entropy and to the dissipa-
tion of energy. We can introduce viscosity into our models by adding a viscous
pressure term to the thermal equation of state of the fluid. This changes everything.
Due to this term, the energy exchanged in the mechanical process does not reverse its
sign upon reversal of the change of volume. As a consequence, the entropy exchanged
will also be different for a process and its reverse. This is in stark contrast to the be-
havior of the ideal fluid we have investigated up to now. Fluids which behave in such
a way produce entropy.

There is another consequence of changing the constitutive laws in the prescribed man-
ner: time appears explicitly in the equations of change. Therefore, it matters how fast
a process takes place. The equations describing a process will model real initial value
problems as we know them from mechanics and other fields of physics. Only the par-
ticular properties of ideal fluids might make us believe that time has no place in ther-
modynamics. Time is right there; we only have to look for it.
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25. A body of air is undergoing adiabatic change. Why does the model of fluids developed in
this section tell us that the entropy of the body must stay constant?

26. What is the Gibbs Fundamental Form for isothermal processes of the ideal gas?

27. Why is the ratio of the temperature coefficients of enthalpy and energy equal to the ratio
of the entropy capacitances at constant pressure and at constant volume?

28. The temperature of a body of air goes from T1 to T2 in adiabatic compression. By how
much does the energy of the gas change? Why can we use the temperature coefficient of
energy CV to make this calculation?

29. A body of gas is heated at constant pressure. What happens to the energy absorbed by the
gas as a consequence of heating? How much of it is stored in the body?

30. The enthalpy of a gas changes by – 10 kJ. How much energy has been transferred by heat-
ing/cooling at constant pressure?

31. Why is the ideal efficiency of the Otto cycle smaller than that of the Carnot cycle?

EXAMPLE 5.9. Isothermal heating of the ideal gas.

Determine the energy exchanged for the ideal gas in isothermal heating, i.e., calculate the ener-
gy supplied by heating and the energy exchanged as a consequence of volume changes. Use
these results to show that the energy of the ideal gas should remain constant during an isother-
mal process.

SOLUTION: Since the temperature is constant during the process, the amount of energy ex-
changed in heating is obtained if we multiply the entropy absorbed by the temperature: 

The energy exchanged in the fluid process was already calculated in Equ.(5.32). Note that it is
equal in magnitude to the expression just obtained, but it carries the opposite sign. Since the
change of energy equals the sum of energies transferred, this change is equal to zero.

EXAMPLE 5.10. Measuring the temperature coefficient of enthalpy of air.

Measuring the entropy capacitance at constant volume or the temperature coefficient of energy
of gases is difficult since their values are small. For this reason, one often uses a flow method
for measuring the corresponding values at constant pressure. Air is heated electrically at the bot-
tom of a vertical open tube and flows upward (Fig. Ex.10). By measuring the speed of air flow
and the temperature of the air at the top of the pipe we can infer the value of the temperature
coefficient of enthalpy of the gas. (This is a simple experiment which can be built by hand.)

SOLUTION: Consider a certain amount of air which is heated at the lower end and then rises
through the tube. We compare the two states of the body of air. If v is the speed of air leaving
the tube, the amount of substance of the body of air flowing in time ∆t is given by:

where A is the cross section of the tube, and Tu is the temperature of the air at the exit. 
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We can calculate the amount of energy transmitted to the air in a time ∆t from the value of the
power of the electrical heater. Since the process takes place at constant pressure, Equ.(5.73) tells
us that

If P0 is the ambient pressure, the density of air at the outlet can be calculated using the equation
of state of the ideal gas, Equ.(5.26): 

Taken together, we arrive at the following expression for the molar temperature coefficient of
enthalpy:

EXAMPLE 5.11. Energy exchanged in isochoric, isothermal, and adiabatic processes.

Compare the following operations: (1) an adiabatic doubling of the volume of one mole of air
from standard conditions, and (2) isochoric cooling followed by isothermal heating which lead
from the same initial to final states as (1). (a) Draw the processes in the TV diagram. (b) Calcu-
late the energy exchanged as a consequence of mechanical and thermal processes for each step.
(c) Determine the change of the energy content in (1) and (2), respectively.

SOLUTION: (a) The processes are shown in the TV diagram in Fig. Ex.11.

(b1) In the case of an adiabatic process undergone by an ideal gas with constant ratio of the en-
tropy capacitances, we use the relationship between volume and pressure according to the adi-
abatic relations for the ideal gas:

If we solve this relation for the pressure, we can compute the energy exchanged as a conse-
quence of compression or expansion:

For standard conditions, the values of temperature and pressure are 0°C and 1 bar, respectively.
The volume of one mole of an ideal gas at standard conditions turns out to be 22.4 · 10–3 m3, and
the ratio of the entropy capacities is 1.4 for air. Now the energy exchanged must equal

The energy exchanged in the thermal process is zero for an adiabatic expansion: Eth = 0.

(b2) Let us number the isochoric and isothermal steps by 1 and 2, respectively. The energy ex-
changed in the fluid process is zero for the isochoric change:

For isothermal expansion or compression we have computed the energy exchanged in working
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in Equ.(5.32).The numerical value turns out to be

This is so since the temperature drops to 207 K in the adiabatic doubling of the volume (see
Equ.(5.49)), and therefore also in the isochoric cooling. In the latter process the energy ex-
changed as a consequence of cooling is 

The temperature coefficient of energy has been computed according to Equ.(5.55), with f = 5. 

The energy exchanged in isothermal heating is calculated using Equ.(5.23). Since the latent en-
tropy of the ideal gas is nR/V (see Equ.(5.37) and below), we get

(c) If we add up all the amounts of energy exchanged for the cases (1) and (2), we obtain the
same value:

This is as expected: the change of the energy content does not depend on the details of process-
es. Energy exchanged does depend upon the processes.

EXAMPLE 5.12. Thermal efficiency of the Otto cycle.

Consider a body of ideal gas going through the Otto cycle described in Fig. 5.20. (a) Determine
the thermal efficiency of the cycle, and express it in terms of the temperatures involved. (b) Ex-
press the result in terms of the ratio of the volumes (compression ratio). (c) Compare the effi-
ciency to that of a Carnot cycle.

SOLUTION: (a) The engine absorbs the same amount of entropy in step 2 as it emits in step 4.
Since these steps involve heating and cooling at constant volume, the entropy exchanged is giv-
en by

Therefore, we have the following relation between the temperatures involved:

The thermal efficiency may be expressed as the ratio of the energy delivered by working and
the energy absorbed by heating. These quantities are given by

and

The amounts of energy exchanged as a consequence of the mechanical operations in steps 2 and
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4 are equal to zero. From this we conclude that

(b) The temperatures and the volumes may be related by the adiabatic relations for the adiabatic
steps 1 and 3:

which means that the thermal efficiency can be expressed as follows:

(c) The thermal efficiency of the Otto cycle is clearly smaller than the Carnot efficiency. The
latter value would be obtained by an engine running between constant temperatures T2 and T4
(Fig. 5.20) which are the maximum and the minimum temperatures attained in the Otto cycle.
The smaller efficiency is not due to dissipation (the engine is ideal) but simply due to the fact
that entropy is absorbed at temperatures smaller than the largest one, and emitted at tempera-
tures larger than the smallest one.

5.4 BLACK BODY RADIATION AS A SIMPLE FLUID

There exists another simple physical system of great interest in thermodynamics: ther-
mal radiation which can permeate empty space and bodies alike. In its simplest form,
the radiation field may be described from a thermodynamics viewpoint using very few
variables. Radiation contains entropy. This becomes clear when we consider a body
cooling down due to radiation only. Since entropy cannot vanish, the radiation must
transport it away from the body. Radiation therefore constitutes a thermal system. In
fact, thermal radiation trapped inside a cavity behaves just like a simple uniform fluid,
very much comparable to the ideal gas. It is often called a photon gas. It possesses a
certain amount of entropy and energy, and its pressure and temperature assume well-
defined values. 

The entropy and pressure of the radiation field turn out to be very small under every-
day conditions on Earth, i.e., for small temperatures. For this reason, the properties of
the radiation “fluid” are of interest mainly in astrophysics. It contributes considerably
to the phenomena inside stars and in the universe as a whole. Transfer of entropy by
radiation, however, may very well be appreciable even for low temperatures. There-
fore, the radiation of heat plays a major role for engineers and scientists alike. In this
section we shall study the photon gas; radiative transfer of heat will be discussed in
Chapters 7 and 12 (see also Chapter 16 on solar radiation).

5.4.1 Thermal Radiation and Black Bodies

Bodies can emit and absorb electromagnetic radiation. If these processes occur be-
cause a body is warm or hot, we speak of thermal radiation. Radiation is a physical
system in its own right, apart from the bodies which lead to its creation. A cavity, for
example, may be filled with radiation which is continuously absorbed and emitted by
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the walls surrounding it (Fig. 5.21). We call the system inside the cavity the radiation
field or the photon gas. Our task will be to decipher the thermal properties of this gas.

The radiation inside the cavity may result from emission and absorption processes by
the walls, which are kept at a temperature T. If the field is uniform, we can associate
the same temperature with the radiation. The radiation filling the cavity is said to be
blackbody radiation. We denote a body as black if it is an ideal absorber of radiation,
i.e., if it absorbs all light rays falling upon it regardless of the frequency of the light.
Consider a small opening in a wall of the cavity. Any light passing into the cavity from
outside will have only a very small chance of ever escaping again. Therefore, we may
think of the hole as an ideal absorber. Alternatively, light passing to the outside from
the cavity must have the properties of radiation emitted by ideal absorbers—black
bodies. In fact, the light emitted from a small hole in the walls of the cavity can be used
to probe the properties of the radiation inside. (In Chapter 12 we shall investigate the
relationship between the properties of the radiation field and the radiation flowing
through space.)

We also may make the walls of the cavity completely reflecting in which case we need
an ideally absorbing and radiating piece of matter, i.e., a black body, inside the cavity.
The black walls or the black body serve as an entropy reservoir for the radiation field.
Entropy is added to or removed from the field due to emission or absorption. If we do
not wish to heat the photon gas, we can make do without any absorbing and radiating
matter. In this case, we still can let the radiation undergo adiabatic processes.

5.4.2 Energy, Pressure, and Heating of Blackbody Radiation

As in the case of the ideal gas, we need to know some constitutive properties of the
radiation field. From measurements on the radiation emanating from black bodies we
can infer a relation between the temperature of radiation and the energy density of the
photon gas. (The energy flux density and the energy density must be directly propor-
tional; see Chapter 12) It is found that the intensity of light from the opening in the
cavity in Fig. 5.21 does not depend on the nature of the walls, or on the size or the
shape of the body emitting radiation. The temperature of the body, and therefore of the
field, is the only parameter influencing blackbody radiation. Therefore, the energy
density of the uniform field, i.e., the quantity

(5.74)

depends only on the temperature of the radiation enclosed in the cavity:

(5.75)

Here, V is the volume of the photon gas, while E is its energy. f(T) is an unknown func-
tion of the temperature. 

Another important piece of information concerns the pressure of the photon gas. We
know from electromagnetic theory that radiation transports momentum. While the
pressure of radiation is very small under normal circumstances, it nevertheless can be
determined experimentally. Both theory and experiment demonstrate that the pressure
of the photon gas is equal to one third of its energy density:

(5.76)

Figure 5.21:  A cavity containing 
thermal radiation. The photon 
gas may interact either with the 
walls of the cavity or with a black 
body at temperature T, which is 
also the temperature of the pho-
ton gas. Radiation falling on a 
hole in the walls of the cavity will 
be completely absorbed. There-
fore, the hole is said to act as a 
black body. Conversely, radiation 
emitted from it is called black-
body radiation.
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Since the energy density is a function of temperature only, the same is also true for the
pressure. This is the thermal equation of state of radiation; it is comparable to the
equation of state of the ideal gas. In the following subsections we shall exploit this in-
formation to derive further properties of blackbody radiation. But first we have to
specify the heating of the photon gas.

We model blackbody thermal radiation as a spatially uniform system, which means
that we associate with it single values of temperature and pressure. We will allow the
volume of the cavity in Fig. 5.21 to be variable. Therefore, the independent variables
used to describe the properties of radiation are volume and temperature, just as in the
case of simple fluids. For this reason we can define the latent entropy with respect to
volume and the entropy capacitance at constant volume of the photon gas; the proce-
dure is analogous to the one used for the ideal gas in Section 5.2. More importantly,
we shall assume that the uniform photon gas may undergo only reversible operations.
Just as in the case of the ideal gas, the entropy depends upon volume and temperature
with the latent entropy and the entropy capacitance as factors, and the heating is pre-
scribed by Equ.(5.23). 

Since the system can exchange energy only in thermal and fluid (mechanical) process-
es, just like any simple fluid, we obtain the same Gibbs fundamental relation as we do
for the ideal gas, namely, Equ.(5.65). This is a direct consequence of the equations of
balance of entropy and energy of the radiation field, and of the relationship between
the heating and the rate of supply of energy, which is equivalent to Equ.(4.21). 

5.4.3 The Constitutive Problem of the Photon Gas

We should now determine the latent entropy and the entropy capacitance of the photon
gas, and with them the density of entropy and of energy. We can derive the missing
information on the basis of the constitutive relations (5.75) and (5.76) if we consider
a Carnot cycle undergone by the radiation inside a cavity. This is in accordance with
the derivation carried out for the ideal gas in Section 5.2.6. Let the photon gas go
through a Carnot cycle having very short adiabats, i.e., with a very small difference of
the temperatures at which entropy is absorbed and emitted (Fig. 5.10). The energy re-
leased by an ideal Carnot heat engine is equal to

(5.77)

where Se is the amount of entropy absorbed at the temperature of the furnace, T + ∆T.
On the other hand, the energy exchanged by the fluid during expansion can be com-
puted easily from the pressure, which remains constant for the isothermal steps, and
from the change of volume. The adiabatic steps do not contribute significantly to the
exchange of energy since they are taken to be very small. For the same reason, the
changes of volume are roughly the same for both isothermal operations (Fig. 5.10). If
we also take into consideration that the pressure of the photon gas is equal to one-third
of the energy density, and if we approximate the difference of pressures, we obtain 

(5.78)

The expressions in Equations (5.77) and (5.78) must be equal, which leads to a deter-
mination of the entropy added in one step of the Carnot cycle. This quantity is also
equal to the integral of the latent entropy over volume. For this reason, the latent en-
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tropy with respect to volume of the photon gas must be equal to

(5.79)

We introduce the rate of change of entropy into the Gibbs fundamental form—see
Equ.(5.65)—and observe that the energy E is the product of the energy density and the
volume. Since the energy density is a function of temperature only, its rate of change
can depend only on the rate of change of T. All these considerations lead to the fol-
lowing result:

(5.80)

or

(5.81)

Since volume and temperature can be changed independently, each of the factors ap-
pearing in parentheses in Equ.(5.81) must be equal to zero. The right side leads to a
differential equation for the energy density as a function of temperature which has the
following solution:

(5.82)

or

(5.83)

This is called the law of Stefan and Boltzmann; a is the radiation constant, and has a
value of 7.56 · 10–16 J/(m3 · K4). It will be of crucial importance not only for deriving
quantities related to the photon gas, but also when we calculate the energy associated
with the radiation from hot bodies (Chapters 7 and 12).

We can now find the latent entropy and the entropy capacitance of the photon gas. The
former quantity can be evaluated using Equ.(5.79). We obtain the latter if we set the
factor multiplying dT/dt on the left-hand side of Equ.(5.81) equal to zero. The consti-
tutive quantities turn out to be the following:

(5.84)

(5.85)

Finally, the rate of change of the entropy content of radiation can be expressed using
the constitutive quantities. If we integrate the equation along a simple path in the TV
diagram (Fig. 5.22), we obtain a simple result for the entropy of blackbody radiation:

(5.86)

This concludes the constitutive theory of the black body photon gas. The assumptions
made are less accessible than in the case of the ideal gas; direct measurements of tem-
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perature or pressure are not that simple. Therefore, convincing ourselves of the valid-
ity of the results requires more indirect considerations such as those dealing with the
transport of entropy and energy by radiation (see Chapters 7 and 12).

EXAMPLE 5.13. The ideal gas and radiation inside a star.

Both matter and radiation occupy the same region of space inside a star. If the temperature is
high, the gas is completely ionized which makes it an ideal gas even at high densities. Because
of the high temperature, radiation can contribute considerably to the pressure. (a) Matter inside
a new main sequence star is composed of 70% hydrogen and 30% helium by mass. Calculate
the total pressure of matter and radiation at the center of such a star of 15 solar masses, if the
temperature and density have values of 34 · 106 K and 6.2 · 103 kg/m3, respectively. Compute the
fraction β of the total pressure which is due to the ideal gas. (b) Express the heating of the ideal
gas plus radiation in terms of the gas pressure Pg and the radiation pressure Pr . (c) Calculate the
expression for the total entropy capacitance in terms of the entropy capacitance of the ideal gas
and the fraction β of the pressure due to the gas.

SOLUTION: (a) We can compute the gas pressure using the equation of state of the ideal gas in
the form of Equ.(5.26). For this purpose we need the mean molar mass of the gas inside the star.
Observe that for each mole of hydrogen nuclei we also have one mole of electrons, and for one
mole of helium nuclei we also have two moles of electrons. This is a consequence of ionization.
If we write X for the mass fraction of hydrogen, we have

for the molar mass. The result is 0.615 · 10–3 kg/mole. The pressures turn out to be

The ratio β of the gas pressure to total pressure is 0.89. In other words, 11% of the total pressure
is due to radiation. There exist conditions in the universe under which radiation is responsible
for an even larger fraction of the total pressure. 

(b) We have to heat both matter and radiation simultaneously. Therefore, we simply add the ex-
pressions for the heating of both components:

This may be changed using the results obtained above
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(c) The factor multiplying the rate of change of temperature in the foregoing equation is the total
entropy capacitance of the mixture of ideal gas and radiation:

With P = Pg + Pr, βP = Pg, and (1 – β)P = Pr , we obtain

For β = 1 the expression becomes the entropy capacitance of the gaseous component only.

5.5 THE COUPLING OF MAGNETIC AND THERMAL PROCESSES

With the exception of the brief description of melting and vaporization, this entire
chapter has dealt with the coupling of thermal and mechanical processes in simple flu-
ids only. The theory which has emerged may be called thermomechanics. It models
only a small portion of what nature has to offer to us: basically all types of phenomena
can be coupled. 

Some magnetic systems exhibit a coupling of magnetic and thermal properties. In the
simplest case, when such a body is heated its temperature can change, as well as its
magnetization (Chapter 3). The properties of some paramagnetic substances have en-
abled physicists to reach very low temperatures in the laboratory by adiabatic demag-
netization of the magnetic bodies. This is an interesting application, and it is worth-
while to extend thermodynamics to magnetocaloric effects. Since in previous sections
we have carefully introduced a number of basic concepts, we can now present the ma-
terial in a condensed form. You will find the motivation for the ideas developed here
in the pages on the thermofluid processes of the ideal gas.

5.5.1 Equation of State of a Paramagnetic Substance

Paramagnetic substances exhibit simple coupling of thermal and magnetic properties
similar to the coupling of fluid (mechanical) and thermal quantities which we have
found in the case of the ideal gas or radiation. Remember that the thermal equation of
state of the ideal gas expresses the relationship between the temperature, volume, and
pressure of the fluid. In the case of a magnetic substance, the proper extensive and in-
tensive quantities analogous to volume and pressure are the magnetization M and the
magnetic field H, respectively (Chapter 2). It is found that the thermal equation of
state of a paramagnetic substance can be written in the form

(5.87)

C* is called the Curie constant. (Some values are listed in Table 5.3.) This law clearly
shows the coupling between magnetic and thermal properties.
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In the case of the ideal gas, knowledge of the constitutive law expressed by the thermal
equation of state proved to be insufficient for a complete description of the system.
We needed additional information, such as measurements of an entropy capacitance
or of the ratio of the entropy capacitances, or knowledge of the form of the energy of
the system. The energy of a system expressed in terms of the temperature and some
other variable, is called the caloric equation of state. For paramagnetic substances it
is found that the energy depends only on the temperature:13

(5.88)

where A, B, and D are constants. Remember that the energy of the ideal gas also is a
function of temperature alone. It will be found that together with the laws of heating
and the balance of energy we have enough information to model magnetocaloric pro-
cesses of paramagnetic substances.

5.5.2 The Heating of a Paramagnetic Substance

If a substance exhibits magnetocaloric coupling, its thermal and magnetic properties
may change as a result of heating. Again, it is possible to have reversible processes, in
which case we can write the constitutive law of heating in the following form:

(5.89)

The constitutive quantities have similar meanings as in the case of fluids. The factor
multiplying the rate of change of the temperature must be a type of entropy capaci-
tance. We call it the entropy capacitance at constant magnetization. The other factor
is the latent entropy with respect to magnetization. You will see that the equations of
state, together with the energy principle, allow us to determine these quantities. As in
the case of fluids, we often use the quantity

13. Ionic paramagnetism and the production of low temperatures have been discussed in some
detail in Zemansky and Dittman (1981), Chapter 18.

a

a. Values taken from Zemansky and Dittman (1981), p. 473.

Paramagnetic Salt M0 / kg b

b. Mass of crystal containing NA magnetic ions (NA is Avogadro’s constant).

C* / 10–5 m3K · mole–1

Cr2(SO4)3·K2SO4·24H2O 0.499 2.31

Fe2(SO4)3·(NH4)2SO4·24H2O 0.482 5.52

Gd2(SO4)3·8H2O 0.373 9.80

2Ce(NO3)3·3Mg(NO3)2·24H2O 0.765 0 c

c. Parallel component.

0.389d

d. Perpendicular component.

E T
A

B D T
( )

exp( )
=

+1

I M K TS M M= +Λ ˙ ˙

Table 5.3: Curie constant 
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(5.90)

which is called the temperature coefficient of energy. Also, in analogy to thermome-
chanics where we have used the pressure in place of the volume, it is practical to ex-
press the heating in terms of the intensive magnetic quantity, i.e., in terms of the
magnetic field H:

(5.91)

Using the thermal equation of state, Equ.(5.87), we derive the following relationships
between the different constitutive quantities:

(5.92)

(5.93)

5.5.3 Energy and the Gibbs Fundamental Form

The energy principle takes the following form for magnetocaloric processes. The en-
ergy of a body can change as a consequence of magnetic and thermal processes.
Therefore the equation of balance of energy looks like

(5.94)

In Chapters 2 and 4 we found that the energy currents are given by

(5.95)

(5.96)

If we plug these expressions into the equation of balance of energy, Equ.(5.95), and
use the equation of balance of entropy for reversible processes,14 we arrive at the
Gibbs fundamental form which is analogous to Equ.(5.65):

(5.97)

This equation expresses the following observations: if the entropy of a body is in-
creased at constant magnetization, its energy increases as well. Also, if the magneti-
zation is increased at constant temperature, the energy grows. The GFF, Equ.(5.97),
relates properties of the body only and does not refer to quantities which are ex-
changed in magnetocaloric processes.

The laws listed so far allow us to draw some important conclusions regarding the con-

14. The same reasoning that was applied to the ideal gas can be used here to the case of thermal
and magnetic processes. See Section 5.2.1.
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stitutive properties of paramagnetic substances. First, notice that the energy depends
only on the temperature. Therefore the rate of change of the energy of a body is simply
related to the rate of change of its temperature:

(5.98)

If we introduce this into the Gibbs fundamental form, and observe that the rate of
change of the entropy content is expressed by the entropy capacitance and the latent
entropy, we get

(5.99)

from which we conclude that the latent entropy with respect to magnetization is

(5.100)

This result is interesting. It tells us that if we lower the magnetization of a substance
isothermally it absorbs entropy. According to Equations (5.98) and (5.88), we can cal-
culate the entropy capacitance at constant magnetization. For temperatures which are
not too low (in practice, this means some tenths of a Kelvin) the expression for the en-
ergy of the body given by Equ.(5.88) can be approximated. This leads to the following
approximation to the entropy capacitance:15

(5.101)

where A* has a constant value. With these properties derived we can calculate magne-
tocaloric processes and quantities.

5.5.4 Reaching Low Temperatures

Low temperatures can be obtained using liquid helium. However, this does not allow
us to go lower than about 1 K. Today one uses paramagnetic substances to lower the
temperature even further. This is done in the following manner: a paramagnetic sub-
stance whose temperature is near 1 K is slowly magnetized at constant temperature.
Because

(5.102)

for isothermal processes, we notice that the body emits entropy during this step
(Fig. 5.23). In a second step, the magnetization is reduced too quickly for entropy to
be exchanged. Therefore this step is an adiabatic change (the vertical line in Fig. 5.23).
According to Equ.(5.91), the mathematical law for this adiabatic process is

(5.103)

15. Zemansky and Dittman (1981).
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Since the latent entropy is negative, the temperature decreases with decreasing mag-
netic field. Thus we obtain lower temperatures as a consequence of adiabatic demag-
netization.

EXAMPLE 5.14. Adiabatic demagnetization.

Determine the final temperature reached in adiabatic demagnetization in terms of the initial
temperature and field. Compute the numerical value for the following example: chromium po-
tassium alum has a Curie constant C* = 2.31 · 10–5 m3 · K/mole and an entropy capacitance con-
stant A* = 0.15 J · K/mole. What temperature is reached if we start with values of 1.0 K and 2.0
A/m for the initial temperature and field, respectively?

SOLUTION: The effect is best determined on the basis of the expression for the heating given
in Equ.(5.89), where we have to set IS = 0. In addition, we need the latent entropy and the en-
tropy capacitance as given in Equations (5.100) and (5.101), respectively. We arrive at the fol-
lowing differential equation of adiabatic demagnetization:

If we change the temperature from Ti to Tf , and simultaneously change the magnetization from
Mi to 0, the solution of this equation is

We replace the magnetization by the field H according to the thermal equation of state to obtain

The numerical value for this example is

The values roughly correspond to those encountered in an experiment by De Haas and Wiersma
in 1934.16

5.6 CHANGES OF STATE AND EQUILIBRIA

There are some common irreversible phenomena which we cannot describe based
solely upon the simple theory of uniform reversible processes discussed in this chap-
ter. Take, for example, the process encountered when two bodies of unequal temper-
atures are brought into thermal contact. We know that they eventually reach a state in
which the temperature is uniform throughout. Simple measurements show that in the
case of two identical bodies of water or metal at room temperature, the final tempera-

16. Quoted from Zemansky and Dittman (1981), p. 481.
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ture is just the arithmetic mean of the initial hotnesses. A second example is the free
expansion of air. Both phenomena lead to simple results. Still, the processes under-
gone by the bodies are clearly irreversible and cannot be dealt with on the basis of
what we did in the current chapter.17 However, there is another approach to thermal
phenomena which will allow us to calculate such quantities as the final temperature
reached in thermal contact, or the amount of entropy created in the free expansion of
the ideal gas. Instead of calculating the details of actual irreversible processes using
“equations of motion” we will compute only the outcome of such processes on the ba-
sis of a theory of the statics of heat. We shall do this only for some very simple cases.
More details can be found in books on classical thermodynamics.18

5.6.1 Thermal Equilibrium

While the processes of the flow of heat in thermal contact, and of the free expansion
of air, are more or less complicated, the initial and the final states are very simple and
conform to the simplifying assumptions made in this chapter. At the beginning and at
the end of the processes, the temperature, and possibly the density, are uniform
throughout the systems. The state of uniform temperature is of particular interest.

Consider, for example, two blocks of metal which are placed in contact with each oth-
er. Assume that they are insulated from the surroundings by a wall which is imperme-
able to entropy. If the bodies have different temperatures initially, the hotter one will
get cooler while the cooler body will get warmer. This continues until the temperatures
have become equal. We interpret this process in terms of the transport of entropy from
the hotter to the cooler body. The difference of temperatures is called the thermal driv-
ing force. Using the language introduced in the previous chapters, we say that a ther-
mal driving force is needed to maintain the flow of heat from one body to another in
thermal contact. Once the driving force has vanished, the process stops, and the tem-
perature is uniform throughout the system. In analogy to mechanical or electrical sit-
uations in which the proper driving force is zero, we say that the system is in thermal
equilibrium. Since equilibrium means the vanishing of the driving force between two
systems, or between different parts of a system, thermal equilibrium means that the
temperature must be uniform. 

5.6.2 The Computation of Changes of State

We have dealt with the situation of uniform temperature before. In fact, we have built
the theory of homogeneous processes upon the existence of such simple states. As be-
fore, we assume it to be possible to specify such states, which now are taken to be equi-
librium states, by giving just one or two numbers, namely the temperature and the
volume (in the case of systems whose volume may change). The theory of homoge-
neous processes laid down above has enabled us to calculate processes that carry bod-
ies through states of uniform temperature and density, i.e., through states which are

17. We know from Chapter 4 how to model the example of uniform bodies in thermal contact
by introducing resistive transfer elements. However, if we only have models of uniform re-
versible bodies at our disposal, even this simple example cannot be treated in a dynamical
model.

18. See H.B. Callen (1985) for an example of an approach to the statics of heat. 
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the same as those reached in equilibrium. The hope of calculating the results of irre-
versible processes now rests on the assumption that we have only to determine the
changes from initial to final states irrespective of what happens in between: 

In the absence of a proper theory of irreversible processes, we can still
compute the outcome of such processes if they lead from one state of
equilibrium to another. Under these circumstances we determine
changes of state rather than the real processes.

In other words, we assume that a theory of thermostatics of simple systems, which we
have not yet developed, and which we are going to discuss only briefly, will lead to
essentially the same relations as the theory of uniform reversible processes. There is a
distinct difference, however, in what these theories are capable of delivering, and not
just in their forms. The theory of reversible processes describes how states evolve. A
theory of statics cannot do this. All it does is to deliver relations between the variables
of systems in equilibrium. On the other hand, the number of materials which exhibit
simple equilibrium states might be larger than the number of those which admit mod-
els of uniform processes.

Let us discuss the case of thermal contact of two rigid, homogeneous bodies. The total
energy of the bodies is conserved since they are insulated from the surroundings:

(5.104)

According to the theory describing the heating or cooling of bodies at constant vol-
ume, the law of balance of energy leads to the following expression:

(5.105)

(see Equ.(4.40)). This is the proper equation for the changes of state of the bodies,
rather than an equation describing the real processes undergone. The temperatures Ti1
and Ti2 are the initial temperatures of the two bodies, respectively, while Tf is equal to
their common temperature at the end of the process. Graphically, this means that the
areas under the curves C1 and C2 in the appropriate ranges must be equal. For the par-
ticular case where C1 = C2 for all temperatures, this rule is exhibited in Fig. 5.24.

If we can calculate the integrals in Equ.(5.105), we can in principle solve the equation
for the common temperature attained by the bodies in thermal contact. The simplest
case is the one for C = constant. (See Example 5.15.)

Assume we have calculated the final temperature reached by the two bodies. We are
now in a position to compute the changes of the entropy content of either one:

(5.106)

If we add the changes, we must get the amount of entropy produced:

(5.107)

We expect the sum to be larger than zero. We will not give a general proof. Rather,
the amount of entropy created is calculated for a particular case in Example 5.16. 
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5.6.3 Thermostatics and the Maximum Entropy Postulate

In mechanics, equilibrium states are dealt with in the branch called statics. Thermo-
statics is the science of heat which considers the determination of the equilibrium
states. In this book we will not deal with statics. However, it is important to take a brief
look at the theory. 

In nature, equilibrium states can be the outcome of some processes. For example, a
pendulum stops swinging after some time because of the effects of friction. Therefore,
we could conceivably determine the equilibrium state of a pendulum by considering
the mechanical processes which must be described, using proper constitutive laws.
Naturally, these laws must include the phenomena which eventually make the pendu-
lum stop swinging. Otherwise, our theory will never deliver the equilibrium states.
Consider an ideal pendulum. No matter what we do, equilibrium simply cannot be at-
tained if the body is moving at a given moment. This is the approach of dynamics.
What we have attempted so far is to transfer the procedure known from mechanics to
thermal physics. In this manner, thermodynamics is created.

There is a different approach to statics, however, an approach which has nothing to do
with dynamics. It is best explained in the context of thermal phenomena. We shall use
the example of bodies in thermal contact, which we have treated above. As you will
see, the condition of equilibrium is determined by a new type of principle. The bodies
start from equilibrium states and end in another state of uniform temperature. Initially,
we assume the bodies to contain given amounts of entropy and energy, and their tem-
peratures to be well defined. During the process, entropy is created. This finally stops
when the temperature has become uniform throughout the combined system. In this
final state, then, the amount of entropy contained in the system has attained its maxi-
mum possible value, which leads us to the maximum entropy principle:

The values assumed by the quantities specifying the equilibrium states
of bodies are those which maximize the entropy of a body (or an assem-
bly of bodies).

When you think about it, this condition must also be satisfied in much more general
cases than the one discussed. Entropy can be created, but it cannot be destroyed.
Therefore, in a composite system which is insulated from its surrounding, the amount
of entropy can only increase. In thermal equilibrium, the processes which are possible
inside the system have come to a standstill and entropy is no longer produced. There-
fore, the amount of entropy contained in the system has reached its maximum value.

The same kind of principle applies to other fields of physics as well. The determina-
tion of equilibrium states in mechanics can be built upon a similar variational princi-
ple. There is also a proper type of mathematics which deals with this kind of situation.
For our purpose it is important just to recognize the difference between thermostatics
based on the maximum entropy postulate, and thermodynamics, which follows from
equations of balance and constitutive laws. In statics, equilibrium is determined with-
out recourse to the equations of motion.

EXAMPLE 5.15. The final temperature reached in thermal contact.

Two bodies having constant values of C =TK are brought into thermal contact. Assume that they
are insulated from the environment. What is the final temperature reached?
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SOLUTION: We simply use Equ.(5.105) in integrated form:

where Ti1 and Ti2 are the initial temperatures of body 1 and 2. We obtain

Note that this is only true if the values of C are constant. If the two bodies are identical or have
identical values of C, we conclude that the temperature reached is exactly the arithmetic mean
of the initial temperatures. 

EXAMPLE 5.16. The entropy created in the contact of two bodies at different temperatures.

Two bodies having different temperatures Ti1 and Ti2 are brought into thermal contact; they are
insulated from the surroundings. Their entropy capacities K are equal and are supposed to be
inversely proportional to the temperature in the envisioned range; this means that the quantities
C = TK are constant. How much entropy is produced in the ensuing process of equalizing the
temperatures?

SOLUTION: We can calculate the changes of the entropy content of the two bodies occurring
as a consequence of the process. According to Equ.(5.106) we get

According to Example 5.15 the balance of energy leads to

or

We plug this into the expression for the change of entropy content to obtain  ∆S ≥ 0. This is so
because the arithmetic mean of the initial temperatures is always greater than or equal to their
geometric mean. As a result, the argument of the natural logarithm in the expression for the
change of the entropy content is larger than or equal to 1.

EXAMPLE 5.17. Production of entropy in the free expansion of the ideal gas.

Let a gas modeled as an ideal gas expand from a container into a second communicating one
which is initially empty (this is called free expansion). The containers are assumed to be ther-
mally insulated from the surroundings. Explain what is happening and calculate the change of
entropy of the gas.

SOLUTION: The containers are isolated from their surroundings; therefore, the energy of the
gas must remain constant during free expansion. Constant energy means constant temperature
for an ideal gas. The result of free expansion is therefore the same as that of isothermal expan-
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sion. According to all we learned in this chapter, if an ideal gas expands isothermally, it absorbs
entropy and the entropy content of the gas must increase. However, since in our example of free
expansion entropy has not been exchanged, it must have been produced.

We interpret the process in the following manner. The energy used to produce entropy stems
from the flow of the gas from points of high to points of low pressure. We say that the amount
of energy which could have been used for other purposes has been dissipated. 

In Equ.(5.36), we have calculated the amount of entropy communicated to a body of ideal gas
undergoing isothermal expansion. Since the operation is reversible, the entropy exchanged and
the change of the entropy content are equal:

In free expansion exactly this amount of entropy must be generated internally, since the final
states attained by the gas are the same irrespective of the details of the actual process. Therefore,
in the free expansion of the ideal gas, the amount of entropy produced Sprod is equal to what has
just been calculated

EXAMPLE 5.18. The final temperature reached in thermal contact: Maximizing the entropy.

Two identical rigid bodies with constant values of C = TK are brought into thermal contact and
insulated from the surroundings. Their initial temperatures are T1 and T2. Determine the final
temperature assuming that the entropy of the bodies is maximized under the condition that the
energy remains constant.

SOLUTION: The formulation of the problem tells us that we should try to find the maximum of
the entropy of the system for given fixed energy. This is equivalent to the mathematical problem
of finding the extremum of the function S(E). Therefore, we need the entropy of the bodies as a
function of their energies. According to Equ.(4.43), the energies are given by:

(E1)

where

(E2)

The entropy contents of the bodies have been calculated in Equ.(4.42):

(E3)

We solve Equ.(1) for the two temperatures, replace E2 using Equ.(2), and substitute the expres-
sions into the equations for the entropies Equ.(3). If we add the two values of S we get:
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Now we look for the value of the energy E1 for which the total entropy obtains its maximum.
In other words, we have to set the derivative of S with respect to E1 equal to zero:

with

This expression is equal to zero, which leads to the simple equation

This means that the entropy of both bodies is maximized if the energy of body 1 is half of the
total energy. Naturally, body 2 must have half of the total energy as well. Inspection of Equ.(1)
shows that the bodies have half of the total energy if their temperatures are equal to the arith-
metic mean of the initial values:

This is the expected result. It shows that in the state attained by two bodies in thermal contact,
but otherwise insulated from the surroundings, the entropy takes its maximum possible value.

EXERCISES AND PROBLEMS

1. (a) Demonstrate how the molar or specific entropy of fusion (or of vaporization) can be
determined from a measurement of the energy flux of heating, the melting temperature (or
the temperature of vaporization), and the rate of change of the amount of substance being
melted (or vaporized). (b) A mixture of ice and water is heated by an immersion heater and
stirred at the same time to insure homogeneous conditions. With an electric power of 50
W, 10 g of ice melt in 67.0 s. Calculate the specific entropy of fusion of ice.

2. Ice with a mass of 100 g (at a temperature of 0°C) is mixed with 300 g of water at 20°C
inside a well insulated container. What will be the final temperature reached by the mix-
ture? Will there be any ice left? How much entropy will have been produced?

3. Freon-12 is used in a refrigerator. It is evaporated at low temperature, thereby absorbing
entropy from the space being cooled. Assume that freon is evaporating at –30°C. It will
take up a current of entropy of 4.0 W/K. (a) At what rate does liquid freon convert to its
gaseous form? The specific latent entropy of vaporization at –30°C is equal to 680 J/
(K · kg). (b) What is the specific enthalpy of vaporization of Freon-12 at this temperature?
(c) At what rate could ice be formed in the refrigerator?

4. Water is heated and then evaporated in an open glass standing upon a scale. Water temper-
ature and mass are measured as a function of time (see diagram below, Fig. P.4). The im-
mersion heater turns off at t = 1600 s. Data: Environmental temperature: 20°C, surface area
of the wall of the container: 3.58 · 10–2 m2; entropy transfer coefficient through the wall
(from water to the air): 0.039 W/K2m2; electrical power of the immersion heater: 304 W.
In the following, consider the time t = 1400 s. (a) What is the immersion heater’s rate of
entropy production at this point? (b) What is the mass flow of the steam? (c) What is the
flow of entropy through the walls of the container? (The bottom is well insulated.) (d) De-
termine the specific entropy of evaporation from the experimental data.
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5. A hot air balloon is floating at 2000 m above sea level in an atmosphere whose temperature
is taken to be constant at all levels and equal to 0°C. The temperature of the air inside the
balloon is 250°C. What is the radius of the spherical balloon, if it has a mass of 450 kg in-
cluding the passengers? The pressure of the air at sea level is 1 bar.

6. A 10 cm long test tube is filled with air at a temperature of 27°C. The air is heated to a
temperature of 57°C with the test tube open. Then it is placed upside-down in water so that
a 5 cm length of the tube is above the water level (see the accompanying Fig. P.6). The air
in the tube will cool down to 27°C. How far above or below the outer water level will the
water rise in the test tube? Atmospheric pressure is set at 105 Pa.

7. Prove that the pressure gradient in the atmosphere of a planet is given by 

if the temperature is held constant (isothermal atsmosphere). Hint: Remember Equ.(1.27),
and use Equ.(5.26).

8. When a body of ideal gas expands or contracts, it exchanges energy as a consequence of
the mechanical process. (a) Determine the energy exchanged for the ideal gas in an isother-
mal process for one mole whose volume is doubled. The temperature is 300 K. (b) How
much entropy is exchanged?

9. A large bottle is fitted with a thin glass pipe (Fig. 5.16). If we drop a steel ball into the pipe
it will oscillate there. (The diameter of the ball has to be slightly smaller than that of the
pipe.) The oscillations are slow enough to be observed, yet fast enough to allow for the
compressions and expansions of the air to be adiabatic. The bottle has to be large enough
to leave the pressure and the volume of the air in it virtually unchanged. Derive the frequen-
cy of the oscillation.

10. In Example 5.6, the adiabatic temperature gradient in the Earth’s atmosphere was comput-
ed for dry air. It was found to be – 0.010 K/m. More often, it is about – 0.006 K/m. The
difference is due to the condensation of water vapor due to the decrease of temperature as
the air rises. The process may be modeled more closely as polytropic heating of the gas-
eous component. The entropy comes from the change of phase of the other component. (a)
Determine the polytropic exponent appropriate to this process. (b) Determine the coeffi-
cient K appearing in the expression of the heating of the gas. What is the significance of
the sign of this quantity? 

11. Stars are gas spheres which in most cases are nearly in hydrostatic equilibrium. Often,
pressure and density are related by a law analogous to the one derived for polytropic chang-
es. This might be due to convection (Chapter 14), or to a particular equation of state (de-
generate gases). Derive the relationships between density and temperature, and between
pressure and density, and the equation of hydrostatic equilibrium in a gravitating polytrope.

12. Express the energy exchanged in adiabatic expansion of the ideal gas in terms of the tem-
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peratures. Remember that the energy of the ideal gas depends only on the temperature.

13. Use the Gibbs fundamental relation to derive the law of Poisson and Laplace, which holds
for adiabatic processes of the ideal gas.

14. The following experiment can be used to measure the ratio of the entropy capacitances. The
air in a large bottle is compressed to slightly above the external pressure, and the pressure
inside is measured. Then we let air escape quickly through a valve so that the pressure in-
side is reduced to the external value. The temperature inside drops because this process is
adiabatic. Finally, we heat the air slowly until it has the same temperature as at the begin-
ning. The final pressure is measured. (This is called the method of Clément and Désormes.)
(a) Draw a TV diagram of both steps. (b) Derive the ratio of the entropy capacitances from
the values of the pressure. (c) Prove that the energy exchanged in the first step must be
equal in magnitude to the energy exchanged during the second process.

15. A fluid whose energy content depends only on its temperature is expanded adiabatically;
in a second step its temperature is brought back to its initial value at constant volume. It is
found that in the adiabatic expansion the fluid exchanges an amount of energy equal to 50
kJ. (a) In what type of process is the energy exchanged during adiabatic expansion? What
is the sign of the energy exchanged? (b) Is energy exchanged in the isochoric step? If so,
in what types of processes, and how much? (c) Sketch the steps in a TS diagram (assume
entropy to be conserved). Is it possible to visualize ∆E or amounts of energy exchanged in
the diagram?

16. Exactly 1.0 g of water evaporates completely at 100°C and at a constant normal pressure
of 1.0 bar to produce 1670 cm3 of steam. Express the change of the energy of the water in
terms of the changes of entropy and volume, and compute its numerical value.

17. How does the energy content change if water undergoes an isothermal expansion at a tem-
perature of 2°C? Is the answer different for a temperature of 20°C?

18. A body of air with a mass of 20 kg at 100°C and 1.0 bar is compressed isothermally. (a)
How much energy has to be supplied in the mechanical process if the volume is to be re-
duced to 10% of its initial value? (b) How large will the pressure of the air be at the end?
(c) If the compression is to be performed at a constant rate of change of the volume in 10
s, how great does the mechanical power have to be as a function of time?

19. Determine the entropy content of one mole of argon at 300 K and at a pressure of 1 bar.
(See the values supplied in Table 5.4.) The energy supplied in melting and in evaporating
one mole of argon is 1.18 kJ and 6.52 kJ, respectively. 

20. (a) What type of observation shows that the latent entropy (with respect to volume) of the
ideal gas must be a positive quantity? (b) What must the sign of the latent entropy with re-
spect to pressure be? What does the latter result mean? (c) Prove that the entropy capaci-

a

a.Values have been taken from Förstling und Kuhn (1983).

Solid Liquid Gaseous

T

K J · mole–1K–1

T

K J · mole–1K–1

T

K J · mole–1K–1

20 11.76 83.85 42.04 87.29 20.79

40 22.09 87.29 42.05 100 20.79

60 26.59 300 20.79

80 32.13

83.85 33.26

cp cp cp

Table 5.4: Values of the molar temperature coefficient of enthalpy of argon
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tance at constant pressure must be larger than the entropy capacitance at constant volume.
What is the significance of this result?

21. Dry air rushes from the mountains (2500 m above sea level) into a valley (500 m above sea
level). The temperature of the air in the mountains is 4°C. Before the arrival of the winds
the temperature of the air in the valley is 16°C. By how much will the temperature of the
air rise in the valley with the winds blowing?

22. Derive the expression for the pressure as a function of height in the Earth’s atmosphere if
pressure and volume are related by the adiabatic condition for dry air.

23. Why does the entropy content of the ideal gas remain constant as a result of an adiabatic
process? Determine the special forms of the equations of balance of entropy and energy for
such a process. What happens to the energy of the ideal gas during adiabatic expansion?

24. Derive the equations of adiabatic change of the ideal gas, using the result of Example 5.4,
i.e., the equation which determines the change of the entropy of the ideal gas.

25. Measurements of the speed of sound in air at different temperatures give the following val-
ues. Determine the adiabatic exponent (the results are presented in the last column).

26. Draw the curve for an isobaric process of air in the TS diagram. Repeat the problem for the
same body of air for a process at a higher value of the pressure.

27. A body of air is heated at constant pressure. What fraction of the entropy added remains in
the body? What fraction of the energy added as a result of heating remains there?

28. Replace the process of heating of a body of air at constant pressure by two consecutive pro-
cesses. The first is heating at constant volume, the latter is an isothermal change of volume.
Sketch the steps in the TS diagram.

29. Consider a fixed amount of air in the atmosphere. Its momentary temperature is 15°C, the
air pressure is 950 mbar. Now the sun radiates in such a way that in this fixed amount of
air, energy is absorbed at a rate of 0.1 W. (a) At the beginning this fixed amount of air has
a volume of 1.0 m3. What is the amount of substance and the mass of the air? (b) At what
rate does the entropy of this air increase at this moment? (c) What is the entropy capaci-
tance at constant volume of the air in question? What is the entropy capacitance at constant
pressure? (d) In the above mentioned process the pressure stays constant. At what rate does
the temperature of the air change in the first moment? 

30. Air having a mass of 5 g, at a pressure of 38 bar and a temperature of 650°C, is heated in-
side a cylinder by burning some injected fuel. The amount of energy added by the burning
fuel is 7.5 kJ. The piston moves in such a way as to leave the pressure of the air constant.
(This corresponds to a step in the Diesel process.) Assume that the fuel added does not
change the properties of the air in the cylinder. (a) How much energy is exchanged as a re-
sult of the change of volume of the air? (b) Calculate the change of the energy of the gas.

Table 5.5: The ratio of specific heats for 273.15°C and 101.3 kPa

Gas c  M0   γ

Argon 308 0.040 1.67

Helium 971 0.004 1.66

Xenon 170 0.131 1.67

Oxygen 315 0.032 1.40

Nitrogen 334 0.028 1.38

Carbon monoxide 337 0.028 1.40

Ammonia 415 0.018 1.29

Carbon dioxide 258 0.044 1.30

Methane 430 0.016 1.30
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31. A bubble of air with an initial diameter of 5.0 mm starts rising from the bottom of a pond
at a depth of 5 m. The temperature of the water is 6°C at the bottom and 15°C at the surface.
Assume the bubble to have the same temperature as the surrounding water at all times. Ne-
glect the effects of surface tension. (a) Calculate the radius of the bubble shortly before it
reaches the surface. (b) Estimate approximately the amount of energy exchanged as a con-
sequence of heating while the bubble is rising.

32. Write the laws of balance of entropy and energy in differential and in integrated forms for
(a) adiabatic processes of the ideal gas; (b) cooling of rigid bodies; (c) isobaric processes
of the ideal gas; (d) isothermal processes of a fluid; (e) isothermal expansion of water at
2°C; (f) adiabatic processes of a fluid with internal production of entropy.

33. Use the law of hydrostatic equilibrium for a column of gas extending from the center of the
Sun to its surface in order to estimate the pressure at the center. The gas at the center of the
Sun is ideal. Determine the temperature at the center from a rough estimate of the density.
How large is the contribution of radiation to the pressure at the center of the Sun?

34. The universe is permeated by blackbody radiation at a temperature of 2.7 K. This is com-
monly interpreted as a relic of a hot Big Bang. The expansion of space is described by a
scaling factor R which increases with time. R is set equal to 1 at an arbitrary point in time.
A simple model of the universe predicts that the temperature of the background radiation
changes inversely with the scaling factor.19 It is assumed that as the temperature of the uni-
verse dropped below a certain value, matter and radiation ceased to interact. (a) Show that
as a consequence of this prediction, the expansion of the universe must be reversible. (b)
The present mass density of matter in the universe is estimated to be 4.5 · 10–27 kg/m3. De-
termine the ratio of the mass densities associated with radiation and matter in the universe.
(c) Express the dependence on R of the mass densities of matter and of radiation. At what
value of R compared to today’s value were both densities comparable?

35. The photon gas may undergo adiabatic and isothermal processes. (a) Express the relation-
ship between temperature and volume for blackbody radiation for adiabatic processes.
Show that blackbody radiation behaves as an ideal gas with a ratio of entropy capacitances
equal to 4/3. (b) Determine the amounts of energy exchanged as a consequence of isother-
mal changes of volume, and compute the change of energy of the photon gas.

36. Consider the following strongly simplified model of a gas of noninteracting point particles.
N particles are contained in a cube of side L. Assume one-third of the particles to travel in
each of the three directions parallel to the sides of the cube. All particles have the same
speed. (a) Show that the pressure of the particle gas is given by

where v and p are the speed and the momentum of a single particle, respectively, and V is
the volume of the cube. (b) Apply this result to an ideal gas of material particles. Derive
the relation between the pressure and the energy density of the gas. (c) Again for the mate-
rial ideal gas, derive the expression for the temperature coefficient of energy. Which gases
have such a value for the coefficient? (d) Apply the idea to the photon gas. Show that the
relation between pressure and energy density is given by Equ.(5.76).

37. In geophysics, the thermomechanical behavior of rocks in the Earth’s interior is often de-
scribed in terms of a fluid model. Which essential assumptions about properties of rocks
have to be made for this model to apply?

38. Can you explain the difference between thermostatics and thermodynamics? Use Callen’s
definition of the task of thermostatics (which he calls thermodynamics) found in Footnote
3 of the Introduction for a starting point.

19. Peebles (1971), p. 121.
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Processes that have to do with the nature and behavior of substances are called chem-
ical processes. They deal with the quantity of chemical species, their strength or inten-
sity relative to each other, and their power to cause other phenomena. Chemical
processes are essentially of two types: Transport and reaction. Substances can wander
from place to place, or they can change—in fact, they get produced or destroyed in
chemical reactions. These are the phenomena we are going to introduce in this chapter.
Bulk transport of fluids will be dealt with further in Chapter 8, and more formal treat-
ments of chemical physics can be found in Chapters 10 and 15.

Much of the heat used for heating homes and power plants comes from the burning of
fuels. Heat also strongly influences the chemical transformations upon which nature
and many technical processes depend. Substances are stores for entropy and their re-
actions commonly produce entropy. These observations suggest that the study of
chemical processes must be joined to an investigation of thermodynamics.

These facts should not mislead us into thinking that we can understand chemical phe-
nomena only if we have studied thermodynamics. Traditionally, it is assumed in phys-

potential—can only be derived from thermodynamic arguments and cannot be under-
stood on its own account. This is simply not the case. We have the same intuitive feel-
ing for this concept as we do for temperature in everyday life. Taking a direct road to
the investigation of transformations of substances will make chemistry—and its rela-
tion to a theory of heat—so much more accessible.
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Chemical processes are those that deal with the quantity of substances, their strength
or intensity relative to each other, and their power to cause other phenomena. We
know this kind of thinking from our study of thermal, electrical or fluid phenomena in

 

1. The didactic concept behind the approach taken here owes much to the work of G. Job
(1972). To my knowledge, G. Job was the first to suggest that an exposition of the subject
of chemical change should start directly with the chemical potential as an easily grasped
concept. See also Job (1983), Job and Herrmann (2006), Job and Rüffler (2011), D’Anna,
Fuchs, and Lubini (2008), Fuchs (2009).

249

ical chemistry that one of the fundamental concepts we shall use here—the chemical

and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_7, 
  A Unified Approach to ThermodynamicsH.U. Fuchs, The Dynamics of Heat:
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the previous chapters—it is already clear what we are after, namely measures of quan-
tity of chemicals, their intensity or the driving force of chemical transformations, and
the power of chemical processes (i.e., the rate at which energy is released or used in
chemical change). Here are some interesting phenomena that suggest how we can
make sense of these concepts in chemistry. The discussion will be purely qualitative,
leaving the quantitative treatment to the following sections.

 

Chemical reactions and amount of substances.

 

 It is customary to consider sub-
stances to be composed of the “building blocks” of matter, the elements. Consider
some reactions involving elemental substances (simple substances) of the three ele-
ments hydrogen, oxygen, and chlorine (Fig. 6.1). If we start with a unit amount of hy-
drogen gas having a mass of 2 grams, we find that 16 g of oxygen gas will 

 

completely

 

react with the hydrogen to form water. However, exactly twice that amount of oxygen
gas, i.e., oxygen with a mass of 32 g, will react completely with 35.5 g of chlorine.
Finally, twice as much chlorine, i.e., 71 g, will use up 2 g of hydrogen gas. Fig. 6.1
shows these examples written in the language of chemical reaction equations. 

 

Interpretation

 

. We see that the mass of a certain quantity of an elemental substance
cannot serve as a natural measure of amount of substance. It appears that 71 g of chlo-
rine are chemically equivalent to 2 g of hydrogen. Therefore, it is necessary to
introduce a new measure of 

 

amount of substance

 

. If we count 2 g of hydrogen gas as
one unit of amount of substance, called 1 mole, the reactions tell us that 1 mole of hy-
drogen gas (H

 

2

 

) has a mass of 2 g, 1 mole of oxygen gas (O

 

2

 

) has a mass of 32 g, while
the mass of 1 mole of chlorine (Cl

 

2

 

) is 71 g. The mass of one mole of amount of sub-
stance is called the 

 

molar mass

 

 of the substance. 

According to the particle model of the structure of substances, equal amounts of sub-
stance correspond to equal numbers of particles (1 mole corresponds to 6.02

 

 

 

·

 

 

 

10

 

23

 

 par-
ticles). This gives us additional insight into how to understand the nature of quantity
in processes having to do with substances. Hydrogen gas H

 

2

 

 and chlorine Cl

 

2

 

 form hy-
drogen chloride HCl. If we use one mole of H

 

2

 

, we have two moles of H-atoms; the
same applies to Cl

 

2

 

. Now, two moles of H-atoms and two moles of Cl-atoms form two
moles of HCl molecules.

 

Pressure of dilute gases and the measure of amount of substance.

 

 Substances
can be brought into gaseous form. If the gas is dilute or hot enough, or both, all sub-
stances show the same behavior (

 

ideal gas

 

; see Chapter 5 for more details). If we fill
such a gas into a container of given volume at a prescribed temperature, the following
can be observed. It takes different masses of the gas for different substances to obtain
the same pressure. For example, 2 g of hydrogen gas, 71 g of chlorine, or 32 g of ox-
ygen gas all have the same pressure if volume and temperature are the same. 

 

Interpretation

 

. According to what we know from reactions, 2 g of hydrogen gas, 71 g
of chlorine, or 32 g of oxygen are equal amounts of the three substances (H

 

2

 

, Cl

 

2

 

, and
O

 

2

 

, respectively). Therefore, the pressure of simple gases depends upon the amount of
substance of the gas, not upon its mass or some other possible measure. In the particle
model, it takes equal numbers of particles to get the same pressure for the same vol-
ume and temperature.

 

Distribution of toluene in water and air.

 

 One of the best known facts about substanc-
es is that they spread through materials and space. If you spill a bad smelling substance
in a room, eventually bad odor will evenly fill the room. In a homogeneous environ-
ment, i.e., an environment that is the same everywhere, a substance diffuses and dis-
tributes evenly if we wait long enough. 

1H +
1

2
O H O

O
1

2
Cl ClO

Cl 1H  

2

2

2

2 2

2 2

2

1

1 1

1

  

  

 

→

+ →

+ → 22HCl

Figure 6.1:  Examples of chemi-
cal reactions written in the form 
of reaction equations. H, Cl, and 
O are the symbols for hydrogen, 
chlorine, and oxygen, respective-
ly. Note the numbers (1, 2, 1/2) 
multiplying the symbols of the 
substances (H2, O2, H2O…); 
these are the stoichiometric coef-
ficients.
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This is not the case if the substance can travel through and spread in different materials
in contact with each other, such as water, air, and soil. For example, toluene diffuses
from water into air until the concentration of toluene is about four times higher in wa-
ter than in air (Fig. 6.2). We see the concentration in water starting at a high value;
there is no toluene in the air. As the concentration decreases in water, it increases in
air. After a little more than half an hour, the concentrations have reached what we call
equilibrium values. They do not change any longer. 

 

Interpretation

 

. The spreading of a dissolved substance in a homogenous background
is credited to differences in concentration. Quite obviously, substances diffuse from
areas where they are more concentrated to places where the concentration is lower.
When the concentration of a substance has become uniform, when there is no concen-
tration gradient left, the substance does not flow any longer.

This explanation does not work with a substance spreading through different environ-
ments in contact with each other. It appears that toluene “prefers” to be in water rather
than in air. So, if there are equal concentrations of toluene in water and air in contact,
there still is a tendency

 

 

 

of toluene to migrate into water; it is as if there were a chemical
tension between toluene in water and in air. We can explain this by introducing the
concept of 

 

chemical driving force

 

 and 

 

chemical potential

 

. At equal concentrations, the
chemical potential of toluene is lower in water than in air. The chemical potential is
conceptualized as a the innate tendency of a substance to change (to migrate some-
where else or to decay). The difference of the chemical potentials of toluene in water
and in air is interpreted as the 

 

driving force

 

 for the flow of toluene from one environ-
ment into the other. The observation tells us that the driving force for the flow of tol-
uene cannot be differences in its concentration; rather, it must be the gradient of the
chemical potential of a substance (Fig. 6.2).

Note the shape of the concentration of toluene in water which resembles data we have
seen in discharging of containers and capacitors. This suggests that the chemical pro-
cess of diffusion depends upon the chemical potential difference in a manner similar
to how currents of water and charge depend upon pressure differences and voltages.

Is the difference in concentration or in chemical potential the cause for a flow of a sub-
stance? The question is analogous to whether level or pressure differences are the driv-
ing forces for flows of liquids between communicating tanks (Section 1.1 of Chapter
1). If we fill oil in one tank, water in the other, we have differences of densities, levels,
and pressures so which is the most general concept that explains the phenomena?
Clearly, both densities and levels matter, but in the end, pressure differences always
explain what is happening—it is the proper potential for fluid flow.

Figure 6.2:  Toluene spreads in 
water, air, and soil. Dynamic case 
(left: concentrations of toluene in 
water and air; data for soil not 
shown). Equilibrium relation be-
tween concentrations of toluene 
in air and water, (right). Data 
courtesy J. Hosang.T
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Transformation of glucose.

 

 Glucose (D-glucose, dextrose, simple sugar) exists in
two different configurations (called anomers) that only differ in the spatial arrange-
ment of the atoms in its molecules (the elemental composition and therefore the molar
mass is the same). The configurations are called 

 

α

 

-glucose and 

 

β

 

-glucose, respective-
ly. Originally, pure 

 

α

 

-glucose is dissolved in water. Slowly, part of it will change into

 

β

 

-glucose (Fig. 6.3). (The anomers are optically active and rotate the plane of polar-
ized light passing through a solution. Since the effect is different for 

 

α

 

-glucose and 

 

β

 

-
glucose, a change in composition leads to a change of angle of rotation which can be
measured.)

 

Interpretation

 

. Both configurations of glucose have a tendency or drive to change. The
strength of this tendency can be expressed in terms of the chemical potential, just as
we did in the case of the tendency of a substance to disperse. 

 

α

 

-glucose and 

 

β

 

-glucose
have different standard chemical potentials (when the concentration takes a standard
value), and these potentials also depend upon concentration. If there is a difference in
chemical potential, there is a driving force for change (for a reaction). Once the chem-
ical potentials have become equal, this chemical driving force becomes zero and the
reaction stops. The experiment shows that the chemical potentials of 

 

α

 

-glucose and 

 

β

 

-
glucose become equal at different concentrations. This behavior is the same as that ob-
served for the tendency to disperse (see Fig. 6.2).

The dynamics of the reaction is again similar to many other processes we have ob-
served: Charging and discharging of containers and capacitors, slowing down of a
spinning wheel, cooling and heating of bodies at different temperatures, diffusion of
toluene (Fig. 6.2), etc. The chemical potential difference seems to take a similar role
to differences of pressure, temperature, electric potential, and angular speed.

 

Soaking potato cores in water.

 

 Spherical potato cores of roughly the same size are
soaked in distilled water, and in water with some dissolved table salt. In the course of
time, the mass of the potato cores changes (Fig. 6.4). If there is only water, or water
with a low concentration of salt, the cores grow. If the salt concentration is above a
certain value, the cores lose mass. At a certain concentration (called isotonic), the
mass does not change. If sugar is used instead of salt, it is found that it is isotonic if
the molality (concentration measured as amount of substance per kilogram of solvent)
is about twice that of salt.

 

Interpretation

 

. Since the mass of the cores changes, substances must be flowing into
or out of the cores. We have already seen that substances such as salt can diffuse
through materials. However, this case is different. Take the example with pure water
(0% salt in Fig. 6.4). The core is taking up substance, but the only substance present

Figure 6.3:  Concentrations of α-
glucose (decreasing curve) and 
β-glucose in water as functions 
of time. α-glucose decays into β-
glucose (the phenomenon is 
called mutarotation of glucose). 
The concentration is determined 
by measuring the rotation of the 
plane of polarization of plane-po-
larized light shining through a so-
lution of glucose. Data courtesy 
B. Sonnleitner.
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outside is water. Therefore, water is flowing into the potato. Even if a little salt is
present in the solution, the potato takes up water. If the concentration of salt is larger
than a certain critical value, the potato core loses water. (This last point is not so clear;
we would have to prove more carefully that there are no other substances—such as
minerals—being washed out of the core.)

Usually we say that water flows from points of high pressure to points of low pressure.
Take the case of a core in pure water. If we adhere to this interpretation, we must con-
clude that the pressure of the water inside the potato core is lower than the pressure
outside. The core consists mostly of water with different substances dissolved in it.
This indicates that the pressure of water is lower when substances are dissolved in it.

.

If we accept this conclusion, we can explain the other observations as well. If salt is
introduced in the water outside, its pressure decreases. Therefore, the pressure differ-
ence of the water outside and inside the core becomes smaller, letting less water mi-
grate into the potato. Finally, at a certain concentration, the water pressure inside and
outside is equal. With still more salt dissolved outside, water will actually flow from
the core into the solution surrounding it.

This transport of water is called 

 

osmosis

 

. Osmosis is water transport across selectively
permeable membranes (such as the potato cell walls) between different aqueous solu-
tions. Pressure is an indication of the chemical potential of a liquid. Solutes (dissolved
substances) decrease the pressure and therefore the chemical potential of water. If the
concentration of amount of substance of solutes is higher in a batch of water, and low-
er in another, water flows from where there is less solute to where there is more.

Observing that isotonic solutions of salt or sugar are obtained if the molar concentra-
tion is the same (except for a factor of 2)—and not if the concentration by mass is
made equal—again shows that amount of substance counts, not mass. In fact, the fac-
tor 2 is the result of the dissociation of table salt into Na

 

+

 

 and Cl

 

–

 

 ions, making twice
as many particles per mole as in the case of sugar.

 

Blood cells in a solution.

 

 Red blood cells are placed into an isotonic aqueous solution.
Nothing should happen—there should not be any flow of substances across the cell
walls. If we now introduce a solute that can cross the cell membranes in the bath, the
cells shrink rapidly at first by about 10%. Then they slowly regain their original vol-
umes (Fig. 6.5).

 

Interpretation

 

. The added solute raises the concentration of dissolved substances in
the bath relative to the inside of the cells. Two things happen: Water will flow out of
the cell into the bath (osmosis), and solute will travel into the cell (diffusion). Since
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Figure 6.4:  Relative mass of po-
tato cores as a function of time. 
The cores are placed in distilled 
water containing different con-
centrations (percent by mass) of 
table salt. If placed in pure water, 
the cores grow. If more salt is dis-
solved, the cores grow less and 
less. They lose mass if the con-
centration of salt increases be-
yond a critical value.
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only the amount of water in a cell effectively determines its volume, the volume of the
cells decreases at first (Fig. 6.5).

At a certain point, the flow of water stops (the chemical potentials of water inside and
outside have become equal). However, the permeable solute continues to diffuse (it
only reacts to gradients of its chemical potential which depend upon its own concen-
tration gradients). Since the concentration of solutes continues to grow inside the cells,
the pressure of the water inside decreases and water changes its direction of flow. The
cells grow (Fig. 6.5).

Burning of fuels. Fuels such as hydrogen, methane, carbon, or gasoline are allowed to
burn when reacting with oxygen. We burn fuels to produce entropy for heating homes
or engines. It is observed that different fuels produce different amounts of entropy per
mole of fuel.

Interpretation. Clearly, burning fuels produces entropy. We know from our discussion
of thermal processes that we need a process that releases energy to cause entropy to
be produced. Therefore, the reaction of a fuel such as hydrogen with oxygen must re-
lease energy. The quantity of energy released certainly depends upon the quantity of
fuel burned. If different substances yield different amounts of entropy, there must be
different chemical driving forces in these different reactions: some fuels are “stron-
ger” than others.

Batteries and fuel cells. Batteries and fuel cells are devices that allow us to use vol-
untary chemical reactions to set up a voltage and drive an electric current. The open
circuit voltage of electrochemical cells are between about 1 and 4 Volts.

Interpretation. Chemical processes can cause other processes. Put differently, volun-
tary chemical reactions release energy (Fig. 6.6; there is a sink of the chemicals being
consumed, and a source of the chemicals being produced; the total effect is the transi-
tion of chemicals from higher to lower chemical potential). In electrochemical cells,
the energy is used to pump electric charge (in reality, a part of the energy released is
always used for entropy production: processes are not ideal). The power of the electric
process depends upon the electric current and the voltage set up. Analogously, the
power of the chemical process depends upon the chemical driving force of the reaction
and the rate of the transformation. By measuring the electric quantities and the rate of
reaction, the chemical driving force can be inferred. For example, results for a fuel cell
that uses hydrogen and oxygen yield the same value for the chemical driving force as
measurements on burning hydrogen. (When hydrogen is burned, we have the same
chemical reaction as in a fuel cell operating with hydrogen and oxygen. In contrast to
the electrochemical cell where the energy released is used for pumping charge, the
only direct result from the burning of hydrogen is the production of entropy.)

Figure 6.5:  Red blood cells first 
shrink when a solute is intro-
duced in an isotonic watery solu-
tion. Then they slowly regain 
their original size. Data from 
Macey and Oster (UC Berkeley).
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Citric acid and baking soda. A small amount of water (about 25 g) with some 7 g
of citric acid (H3C6H5O7) dissolved in it is put into a paper cup. The solution is rela-
tively cold (about 16°C, Fig. 6.7). Then, 9 g of baking soda (NaHCO3) are added.
There is a strong reaction, gas is produced and escapes (the mass of the solution de-
creases), and the temperature of the solution decreases quite noticeably. If we wait, the
solution gets warmer again.

Interpretation. The reaction of citric acid with baking soda clearly releases energy.
This is no different from any other voluntary reaction. Here the energy is used to pro-
duce entropy (there are no obvious direct mechanical or electric phenomena resulting
from the reaction). Still, the temperature of the solution continues to fall. We conclude
that the products of this reaction (sodium citrate, carbon dioxide, and water) take much
more entropy than can be produced in the reaction running by itself; in fact, the most
important species in this regard is CO2 which carries away a lot of entropy. Apart from
the reaction itself, the solvent (water) is the only other source of entropy. Therefore,
its temperature drops. (The environment can provide entropy as well, but it reacts too
slowly to compensate for the cooling effect of the escaping CO2. However, if we wait
long enough, we see how the environment heats the solution in the cup: entropy flows
in from the surrounding air.)

When the temperature decreases, the form of the data taken indicates that the reaction
proceeds quickly at first and then slows down. This is what has been observed before
in reactions (Fig. 6.3) and in many other simple dynamical processes. 

The chilling effect of water on your skin. When you step out of the shower you feel
colder than if your skin were dry under the same circumstances. Actually, this is true
only if the air around you is not too humid. A technical device shows that this phe-
nomenon affects not only living beings. If you place a wet thermometer in air, it shows
a lower temperature than if it were dry (the so-called wet-bulb temperature is used to
indicate relative humidity of the air). Fig. 6.8 shows data of the temperature of a ther-
mometer that was put in water, removed from it and let dry in the ambient air. The air
of the room was rather dry with only 20% of the maximum possible humidity.

Interpretation. What happens first is chemical in nature: If the air surrounding a (wet)
body is not totally humid (not fully saturated with water vapor), water will evaporate
from the surface of the body. This is explained by saying that the chemical potential
of liquid water on the surface of the body is higher than that of the vapor already
present in the air. Since there is a chemical driving force between the water and the
water vapor, water will evaporate (it goes in the direction of the smaller chemical po-
tential).

Figure 6.7:  Temperature of wa-
ter with citric acid dissolved in it 
(first horizontal at 16°C), in a pa-
per cup. At t = 180 s, baking soda 
is added. The upper line at 22°C 
represents ambient temperature.
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Now, evaporation can be considered a chemical transformation. Substance A trans-
forms into substance B. Since energy is released in the process, entropy is produced.
So why do we or the thermometer get cold? The case is very similar to that of the fizz-
ing reaction of bicarbonate in citric acid described above (Fig. 6.7). The water vapor
that is produced from water contains much more entropy than the stuff it originates
from (remember the discussion of phase changes in Chapter 5). The entropy produced
simply is not enough; therefore, the water at the surface of the body, and finally the
body itself, must provide the entropy of evaporating water. Their temperatures fall.

(The case of the wet bulb thermometer is simpler than that of our bodies. Since the
surface temperature of a human body is normally higher than that of the ambient air,
we have to take into consideration temperature differences as well as concentration
differences.)

Melting ice, freezing water. If an ice cube is placed in a warm environment, it will
melt. If water is put in a freezer, it will turn into ice. Actually, the freezing will happen
at 0°C, and the melt water will be at that same temperature. When we dissolve salt in
water, it will freeze at a temperature lower than 0°C.

Interpretation. When ice has a temperature above 0°C, its chemical potential must be
higher than that of water. Conversely, when water is at a temperature below 0°C, its
chemical potential must be higher than that of ice at the same temperature. There must
be a temperature at which the chemical potentials of liquid and solid H2O are equal:
this is the freezing point. Phase changes take place when the chemical potentials of the
phases are equal. The observation tells us that the chemical potential of a substance
depends upon its temperature.

At 0°C, ice and water are in chemical equilibrium. If we now dissolve salt in the water,
we disturb the balance: the chemical potential of water will be lowered (remember the
discussion of osmosis). As a result, ice must melt: H2O goes from ice into the solution
where its potential is now lower. Obviously, the melting point of ice has been lowered
by the addition of salt. Salty water on the streets in winter or sea water will melt only
at temperatures below 0°C.

1. Imagine a certain quantity of hydrogen gas in a container of prescribed volume at a certain
temperature. What happens to the pressure if you use the same mass of oxygen instead?

2. Why do we have left over substance when we let 1 kg of hydrogen gas react with 1 kg of
oxygen gas? Which of the substances will be left over?

3. In what way do chemical reactions suggest a particle image of substances?

Figure 6.8:  Temperature of a wet 
thermometer (Twb) in air (Ta). 
The relative humidity (φ) of the 
air is 20%. Initially, the ther-
mometer is in a jar containing 
water at 20°C. At t = 20 s, it is 
taken out of the water.
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4. Consider the conversion of α-glucose into β-glucose (Fig. 6.3). How can you use the ex-
perimental results to motivate the concept of chemical potential.

5. What is the role of energy in a fuel cell or a battery? How does energy get released, what
is it used for? How do batteries and fuel cells differ?

6. Explain the basic difference between burning a fuel on the one hand, and letting sodium
bicarbonate react with citric acid.

7. Explain the condition of air saturated with humidity (completely humid air) based on the
concept of chemical potential.

8. What happens to the temperature of the boiling point of water if salt is added? (Hint: Con-
sider water and water vapor in equilibrium at the normal boiling point. Now add salt to the
liquid phase. What happens?)

6.2 TWO DYNAMICAL MODELS

Let me introduce two simple dynamical models that transform the ideas behind our
word models of chemical processes into quantitative relations. The models will have
structures similar to the ones we have expressed before.

Toluene in water and air. Consider an example similar to the one discussed in
Fig. 6.2, the diffusion of toluene in the environment. Let there be only water and air
in contact, with some toluene in the water initially. Our model should start with an ex-
pression of the balance of amount of substance of toluene in water and air (Fig. 6.9).
The important job is now to find expressions for the driving force of the transport and
the flow of toluene.

The flow should be made dependent upon the chemical driving force. Let us imagine
this force to be an intrinsic tension. This means that the flow should also be propor-
tional to the amount of toluene (which is in the water); if there is more stuff, more will
be flowing per unit tension. The simplest expression that corresponds to these ideas is

(6.1)

In is a current of amount of substance, kn is a chemical flow factor, and A symbolizes
the chemical driving force (the symbol A is inspired by the old term affinity). V and c
are volume and concentration, respectively. The driving force is equal to the chemical

V water

n T in water n T in air

In toluene

Driving force

Flow factor

c T water c T air

Potential water
Potential air

V air

c equ airc equ water

Figure 6.9:  Diagram of a system 
dynamics model of the transport 
of toluene from water to air or 
vice-versa.
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potential difference of toluene in the two environments. The potentials will obviously
depend upon the concentrations of the dissolved substance, but how? In the case of
diffusion in a uniform environment, we could simply use the concentration and thus
make the driving force depend upon the concentration difference. This does not work
here—toluene prefers to be in water by a factor of four (Fig. 6.2). Here is an idea we
can try: Make the potential proportional to the relative concentration, relative to the
equilibrium concentration in the particular environment. So we can say that

(6.2)

A is the chemical driving force. Here, I simply set the constant of proportionality equal
to one. T stands for toluene, w and a for water and air respectively, and eq denotes
equilibrium.

The rest of the model is standard. With numbers for initial concentrations and equilib-
rium values taken from Fig. 6.2, we obtain results like the one in Fig. 6.10. I had to
adjust the volume of air to about twelve times the volume of water, and find a flow
factor that gives us a behavior over time similar to the one observed. Note that we
should not directly compare with data in Fig. 6.2 since that case involved toluene in
soil as well. All I want to point out is the similarity and the fact that, as observed, we
do get different concentrations at equilibrium.

Radioactive decay of silver. Many isotopes of elements are unstable, they decay ra-
dioactively. This is a well known phenomenon, it has almost archetypal dynamics—
the number of radioactive nuclei decays exponentially. Since the decay rate is as-
sumed to be proportional to the amount of substance, the number of decays per unit
time (which can be measured with counters) also decreases exponentially. Fig. 6.11
shows data of the decay of radioactive silver and simulation results of the model I am
going to create here.

Let us see if ideas similar to the ones just used can lead to a useful model of radioactive
decay. We start again with an expression of the law of balance of amount of silver iso-
topes (see Fig. 6.12):

(6.3)

The reaction rate Πn is the rate of production of silver (here, the quantity must be neg-
ative, it is a rate of destruction). It is assumed that the species decays as the result of a
single process, is not produced by some other process and does not flow. The impor-
tant task is to model the decay rate (reaction rate). If we use reasoning similar to the
one applied to the flow of a substance, we should argue that the decay rate must be
proportional to the amount of substance and the chemical driving force (Fig. 6.12):

(6.4)

As in the previous case, we might want to make the chemical potentials of the sub-
stances involved dependent on the (relative) concentration. Here, however, the simi-
larity with ordinary chemical processes ends. The chemical potentials of nuclear
materials is virtually unaffected by density and temperature—unless these take ex-
treme values such as ones found in some stellar interiors. In other words, the poten-
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tials, and the chemical driving force with them, are basically constant. If we accept this
idea, we get good agreement between models and reality (Fig. 6.11).

6.3 THE CONCEPT OF AMOUNT OF SUBSTANCE

Physical systems “possess” certain fundamental properties: a body has mass, entropy,
momentum (if it moves), and electric charge (if it is not electrically neutral), to name
some of the most important. This section will describe another basic property, namely
amount of substance. Amount of substance is by no means a replacement for mass, or
just a convenient means of bookkeeping for chemists. Every physical system, be it
matter or light, has this property, and there are physical phenomena associated with its
existence.

First, we introduce the relation of amount of substance to mass (and by implication, to
volume) and measures derived from amount of substance. The latter quantities (molar
quantities, densities, concentrations) are of practical importance for using amount of
substance in chemical relations. The law of balance of amount of substance is then for-
mulated for processes of flow and reaction in homogenous systems.

6.3.1 Substances, Chemical Reactions, and Electrolysis

The numerous substances undergoing a myriad of processes of material transforma-
tion furnish the first indication of the existence of the quantity called amount of sub-
stance. Chemical reactions and electrolysis will be described briefly after we look at
what constitutes a basic or an elemental substance.

Basic substances. The many material objects known to us usually are composed of
different substances which we call basic in the sense that we can explain the material
make-up of objects in terms of a mixture of these constituents. Now, there are several
levels of fundamental building blocks, where the levels are defined by those investi-
gating the objects. For a particular cook, it might suffice to know that a Thai green cur-
ry consists of green curry paste, chicken, coconut milk, and some vegetables; while
another cook will only be satisfied by knowing how the green curry paste is composed
of “basic” foods. A biologist will want to know how the Thai eggplant in the curry is
made up of cells; a biochemist might stop only at the level of the pure chemical sub-
stances constituting a part of a cell or might even want to know which chemical ele-
ments these substances are made up of. If these various levels of what different people
call fundamental are not enough, consider the viewpoint of physicists, who are con-
cerned with the structure of atoms in terms of electrons, protons, and neutrons.

n Ag

Pi n Ag

Decay factor

Potential Ag

Concentration

Volume

Potential Product

Driving force

Figure 6.12:  Diagram of a sys-
tem dynamics model of the radio-
active decay of a silver isotope. 
Note that the chemical potentials 
are independent of concentration.
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To describe the composition of an object from more fundamental constituents, differ-
ent forms might be used. Common to all these is some way of telling “how much” of
each of the building blocks occurs in the system under investigation. The composition
of dough for bread might be described as

where the subscripted numbers denote amounts of each substance measured in cups.
Granite could be described by

where A, B, and C denote the various minerals making up the rock, and the numbers
v1, v2, and v3 measure the relative volume of each of the constituents. Chemists use
the elements as their basic building blocks, which means that chemical substances are
understood in terms of their composition written in the form

(for ethyl alcohol) where the letters stand for the chemical elements, and the numbers
give the amount of substance of each of the elemental substances. The rest of this sec-
tion is devoted to clarifying the latter concept. For physicists, finally, one unit of
amount of substance of pure helium-4 could be written as

In this expression, p, n, and e stand for the substances called protons, neutrons, and
electrons, respectively,2 and the formula tells us that two units of amount of substance
of each of the three building blocks make one unit of helium-4.

Chemical reactions and the amount of substance. We can approach the concept
of amount of substance by studying chemical reactions. By going through a multitude
of different reactions, we find that pure chemical substances in mixtures undergo com-
plete reactions only if their amounts occur in special proportions (Section 6.1). Com-
plete means that the species are used up completely. Lacking the concept of amount
of substance, we have to start with some other measure of the amount of a species, for
which we take its mass.

If we count 2 g of hydrogen gas as one unit of amount of substance, called 1 mole, the
reactions in Fig. 6.1 tell us that 1 mole of hydrogen gas (H2) has a mass of 2 g, 1 mole
of oxygen gas (O2) has a mass of 32 g, while the mass of 1 mole of chlorine (Cl2) is
71 g. The mass of one mole of amount of substance is called the molar mass M0 of the
substance, and is defined by 

(6.5)

These observations carry over to all elemental substances and pure chemical substanc-
es. There are always constant and multiple proportions of the amounts of the constit-

2. We do not have names for the substances whose “atoms” are the proton, neutron, and elec-
tron, respectively. The names are used for the particles rather than for the substances. Neu-
tron stars, for example, are made up of the n-substance.
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uents involved in complete reactions. A complete reaction is our way of defining what
we mean by equivalent amounts of substances in a chemical sense. Equivalent
amounts are determined by the phenomena involving chemical transformation, and
not, as we might believe from our everyday usage of the term, by the phenomena of
gravity quantified in terms of (gravitational) mass.

Naturally, much more experience is required with chemical reactions than the three
examples provided above in Fig. 6.1, if we want to figure out how much of a substance
is equal to one unit of amount of substance. The examples used display some complex-
ity in that we would have to answer the question of why hydrogen gas is H2 and not
H, and why 1/2 mole of oxygen gas (and not 1/3, or 2, or 3 mole) reacts completely
with one mole of hydrogen gas to form one mole (and not 1/2, or 2 mole) of water.
Part of the experience which tells us more about equivalent amounts of substance ac-
tually comes from physical phenomena involving gases.

Electrolysis. The combination of chemical reactions with electricity provides another
strong indication of the special property measured in terms of amount of substance. In
electrolytic reactions, electrical currents passing through conducting fluids are respon-
sible for chemical transformations. Multiple proportions of electric charge are needed
for multiple units of amount of substance to appear at the electrodes. Take the exam-
ples of the electrolysis of potassium chloride (KCl) and of copper chloride (CuCl2). It
is found that a certain amount of charge has to be passed through the molten salt of
KCl to deposit 1 mole of potassium at the cathode, while it takes exactly twice this
charge to deposit 1 mole of copper. The reactions involved are

for potassium chloride, and

for the electrolysis of copper chloride. Here, e again stands for the substance called
electrons. These phenomena can be summarized in the relation

(6.6)

An amount of substance n requires an amount of charge Q for electrolysis which is de-
termined by Faraday’s constant F = 96487 C/mole, and a (small) positive or negative
integer number z (the charge number).

What we should learn from this is what we have seen before: it is not the mass of a
substance which scales simply with fixed amounts of electric charge involved; rather,
it is the same quantity introduced above as a measure of equivalent amounts of a sub-
stance, namely the fundamental property called amount of substance. 

EXAMPLE 6.1. Electrolysis of copper chloride.

A current of electric charge of 10 A is passed through melted copper chloride for one hour. How
much copper will be deposited at the cathode?

+
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Figure 6.13:  In electrolysis, 
chemical substances may be 
transformed when electric charge 
is passed through them. In a melt 
of potassium chloride, for exam-
ple, potassium is deposited at the 
cathode as long as the current is 
flowing.
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SOLUTION: The amount of charge passed through the melted substance is calculated from the
current:

With z = 2 for copper ions, Equ.(6.6) yields

which, with a molar mass of 0.0636 kg/mole for copper, is equivalent to 1.19 · 10–2 kg of copper.

6.3.2 Amount of Substance and Particles

The foregoing discussion is often cast in the form of a microscopic model of matter.
Matter is said to be composed of particles (which, for the chemist, might be atoms or
molecules), and the amount of substance is interpreted as the number of particles of
the substance in question. The number of particles appearing in 1 mole of a substance
is called Avogadro’s number, and it can be calculated from different types of measure-
ment. Let me mention only one measurement, which takes electrolysis as the starting
point. Since we also have a microscopic model of charge, the “atom” of charge being
the elementary charge (e = 1.6022 · 10–19 C), we may say that we need an integer num-
ber of elementary charges for each particle of the substance being electrolyzed and de-
posited at one of the electrodes. If we call τ  the atom of amount of substance, i.e., the
elementary amount of substance, and N is used for the number of particles as well as
for the number of elementary charges, then Equ.(6.6) can be transformed into

(6.7)

With z = 1 we obtain a value of

(6.8)

for the smallest amount of substance possible. This translates into N0 = 6.022 · 1023

particles per mole of a substance (Avogadro’s constant).3

6.3.3 Molar Quantities and Measures of Concentration

Substances are spread out through space and other substances, they appear alone or
with one or several other species. In order to get a handle on amounts of the various

3. In general, we should be careful with the “particulate” interpretation of the structure of
matter. The values of e and τ are understood in terms of quantum theory as the quanta of
electric charge and amount of substance, respectively. Thinking of little particles roaming
around in empty space might be handy but can be misleading at times. Especially the mi-
croscopic picture of the ideal gas as a swarm of free particles does not help much in under-
standing the behavior of dilute solutions where the particles certainly are not free. And in
the case of light it turns out that the quanta of amount of substance of light are not photons
but rather combinations of photons.
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substances, we use densities, molar quantities and different measures of concentration,
especially in the case of solutions (solutes dissolved in a solvent). Here, some of the
measures useful for our purpose will be defined.

Molar quantities. Quantities that are stored in materials or that are otherwise fluid-
like—such as entropy, mass, charge, volume—can be related to the amount of sub-
stance of the body. We use small letters with an overstrike to denote the molar
quantities. Here are molar entropy and molar volume:

(6.9)

The well known molar mass is defined analogously:

(6.10)

Concentration measures are used to indirectly express the amounts of substance of a
particular species—the solute—dissolved in a solvent. There are many different mea-
sures called concentration.

Mass fraction and molar (or mole) fraction. The mass fraction of a solute in a so-
lution is defined as the mass of the solute (s) of a species divided by the total mass of
the solution (solvent f and solute s):

(6.11)

The definition also applies to the solute so that the sum of the mass fractions of solvent
and solute(s) always equals 1. The ratio of the amount of substance of a dissolved spe-
cies (the solute) and the total amount of substance of the solution is called the molar
fraction:

(6.12)

The definitions show that mass and molar fractions are dimensionless. Again, we can
apply the definition to the solvent as well.

Mass-volume fraction. This is the ratio of the mass of the solute and the volume of
the total solution (even though it looks suspiciously like the standard density, it should
not be confused with this concept):

(6.13)

Molar concentration (molarity), molality and molinity. This is the standard mea-
sure of concentration used in much of the following. It is defined as the amount of sub-
stance (dissolved) divided by the total volume of the solution:

(6.14)

The unit of the molar concentration (molarity) is mole/m3. Note that the value com-
monly used for the standard state is mole/L (L: liter); this unit has its own abbrevia-
tion: mole/L = M.4 Finally, the terms molality and molinity denote the ratio of amount
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of substance to the mass of the solvent (molality, symbol mB) or the total mass of the
solution (molinity; no symbol). Both have the unit mole/kg.

EXAMPLE 6.2. Table salt (NaCl) in water.

100 g of table salt (NaCl) are dissolved in 1.0 L of water. (a) Determine the molality and mo-
linity of the solution. (b) What is the (molar) concentration? (c) What are the mass and molar
fractions?

SOLUTION: Table salt has a molar mass of 0.0585 kg/mole. So there is ns = 0.100 kg / 0.0585
kg/mole = 1.71 mole of salt. For water we get nw = 1.0 kg / 0.018 kg/mole = 55.5 mole. 

(a) The molality is mB = 1.71 mole / 1.0 kg = 1.71 mole/kg. The molinity turns out to be equal
to 1.71 mole / 1.100 kg = 1.56 mole/kg.

(b) On the basis of what we have discussed so far, we cannot determine the molar concentration
accurately since we do not know what happens to the volume of the solution when 100 g of salt
are dissolved in 1.0 L of pure water. Assuming that the volume does not change much, we can
get an estimate: c ≈ 1.71 mole / 1 L = 1.71 mole/L.

(c) x = 0.100 kg / (1.000 kg + 0.100 kg) = 0.0909.  = 1.71 mole / (55.5 mole + 1.71 mole) =
0.0299.

6.3.4 Balance of Amount of Substance

Amount of substance—the formal measure of amounts of “stuff”—is visualized rather
easily, certainly more easily than say, momentum, entropy, or charge. It is almost as
intuitive as amounts of water or money. So it should be relatively simple to formulate
the law of balance of amount of substance.

Law of balance for systems with transports. If only transports are allowed, the
amount of substance (symbol n; unit: mole) stored in a system changes only because
of flow of amount of substance In . Basically, there are two types of transport of a spe-
cies. A substance may flow in by diffusion, or it may be transported by a fluid it is
dissolved in (in this case, the fluid enters or leaves the system as well). The former is
a conductive transport, whereas the latter may be termed convection. If we are inter-
ested in a pure fluid entering a system, we may speak of bulk transport which can be
included with convection.

The sum of all flows determines the rate of change of n:

(6.15)

The units of currents of amount of substance are mole/s. There are many different
chemical species in nature. This means that we have to write a law of balance inde-
pendently for each substance that is relevant in a particular application.

Law of balance for reactions. Reactions lead to the destruction or production of
chemical species. When hydrogen reacts with oxygen to form water, hydrogen and ox-

4. One may speak of a “2 M solution,” meaning that two moles of a substance have been dis-
solved in 1 L of the solution (not 1 L of solvent!). This can be confusing because M is of-
ficially supposed to be used as the symbol of molarity. So we should rather say M = 2.0
mole/L.

x
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ygen disappear and water appears. A process of production (or destruction) is de-
scribed in terms of a production rate Πn (analogous to the production rate of entropy
in thermal processes). A substance may be produced (or destroyed) simultaneously by
different reactions. The rate at which the amount of a certain substance changes is de-
termined by the sum of all production rates:

(6.16)

Again we have to write such an equation for every species of interest. The unit of a
production rate of amount of substance is mole/s.

General law of balance. If transports and reactions are both allowed, the rate of
change of the amount of substance of a particular species is determined by the sum of
all flows and all production rates (Fig. 6.14). Therefore we have

(6.17)

Relationship between production rates in a reaction. A reaction that uses up all its
reactants can be described in terms of a reaction equation containing stoichiometric
coefficients. These coefficients are an expression of the “conservation of elements” in
a reaction which places a restriction upon the production and destruction rates pertain-
ing to the different species undergoing the transformation. If we write the reaction as

(6.18)

we can say that during the time span the reaction is allowed to run, ν1 units of A1, ν2
units of A2, etc., are consumed, whereas υ1 units of B1, υ2 units of B2, etc., are pro-
duced.5 So the relation between the destruction rates of the A’s and the production
rates of the B’s must be

(6.19)

9. If one mole of H2 gas and one mole of O2 gas have a mass of 2.0 g and 32 g, respectively,
what is the molar mass of water?

10. If 100 g of sugar are dissolved in 1.0 L of water, what is the mass fraction of sugar?

11. If 1.0 kg of H2 gas and 10.0 kg of O2 gas are brought into a reactor, how much of either
substance will be used up in the reaction that produces water? How much water will be pro-
duced assuming a complete reaction?

12. Alcohol is transferred into the liver. The current of amount of substance is 0.010 mole /

5. A chemical reaction can run both ways. This is sometimes expressed by using a double ar-
row in the reaction equation Equ.(6.18). Conditions such as temperature and pressure and
the presence of other substances can greatly influence the chemical potentials of the spe-
cies involved in a reaction. As a result, the chemical driving force of a reaction can change
its sign (Section 6.4). Here, I simply wanted to be able to speak of reactants and products
of a reaction without having to worry about which is which.
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min. If the liver makes alcohol decompose at a rate of – 0.0040 mole/min, what is the rate
of accumulation of alcohol in the liver? What are these quantities on mass basis?

13. The substance α-glucose transforms into β-glucose (Fig. 6.3). If the production rate of α-
glucose is – 1.0 · 10–6 mole/s, what is the production rate of β-glucose?

EXAMPLE 6.3. Sodium bicarbonate reacting with citric acid.

When sodium bicarbonate (NaHCO3) reacts with citric acid (H3C6H5O7) in an aqueous solu-
tion, carbon dioxide, water, and sodium citrate (Na3C6H5O7) are formed. (a) Write the reaction
equation in a form where the stoichiometric coefficient of citric acid is equal to 1. (b) When one
mole of sodium bicarbonate is used up, how much citric acid must have been destroyed? How
much carbon dioxide has been formed? (c) Sketch a diagram of a system dynamics model just
for the laws of balance of amount of substance. (Assume the destruction rate of citric acid to be
determined separately by a constitutive law.) (d) At a moment when the rate of destruction of
citric acid is – 0.050 mole/s, what are the other production and destruction rates? (e) For the val-
ues in (d), what is the rate of destruction of mass for citric acid and sodium bicarbonate?

SOLUTION: (a) By counting the number of atoms for each element appearing on either side of
the reaction equation, we can determine the missing stoichiometric coefficients:

(b) For one mole of citric acid, three moles of bicarbonate are used. Therefore, for one mole of
bicarbonate, 1/3 mole of citric acid will be use up. Since the stoichiometric coefficients for bi-
carbonate and CO2 are equal, one mole of carbon dioxide is produced for every mole of bicar-
bonate consumed.

(c) Rectangles and thick arrows represent stored quantities and flows and reaction rates, respec-
tively. If one reaction rate in a balanced reaction is known, all other reactions rates are deter-
mined as well by the stoichiometric coefficients; this is demonstrated by Equ.(6.19). It is
assumed that the initial amount of substance for citric acid (CA) is given. Those for CO2, H2O
and sodium citrate (SC) are equal to zero. Sodium bicarbonate is added at the beginning of the
experiment (In_BC).

(d) The production and destruction rates are determined relative to that of citric acid (CA) by
the stoichiometric coefficients:

H C H O 3NaHCO Na C H O CO H O3 6 5 7 3 3 6 5 7 2+ → + +3 32

n CA

n BC

n CO2

n H2O

n SC

Pi n CA
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Pi n CO2

Pi n H2O

Pi n NaIn BC

Figure Ex.3
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Pi_n_BC = 3·Pi_n_CA = – 0.15 mole/s

Pi_n_CO2 = –3·Pi_n_CA = 0.15 mole/s

Pi_n_H2O = –3·Pi_n_CA = 0.15 mole/s

Pi_n_SC = –1·Pi_n_CA. = 0.05 mole/s

(e) The production rate of amount of substance and mass are related as amount of substance and
mass, i.e., by Equ.(6.10):

So we have Πm,CA = 0.192 · (–0.050) kg/s = – 0.0096 kg/s; the second value turns out to be
Πm,BC = 0.084 · (–0.15) kg/s = – 0.0126 kg/s.

6.4 CHEMICAL POTENTIAL AND CHEMICAL DRIVING FORCE

Chemical change is ubiquitous. Active ingredients of medication decay with time as
do the radioactive elements in the Earth’s crust. Hydrogen inside the Sun changes into
helium, vapor in the air condenses to form fog, and the chemicals inside a battery
change when they drive a current of charge through wires. We would like to cast this
tendency of substances to change in the form of a physical principle. You certainly re-
member the questions of why water flows or what makes heat flow. In the same
manner, we will ask what makes chemical species change. Why do some chemical re-
actions take place while others do not? Why does a particular substance flow from
place A to place B while another does not? Why does a substance change its phase, go
from liquid to solid or from liquid to gaseous, rather than from solid to liquid, etc.?

6.4.1 From Experience to Concept

One element of the description of physical processes are intensive quantities that are
used to quantify driving forces. Temperature and pressure are the potentials of thermal
and fluid processes, respectively, and we view temperature and pressure differences
as driving forces. Chemical transformations are no different; the phenomena discussed
in Section 6.1 testify to the success of this conceptualization. A summary of those ex-
amples will prepare the ground for a more formal introduction to chemical potentials
and chemical driving forces.

Section 6.1 demonstrates that the idea of a chemical driving force applies to an ex-
tremely rich field of phenomena ranging from transport to change of substances where
change includes phenomena not commonly listed as such. These include solutions and
phase change. Simply said, whenever there is a process involving substances rather
than charge, entropy, momentum or volume, we should be looking for a chemical driv-
ing force.

Remember how transport processes were described. A dye diffuses through gel from
places where its concentration is high to where it is low; we say that the chemical po-
tential of the dye is higher where it is more concentrated and, in different words, that
there is a chemical driving force because of the difference of chemical potentials at
two points. When a substance that could diffuse does not, there is either such a high
barrier that it prevents what would normally happen or the chemical driving force is
simply equal to zero. The latter condition is called equilibrium. The diffusing sub-
stance is in equilibrium at different locations. Remember that this condition need not

Π Πm nM= 0
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mean that the concentration of the substance is the same everywhere. It may well be,
as in the case of toluene in water and air (Fig. 6.2), that equilibrium is attained when
concentrations in the two media have attained a particular ratio. We say that in this
case the chemical potentials have become equal and toluene no longer migrates from
one environment into the other.

An important transport process is osmosis, particularly in biological environments.
When red blood cells, dried lentils, or potato cores are placed in pure water, they swell
(Fig. 6.4). Water flows into the cells since there are substances dissolved in the intra-
cellular fluid. This is explained by saying that the chemical potential of water inside
the cells is lower than outside. The potential of water (as a solvent) is lowered by dis-
solving substances in it which can also be interpreted as lowering the concentration of
water. If we salt the water heavily and thereby lower its chemical potential before
placing potatoes in it they may shrink instead of grow (Fig. 6.4).

Explanations for chemical reactions are analogous. In a spontaneous reaction, we say
that the chemical potentials of the participating substances are such that the reaction
“runs downhill” as does entropy as it flows conductively through a temperature gradi-
ent. We might say that substances “prefer” to be in the form of products, or that there
is a chemical driving force from reactants to products. When pure α-glucose is dis-
solved in water, some of it converts spontaneously into β-glucose (Fig. 6.3). There
must be a chemical potential difference driving the reaction. As the reaction progress-
es, the chemical potential of α-glucose decreases—since its concentration decreas-
es—while that of β-glucose increases. When a particular ratio of concentrations has
been attained, the chemical reaction stops. We say that the chemical potentials of the
two substances have become equal, the driving force is zero and equilibrium has been
established.

Dissolving substances in solvents—CO2 in water, O2 in blood, salt in water—and
phase changes present us with more examples of chemical transformations that can be
explained in analogy to how I just described transports and reactions. To give just one
example, as we increase the concentration of CO2 in the atmosphere by burning fossil
fuels, the chemical potential of this component is increased. We should therefore ex-
pect that at least some of it dissolves in the oceans where the CO2 concentration is ini-
tially unchanged: there is a chemical driving force for CO2 to go into solution until a
new equilibrium has been established (there are many possibilities for changing the
chemical potential of dissolved carbon dioxide in sea water, not just a change of its
concentration; an important factor is the temperature of the water taking up CO2, an-
other is pressure which changes greatly with depth in the oceans).

Spontaneous and driven chemical change. There is an important aspect of chem-
ical change as indeed there is of any kind of physical process. Sometimes a process
runs spontaneously, sometimes it does not. The notion of a chemical driving force
most aptly expresses this distinction in a different way. A spontaneous chemical trans-
formation—transport, solution, phase change, reaction—goes in the direction of de-
creasing chemical potential (Fig. 6.15). A non-spontaneous change simply goes the
other way, meaning that the driving force has changed its sign.

As we know from our discussions of physical phenomena, the concept of spontaneous
or driven process is related to energy. Energy is released if a process “runs downhill.”
So a (chemical) process is spontaneous going from high to low potential because en-
ergy can be released. Energy made available in a process can in turn drive chemical
substances “uphill” through a chemical potential difference (see Section 6.5).

Chemical Process

Substance

µ2

µ1

Figure 6.15:  Waterfall image of 
a spontaneous chemical process: 
A substance falls from a point of 
high chemical potential µ1 to a 
point of lower chemical potential 
µ2, thereby releasing energy at a 
well defined rate.
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6.4.2 The Driving Force of Simple Chemical Conversions

The foregoing discussions should have made the idea of chemical potential and chem-
ical driving force clear. What remains to be done is formalizing the concept, using it
and the determining actual values of potentials and driving forces. This will be done
in much of the rest of this chapter. Here is a first step in this direction. 

In summary, the chemical potential measures the tendency of substances to transform,
i.e., to change or to migrate. It is analogous to pressure, electrical potential, gravita-
tional potential, or temperature (Fig. 6.16). Differences of the chemical potential act
as driving forces of chemical processes. Each substance has a chemical potential that
may depend upon a number of factors such as temperature, pressure, concentration,
environment etc. The process of migration of a species is depicted as its flow from
points of high to points of low potential (Fig. 6.16, left), whereas the conversion of a
substance A into a substance B is visualized as the disappearance of the former at a
high level and the appearance of the latter at a lower level (Fig. 6.16, right).

Simple transformations. To introduce a more formal description of chemical driving
force let us consider only the simple transformation of a single substance into another
single species. This can be written as a reaction equation:

(6.20)

Examples of such conversions are the melting of ice, mutarotation of glucose, diffu-
sion of a dye from one point to another, sugar dissolving in water, evaporation of mer-
cury in air, the decay of an atom or a nucleus from an excited state (if we do not
include photons emitted as another substance), etc. We call µA and µB the chemical
potentials of substances A and B or of a substances in state or location A and B. Then
the chemical potential difference for the transformation is

(6.21)

Chemical driving force. Basically, the chemical driving force of a transformation is
its chemical potential difference. However, as in electricity where negative electric
potential differences denote voltages (Chapter 1), we introduce the negative of the
chemical potential difference and call it the chemical driving force A:

(6.22)

According to our convention, a positive driving force (negative potential difference)
is associated with a spontaneous chemical conversion, whereas a non-spontaneous
transformation is associated with a negative driving force (Fig. 6.17).
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Figure 6.16:  Process diagram for 
flows of amount of substance. 
(left) or destruction and produc-
tion of species (right). The chem-
ical potential (µ) is like the level 
of a substance. Differences of 
chemical potentials denote driv-
ing forces of the transport of a 
species. µR and µP represent po-
tentials of reactants and products, 
respectively.
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Equilibrium. Typical transformations—reactions and transports—run and then stop.
When they are finished, equilibrium has been established (analogous to equilibrium in
communicating containers, or to thermal equilibrium for bodies in thermal contact).
For chemical reactions, the condition of equilibrium is

(6.23)

Processes can be started on either side of equilibrium, meaning that a reaction can run
in both directions of a reaction equation. Reactions can be driven away from equilib-
rium by “intervention” (a battery can be recharged by applying an external electric
voltage).

6.4.3 Some Examples and Applications

We will study simple examples to familiarize ourselves with some values of chemical
potentials and their use. For now, we will accept values of potentials without worrying
where they come from. The source of actual numbers will become clearer as we move
deeper into the theory of chemical processes.

Nuclear decay. Let me begin with the example of the spontaneous transformation of
one species into another, such as the decay of a molecule or the radioactive decay of
an isotope (if we neglect “small” by-products). Here we most clearly see the innate
tendency, or drive, to change. Change takes place until a form of matter is found which
is stable. It is like water flowing downhill, over steps, until it reaches a place from
which there is no possibility of falling further.

Take the example of strontium-90 decaying into yttrium-90, which decays further into
zirconium-90. The answer to the question of why, for example, yttrium does not
change into strontium would be simple: of the two possible reactions

only the former would take place spontaneously. This means we imagine each isotope
to be at a certain chemical level, i.e., as having a certain chemical potential (Fig. 6.18).
Now, Sr-90 must be at a higher level than Y-90, and this isotope is at a higher level
than Zr-90.

Approximate values of the chemical potentials of the isotopes discussed here are given
in Table 6.1. They are 8.080505 · 1015 G for Sr-90, 8.080453 · 1015 G for Y-90, and
8.080231 · 1015 G for Zr-90. G (Gibbs = Joule/mole) is the unit of the chemical poten-
tial. The chemical potential differences are – 52 · 109 G and – 222 · 109 G, respectively.
The drop from strontium to yttrium is about four times smaller than the drop from yt-
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Figure 6.18:  Decay of one sub-
stance into another is like a ball 
rolling down a hill or water fall-
ing over rocks. In each case, we 
explain why the processes are 
taking place by calling upon the 
concept of a driving force.
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trium to zirconium. If all else were equal, we might expect the second transformation
to be more intensive or run more quickly which indeed it does. However, the half-lives
are 28.9 years and 2.67 days, respectively, so their ratios indicate that other factors
must play an important role in the speed of reactions as well.

The values in Table 6.1 show two things. Chemical potentials are absolute (Section
6.5.4), and their basic values are determined from the (molar) mass of a substance
which is equal to the molar energy. This is another indication of the role of energy in
chemical processes which will be studied in Section 6.5.

Chemical reactions. Since each substance has its drive, i.e., its chemical potential,
the question of whether a particular reaction takes place is answered by whether the
potential of the product is lower than that of the original substance. For example, hy-
drogen (H2) and oxygen (O2) are both given a chemical potential of 0 kG. Water, on
the other hand, is found to have a chemical potential of – 237 kG (see Table 6.2).
Therefore, the spontaneous reaction (first reaction in Fig. 6.19) would have to be the
one where water forms out of the substances that contain only the elements; this is in-
deed what we observe. The (necessary) condition for a reaction to occur therefore is
that the change of the chemical potential has the proper sign: it must be negative; a
spontaneous reaction goes “downhill.” Note that in contrast to the values for isotopes,
the chemical potentials given here are relative. How zero points of chemical potentials
are defined, will be discussed in more detail in Section 6.5.

Intensity of reactions. A feeling for the tendency to transform can be developed if we
observe reactions of metals with sulphur. When we try to make magnesium, zinc, iron,
copper, or gold react with sulphur, we observe a declining intensity of reaction. Mag-
nesium and sulphur react explosively after initiation of the reaction, while gold hardly
reacts at all. If other factors were equal, the different intensities of reactions might be

Table 6.1: Absolute chemical potentials of some isotopes

Isotope M0 / kg/mole µ0 / kG

1H 0.001007825 0.0905788 · 1012

4He 0.004002603 0.359736 · 1012

90Sr 0.08990774 8.080505 · 1012

90Y 0.08990716 8.080453 · 1012

90Zr 0.08990470 8.080231 · 1012

Table 6.2: Properties of water at standard temperature and pressure a

a. Chemical potential µ, temperature coefficient αµ and pressure coefficient βµ .

Phase µµµµ / kG ααααµµµµ / G/K ββββµµµµ / µµµµG/Pa

Ice – 236.59 – 44.8 19.7

Liquid water – 237.18 – 69.9 18.1

Water vapor – 228.60 – 189 24465
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taken as measures of different driving forces. We would have to conclude that the first
of the reactions corresponds to the largest “drop” in Fig. 6.18. Assigning the initial el-
emental substances the same level of zero (this is indeed what is done in chemistry),
MgS should have the lowest level of the reaction products in the list (Table 6.3). 

Phase changes. The condensation of water vapor, or the formation of ice out of wa-
ter on a freezing day, are also examples of transformations. While we do not have a
change of one chemical species into another here, we are clearly dealing with the
transformation of one form of a substance into a distinctly different one. A similar case
occurs when the yellow modification of mercuric iodide changes into its red version
(the second reaction shown in Fig. 6.19). Returning to the phase changes of water, we
would have to conclude that at room temperature, water has a lower chemical potential
than ice, since the latter spontaneously changes into the former (Fig. 6.20). However,
we know that the situation is reversed at lower temperatures: below the freezing point,
liquid water spontaneously changes into solid water (ice). Values of the chemical po-
tentials of water and ice (Table 6.2) confirm these interpretations.

6.4.4 Dependence of the Chemical Potential on Other Factors

Temperature dependence of the chemical potential. The observation that water
turns into ice at low temperatures and ice melts at high temperatures leads us to a cou-
ple of conclusions. For one, the chemical potential of a substance depends upon its
temperature (it depends upon many other factors as well). And secondly, there should
be a temperature where the driving force of the transformation of ice to water or water
to ice is zero: we know this as the melting point of ice. For temperature ranges that are
not too great, the temperature dependence can be described by a linear approximation:

(6.24)

αµ is the temperature coefficient of the chemical potential. It is listed in Table 6.2 for
the chemical H2O in its three phases. In Chapters 8 and 10, we will show that the tem-
perature coefficient equals the negative molar entropy of the substance. This means
that the chemical potential decreases with temperature. This may come as a surprise,
considering that chemical transformations tend to become more vigorous if tempera-
ture increases. However, you have to remember that the quantity responsible for a re-
action is the difference of chemical potentials for the reactants and the products; both
sides of a reaction equation are influenced by a change of temperature.

If we now apply the idea of the chemical driving force as the reason for transforma-
tions and accept that the transformation between water and ice can go either way when
the driving force is zero, we have a simple means of calculating the melting tempera-
ture by applying Equ.(6.24) to the two phases of H2O (see Example 6.4). As stated be-
fore, the condition of vanishing chemical driving force is called chemical equilibrium. 

Knowledge about the changes of chemical potentials with temperature can be applied

Table 6.3: Chemical potential of some metal sulphides

Substance MgS ZnS FeS CuS AuS

Chemical potential / kG –347 –201 –100 –54 0

Figure 6.20:  H2O changes its 
phase from one having a higher 
chemical potential at a particular 
temperature to a phase having a 
lower chemical potential.
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to many interesting questions such as how iron can be obtained from iron oxide. At
standard conditions (298 K), the reaction of iron oxide with carbon does not run spon-
taneously. If the temperature is raised, however, the chemical driving force changes
and makes the reaction possible (see Example 6.8).

Pressure dependence of the chemical potential. At standard pressure of 1.013
bar, ice melts at 0°C and water vaporizes at 100°C. We know from experience, that
these temperatures change if the pressure is increased or decreased. Increasing pres-
sure makes ice melt at 0°C, meaning the melting point is lowered. In other words,
chemical potentials must depend upon pressure. To apply this fact most easily, we can
again use a linear approximation of the form

(6.25)

Here, βµ is the pressure coefficient of the chemical potential. Later in this chapter, we
will see that the pressure coefficient is the molar volume of the substance. Using the
combined knowledge of how pressure and temperature influence chemical potentials
and applying the idea of vanishing chemical driving force for the altered condition of
chemical equilibrium, we can calculate the change of melting point of ice as a conse-
quence of pressure changes (see Example 6.5).

Dependence upon concentration. Clearly, chemical potentials of substances de-
pend upon their concentration. This is most obvious in transport processes where sub-
stances diffuse, but it is equally visible in the transformation of α-glucose into β-
glucose in the process called mutarotation (Fig. 6.3). The condition that changes dur-
ing the reaction is the concentration of both substances and that leads to the changing
speed. In the end, there is equilibrium for a particular ratio of concentrations of the
substances involved in the reaction. For changes of concentration that are not too
great, we can again use a linear approximation to the chemical potential:

(6.26)

Interestingly, the concentration coefficient of the chemical potential is the same for
any dilute substance. It turns out to be γµ = 2.48 G·m3/mole (for standard conditions).

14. When toluene exists at equal concentrations in water and in air, in which of the environ-
ments does it have the higher chemical potential? Why? (See Fig. 6.2.)

15. Considering that the temperature coefficients of the chemical potential of substances are
negative, how is it possible for a reaction that does not take place at room temperature to
run spontaneously at higher temperatures?

16. Why should the driving force of a spontaneous chemical transformation be positive? Is
there a similar rule for other processes, such as hydraulic or electric ones?

17. How is the concept of chemical equilibrium related to chemical potentials and chemical
driving force?

18. What happens to the boiling point of water if air pressure is decreased? How can this be
understood in terms of chemical potentials?

19. What is the role of energy in spontaneous transformations? In driven reactions? Give ex-
amples of non-spontaneous chemical change.
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EXAMPLE 6.4. Melting point of ice.

Use the standard values of chemical potentials and temperature coefficients for water and ice—
and the idea of chemical equilibrium—to find an approximation to the melting point of H2O
(values in Table 6.2).

SOLUTION: Since the transformation of water to ice or ice to water can go either way at the
melting point, the chemical potential of the phases must be equal at that point:

We express the chemical potentials of both substances in terms of standard potentials and the
temperature coefficients (according to Equ.(6.24)): 

Solving the equation and inserting values from Table 6.2 leads to a value of

This is equal to about 1.5°C. Considering that this is just a linear approximation, the result is
quite acceptable. 

EXAMPLE 6.5. Changing the freezing point of water by changing the pressure.

Determine by how much the melting point of ice changes if the pressure is changed. Why does
the melting temperature decrease with increasing pressure? Would this happen with any type of
substance?

SOLUTION: Again, the chemical potentials of liquid and solid water have to be equal at the ac-
tual melting point, and again the potentials change with temperature, and this time also with
pressure. Therefore, the following condition must be satisfied:

For simplicity, take the value of the melting point Tf (at the reference pressure) as the reference
temperature, in which case the reference potentials of ice and water are equal. With this in mind,
we arrive at a relation between the change of pressure and temperature:

Using the values for water from Table 6.2, we obtain the interesting result that the melting point
of ice decreases with increasing pressure (with the corresponding values at 0°C we get the result
of ∆P/∆T = – 135 bar/K). This is so because the pressure coefficient of ice is larger than that of
water, a condition which holds only for water, and maybe one or two other substances. 

Generally, however, the temperature of the melting point increases with increasing pressure. If
the solid phase has a higher density, the molar volume and the pressure coefficient are smaller.
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6.5 ENERGY IN CHEMICAL PROCESSES

The chemical potential of a species has been introduced as the tendency of a substance
to change and has been compared to a level quantity such as gravitational potential or
temperature. We know that potential differences are associated with the release or the
use of quantities of energy; in other words, when a physical process takes place, the
rate at which the fluidlike quantities go through a potential difference is related to the
power of the process. This concept was introduced for graphically describing what
happens in physical processes. We have studied the fall of water and the pumping of
heat in terms of this image, and we will now do the same for processes involving
chemical reactions.

6.5.1 Power of Chemical Processes and Energy Transfer

We can extract the fundamental aspects of energy in chemical processes from the fore-
going discussion. When a substance flows from higher to lower chemical potential,
energy is released (Fig. 6.21, left). Now consider a chemical reaction where substanc-
es disappear and appear. When a substance is consumed (Fig. 6.21, right), energy is
released. We might be easily convinced of the validity of this idea if we look at nuclear
reactions or the absorption of light. In such cases we are inclined to think that an ob-
ject—a neutron, a nucleus, a photon—literally disappears. Since the object possessed
energy, the energy it had must still be there, it must have been released. In the sub-
atomic world, energy released is commonly involved in the creation of new objects,
so energy is used as well. 

The rate at which energy is released is called chemical power. We can assume the
power of a chemical process to follow the same basic rule that holds for fluid, electric,
thermal, or mechanical phenomena. Therefore:

(6.27)

(6.28)

The second expression requires a brief explanation. Here I consider the “unit process”
of the disappearance or appearance of a substance without considering other substanc-
es that may be involved in a complete reaction. When a substance disappears—when
it is literally destroyed—its energy is released. When a certain amount of a substance
is created, it needs a well defined amount of energy. That is why the chemical potential
is used in Equ.(6.28) in place of the a chemical potential difference. This case is well
known to us from thermodynamics. When a unit of entropy is produced, a well defined
amount of energy is needed. This is ensured by the fact that the temperature—the ther-
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mal potential—is absolute, i.e., it has an absolute zero point. So we expect the same
to apply to the chemical potential. µ in Equ.(6.28) is the absolute value of the chemical
potential of the substance being consumed or being created.

To complete the image of the role of energy in chemical processes, let us remember
that chemical substances can be transported. When they enter (or leave) a system at a
certain value of the chemical potential, there is an energy current associated with the
transport (Fig. 6.22):

(6.29)

This and the relations for power can be looked upon as giving us additional informa-
tion concerning the nature of the chemical potential. If we have independent means for
measuring the power of a chemical process and the conversion rate of amount of sub-
stance, chemical potentials can be determined.

6.5.2 Energy and the Driving Force of Chemical Reactions

Now we are in a position to answer the question of how to determine the chemical po-
tential difference, i.e., the driving force, of a complete chemical reaction. Consider a
chemical reaction involving several reactants (Ai) and several product substances (Bi)
such as the one given in Equ.(6.18). 

Each of the substances has its own chemical potential (dependent upon conditions).
Figuratively speaking, the substances on one side of the reaction equation will be con-
sumed, will disappear from this world, whereas the products will be literally produced.
This means that energy is released equivalent to the amounts and the potentials of each
disappearing substance, and energy is used according to the amounts and potentials of
the substances being created. 

The total power of the chemical reaction is the sum of all power terms calculated from
each “unit process” according to Equ.(6.28). If we take the relation between reaction
rates (Equ.(6.19)) into consideration and write the reaction equation with stoichiomet-
ric coefficients as in Equ.(6.18), we obtain:

(6.30)

with the term in brackets—the chemical potential difference—evaluated according to:

(6.31)

It makes sense to accept this as the chemical potential difference pertaining to the re-
action equation in Equ.(6.18). The driving force will be defined as the negative of the
difference of chemical potentials of a transformation:

(6.32)

There is an ambiguity in the value of the driving force for a complete chemical reac-
tion. We could write the same reaction equation having stoichiometric coefficients
multiplied by some factor, say two, which then doubles the potential difference. This
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ambiguity disappears when the driving force is used as in the computation of the pow-
er of a chemical process (see Equ.(6.30)).

6.5.3 Electrochemical Processes

In the following, electrochemical processes shall serve as an example for how to better
understand the role of energy in chemical transformations. Technical applications
range from batteries, accumulators, and fuel cells, to the production or the refining of
metals in electrolysis. It might come as a surprise that the interaction of chemistry and
electricity also applies to thermoelectric devices and solar cells.

An example of an electrochemical cell. Let me describe a particular electrochem-
ical cell to show the details of reactions involved in such a device. We start with the
observation that a rod of zinc will react (and apparently dissolve) in a solution of cop-
per sulfate. At the same time, metallic copper will deposit upon the rod. Since we have
Cu2+ ions in the solution, the reaction taking place can be described by the equation: 

We will discuss the origin of values of chemical potential in Section 6.5.4. For now
we take values from Table 6.4. In the given direction, the reaction is spontaneous. It
involves moving two electrons from a zinc atom to a copper atom, but we do not notice
this because of how the process proceeds. The net result of the reaction is the disap-
pearance of the rod while some copper is deposited and entropy is produced.

If we wish to make use of the transfer of electrons in an electrical process, i.e., if the
cell is to be turned into a battery, we somehow have to manage to separate the copper
ions from the zinc rod and allow electrons to pass through an external wire (Fig. 6.23).
This is accomplished in a cell with two compartments separated by a porous barrier.
The barrier allows ions to pass but prevents any mixing of the solutions (CuSO4 in the
cathode compartment, ZnSO4 in the anode compartment). Since the positive copper
ions do not diffuse toward the positive zinc electrode, they are effectively confined to
their compartment with the copper electrode. Now, in each part of the cell a separate
reaction takes place:

The transfer of charge is accomplished as desired: the electrons involved in the reac-
tion pass from one compartment to the other through the external wire.

Electricity pumps and chemical pumps. Similar to other phenomena, electrochem-
ical processes can be divided into two groups, namely one in which chemical reactions
drive the flow of electricity, and another in which the flow of electricity is used to
drive a chemical reaction that would not run by itself in this direction. From the view-
point of the driven process, devices applying these phenomena might be called elec-
tricity pumps (Fig. 6.24) and chemical pumps (Fig. 6.25), respectively. In an
electricity pump, electricity flows from a lower to a higher level, while in the chemical
pump, substances are pumped from lower to higher chemical potentials.
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Examples of electricity pumps are fuel cells and the various forms of batteries. There
is an important practical difference between fuel cells and batteries. In both, the sub-
stances undergo chemical reactions. In the former, the reactants are supplied continu-
ously and the products are removed. In batteries, the chemicals are stored and then
used up. This difference changes the form of the equations of balance used to describe
each species, but it does not affect the principle of operation of the device.

In electrolysis and in the charging of rechargeable batteries, we simply let the process-
es just described run in the reverse direction: electric currents are used to drive a chem-
ical reaction (see Fig. 6.25). The energy released in the fall of electric charge from
higher to lower electric potential is used for the chemical transformation. Water can
be split into hydrogen and oxygen; aluminum can be formed from its oxide; and cop-
per can be refined. Reduction and oxidation reactions take place at the electrodes in
the electrochemical cell. Electrolysis is often the only means of getting the reaction to
proceed at all: the necessary transfer of electrons is forced by the electrical process.

6.5.4 Values of Chemical Potentials

If you consider the sheer endless numbers of chemical species, where each presents
itself in different environments at different temperatures, pressures, concentrations,
etc., you might get a feeling for the amount of work involved in getting the actual val-
ues of chemical potentials. Values are obtained by a multitude of methods used to
measure various effects in chemical systems. Theory relates these measures to the one
we finally want. A relatively simple example for what may be involved is the deter-
mination of the chemical potential of water from the voltage set up by a fuel cell con-
verting hydrogen and oxygen (Example 6.6). 

For now, we simply use the chemical potentials given to us in compilations created by
researchers working in the field (see Table 6.4 for a few substances interesting to us
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in the examples and applications treated here). Let me discuss an interesting feature
found in these tables, namely the fact that elemental substances in their most stable
form are given potentials equal to 0 G.

The zero point of the chemical potential. The chemical potential is an absolute po-
tential just like temperature and pressure, and unlike the potentials of gravity, motion,
or electricity.6 At conditions as they are found on earth, the chemical potential of a
species is its mass (energy) divided by its amount of substance:

(6.33)

where c is the speed of light. This agrees with our knowledge of the relation of sub-
stances, potentials, and energy. The value µ0 = M0c2 is the rest potential (for T = 0 K).
Values for a few isotopes are presented in Table 6.1. They can be used for computing
potential differences. These are so large that chemical driving forces of nuclear reac-
tions are dominated by the rest potentials. Factors such as temperature and density
play a role only under extreme conditions such as in some stellar interiors. This means
that the chemical driving force of the decay of an isotope is more or less constant, a
fact that leads to the well known exponential radioactive decay (remember the model
in Section 6.2; see also Section 6.8).

Now, while this is simple and clear, it would be impossible to do calculations involv-
ing chemical reactions by using absolute values of the chemical potential; the differ-
ences occurring as the result of a reaction are so small that we would need figures with
more than a dozen digits. Chemists have chosen a different approach: they arbitrarily
set the chemical potential of the most stable form of the elemental substances equal to
zero. The values of the chemical potentials of compounds therefore represent the dif-
ference between their own absolute values and those of the elements they are formed
of; for this reason, the chemical potential reported in tables such as Table 6.4 is called
the chemical potential of formation of a substance, and is denoted by µf

0, where f
stands for formation, and the superscript 0 denotes standard conditions of temperature
and pressure. This makes sense, because in a chemical reaction of compounds, the
same elemental substances occur on either side of the equation. The reaction

may be understood as

(values from Table 6.4). First, the reactants decay into their elements, then the prod-
ucts are formed out of these elements. Calculating the driving force of the reaction in
this manner makes it unnecessary to use the absolute values of the potentials.

6. Obviously, potentials associated with non-conserved quantities (entropy and volume) are
absolute. Gravitational and electric potentials and velocity and angular speed are related to
the conserved quantities mass, charge, momentum, and angular momentum.
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Table 6.4: Chemical potential of substancesa

a. G. Job: Chemische Potentiale ausgewählter Stoffe. www.job-stiftung.de.

Formula Substance µ / kGb

b. At standard conditions: 298.15 K, 101,325 Pa, pure or 1 mole/L.

αααα    / G/K ββββ / µG/Pa

C (s)c

c. (s) solid, (l) liquid, (g) gaseous, (aq) aqueous

Carbon 0 – 5.69 5.4

C2H2 (g) Ethyne 209.20 – 200.83

CH4 (g) Methane – 50.89 – 186.10 24465

CH4O (l) Methanol – 166.35 – 126.74

C6H12O6 (aq) Glucose – 917.44

C7H8 Toluene (g)
Toluene (l)

122.39
110.61

– 319.70
– 219.00

CO (g) Carbon monoxide – 137.15 – 197.56

CO2 (g)
CO2 (aq)

Carbon dioxide – 394.40
– 385.99

– 213.68
– 113.00

24465

CaCO3 (s) Calcium carbonate – 1128.76 – 92.88 36.92

CaC2 (s) Calcium carbide – 67.78 – 70.29 28.9

Ca(OH)2 (s) Calcium hydroxide – 896.76 – 76.15 33.2

Cl– (aq) Chlorine ion – 131.26 – 56.48 18.0

Cu2+ (aq) Copper ion 65.52 99.58

Fe Iron 0 – 27.32 7.1

Fe2O3 Iron oxide – 743.58 – 87.4 30.4

H2 (g) Hydrogen 0 –131 24465

N2 (g) Nitrogen 0 – 191.50 24465

NH3 (g) Ammonia –16.40 – 192.50

Na+ (aq) Sodium ion – 261.89 – 58.99 – 1.6

NaCl (s) Table salt – 384.03 – 72.13 27.02

O2 (g)
O2 (aq)

Oxygen 0
16.44

– 205.02 24465

PbO2 (s) Lead dioxide – 212.42 – 76.57

PbSO4 (s) Lead sulfate – 813.20 – 148.57 48.2

SO4
2– (aq) Sulfate ion – 744.63 – 20.08 15.0

SiO2 (s) Silicon dioxide – 856.48 – 41.46 22.6

Zn2+ (aq) Zinc ion – 147.03 112.13 – 26

http://www.job-stiftung.de
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6.5.5 Entropy Production in Chemical Reactions

The energy released in chemical processes is often completely dissipated. Typical ex-
amples are the burning of fuels (Table 6.5 lists quantities of energy exchanged with
entropy, i.e., in heating or cooling of the reacting fluid, called heating values). Entropy
is produced at a rate that depends upon the power of the chemical process, and the tem-
perature at which entropy production takes place (see Fig. 6.26). In the case of a chem-
ical reaction, this leads to:

(6.34)

Balance of entropy: Exothermic and endothermic reactions. Dissipation means
that entropy has been produced. The consequence of a chemical reaction in a simple
fluid is just that: all the energy released is used to produce entropy (see Fig. 6.26).
What happens with the entropy produced?

The reacting fluid might simply store the new entropy which would often mean a rise
of temperature. In order not to worry about the effect of changing temperatures, one
normally calculates chemical driving forces and power or energy released by assum-
ing that reactants and products are in the standard state. Under these circumstances,
we would typically assume the entropy produced to be emitted together with an ap-
propriate amount of energy: the reacting fluid undergoes cooling. Such a reaction is
called exothermic. 

The reasoning applied here leaves out an important aspect, namely, the change of en-
tropy stored in the reacting system. Since the fluid is not the same chemically after the
reaction has occurred, the entropy needed to maintain standard conditions of temper-
ature and pressure will usually be different. As mentioned before, we can use the tem-
perature coefficient of the chemical potential (Table 6.4) to infer the entropy of

Table 6.5: Heating Values of Fuels

Fuel Formula
Highera Heating 

Valueb / kJ/kg

a. For liquid water in products (the Lower Heating Value is 
defined for gaseous water in products).

b. Energy exchanged with entropy in cooling of the burning 
fluid. 

Carbon C 32,800

Hydrogen H2 141,800

Methane CH4 55,530

Ethanol C2H6O 29,670

Propane C3H8 50,330

Gasoline CnH1.87n 47,300

Natural Gas CnH3.8nN0.1n 50,000
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Figure 6.26:  Entropy is pro-
duced in dissipative chemical 
processes. The diagram leaves an 
important question unanswered: 
what happens with the entropy 
that is produced?
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reactants and products. This allows us to calculate the change of entropy of the system
as a consequence of the reactions.

In total, there are three possibilities (Fig. 6.27). Either, the change of entropy is nega-
tive, meaning, entropy comes out of storage. In this case, the entropy produced and the
entropy from storage are emitted by the fluid. The reaction is exothermic. On the other
hand, if the change of entropy of the fluid is positive (if entropy is needed for storage),
there are two distinct cases. Either, the amount of entropy produced is more than
enough to cover what has to be put in storage which means that the rest is emitted: the
reaction is exothermic. Or, if the reaction does not produce enough entropy, the miss-
ing quantity must be taken from the environment: the fluid is heated and the reaction
is said to be endothermic.

Actually, the question of whether a reaction is exothermic or endothermic applies to
non-dissipative reactions as well. No matter what happens, products are not the same
as reactants. The entropy of the system will change, which either allows entropy to be
emitted or to be absorbed from the environment. The environment, by the way, may
very well be a liquid such as water in which dissolved substances react. In this case,
the first effect of exothermic and endothermic reactions is an increase or decrease of
the temperature of the solvent, respectively. Subsequently, entropy is exchanged with
the wider environment.

6.5.6 Combined potentials

Substances are not only subject to chemical processes, they also undergo gravitational
and electrical ones. This is so because they have mass and may be electrically charged.
In flow processes, a substance may therefore be subject to more than one driving force
at the same time. To conveniently describe flows in gravitational or electric fields, the
gravitational and electric potentials are combined with the chemical potential of a spe-
cies. Many processes may then be regarded as resulting from electrochemical or grav-
itochemical driving forces.

Electrochemical potential. The interaction of chemical and electrical processes is a
widespread phenomenon. We know it from batteries and related technical devices and
procedures, but it is just as important in biology. The nervous system and muscles of
living beings crucially depends upon this interaction.

Imagine two regions separated by a membrane (Fig. 6.28). Assume the environments
I and II to be different so that some dissolved substance “prefers” to be in II (this need
not be the case in a biological application). As a result, we would expect the concen-
tration of this substance to be higher in II than in I (remember the case of toluene in
Fig. 6.2). As long as the equilibrium distribution has not been established, a chemical
driving force “tugs” on the substance and makes sure that more of it ends up in envi-
ronment II. Now, allow the substance to consist of ions, i.e., we assume it to be elec-
trically charged. Having ions in solution sets up an electric field in the system.
Therefore, there is an electric driving force “tugging” at the same particles. If the ions
are positive and if we start with a distribution according to the purely chemical equi-
librium (more of the stuff in environment II), there should be a tendency of the ions to
drift from II to I, changing what used to be the chemical equilibrium, at the same time
changing the electric field. In the end, we should expect a distribution of concentra-
tions that makes the net driving force—the chemical and the electric effects—equal to
zero: we have electrochemical equilibrium. The dissolved substance is in equilibrium
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Figure 6.27:  Whether or not a 
chemical reaction is exothermic 
is decided by changes of the en-
tropy of systems and the amount 
of entropy produced. These cases 
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if the concentrations are such that the difference of the electrochemical potential µEC
across the membrane is zero:

(6.35)

This is only small part of the story of membrane potentials but it tells the important
aspects we are interested in at this point. It tells us that when there are two forces
present, it is the combined potential that determines processes and equilibria.

Energy considerations are a simple means for figuring out how to combine potentials.
Energy is transferred when substances and charge flow, and the energy currents com-
bine into a single one:

(6.36)

The important point to note about combining potentials is the fact that substances and
electric charge are directly coupled. Particles of a chemical species carry electric
charge. Therefore, the electric current can be converted into an equivalent current of
amount of substance. The current of amount of substance has to be multiplied by the
molar charge (charge per amount of substance) to obtain the electric current. If e is the
(positive) elementary charge, z the charge number of an ion, and N0 is the number of
particles per mole, we have

(6.37)

Remember that F = eN0 is called the Faraday constant (F = 96487 C/mole). The last
expression is introduced into Equ.(6.36), and the terms are combined. We see that the
result can be expressed in terms of a combined electrochemical potential:

(6.38)

If ions are flowing, we can consider differences of the electrochemical potential as the
combined driving force acting upon a substance. Here, µ  is the simple chemical poten-
tial as defined above.

Electrochemical reactions. In an electrochemical cell (such as a fuel cell or a bat-
tery), chemical reactions that run by themselves release energy which is used to drive
an electric current through a voltage (Fig. 6.29). Put differently, a voltage is estab-
lished by the chemical reactions. The processes are coupled just as they are in a flow
of a charged species. A small integer number of units of charge are separated for every
unit of chemical conversion in the reaction. If the process could proceed reversibly,
the balance of power would lead to

If we use Equ.(6.37) and replace the current of substance by the (negative) conversion
rate ΠA1, we obtain

Figure 6.28:  Two environments 
(I and II) and a dissolved sub-
stance. The standard chemical 
potential (i.e., for equal concen-
tration) of the substance is higher 
in I than in II. The figure shows 
the condition of chemical equi-
librium (higher concentration in 
II). If the particles are charged, 
there is an electric driving force 
for the particles from II to I. In fi-
nal electrochemical equilibrium, 
the distribution of concentrations 
will be different.
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an electrochemical pump (a bat-
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or

(6.39)

U = – ∆ϕ is the open circuit voltage established by the cell. We have a relatively sim-
ple method here for determining chemical driving forces of reactions, or, alternatively,
the means for predicting the performance of electrochemical cells from chemical data.

Gravito-chemical potential. When substances flow in the gravitational field, they
are subject to two processes: chemical and gravitational. As in the case of charged sub-
stances in the electric field, there are two forces “tugging” on a substance at the same
time, and phenomena are determined by a combined gravitochemical potential. The
expression for the combined potential is derived analogously to what we did for the
electrochemical potential. Therefore,

(6.40)

is the gravito-chemical potential. µ is the standard chemical potential, M0 = m/n is the
mass per amount of substance, i.e., the molar mass, and ϕG symbolizes the gravitation-
al potential (ϕG = gh in a field having constant g).

20. How can the destruction or production of a substance be used to argue that the chemical
potential is an absolute quantity?

21. One mole of A plus two moles of B convert into one mole of C. How can Equ.(6.28) be
used to argue that chemical potentials of the substances must be multiplied by the stoichi-
ometric coefficients and then added up to yield the chemical driving force?

22. In a fuel cell, reactants are supplied and products are removed. How can the expression for
the energy flows related to transports of substances be used to motivate the expression for
the power of a chemical reaction?

23. What happens to the voltage of a battery when entropy is produced in the reactions? Does
irreversibility affect the open circuit voltage of a battery?

24. What do the terms exothermic and endothermic mean?

25. Can a reversible chemical reaction be exothermic?

26. What must be the case if an endothermic reaction is to be excluded?

27. Under what conditions is it possible to define a combined potential for chemical and elec-
trical effects? 

28. How is the formula for the hydrostatic pressure in a liquid related to the expression for the
gravitochemical potential?

EXAMPLE 6.6. The chemical potential of water determined from electric measurements.

At standard conditions, the voltage measured for an electrochemical cell (a fuel cell) converting
hydrogen and oxygen to water has a maximum value of 1.23 V. Determine the chemical poten-
tial of water.

SOLUTION: We have to write down the reactions occurring at the electrodes of the fuel cell. H2
is found to change into 2H+ and two electrons. At the other electrode, oxygen gas reacts with
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H+ ions and electrons to form water:

This means that 2 moles of electrons are involved if 1 mole of hydrogen gas reacts. According
to Equ.(6.39), the chemical potential of the reaction turns out to be

Since the chemical potentials of the hydrogen and oxygen gas are set equal to zero, this value
also represents the chemical potential of water.

EXAMPLE 6.7. The voltage of a lead storage battery.

In a lead storage battery, an anode made out of lead and a cathode made out of lead dioxide are
immersed in the same sulfuric acid solution. The reactions taking place at the electrodes are

Calculate the voltage for each of the half reactions, and determine the voltage of the battery. 

SOLUTION: The chemical potentials of the reactions can be taken from the previous tables:

The first reaction has a change of the chemical potential of – 68.6 kG corresponding to a voltage
of 0.36 V (there are two electrons involved). For the second reaction, the figures are – 330.6 kG
and 1.71 V, respectively. The voltage of the battery therefore is 2.07 V.

EXAMPLE 6.8. Obtaining iron from iron oxide.

Iron metal is obtained from the reaction of iron oxide, Fe2O3, with carbon, which yields iron
and carbon monoxide. (a) Determine the reaction equation. (b) Calculate the minimal tempera-
ture for which the reaction spontaneously works.

SOLUTION: (a) To preserve the amount of substance of the elements involved, three moles of
carbon must be combined with one mole of iron oxide:

(b) At standard temperature and pressure, the reaction will not take place, as demonstrated by
the values of the chemical potentials:

If we want the reaction to proceed, the chemical potential on the left must be larger than that on
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the right-hand side of the equation. Since the chemical potential can be changed by changing
the temperature, we have to look for that particular temperature for which the chemical poten-
tials of the reactants and the products are equal:

for a general reaction. The numerical values are taken from Table 6.4: 

from which we determine ∆T to be 614 K. In this linear approximation, we expect iron to be
formed at temperatures above 640°C. Even though the temperature coefficients depend quite
strongly upon temperature, the approximation is useful as a first guess for several hundreds of
degrees above the reference value. This is so because changes of the coefficients are affected
similarly by changes of temperature on both sides of the reaction equation.

EXAMPLE 6.9. Entropy produced and exchanged in the reaction of H2 and O2.

(a) Consider the reaction which forms water out of hydrogen and oxygen. How much entropy
is produced in forming one mole of water? (b) Does the product contain more entropy than the
reactants? (c) Is the reaction exothermic or endothermic? How much entropy and energy are ex-
changed in heating or cooling? Remember that the reaction is assumed to proceed at constant
temperature and pressure.

SOLUTION: (a) The amount of entropy produced is equal to the energy dissipated, divided by
the temperature of the fluid. We have

(b) We need to know the molar entropies of the species involved. The change of entropy of the
substances calculated for the reaction is

This means that water contains less entropy than the elemental substances out of which it is
formed.

(c) Considering that entropy has been produced and that the entropy content has decreased, it is
clear that the fluids must be cooled. The amount of entropy exchanged is given by

This value, multiplied by the temperature of the fluid, is equal to the energy emitted ( ):
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This should be equal to the heating value reported in tables of fuels (see Table 6.5). We have
calculated the energy exchanged in cooling of the system for one mole of H2 gas. To obtain the
same number for a kilogram of H2, we divide by the molar mass of the gas and obtain a value
of 285.8 · 103 kJ/mole / 0.0020 kg/mole = 143 MJ/kg.

6.6 INCOMPRESSIBLE FLUIDS, IDEAL GASES, AND DILUTE SOLUTIONS

In subsequent sections, we will deal with some concrete chemical processes. The types
of systems involved in these transformations are liquids, perfect gases and liquids with
small amounts of impurities dissolved in them. To prepare later applications, we will
take a look at their properties from a chemical perspective.

6.6.1 Incompressible Fluids

What we need to know about incompressible fluids is summarized by observing that
the pressure of the fluid does not depend upon the temperature. In other words, pres-
sure and temperature can be changed independently. Since transports of substances
depend upon pressure differences, temperature does not enter as a direct factor. 

As mentioned before, since flows are determined by chemical potential differences,
the chemical potential of an incompressible fluid is expected to depend directly upon
its pressure. To derive the relation, we can make use of what we know about liquids
at rest in the gravitational field of the Earth, such as water in a lake. Consider a column
of liquid above a surface in a field of strength g (Fig. 6.30). We know that the pressure
of the liquid increases linearly in the negative h-direction (see Chapter 1):

(6.41)

The index 0 refers to a reference point in the fluid. Now we apply the concept of the
gravito-chemical potential (Section 6.5.6) to the fluid at rest. While the gravitational
potential decreases downward (in the negative h-direction), the (intrinsic) chemical
potential of the fluid increases. This is so because the pressure increases downward
which means that if there were no other influence, the fluid should flow upward by
itself (in the direction of decreasing pressure). The fluid is at rest, leading us to con-
clude that the combined potentials, i.e., the gravito-chemical potential µGC is constant
in the vertical direction:

(6.42)

If we now combine the last two equations, we can derive the relation between the
chemical potential of the liquid and its pressure:

(6.43)

where  is the molar volume of the incompressible fluid (Equ.(6.9)).

6.6.2 The Ideal Gas

The model of the ideal gas has been discussed at length in Chapter 5 where we derived

h

g

Liquid
Density ρ

Figure 6.30:  An incompressible 
liquid in a gravitational field. 
The fluid is assumed to be at rest.
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thermal relations applying to this model substance. The relation between pressure,
volume, and temperature of an ideal gas is

(6.44)

The universal gas constant, has a value of R = 8.31441 J/(mole · K). n measures the
amount of substance of the gas. For our future discussions, it is important to remember
that this model agrees well with reality for dilute gases, meaning density and pressure
should be low. Only if the temperature is very high, can relatively dense fluids remain
in the state of the ideal gas. For example, the interior of the Sun satisfies this condition
where the density is more than 100 times the standard density of water.

As in the case of incompressible liquids, we shall use the idea of the gravitochemical
potential of an ideal gas in a gravitational field to derive the dependence of the chem-
ical potential upon pressure. Since the gas is compressible, there are two independent
variables to consider, such as pressure and temperature. Since we are interested in the
relation between the chemical potential and pressure, we shall take the temperature as
constant. In other words, we are going to derive the pressure dependence of the ideal
gas at constant temperature. Consider a column of ideal gas above a surface in a field
of strength g (Fig. 6.30, this time with variable density). The discussion of an isother-
mal atmosphere in a constant-g field (see Problem 7 in Chapter 5) yielded the follow-
ing pressure-height relation:

(6.45)

The index 0 refers to a reference level. The condition of constant gravito-chemical po-
tential (Equ.(6.42)) still holds. Combining this and the last equation leads to

(6.46)

for the chemical potential of an ideal gas at constant temperature. This will be used
presently to derive the important properties of components of mixtures of gases and
dilute solutions.

6.6.3 Mixtures of Ideal Gases

Many substances are mixtures of pure components, which were the focus of most of
what we have discussed so far. In general, mixing pure substances leads to a variety
of new effects. However, in this section, we will study only the simplest type of mix-
ture, namely that of ideal gases. Such mixtures do not furnish a lot of new physics;
still, they allow us to introduce concepts which are useful in applications.

The molar fraction. Our first task is to describe the composition of a mixture made up
of different substances. Each of the N component furnishes a certain amount of sub-
stance ni toward the total amount:

(6.47)
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The relative amount

(6.48)

is called the mole fraction of component i (this is a generalization of Equ.(6.12)). Nat-
urally, the mole fractions of all the parts together add up to 1. If the composition of a
mixture is known in terms of its mole fractions, the average or apparent molar mass
M0 may be calculated based on molar masses of the individual components M0i. The
molar mass of the mixture is equal to the ratio of its mass to its total amount of sub-
stance. Replacing the total mass by the sum of the masses of each component leads to

(6.49)

In Chapter 5, we used this concept in simple contexts. Air at low densities or the gas
at the center of the Sun furnish good examples of mixtures of ideal gases.

Partial pressure of a component of a mixture. Consider a mixture such as air (see
Table 6.6). The interesting point about it is that it behaves just like a pure ideal gas. If
we describe this “pure” substance by its apparent molar mass, we can treat it as if it
were made up of pure helium or any other pure substance, for that matter. In other
words, the mixture of ideal gases is an ideal gas itself. If we write the equation of state
of the ideal gas for this substance expressed in terms of the amounts of substance of
the components, we obtain

(6.50)

Using the mole fraction, the right-hand side of this equation can be written in the fol-
lowing form:

(6.51)

We now call the term

(6.52)

the partial pressure of component i, and we see that the sum of the partial pressures is
the total pressure of the mixture:

(6.53)

There is a simple interpretation to these equations. In a mixture of ideal gases, each
component exists as if it were completely independent of the others, filling the total
volume V at the temperature T of the mixture. Each component then contributes its
share Pi to the total pressure. Also, each part of the mixture obeys the equation of state
of the ideal gas:
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(6.54)

Remember that these formulas hold only for mixtures of ideal gases. If components of
a mixture interact, they cannot be considered independent of each other, which leads
to effects not described by this model.

Molar entropy and energy. For thermodynamic purposes, we need to know such
quantities as the entropy and the energy of a body. In the case of mixtures it might be
necessary to compute these properties from those of the components.

Since, in our model, the components are independent of each other, each has its entro-
py and energy. Considering that these quantities are additive properties of a system,
the total entropy or energy must be the sum of the parts:

(6.55)

These equations can be written in terms of the molar quantities

(6.56)

Divided by the total amount of substance, they take the form

(6.57)

This means that the molar entropy and the molar energy of the mixture are given in
terms of the mole fractions and the molar entropy and energy of the components. The
latter quantities have to be evaluated at the conditions (P and T )  of the mixture.

Chemical potential of a component. A component i in a mixture at total pressure
P and temperature T has a (partial) pressure Pi (see Equ.(6.52)) and the same temper-
ature T as the mixture. Therefore, according to Equ.(6.46), its chemical potential is

i.e.,

Table 6.6: Composition of dry air

Component Mole fraction Molar mass / kg/mole

Nitrogen 0.7808 0.02802

Oxygen 0.2095 0.0320

Argon 0.0093 0.03994

Carbon dioxide 0.0003 0.04401

Others 0.0001
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(6.58)

Spatially separated components and mixing. At first sight it appears as if mixtures
of ideal gases could be described in an alternative but equivalent manner. The equation
of state of the ideal gas suggests that we can consider the mixture to be made up of
spatially separate components (each with its amount of substance ni), all at the same
pressure and temperature (Fig. 6.31b). Each component would then occupy a partial
volume Vi, and the sum of these would be the total volume V.

It is true that you get equivalent results for all quantities calculated above where we
considered each component to occupy the total volume at some partial pressure, ex-
cept for one: the entropy of the mixture is not equal to the sum of the entropies of the
spatially separate components. Therefore, the two situations are by no means equiva-
lent. We can see the difference easily in qualitative terms: if we were to remove the
wall separating the two gases in Fig. 6.31b, both would diffuse and finally occupy the
entire volume as in Fig. 6.31a. Since diffusion is dissipative, entropy must have been
produced.

A quantitative analysis supports this view. The entropy of the system made up of the
two separate ideal gases is calculated according to

The entropy of the mixture, on the other hand, is equal to

where PA and PB are the partial pressures of the two components. The difference in
entropy between the two cases is given by

(6.59)

The xi are the mole fractions of the parts of the mixture. Since these quantities are less
than 1, the quantity calculated in Equ.(6.59) is positive: entropy has been produced.

There seems to exist a paradoxical situation. If the two components in Fig. 6.31 are
identical, we know that nothing happens upon removal of the wall. On the other hand,
Equ.(6.59) suggests that entropy must be produced even in this case. Since this is ob-
viously not so, we have to explain the difference between “identical” and “different”
substances. The amount of entropy produced is independent of how “different” the
two components are, so there cannot be a gradual change between the two situations.
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Figure 6.31:  The cases of two 
different substances being spa-
tially separate and mixed, are not 
equivalent. If the separating wall 
is removed, the gases diffuse and 
entropy is produced.
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Either the gases are identical, or they are not, however slight their difference might be.
The gases must notice the difference in the environment into which they are diffusing
in the case of initially separate parts. If the substances are identical, there is no differ-
ent environment, and there is no diffusion.

This phenomenon is called Gibbs’ paradox. It calls for a quantum view of matter: there
cannot be a gradual change of substances from “identical” to “different.” 

6.6.4 Dilute Solutions

If they are dissolved in fluids, substances can be made to behave according to the mod-
el of the ideal gas. As long as the concentration (Equ.(6.14)) of the solute is small
enough, it has a pressure which is related to the Kelvin temperature by the law

(6.60)

This relation is equivalent to the ideal gas law if the constant R in it takes the same
value as the universal gas constant. Experiments tell us that this is the case. Most in-
terestingly, it does not matter what type of stuff is dissolved; it may be a salt, or a sub-
stance composed of macromolecules, or even of macroscopic particles. Measurement
of the pressure of the dissolved substance yields its concentration, from which we can
compute the amount of substance dissolved.

In Section 6.1 we discussed that in order to understand phenomena such as osmosis,
we have to assume that the solute decreases the pressure of the solvent:

(6.61)

Pf,0 represents the pressure of the pure solvent (liquid without any solutes). Now we
know how to understand this. The solvent naturally has a pressure of its own. The dis-
solved substance, i.e., the “gas” inside the solvent, has a pressure according to
Equ.(6.60) which adds to the pressure of the liquid (the solvent). The total pressure of
the solution is therefore the sum of the pressures of the solvent and of the solute. Since
the total pressure is made up of several contributions, the terms Pf and Ps of Equ.(6.61)
are called partial pressures.

One way of observing the influence of a solute on the solvent is through the phenom-
enon of osmosis. If a cell containing a solution is separated from the pure solvent by a
semipermeable membrane (permeable only to the solvent), more of the solvent is lit-
erally drawn into the cell to dilute the solution. As a result, the level of the fluid in a
cell containing solvent and solute (as in Fig. 6.32) rises above the level in the other
cell. The difference of the pressures of the fluids indicated by the respective levels is
called the osmotic pressure of the solute.

While osmosis is easily observed, it does not lend itself that easily to precise measure-
ments. Usually, the effect of the pressure of the solute is observed indirectly in that it
decreases the vapor pressure of the solvent. The change of vapor pressure, in turn, in-
creases the temperature of vaporization and decreases the melting point. Measuring
the latter effect is an important method of determining the molar mass of a dissolved
substance.

Chemical potential of solute. The solute of a solution is like an ideal gas; it behaves
like a gas all by itself with a vacuum as its “solvent.” Therefore we can treat it just like

P RT cs s=

P P Pf f s= −,0Solvent Solvent +
solute

Semi-permeable wall

Figure 6.32:  Osmosis occurs if 
two cells, one with only a solvent 
(water), the other with the sol-
vent and a solute (sugar), com-
municate through a membrane 
which lets only the solvent pass. 
The solution draws more water 
which causes the fluid level to 
rise.
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an ideal gas in empty space, which means that its chemical potential must obey the re-
lation

(6.62)

Since at constant temperature, concentration and pressure are proportional, this result
is equivalent to what was derived in Equ.(6.46). Note that this relation applies as well
to substances dissolved in gels or solids which is important when we want to under-
stand diffusion of substances through matter at rest.

Chemical potential of solvent. We treat the solvent as an incompressible fluid (liq-
uid) which means that, according to Equ.(6.43), the chemical potential difference for
the solvent with and without solute must be

Since the difference of solvent pressures is due to the solute (Equ.(6.61)), we have

(6.63)

for the chemical potential of the solvent in a solution. It is customary to introduce the
mole fraction of the solute in this equation. Since the amount of the substance dis-
solved is taken to be small compared to the amount of substance of the solvent, this
quantity is nearly equal to

Together with Equ.(6.60), we arrive at the final result

(6.64)

for the dependence of the chemical potential of the solvent on the amount of substance
dissolved in it. This is what we need to get quantitative results for osmosis and other
effects such as changes of vapor pressure and changes of boiling and melting points.
This expression is equivalent to the one used for the flow of water into dried lentils in
the dynamical model formulated in Section 6.7.4.

6.6.5 Pressure and Temperature Dependence of Chemical Potentials

As we have seen, chemical potentials of substances depend upon many factors. Con-
centration of dilute substances was discussed in previous subsections. Here, I will dis-
cuss the relation of the pressure and temperature coefficients (Section 6.4.4) with
volume and entropy of a substance. The treatment will be informal; formal derivations
can be found in Chapters 8 (Section 8.4.1) and 10.

Pressure dependence of the chemical potential. Take a look at what the special
results previously derived suggest to us. The chemical potential of an incompressible
fluid depends only upon pressure (Equ.(6.43)) so it is easy to see how it depends upon
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this variable. Equ.(6.43) tells us that the pressure coefficient βµ = ∆µ/∆P of the chem-
ical potential, i.e., the factor shows how the chemical potential changes with pressure,
is the molar volume of the fluid:

(6.65)

We can use the pressure dependence of the chemical potential of the ideal gas to derive
this relation equally well. This result is correct in general for fluid systems as we will
see in Chapter 10. In other words, the chemical potential of a fluid increases with pres-
sure if everything else stays constant (Fig. 6.33).

Temperature dependence of the chemical potential. Imagine a fluid going
through a chemical and thermal potential difference. The energy released can be ex-
pressed as ∆µIn + ∆TIS. If the current of entropy is coupled to the current of amount
of substance, this form suggests a relation between the temperature change of the
chemical potential and the entropy per amount of substance: 

(6.66)

Naturally, this is no more than a suggestion, but it can be proved for fluids that the tem-
perature coefficient αµ is indeed equal to the negative molar entropy (entropy per
amount of substance) of the substance. Some temperature coefficients of the chemical
potential are listed in Table 6.4. Contrary to the case of pressure, the chemical poten-
tial decreases with temperature (Fig. 6.33).

29. Why does a doubling of the pressure of a gas or the concentration of a dissolved substance
always increase the chemical potential by the same value, independent of the initial values
of pressure or of concentration?

30. When air and water are in contact and the air contains carbon dioxide, some of the CO2
will go into the water. Why? How can we use the idea of chemical potentials and the chem-
ical driving force to calculate how much CO2 will end up in the water? What information
do we need to perform this calculation?

31. What does the partial pressure of a component of a mixture of ideal gases depend upon?

32. Why is entropy produced when two different gases (originally at the same temperature and
pressure) are mixed?

33. What effect does dissolving a substance in a liquid have upon the liquid? What does the
effect have to do with chemical potentials and pressures?

34. Dissolving one mole of table salt in water leads to twice the osmotic effect compared to
when we dissolve one mole of sugar. Why?

35. Why does the temperature of vaporization of a liquid go up when a substance is dissolved
in it? Why is the effect of equal amounts of substance of salt or sugar different?

EXAMPLE 6.10. The temperature coefficients of energy and enthalpy of a mixture.

Show that the molar temperature coefficients of energy and of enthalpy (the specific heats) of a
mixture can be calculated as the sum of the products of molar fractions and the coefficients for
each component. Also, give the formulas for the entropy capacities of the mixture.

β υµ =

αµ = −s

Figure 6.33:  Chemical potential 
of a fluid as a function of pres-
sure (top) and temperature (bot-
tom).
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SOLUTION: The temperature coefficient of energy is the derivative of the energy with respect
to temperature. Applying this definition to Equ.(6.57)2 yields

The molar temperature coefficient of enthalpy of the ideal gas is defined as the derivative of the
enthalpy with respect to temperature. We first have to show that the molar enthalpy can be cal-
culated similarly to Equ.(6.57):

Therefore, the derivative of the molar enthalpy of the mixture is equal to

The entropy capacitances are related to the temperature coefficients through the temperature of
the mixture. Since every component has the same temperature, the equations just derived apply
to the entropy as well:

The equation holds also for the entropy capacitance at constant volume.

EXAMPLE 6.11. The molar mass of air and mass fractions of the components.

Air at standard conditions can be considered to be a mixture of ideal gases. The mole fractions
of the major components of dry air are given in Table 6.6. (a) Calculate the apparent molar mass
of dry air. (b) Calculate the mass fraction of each of the components.

SOLUTION: (a) The average or apparent molar mass is computed according to Equ.(6.49):

Table 6.7: Mass fractions of the components of dry air

Component ni  / mole M0i / kg/mole mi / kg Mass fraction

N2 0.7808 0.02802 0.0219 0.756

O2 0.2095 0.0320 0.0067 0.231

Ar 0.0093 0.03994 0.00037 0.0128

CO2 0.0003 0.04401 0.000013 0.00045

1.0 0.02897 1.0
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(b) The mass of each component is calculated using the amount of substance and the molar
mass. Giving each component an amount of substance equal to the mole fraction makes the total
amount of substance 1 mole. The results appear in Table 6.7.

Note that the difference between the molar fraction and the mass fraction is small if the molar
mass of the component is similar to the apparent molar mass of the mixture. This holds for ni-
trogen and for oxygen.

EXAMPLE 6.12. Temperature coefficients of energy and enthalpy of a mixture.

Take a sample of dry air at a temperature of 300 K and a pressure of 0.90 bar. (a) Calculate the
partial pressures of nitrogen, oxygen, and argon. (b) Calculate the molar temperature coeffi-
cients of energy and of enthalpy of these components and of the air sample as a whole.

SOLUTION: (a) With the total pressure known, the partial pressures of different components
are calculated easily using the mole fractions according to Equ.(6.52). The mole fractions of the
three most abundant components are given in Table 6.8 of Example 6.11. With these values we
obtain

(b) Table 6.8 displays our results. The molar temperature coefficients of energy and of enthalpy
of the ideal gas are computed according to the results of Example 6.10. The values of the molar
temperature coefficient of energy can be read from Fig. 5.14 in Chapter 5. The temperature co-
efficients of enthalpy are obtained by adding the value of the universal gas constant.

Neglecting other components, we get values of 20.88 J/(K · mole) and 29.17 J/(K · mole) for the
temperature coefficients of energy and of enthalpy for the mixture. This is very nearly the value
obtained for nitrogen alone.

EXAMPLE 6.13. Entropy produced in mixing two ideal gases.

(a) Calculate the amount of entropy produced if two different gases of 1 mole amount of sub-
stance each are allowed to mix at a temperature of 20°C. (b) How much energy has been dissi-
pated? (c) Where does the energy used for producing entropy come from?

SOLUTION: We can use Equ.(6.59) directly. The total amount of substance is 2 mole, and the
molar fractions are both 0.5. Therefore:

The energy dissipated is 11.5 J/K  ·  293 K = 3.38 kJ.

Table 6.8: Temperature coefficients of energy and of enthalpy of dry air

Component Mole fraction cV / J/(K · mole) cp / J/(K · mole)

nitrogen 0.7808 20.9 29.2

oxygen 0.2095 21.2 29.5

argon 0.0093 12.5 20.8
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(c) The chemical potential of each of the substances changes since the pressure of a component
changes from P to its partial pressure. In this process of diffusion, energy is released which—
under the present circumstances—is dissipated.

EXAMPLE 6.14. Pressure coefficient and partial molar volume.

(a) Determine the pressure coefficient of pure iron. The density of iron is 7874 kg/m3, and its
molar mass is 0.0559 kg/mole. (b) The pressure coefficient of ammonia dissolved in water is
24.1 · 10–6 G/Pa for standard conditions. Determine its partial molar volume and the equivalent
density.

SOLUTION: (a) The pressure coefficient of the chemical potential is the (partial) molar volume
of the substance. The latter is related to the density by

The unit is equivalent to G/Pa.

(b) The partial molar volume can be determined from the pressure coefficient:

Ammonia (NH3) has a molar mass of 0.017 kg/mole. The equivalent density is

Ammonia dissolved in water without dissociating behaves as if it had a density slightly smaller
than that of water. Put differently, if 705 kg of ammonia are dissolved in a vast amount of water,
the volume of the mixture will increase by 1 m3.

EXAMPLE 6.15. Temperature coefficients and entropy of phase change.

(a) Show that the temperature coefficients of the chemical potential of a substance can be used
to determine the (molar) entropy of phase change. Use the values for water to calculate the en-
tropy of fusion (melting). (b) In standard tables, coefficients are given for 25°C. Ice melts at
0°C. How do we have to correct for this temperature difference?

SOLUTION: (a) The temperature coefficient of the chemical potential of a substance is equal to
its negative molar entropy (Equ.(6.44)). Therefore, we have

Values for water (1) and ice (2) can be taken from Table 6.2:

(b) The temperature coefficients are (negative) molar entropies. The entropy of a simple sub-
stance such as ice or water changes with temperature according to the entropy capacitance:
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The molar entropy capacitance of water is about 0.27 J/(K2·mole), for ice it is about half this
value. The molar entropies of water and of ice at 0°C turn out to be about 63.2 J/(K · mole) and
41.5 J/(K · mole), respectively. The corrected value of the molar entropy of fusion (melting) of
H2O is now closer to 22 J/(K · mole), close to the accepted value.

EXAMPLE 6.16. Humidity of saturated air.

At 25°C and a pressure of 1.013 bar, how much water vapor is in air, at most? The air is in con-
tact with a water reservoir at the same standard conditions.

SOLUTION: Assume the air were completely dry. Then, water would evaporate since the chem-
ical potential of liquid water is higher than that of (no) vapor in the air. The transfer should end
when the chemical potential have become equal:

Pvapor is the pressure of the water in the air (its partial pressure). The vapor will be treated as an
ideal gas having a part of the pressure of the air:

Numerical values yield

This is the partial pressure of water vapor in air, i.e. about 3.1% of standard pressure. This
means also that 3.1% of the amount of substance of air is water vapor. On a mass basis, we ob-
tain

19 g of water per kilogram of air at standard conditions. Note that this number has two mean-
ings. For one, it is the maximum amount of water that can be contained in air—if air is saturated
it contains this much water. Second, it is the vapor pressure of water at 25°C and 1.013 bar. Nor-
mally, air is not saturated which means that a body of water can continue to evaporate in the
open.

EXAMPLE 6.17. Salt lowers the freezing point of water.

A certain amount of table salt (NaCl) is dissolved in freezing water. By how much is the freez-
ing point changed?

SOLUTION: Without salt, ice freezes at 0°C, i.e., the chemical potentials of the pure substances
are equal at this point. Salt and the change of temperature lead to a change of chemical potential
of water; however, the potential of ice is changed only because of the change of temperature.
With the added salt, at the new temperature, the chemical potentials are again equal. If we use
0°C and no salt as the reference point of our considerations, the condition of equilibrium is
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NaCl dissociates into two ions which leads to the factor of 2 multiplying the amount of salt.
Since the chemical potentials of water and ice are equal at 0°C, we have

Remember that the temperature coefficients are the (negative) molar entropies of water and ice.
Their difference is the molar entropy of fusion (of melting) of H2O. For a molar fraction of salt
of 0.01 (corresponding to a little more than 30 g of salt per liter of water), the melting point is
depressed by about 2°C.

EXAMPLE 6.18. Dissolved oxygen in water.

Oxygen gas (O2) is dissolved in water. This circumstance is important for aquatic life. We want
to know how much oxygen will be in the (surface) water of a stream, lake, or the ocean. (a) Cal-
culate the equilibrium concentration of O2 in pure water if the water is in contact with an atmo-
sphere composed only of oxygen. (b) What will the actual value for our atmosphere be?

SOLUTION: Similar to the example of humidity in the air (Example 6.16), we consider the
chemical equilibrium between O2 in the air and O2 dissolved in water:

The chemical potential of O2 in water is determined by its concentration. In air, it is determined
by its (partial) pressure:

(a) If the atmosphere is pure oxygen gas, the (partial) pressure of O2 is 1 atm (1.013 · 105 Pa).
The previous equation can be transformed to yield the ration of concentration of O2 in water and
the standard concentration (1 mole/L = 1000 mole/m3):

(b) We need to know the partial pressure of O2 in the actual atmosphere. For ideal gases, the
fraction of volume taken by a component is also the fraction of the total pressure. So, the partial
pressure of O2 in the air is 0.2 · 105 Pa. Therefore:
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or

This corresponds to 0.26 mole of oxygen gas per cubic meter of water. The result is approxi-
mately equal to 20% of the concentration obtained for a pure oxygen atmosphere. Note that
these results have been obtained for pure water. Ocean water, in particular, contains many other
dissolved substances that substantially alter the chemistry of the fluid.

EXAMPLE 6.19. Solubility of gases: Henry’s law.

Consider an atmosphere containing different gases in contact with a liquid such as water. Expe-
rience like the one reported in Fig. 6.2 shows that the amount of a gas dissolved in water is pro-
portional to the partial pressure of the gas in the atmosphere. This is sometimes reported by
saying that the pressure Pg of the component in the atmosphere is proportional to the mole frac-
tion x of the gas as a solute, which is Henry’s law:

Show that this relation follows from our previous considerations and express the constant Kx
using the chemical potentials.

SOLUTION: As in Example 6.18, we begin by assuming that the gas in the atmosphere and the
gas dissolved in the liquid are in equilibrium:

Therefore:

Now, the expression of Henry’s law is introduced, and the definition of the mole fraction is ap-
plied. For dilute solutions this leads to

where nf / V is the concentration of the solvent. (For water, it is 55500 mole/m3.) From this we
obtain the result for Kx:

For carbon dioxide dissolved in water, Kx is 1.66 · 108 Pa, while for hydrogen gas, it turns out
to be 7.10 · 109 Pa. The latter number means that in an atmosphere of hydrogen at 1 atm, the
mole fraction of dissolved gas would be 1.4 · 10–5.

c

c

aq

aq

O2

O2

( )

( )

−=
⋅

− − + ⋅ ⋅ ( )( )
⎡

⎣
⎢

⎤

⎦
⎥= −( ) = ⋅

0
41

8 314 298
16440 0 8 314 298 0 2 8 25 2 63 10exp

.
. ln . exp . .

P K xg x=

µ µg
g

aq
aq

aq

RT
P

P
RT

c

c
0

0

0
0

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ln ln

µ µg aq
aq

aq g

RT
c

c

P

P
0 0

0
0− =

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ln

µ µg aq
aq

aq x

aq

aq

f

x s

s

aq

f

x s aq x

f

RT
c

c

P

K x
RT

c

c

P n

K n

RT
n

V c

P n

K n
RT

P

c K

n

V

0 0
0

0
0

0

0

0 0
0

1 1

− =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ln ln

               ln ln

ln lnK
RT

P

c

n

Vx
g aq

aq

f( ) = −
−

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

µ µ0 0
0
0



6.7  TRANSPORT OF SUBSTANCES

PART II 301

EXAMPLE 6.20. Ion transport across a membrane: The Nernst potential.

Assume that an ionic substance is found on both sides of a membrane (as in Fig. 6.28) and that
it can cross the membrane. The liquid in which it is dissolved is the same in both environments.
If the ions attain densities cI and cII in their environments, what must the voltage established
due to this distribution be? 

SOLUTION: We assume the distribution of ions in the environments to be in electrochemical
equilibrium:

In this case, Equ.(6.38) for the electrochemical potential and Equ.(6.62) for the chemical poten-
tial of a solute yield

This expression is called the Nernst potential. Since we normally have several ionic species in-
volved in electrochemical processes in biology, the actual voltage is calculated differently.7

6.7 TRANSPORT OF SUBSTANCES

In this and the next section, I will formulate some simple dynamical—or as they are
called in chemistry, kinetic—models to demonstrate how our previous work applies.
The models presented in Section 6.2 can now be put on a more secure footing. I will
start with transports and then treat reactions in Section 6.8.

Substances can flow—or be transported—in two different ways. First, they can mi-
grate by themselves through materials. This is called diffusion or conduction. Second,
they can be transported with other materials, such as water, in which they are con-
tained. This is called convection, a process which will be considered in more detail in
Chapter 8. The diffusion of a substance or the transport of a “carrier substance” in con-
vection are driven by chemical potential differences.

6.7.1 Laws of Balance and Dynamical Models

Since we are going to consider only transports and no reactions at this point, the law
of balance of a single species in a single compartment is

(6.67)

Dynamical models are obtained by introducing the flows of a species into its law of
balance. An example was formulated in Equ.(6.1).

7. J. Malmivuo and R. Plonsey (1995): Chapter 3.
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6.7.2 Diffusion

Imagine particles with a concentration  in a uniform environment (such as a gel or a
liquid solvent). The chemical driving force is pulling or pushing the particles which,
since they are in a resistive medium, will quickly attain a certain drift speed. The cur-
rent of amount of substance due to diffusion of these particles is equal to the product
of cross section A, concentration , and drift speed vd (Fig. 6.34):

(6.68)

The drift speed is modeled as the result of a chemical driving force ∆µ = µ(x2) – µ(x1).
At the same time, it is proportional to the mechanical forces on the particles8 (which
are in balance). A simple application of the balance of energy tells us that n ∆µ =
n Fd ∆ x, so the force on a particle and therefore the drift speed should be proportional
to the driving force per unit distance: vd = kD ∆µ/∆ x (with a diffusion factor kD).
Therefore, we obtain

∆µ/∆x is called the gradient of the chemical potential. The minus sign indicates that
the flow is positive in the direction of the diffusing substance’s decreasing chemical
potential. In a general case, the gradient varies from point to point (Fig. 6.34). Graph-
ically, it corresponds to the slope of the µ-x  curve. In a single spatial dimension, this
can be written as the derivative of the chemical potential with respect to position:

(6.69)

Note that the current is proportional to the concentration and the chemical potential
difference or, in the spatially continuous case, the gradient of the potential. This is a
form we had anticipated in Equ.(6.1) for the model of the diffusion of toluene.

The chemical potential of the diffusing substance can be assumed to obey the logarith-
mic relation derived in Equ.(6.62). Inserting this into Equ.(6.69) yields

If we divide the current by the cross section through which it flows, we obtain the cur-
rent density of amount of substance. The resulting relation is the usual form of Fick’s
law for diffusion:

(6.70)

D = kDRT is called the diffusion constant or diffusivity. The term is the concen-

8. This assumes a medium in which the mechanical effect is due to viscosity in a way that
leads to linear effects (see Chapter 3).
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tration gradient. It can be replaced by for intervals where the molar concen-
tration changes linearly with position. Note that Equ.(6.70) is analogous to Ohm’s law
(Chapter 1) or Fourier’s law (Chapter 7).

Equ.(6.70) is a form of a constitutive law for spatially continuous systems which we
will treat in Parts III and IV of this book. Here is a simple way to apply diffusive re-
lations in spatially uniform dynamical systems. We already encountered this phenom-
enon in Chapter 1 (Section 1.5.3) when we discussed chains of RC systems such as
chains of communicating tanks. The tanks represent storage elements whereas the
pipes allow for flows between the tanks. The flows are made dependent upon the dif-
ference of potentials of two neighboring storage elements. This is exactly what we are
dealing with in the case of diffusion. Material elements of the substrate through which
the dissolved species migrates serve as storage devices. The quantity of substance con-
tained in an element is responsible for the chemical potential whose difference is re-
sponsible for the flows between elements. This defines the structure of simple uniform
dynamical models consisting of parts (elements) of the larger system (Fig. 6.35).

The role of concentration. Why should the transport of substance be proportional to
the concentration of the diffusing substance (Equ.(6.69))? Isn’t it enough that the
chemical potential depends upon concentration? Actually, the chemical driving force,
i.e., a difference of potentials, depends upon the (logarithm of) the ratio of the concen-
trations at two points 1 and 2 along the path of the diffusing species:

No matter if µ1 = 2 and µ2 = 1, or µ1 = 0.002 and µ2 = 0.001, the driving force is the
same, but the diffusive current of substance must be 1000 time stronger in the first
case, so we need to make it dependent upon the concentration of the dissolved species.
Obviously, the microscopic argument I used in this section to work out the expressions
for diffusion (Equ.(6.68) and Equ.(6.69)) are not needed to suggest a useful form for
the transport of dissolved substances.

Diffusion of charge and entropy have already made their debut on our stage (Chapters
1 and 4). Diffusion of charge will be picked up again in Chapter 13. The latter case—
conduction of entropy—will be considered in more detail in Chapters 7 and 13.

6.7.3 Transport between different environments

Substances flow from one environment into another as long as there is a difference of
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the chemical potentials of the substance in these environments. In analogy to what we
have done already, let me assume the following form for the current of substance from
environment I to II (Fig. 6.36):

(6.71)

If the substance is dissolved, its chemical potential depends logarithmically upon its
concentration and upon a reference value which will be different for different environ-
ments (Fig. 6.36). We have seen the importance of the distribution of the diffusing
substance, which is established after the flows have stopped. This suggests using the
equilibrium condition as the reference point for calculating potentials:

Since the equilibrium values of the potential of the substance in environments I and II
are equal, the chemical driving force turns out to be equal to

(6.72)

The current of substance can be obtained by inserting this expression into Equ.(6.71):

(6.73)

Conditions near equilibrium. The condition of equilibrium has been chosen as the
reference point for calculating the chemical potential. I and II refer to the substance in
environments I and II. The difference of chemical potentials in equilibrium must be
zero, which is indeed the case. (Note the difference between this result and the as-
sumption made in Equ.(6.2). There we did not know about the form of the chemical
potential of a dilute substance—I made an intuitive guess as to how the driving force
might depend upon concentrations relative to their equilibrium values.) Interestingly,
Equ.(6.73) turns into Equ.(6.2) for conditions near equilibrium. This is one reason to
consider conditions which do not deviate much from equilibrium where the ratio of a
concentration to its equilibrium value is close to 1.9For small deviations from equilib-
rium, the logarithm ln(x) becomes x – 1. Therefore

The ratio of the concentration at equilibrium in environment II to the one in environ-
ment I is called the equilibrium constant K :

(6.74)

If we use this definition, the transport law for a species flowing from an environment
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Figure 6.36:  Diffusive transport 
of a substance from one environ-
ment into another (such as from 
water to air, or from soil to water) 
is caused by a chemical potential 
difference. The substance can 
diffuse from an environment 
where the concentration is low to 
one where it is high.
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into a chemically different one can be written as follows:

(6.75)

k = k’RT K –1 is a transport coefficient. It is often called permeability. One example is
the case of a membrane separating environments I and II. The name is also used for
permeability of rocks or for water permeability of membranes in osmosis (see Section
6.7.4) and has an analogous meanings (details naturally vary).

Nonlinear equilibrium relations. The definition of the equilibrium constant in the
form of Equ.(6.74) assumes a linear relation between concentrations in equilibrium
such as the one found for toluene in water and air (Fig. 6.2, right). When the equilib-
rium relation is not constant, such as for toluene in water and soil (Fig. 6.37), the ex-
pression in Equ.(6.75) can be generalized. For this example, the term in parentheses
in Equ.(6.75) could be changed to something like cw – K  cs

a.

Linearity or nonlinearity of chemical processes? Even if the relations Equ.(6.75)
and Equ.(6.71) (with Equ.(6.72)) are identical near equilibrium, they are different in
general. So, the question arises if one of them is better in general. It turns out that the
expression which is linear in the concentrations, i.e., Equ.(6.75), often fits the data bet-
ter. In other words, our assumption that the rates at which chemical processes proceed
are linear in the chemical driving force, need not apply. We know from our work on
electric and thermal phenomena that linear dependence upon driving forces often
leads to good results, but this is by no means always the case. Just remember turbulent
flow or charge transport in diodes. I will resume the discussion of the dependence of
rates of chemical processes upon the difference of chemical potentials in more detail
when we turn to models of reactions (Section 6.8).

6.7.4 Osmosis: Soaking Dried Lentils

When dried lentils are soaked, they take in water and their volume grows. It turns out
that at least a part of the phenomenon can be understood in terms of chemical process-

9. Another reason are kinetic (microscopic) models similar to the one used above in the dis-
cussion of diffusion. Microscopic models suggest relations such as Equ.(6.75). The reason-
ing roughly goes as follows. Imagine particles of a substance in two environments, I and
II. The particles in each compartment have a tendency to move into the other environment:

The net flow with respect to compartment I will be

which is similar to our Equ.(6.75). So here we image two simultaneous opposing flows,
each with its own flow constant, rather than a single current which is determined by the
chemical driving force.
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es. However, a first model will have to be augmented by ideas that make use of our
understanding of the dynamics of fluids discussed in Chapter 1.

Experiment, observations, and a basic idea. Dried brown lentils are put in a con-
tainer with plenty of distilled water (see Fig. 6.38, top). In the course of time, their vol-
ume grows to about 2.6 times the initial value (see the graph in Fig. 6.38).

The fundamental process must be intake of water. We assume the increase in volume
of the legumes to be due only to the added amount of water. Therefore, we can attempt
to understand their swelling in terms of a single law of balance of volume applied to
their water content:

(6.76)

(see Fig. 6.39). The important task is to model the flow of water into the lentils. The
phenomena discussed before in Section 6.1 suggest that the flow may be due to osmo-
sis: The pressure of the remaining water in the dried lentils (and therefore its chemical
potential) is smaller than the pressure of the water outside (i.e., its chemical potential).
The chemical potential difference is the driving force for the flow of water. As the wa-
ter content in the lentils increases, the concentration of the solutes in the cells decreas-
es. We have seen that solutes reduce the chemical potential (pressure) of the solvent
(Section 6.6.4). When the concentration is reduced, the reduction of pressure must be
smaller. Therefore, in the course of time, the pressure difference between outside and
inside will decrease, letting the current of water decrease.

Water pressure: Osmosis. As before, we should assume the flow of amount of water
to depend upon the chemical driving force:

(6.77)

k’A is a chemical conductance. Alternatively, the expression can be put in hydraulic
form to fit the law of balance in Equ.(6.76):

(6.78)

The water pressure inside dried lentils is smaller than on the outside since substances
are dissolved in the remaining water. According to Section 6.6.4, the reduction of
pressure is proportional to the density of dissolved substances. Therefore:

(6.79)

We can leave the pressure values arbitrary by setting Poutside = 1. ninside is the amount
of solutes inside the lentils. Remember that we set the pressure of pure water equal to
1. The product a·ninside is unknown and should be determined by comparing simula-
tion results to data (Fig. 6.38).

We will assume that the shape of the lentils will be like a pillbox whose height does
not change much. This makes the surface area of the lentils proportional to their vol-
ume. We do not have to worry about the value of the factor of proportionality—chang-
ing it will change the flow constant k in Equ.(6.78) which has to be found by
simulation by the same factor. 
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If we choose an amount of initial water in the dried lentils of 25 (25% of the 100 mL
of the initial volume of lentils), simulation of the model results in a function shown in
Fig. 6.40 (dashed line). It turns out that the simulation fits the initial rise of volume.
However, the model predicts that the lentils continue to grow, contrary to what is ob-
served in the experiment. What is the reason for this discrepancy?

Water pressure: Elastic walls. The chemical factor—solution of substances in the wa-
ter inside the lentils—is not the only one affecting the pressure of the liquid. In the len-
tils, the water is contained in cells which act as storage elements having elastic walls.
We know this condition as a capacitive effect (Chapter 1): increasing the amount of
water raises the pressure. Combining chemical and capacitive effects means that

(6.80)

Let us assume that the capacitive component of pressure is zero when the lentils are
dried and rises steeply when the cell walls are stretched strongly. A nonlinear capaci-
tive relation of the form

(6.81)

can accommodate these ideas and results in a simulation that follows our experimental
data fairly well (see the solid curve in Fig. 6.40).

36. Why is the diffusive current of substance proportional to the concentration of the species?

Figure 6.39:  Diagram of a first 
system dynamics model of the 
soaking of lentils. Note the bal-
ance of amount of water, and two 
effects upon the flow: (1) Pres-
sure difference because of solutes 
in the lentils, and (2) change of 
surface due to change of volume.
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Figure 6.40:  Simulation results 
for the first and second models, 
and data (dots). A second effect 
upon the pressure of the water in-
side the lentils has been taken 
into account (pressure due to the 
elasticity of the cell walls).
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37. Imagine a substance that “prefers” to be in environment I rather than in environment II. Is
the equilibrium constant larger than 1, or smaller than 1?

38. What happens to the flux of amount of substance between two different environments
when the condition cII = K cI applies?

39. Why are Equ.(6.77) and Equ.(6.78) equivalent?

40. Consider the model of soaking of lentils that makes the flow dependent upon osmotic pres-
sure only. Why does the volume not level off in this model?

EXAMPLE 6.21. Permeability of red blood cells.

Consider the phenomenon described in Section 6.1 (Fig. 6.5): Red blood cells are placed in an
isotonic solution (bath) having a molar concentration of solute of 300 mole/m3. Then, a sub-
stance is dissolved in the bath that raises the concentration to 600 mole/m3. This substance can
diffuse through the cell membranes into the cells.

A single cell has an initial volume of 8.7 · 10–17 m3 (see Fig. Ex.21). The volume decreases
quickly at first (within the first 0.25 s), then it recovers more slowly to its initial value (Fig. 6.5).

(a) Write the laws of balance of the substances that need to be considered to understand this phe-
nomenon. (b) Express the transports by constitutive laws. (c) Use the graph to determine the
current of water at t = 0 s. Use this to find the permeability of the cell walls for water. (d) If the
substance dissolved in the bath could not diffuse into the cells, what would happen to their vol-
ume? (e) Take the actual case. What can we say about the flow of water when the volume has
reached its minimal value at t = 0.25 s? What does this mean for the concentration of solutes in
the cell? How much of the dissolved substance has moved from the bath into a cell? Use this to
estimate the permeability of the cell walls for the diffusing substance.

SOLUTION: (a) In this model, two substances have to be considered, water (w) and the sub-
stance added to the bath (s). Each one can flow into or out of the cells:

Each of these equations is supplemented by an initial condition. The model is completed by for-
mulating constitutive laws for the flows.

(b) The transport of water results from osmosis, the transport of the dissolved substance is due
to diffusion. Therefore

The pressure of the water (whose difference is responsible for the transport of water) is lowered
by the presence of dissolved substances (it does not matter, what these substances are). The dif-
ference of concentrations of all solutes is, however, equal to the difference of concentrations of
the added substance:

Diffusion of the substance added to the bath (s) responds only to its own concentration.

(c) The diagram can be used to graphically determine the rate of change of volume which is
equal to the current of volume of water (we assume the change of volume of the cells to be de-
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termined by the change of volume of water). The graphical result is – 9.4 · 10–17 m3/s. 

The constitutive law for the flow of water can be used to determine the permeability kw. The
surface area of a single cell is 1.4 · 10–10 m2, and the initial difference of concentrations of dis-
solved substances is equal to the concentration of the added solute, i.e., 300 mole/m3. Therefore

(d) The volume of cells decreases as long as water flows out, and water flows out as long as the
concentration of (total) solutes outside is higher than the concentration of (total) solutes on the
inside. In the bath, the concentration is 600 mole/m3. This value will be reached in the cells if
their volume shrinks to half the initial value (the concentration inside was 300 mole/m3 initially
since they were in an isotonic solution at the beginning). The decrease of the volume follows
the standard exponential decay curve from Vinit to Vinit / 2.

(e) At t = 0.25 s, IV,w = 0, therefore, the concentration of (total) solutes inside has reached the
outside value of 600 mole/m3. This means

This amount of the substance s that was added to the bath has crossed the cell wall in 0.25 s.
Therefore, the average current of amount of substance of s is 8.4 · 10–14 mole/s. Now, at t = 0.25
s, the concentration of s inside a cell is already 267 mole/m3, meaning the current must have
decreased to a fraction of the initial value. Considering the exponential decay of the current, the
initial current should be more than twice the average value. We will take 20 · 10–14 mole/s. At
the beginning, the concentration difference is 300 mole/m3. As a result, the permeability ks is
estimated to be 

6.8 KINETICS OF CHEMICAL REACTIONS

To describe the dynamics of chemical reactions, we need to be able to express the pro-
duction rates of the species in the equations of balance. The rates are called reaction
rates. The most important factor affecting these rates are the chemical potentials
which depend upon concentrations (naturally, there are many other factors such as
pressure and temperature affecting the potentials; however, we will only investigate
the role of concentrations of gases or dissolved substances). Apart from the chemical
potentials (here: the concentrations), there are parameters facilitating a reaction such
as the mobility of the particles. These factors will be considered constant, simply de-
pending upon conditions of the environment of the reacting substances.

6.8.1 Laws of Balance

In general, substances will flow and react. If we neglect flow, we are left with produc-
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tion and destruction resulting form reactions. Reactants will be destroyed (negative
production rates) and products will be produced. Sometimes we consider chains of re-
actions in which case a particular species (numbered i) can be produced and destroyed.
So, the law of balance of substance i will be

(6.82)

(see also Equ.(6.17)). There will be such an equation for each species appearing in the
reactions considered. Since elements are conserved in standard chemical reactions,
there is a simple relation between production rates for different species involving the
stoichiometric coefficients (Equ.(6.19)).

6.8.2 Reaction Rate for the Conversion A →→→→ B

The expressions for production or reaction rates are motivated just as relations for cur-
rents of a species from one environment into another are (Section 6.7.3). For a simple
reaction A ↔ B (such as the decay of α-glucose, Fig. 6.3) we need to know the decay
rate ΠnA of the reactant A. Let us consider the density of this reaction rate since it is
clear that—if all else is equal—there will be twice as many reactions in twice the vol-
ume. This production rate density πnA is assumed to depend upon the chemical driv-
ing force of the reaction, the concentration of A, and a reaction constant k’:

(6.83)

If we assume the substances to be gases or dilute solutions, the difference of the chem-
ical potentials can be expressed as

Just as in the case of transports, I have chosen the equilibrium values of each species
as the reference points for calculating the chemical potentials. Since µA and µB are the
same in equilibrium, this equals

(6.84)

This should be inserted into Equ.(6.83) and multiplied by the volume of the spatially
uniform reacting system to yield the reaction rate:

(6.85)

Note that this expression is negative if the reaction runs from A to B, as we would like
it to be. Now, let me apply this to the reaction of α-glucose to β-glucose described in
Section 6.1 (Fig. 6.3). The diagram of a system dynamics model may look like the one
in Fig. 6.41.
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There are two expressions for laws of balance for nA and nB. The production rate of
A is made dependent upon the concentration of A, the chemical driving force, the vol-
ume of the solution, and a reaction constant (the production rate of B is the negative
of that for A). The concentrations of A and B are calculated from the amounts of sub-
stance nA and nB, and the volume. To obtain the differences of chemical potentials,
Equ.(6.84) was applied with the ratio K of equilibrium concentrations

(6.86)

which—as before in Equ.(6.74)—is called the equilibrium constant, this time of the
reaction A ↔ B which we have been considering here.

Mutarotation of glucose. Fig. 6.42 (left) shows data of an experiment of mutarota-
tion of glucose and a simulation of the model in Fig. 6.41. Remember the discussion
of this phenomenon in Section 6.1 (Fig. 6.3). There is a single substance (α-glucose)
that transforms into another (β-glucose). The concrete values used for the simulation
are V = 15·10–6, k’ = 10.8 · 10–8, all in standard SI units, and K  = 1.77. The result is not
bad. The equilibrium constant can be fitted perfectly by reading the final amounts or
concentrations of the two species (α-glucose and β-glucose). However, the shape of
the simulated curves does not agree as well as could be with that of the measurements.
This indicates that the form of the assumed constitutive law, Equ.(6.83), is not perfect;
the reaction is not linear in the chemical driving force.

If we use a somewhat different idea,10 namely
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Figure 6.41:  Diagram of a sys-
tem dynamics model of the mu-
tarotation of glucose.
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(6.87)

we get almost perfect agreement between experiment and model (Fig. 6.42, right).
The reason for this expression becomes clear when we introduce Equ.(6.84) and ob-
tain a form of the reaction rate which is analogous to the flow law in Equ.(6.75):

(6.88)

We could have obtained this by determining Equ.(6.84) for conditions near equilibri-
um (as we did for flows in Section 6.7.3). The advantage of Equ.(6.87) over
Equ.(6.85) is that the former agrees with Equ.(6.88) also far from equilibrium. Expres-
sions of this form are often successful when applied to kinetic models of simple reac-
tions. We can now summarize the dynamical model for the reaction A ↔ B as follows:

(6.89)

Naturally, we need proper initial values for nA and nB to complement this initial value
problem. Because of its linearity, this reaction equation is said to be of first order.

6.8.3 Reactions Involving Several Species

A reaction equation such as A + B ↔ C + D tells us that two substances react (and are
destroyed) to form two new species. We need to construct an expression for the reac-
tion rate of A (remember that the reaction rates for B, C, and D are then determined as
well, Equ.(6.19)). We will take into account the new situation while at the same time
adhering to the ideas that led to our previous results. First, the rate will depend upon
the chemical driving force which in turn depends upon the concentrations of all four
species relative the their equilibrium values. Equ.(6.84) shows that

(6.90)

where 

(6.91)

is the equilibrium constant for the new reaction.

The second important factor is made up of the concentrations of the substances that
are disappearing in the reaction. Let them be A and B, i.e., A + B ↔ C + D proceeds
from left to right. A reaction between A and B involves the particles of these substanc-
es “find” each other, so we should expect the reaction rate to depend upon the product

10. See Cukrowski, A. S. and Kolbus, A., (2005) for a detailed discussion of ideas concerning
rates of chemical reactions.
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of their concentrations. Again, the volume comes into play since the reaction is as-
sumed to be homogeneous. Finally, there must be a rate constant that determines the
intrinsic speed of the process. If we use the nonlinear form analogous to Equ.(6.87)
from the start, we have

(6.92)

which, according to Equ.(6.90), is equivalent to

(6.93)

Here, the reaction rate is said to be of second order. It is important to note that the ex-
amples of reaction rates derived in Equ.(6.88) and Equ.(6.93) are two of the simplest
possible forms. As long as reactions lead to equilibria of the form 

(which itself is just a simple example of its kind; see Section 6.8.6 for a more general
result), we can expect reaction equations like the ones derived here. In general, how-
ever, reactions are much more complex. They often proceed in several steps from the
reactants to the products, where the intermediate reactions might not be known. There-
fore, reaction rates often involve powers of the concentrations of the species taking
part in the reaction. The exponents, along with the reaction constants k, have to be de-
termined by comparing models and experimental data.

6.8.4 Reactions with Entropy Production and Exchange

Chemical reactions often involve the production, storage, and exchange of entropy.
Here is an example that can be investigated experimentally using simple means: The
strongly fizzing endothermic reaction of sodium bicarbonate (NaHCO3) in a solution
of citric acid (H3C6H5O7):

(6.94)

Citric acid (H3C6H5O7) is dissolved in water; this reaction is endothermic, letting the
temperature of the solution drop noticeably. If we wait long enough, we can start with
this solution at room temperature. The solution is poured into a small glass and placed
on top of a scale; a temperature probe is put in the liquid. Then sodium bicarbonate
(NaHCO3) is added. Sodium citrate (Na3C6H5O7), water and carbon dioxide are pro-
duced in the reaction, leading to fizzing which generates a lot of foam. 

Observations. The carbon dioxide that is produced escapes, making the mass of the
solution decrease, and the temperature drops. These are the most easily observed ef-
fects (Fig. 6.43). The temperature drops by more than 10°C and then slowly recovers.
The drop is due to the endothermic effect of the reaction, the recovery is caused by
entropy flowing from the environment into the cold solution. The decrease of mass is
a little less than 4 g. The scale was zeroed before the bicarbonate was added, so the
jump of 8 g represents the mass of bicarbonate added to the citric acid solution. The
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decease is caused by the carbon dioxide escaping. In fact, the quantities of citric acid
and bicarbonate are such that all of the latter should be used up; this is indeed the case.

Model of the reaction. We need to express the laws of balance of the five substances
involved in the reaction of Equ.(6.94) (this was already done in Example 6.3). Each
one involves the reaction rate of one of the species. Since the reaction rates are related
by Equ.(6.19), only one of them has to be expressed by a constitutive law similar to
Equ.(6.93). We do not have to go through the details of the algebra since it works out
similarly to what we have done twice already. First, we note that bicarbonate appears
with a stoichiometric coefficient of 3 in the reaction equation. This is equal to having
the substance NaHCO3 appearing three times, like three different substances. There-
fore, the product of concentrations multiplying the chemical driving force (see
Equ.(6.92)) will involve the concentration of citric acid and the concentration of bi-
carbonate raised to the third power. Let us further assume that the reaction proceeds
pretty much all the way from left to right in Equ.(6.94), meaning that at least one of
the reactants will be used up completely (a simple calculation of the balance of mass
of the reaction—the change of mass must be equal to the mass of the carbon dioxide
that is produced and escapes—shows that the assumption is reasonable). Put different-
ly, the equilibrium constant of this reaction must be very large. Combining these ob-
servations and assumptions leads to an expression of the form

(6.95)

The reaction rate for sodium bicarbonate is three time the value of Equ.(6.95), and
those of the three products are obtained similarly. If we assume that the escape of CO2
is responsible for the change of mass, i.e.,

we can use data obtained in the experiment to determine whether or not the expression
for the reaction rate(s) Equ.(6.95) works out (Fig. 6.44). For the particular case report-
ed here, the exponent of the concentration of bicarbonate is 2.5 rather than 3. Real cas-
es are not always follow the simplest suggestions.

Balance of entropy. Why does the temperature drop? We can answer this question
by considering the balance of entropy of the substances involved. Apart from the five
reacting substances, there is water. We can assume the temperature measured in the
experiment (Fig. 6.43) to be that of the water which allows us to work out the balance
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of entropy for this substance (Fig. 6.45). We look at the water as the substance which
relates what is happening to the reacting substances. Entropy produced in the reaction
(ΠS,reaction) is added to the water and so is the entropy given up by the reactants which
disappear (IS,R). The products receive the entropy they contain from the water (IS,P).
Finally, the liquid receives entropy from the glass container (IS,gw) and indirectly from
the environment (IS,env). Since Stotal = Swater + Schemicals, and 

we can formally write the rate of change of entropy of the water as

The last term is the rate of change of entropy of the reacting species. There is a small
increase in the amount of water due to the reaction; however, this will be neglected in
the model.

The practical problem consists of finding missing property values, chief among them
the difference of chemical potentials of the reaction and the molar entropies of the sub-
stances. Molar entropies of CO2, water, and bicarbonate are 213 J/(K·mole), 69.9 J/
(K · mole), and 102 J/(K · mole), respectively. Those of citric acid and sodium citrate
could not be found. Fortunately, if the temperature does not vary too much, these un-
known contributions are proportional to the contribution of the unknown chemical po-
tential difference. So we basically have to determine one unknown parameter

apart from those governing entropy transfer from the air to the glass container, and
from the container to the water. In the model in Fig. 6.45, the difference of the molar
entropies of citric acid and sodium citrate has been set equal to zero. With these as-
sumptions, the model yields a rather good fit between simulated and measured values
(see the graph in Fig. 6.45), for [∆µ]R = – 98 kG.
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6.8.5 Radioactive Decay

Now we can understand the well known form of the decay rate of radioactive decay
that leads to exponential decrease of an unstable isotope:

(6.96)

Here, n is the amount of substance of the radioactive species, and λ is the decay con-
stant. If we start with Equ.(6.83) and accept what is known from nuclear physics,
namely, that the chemical driving force of the decay of A into B is (virtually) constant,
we arrive at 

which is equivalent to Equ.(6.96). The reason for the constancy of the chemical driv-
ing force is that it depends upon the (molar) energy released which is the large nuclear
part plus negligibly small contributions from chemical and thermal factors such con-
centration and temperature.

6.8.6 Equilibrium in Chemical Reactions

Let us now turn to the derivation of a more general expression of the condition of
chemical equilibrium. Normally, this is done in terms of quantities related to standard
values of pressure, temperature, and concentration, rather than the equilibrium values
used in Equ.(6.91). This will allow us to obtain a second meaning of the equilibrium
constant in terms of the chemical driving force at standard values. For the following,
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let me write a general reaction equation in the form:

(6.97)

A, B… are assumed to be used up, whereas C, D… are produced. We give the first
coefficients a, b, … negative values, while the c, d, … are taken to be positive:

Equilibrium concentrations for ideal gases and dilute solutions. To find the actual
composition of the substances after equilibrium has been reached, we must express the
chemical potential of each species involved in terms of the actual temperature and
pressure (or concentration). If we assume that equilibrium has been achieved at stan-
dard conditions for the mixture, only the partial pressure (concentration) of a species
is different from P0; the temperature takes the standard value of 298 K. For the case
of a mixture of ideal gases, the chemical potentials depend upon pressure as follows
(Equ.(6.46)):

(6.98)

The index 0 refers to the standard state. For dilute solutions, the partial pressure can
be replaced by the concentration according to Equ.(6.60):

(6.99)

where you have to remember that the standard concentration for the calculation of the
standard values of the chemical potential is 1 mole/liter, and not 1 mole/m3. The ex-
pression of the chemical potential is the same for dilute solutions and ideal gases. If
we introduce Equ.(6.98) in the condition of equilibrium, we obtain

The first term on the right is the change of the chemical potential for the reaction at
standard conditions; if we also rewrite the second term, the condition reads

(6.100)

Remember to use the proper sign of the stoichiometric coefficients a, b,…as defined
above. It is customary to call the quantity in parenthesis the equilibrium constant K P:

(6.101)

The index P refers to pressure. Note that the stoichiometric coefficients appear as ex-
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ponents. In general, they do not balance so that the standard pressure would drop out
of this expression. Therefore, the equilibrium constants in Equ.(6.74), Equ.(6.86), and
Equ.(6.91) are special results. With the general definition of the equilibrium constant,
the condition of chemical equilibrium in a mixture of ideal gases can be written in the
following simple form:

(6.102)

The equilibrium constant has a value which is independent of pressure (since the right-
hand side of the equation has been defined for the fixed standard pressure); i.e., it only
depends upon the temperature. With the known change of chemical potential for the
reaction for standard conditions, K P can be calculated; this then yields the relation be-
tween the partial pressures or concentrations of the species taking part in the reaction. 

As we have seen before, changing the temperature at which the reaction takes place
can influence the outcome, i.e., the equilibrium concentrations of the substances. The
same is true of a change of pressure. Even though the equilibrium constant is indepen-
dent of pressure, the values of the partial pressures will change. Therefore, with chang-
es both of temperature and of pressure, the outcome of a reaction can be shifted to
favor one side.

Chemical equilibria do not occur only in outright chemical reactions. As we have seen
already, the concept of equilibrium can be applied to such diverse situations as the va-
por pressure of a liquid, the condensation of vapor, the solution of gases in water, and
more. In particular, Equ.(6.102) can also be applied to the transport of substances dis-
cussed before in Section 6.7.3.

41. In what sense are the transport of a substance from one environment into another chemi-
cally different one and the transformation of a substance A into B comparable?

42. If standard reasoning were to apply, what would the order of the reaction rate for the con-
version of hydrogen and oxygen to water be?

43. The reaction described in Equ.(6.88) is said to be of first order. If K is large, what kind of
function of time is the concentration of the reacting substance expected to be?

44. Assume a substance A to react with a substance B according to A + B = C. If there is a
great excess of amount of B in the reacting mixture, why does the reaction behave like one
of the first order?

45. Why do the results of experiment and models reported in Fig. 6.42 tell us that the reaction
rate probably does not depend linearly upon the chemical driving force?

46. What does it mean when the equilibrium constant is small? Large? Equal to 1? Do you
know of a process where K = 1?

47. For the conversion of α-glucose into β-glucose, K  = 1.77. How large is the standard dif-
ference of chemical potentials of this conversion?

EXAMPLE 6.22. Synthesizing hydrogen iodide.

Hydrogen iodide HI which is used to primarily in the manufacture of hydriodic acid and in the
preparation of organic and inorganic iodides is synthesized by the reaction H2 + I2 → 2HI.

  
RT P reaction

ln K( ) = −[ ]∆µ 0

QUESTIONS
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Thermochemical data for the substances involved are reported in the table below. For a temper-
ature of 400 K, the kinetics of the reaction has been given as11:

(a) Write the kinetic equation for H2 in the standard form (see Equ.(6.93)). Determine the rate
constant k in standard units (volume in m3). What is the equilibrium constant according to this
equation? (b) Calculate the equilibrium constant from the values in the table and compare to the
result found in (a). (c) Assume the volume of the reactor to be 100 L and initial concentrations
of H2 and I2 of 10 kmole/m3 each (there is no HI present). What are the initial rates of change
of concentrations? (d) Sketch the amounts of substance of H2, I2, HI as functions of time.

SOLUTION: (a) The standard form turns out to be

with k = 4.0 · 10–17 m3/(mole·s) and K  = 788.

(b) The chemical potentials appearing in the expression of chemical equilibrium must be calcu-
lated for the actual conditions (actual pressures or concentrations and temperature):

With T = 400 K, we have

and

11. Rosenqvist T. (2004): Principles Of Extractive Metallurgy. p.132.

Table 6.9: Hydrogen, iodine, and hydrogen iodide
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This is smaller by more than a factor of 2 than the constant assumed in the actual kinetics re-
ported above.

(c). The rate of change of amount of substance divided by the volume of the reactor equals the
rate of change of concentration. Inserting numbers in the expression given in (a) yields a value
of – 3.15 · 10–7 mole/(s · m3) for H2 and I2. The rate of change for HI is 6.3 · 10–7 mole/(s · m3).

(d) Equilibrium values and initial rates allow us to sketch the amounts of substance as functions
of time (Fig. Ex.22), so we still need the equilibrium amounts for the three species. The expres-
sion for the equilibrium constant can be written with the concentrations which can be converted
to amount of substance:

The last step involves the observations that nI2 must be equal to nH2, and that nHI is calculated
from the total amounts (at the beginning) and the final quantities of the reactants. The solution
of this quadratic equation is

6.9 CARBON DIOXIDE IN THE ATMOSPHERE AND OCEANS

We strongly suspect that human generation of carbon dioxide in the burning of fossil
fuels and deforestation is responsible for changing the chemistry of the atmosphere to
such an extent that our climate will change as well. For this reason, the issue of the
global carbon cycle has become pressing. What happens to carbon—in its many com-
binations—in the biosphere, geosphere, the oceans, and the atmosphere? Where does
the CO2 released by human activity end up?

In this section, I would like to construct a couple of strongly simplified models of the
exchange of CO2 between atmosphere and oceans, and reactions of CO2 in sea water.
The models can only suggest the ideas involved in research concerning the carbon cy-
cle—they should not be regarded as furnishing realistic numbers. Rather, they provide
a nice application of the physics we have been studying in this chapter. 

There are two important time series concerning the phenomenon: The rate of produc-
tion of CO2 by human activity (Fig. 6.46, left), and the concentration of CO2 in the
atmosphere (Fig. 6.46, right). The former has been compiled from data on economic
activity,12 the latter stems from measurements. There is ice core data for the time from
1750 until the onset of detailed and careful measurements of atmospheric CO2 on
Mauna Loa in Hawaii at about 1960.13

12. Marland G., Boden T. A., Andres R. J.: Global, regional, and national fossil fuel CO2 emis-
sions. cdiac.ornl.gov/trends/emis/em_cont.html.
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6.9.1 Exchange of Carbon Dioxide Between Air and Water

What I have called spatially uniform models of elements of larger systems are often
termed box models in the research community. Such models—when detailed
enough—provide much insight into the phenomena surrounding carbon in general and
CO2 in the atmosphere in particular.14 Here, I would like to present the simplest pos-
sible two-box model (Fig. 6.47) involving carbon dioxide in the atmosphere and the
oceans using the ideas of chemical driving forces, flows, and balances of amounts of
substances.

The input (Pi_CO2) in the model of Fig. 6.47 stems from carbon dioxide production
according to Fig. 6.46 (left). The flow between atmosphere and ocean can be modeled
along the lines of Section 6.7.3.

For the following discussions, let us assume that we do not have to consider tempera-
ture (changes); in other words, take the temperature to be 298 K for all relevant com-
ponents. Similar to the example of humidity in the air (Example 6.16), we consider the
chemical driving force between CO2 in the air and CO2 dissolved in water:

(6.103)

The chemical potential of CO2 in water is determined by its concentration. In the air,
it is determined by its partial pressure:

(6.104)

13. Siple Station data: Neftel A., Friedli H., Moor E., Lötscher H., Oeschger H., Siegenthaler
U., Stauffer B.: Historical Carbon Dioxide Record from the Siple Station Ice Core.
cdiac.ornl.gov/trends/co2/siple.html. Mauna Loa data: Ralph Keeling, (Scripps Institution
of Oceanography, University of California, San Diego): Atmospheric Carbon Dioxide –
Mauna Loa. www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html

14. See Tomizuka A. (2009) for a discussion of a seven-box model.
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Figure 6.46:  Left: CO2 emis-
sions by fossil fuel burning, in 
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We need to know the partial pressure of CO2 in the atmosphere. For ideal gases, the
fraction of volume taken by a component is also the fraction of the total pressure. So,
the partial pressure of CO2 in the air is 280·10–6 · 105 Pa = 28 Pa for the preindustrial
level (38 Pa for modern levels, see Fig. 6.46, right). The current of CO2 between at-
mosphere and ocean can be calculated according to Equ.(6.71) (the partial pressure of
carbon dioxide in the atmosphere can be converted to concentration by dividing by
RT ):

(6.105)

Here, I have included the surface area (contact area between atmosphere and oceans)
in the transport coefficient k1. All of this can be added to the structure of laws of bal-
ance in Fig. 6.47 to yield a model diagram as in Fig. 6.48 (left).

The total amount of substance in the atmosphere and the relevant volume of the ocean
can be found as follows. The mass of the atmosphere can be calculated from the pres-
sure it exerts upon the surface of the planet; pressure multiplied by surface area yields
the weight of the atmosphere which is converted to mass which is converted to amount
of substance (assuming an average molar mass of 0.029 kg/mole). The result is rough-
ly 1.8 · 1020 mole. Determining the volume of water relevant for this strongly limited
model is a little more uncertain. It makes sense to use only the upper parts of the
oceans that are mixing quickly (mixing layer). This mixing layer is assumed to be a
spatially uniform repository for CO2. It has variable thickness, typically between 50
m and 200 m. I will take a layer of 150 m covering 70% of the surface of the planet.
The resulting volume is 54 · 1015 m3. 

All we still need are initial values for CO2 in the two reservoirs. I chose 290 ppmv for
the atmospheric level in 1750, slightly up from the value reported from ice core data
(277 ppmv). The elevated value makes the simulation (Fig. 6.48, left) coincide with
actual values somewhere between 1850 and 1900 when generation of CO2 by fossil
fuel burning started to make a difference (Fig. 6.46, left). This means that the rise in
atmospheric carbon dioxide before 1850 seen in the ice core data cannot stem from
our consumption of fuels.

The second initial value is for the amount of carbon dioxide dissolved in the upper 150
m of the oceans. I chose a value of close to 0.010 mole/m3 which stems from applying
Equ.(6.104) to the steady-state (see Example 6.23). In other words, I assume that in
preindustrial times, CO2 in the atmosphere and in the water was in equilibrium.
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Figure 6.48:  Diagram of system 
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ocean (left). The simulation 
shows atmospheric concentra-
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The result of a simulation of this model is found in the graph of Fig. 6.48 (right, solid
line). Actually, there are two solid lines coinciding in the graph: Simulated CO2 in the
atmosphere, and the values obtained by adding all the CO2 produced from fossil fuel
burning to the original 290 ppmv. This simply means that in our model, virtually all
the carbon dioxide produced by human activity ends up in the atmosphere, making the
calculated levels noticeably higher than the actual ones (dots in the graph of Fig. 6.48).

6.9.2 The Chemistry of Sea Water

Why doesn’t the ocean in our model absorb (much of) the carbon dioxide released into
the atmosphere? Actually, it takes up as much as the assumptions allow. The concen-
tration rises from 0.010 mole/m3 to 0.015 mole/m3 which corresponds to the fractional
increase of the simulated concentration in the atmosphere. The result simply confirms
Henry’s law (Example 6.19).

In reality, water takes up a lot more carbon dioxide than our model can explain. Re-
ported solubilities of CO2 in sea water are about 2 mole/m3, roughly two hundred
times higher than what we calculate from Equ.(6.104) and data in Table 6.4. How can
this be explained?

The reason is conceptually simple but intricate in detail. It has to do with CO2 reacting
in water in a way that removes much of the dissolved gas, allowing more carbon di-
oxide from the atmosphere to enter the ocean.15 Carbon dioxide always reacts with
water to form carbonic acid (H2CO3) which forms bicarbonate ions (HCO3

–) which
form carbonate ions (CO3

2–):

(6.106)

Sea water adds components such as biological activity and alcalinity to this picture
that make details even more complex. 

We should try to understand the formation of carbonates in fresh water to get a feeling
for the most important aspects of the chemistry of CO2 in water. One of the questions
we can answer directly concerns equilibrium concentrations of the species involved in
the chain of reactions in Equ.(6.106). According to Section 6.8.6, we can define the
equilibrium constants of the three reactions in terms of the concentrations of the six
substances H2O, CO2, H2CO3, HCO3

–, CO3
2–, and H+:

(6.107)

Standard concentrations drop out of these relations if we choose them to be 1 mole/L.

On the other hand, the equilibrium constants can be calculated with the help of
Equ.(6.102) using the standard chemical potentials which are listed in Table 6.10.
These provide three more conditions for the nine unknowns (three constants and six

15. For a discussion of the interaction of atmosphere and ocean, see Feely R. A., Sabine C. L.,
Takahashi T., and Wanninkhof R. (2001). David Bice (2001) published extensive re-
sources, including simple dynamical models, online (www.earthscape.org). 
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concentrations). We need three more relations or conditions. We can specify the con-
centration of CO2 by assuming it to be in equilibrium with the gas in the atmosphere;
the value is about 1 · 10–5 mole/L. Furthermore, the concentrations add up to a fixed
value which we can take to be the molar concentration of pure water (about 55.5 mole/
L):

(6.108)

This leaves one condition. Obviously, the concentration of protons (H+) in water plays
an important role in the reactions involving carbon dioxide and its derivatives. The
concentration of protons is usually given in terms of the pH value of the solution:16

(6.109)

All unknown concentrations can be calculated by specifying the proton concentration
or the pH. It is customary to report the concentrations of CO2, H2CO3, HCO3

–, and
CO3

2– relative to the total concentration of the species containing carbon. Results of
these calculations are shown as functions of the pH of the solution in Fig. 6.49. Re-
member that these results hold for water without additional solutes (apart from what
is needed to change the concentration of protons).

For a pH value similar to the one of sea water (slightly more than 8), the numbers
shown in Fig. 6.49 indicate that only one in 2500 molecules containing carbon is car-
bon dioxide. Almost all of the carbon is in bicarbonate ions. Since important other fac-
tors influence the equilibria in sea water, the curves shift and change somewhat. The
changes are significant for small fractions, so the detailed chemistry of sea water is
crucial when it comes to determining more reliable values of CO2 versus the other in-
organic carbon compounds. Results reported by Feely et al.17 give a ratio of 1 : 200
for CO2 : HCO3

–, and about 6 : 1 for HCO3
– : CO3

2– for the mixed upper ocean layer
in equilibrium with the atmosphere containing pre-industrial concentrations of CO2
(some 280 ppmv). As the atmospheric concentration of carbon dioxide increases, the
relative amount of dissolved CO2 (relative to total Dissolved Inorganic Carbon, DIC)
should increase, and the pH of the oceans should decrease to slightly below 8 (this is
considered a significant change of acidity, important for corals and other marine life).

Let me incorporate the results of this section in a second dynamical model in a strong-
ly simplified manner (Fig. 6.50). Clearly, CO2 that is dissolved in water reacts, i.e., it
is destroyed and other dissolved inorganic carbon compounds are produced. A simple
idea is to take CO2 as a species A and lump all other DIC compounds as a single spe-
cies B. A reacts with water to produce B:

(6.110)

16. In pure water, there is a small amount of protons (H+) and OH–, the other component of
the dissociation of water (H2O ↔ H+ + OH–). In equilibrium, which is determined by the
standard values of the chemical potentials of the three species, the concentration of protons
is 10–7 mole/L which corresponds to a pH of 7.

17. Feely R. A., Sabine C. L., Takahashi T., and Wanninkhof R. (2001).

Table 6.10: Water chemistry

Formula
Chemical 
potential/ 
kJ/molea

a. At standard conditions: 
298.15 K, 101,325 Pa, 
pure or 1 mole/l.

H2O (l) – 237.18

CO2 (aq) – 385.99

H2CO3 (aq) – 608.25

HCO3
– (aq) – 586.85

CO3
2– (aq) – 527.90

H+ (aq) 0

OH– (aq) – 157.29

c c c c c c caq aq aq aq aq waterH2O CO2 H2CO3 HCO3 CO3 H+– 2–+ + + + + =( ) ( ) ( ) ( ) ( )

pH H+= − ( )( )log10 0c caq

CO H O DIC22 aq( ) + ↔
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In equilibrium, there is a certain small fraction of CO2 relative to DIC left in the water.
We can interpret the deviation from equilibrium as the driving force for the reaction
in Equ.(6.110) as we did before:

(6.111)

K  should take values of the order of 1/200. Adding this reaction to the model discussed
in Fig. 6.48 is simple (see Fig. 6.50, left).

There are two more parameters of the model that need to be fixed before we can at-
tempt a simulation. These are the transport coefficient k1 in Equ.(6.105), and the reac-
tion coefficient k2 in Equ.(6.111). If we give these factors large values, simulation
results (such as the atmospheric carbon dioxide concentration) do not change further,
even if the parameters are made larger. What this means is simple: with very large val-
ues of process coefficients, the model calculates an evolution that goes through almost
perfect equilibrium states. Put differently, a jump in a concentration decays very fast
and chemical equilibrium is attained again almost perfectly at every point in time.

When we assume such large values of the transport and reaction coefficients, we ob-
tain the results shown in the graph on the right of Fig. 6.50. The one still uncertain but

  
Π CO2 CO2 DIC CO2aq aq aqk c c c( ) ( ) ( )= −( )2 K

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

R
el

at
iv

e 
ab

un
da

nc
e 

of
ca

rb
on

 c
om

po
un

ds

pH

CO2

H2CO3

HCO3
–

CO3
2– Figure 6.49:  Diagram of relative 

concentrations of CO2, carbonic 
acid, bicarbonate and carbonate 
ions as functions of pH. Sea wa-
ter has a pH slightly higher than 
8. Even though the curves are 
somewhat different for the condi-
tions in sea water, we can still tell 
that most of the carbon is in bi-
carbonate ions (solid line).

n CO2 atm

Pi CO2

n atm total

n CO2 Ocean

In CO2 ex

c CO2 aq V ocean

k1

mu CO2 g

mu CO2 aq

P CO2

delta mu

RT

n Carbon
Pi CO2 R

c Carbon

K C

k2

Pi C

[[[[[[[
[[[

[[[
[[[

[[
[[[[[

[[
[[
[
[
[
[
[
[
[
[
[

[

250

300

350

400

1850 1900 1950 2000

A
tm

os
ph

er
ic

 C
O

2 
/ p

pm
v

Time / a

(1)
(2)

(3)

Figure 6.50:  Diagram of system 
dynamics model of CO2 ex-
change between atmosphere and 
ocean, and reactions of CO2 in 
water (left). The simulation 
shows atmospheric concentra-
tions of CO2 (dots: data; solid 
lines: simulations). K_C: 0.04 
and 0.006 (a fit of data is 
achieved with 0.015). The results 
are for high values of transport 
and reaction constants leading to 
almost instantaneous equilibria.



CHAPTER 6.  TRANSFORMATION AND TRANSPORT OF SUBSTANCES

326 THE DYNAMICS OF HEAT

important parameter is the equilibrium constant K  for the reaction in Equ.(6.111). A
value of K  = 0.04 predicts atmospheric CO2 concentrations (solid line (2)) that are
higher than the observed concentrations (dots). In fact, the numbers are only slightly
below what we get if all the CO2 emitted by fossil fuel consumption stays in the air
(solid line (1)). If we use a value of K  = 0.006 (close to what we need if we want dis-
solved carbon dioxide to be only 1/200 of DIC), we get solid line (3) which is consid-
erably lower than observed values.

How could we find more realistic values of transport and reaction coefficients? A
large reaction coefficient k2 probably makes sense. Once carbon dioxide is dissolved
in water, formation of carbonic acid, bicarbonate and carbonate ions proceeds very
quickly. However, the case of the transfer coefficient k1 is different. One might expect
the mixing of CO2 in the air and the oceans to take some time. Imagine a sudden jump
in atmospheric carbon dioxide. A time constant of one year for the subsequent adjust-
ment does not seem to be unreasonable. A different piece of information that allows
us to estimate the transfer coefficient is the observation that the average difference of
partial pressures of CO2 in the air and in the world’s oceans is a little less than 1 Pa.18

Interestingly, a value of k1 that yields such a pressure difference in our model of
Fig. 6.50 makes the time constant for the exchange of CO2 roughly one year. Fixing
k1 in this manner and using K = 0.005 leads to carbon dioxide concentrations a little
higher than the solid line (3) in the graph of Fig. 6.50 (right).

In summary, aspects of the behavior of carbon dioxide in the atmosphere and oceans
can be understood if we create simple dynamical models of chemical processes in
analogy to what we have learned in fluids, electricity, and heat. The concepts of quan-
tity and driving force apply to chemical phenomena just as they do to thermal, electri-
cal or fluid processes.

EXAMPLE 6.23. The effect of temperature on the solubility of CO2.

(a) Calculate the standard value of the concentration of carbon dioxide in water. (The concen-
tration of CO2 in air is about 350 ppmv.) (b) Determine the effect of changes of temperature
upon the solubility. Take the case of arctic waters with a temperature close to 0°C.

SOLUTION: (a) We can directly apply Equ.(6.104) to the first problem. The concentration of
CO2 is proportional to its partial pressure, which means that PCO2/P0 = 3.5 · 10–4. Therefore, 

(b) The effect of temperature can be taken into account via the chemical potentials. Since the
major contribution comes from the molar entropy, we can write

Solving this condition for the concentration of the dissolved gas yields

18. Feely R. A., Sabine C. L., Takahashi T., and Wanninkhof R. (2001).
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which corresponds to an increase by a factor of almost 3 in solubility for a decrease in temper-
ature of 25°C. So there is a huge difference in the ability to take up CO2 in oceans near the equa-
tor compared to arctic waters.

EXERCISES AND PROBLEMS

1. (a) Calculate the masses of 1 mole of neon gas, oxygen gas, table salt, glucose. (b) If 10 g
of table salt are dissolved in water, how many particles do we get in the solution? (c) The
molar mass of water is 0.018 kg/mole. What is the molar volume of water? (d) Sea water
has a concentration of salt of about 35 parts per thousand. How many moles of salt is this
per liter of water?

2. Sugar is added to a bioreactor at a rate of 2 mole/min. It accumulates at a rate of 0.70 moles/
minute. What is the rate of production or consumption of sugar?

3. 5.0 g of glucose are dissolved in 2.0 liters of water. What is the concentration (molar con-
centration) of the solution?

4. What is the chemical potential difference of the reaction of carbon and oxygen forming
carbon dioxide?

5. (a) By how much does the chemical potential of air change if its pressure is raised by a fac-
tor of 10? (b) By how much does the chemical potential of dissolved salt change if it is
diluted by a factor of 10?

6. Calculate the chemical potential of H2O in its gaseous, liquid, and solid forms each at tem-
peratures of 200 K, 300 K, and 400 K. From the results deduce which of the forms should
be stable at the three temperatures listed.

7. Fast melting of snow (spring runoff) is thought not to be so much a result of warm rain but
rather of fog flowing over snow covered slopes. Why should fog be much more effective
in melting snow than warm rain? Show that the relation between the mass of snow (mod-
eled as ice) melting and the mass of water vapor condensing out of fog is given by

while the ratio of snow melting from condensation of fog and from cooling of rain from
temperature T to Tsnow is roughly 600/(T – Tsnow).19

8. Consider the conversion of α-glucose into β-glucose (see Fig. 6.3). (a) Determine the equi-
librium constant. (b) What is the difference of the chemical potentials at standard condi-
tions?

19. See Bohren (1995), p. 79–81.
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9. Methane and oxygen gas burn to form carbon dioxide and water. Assume for the following
balances that initial substances and products are all at their standard states. Values of chem-
ical potentials and molar entropies are found in tables. (a) What is the chemical reaction
formula? (b) Determine the entropy produced per mole of methane. (c) Determine the
change of entropy in going from the initial substances to the products (per mole of meth-
ane). (d) How much entropy is emitted to or absorbed from the environment (per mole of
methane)? (e) How much energy is transferred together with the entropy exchanged? (f)
How much energy is this per kilogram of methane? Compare this result to the higher heat-
ing value in Table 6.5.

10. Calculate the energy released if one nucleus of 90Sr spontaneously decays into 90Y.

11. The voltage measured for an electrochemical cell (a fuel cell) converting hydrogen and
oxygen into water has a maximum value of 1.23 V at standard conditions. Determine the
chemical potential of water.

12. By how much does the pressure of water change if we dissolve 0.010 mole of table salt in
1.0 liter of water?

13. Partial pressure of a dissolved gas. It is customary to introduce the “partial pressure” of a
dissolved gas as another measure of its concentration. The partial pressure of the dissolved
gas is defined as its partial pressure in an atmosphere in equilibrium with the liquid. What
is the partial pressure PCO2 of carbon dioxide in water having a concentration of 0.020
mole/m3?

14. At standard conditions, water vapor is present in air at a partial pressure of 30 mbar. How
much hydrogen gas will be present relative to the amount of water?

15. In biology, the equilibrium ratio of a substance in two different environments is called the
partition coefficient. Determine the partition coefficient for toluene in water and air.

16. Show that Equ.(6.64) can be written in the form

where the index f refers to the solvent (fluid).

17. Two grams of CO2 are dissolved in a liter of bottled water. Assuming that there only is car-
bon dioxide in the space above the water, how large is the pressure of the gas?

18. Calculate the equilibrium values of CO2 in pure water for an atmosphere containing 280
ppmv and 380 ppmv carbon dioxide.

19. In pure water, some H2O dissociates into H+ and OH–. Use the values of standard chemical
potentials to calculate the concentration of H+ in pure water in equilibrium (Table 6.10).
What is the pH value of such water? (The pH value is defined as the negative decadic log-
arithm of the proton concentration.)

20. The partial specific volume (volume per mass) of nitrogen dissolved in sea water is 1.43
cm3/g; it is 0.97 cm3/g for oxygen. (a) Determine the pressure coefficients of the chemical
potential for the gases. (b) With the density of sea water varying between 1.025 and 1.035
g/cm3 (depending on its salinity), show that the solubility of nitrogen should decrease with
increasing depth; the solubility of oxygen, on the other hand, might show an increase or a
decrease with depth, depending on the density of sea water. (c) Calculate the expected per-
cent change of solubility for the two gases when the depth changes by 1000 m. [Hint: You
will have to consider both chemical and gravitational processes affecting the dissolved
gas.]

21. Roughly 30 g of salt (NaCl) is dissolved in 1 liter of sea water. (a) Calculate the osmotic
pressure of the salt with respect to the pure solvent (water) at a temperature of 300 K. (b)
How high would the solution rise in an ideal cell with a semipermeable membrane sepa-
rating it from the solvent?

22. Imagine a power plant at the mouth of a river flowing into the ocean, which uses the
osmotic pressure difference between sea water and fresh water. If the river is carrying 1000

µ ρ µ ρ υ ρ ρf n f n f n nT T M RT, ,( ) = ( )− −( )0 0 0
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m3/s of fresh water, how large could the power of an ideal plant be?

23. What is the change of entropy when dissolving 1 mole of table salt? How much entropy is
produced in dissolving 1 mole of table salt? Is the process exothermic or endothermic?

24. At what temperature does sea water with a concentration of 35 parts per thousand freeze?

25. Is table salt more soluble at 45°C than at 25°C?

26. Solubility of O2 in water is about 3.25 cm3/100cm3 at 25°C. (a) Determine the difference
of the chemical potentials of O2 as a gas and in aqueous solution. (b) At 0°C, the solubility
is about 5 cm3/100cm3. Determine the temperature coefficient of the chemical potential of
aqueous oxygen.

27. Predict the effect of a change of the pressure of the mixture of nitrogen, hydrogen, and
ammonia from P0 to P on the equilibrium composition. The ammonia synthesis proceeds
according to

28. Determine the change of pressure accompanying a change of the melting point of ice. (a)
Calculate the temperature and the pressure coefficients of the chemical potential of water
and ice for 0°C, and then use Clapeyron’s equation. The temperature coefficients of
enthalpy of water and of ice are 4200 J/(K · kg) and 2100 J/(K · kg), respectively. (b) Use
the fact that the energy needed to melt ice is 334 kJ/kg. 

29. Mercury spilled in a room evaporates a little. A concentration of 0.1 mg/m3 Hg in air is
permissible during a work week. (a) At 25°C and 1.013 bar, Hg has a chemical potential of
31840 J/mole (see Table 6.11). The potential of liquid Hg is 0 J/mole. Does liquid Hg fur-
ther evaporate in a pure Hg atmosphere, or rather, does mercury vapor condense (at 25°C
and 1.013 bar)? Why? (b) Determine the equilibrium pressure (vapor pressure) of mercury
vapor at 25°C. Treat the vapor as an ideal gas. (c) What is the equilibrium concentration in
mg/m3? The molar mass of Hg is 200 g/mole. How long would we be allowed to work in
this room during a week? (d) How much higher or lower is the concentration of mercury
vapor at 35°C? 

30. Give reasons to show that the diffusion of a substance through matter is completely dissi-
pative. Assuming that this is correct, derive the entropy production rate for diffusion.

31. Assume that a muscle cell has concentrations of sodium ions (Na+) of 20 mM and 145 mM
on the inside and the outside, respectively; the solute is assumed to be the same inside and
outside. (a) In what direction would sodium migrate if it were not charged? (b) What is the
Nernst potential for this ion? (c) Are these ions in chemical equilibrium? In electrical equi-
librium? In electrochemical equilibrium? (d) For the cell described, the actual electric
potential difference across the cell membrane is – 90 mV during the so-called resting phase
(the potential is lower inside). What is the net electrochemical driving force for Na+?
Where is the electrochemical potential lower? (e) For the same cell, the actual electric
potential difference changes from – 90 mV to about + 20 mV during a so-called action
potential event. At the peak of this event, what direction would Na+ flow in?

32. Consider a system consisting of two cells filled with water having volumes of V1 and V2
(see Fig. P.32). There are two quantities n1 and n2 of a substance dissolved in the water. In
cell 1, the substance is destroyed at a rate Πn1; it is produced at a rate Πn2 in cell 2. The
cells are separated by a membrane that is permeable to the substance. Assume the flow to
be proportional to the difference of concentrations of the substance in the cells: 

The reaction in cell 1 is of the first order having a rate constant k1, whereas the reaction in
cell 2 is of order 0 (not dependent on concentration). The rate constant for the reaction in
cell 2 is k2. We are interested in the balance of the substance under consideration. (a) What
are the units of the parameters r, k1 and k2? (b) Formulate the differential equations for n1

0 2 3= − +NH H N3 2 2

Table 6.11: Mercury

µ / kG αααα / G/K

l 0 – 76

g 31.84 – 175

Membrane

Cell 1 Cell 2

Figure P.32

I r c cn ,12 1 2= −( )
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and n2. (c) Calculate the nontrivial equilibria of the systems, i.e., those for n1,n2 ≠ 0,
assuming that V1, V2, k1, k2, r are all greater than zero. Express the equilibria for n1 and n2
in a form that only contains system parameters.

33. Consider the radioactive decay of silver in Fig. 6.11. Include both isotopes in a model and
formulate the differential equations for their amounts. Try to fit data by varying the initial
quantities of the isotopes and the decay factors.

34. Nitrosyl bromide (NOBr) is a gas widely used in the chemical industry. Normally, it is pro-
duced by the reaction 

Assume the reaction to run entirely in the indicated direction. (a) Formulate the equation
for the rate of change of concentration of NOBr. (b) What is the rate of production of
Nitrosyl bromide at t = 0 if you assume that there are 0.1 mole/L NO and Br2 each, and that
the rate constant of the reaction i s 1.2 · 104 L2/(mole2 · s)? (This value of the rate constant
is reached at about 250°C). (c) Sketch as carefully as possible the time evolution of the con-
centrations of all three substances. For initial conditions, assume that we have 0.1 mole/L
NO and Br2 each and no NOBr. 

35. Consider a chemical reactor with a reaction A + 2B → C. The volume of the reactor is equal
to 5 liters. All reactants and products are assumed to be distributed homogeneously during
the reaction. Initially, there are 2 moles of A, 1 mole of B, and no C in the reactor. The reac-
tion rate is proportional to the concentration of A and to the square of the concentration of
B. Assume the reaction to run completely in the indicated direction. (a) Assume that sub-
stances are not exchanged with the environment. Sketch the amounts of all substances as
functions of time. Indicate important features of the behavior, including initial and final
amounts of substance. (b) Assume now that the reactor is operated in steady-state which
means that substances A and B have to be supplied and C has to be continually removed.
Formulate the differential equations for the amounts of substances of all three chemicals.
The right hand sides of the equations are supposed to contain only the concentrations, the
volume of the reactor, the rate constant and the (constant) flows InA, InB, and InC of A, B,
and C. (c) The reactions have to be kept in a steady-state (see Problem b) having the fol-
lowing properties: (1) InC is set to a value so that all of the produced C can be removed
instantaneously. Let InC = 1.0 mole/h. (2) The concentration of A is constant at 4.0 mole/
liter. What are the values of InA and InB that keep the system in this state? What will the
amounts of substance nA and nB be in steady-state? Assume a rate constant of k = 0.10 L2/
(mole2 · h).

2 22NO Br NOBr+ →
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In this chapter, we shall take a closer look at the transport of entropy. Simple aspects
will be introduced that go beyond what we already studied in Chapter 4 (Section 4.6).
This extends the treatment of thermal processes into the realm of phenomena which
are missing from the theory of the thermodynamics of ideal fluids (Chapter 5). Many
texts on thermodynamics and on heat transfer sharply distinguish between the two
subjects, which only emphasizes that a unified presentation of all thermal phenomena
is called for. While we will not achieve the stated goal in this chapter, the ground will
be prepared for a theory of continuum thermodynamics of which we will get a first
glimpse in Part III.

The first section of this chapter provides a qualitative description of the three types of
entropy transport: 

 

conduction

 

, 

 

convection

 

, and 

 

radiation

 

. It introduces the formulation
of the law of balance of entropy for a uniform body. Then, simple applications of all

problems. Flow systems, i.e., open systems where fluids transport dissolved substanc-
es, entropy and momentum will be introduced in Chapter 8. There we extend the no-
tion of chemical potential to fluids in flow systems.

Entropy production in heat transfer will be considered as we go along, preparing the
ground for the concept of minimization of irreversibility in thermal design which will
be applied in Chapter 9. 
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In this section, I will describe qualitatively the basic phenomena underlying the trans-
port of heat. Simple observations tell us that entropy can flow in three different ways:

 

conduction

 

, 

 

convection

 

, and 

 

radiation

 

. Consideration of these types of transport will
lead to the formulation of the law of balance of entropy in a more general form than
previously encountered, and will yield a better understanding of the role of hotness in
thermal processes. In the end, the equation of balance of entropy will contain terms
describing the different modes of transport. 

These types of transfer processes are found not only in thermal physics, but in other
fields of the natural sciences as well. Momentum transports have been classified in the
same manner in Chapter 3. For this reason alone, it is important to have a clear under-
standing of the nature of entropy transfer.
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7.1.1 Conductive Transport of Entropy

 

Heat one end of a metal rod over a flame; in a very short time the other end will feel
hot as well. If you throw a hot stone in cold water, it will cool down while the water
gets warmer. In a heat exchanger, a hot fluid flows through pipes, heating a cooler flu-
id which flows around the pipes. In all of these examples, entropy is removed from
some bodies and added to others. Why else should some objects become colder while
others heat up? The possibility of changing the temperature by compression, i.e., adi-
abatic processes, does not occur in these examples. Therefore we say that entropy has
been transferred. Obviously, entropy flows from hotter to colder bodies. 

How is entropy transported in these examples, and what are possible conditions for
this process to occur? First, we observe that material transport cannot be involved. A
piece of metal heated at one end retains its integrity. A hot stone does not dissolve in
water, thereby spreading the entropy it contains. In the case of the heat exchanger, it
is true that the fluids move; however, entropy must be transferred through the walls of
the pipes. Heat therefore flows 

 

through

 

 bodies 

 

without the help of a body transporting
it

 

, and it flows from one body to another if the two are brought in 

 

direct contact

 

. These
are examples of heat conduction (

 

conduction

 

 or 

 

diffusion of entropy

 

). 

An example that we studied in Chapter 4 tells us something about the role of temper-
ature in the conductive transport of entropy. Two bodies having different temperatures
are brought in thermal contact, and their hotnesses are monitored. It is found that the
temperatures of the bodies change until they have become equal. As long as they are
changing, entropy must be flowing: one of the bodies is cooled, the other is heated. In
the end, however, the exchange stops. We conclude that entropy flows conductively
as long as there is a difference of temperatures between the bodies exchanging heat,
and that by itself, entropy flows only from hotter to colder objects. 

 

Driving forces.

 

 This type of behavior is well known from a number of different phys-
ical phenomena. Connect two containers having different cross sections that are filled
with water up to different levels; let the water flow between them. As a different ex-
ample, connect two electrically charged spheres with a wire and monitor the electrical
potential of each of the spheres. We know what will happen in both cases: the water
levels in the containers will reach the same height, and the electric potentials of the
two spheres will be the same after the process ends (Chapter 1). In each case, some-
thing flows as long as there is a difference of potentials, i.e., a 

 

driving force

 

. In analogy
to these well-known phenomena, we shall interpret the conductive transport of entro-
py as follows:

 

In conductive transport, entropy flows by itself through bodies from
points of higher to points of lower temperature. In other words, entropy
flows as long as there is a difference of temperatures, i.e., a thermal
driving force. 

 

The balance of entropy.

 

 Conductive transport of heat is a prime example of an irre-
versible process (Section 4.6.3). A body conducting entropy produces more entropy at
the same time. This must be so because in a steady-state process, the same amount of
energy which enters the body at high temperature leaves it at a lower thermal level.
Therefore, the current of entropy leaving the body must be larger than the one enter-
ing. Clearly then, the equation of balance of entropy must include the production term
for entropy in addition to the term describing conductive transfer of heat into and out
of the body:
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(7.1)

 

Here, 

 

I

 

S,cond

 

 is the net current of entropy transported conductively with respect to the
body in question. We call it the 

 

conductive flux of entropy

 

. 

 

Flow across surfaces.

 

 The conductive current is our way of describing a phenomenon
in which we picture entropy to flow 

 

across the surfaces of bodies

 

. If we are interested
in the flow through a body we simply introduce imaginary surfaces inside. Again en-
tropy flows across a surface where one part of a body touches another (Fig. 7.1). In
this sense, conduction is a surface phenomenon, and it is rendered formal by a physical
quantity, namely a flux 

 

I

 

S

 

 whose distribution over a surface is of prime interest (Chap-
ters 11 and 13). We stress this point since a body can pick up or lose entropy in other
ways (i.e., by radiation and sources of heat).

 

7.1.2 Transport of Entropy with Fluids: Convection

 

Northern Europe would be a pretty cold place to live were it not for the Gulf Stream,
which transports huge amounts of heat from the Gulf of Mexico to the west coast of
Europe. Our weather would be pretty dull were it not for the currents of hot or cold air
in our atmosphere. These are just two important examples of a different mode of heat
transfer. It is quite clear that in these cases entropy is transferred with the help of a ma-
terial medium, like air or water. You can find examples all around you. Heated air rises
from a radiator in a room; hot water which is pumped through the pipes of a central
heating system delivers entropy to the radiators; water begins to boil at roughly 100°C,
transporting entropy via a material current of steam. If entropy is carried by a material
which is flowing we speak of 

 

convective entropy transport

 

.

These examples demonstrate that convection is a very important phenomenon in our
daily lives. We shall deal with some simple aspects of convection in Section 7.3.
(More details will be provided in Chapters 8 and 14.) We are interested in a particular
question at this point, the problem of the 

 

driving

 

 

 

force

 

 of this type of heat transport.

 

The driving force

 

. A difference of temperatures drives the conduction of entropy. You
can easily see that this cannot be the driving force in the case of convection. The rea-
son why hot water flows through pipes to your shower definitely cannot be found in a
difference of temperatures: a pump drives the flow of water. The fact that the water is
hot is immaterial to this transport phenomenon. We have to conclude that the cause of
convective heat flow has to be sought in the driving force which lets the material sub-
stance (water, air, etc.) move: we know that this is a 

 

pressure difference

 

 set up by a
pump or through some other device or process:

 

Entropy can be transported via a flowing substance. In this case, the
flow of entropy is accidental. The driving force of the process is the dif-
ference of pressure which lets the material substance flow.

 

There are some important examples of convection which might make us believe that
a temperature difference must be the driving force of the process. Think of air rising
above a hot radiator in a room. Also, the water circulating in a central heating system
does so apparently because it is heated at one end (in the boiler). Indeed, the water
does not flow if the heating is stopped.

Still, the immediate driving force for the flow of water (which is responsible for the

˙
,S IS cond S= + Π

Figure 7.1:  Conductive currents 
of entropy flow across surfaces. 
Such surfaces may be real surfac-
es of bodies or imaginary surfac-
es, such as those which we 
introduce to separate different 
parts of bodies. The flow lines in 
this figure do not reflect the fact 
that entropy is produced in con-
duction.

Surface of body

Imaginary
internal surface
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transport of entropy in the system) is not a difference of temperatures but a 

 

pressure
difference caused by the heating

 

. The hot water in the boiler is slightly less dense than
the surrounding liquid; therefore, it begins to rise as a consequence of buoyancy,
which is a consequence of a pressure difference. The heating is responsible for the
flow only in an indirect way. Another example is presented by our atmosphere: air can
easily flow into a region where the temperature is higher. We call this phenomenon

 

free 

 

or

 

 natural convection

 

 to distinguish it from convection induced by a pump, which
is called 

 

forced convection

 

.

 

The balance of entropy

 

. Since convection and conduction are obviously different
types of entropy transport, we should distinguish between them. For this reason, we
also introduce 

 

convective currents

 

 in the equation of continuity of entropy:

 

(7.2)

 

This equation tells us that the entropy content of a body can change as a consequence
of two types of flow and the production of entropy (Fig. 7.2). Again, we are confront-
ed with a surface phenomenon. Substance flows into and out of regions of space across
surfaces, real or imagined. Just as in the case of conduction, we introduce fluxes to de-
scribe mathematically what is going on.

There is an important point to note. The transport of substance leads to changes of this
quantity in regions of space influenced by the flow. Therefore, we have to be extreme-
ly careful to state what we are talking about, i.e., to identify the system (or element)
for which we are performing a balance of entropy. So far, we have always used an
identifiable material body as the physical system under consideration (Chapters 4 and
5). Such a body is assumed to retain its material integrity; i.e., it is not allowed to ex-
change matter with its surroundings. We shall continue to use the term 

 

body

 

 in this
sense—an aggregate of matter which can always be identified and separated from the
rest of the world. For a body such as a stone this identification is quite simple and
clear. It is still simple in the case of air enclosed by rigid walls. In situations where
matter flows, however, this becomes more difficult. Still, we may think of an identifi-
able amount of water moving with the flow of a river. This body of water is thought
to be separated from the rest of the water by an imaginary surface which moves and
deforms with the body (Fig. 7.3). If we have a body in mind, the balancing of quanti-
ties such as entropy always refers to this piece of matter. The time derivative of the
entropy function (or of other functions) in Equ.(7.1) is taken for 

 

the entropy of the
body

 

. For this reason it is sometimes called a 

 

material derivative

 

.

 

Control volumes

 

. It is often more convenient to do the accounting with respect to a
region of space rather than an identifiable body (Fig. 7.3). This is particularly true in
cases where matter flows. Imagine a region of space surrounded by an imaginary sur-
face. We often speak of a 

 

control volume

 

 and a 

 

control surface

 

 to distinguish it from
bodies. A control surface may easily be penetrated by flows of matter, which leads to
changes of the amount of substance in the control volume. This is the case if we con-
sider convective currents, as we have done above. The time derivative of the entropy
in Equ.(7.2) is not taken with respect to a body, but with respect to some control vol-
ume (which may be stationary or moving). The derivative, therefore, is of 

 

the entropy
of the control volume

 

. We will learn later how to distinguish mathematically between
this derivative and a material one. By the way, systems which may exchange matter
are called 

 

open

 

, while those which do not are called 

 

closed

 

. Bodies are closed systems
by definition.

˙
, ,S I IS cond S conv S= + + Π

Figure 7.2:  Entropy may flow 
across the boundary of a body ei-
ther by conduction or by convec-
tion. In the former case, matter 
does not cross the surface and en-
tropy flows through matter. In 
convection, a substance flows 
across the surface whereby entro-
py it contains is transported into 
or out of the system as well.

Conductive
heating

Conductive
cooling

Convective
transport
across system
boundary

System
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7.1.3 Transport of Entropy with Radiation

 

It is obvious in some cases that entropy is transported neither by conduction nor by
convection. Take the heat of the Sun, which travels to us through empty space, cover-
ing a distance of 150 million kilometers. It is clear that the Sun must radiate heat since
it produces vast amounts of entropy all the time without changing noticeably. The
transport cannot be via conduction. Also, there is no material substance which can act
as a carrier of entropy in a convective process. 

Heat which is emitted by warm bodies can even be photographed. You can see objects
on infrared films. They look unfamiliar, but the process clearly is similar to photogra-
phy with normal light. This suggests that there is a medium which transports heat in
these cases after all. This medium would be similar to light. Indeed, this is the accepted
picture: electromagnetic radiation (X-rays, ultraviolet, visible, infrared, or radio fre-
quency) carries heat. Hot bodies emit electromagnetic radiation which then transports
heat. 

One group of phenomena is so pervasive that it makes us think that some bodies must
radiate heat (entropy). (On closer inspection, however, you may realize that these phe-
nomena are not the kind of proof we are looking for.) You can sit behind a glass win-
dow and feel the heat of the Sun’s radiation. You can observe the same phenomenon
when you sit by a fire; while all the heated air might go up the chimney, you still get
hot sitting there. Meals can be kept hot by lamps, and again conduction or convection
are not responsible for the flow of heat. The problem with these cases is that the heat
felt by the bodies absorbing radiation may be produced inside them. Indeed, in the case
of solar radiation, almost all the entropy which appears in a body absorbing the Sun’s
rays is created in the body (see Chapter 16 on solar radiation).

 

Transport through the radiation field

 

. We call this type of transport the 

 

radiation of
heat

 

. It is interpreted as the flow of entropy (and other quantities) through a physical
system different from normal bodies, namely the 

 

electromagnetic field

 

. The transport
through the field takes place with radiation which can store and transport such quan-
tities as entropy, momentum, and energy, just like ordinary materials. W can write
down an equation of balance of entropy for the electromagnetic field in an otherwise
empty control volume (Fig. 7.4):

 

(7.3)

Control volume
Body

Now

Later

Figure 7.3:  A body and a control 
volume in a general situation in-
volving the flow of substance. A 
body moves and deforms with 
the flow. A control volume is any 
region of space, itself moving or 
stationary. In general, a control 
volume is penetrated by convec-
tive currents. In this example, the 
body and control volume occupy 
the same region of space initially.

Figure 7.4:  Imagine an empty 
region of space between the Sun 
and the Earth. Entropy is trans-
ported with radiation through 
this control volume. There is no 
difference between temperatures 
across the region.

Region of space
occupied
by the radiation
field

Entropy
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The flow of entropy through the field is a surface phenomenon with currents flowing
across imaginary surfaces drawn around regions of space. The amount of entropy in a
region of space occupied by a radiation field changes as a consequence of the transport
of entropy together with radiation into and out of the region (Fig. 7.4). The flow of
heat through empty space is not dissipative. As a simple example, consider two imag-
inary spheres drawn concentrically around the Sun, the first near its surface, the sec-
ond much further out. Later in this chapter and in Chapter 12 we will learn how to
compute the flux of entropy through surfaces cutting through the radiation field. We
will find that the same amount of entropy flows through both spheres in the same time
span. Therefore the rate of production of entropy for a region of space which contains
only the radiation field is zero.

It is interesting to ask whether we need a difference of temperatures for entropy to
flow radiatively through the electromagnetic field. In fact, this is not the case. We as-
sociate the same temperature with the radiation which has just left the Sun and with
the radiation that arrives at the Earth. In this sense, radiative transfer of entropy has
much in common with convective transport. The driving force for the transport, if one
is needed at all, is not the thermal driving force responsible for conduction. This is of
profound importance for the determination of the relationship between fluxes of en-
tropy and of energy (see Section 7.4). Put simply, there is a great difference between
entropy flowing by itself in conductive transport, and entropy being carried by some-
thing else, be it water or radiation.

7.1.4 Interaction of Bodies and Fields

Often, we are not interested in the transport of entropy through the radiation field but
rather in the interaction of fields and bodies. The example of the Sun emitting radia-
tion and of the radiation penetrating the Earth’s atmosphere can tell us much about this
interaction. The radiation which is not reflected back into space enters the atmosphere,
where part of it is absorbed along the way to the surface of the Earth. We know from
experience that only part of the radiation is absorbed; the rest reaches the surface. At
the same time, the air must emit entropy since it cannot continually absorb radiation
without getting hotter and hotter. Absorption and emission take place in every part of
the atmosphere. This means that the radiation field pervades the air; it does not stop
where the layer of air surrounding our planet begins. In other words, the radiation field
and the atmosphere occupy the same region of space at the same time (Fig. 7.5).

The balance of entropy for body and field. To motivate the law of balance of entropy
in the case of radiative transfer, we shall proceed in two steps. First, consider the com-
bined system of matter and field occupying some region of space (Fig. 7.5a). In the
case of solar radiation interacting with the Earth’s atmosphere, this system absorbs
some of the radiation flowing through the field. As far as the region of space is con-
cerned, we have only radiative fluxes of entropy with respect to its surface. (Neglect
for the moment that entropy may be conducted through air, and that air may flow
through the system.) The entropy of the system may change only due to such radiative
currents and the production of entropy in case of dissipation:

(7.4)

Indeed, as we shall learn in Section 7.4, the absorption and emission of entropy are
irreversible processes. For this reason, we may not neglect the production term. 

Figure 7.5:  The same region of 
space as in Fig. 7.4 is now filled 
with matter such as air. Field and 
body can occupy the same space 
at the same time. For this reason 
their interaction takes place at 
every point inside the system. If 
we consider the material body 
only, we have to introduce sourc-
es of entropy where the body ab-
sorbs radiation from the field, 
and sinks where it emits entropy 
to the field.

Body

(b)

Sources of entropy
in body

Entropy flowing
through field

Body and
    field

(a)
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However, we are often interested only in the balance of entropy with respect to the
body alone (Fig. 7.5b). In this case, we have to consider the interaction of matter with
the part of the field which occupies the same space. The interaction between the two,
if it takes place at all, takes the form of absorption of radiation from the field by the
body, or emission from the body to the field. Absorption and emission take place at
every point in space occupied by the two systems. The properties of the body and of
the field determine the amount of entropy which is absorbed or emitted.

Sources due to absorption and emission. Absorption and emission of radiation are
not surface phenomena, but rather volumetric processes. In the absorption of radiation
by the Earth’s atmosphere there is no flow of entropy through this material body. En-
tropy enters the material system via the field, which means that there are no currents
through matter associated with this type of transport. It simply appears at every point
depending upon the degree of interaction. If we write an equation of balance of entro-
py for the material body only, we have to represent the interaction using a source term
instead of currents:

(7.5)

Here, ΣS,body is the entropy supply or source strength of entropy which is the net time
rate at which entropy enters or leaves the body as a result of the interaction. The equa-
tion of balance of entropy of the field, on the other hand, must take the form

(7.6)

If we now combine the last two equations, we obtain:

(7.7)

Comparison of this expression with Equ.(7.4) tells us that entropy must have been pro-
duced as a result of emission (or absorption) of radiation by the field and absorption
(or emission) by the body. In other words, more entropy is absorbed by the body than
is emitted by the field. The relation between the two source rates and the rate of pro-
duction of entropy must be given by

(7.8)

with the entropy being produced as a result of the transfer between the field and the
body (Fig. 7.6). Note that we have to distinguish between sources of entropy due to
entropy production and transfer between fields and bodies. Both effects are volumet-
ric, in contrast to flows (conductive and convective).

The general law of balance of entropy. If we now include the source term with the
conductive and convective fluxes and the production of entropy in Equ.(7.2), we final-
ly obtain the most general case of the equation of balance of entropy for a body:

(7.9)

This equation includes all the processes we are going to discuss. It expresses the fact
that the entropy of a body may change as a result of three distinct types of transport:
conductive, convective, and radiative, and the effects of irreversibility.

˙
,Sbody S body= Σ

˙
, ,S Ifield S rad S field= + Σ

˙ ˙
, , ,S S Ibody field S rad S body S field+ = + +Σ Σ

Σ Σ ΠS body S field S, ,+ =

Field Body

Dissipative
component

Π S

Σ S,field Σ S,body

Figure 7.6:  If we model the re-
sult of the transfer of radiation 
from the field to the body as uni-
form heating of the body, we 
have the problem of deciding 
where to include the source of ir-
reversibility. The solution pre-
sented in the equations 
corresponds to introducing a dis-
sipative component between the 
field and the body.
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7.1.5 The Balance of Energy

One of the most important practical problems in the theory of heat transport is the de-
termination of the fluxes and source terms of entropy in the equation of balance (see
Equ.(7.9).) We have to find the constitutive laws which let us calculate these quantities
in concrete situations. At this point, the energy principle will come to our aid. All three
types of entropy transport are accompanied by the flow of energy. For this reason we
should consider the law of balance of energy alongside that of entropy. Since energy
is a conserved quantity, the amount stored in a body can change only by way of trans-
fer to or from another system. The type of transfer of energy depends on the type of
entropy flow. In the cases of conduction and convection, energy flows with entropy
across system boundaries. This means that in these cases it is accounted for in terms
of conductive or convective currents. If entropy is transferred radiatively, however,
the interaction of bodies and fields leads to sinks or sources of energy in the body (or
in the field). As a result of entropy transfer, energy either flows across system bound-
aries, or it pours into bodies via a radiation field. Therefore we distinguish between
two types of currents and a source term of energy for material systems:

(7.10)

For the radiation field alone, the equation of balance of energy must take the form

(7.11)

The last term on the right-hand side of Equ.(7.10) is the source rate or the supply of
energy. Actually, in Equ.(7.10), we have neglected the transport of energy due to other
processes such as mechanical ones. In the case of convective currents we cannot al-
ways do this. However, for the purpose of this chapter we shall regard such contribu-
tions as negligible compared to the other terms.

As we shall see, the relationship between entropy and energy in thermal transport phe-
nomena will help us greatly in resolving the constitutive problem. To be specific, we
are interested in a number of relationships, namely those between:

R Fluxes of entropy and energy in conduction. 

R Fluxes of entropy and energy in convection.

R Fluxes of entropy and energy through the radiation field.

R Sources of entropy and energy.

R Energy and the production of entropy.

The following sections will in turn deal with different modes of transport. The one
type of relationship between entropy and energy in thermal processes that we have
considered so far (remember Equ.(4.21) in Chapter 4) is not of a general nature for
transport. Rather, convection and radiation must lead to different expressions relating
fluxes of entropy and energy.

In the following sections we shall introduce some simple aspects of all three modes of
heat transfer to gain some idea of the breadth of applications. We will encounter a sim-
ple version of heat conduction, a discussion of the radiation of heat from surfaces, and
an introduction to heat transfer from solid bodies to fluids (or vice versa). In later
chapters, conduction, convection, and radiation will be presented in more depth.

˙
, , ,E I Ibody E cond E conv E body= + + Σ

˙
, ,E Ifield E rad E field= + Σ
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1. What is the driving force for a conductive transport of entropy? What is it for a convective
flow of entropy?

2. When (hot) water flows out of a tank, there is a convective entropy current leaving the sys-
tem. Does this mean that the water in the tank gets colder?

3. In the case of flows and sources of entropy, entropy is transported from one system to an-
other. So, what is the (geometric or spatial) difference between a current of entropy and an
entropy source rate?

4. Both source rates of entropy and entropy production rates are volumetric quantities. What
is their difference?

5. If a body of air in the atmosphere absorbs some solar radiation, are the energy source rates
of the radiation field and of the air equal? Are the entropy source rates equal?

EXAMPLE 7.1. Conductive and convective fluxes of entropy.

Consider hot water flowing through a metal pipe as in the figure below. (a) Consider the interior
of a part of the pipe as the system, and assume this control volume not to move or deform. Ac-
count for all fluxes of entropy penetrating the surface of this control volume. (b) Consider the
water in the control volume at a particular instant to be the system. Follow this body of water in
its motion and repeat the problem (a).

SOLUTION: a) We are dealing with a stationary control volume (CV) through which water and
entropy are flowing. (See the upper part of Fig. Ex.1; water is flowing from left to right.) We
have to find the currents flowing through the control surface and determine the fluxes associated
with them.

First of all, entropy must be flowing radially outward through the pipe if the surroundings are
cooler than the water. This means that we have a conductive current of entropy penetrating the
cylindrical surface. Since the flow is outward, its flux will have a negative sign (symbolized by
an arrow in the negative x-direction).

Second, because of the loss of heat through the walls of the pipe, the water entering the control
volume will be warmer than the water leaving. We have a thermal driving force in the direction
parallel to the axis of the pipe. At the control surface, there must be conductive currents of en-
tropy through the water in its direction of flow. Therefore, we have a positive flux associated
with the conductive current at the entrance to the control volume (left), and a negative flux due
to the current leaving the system.

Finally, two convective fluxes are associated with the flow of water into and out of the control
volume. Entropy stored in the water is carried across the surface of the system. Again the flux

QUESTIONS
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is positive at the inlet, and negative at the outlet. The flux at the entrance is larger in magnitude
than the one at the outlet.

(b) If we follow a certain body of water in its motion, the system wall moves with it (lower part
of Fig. Ex.1). Water does not flow across the surface of the body, which is represented by the
shaded area. This means that there are no convective currents of entropy to be considered. The
conductive currents still exist, and they are the same as the ones identified in (a).

7.2 CURRENTS OF ENTROPY IN CONDUCTION

We have considered the generic expressions for laws of balance of entropy and energy
in the previous section. Now we shall turn our attention to the constitutive theories that
will allow us to quantify entropy transfers. Let me begin with conduction.

7.2.1 Fourier’s Law for Entropy

What factors does the current of entropy in conductive transport depend upon? If the
temperature of a body changes from place to place, there must be temperature gradi-
ents. This is one factor upon that we expect the rate of flow of heat, the entropy cur-
rent, to depend. The material through which the entropy flows must also play a role in
the determination of the current. The influence of the material will be described by its
conductivity. If the current of entropy depends upon the temperature gradient and the
conductivity in the simplest possible way, we say that it obeys Fourier’s law.

Fourier’s law for a slab of matter. We can motivate the form of Fourier’s law in a
simple manner. The idea is borrowed from electricity, where we also have encoun-
tered phenomena having to do with conduction, namely the conduction of charge
(Chapters 1). Consider the conduction of entropy through a slab of material as shown
in Fig. 7.7. Assume that entropy flows only in one direction, and that the distribution
of the current of entropy does not vary in a plane perpendicular to the flow. In other
words we will consider only the simplest possible case of a flow field. 

The basic question is this: how does the current density of entropy depend upon the
circumstances? From what we already know, the current of entropy through a body
should depend upon the temperature difference across the body (in the direction of the
flow of entropy) and a conductance that depends upon the geometry and the conduc-
tive properties of the body. The conductance is what we should be concerned with

Figure 7.7:  Entropy flows in one 
direction only through a slab of 
matter. We assume that the distri-
bution of the current does not 
vary in planes perpendicular to 
the x-direction. There is a differ-
ence of temperatures between 
front and back faces which 
serves as the driving force of the 
flow of entropy.
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here. Clearly, for given temperature difference, the current doubles if the cross section
A of the conducting body doubles: we simply have two equal conducting bodies in par-
allel. Secondly, we expect the current to halve if the thickness of the slab is doubled.
Therefore,

(7.12)

The negative sign tells us that entropy flows into the body at x (Fig. 7.7); remember
that the temperature difference is negative. The factor kS quantifies the conducting
property of the material; it is called the entropy conductivity of the substance.

This is Fourier’s law of conduction. Naturally, the entropy conductivity is expected
to depend upon the material the body is made up of, and on temperature (Fig. 7.8).
Some values of entropy conductivities are given in Table 7.1.

Table 7.1: Conductivity of some materials

Substance Conditions
Conductivity 

(entropy)
Conductivity 

(energy)

300 K kS / W · K–2m–1 kE / W · K–1m–1

Gases at atmospheric 
pressure

Air 200 K 9.05 · 10–5 0.0181

300 K 8.73 · 10–5 0.0262

400 K 8.41 · 10–5 0.0337

Helium 200 K 5.89 · 10–4 0.1177

CO2 250 K 5.16 · 10–5 0.0129

300 K 5.53 · 10–5 0.0166

H2O vapor 400 K 6.52 · 10–5 0.0261

500 K 6.76 · 10–5 0.0339

600 K 7.03 · 10–5 0.0422

Saturated liquids

Mercury 293 K 2.97 · 10–2 8.69

Water 273 K 2.02 · 10–3 0.552

293 K 2.04 · 10–3 0.597

313 K 2.01 · 10–3 0.628

333 K 1.96 · 10–3 0.651

353 K 1.89 · 10–3 0.668

373 K 1.82 · 10–3 0.680

Liquid metals

Sodium 366 K 0.232 84.96

I x k
A

x
TS S( ) = −

∆
∆

Figure 7.8:  Some entropy con-
ductivities kS as functions of tem-
perature. The values of the 
conductivities with respect to en-
ergy, i.e., those commonly listed 
in tables, are equal to kS multi-
plied by the temperature of the 
material (Fig. 7.9).
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The differential form of Fourier’s law. To prepare the ground for treating the contin-
uous case (Part III), let me transform the expression for a conductive current of entro-
py. Experience tells us that the conductive transport of heat violates our assumption of
spatial uniformity: temperatures must change from point to point inside the materials
conducting entropy. Therefore, Equ.(7.12) is not the best possible expression for a
conductive current of entropy. Also, if you remember the treatment of heat transfer in
Chapter 4, you will notice that Equ.(7.12) cannot hold for every point inside the slab

Solids at 20°C

Aluminum 0.80 240

Brick (building brick) 0.0024 0.7

Bronze (75% Cu, 25% Sn) 0.089 26

Clay 0.0043 1.3

Concrete (cinder) 0.0026 0.76

Copper 300 K 1.32 400

500 K 0.772 386

800 K 0.458 366

Fiber (insulating board) 1.6 · 10–4 0.048

Glass (window) 0.0027 0.8

Glass fiber 1.3 · 10–4 0.038

Granite 0.0058–0.014 1.7–4.0

Iron 300 K 0.27 80

500 K 0.12 61

Lead 300 K 0.12 35

Limestone 100–300°C 1.3

Paper 3.6 · 10–5 0.011

Pyrex 0.0046 1.4

Rubber (vulcanized, hard) 4.3 · 10–5 0.013

Sand 8.9 · 10–5 0.027

Sandstone 0.0061 1.83

Steel 1.0% C 0.15 43

20% Ni 0.065 19

Tissue Fat layer 0.00066 0.20

Muscle 0.0014 0.41

Tungsten 0.556 163

Wood Oak 0.00057 0.166

White pine 0.00038 0.112

Table 7.1: Conductivity of some materials

Substance Conditions
Conductivity 

(entropy)
Conductivity 

(energy)

300 K kS / W · K–2m–1 kE / W · K–1m–1
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through which heat is conducted. Conduction is dissipative, meaning that entropy is
produced as it flows through the body. In other words, the entropy current increases
in magnitude in the direction of flow and we have to specify where we want to apply
Equ.(7.12).

All these difficulties disappear in a continuum description of the phenomenon (Chap-
ters 11 and 13). At this point, all we should do is take a first look at Fourier’s law in
the continuous form. In a first step, we introduce a measure of the distribution of the
current over the surface through which it flows, namely the current density jS. In our
case, it is related to the magnitude of the flux IS as follows:

(7.13)

The meaning of the density of a current of entropy will be explained in more detail in
Chapters 11 and 13. The unit of the current density of entropy is W/(K · m2).

Equ.(7.12) indicates how we can proceed. The term ∆T/∆x in Fourier’s law is changed
to the temperature gradient dT/dx. The conductivity keeps its meaning, so we arrive at

(7.14)

It is clear that the current of entropy must vanish if the temperature gradient is zero.
In the simplest case, the current density will depend linearly upon the gradient. Also,
entropy is not conducted if we deal with a perfect insulator whose conductivity is zero.
For these reasons, Equ.(7.14) makes sense. It is perfectly analogous to what we have
seen in the case of the conduction of momentum or electric charge (Chapter 3). Note
that we have not yet solved the constitutive problem of the conductive transport of
heat. While we now have a relation for the current of entropy appearing in the equation
of balance, we still do not have an expression for the rate of generation of entropy. 

7.2.2 The flow of entropy and energy in conduction

A current of energy is always associated with a current of entropy in conductive trans-
port. According to Equ.(4.21), the former is equal to the latter multiplied by the tem-
perature of the material at the point where the two flow together. This relation carries
over to the continuous case:

(7.15)

Just as there is a current density of entropy, there also must be a current density of en-
ergy. Equ.(7.15) holds for every point in a body through which entropy flows conduc-
tively. The validity of the generalization of IE = TIS can be proved more rigorously
(Chapter 12). For now, let us accept it as intuitively clear. If we introduce the defini-
tion of the conductivity with respect to energy (thermal conductivity, Fig. 7.9),

(7.16)

Fourier’s law can be expressed in terms of the thermal energy current:

(7.17)

I A jS S=

j k
dT

dxS S= −

j T jE th S, =

Figure 7.9:  Some thermal con-
ductivities kE as functions of 
temperature. See Fig. 7.8 for the 
equivalent entropy conductances.
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Since we consider pure conduction of heat, only the thermal energy current appears in
a process. Therefore, the expression for the balance of energy will take a particularly
simple form. 

7.2.3 Entropy Production in Conduction

The conductance of a fluidlike quantity is a prime example of an entropy producing
process. Here are two ways to determine the entropy production rate in conduction of
entropy.
Dissipation. If entropy enters the hot end of a slab of material and exits at the cold end,
as shown in Fig. 7.7, entropy is produced inside. This is so because the entropy falls
from a high to a low level thereby releasing energy which is dissipated. From what we
have studied in Chapter 4 (Section 4.6.3) we know that 

or

(7.18)

The volume density of the production rate is introduced in the continuous case. It is
obtained by dividing the expression in Equ.(7.18) by the volume of the slab:

(7.19)

The term TπS is the density of the dissipation rate inside the material as a consequence
of conduction.

Simultaneous balances of entropy and energy. Here is a type of derivation which
will prove very useful in many applications. The first approach just outlined requires
us to have direct knowledge of the amount of energy dissipated, and the temperature
at which dissipation takes place. If we do not have this (or are unsure about the values),
there is an indirect method that uses the balance of energy to determine the missing
constitutive relation, i.e., the production rate of entropy.

Consider a resistive element similar to the slab of matter in Fig. 7.7. The laws of bal-
ance of entropy and of energy for this body take the forms

Since we assume that the resistive element does not store entropy or energy, rates of
change of entropy and energy must equal zero. Together with the relations between
current of entropy and energy,
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we arrive at

which is equivalent to what we have derived before. Here we did not assume knowl-
edge of the dissipation rate; the rate of dissipation is part of the combined laws regard-
ing entropy and energy in a specific situation.

7.2.4 Calculation of Conductances or Resistances

In Section 4.6.1, the conductance (or its inverse, the resistance) for overall heat trans-
fer through a series of transfer layers has been introduced. The definition carries over
to a single (conductive) layer. Hence,

(7.20)

The resistance of such a layer is therefore equal to

(7.21)

The entropy transfer coefficient hS (Equ.(4.45)) can be calculated from this, and all of
this can be converted to energy related quantities (Equ.(4.47)). According to Section
4.6.4, conductances or resistances can be calculated for composite layers. It is custom-
ary to do this for the energy flow resistances or conductances (by assuming them to be
independent of temperature). For a series of layers we get

(7.22)

and for parallel layers

(7.23)

Remember that these rules have to be taken with a grain of salt. Thermal properties
such as conductances typically vary with temperature (Table 7.1 and Fig. 7.8). If we
wish to do the calculations directly for the entropy conductances we have to take into
account entropy production which, for series connections, leads to Equ.(4.55). If tem-
perature differences are relatively small, and if property values are relatively uncer-
tain, we can use Equ.(7.22) directly for the total entropy resistance as well.

7.2.5 A Dynamical Model of Conduction in a Copper Bar

To demonstrate the utility of the assumptions behind Fourier’s law, let us work on a
dynamical model of conduction in a long copper bar. An example of experimental data
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was presented in Chapter 4 (Section 4.1, Fig. 4.5) where a copper bar was stuck in ice
water at one end and heated electrically at the other. First, before the electric heater
was turned on, temperatures went down, those close to the end in ice water reacted
first, then those farther away. With the heating on, temperatures went up, first those
close to the heater, then those further down the line.

Even though we do not have the tools yet to treat the continuous case found in nature,
we can still produce a useful model based on uniform bodies by dividing the copper
bar into several elements. We view each element as a store for entropy having its tem-
perature (which we associate with the center of the element; Fig. 7.10, top). The ma-
terial between two center points is taken as the conductive piece (or resistive element)
between two storage units.

Length and cross section of an element define the geometry needed to calculate entro-
py capacitances (Chapter 4) of elements and conductances of resistors (Equ.(7.20)).
The model can be simulated with proper initial and boundary conditions (see the graph
in Fig. 7.10).

6. How large is the entropy current through a 10 m by 10 m sandstone wall which is 0.5 m
thick if the temperature difference is 20°C?

7. Assume constant (temperature independent) entropy resistances of a couple of layers
placed in series. Why can’t we simply add them to get the total resistance?

8. Consider two conducting bars like the one in Fig. 7.10 made of two different materials.
They are geometrically equivalent and have equal conductivities and specific entropy ca-
pacitances. The second material has a higher density. How would the behavior of the sec-
ond material differ from that shown in Fig. 7.10?

9. Temperatures have been measured at 8 points along the copper bar in Fig. 7.10. Does this
mean the dynamical model should be made of 8 elements?

Figure 7.10:  A long conducting 
bar is divided into elements (top 
left). An element is a storage unit 
for entropy. The material be-
tween (the centers of) two ele-
ments is modeled as a resistive 
element. Bottom: Section of a di-
agram of a dynamical model for 
this system. Note the entropy 
stores and the nodes (used to ex-
press the balance of entropy for 
the resistors). Top right: Simula-
tion results for a particular case 
(compare to Fig. 4.5).
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EXAMPLE 7.2. Melting a block of ice insulated in glass fiber.

A cube of ice having a volume of 1.0 m3 is in a box insulated by 10 cm thick glass fiber. It is
left in an environment at 30°C. Estimate how long will it take for the cube to melt.

SOLUTION: Treat the layer of glass fiber as a flat blanket having a surface area of 6 m2 (this is
the surface area of the cube of ice). According to Table 7.1, the entropy conductance of glass
fiber is 1.3 · 10–4 W/(K2 · m). Therefore, the entropy current from the environment to the ice is

The 1.0 m3 of ice corresponds to 910 kg. The specific latent entropy of ice is lf = 22/0.018 J/
(K · kg) (Chapter 5, Table 5.1). Therefore, the latent entropy of the block is 1.1 · 106 J/K. The
time taken to supply this much entropy to the volume of ice is

This corresponds to close to 60 days. Naturally, the model assumes that the melt water stays at
a temperature of 0°C and transmits entropy easily (i.e., it is assumed the melt water does not
blanket the ice in addition to the sheets of glass fiber).

EXAMPLE 7.3. Heating of an integrated circuit.1

A silicon chip is attached to an isothermal surface called a header. The top of the chip is covered
uniformly by a power device which dissipates energy at a rate of 50 W. Thirty thin gold wires
connect the top with the header. Assume the entropy to be conducted down through the chip in
one direction only. What will the steady-state temperature be at the top of the chip, if the header
is kept at a temperature of 25°C?

The chip has a surface area of 0.51 cm by 0.51 cm. It is composed of three layers. The first is
made out of silicon with a thickness of 0.051 cm. The chip carries a thin layer of gold at the
bottom; its thickness is 0.010 cm. Between these two a thin layer of silicon dioxide forms, which
has a thickness of 0.00013 cm. The thermal conductivities with respect to energy are 88 W/
(K · m), 312 W/(K · m), and 0.157 W/(K · m), respectively. The gold wires are 0.130 cm long and
have a diameter of 0.0254 cm.

SOLUTION: The device represents a thermal circuit with elements in parallel and in series (see
figure). A constant thermal driving force is maintained over the circuit. We must figure out the
total thermal resistance offered by the circuit to the flow of entropy and energy. The chip has a
resistance of

This device is connected in parallel with thirty identical wires. Therefore, the total resistance is
calculated to be

1. P. Ridgely (1987).
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This corresponds to a resistance of 0.461 K/W. With the energy flux given, we can calculate the
thermal driving force, i.e., the difference of temperatures between the top and the bottom of the
chip:

The temperature at the top of the chip is 48°C. Without the gold wires it would be 53°C.

EXAMPLE 7.4. A model of two uniform bodies in thermal contact

The faces of two identical cylinders, one heated to a high temperature T1i and the other to a low
temperature T2i , are brought in direct thermal contact. (a) Calculate their temperatures as func-
tions of time by treating them as spatially uniform bodies. (b) Compare the result to a finite el-
ement computation of the temperatures of their centers. (c) Calculate the entropy produced.

SOLUTION: (a) The model can be constructed along the lines of the model presented in
Fig. 7.10. We have two bodies touching directly (see Fig. Ex.4.1). They are treated as spatially
uniform stores of entropy. We can imagine the entropy to travel on average from the center of
the warmer to the center of the colder body, so we use the matter between the two centers as the
conductive transfer layer.

The model can be constructed using the entropy or the energy balances for the bodies; remem-
ber that the conductor is treated as an element that does not store entropy. Let us use the balance
of energy:

C is the temperature coefficient of energy of a body, and CdT/dt is equal to dE/dt of a body. The
bodies are taken to be identical, with different initial temperatures. The energy current flowing
from the hotter to the cooler body is expressed by

A is the cross section of the bodies (the surface area where they are touching), kE is the thermal
conductivity, and ∆x is a distance which we take to be the distance of the centers of the two bod-
ies. We now divide the differential equations by the temperature coefficients of energy, and then
subtract the second from the first. This leads to a differential equation for the difference of tem-
peratures ∆T = T1 – T2:

whose solution turns out to be
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where ∆Ti is the initial temperature difference of the bodies (see Fig. Ex.4.1).

(b) A long bar has an initial temperature distribution with its left half at 400 K and its right half
at 200 K. The first of the diagrams (Fig. Ex.4.2, left) depicts the temperatures at evenly spaced
points throughout the bar as a function of time (result of an FE computation). The second graph
shows the average temperature of the two halves of the bar (circles) and the solution computed
according to the result in (a) with ∆x equal to half of the length of the bar. (Values are: kE = 1,
C = 5, ∆x = 5, A = 1.) A judicious choice of ∆x can make the solutions quite similar, and the
rough model can serve as an estimate of what is happening in the bar. 

(c) The irreversibility is measured in terms of the production of entropy. The rate of generation
of entropy is expressed by

If we introduce the solution into this formula, we obtain

Integration of this expression over time (from zero to infinity) leads to2

The last form is equivalent to the one obtained from thermostatic considerations alone, i.e., by
applying balances of entropy and energy to the total process of equilibration of two identical
bodies (Chapter 4).

2. The solution is obtained from
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EXAMPLE 7.5. The flow of heat through the mantle of the Earth.

The total flux of energy from the interior of the Earth through its surface can be estimated from
the values of the temperature gradient in the crust and the conductivity with respect to energy.
Their values are 0.06 K/m and 1 W/ (K · m), respectively. Assume that the entire flux is conduct-
ed from the core at a depth of 3400 km through the solid mantle (the radius of the Earth is 6400
km). Take as an average thermal conductivity the one found for the upper crust. According to
these assumptions, how large would the temperature of the core of the Earth be?

SOLUTION: First we have to calculate the energy flux at the surface of the Earth. According to
Equ.(7.17) it must be

R is the radius of the Earth. The energy flux out of the Earth is about 5000 times smaller than
the one we receive from the Sun. We have applied Fourier’s law, which was motivated for flat
geometry. This is certainly allowed in the case of purely radial flow. We need only replace the
normal temperature gradient by its radial counterpart. The following development, however,
changes because of the differences in geometry.

If we knew the thermal resistance RE of the Earth’s mantle we could easily calculate the tem-
perature difference necessary to conduct this current from the bottom of the mantle up to the
surface. Since the conducting body is not flat, the surface area through which conduction is tak-
ing place varies constantly. Therefore, let us write Fourier’s law in the form

with

This means that we have to calculate the thermal resistance by integration. For a spherical shell
with inner and outer radii ri and r0 , respectively, and with constant kE we get:

Note that the thermal resistance is of the form given in Equ.(7.20), with ∆x = r0 – ri and A =
4πrir0 . According to Equ.(4.46), the difference of temperatures between the core-mantle
boundary and the surface must be

This value is rather far off from the estimated temperature difference of some 3000 K. From
seismic measurements we know that the mantle is solid, which limits the temperature below the
melting point of rocks. A good number of reasons can be given to explain this huge discrepancy.
The value of the conductivity might be wrong. (However, it will not be all that far off.) The en-
tropy flowing out through the surface of the Earth might not come from the core; it might be
produced in the mantel and the crust by radioactive decay; this is indeed the case (see Chapter
13). The flow of entropy varies with time; in our case, however, this does not change the result
much because of the long time scale. Finally, the entropy might be transported not by conduc-
tion but by radiation and convection. This is true as well; it is mostly convection which trans-
ports entropy through the mantle, even though the mantle is solid! Over very long time scales,
the material of the mantle is deformable and it moves; this process apparently is responsible for
continental drift.

I R k
dT

drE th E, .= = ⋅4 3 1 102 13π  W

I
dT

dRE th
E

, =

dR

dr k A
E

E

=
1

R dR
dr

k A k

dr

r k r rE E

R

Er

r

E r

r

E i

E

i i

= = = = −
⎛

⎝
⎜

⎞

⎠
⎟∫ ∫ ∫

0
2

0

0 01

4

1

4

1 1

π π

∆T R IE E th= = ⋅, .4 36 105 K



7.3  THE NATURE OF HEAT TRANSFER AT A SOLID–FLUID BOUNDARY

PART II 351

7.3 THE NATURE OF HEAT TRANSFER AT A SOLID–FLUID BOUNDARY

Now we will introduce some aspects of heat transfer across interfaces separating dif-
ferent types of bodies. Consider a hot solid body submersed in some fluid. Entropy is
conducted through the body to its surface from where it enters the fluid and is carried
away convectively. The transport of entropy from the solid to the fluid, or vice-versa,
is of interest in the design of heat exchangers, in the loss of heat from a building, in
thermal solar collectors, in household appliances, and in many other applications. An-
other important case is heat transfer between liquids and gases. Just think of the inter-
action between the Earth’s atmosphere and the oceans, which has received much
attention recently. Questions concerning the balance of energy and entropy, and of
carbon dioxide and other trace gases, are of vital interest in environmental, atmospher-
ic, and oceanographic sciences. 

7.3.1 Boundary Layers

For now, let us limit our attention to the flow of entropy from solids to fluids. The
transport mechanism is usually a mixture of conduction, convection, and radiation.
(The last will be treated in Section 7.4.) Entropy flows through a hot body to its surface
from where it somehow enters the fluid. For example, consider a viscous fluid flowing
along a flat plate as in Fig. 7.11. The hydrodynamic phenomenon is described by the
velocity of the fluid in the vicinity of the plate. The conditions in the undisturbed fluid
are given by the free stream values of velocity and temperature far from the plate. Due
to viscosity, the speed of flow is reduced to zero at the surface of the body. It is found
that the velocity changes in a direction perpendicular to the surface from the value of
zero to the free stream velocity further away in the undisturbed flow. The velocity gra-
dient is confined to a thin hydrodynamic or velocity boundary layer in which all the
interesting action takes place (Fig. 7.12a). The thickness of the boundary layer is zero
at the leading edge of the plate and it increases with increasing distance along the sur-
face. The boundary layer is defined to extend to points where the velocity has reached
99% of the free stream value. Typically, in the situation described, it has a thickness
of the order of only a few millimeters.

Now consider the temperature of the fluid. At the surface of the solid, the fluid is at
rest and its temperature is that of the solid surface, which in general, is different from
the free stream value. Therefore temperature gradients must develop perpendicularly
to the surface; i.e., the temperature changes from the surface value to the free stream
value, this time in a thin thermal boundary layer (Fig. 7.12b).

Again the thickness of this boundary layer increases along the plate from a value of
zero at the leading edge. We can understand the importance of the conditions in the
boundary layer for the transport of entropy. At the surface of the solid, entropy is
transferred into the fluid in the conductive mode only. This allows us to write the en-
tropy flux density in terms of the conductivity of the fluid and the temperature gradient
in the fluid at the surface:

(7.24)

(see Equ.(7.14)). The index f refers to the fluid. Naturally, conditions in the fluid layer
change right away, so Equ.(7.24) holds only for the surface (y = 0).

Figure 7.11:  A fluid flows past a 
long flat plate. The fluid has free 
stream values of velocity and 
temperature far from the plate. 
The surface temperature of the 
solid body is assumed to be con-
stant and different from the free 
stream value of the fluid. As a re-
sult, entropy and energy will be 
carried across the interface by the 
combined action of conduction 
and convection.
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7.3.2 Convective Heat Transfer Coefficient

Entropy and energy which enter the fluid conductively will be carried away with the
flow of matter. The entropy and energy currents crossing the interface must depend in
some way upon the physical state of the fluid and the temperatures at the surface of
the body as well as far away from it. The process is a rather complex phenomenon.
That is why it is commonly described in a strongly simplified manner. The entropy
flux density is expressed in terms of the difference of temperatures between the sur-
face of the solid body and the fluid far from the surface, and a coefficient which sum-
marizes the complexity of the physical state of the fluid:

(7.25)

hS is called the (local) convective entropy transfer coefficient, while Ts and T∞ repre-
sent the temperature of the surface and of the undisturbed fluid, respectively. The co-
efficient depends upon the details of the fluid flow. It has to be either calculated on the
basis of a complete hydrodynamic theory, or measured in experiments. The expression
in Equ.(7.25) is equal to the entropy flux at the interface, which allows us to equate
the flux densities in Equations (7.24) and (7.25). This leads to an expression for the
entropy transfer coefficient:

(7.26)

Both the conductivity of the fluid and the temperature difference can be taken to be
constant. Therefore, the convective transfer coefficient depends upon the temperature
gradient of the fluid at the surface of the solid, which is determined by the conditions
in the boundary layer. Experience tells us that a hot body submersed in a flowing me-
dium cools much faster than in a still fluid. Therefore, the rate of transfer of entropy
from a solid into a liquid or gas crucially depends upon the state of motion of the fluid.
The type of flow plays an important role as well. We have to distinguish between lam-
inar and turbulent flows on the one hand, and forced and free convection on the other.
The rate of entropy transfer is very different in these cases. It is clear that we have not

(b)

x

y

(a)T∞ v∞
v∞

v(y)

T(y)

T∞ v∞ T∞

Figure 7.12:  Velocity (a) and 
temperature (b) boundary layers 
develop at the surface of the solid 
body. The velocity is zero right at 
the surface, from where its value 
increases to the free stream ve-
locity. The distance over which 
the quantity changes marks the 
extent of the boundary layer 
which increases along the plate. 
The temperature is equal to the 
surface temperature for y = 0. It 
decreases (or increases) from the 
surface to obtain the free stream 
value. The thicknesses of the ve-
locity and temperature boundary 
layers are not the same.

j h T TS y S s= ∞= −( )0

h
k

T T

dT

dyS
Sf

s y

= −
− ∞ =0



7.3  THE NATURE OF HEAT TRANSFER AT A SOLID–FLUID BOUNDARY

PART II 353

really solved the problem of convective heat transfer; we have simply shifted it to the
task of determining the transfer coefficient from a theory combining motion and heat
transfer.

The temperature gradient at the surface of the solid obviously diminishes with increas-
ing thickness of the layer, which leads us to conclude that the local value of the transfer
coefficient decreases along the plate. The coefficient is often replaced by an average
value. In this case we can relate the entire entropy flux to the change of temperature
and the average transfer coefficient hSa:

(7.27)

A is the total surface of the body. In this simplified form the constitutive law of con-
vective entropy transfer commonly serves as a boundary condition for the conductive
transport of entropy through the solid body. 

Naturally, the entropy flux varies across the boundary layer. Entropy will be produced
in the fluid due to both conduction and viscous friction. These are two of the possible
dissipative processes taking place in the general type of fluid considered here.

The exchange of energy with entropy at the interface. The entropy current which
is expressed by Equ.(7.27) is carried across the surface of the solid body by conduction
alone, so it is possible to give a simple form of the energy flux entering or leaving the
solid. In conduction, the entropy and energy currents are related by the local temper-
ature. Therefore the energy flux at the surface is equal to

(7.28)

where

(7.29)

is called heat transfer coefficient. We need to know the average transfer coefficient for
concrete applications. Such values are listed in Table 7.2 for a few situations.

Table 7.2: Heat transfer coefficients with respect to energy a

a. Order of magnitude, including the effect of radiation 
at the boundary.

Substance Transport mode ha / W · K–1m–2

Air Free convection 6–30

Air in rooms Inside wall 8

Window 8

Floors and ceilings 6–8

Superheated steam or air Forced convection 30–300

Oil Forced convection 60–1800

Water Forced convection 300–6000

Boiling 3000–60000

Steam Condensing 6000–120000

I h A T TS y Sa s= ∞= −( )0

I h A T TE th y a s, = ∞= −( )0

h T ha s Sa=
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From the foregoing we can define conductances or resistances. The expression for an
energy flow conductance of a convective layer is

(7.30)

The inverse of this quantity is the (energy) resistance. Corresponding entropy conduc-
tances are calculated by dividing GE by the appropriate temperatures. Once we know
how to calculate conductances or resistances of single layers, we can find the overall
conductance or resistance for compound layers just as in the case of conduction alone
(Equ.(7.22) and Equ.(7.23)).

7.3.3 Overall (Total) Heat Transfer Coefficient

How large is the flux of entropy or energy through the wall of a building or through
the insulation of a pipe? Obviously we are dealing with multilayer situations in which
both conduction through solids and convection at solid–fluid boundaries occur. This
situation was discussed in Chapter 4 (Section 4.6.4 and Fig. 4.44). 

Consider heat transfer through a wall of a building. The transfer of energy is described
in terms of the total difference of temperatures between the inside and the outside of
the building, the surface area A, and an overall heat transfer coefficient htot:

(7.31)

htot A is the overall conductance which can be calculated exactly as for compound con-
ductive layers (Equ.(7.22) and Equ.(7.23)). Hence, for a series of layers (as in
Fig. 4.44), the total heat transfer coefficient is

(7.32)

where the ∆xi are the thicknesses of each of the conducting layers which have conduc-
tivities kEi. There are N transition layers and M conductive ones. 

10. If air is heated inside a room, would you expect heat to reach the walls by conduction
through the air or rather by convective mixing of the air in the room?

11. Consider air flowing along a (heated) plate. Why should we expect the convective transfer
coefficient to change along the plate (in flow direction?)

12. Consider hot air flowing along a cool plate. What will the temperature layer in the direction
of flow look like?

13. If a box is insulated by 10 cm or more of glass fiber, do we still have to take into consid-
eration convective transfer on the outside?

14. Consider hot water inside a thin-walled aluminum can cooling in the environment. Why is
the convective transfer coefficient from the outside surface of the can to the air nearly equal
to the total transfer coefficient from water to air?

15. What is the (entropy or energy) transfer coefficient for a conductive layer? How does it
differ from the transfer coefficient for convection?
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EXAMPLE 7.6. Surface temperature of a central heating radiator.

To heat a 100 m2 apartment in an older not very well insulated building we need 1600 liters of
heating oil per year. One liter of oil yields about 36 MJ when burned. Assume that the entire
floor of the apartment is used for floor heating, and that the heating is on for one third of the
year. (a) What is the average entropy current from the floor to the air? (b) How much warmer
than the air will the surface of the floor have to be? Use a floor temperature of 300 K.

SOLUTION: (a) The entropy current is calculated from the energy current which is obtained
from the energy delivered by the oil during about 107 s. For one square meter, we have

(b) The entropy current calculated in (a) must be transferred from the floor to the air. According
to Table 7.2, the entropy transfer coefficient from a floor to air is about 8/300 W/(K2 · m2). With
Equ.(7.25), we have:

EXAMPLE 7.7. Surface temperatures of a single pane window in winter.

Consider a window having a metal frame. The window measures 1.20 m by 2.00 m. The glass
has a thickness of 3.0 mm, and a conductivity with respect to energy of 1.0 W/(K · m). Take the
convective transfer coefficients inside and outside to be 8.0 W/(K · m2) and 12.0 W/(K · m2), re-
spectively. The metal frame is 3.0 cm wide around the window, and 5.0 mm thick. The conduc-
tivity is 220 W/(K · m) (aluminum), and the transfer coefficients inside and outside are taken to
be 30 W/(K · m2) and 50 W/(K · m2), respectively. The temperature on the inside is 20°C; on the
outside it is – 10°C. (a) What are the temperatures of a single pane window inside and outside
in winter? (b) Calculate the flux of energy through the window if it has a metal frame. (c) How
large is the total transfer coefficient of the window?

SOLUTION: (a) The energy flux through the glass is given by Equations (7.31) and (7.32):

We use this value to calculate the temperature drop from the inside to the surface of the window:

which makes the temperature on the inside of the window 2°C. The same consideration for the
thermal boundary layer outside delivers a temperature drop of 11.8 K. This means that the
change of temperature through the glass is very small, and the outside surface has approximate-
ly the same temperature as the surface on the inside.

(b) The metal frame adds to the energy current. (It is in parallel with the window pane.) The
surface area of the frame is roughly 0.19 m2. Just as above, we calculate the energy current:
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The total energy current turns out to be 450 W which is very large. Note that the metal frame
has a strong influence despite its small surface area.

(c) The total transfer coefficient is given by Equ.(7.32):

Good windows achieve a much smaller value of this coefficient (by as much as a factor of 10).

EXAMPLE 7.8. A surprising effect of insulation.

A metal pipe is to be insulated. It is found that, at least in principle, the insulation can have the
opposite effect of what we would expect: the current of heat through the walls and the insulation
of the pipe increases! How is this possible? Determine the conditions for the maximum heat
flow.

SOLUTION: The thermal resistance of the insulation is made up of the resistance of the layer
of insulation itself, and of the effect of convection at its surface. While the resistance of the in-
sulating cylindrical shell grows with increasing thickness, the resistance due to the thermal
boundary layer decreases because of the increase of surface area. There will be a minimum val-
ue of the total resistance at a certain outer radius of the insulation, depending on the material
properties.

First we need an expression for the thermal resistance of a cylindrical shell (Fig. Ex.8). We pro-
ceed as in the case of a spherical shell (Example 7.5):

The total resistance of insulation and boundary layer is

Its minimum is found by setting its derivative with respect to the radial variable equal to zero.
We obtain

The value of r for which the thermal energy current becomes largest does not depend upon the
radius of the pipe. However, r0 certainly must be smaller than the quantity just calculated. For
normal values of the constitutive quantities, the pipe (and the insulation) must be rather thin.
One might imagine the effect to play a role, for example, when ice starts to build up around thin
branches or fibres in plants. An interesting suggestion has been made concerning the improve-
ment of heat transfer through the air–water or air–air heat exchanger of a heat pump. At the cold
end of the device, ice tends to build up at the surface, normally reducing the effectiveness of the
pump. The geometry of the device could possibly be such that frost building up at its surface
would lead to an increase of the rate of heat transfer.

EXAMPLE 7.9. Formation of ice on the surface of a lake.

Ice forms on the surface of a lake while the temperature of the air is – 10°C. How long does it
take from the time ice begins to form for the sheet to reach a thickness of 20 cm? Take the tem-
perature of the air to be constant. The convective transfer coefficient from ice to the air is 10 W/
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(K · m2). The conductivity with respect to energy of ice is 2.2 W/(K · m). Neglect the transfer
from the water to the ice.

SOLUTION: For ice to form at the surface of the lake, the water must have reached a tempera-
ture of 0°C. Heat flows from the water into the air, first directly, and later through the ice; there-
fore water will freeze. If we can calculate the rate of formation of ice, we can determine the rate
at which the thickness of the sheet grows.

The equation for the current of entropy leaving the water as it turns into ice is Equ.(5.2) written
for the mass of the water:

lf,ice is the specific latent entropy of fusion of ice (Table 5.1). The rate of production (destruc-
tion) of mass of water equals the negative of the rate of production of mass of ice which is equal
to the rate of change of mass of ice:

Combining these rules leads to

The current is determined by the rules discussed in this section:

x is the instantaneous thickness of the ice sheet. If ice has not formed yet, the total transfer co-
efficient is the convective transfer coefficient alone. Furthermore, we can express the rate of
change of the mass of the ice in terms of the rate of change of its thickness:

In summary we get the following differential equation for the thickness of the sheet of ice:

Separating the variables and integrating, we obtain

For the sheet of ice to grow to a thickness of 0.20 m, we have to wait for a time

This corresponds to about 10 days, which seems to be a pretty reasonable time span. It decreases
noticeably if ha increases because of stronger winds.

I lS f ice m water= , ,Π

dm

dt
ice

m water= −Π ,

dm

dt

I

l
ice S

f ice

= −
,

I
T

T

R T
T T A

h

x

kS
water E water

air water
a E

= = −( ) +
⎡

⎣
⎢

⎤

⎦
⎥

−
1 1 1

1
∆

dm

dt
A

dx

dtice= ρ

ρ ice
f ice water

air water
a E

A
dx

dt l T
T T A

h

x

k
= − −( ) +

⎡

⎣
⎢

⎤

⎦
⎥

−
1 1 1

1

,

 
,

dt
l T

h k T T
k h x dx

t f ice water ice

a E air water
E a

x

0 0
∫ ∫= −

−( )
+( )

ρ

t
l T

h k T T h
k h x k

f ice water ice

a E water air a
E a E=

−( )
+( ) −[ ]

=
⋅ ⋅ ⋅ −( )
⋅ ⋅ −( ) ⋅ ⋅

= ⋅

,

  
. .

. .
.

ρ 1

2

1220 273 920 4 2 2 2

10 2 2 10 0 2 0 10
8 8 10

2 2

2 2
5s s



CHAPTER 7.  THE TRANSPORT OF HEAT

358 THE DYNAMICS OF HEAT

EXAMPLE 7.10. Cooling hot water in cold thick-walled container.

Hot water is poured into a thick walled cylindrical PVC container (Fig. Ex.10, left) that is well
sealed at the top and at the bottom. The water is stirred continuously by a magnetic stirrer. As
the water cools, temperatures of the water, the outside surface of the container, and the air are
measured as functions of time (Fig. Ex.10.1, center; right: enlargement of the initial phase). The
temperature of the air is almost constant. 

Experimental data: Power of the mixer: 1.0 W; mass of water: 0.30 kg; height of PVC cylinder:
0.105 m; inner radius: 3.00 cm; outer radius: 4.65 cm; density of PVC: 1400 kg/m3; convective
transfer coefficient PVC to air: 12 W/(K · m2); the convective transfer coefficient from water to
PVC is much higher.

(a) Explain the temperature-time diagram in words (note: the temperature of the water initially
drops faster than would be expected from a simple exponential decay; the temperature of the
outside surface of the container rises with a delay, etc.). (b) Think of the simplest possible model
that might explain these observations. Sketch an electric circuit that represents your model.
Sketch the corresponding diagram of a dynamical model. (Use the energy representation for
your model.) (c) Formulate all equations for your model (without calculating conductances in
detail). (d) Use experimental data to estimate the thermal properties of PVC (conductivity and
specific heat). 

SOLUTION: (a) Tw decreases since water loses entropy to the container. Tc increases first be-
cause of high gain of entropy. Then the container loses more and more entropy to the environ-
ment: Tc goes down. Tw decreases faster at the beginning than later because the container gets
warmer. Tc(outside surface) has a second order delay since entropy takes time to flow through
the wall. Tw and Tc stay above Ta because of entropy production by mixer.

(b) The simplest possible model has a capacitor each for water and for the container (Fig.
Ex.10.2, left; with only a capacitor for water, there is no independent temperature for the con-
tainer wall to compute). Voltages represent temperatures of uniform bodies; so Tw is the tem-
perature of the water, Tc is the temperature at the center of the container wall.

The resistor between the capacitors represents the transitional layers from the water to the center
of the PVC wall. R2 symbolizes the conductive resistance from the center of the wall to its outer
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surface, whereas R3 is used for the convective transition from the surface to the air. From what
we know of simple electric or hydraulic RC models (Chapter 1), the expected behavior of the
temperatures is as in Fig. Ex.10.2, right. Gross features of the real behavior are there, but the
delay in the temperature of the outside surface of the wall is absent. We need a better model with
the wall divided into two or morel (radial) elements (Fig. Ex.10.3, top). The bottom part of Fig.
Ex.10.3 shows a diagram of a dynamical model representing the circuit. In this model, TC2 and
TC,outside show the expected delay.

(c) The simpler two-node model suffices for demonstrating the physical and mathematical
structure. Its equations of balance (of energy) are:

With capacitive relations

and flow laws

the model is complete (except for initial conditions). The surface temperature of the container
can be calculated from the results of this model:

(d) It is possible to formulate conditions for the missing material properties of PVC, i.e., its con-
ductivity and its specific heat. The conditions are obtained from considerations of special cir-
cumstances. Let us start with the steady state which obtains after a long time (data in Fig.
Ex.10.1, center):
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The energy current through the wall can be expressed as follows:

Let us assume that the wall is flat. Since we know this current from steady-state conditions (it
is equal to the power of the mixer), we can calculate the conductivity of PVC:

The capacitance (specific heat) of the container is found as follows. Consider the balance of en-
ergy for container for a period of time from 0 s to 200 s:

In the first 2000 s, the temperature of the water (0.30 kg) drops by about 21 K. The energy loss
of the wall is calculated from its average surface temperature relative to the ambient, its surface
area and the convective transfer coefficient. The specific heat is related to the change of energy
of the body:

∆Tc is estimated as follows. Initially, Tc is equal to ambient temperature (25°C). At t = 2000 s,
the outside of the container is 41°C, on the inside it is nearly as warm as the water (69°C). This
gives the container an average temperature of 55°C at t = 2000 s. These results agree rather well
with values from tables.

7.4 BLACKBODY RADIATION FROM OPAQUE SURFACES

Next let us consider how a body radiates heat into its surroundings. Even though radi-
ation is a rather complex phenomenon, one case can be treated fairly simply—the
emission (and absorption) of radiation by an opaque body. Emission and absorption
are volumetric processes as discussed in Section 7.1; still the emission from an opaque
body looks like the flow of radiation from a surface. Let me describe briefly how this
happens.

A warm body emits radiation to the field occupying the same region, leading to a sink
of radiation with respect to the body (and a source with respect to the field). Radiative
transport through the field inside the system boundary in Fig. 7.13 is rather complicat-
ed. Radiation is emitted and reabsorbed constantly at such rates that the net effect is a
flow of heat from hotter to cooler points. Since the body is assumed to be (just about)
opaque to the radiation, what we see outside the system must originate from a relative-
ly thin layer at the surface of the body. Outside the space occupied by matter, however,
we have a simpler situation. There, radiation is traveling away from the region where
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it was emitted. If we surround the system by a surface, radiation effectively flows
through the field through this boundary.

7.4.1 Hemispherical emission by blackbody surfaces

We are interested in an expression for the fluxes of entropy and energy from the sur-
face of a body which is emitting radiation to its surroundings. In this section, we will
discuss only the simplest cases, starting with radiation from the surfaces of black bod-
ies. A black body is defined as one which absorbs all the radiation falling upon it. In
Section 5.4, we studied blackbody radiation inside a cavity. On the basis of what is
known about such radiation, we can motivate the form of the law for radiative transfer
from the surface of a body such as the one in Fig. 7.14. If the surface layers of an
opaque body have properties which lead to blackbody radiation, the radiation will be
the same as if it had originated from a cavity deep inside the system. Since entropy and
energy are carried away by radiation, their flux densities must be related to their (vol-
ume) densities inside the radiation field. From Section 5.4, Equations (5.83) and
(5.86), we know that the density of entropy of blackbody radiation is proportional to
the third power of its temperature, while the energy density depends upon the fourth
power of the temperature. For this reason the rates at which these quantities flow with
radiation from the surface of a body have the same dependence on temperature. It is
customary to introduce the hemispherical rate of emission of energy of a black body
or the hemispherical emissive power of a black body Eb, which is defined as the
amount of energy emitted by the surface of a black body per unit time and per unit
surface area. We expect a law of the form:

(7.33)

The index b denotes black body radiation. Its counterpart, the rate of emission of en-
tropy, ESb , is expressed by

(7.34)

This is, again, valid for blackbody radiation only. These expressions will be derived
in Chapter 12. The constant σ introduced in these relations is called the Stefan-Boltz-
mann constant, and has the value 5.67 · 10–8 W/(m2 · K4). Eb has units W/m2 and the
units of ESb are W/K/m2.

The rates of emission introduced here look very much like current densities that are
used to describe the distribution of flows over a surface (see Equ.(7.13)). However,
they are not real current densities since the type of transport is rather different from
what we know from conduction (i.e., diffusion). In diffusion of charge, substances, or
entropy through a material, the fluidlike quantity is transported at one point only in a
single direction. Radiation, however, travels in all direction from a point (Fig. 7.14,
bottom). Radiation can penetrate itself, meaning it can and will cross through a point
in a field in and from all directions. Still, we can integrate the contributions of the
transport of, say, entropy or energy over all directions and so obtain the total transfer
of the quantity (per unit time and per unit area). This is what the rates of emission in
Equ.(7.33) and Equ.(7.34) represent. When this does not cause a confusion, I will call
these quantities current densities (fluxes per unit area).
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Net flow of
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Figure 7.14:  Blackbody radia-
tion from the surface layers of an 
opaque blackbody is the same as 
that originating from the inside of 
a cavity in a body (Section 5.4).
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If the rates of emission (the current densities) are constant over a surface, the currents
of entropy and energy from the entire surface of a body are obtained simply by multi-
plying the emission rates by the surface area A:

(7.35)

(7.36)

You should notice an important point: the relation between currents (fluxes) of entro-
py and of energy, which applies to the heating or cooling of a body (Equ.(4.21)), does
not hold in the case of radiative fluxes through the radiation field. Heating and cooling
of the material body, however, take the form of sources and sinks of entropy and en-
ergy for which the simple and direct relation between source rates of entropy and en-
ergy holds; see Equ.(7.41).

Net radiative energy flux for a black body radiator. In general, the expressions in
Equations (7.35) and (7.36) are not the net fluxes, since the body might absorb heat
from another piece of matter radiating towards it. It is instructive to derive the net en-
ergy flux for a black body totally surrounded by another black body at a different tem-
perature Tw (such as the small piece of matter in the cavity in Fig. 7.15). Remember
that the radiation field set up by the walls of the cavity is isotropic and the same at ev-
ery point inside. This means that a point at the surface of the small body surrounded
by the walls sees blackbody radiation coming at it at the same rate from all directions.
Therefore the amount of energy per second and per unit surface area radiated toward,
i.e., incident upon the body is

(7.37)

G is called the irradiance of the surface. Since a black body absorbs all the radiation
falling upon its surface, the net flux of energy with respect to the chunk of matter in-
side the cavity is given by

(7.38)

which is the difference between the rates of emission and absorption, i.e., the differ-
ence between (7.33) and (7.37). This result will be extended to bodies other than black
bodies in Section 7.4.4.

7.4.2 Cooling and Heating of Bodies by Emission and Absorption

As discussed in Section 7.1.4, bodies can emit and absorb radiation. These processes
are the result of the interaction of bodies and fields which occupy the same region of
space. Therefore, emission and absorption are volumetric phenomena calling for
source rates for their formal description. (This discussion could be extended to surfac-
es if we consider a thin layer around a body absorbing and emitting radiation. We can
also extend the formalism by introducing absorption and emission rates per unit sur-
face area.) Here, I will motivate the relationship between the source rates and the rates
of production of entropy on the one hand, and the source rates of energy accompany-
ing the processes on the other.
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Figure 7.15:  A cavity serves as a 
container of blackbody radiation. 
The walls are at a temperature Tw, 
while the small body inside the 
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Take the model of a uniform body at temperature T. For the sake of argument, let the
body emit entropy and energy to the field occupying the same region of space. (The
reasoning also applies to the case of absorption of radiation.) The rates of emission of
these two quantities are equal to the rates of change of the entropy and energy of the
body if there are no other modes of transfer present:

(7.39)

(7.40)

Remember that processes are reversible in the model of uniform processes. Since the
rates of change are related by the Gibbs Fundamental Form for a simple body (see, for
example, Equ.(4.35)), the rates of emission satisfy the equation

(7.41)

which means that the rate of emission of entropy to the field inside the system is equal
to the rate of energy emitted divided by the temperature of the body. This result holds
for the chunk of matter occupying the region of space in Fig. 7.16. It neglects the fact
that entropy is produced as a result of the emission (and absorption) of radiation. How-
ever, as far as the body is concerned, this point is immaterial; it does not affect the bal-
ance of entropy for the chunk of matter, since our model associates the irreversibility
with an additional element between the body and the field (see Fig. 7.6). For the body,
emission of heat to a field has the same effect as cooling by conduction as a result of
direct contact of a uniform body with its surroundings.

We should be interested in the rate of production of entropy as a result of the emission
or the absorption of radiation. If the processes of emission and absorption are irrevers-
ible, the source rates of entropy for the body and the field are not the same. We have
expressed this point in Equ.(7.8):

(7.42)

Together with Equ.(7.41), we can express this in the form valid for the source rate of
energy:

(7.43)

Consider the case of no entropy being supplied by radiation which is absorbed by a
body. Under these circumstances, all the entropy leading to the heating of the body
must have been produced, the process being completely irreversible. Put differently,
all the energy supplied to the body via the field has been dissipated, and Equ.(7.43) is
formally equivalent to the expression for the relationship between the rate at which en-
ergy is dissipated and entropy is generated (see Equ.(4.23) of Chapter 4).

In summary, we may interpret the results of emission and absorption of entropy in
terms of the cooling or heating of bodies. The only difference from the case treated so
far, i.e., heating by conductive surface currents, is that we have to deal with source
rates of entropy and energy, Equ.(7.41), instead of fluxes (Equ.(4.21) of Chapter 4).
In this model, irreversibility is associated with an extra element placed between the
field and the body (Fig. 7.6).
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Figure 7.16:  A material body 
and a radiation field occupy the 
same region of space (only the 
body is shown). Emission of radi-
ation means that the body loses 
entropy and energy (and other 
quantities) at every point inside 
the field. In this view, the body 
and field are two separate physi-
cal systems.
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7.4.3 Emission, Absorption, and the Production of Entropy

Irreversibility of emission. Next, we should discuss the rate of production of entropy
in the emission and absorption of radiation. Consider the case of emission: the rate at
which entropy is emitted by the body to the field is smaller than the rate at which it
flows away from the surface of the body (Fig. 7.13). This can be shown quite easily.
Consider the model of a uniform body at temperature T for which

(7.44)

On the other hand, the flux of entropy through the field at the surface of the body is
four-thirds this quantity; see Equations (7.35) and (7.36):

or

(7.45)

We have to conclude that more entropy leaves the space occupied by the body than
has been emitted by the body to the field. Therefore, entropy must have been produced
in the volume occupied by radiating matter. In the same manner, we can prove that it
is impossible for a body to just absorb entropy from a source at the same temperature.
Entropy would have to be destroyed, which we know to be impossible. Therefore, it
is impossible for a body to absorb entropy at the same temperature without emitting
entropy at the same time.

Irreversibility of emission and absorption of two interacting bodies. Consider now
the example of combined emission and absorption in a quantitative manner. Take two
bodies having geometries such as in Fig. 7.15: the walls of a cavity completely sur-
round a smaller body. Assume both surfaces to be black bodies. Let the smaller body
be the hotter one, with temperature T1 and surface area A. Then the net flux of energy
from the smaller to the larger surface is given by Equ.(7.38) where T2 is the tempera-
ture of the enclosure. Now we can compute the rate of production of entropy in the
two radiative interfaces between bodies and field (as in Fig. 7.6) combined. With the
help of Equ.(7.43) we find that

The entropy emitted by one body to the field travels through the field and disappears
from the field at the location of the second body, so the source rates for the field can-
cel, so we have

(7.46)

ΣE1 corresponds to the flux of energy with respect to body 1. This expression is larger
than zero since, if T1 > T2 (ΣE1 is negative). The flux of energy will be calculated ac-
cording to Equ.(7.38) which transforms the production rate of entropy into
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(7.47)

This expression is larger than zero as long as one of the bodies is hotter than the other
and it vanishes if they have the same hotness. Therefore, it does not matter which of
the bodies we assume to possess the higher temperature. Emission and absorption of
entropy by bodies at different temperatures is necessarily dissipative. We could have
performed the computation of the balance of entropy for each of the bodies separately.
Using the result for one of them, you can convince yourself that the particular state-
ments made above regarding the irreversibility of emission and the impossibility of
absorption without simultaneous emission are correct. 

The irreversibility of radiative processes is not limited to the absorption and emission
of (blackbody) radiation. Conversion of monochromatic radiation into blackbody ra-
diation and the scattering of radiation have to be added to the list of irreversible pro-
cesses. The fact that irreversibility necessarily accompanies radiative transfer is of
importance for power engineering (see Chapters 9, 15, and 16).

A surface in the light of the Sun. Now consider a particularly relevant case, that of
(the surface of) a black body at temperature T in the light of the Sun (Fig. 7.17). En-
tropy flows with solar radiation toward this surface and, since the body is a black ra-
diator, is completely absorbed. Because of this process of absorption, there is an
entropy production rate of ΠS1. Let G be the irradiance of the surface. Solar radiation
is nearly black body radiation, so the entropy current incident upon the body of surface
area A is

(7.48)

This results from Equations (7.35) and (7.36). Tsun is the temperature of the surface of
the Sun that emits the radiation which we receive; at the same time this is the temper-
ature of the radiation (see Chapters 12 and 16). If the body only absorbed light, the
balance of entropy would be

so the entropy production rate due to absorption equals

The last step is a consequence of Equ.(7.48). We arrive at

(7.49)
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for the production rate of entropy due to absorption of sunlight. Note that this expres-
sion becomes negative if T approaches Tsun . This tells us that we are not allowed to
just consider absorption of radiation by a body; we always have to add entropy pro-
duction due to emission. (For the case of Sun and Earth, there is no problem since the
surface temperature of our planet is so much lower than that of the Sun.)

Since the body is warm at temperature T, it emits an entropy current equal to

(7.50)

Equ.(7.45) tells us that a quarter of this current comes from entropy produced (and not
from entropy emitted):

(7.51)

The total entropy production rate allows us to make an interesting observation. Sum-
ming up the contributions from absorption and emission and setting T = Tsun, yields

which is equal to zero since there is no net exchange of radiation between the Sun and
the Earth (with both at Tsun). If we accept this, we see that G must be equal to σTsun

4,
meaning we can bring a body to Tsun if the incoming radiation has the intensity of sun-
light at the surface of the Sun (which we can get by concentrating the Sun’s light).

7.4.4 Radiative Properties of Gray Surfaces

So far we have limited ourselves to the case of blackbody radiation. We should now
take a closer look at the emission and absorption of heat from surfaces not having
blackbody properties. Since a black surface was defined as one which absorbs all in-
cident radiation, we will now be concerned with gray surfaces, which absorb only a
fraction thereof.

The absorptivity of gray surfaces. To describe the absorptive properties of a surface
we need two quantities. The first was introduced above—the irradiance G which mea-
sures the total flow of energy incident on a surface per unit area. We need the rate of
absorption of energy per unit area abbreviated by A . If A  equals G, the surface is a per-
fect absorber; if it is smaller than G, the surface is said to be gray. We introduce the
absorptivity a , the ratio of rate of absorption and irradiance, so

(7.52)

For a black body a  = 1. Sometimes, the reflectivity ρ of an opaque surface is intro-
duced in place of the absorptivity. The energy not absorbed is reflected (Fig. 7.18),
which means that the reflectivity and the absorptivity are related by

(7.53)

Kirchhoff’s Law. The interesting question now concerns the emissivity of nonblack
surfaces. How does it compare to blackbody radiation? Let us once more consider the
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radiation inside a cavity. Since the field in the cavity is that of blackbody radiation, the
irradiance in this enclosed space is the emissive power of a black body having the tem-
perature of the walls:

(7.54)

In other words, the irradiance is the hemispherical power in a blackbody field,
Equ.(7.33). Whether the walls are black surfaces does not matter. If they are not, the
combination of emittance and reflectance still leads to radiation with blackbody prop-
erties. This is the reason why the radiation in a cavity is called blackbody radiation.
Since the material of which the walls of the cavity are made does not play a role, the
only factor determining the radiation in the cavity is the temperature of the walls.

An arbitrary body with absorptivity a is now introduced into the cavity (Fig. 7.19). Af-
ter some time, stationary conditions will have been reached, the temperature of the
small body will be the temperature of radiation in the cavity, and the emissive power
of the body will be the fraction of the irradiance absorbed by the body. Since the radi-
ation in the cavity is that of a black body, the emissive power of the body inside the
cavity must equal the product of absorptivity and blackbody emissive power:

(7.55)

This is a form of Kirchhoff’s law. It states that the emissive power of a body is a frac-
tion of the emissive power of a black body at the same temperature, where the fraction
is the absorptivity. 

If we introduce the emissivity e  of the body as the fraction of the emissive power of a
black body at the same temperature,

(7.56)

we can state Kirchhoff’s law by saying that the emissivity is equal to the absorptivity.
(This statement has to be qualified: they are equal at the same frequency of light; see
Section 7.4.6.) Values of the absorptivity (or emissivity) of some materials are listed
in Table 7.3. In general, they depend upon the temperature of the surface (Fig. 7.20).

The net radiant flux for a gray body surrounded by blackbody radiation. If the
small body in the cavity has a different temperature, then the rate at which energy is
absorbed by the body is not equal to the rate at which it is emitted. The net source rate
of radiant energy is calculated to be

(7.57)

A is the surface area of the body in the cavity. Since the emissive power is given by
Kirchhoff’s law, and since the irradiance in the cavity is equal to the emittance of the
walls, we ultimately obtain the following expression for the flux of radiant energy
from the surface of the body at temperature T irradiated from a distant surface at tem-
perature Tw which completely surrounds it:

(7.58)

The rate is the difference between the emission and absorption rates as calculated for
a blackbody surface, multiplied by the absorptivity of the surface. The blackbody

  G E= b
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a

Figure 7.19:  A body in a black 
body radiation field of the cavity. 
Its surface has an absorptivity 
equal to a. 
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emissive power is the same as that given by Equ.(7.55). In summary, the laws stated
here allow us to calculate the flux from a surface area A which has a temperature T,
and which is subject to radiation from surroundings at a temperature Tw:

(7.59)

(the absorptivity has been replaced by the emissivity). Remember that this equation
holds only for the particular geometry used in the example: the body is completely sur-
rounded by the walls of the cavity (actually, a large space serves the same purpose; the
condition is simply that the radiation of the body is not reflected back). As a result, all
the radiation emitted by the walls will be incident upon the body and vice versa. For
different geometries, where only part of the radiation emitted by either of the bodies
strikes the other surface, the result is much more complicated. In such cases, it is cus-
tomary to write the result in just about the same form with an additional factor (called
the shape factor) taking care of the difference (Chapter 12).

Table 7.3: Emissivities and solar absorptivities

Substance Emissivitya

a. For a temperature of roughly 300 K.

Absorptivity 
for solar 
radiation

e a

Aluminum Polished 0.03 0.09

Anodized 0.84 0.14

Foil 0.05 0.15

Brick Red (Purdue) 0.93 0.63

Concrete 0.88 0.60

Earth Plowed field 0.75

Galvanized sheet metal Clean, new 0.13 0.65

Oxidized, weathered 0.28 0.80

Glass, window 0.92

Ice Smooth 0.97

Paints Black (Parsons) 0.98 0.98

White, acrylic 0.90 0.26

White, zinc oxide 0.93 0.16

Paper White 0.95 0.28

Sandstone 0.85

Snow Fine particles, fresh 0.82 0.13

Ice granules 0.89 0.33

Soot, coal 0.95

Water Deep 0.96

Wood Sawdust 0.75

Oak, planed 0.90
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Radiant exchange between extended parallel plates. Here, we will derive the re-
lation for the case of two extended gray surfaces facing each other in such a way that
all the radiation originating from one of the bodies is intercepted by the other
(Fig. 7.21). This geometry is found, for example, in flat-plate solar collectors. The two
plates will be distinguished by indices 1 and 2. Their radiative properties will be ex-
pressed using the emissivities (absorptivities), and the reflectivities. The derivation is
of use not only for its result but for the concepts and procedures as well.

In the course of the derivation, we will need an expression for the total flux of energy
per unit area emanating from each of the plates. Since the plates have gray surfaces,
they will not absorb all the radiation falling upon them; rather, part of the radiation will
be reflected. It is common to call the total flux per unit area, i.e., the sum of what is
emitted and what is reflected, the radiosity B of the surface. For the plates, the radios-
ities are

(7.60)

The reflectivities are related to the absorptivities (emissivities) of a surface, and the
irradiance of one of the plates is the radiosity of the other. Therefore,

If we insert the radiosities expressed by Equ.(7.60) into this result, we obtain the fol-
lowing relations for the radiosities of the parallel plates:

Now, the net flux density of energy radiated from plate 1 to plate 2 is the difference of
the radiosities:

Since B1 – B2 = G2 – G1, this is equivalent to

A little algebra finally yields the expression for the net energy flux flowing from the
hotter to the cooler of the two parallel plates:

(7.61)

For blackbody surfaces, the emissivities are equal to 1 and we regain the simpler ex-
pression already derived in Equ.(7.38).

T1

T2

Figure 7.21:  Radiant heat ex-
change between two extended 
parallel plates. If their tempera-
tures are different, there will be a 
net flux of energy and entropy 
from the hotter to the cooler of 
the plates. (Energy flows are 
shown here.)
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7.4.5 The Heat Loss Coefficient for Flat–Plate Solar Collectors

Solar collectors provide a very nice application of the kind of heat transfer we have
discussed so far. Basically, all three modes of transport take place in the process,
which leads to loss of heat from a collector to the surroundings, with radiation and
convection at interfaces being the most important.

Solar collectors receive radiation from the Sun; they lose heat to the surroundings
when heated above the level of ambient temperature; and they remove heat via fluid
flow through the device (Fig. 7.22). Here, we will consider the problem of calculating
heat loss. Removal of heat will be dealt with in Chapter 8, while details of the absorp-
tion of radiation will be the subject of Chapter 16.

To define the problem of the exchange of entropy and energy with the surroundings,
take a closer look at Fig. 7.22. A typical collector consists of an absorber for solar ra-
diation, a duct for the fluid below the absorber which is insulated at the back, and pos-
sibly one or two glass covers to reduce top heat loss. The latter process will be the
subject of interest in this section. Naturally, heat may also be lost to the back and to
the sides, but these effects will not be considered here.

Assume a collector having a single cover made of a sheet of glass. Heat loss from the
absorber plate to the environment is the result of the combined effects of radiation and
convection from the plate to the cover and from the cover to the air surrounding the
collector. Radiation and convection act as parallel modes of transfer from one body to
the next, while the transports from the absorber to the cover, and from the cover to the
surroundings are in series. Therefore, the combined effect of all modes of transfer can
be described by the simple equivalent circuit also shown in Fig. 7.22.

If we use heat transfer coefficients h instead of resistances R to calculate the total en-
ergy flux due to loss, we can write

(7.62)

where

(7.63)

Ac is the net surface area of the collector (essentially the surface area of the absorber),
and Ut symbolizes the total heat transfer coefficient for top loss. Note that conductive

Cover

InsulationFluid

Absorber
plate

Irradiance
and reflection

Heat loss
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Rr,pc Rc,pc

Rr,ca Rc,ca
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Figure 7.22:  Heat loss of a solar 
collector occurs mostly through 
the top. The entropy and energy 
not carried away by the fluid will 
be transferred to the surround-
ings. The network on the right 
symbolizes the combined effect 
of radiation and convection from 
the absorber plate to the cover 
(here it is a single sheet of glass), 
and from the cover to the sur-
roundings. Subscripts p, c, and a 
denote the absorber plate, the 
cover, and the ambient air, re-
spectively, while r and c stand for 
radiation and convection.
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transport through the thin glass cover has been neglected in this analysis. If we wish
to compute the heat loss coefficient, we have to be able to quantify the heat transfer
coefficients for convection and for radiation. While the former pose a problem which
we cannot solve at this point,3 the latter can be expressed in terms of what we have
learned so far.

The radiative heat transfer coefficient from the absorber to the cover can be written in
the form which will be derived in Example 7.13. If we apply the result derived for ra-
diation between two parallel plates, Equ.(7.61), we obtain

(7.64)

Obviously, in order to calculate this heat transfer coefficient, we need to know the
temperatures of both the absorber and the cover. While the former has to be specified,
the latter must be obtained as part of the solution of the problem. Now we still need
the radiative transfer coefficient for transport from the cover to the surroundings. Ra-
diation occurs between the cover, which has a particular emittance, and the sky for
which we use an equivalent blackbody temperature4 Tsky . Therefore, the coefficient
turns out to be

(7.65)

See Equ.(7.59). The temperatures strongly depend upon operating conditions, while
the convective heat transfer coefficient from the cover to the ambient air is a function
of wind speed. Typical values for heat loss coefficients of collectors of the type de-
scribed are around 5 W/(K · m2).

7.4.6 Selective Absorbers and Emitters

According to Kirchhoff’s law, the emissivity of a surface equals its absorptivity (Sec-
tion 7.4.4). So why are there two numbers in Table 7.3 for a material, one for its emis-
sivity and one for its absorptivity for solar radiation?

At first sight, Kirchhoff’s law seems to pose a riddle. If emissivities equal absorptivi-
ties, an application of the laws of radiative heat transfer seem to indicate that bodies
should have the same steady-state temperature irrespective of their emissivity/absorp-
tivity. If they are better absorbers of solar radiation, they are better emitters of their
own radiation which leads to the same result in balance. However, we know that this
is not the case. Different bodies attain different temperatures in Sunlight, the most fa-
mous case being our planet whose radiative properties seem to be changing as a result
of human activity which is assumed to change the Earth’s temperature. Simpler and
clearer cases are known from everyday life. Black surfaces get hot faster than shiny
white ones when exposed to the Sun.

3. We simply have to assume reasonable convective heat transfer coefficients for both transfer
from the cover to the surrounding air, and from the absorber to the cover. See Duffie and
Beckman (1991; p. 160–176) for a detailed discussion of the problem.

4. See Duffie and Beckman (1991), p. 158.
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The reason is simple: Kirchhoff’s law applies, but it applies separately for different
types of radiation (see Chapter 14; a and e are equal, but their values change with the
wavelength or frequency of the light).

At this point, we shall consider a simple case and apply a steady-state energy balance
to find the temperature of a body exposed to sunlight. Take a body completely sur-
rounded by air. The air acts as a black body environment which means that the radia-
tive interaction of body and air lead to a flux of energy of the form of Equ.(7.59).
There is an additional interaction because of sunlight. If As is the surface area effec-
tively exposed to the Sun, and if Gs and as are the irradiance of solar light and the ab-
sorptivity of the surface with respect to sunlight, the rate of absorption will be

(7.66)

If we also allow for convection between the body and the air, the balance of energy in
steady-state takes the form

(7.67)

Disregard convection for the moment. It is clear that since as and e are not equal in
general, the steady-state temperature T of the body will depend upon the ratio of emis-
sivity to solar absorptivity. Take a perfect black body (a = e = 1 for all wavelengths)
or bodies where as = e as reference. A body with as /e > 1 should be warmer than the
reference whereas it should be cooler if as /e < 1.

7.4.7 The Dynamics of an Incandescent Bulb

Here is a nice little application of a dynamical system involving radiation. A small
light bulb is connected to a power supply whose voltage is quickly increases from zero
and then reduced back to zero equally fast. Voltage across and electric current through
the bulb are measured as functions of time (Fig. 7.23, left). If the data is plotted in a
current-voltage diagram, we obtain an interesting dynamical characteristic of the bulb
(mostly of its tungsten filament; Fig. 7.23, right) which is rather different from the typ-
ical steady-state characteristic curves of incandescent bulbs.

Actually, the last leg of the odd shaped characteristic line (part (2) in Fig. 7.23, right)
is close to the steady-state characteristic curve; it is the first part that deviates from ex-
pectations. The reason for this is simply the drastic changes of temperature of the fil-
ament (and other parts of the bulb) as a result of increasing and decreasing dissipation
of the energy released in the electric process and the radiating away of the entropy of
the hot wire. For the first part of the process, the wire is still cold which leaves the re-
sistivity of the material at a low value. Therefore, the electric current increases faster
than in standard experiments where the voltage is raised very slowly step by step. Af-
ter the peak of dissipation, the wire is hot and the characteristic follows more closely
what we know from simple steady-state experiments.

A strongly simplified model of the phenomenon is shown in Fig. 7.24 (left). At its cen-
ter, it uses the balance of entropy of the tungsten wire in the bulb. There are two main
processes taking place: entropy is produced in the wire and is radiated away. The en-
tropy of the body defines its temperature which, in turn, is used to express the consti-
tutive laws for the production rate and the source rate of entropy. Details of the model

Σ E abs s s sA, = a G
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concern the resistivity and the emissivity of tungsten which are functions of tempera-
ture (the temperature dependence of the entropy capacitance has not been included).

The law of balance of entropy for the tungsten wire includes the production rate due
to dissipation of energy and a source rate as a result of radiation:

(7.68)

We need three constitutive laws to complete the model: one for the temperature-entro-
py relation of a body made of tungsten (Section 4.5), one for the production rate of
entropy (Section 4.4.2), and the last for the radiation of entropy by the hot wire. Fun-
damentally, each of the relations includes a temperature dependent material property,
namely, specific entropy capacitance in the first case, electric resistivity in the second,
and emissivity in the third.

Figure 7.24:  Diagram of a simple dynamical model of the tungsten wire (left) and data 
(squares) and simulation results for the electric current through the wire and the temperature of 
the wire (right).

In the present model, I have chosen not to include the temperature dependence of the
entropy capacitance. Rather, an average value of κ has been estimated as follows. The
specific heat of tungsten varies between 130 J/(K · kg) and 180 J/(K · kg) in the expect-
ed range of temperatures (300 K to 3000 K). We can divide an average value of the
specific heat by an average value of the temperature to obtain a first approximation to

Figure 7.23:  Data of voltage and 
electric current for a small incan-
descent bulb that is quickly 
turned on and off, as functions of 
time (left) and in the form of the 
current-voltage characteristic 
(right).
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the entropy capacitance:

(7.69)

The mass m of the wire is obtained from the density and the volume where the latter
is calculated from the length and radius of a cylindrical body (the radius will turn out
to be a critical unknown parameter of the model). With a constant entropy capacitance,
the entropy temperature relation is simply

(7.70)

Now we need an expression for the entropy production rate in the tungsten wire. The
first step is simple: the production rate equals the electric dissipation rate divided by
the temperature of the wire. The latter is obtained from the entropy, Equ.(7.70), and
the former equals the voltage times the electric current. The voltage across the wire is
a part of the measured voltage Um that will be used as an input to the model (see the
model diagram in Fig. 7.24). It represents only a part of Um since there are connecting
elements (copper connectors) to the tungsten filament inside the bulb. They will be
given a constant (unknown) resistance R0, another simplification in our model:

where R and UT are the resistance of and the voltage across the filament, respectively.
The electric current through the bulb will be

so the entropy production rate turns out to be equal to

(7.71)

The second important material property of the filament concerns its resistance or rath-
er, its resistivity. It can be introduced as an interpolation function of data in Fig. 7.25.
The resistance of the wire is

(7.72)

Finally, the rate of emission of entropy from the tungsten wire must be found. The
source rate of entropy equals the source rate of energy divided by the temperature
(Equ.(7.44)). The energy source rate equals the energy flow which can be obtained
from Equ.(7.59):

(7.73)

The absorptivity a equals the emissivity which is obtained from data as in Fig. 7.20.
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This pretty much concludes the dynamical model. It can be used to predict the electric
current through the bulb which can be compared to measurements (see the diagram on
the right in Fig. 7.24). In addition, the model yields results on the temperature of the
filament. This confirms the initial idea about why the bulb behaves in the manner ob-
served. The temperature of the wire rises slowly at first and then stays high beyond the
point in time where the lamp is turned off again.

The good agreement between simulation and measurements should not be taken as a
sign of the model’s perfection. It suffers from several shortcomings, but clearly it
gives an understanding of the most basic phenomena. Structurally, we have left out at
least a couple of important elements. For one, the thermal and electric dynamics of the
connecting (copper) elements should be included in the model similarly to how this
was done for the filament. Secondly, the entropy radiated from the filament is inter-
cepted at least partly by the glass of the bulb; we might want to include the glass as an
additional element in our model. Then, as mentioned before, the entropy capacitance
should not be taken as constant—the range of temperatures is too great. Moreover, to
get a halfway reliable model we should measure the geometric properties of the fila-
ment and connecting wires as carefully as possible.

16. Why is the measure of the flow of entropy through the radiation field not a standard cur-
rent? Why is the measure of the rate of emission from a body to a field (or vice-versa) a
source rate and not a current?

17. Why does the basic relation IE = TIS not apply to radiation flowing through the radiation
field? Does the analogous relation hold for sources and sinks of energy and entropy in ra-
diative interaction between bodies and fields?

18. What simple argument shows that emission of radiation is dissipative?

19. Sunlight, i.e., the light flowing through the radiation field from Sun to Earth, has a temper-
ature of nearly 6000 K. The light radiated by our planet has a temperature close to 300 K.
What is the ratio of the entropy per unit energy for these two types of radiation? 

20. If, on balance, the Earth radiates away as much energy as it receives from the Sun, how
much entropy is produced by the planet?

21. Consider an imaginary sphere having a large radius (such as the distance from Sun to
Earth) drawn around the Sun and consider one square meter of this surface through which
the Sun’s light is flowing. Are the values of E and ES the same as at the surface of the Sun?

22. Consider the opaque surface of a warm body surrounded by air. There is radiation along-
side convective entropy transfer. Are the processes in parallel or in series?

23. Imagine a spherical rock in space (a planet without atmosphere) exposed to the light of the
Sun. In steady-state it will attain a certain temperature. Does this temperature depend upon
the emissivity of its surface?

24. Does galvanized sheet metal get hotter in sunlight than a surface painted black?

EXAMPLE 7.11. Surface temperature of the Sun.

The radiation originating in the thin surface layer of the Sun has properties almost like those of
a black body. (a) Using the solar constant (1370 W/m2), the distance from the Earth to the Sun
(1.5 · 108 km), and the Sun’s radius (700,000 km), derive the temperature of its surface. (b) Cal-
culate the rate at which entropy is emitted by the total surface.

QUESTIONS
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SOLUTION: (a) The solar constant Gsc is the value of the energy flux per unit normal area at
the distance of the Earth. Using this value we calculate the emissive power of the Sun (called
the luminosity L):

The Sun approximates a black body which does not receive radiation from the surrounding
space. Therefore, Equ.(7.36) applies to the relation between emissive power and temperature,
leading to a value of

for the surface temperature of the Sun. 

(b) The entropy flux flowing away from the Sun through the field is given by

EXAMPLE 7.12. Surface temperature of the Earth.

Model the Earth as (a) a black body of uniform temperature, absorbing radiation from the Sun
and emitting radiation to outer space. How large is the value of the temperature attained by the
surface of this body in steady state? (b) Repeat this for a gray surface and again (c) for a black
radiator that absorbs 70% of sunlight (because of reflection by snow and clouds).

SOLUTION: (a) We can use Equ.(7.67) without convection and T = 0 K for the environment.
This yields

As is the projected surface of a the sphere (a circle) and A is the surface of the planet. Inserting
and solving for T leads to 

(b) For non-black bodies we have

Since as = e for gray surfaces, the new condition leads to the same result for the temperature of
the planet, T = 279 K.

(c) If the Earth radiates like a black body, e = 1. However, if it reflects 30% of incoming radia-
tion, we may set as = 0.7 (it is as if the planet were a selective absorber/radiator). Now we have

All three results are too low. The mean surface temperature of our planet is more like 288 K,
leaving us with the problem of how to explain this difference (see Chapter 9, Section 9.6).
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EXAMPLE 7.13. The radiative heat transfer coefficient.

Write the equation for the exchange of energy between a black body and its surroundings,
Equ.(7.38), in a form which resembles the equation of convective heat transfer at a solid–fluid
boundary. How would you write the overall heat transfer coefficient, including convection?

SOLUTION: It is possible to transform the term involving the difference of the fourth powers
of the temperatures in such a way that the difference of temperatures occurs in the equation:

Comparison with the desired form, Equ.(7.27), shows that

Obviously, the radiative heat transfer coefficient strongly depends upon the temperatures in-
volved. 

If convection is present as well, we are dealing with a case of parallel flow of heat. The flux of
energy is equal to the sum of the radiative and the convective fluxes. Therefore, the overall heat
transfer coefficient must be equal to the sum of the radiative and convective transfer coeffi-
cients.

EXAMPLE 7.14. Absorption of solar radiation: the balance of entropy.

A body absorbs a fraction f of the energy current associated with solar radiation IE intercepted
by it. Represent the losses to the environment in terms of a total heat transfer coefficient h
(which includes radiation). Assume that solar radiation does not carry any entropy. (Because of
the high temperature associated with solar radiation, this assumption is quite applicable here.)
(a) Calculate the sum of the rates of entropy generation due to absorption of radiation and losses.
(b) Show that you obtain the same result using the balance of entropy for the body if you take
the system boundary to coincide with the environment at temperature Ta. (c) Compare the mag-
nitude of the effects for a body with a surface area of 1.0 m2 at a temperature of 50°C absorbing
80% of an energy flux of 1000 W/m2 in an environment of 20°C. The heat transfer coefficient
has a value of 10 W/(K · m2).

SOLUTION: For the solution of the problem we will need the equation of balance of energy for
the body:

(a) Entropy production is due to two distinct irreversible processes, the absorption of radiation
and heat transfer to a colder body (the environment). Since the energy of solar radiation ab-
sorbed is dissipated, the rate of production due to absorption of radiation is

The rate of production of entropy as a result of heat transfer, on the other hand, is given by
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(b) If we consider the body as our system and draw the system boundary at the location of the
environment at temperature Ta , we include the part responsible for heat transfer in the system.
In this case, the equation of balance of entropy takes the form

Remember that the radiation is assumed not to deliver any entropy, so there is no source term.
Now we have

This result is equivalent to what we obtained by calculating the rates of production independent-
ly.

(c) Inserting the numbers into the expression obtained in (a) gives values of 2.5 W/K and 0.095
W/K, respectively. This tells us something about the relative irreversibilities of the processes
(absorption and heat loss): the former is much larger. If we wanted to optimize a system by min-
imizing entropy production, we have to be able to quantify different contributions to irrevers-
ibility (see Chapter 9 for a discussion of this approach).

EXERCISES AND PROBLEMS

1. Sunlight passes in one direction through a gas inside a long cylinder. The flux of entropy
at the surface where the light is entering has a magnitude of 5.0 W/K. At the opposite end,
the flux of the current of entropy leaving the body is 4.0 W/K. (a) Determine the net flux
of entropy with respect to the region of space occupied by the body. (b) At what (minimal)
rate is the entropy of the body changing? (c) What is the value of the source rate of entropy
for the field? How large is the flux of entropy with respect to the material body?

2. A copper bar of length 0.50 m and cross section 10.0 cm2 has a temperature of 500 K at
one end and 300 K at the other. As heat flows through the bar in steady state, measurements
indicate that the temperature varies linearly along the bar. (a) Determine the temperature
gradient. Take the direction of entropy flow to be positive. (b) Estimate the current densities
of entropy and of energy for the center of the bar using the values read from Fig. 7.8. How
large is the conductivity with respect to energy? (c) Divide the bar into two equal parts.
With this current of entropy flowing, what is the flux of entropy at the surface where the
parts touch with respect to the part from where the entropy is flowing?

3. An immersion heater in a water kettle is hooked up to 220 V. Its electrical resistance is 160
Ω at a temperature of 20°C; the temperature coefficient of the resistance is 4 · 100–3 K–1. If
the heat transfer coefficient between heater and water is 100 W/(K · m2) and the surface
area of the heater is 0.020 m2, how large will the energy current from the heater to the water
be? How does the situation change if a layer of mineral deposit builds up around the heater?

4. Show that the energy current transmitted through a cylindrical shell of length L having in-
ner and outer radii r1 and r2 is 

where h1 and h2 are the inner and the outer convective heat transfer coefficients. The tem-
peratures of the fluids on the inside and the outside are T1 and T2.

5. A cylindrical volume of rock below ground has been heated uniformly to 50°C while the
rest of the rock has a temperature of 10°C. (This might be done in solar seasonal heat stor-
age applications.) Use the average values for granite for the properties of the rock. (a) Make
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the following model for heat loss from the cylindrical area to the surroundings. While the
temperatures of the storage area and the surroundings remain uniform, heat flows through
a cylindrical mantle with inner and outer radii equal to half and to twice the radius of the
storage cylinder, respectively. Estimate the energy current due to heat loss for a radius of
5.0 m and a length of the cylindrical space of 40 m. (b) How large should the radius be
made for heat loss over a period of half a year not to exceed one quarter of the energy stored
in the cylinder?

6. A sheet of metal with a selective surface of 2.0 m2 lies horizontally on the ground. The bot-
tom of the sheet is well insulated. In the visible part of the spectrum the emission coeffi-
cient of the metal is 0.90, while in the infrared it is 0.30. Take the ambient temperature to
be 20°C. The Sun stands 50° above the horizon, and 70% of the radiation outside the at-
mosphere penetrates the air. (Assume all the radiation from the sky to be direct and not dif-
fuse.) (a) Neglecting convection, how large should the temperature of the metal sheet be in
the light of the Sun? (b) Now take into consideration convective heat transfer at the upper
surface of the sheet. The convective heat transfer coefficient is assumed to be 14 W/
(K · m2). Calculate the temperature attained by the sheet under these conditions. 

7. Hot water is left to cool in a thin-walled aluminum can. In a first experiment, the aluminum
is highly polished (curve number 1 in Fig. P.7). In the second experiment (curve 2), the can
is painted black. Assume the convective transfer from the water to the can to be highly ef-
ficient. Data: Mass of water: 0.476 kg; surface area of the can: 0.0325 m2; Ambient tem-
perature: 21.6°C. (a) Determine the rate of change of entropy of the water in Experiment 1
at t = 500 s? (b) Assume radiation to be negligible in Experiment 1. What are the convective
entropy and energy transfer coefficients for the surface of the can (can to air). (c) Use the
data of Experiment 2 to determine the emissivity of the black surface.

8. Normally, the surface temperatures of stars are derived from their colors or their spectra.
However, it is also possible to calculate this quantity from the intensity of their light (i.e.,
from the irradiance at the surface of the Earth), and from their angular diameter as seen
from the Earth. Angular diameters of some nearby stars can be determined with the aid of
interferometric methods. In the case of the star Sirius in the constellation of Canis Majoris,
these values are 8.6 · 10–8 W/m2, and 6.12 · 10–3 arc seconds, respectively.

9. Consider the Earth as a uniform body. (a) How large is the rate at which entropy appears
in the atmosphere, biosphere, and the oceans of the Earth if we take their temperature to be
300 K? The solar constant outside the atmosphere is 1.36 kW/m2. 30% of the radiation is
directly reflected back into space. (b) How large is the flux of entropy through the radiation
field just before radiation is absorbed? (c) How large is the rate of production of entropy
on the planet as a result of absorption? (d) How large is the rate of entropy generation over-
all?

10. A photovoltaic panel with an area of 1.0 m2 is exposed to constant solar radiation having
an energy current of 800 W/m2. Initially, panel and cells are at ambient temperature (300
K). The panel has a heat capacity (energy capacity) of 1000 J/K. The absorption coefficient
of the panel for sunlight is 0.85. The emission coefficient of the panel for thermal radiation
is 1. Energy goes directly to the air as well (the heat transfer coefficient is 12 W/(K · m2)).
The electric efficiency of the panel decreases with temperature according to 

The efficiency is defined as the ratio of electric power and energy current of sunlight (not
the absorption rate!). (a) What is the electric power right at the beginning? (b) Formulate
the law of balance of energy of the panel in general (instantaneous) form. (c) What is the
rate of change of temperature of the panel right at the beginning? (d) Determine the steady-
state temperature of the panel resulting after a period of time. (e) Sketch as precisely as
possible, the temperature and the electric power of the panel as functions of time. 

11. A spherical satellite with a radius of 0.50 m moves in a low orbit around the Earth (Fig.
P.11.1). Approximately half the time it is exposed to the Sun’s light (the solar constant is

Figure P.7
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1370 W/m2). In the Earth’s shadow it is irradiated by the earth itself. The satellite is a thin
aluminum shell. (a) The Earth absorbs approximately 70% of the energy of the incident
light of the Sun. The energy is then uniformly reradiated over the entire surface. What is
the energy flow of the earth’s radiation per square meter? (b) Calculate the highest and the
lowest steady-state temperatures reached by the satellite. This temperature is uniform over
the entire surface. Assume that the satellite is a black body radiator. When it is in sunlight,
ignore the Earth’s radiation. (c) Determine the mass of the satellite with the help of the tem-
perature as a function of time (see Fig. P.11.2). 

12. In solar energy applications, parabolic troughs are used to focus light upon absorbers of
cylindrical shape. Calculate the heat loss coefficient of such an absorber. Consider it to be
made of a metal pipe having a diameter of 5.5 cm, surrounded by a thin glass cover with
an outer diameter of 8.5 cm. The annulus between the pipe and the cover is evacuated. Take
the convective heat transfer coefficient at the surface of the cover to be 35 W/(K · m2). The
emissivities of glass and the metal pipe are 0.88 and 0.92, respectively. Present the result
as a function of absorber temperature for an ambient temperature of 20°C.

13. A bottle of white wine is placed in a refrigerator whose inner temperature we take to be
constant at 0°C. How long will it take for the temperature of the wine to decrease from an
initial value of 20°C to the desired 8°C? Treat the wine as a uniform system of mass 0.75
kg and use the constitutive quantities of water. The bottle is made out of glass with a thick-
ness of 5.0 mm. The height and the diameter of the main body of the bottle are 25 cm and
8 cm, respectively; neglect its bottom and its neck and treat the mantle as a flat layer. The
convective transfer coefficients inside and outside are 200 W/(K · m2) and 10 W/(K · m2),
respectively.

14. A spherical thin-walled water tank has a volume of 1.0 m3. The water inside is kept at a
constant temperature of 60°C by heating it with an energy current equal to 1.0 kW. The am-
bient temperature is 15°C. How long will it take for the water to reach a temperature of
40°C after the heater has been turned off?

15. A body of water having a volume of 1.0 m3 loses heat to its surroundings. The temperatures
are 80°C and 20°C for the water (initially) and the environment, respectively. The product
of total heat transfer coefficient and surface area is 60 W/K. (a) How long does it take for
the temperature difference between the water and the surroundings to decrease to half its
initial value? (b) How large is the rate of production of entropy right at the beginning? (c)
How much entropy is produced in total from the beginning until the water has cooled down
completely? (d) How much energy could have been released by an ideal Carnot engine op-
erating between the water and the environment as the water cools to ambient temperature?

16. To maintain an inner temperature of 20°C in a building situated in a 0°C environment, the
required heating load is 5 kW. Without heating, the house is found to cool down as follows:
every day, its temperature decreases by 1/5 of the temperature difference to the environ-
ment. (a) Determine the product of surface area and total heat transfer coefficient. (b) Mod-
el the building as a single node system. Calculate its temperature coefficient of energy. (c)
Assume the temperature inside the building to be 12°C. Calculate the heating power nec-
essary if you wish the temperature to rise by 1°C per hour.

17. A tall, well insulated cylinder of radius 0.75 m contains 10,000 kg of water. The lower 3500
kg has a temperature of 20°C, while the temperature of the rest of the water is 80°C. Such
stratification may be approximately attained while charging a hot water storage tank in so-
lar applications. (a) Estimate how long it will take for the difference of the temperatures of
the two segments of water to decrease to 30°C. (Hint: Model the segments as uniform bod-
ies; for the thermal resistance take a distance from the center of the hotter to the center of
the cooler part.) (b) Calculate the initial rate of production of entropy. (c) How large is the
initial rate of loss of available power?
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In Chapter 7, we dealt with entropy transfer in 

 

closed systems

 

. Closed systems do not
exchange matter with the environment. In other words, they are non-flow systems.

 

Flow systems

 

, on the other hand, allow matter to cross the boundary of a control vol-
ume. These are called 

 

open systems

 

.

As discussed in Section 7.1.2, it is a matter of opinion what a flow system actually is.
When air flows in the atmosphere or water in a pipe, we may follow a well defined
and identifiable piece of matter. We think of an imaginary boundary around this body
and apply the analysis for closed systems presented in Chapters 4, 5 and 7. In many
cases, however, it makes more sense to perform an analysis based upon a control vol-
ume. This viewpoint is often suggested by some machinery through which a fluid
passes. A simple case would be a pipe with water flowing through it. If we define the
inside surface of the pipe as the boundary of a control volume, it is penetrated by two
currents, one at the entrance and one at the outlet.

Fluids flowing into and out of—or through—some region of space carry with them the

stances, momentum and, indirectly, energy.

 

1

 

 In this chapter, the currents of these
quantities carried by a fluid will be considered; such currents are called 

 

convective

 

. 

Flow systems abound in nature and in machines. In a study of open systems, the num-
ber of possible applications literally explodes. To prepare for interesting and impor-
tant examples, I shall take a brief look at convective transfer of (dissolved) substances
and momentum before turning to the flow of entropy. Other parts of the chapter are
devoted to a discussion of energy in flow systems; here we extend the notion of chem-
ical potential to fluids in systems that allow for transfer of matter.
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To get a feeling for flow systems, let us study a couple of simple small-scale examples
and introduce brief word models. The first is an experiment where hot water from a
tin can flows into a can containing cold water; the second container has an outflow. In

 

1. Energy flows are different from flows of the other quantities which underlines its special
nature once again. 

fluidlike quantities they contain. Among these quantities are entropy, dissolved sub-
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the second example, water in an open glass container is heated electrically and vapor-
ized. After some time, the heater is turned off and the water is left to cool.

 

Mixing hot and cold water in a flow system.

 

 Two small tin cans, each with an outlet,
contain water. Hot water from the first flows into the second from above (see Fig. 8.1,
left). Originally, there is only a small amount of cold water in the second can (see wa-
ter levels in Fig. 8.1, center, temperatures are on the right). Liquids in both containers
are stirred continuously. 

As the level of water drops in Tank 1, it first rises in Tank 2 and then drops. The tem-
perature of the liquid in the first can drops. In the second tank, the temperature rises
and then falls.

 

Figure 8.1:  

 

Hot water in Tank 1 is let flow into (a small amount of) cold water in Tank 2. Tank 
2 has an outlet. The water in both tanks is stirred continuously. Water levels (center) and tem-
peratures (right) are measured in both tanks.

 

Interpretation

 

. The behavior of the levels of liquid as functions of time is pretty much
as expected. Details may be different from a simpler case where fluid temperatures do
not change (see examples in Chapter 1). This is so because the temperature determines
the viscosity of the water which may critically influence the type of flow.

The more interesting part of the phenomenon is the thermal behavior of the system.
Note the drop of temperature in Tank 1. Here we have the usual suspect: heat loss to
the environment. We have two types of losses: entropy transfer through the thin wall
of the tin can, and cooling due to evaporation. The measured temperature differs from
a simple cooling curve: the (negative) rate of change of temperature increases as time
goes on. The reason for this unexpected behavior is to be found in the fact that the
mass of liquid in the tank decreases rather quickly for the first 400-500 seconds.

The temperature of the water in Tank 2 initially rises since hot water flows in and is
mixed with the cold liquid; the water from the first can carries a lot of entropy. 

 

T

 

2

 

 starts
to fall even before the water from the first container has become colder than the water
present in system 2 (Fig. 8.1, right). The reason for this is entropy loss just as in the
case of Tank 1. The shape of 

 

T

 

2

 

 after about 800 s is similar to that of 

 

T

 

1

 

 during the first
phase of the experiment, again for the same reason (decrease of the amount of water
in the second can).

 

Heating and evaporating water in an open container.

 

 In the second experiment,
water is heated electrically inside a glass. The water is stirred, temperature and mass
of the water are measured (the assembly stands on a recording scale, see Fig. 8.2, left).
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Tank 2
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The temperature rises slightly faster at the beginning than later on. When the fluid
starts boiling, the temperature remains constant. At 1600 s, the heater is turned off and
the water is left to cool.

Continuous measurement of the mass of liquid can be used to determine the mass flux
caused by evaporation (Fig. 8.2, right). The flow of steam rises sharply as the water
nears the boiling point, stays (roughly) constant during boiling and then drops as soon
as the heater is turned off and the temperature decreases.

 

Interpretation

 

. The rise of temperature during the first part of heating is a classic be-
havior. It slows somewhat because of increasing loss: the temperature difference be-
tween water and environment increases. Constant temperature during boiling is a well
known phenomenon. The final lowering of temperature is clearly due to entropy loss.

So far so good. Data of the current of mass, however, gives us additional information.
This transport is due to evaporation: steam leaves the system. Clearly, the flow of mat-
ter increases with increasing temperature.

On further thought, cooling by evaporation (which also took place in the first experi-
ment described, Fig. 8.1) needs some additional explaining. It is clear that the water
leaving the system removes entropy. Consider the case where someone pours some
water out of a tank. This does not change the temperature of the water in the system
since the fluid leaving takes the quantity of entropy it contains according to its tem-
perature with it. This leaves the remaining liquid with just the right amount of entropy
for its temperature to stay constant. Evaporation by cooling must therefore result from
a higher than expected entropy flux with steam. A little more thinking explains what
is happening: steam transports the entropy it contains as hot water plus the entropy it
obtains when it turns to steam. What we learn is this: 

 

currents of matter transport the
entropy contained in them

 

.
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The case of convective transfer—meaning the bulk flow of a fluid and the associated
transport of entropy, momentum or substances stored in the fluid—is a rather simple
concept. The expression for convective currents of fluidlike quantities is always the
same. It is understood most easily if we consider dissolved substances in a material
such as salt in water carried by the flowing liquid (Section 8.2.1). The notion of dis-
solved substance will be extended to momentum (Section 8.2.2, see also Chapter 3,
Section 3.1.3) and entropy (Section 8.2.3).
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 Energy transfer in flow systems will be
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Figure 8.2:  Water is heated elec-
trically in an open glass and 
stirred continuously. The assem-
bly sits on a scale. The heater is 
turned off after about 1600 s.
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introduced subsequently in Section 8.2.4. Here we will encounter once again the spe-
cial role taken by energy—expressions for flow energy are different from relations for
convective currents of substances, entropy, or momentum.

Laws of balance make up the second basic element of flow systems analysis. We have
met the generic law of mechanics—the balance of momentum—including convective
momentum currents in Section 3.4. We can follow this example when we formulate
laws of balance for dissolved substances, entropy, and energy in Section 8.2.5. 

 

8.2.1 Convective Transport of Dissolved Substances

 

Consider water flowing across the boundary of a system, as in Fig. 8.3. Salt is dis-
solved in the liquid and carried along with it. Now imagine a small region just behind
the boundary (rectangle with dashed border, Fig. 8.3) where the molar concentration
of salt is equal to  (Equ.(6.14)). The amount of salt contained in the region, i.e.,

 

A

 

∆

 

x

 

, takes a time 

 

∆

 

t

 

 to flow out of the system so the current of amount of salt is 

 

I

 

n

 

 =

 

A

 

v

 

. Since 

 

A

 

v

 

 equals the current of volume of water, 

 

I

 

V

 

, the convective current of
amount of dissolved substance 

 

I

 

n,conv

 

 is given by

 

(8.1)

 

Common sense suggests that this should be so: the amount of the dissolved substance
carried across the system boundary per unit time must be proportional to the current
of the carrier substance and to how much stuff is dissolved per unit volume of fluid
(density of amount of substance or concentration). Note that 

 

I

 

V,fluid

 

 is based upon the
volume of the solution which may be different from the volume of the solvent alone.

It is quite common to use the flux of mass 

 

I

 

m

 

 of the fluid instead of its current of vol-
ume. If we use the definition of mass fraction 

 

x

 

s

 

 of the solute (Equ.(6.11)), we arrive
at the equivalent expression for a convective current of amount of substance:

 

(8.2)

 

The index 

 

s

 

 refers to the solute, i.e., the dissolved substance, and 

 

I

 

m,fluid

 

 is the total
mass flux, that of solute and solvent.

Equ.(8.1) assumes that the density (concentration) of the dissolved substance is the
same over the entire surface through which the fluid flows. If this were not the case,
we could replace the expression by a more general one involving the current densities
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2. We have already seen a case that is similar in some respects: if the fluid is (thermal) radia-
tion, the entropy transfer can be understood if we imagine entropy “dissolved” in the “sub-
stance” called radiation; entropy transfer is calculated with the help of the relation that
gives us the entropy stored in radiation (Section 7.4.1, and Chapter 12). 

3. Current densities were introduced briefly in Section 7.2.1 (Equ.(7.14)); they will be used
intensively in Chapters 11 and 12 and in Part IV.

Figure 8.3:  A fluid (shaded) car-
ries a dissolved substance (dots) 
across the boundary of a system.
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Naturally, Equ.(8.2) can also be replaced by its local counterpart. Local formulations
become important when we discuss spatially variable situations.

 

Mixing salt and water in a flow system.

 

 The simplicity of the concept of convective
currents is demonstrated quite easily by an experiment in which fresh and salt water
are mixed (Fig. 8.4). Consider the simple hydraulic system made up of two (equal)
tanks connected at their bottoms by a pipe. The second tank has an additional outflow.
Salt water is filled to a level of 5 cm into the first tank. The second tank initially con-
tains fresh water (to a level of 30 cm). When the water is let flow, it flows out of the
second tank into the first and into the environment. As the level of water rises in Tank
1, the concentration of the salt there decreases because fresh water is mixed with the
salty liquid (the water in Tank 2 remains fresh). When the levels of liquids in the two
containers have become equal (roughly at 120 s, see the graph in Fig. 8.4), the flow in
the connecting hose reverses its direction. From now on, salt water enters the second
tank and is mixed in with the fresh water. As a result, the concentration of salt in the
water of Tank 2 increases.

 

Figure 8.4:  

 

Two tanks contain salt water (Tank 1) and fresh water (Tank 2) initially. The tanks 
are connected by a hose, and there is an outlet from Tank 2 into the environment. The water in 
the two tanks is continuously stirred. Data of water levels and of salt concentration (measured 
as conductivity of the liquids) has been taken (diagram on the left). Right: Diagram of a dynam-
ical model of the system.

 

A dynamical model of the system may take the form of the system dynamics diagram
shown on the right in Fig. 8.4. There are four fluidlike quantities to be accounted for:
amounts of water in the two tanks, and amounts of salt dissolved in the water in the
tanks. We add to this two water flows and two (convective) currents of salt. If we as-
sume the concentration of salt to be small enough for the density of the water not to
be affected too strongly, and if we assume the flow properties of the liquids to be those
of pure water, the hydraulic part of the model is independent of the chemical proper-
ties and is constructed along the lines discussed in Chapter 1. In order to understand
the salt concentration of the water in the two tanks, we have to introduce (molar) con-
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centrations of salt into the model and express the convective currents of salt in terms
of these concentrations and the volume fluxes of water. The current of salt flowing be-
tween the two containers depends upon the concentration in Tank 1 if water flows
from there to Tank 2 (which is the case after 120 s). If water flows from Tank 2 to Tank
1 (before 120 s), the convective current depends upon :

(8.4)

The current of salt out of Tank 2 into the environment always depends upon the salt
concentration in the second container. This simple model yields quite satisfactory re-
sults as can be seen from the comparison of simulation results with data (Fig. 8.5).

8.2.2 Convective Momentum Currents

The example of convective momentum currents was already discussed in Chapter 3
(see Section 3.4, Equ.(3.25)). It makes sense to repeat this to compare the result to
what we just had for chemical currents. If we take Equ.(8.1) as a guide we see that a
convective momentum current must be equal to the momentum per volume, i.e., the
density of momentum, multiplied by the flux of volume of the fluid, i.e., p/V·IV. This
can be transformed to yield the product of the momentum per mass of fluid and the
mass flux of the fluid:

(8.5)

The momentum per mass of fluid is called the specific momentum and is equal to the
speed v of the fluid (relative to the observer).

Convective momentum currents are a direct consequence of the flow of fluids, so
whenever we consider convective transports of (dissolved) substances or of entropy,
we naturally have convective currents of momentum as well. However, we rarely have
to take them into account in applications of fluid flow in small tanks and pipes (Chap-
ter 1), in chemical flow systems, or in most open thermal systems we are going to
study in Sections 8.5 and 8.6. Only when flow speeds become considerable do we
have to take note of the mechanical effects. For purposes of a complete energy bal-
ance, however, the energy and momentum associated with motion will have to be tak-
en into account (Sections 8.3.3).
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Figure 8.5:  Simulation results of 
model in Fig. 8.4 and experimen-
tal data.
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8.2.3 Convective Currents of Entropy

If substances flow, the entropy stored in them flows as well. For this reason we need
to know how much entropy is stored in a given fluid body. To express convective cur-
rents of entropy, the density of entropy stored in the fluid (ρS), the amount of entropy
per mass (specific entropy s) or the entropy per amount of substance (molar entropy

) are introduced. In uniform bodies, these are given by

(8.6)

respectively. The density of entropy and the entropy per mass are related by

(8.7)

where ρ is the well known mass density. If we want to specify the density of entropy
of a body, we shall need a constitutive theory such as the one for incompressible fluids
(Chapter 4, Section 4.5) or the ideal gas (Chapter 5).

Convective entropy fluxes are calculated just like convective currents of dissolved
substances. To visualize the relations, we can refer again to Fig. 8.3. Now the dots in
the figure are “grains of dissolved entropy” in the fluid. A convective entropy current
is the product of the entropy per volume of substance and the flux of volume of sub-
stance: 

(8.8)

The other two possible expressions can be derived in a similar manner. In place of the
entropy density, we use the specific entropy or the molar entropy and multiply by the
flux of mass or of amount of substance, respectively:

(8.9)

(8.10)

If necessary, we may express the fluxes in terms of mass density, speed of flow, and
surface area perpendicular to the flowing substance. Note that the expressions for the
convective currents only hold if the densities or specific quantities are constant across
the surface. 

Constitutive relations for the entropy of a fluid. Recall the relations for the specific
(or the molar) entropy of a fluid. The most important examples for us are incompress-
ible fluids such as water and ideal gases such as air. In the case of water, the molar
entropy is

(8.11)

(Section 4.5, with sref = 0).  is the molar temperature coefficient of energy, the so-
called molar heat capacity (do not confuse it with molar concentration, Equ.(8.1)).
Note that the entropy depends only upon the temperature in the case of incompressible
fluids—thermal effects are effectively de-coupled from fluid effects. This is not so for
compressible fluids such as an ideal gas:
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(8.12)

(see Section 5.2). The factor multiplying the logarithm of the temperatures is the tem-
perature coefficient of enthalpy of the gas (see Equ.(5.54)). Here, pressure (or volume)
effects cannot be de-coupled from the influence of temperature changes. Depending
upon which of the forms of convective currents we use (i.e., those involving volume,
mass, or amount of substance, Equations (8.8)-(8.10)), the expressions given here can
be transformed to specific entropy or to entropy densities.

8.2.4 Energy Transfer in the Flow of Hot Pressurized Fluids

Models of physical processes make use of laws of balance of amount of substance,
charge, momentum, or entropy. However, they can only be successful if we have the
proper constitutive laws for flows and production rates. This is where the energy prin-
ciple comes in. It restricts the form of constitutive relations; in other words, it provides
much needed additional information. If we want to make use of the balance of energy
in open systems, we have to formulate an expression for the energy current associated
with a flow of fluid across a system boundary.

A fluid transports energy for a number of reasons: it moves, it is hot, it is under pres-
sure and flows in a field. It may contain reactive substances, or it may be charged (just
consider the plasma at the surface of the Sun). Here, I am going to investigate only the
effects of temperature and pressure of a fluid (a more general expression for the energy
flux will be presented in Section 8.3.3).

Convective energy current. Let us consider a hot fluid under pressure entering a
system (Fig. 8.6). It is possible to distinguish between two contributions to the energy
current. First, a fluid transports the energy stored in it (the dots is Fig. 8.6 are supposed
to symbolize energy “dissolved” in the fluid) just as it transports stored entropy or mo-
mentum. This is the energy of the fluid an observer flowing along with the material
would report. If we introduce the energy per volume ρE (energy density), the specific
energy e, or the molar energy  according to

(8.13)

we can write the convective part of the energy current as follows:

(8.14)

Energy current due to a flowing pressurized fluid. Secondly, there is a term in the
total energy current which we know from our study of hydraulic processes (Chapter
2). A fluid having pressure P transports an energy current equal to

(8.15)

There are two more equivalent forms of this expression which result if we use the flux-
es of mass or of amount of substance. If we replace volume by mass, the right hand
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side of Equ.(8.15) changes to PIm /ρ. The inverse of the density is the specific volume:

(8.16)

This results in

(8.17)

If we finally replace mass by amount of substance (by using the molar volume  ac-
cording to Equ.(6.9)), we arrive at

(8.18)

Total energy current due to flow. In the case discussed here—a hot fluid under pres-
sure—the total energy current is simply the sum of the two contributions introduced
above. If we use the current of amount of substance, we have

(8.19)

The other two forms are equivalent to this and will not be written. The sum 
appearing in Equ.(8.19) is normally abbreviated to the molar enthalpy  of the fluid
(see Section 5.3.1 for a first mention of enthalpy).4 

Constitutive relations for energy. In order to find a concrete total convective current,
we obviously need the constitutive information regarding the energy of a fluid. Again,
as in the case of entropy (Section 8.2.3), the forms applicable to water and air will be
given. For incompressible fluids we have

(8.20)

whereas for the ideal gas, the molar energy is

(8.21)

Here, eref = 0. The molar temperature coefficient of energy is equal to coefficient of
enthalpy in the case of incompressible fluids. For gases, we have to distinguish the
two. Remember that for the ideal gas

(8.22)

where R = 8.314 J/(mole · K) is the universal gas constant (see Section 5.2.8 and, in
particular, Equ.(5.52)).

4. I shall not follow the tradition at this point. As we shall shortly see (Equ.(8.20)), the energy
of a fluid is usually given relative to a reference point having temperature Tref and pressure
Pref, whereas P and υ in Equ.(8.19) are absolute values. In many applications this does not
matter since differences between currents referring to the same reference state appear in
laws of balance. If such differences are absent, mistakes will be made when Equ.(8.19) is
applied uncritically.
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8.2.5 Laws of Balance in Open Systems

The example of the transport of salt dissolved in water (Fig. 8.4) demonstrates an im-
portant aspect of flow systems. In addition to the quantities we might be interested in
most directly—such as entropy or momentum if we study thermal or mechanical pro-
cesses—we need to consider the balance of the flowing substances that carry entropy,
momentum, or charge. In the model shown in Fig. 8.4, we see what is meant: in addi-
tion to the balance of salt, there are expressions for the balance of water in the storage
elements considered. Such balances are expressed with the help of volume, mass, or
amount of substance, depending upon what best suits the circumstances. In the present
case, we write the law of balance of volume of water for a tank:

(8.23)

In open systems, we have to add convective currents to the processes that are respon-
sible for changing stored quantities. Examples of such relations have already been for-
mulated for momentum in Chapter 3 (Equ.(3.26)) 

(8.24)

and for entropy in Chapter 7 (Equ.(7.9)):

(8.25)

The discussion of energy transfer in open systems in the previous section demonstrates
that the balance of energy needs to be formulated slightly differently. We have to take
the complete flow term into consideration, Equ.(8.19), not just what we would prop-
erly call the convective energy current (Equations (8.14)).5 Therefore, the law of bal-
ance of energy takes the form

(8.26)

1. Why does pouring hot water out of a container not change the temperature of the water that
remains in the tank? Why does letting cold water flow into a tank with hot water lower the
temperature of the water in the container?

2. What is the specific momentum of a fluid?

3. Why do we have to consider more than the energy stored in a fluid (the internal energy e)
when calculating the energy current due to the flow of a fluid into or out of a system?

4. Imagine a compressed spring being pushed into a containment. The containment is our
control volume for analysis. Consider the total energy current due to the spring entering
the containment (i.e., the energy current due to the “flow” of the spring across the surface
of the control volume). Is there a part of the total energy current associated with the spring
that resembles the flow of stored energy (eIm, Equ.(8.14)2)? Is there a part that resembles
the expression PυIm in Equ.(8.17)? 

5. Why is it not necessary to distinguish between temperature coefficients of energy and of

5. In Chapter 7 (Equ.(7.10)), the fluid or hydraulic term PυIm was not yet included.

˙
,V IV i= ∑

˙ , ,p I Ip cond p conv p= + + Σ
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, ,S I IS cond S conv S S= + + +Σ Π

˙
, ,E I IE cond E flow E= + + Σ

QUESTIONS
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enthalpy, CV and CP, in the case of incompressible fluids (such as in Equ.(8.20))?

6. Consider two communicating tanks with an additional outflow as in Fig. 8.4. There is a lit-
tle bit of hot water in Tank 1 and a lot of cold water in Tank 2. How will the temperatures
of the water in the two tanks behave over the course of time? (Assume the tanks to be ther-
mally insulated.)

EXAMPLE 8.1. Convective currents with water.

Water at a temperature of 50°C is flowing through a pipe whose diameter is 5.0 cm. The mass
flux is 10 kg/s. Calculate the magnitude of (a) the convective current of entropy, and (b) the con-
vective current of momentum (compare to the conductive momentum current for a pressure of
1.0 bar).

SOLUTION: (a) If we choose to base the calculation on the flux of mass, we need the entropy
per mass of the fluid, which is given by

In mechanical engineering, s(Tref) is often set equal to zero for Tref = 273 K (alternatively, we
could have taken the absolute value of the entropy from the tables for the chemical potential and
its temperature coefficient, Table 6.2). The convective flux of entropy follows from Equ.(8.9):

The remarks above concerning reference values show that we cannot apply absolute meaning
to the numerical values obtained here. (The same would be true if we wanted to calculate flow
energy currents.) The problem is commonly resolved by considering differences of inflows and
outflows relative to the same reference point (see Example 8.2). 

(b) We need to know the speed of flow in order to calculate the convective momentum current.
This follows from the flux of mass (or volume) and the cross section of the pipe:

The current of momentum is the product of the momentum per mass (the speed) and the mass
flux:

If the pressure of the water is 1 bar, the value of the convective momentum flux is a sizeable
fraction of the conductive momentum current (Ip,cond = AP = π · 0.0252 · 1.0 · 105 N = 200 N).

EXAMPLE 8.2. Net convective entropy and flow energy currents with air.

Imagine a current of air of 100 mole/s flowing through a technical device. At the entrance, pres-
sure and temperature of the air are 2.0 bar and 400 K. At the exit, the values are 1.0 bar and 300
K, respectively. Neglect kinetic energy terms. (a) Calculate the net convective entropy current
and (b) the net energy current due to the flow of the air through the device. (c) Is it possible to
have such a situation?
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SOLUTION: (a) The (molar) entropy of air can be approximated by the ideal gas model (see
Equ.(8.12)) with a molar temperature coefficient of enthalpy of 7/2R (according to the results
of Chapter 5, the adiabatic exponent of air is close to 1.4). The reference values of pressure and
temperature do not matter because we take differences of inlet and outlet conditions:

(b) Again, the reference state will not matter here since we take differences of currents. The net
flow energy current is calculated with the help of Equ.(8.19), Equ.(8.21), Equ.(8.22), and the
equation of state of the ideal gas:

(c) Laws of balance for entropy and energy can tell us if the flow process described here is pos-
sible at all. Let us assume a steady-state flow. There is more entropy flowing in than out with
the air, so the air must be cooled by an entropy current equal to – 1.41 kW/K. If we estimate the
energy current associated with this cooling by assuming an average temperature of 350 K, the
conductive energy flow is roughly – 500 kW. 

Since the energy flow with air coming in is greater by only 291 kW than the one exiting with
air, we would still have to add energy from outside at a rate of roughly 200 kW. This may not
happen by heating because that would mean that we would have to remove still more entropy.
It appears that the only possibility is to compress the air mechanically. (Whether or not this is
technically feasible and sensible is an altogether different question.)

8.3 ANALYSIS OF IDEAL FLOW SYSTEMS

This section is devoted to a more detailed study of laws of balance and the energy prin-
ciple in flow systems. Here, the expression for the energy current due to the flow of a
fluid will be generalized, and dynamical balances will be considered. This will lead to
two important results: a general form of the chemical potential of fluids and the Gibbs
Fundamental Form for specific or molar quantities. The expression for the chemical
potential and the enthalpy of fluids will be applied to incompressible fluids and the
ideal gas in Section 8.4.

8.3.1 Analysis of a Flow System Excluding Mechanical Effects

A flow system that is somewhat more general than the one depicted in Fig. 8.6 is
shown in Fig. 8.7. We consider a (compressible) fluid in a control volume where part
of the surface is open to the flow of the fluid, and part is closed but movable. The latter
element allows for volume changes or the addition of what have been called compres-
sive processes. The fluid entering at the open surface has the same instantaneous pres-
sure and temperature as the fluid inside. Excluding mechanical effects means that we
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do not consider momentum and momentum transfers, and we assume that the (center
of mass) of the fluid in the system does not move. Mechanical processes will be in-
cluded in the analysis in Section 8.3.3.

Laws of balance. There are three extensive quantities to be taken into account:
amount of substance, entropy, and volume. The laws of balance for these quantities are

(8.27)

The second relation (for entropy) expresses the assumptions that the fluid flowing in
carries entropy, and that there is heating (leading to a conductive current of entropy,
IS(c) ). There is no dissipation, however. This follows from the other assumptions of
the model (no jumps of pressure or temperature at the open surface; spatial homoge-
neity; no internal friction).

The balance of energy can be assembled from what we have discussed so far: there is
heating, volume change, and flow:

(8.28)

where the first term will be expressed with the help of Equ.(8.19). The second and
third terms will be formulated below.

Constitutive relations and energy currents. There are a number of terms in the pre-
vious laws of balance that depend upon particular circumstances. There is the convec-
tive current of entropy

(8.29)

then there are the energy currents:

(8.30)

Finally, we shall make use of the relation that introduces the chemical potential of the
fluid to interpret the results that follow from all the above relations:
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(8.31)

Evaluation of the relations. Both the constitutive relations and the laws of balance of
amount of substance, entropy, and volume (Equ.(8.27)) will be inserted in the balance
of energy. This leads to

Now we interpret the first term as the energy current due to chemical processes, i.e.,
processes having to do with substances. If we use Equ.(8.31) and replace In by the rate
of change of amount of substance (according to the law of balance Equ.(8.27)(1)), we
finally have

(8.32)

and

(8.33)

The first of these relations is the Gibbs Fundamental form for our particular model and
the second tells us how we can obtain the chemical potential of a fluid of the type con-
sidered here. The GFF is the same as that for the ideal fluid studied in Chapter 5 with
the exception of the addition of the term relating to changes of amount of substance.
This addition is the result of the fact that we now deal with open systems that exchange
matter with their surroundings: the amount of substance of the system is no longer
constant.

The results have been derived for reversible processes. It will be interesting to see in
Chapters 10-12 that they also hold for materials capable of irreversible changes as
long as the processes are still relatively simple (diffusion of entropy, substances, or
charge, diffusion of momentum, i.e., friction, etc.) and not too fast.

8.3.2 The Gibbs Fundamental Form for Specific or Molar Quantities

Using simple algebra, we can prove that the Gibbs Fundamental Form, Equ.(8.32),
also holds for specific or molar quantities, i.e., for molar energy, entropy, and volume.
Using the latter, we have

(8.34)

These expressions are introduced in Equ.(8.32) which leads to

Since dn/dt and n can be changed independently, this equation is satisfied only if both
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factors in brackets are equal to zero. On the right, we obtain what we already know,
namely how to calculate the chemical potential of the fluid (Equ.(8.33)). The left hand
side, however, furnishes a new result:

(8.35)

This is the GFF of the simple fluids considered in terms of molar quantities of energy,
entropy, and volume. It can also be obtained for the specific values and looks just the
same. These are examples of expressions that will also be derived in continuum ther-
modynamics (see Chapters 11-12).

8.3.3 Flow Systems Including Mechanical Effects

When mechanical effects are included in the model of a flow system, a number of
things change—a few equations and terms need to be added to the analysis already
presented.

First among these is the equation of balance of momentum which includes a convec-
tive term; then we have to augment the energy of the fluid by the kinetic energy term.
Finally, there is one more energy transfer to be considered, namely, the one with radi-
ative or conductive momentum transfer (see Chapter 3). The additional quantities are
shown in Fig. 8.8. In the following, the analyses of Sections 8.3.1 and 8.3.2 will be re-
peated and the new parts explained.

Laws of balance. There are now four extensive quantities to be taken into account:
amount of substance, entropy, volume, and momentum. The laws of balance for the
first three are the same as in Equ.(8.27). For momentum we have

(8.36)

if we let the additional mechanical interaction be radiative, i.e., due to a field. A con-
ductive term will work out in the same manner, so it does not have to be added sepa-
rately.6

6. Actually, there is a conductive term due to the compressive state (and the compression or
expansion) of the gas. Remember that compression of expansion can be treated as a me-
chanical process (Section 3.5.3).

˙ ˙ ˙e T s P= − υ

Figure 8.8:  A fluid carries entro-
py and momentum into a system. 
The fluid in the system can be 
compressed (ΠV) and heated 
(IS(c)). At the same time, momen-
tum is exchanged by interaction 
with a field (Σp).
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The balance of energy receives an additional term which results from the non-convec-
tive transfer of momentum which is radiative in the example discussed in this section
(see Fig. 8.8):

(8.37)

Constitutive relations and energy currents. One of the important differences comes
from the (specific or molar) energy of the fluid. In addition to the term which is called
specific or molar energy, e or , there will be the energy of the moving body, again
calculated per mass or per amount of substance. The kinetic energy per mass is simply
one half times the speed squared. To obtain the molar quantity, we multiply by the mo-
lar mass M0. The energy per amount of substance therefore equals

(8.38)

 is the intrinsic part of the (molar) energy of the fluid, what I previously called the
molar energy . 

In addition to the convective current of entropy, Equ.(8.29), we have to include a con-
vective momentum current

(8.39)

New among the energy currents are the expressions for the flow energy

(8.40)

and the mechanical energy current

(8.41)

Evaluation of the relations. The information assembled here can be combined by in-
serting constitutive relations and laws of balance into the balance of energy:

According to Equ.(8.31), the first term in parentheses equals the chemical potential of
the fluid. This then results in

(8.42)

and

˙
, , , ,E I I I IE flow E th E comp E mech= + + +

e

e e Mi= +( ) 1

2 0
2v

e i( )

e

I pI M Ip conv n n, = = 0v

I e M P IE flow
i

n,
( )= + +

⎛

⎝
⎜

⎞

⎠
⎟

1

2 0
2v υ

IE mech p, = v Σ

˙

   

   ˙ ˙ ˙

   

, , , ,

( )
( )

( )
, ,

( )

E I I I I

e M P I T I P

e M P I T S I PV p I

e M P

E flow E th E comp E mech

i
n S c V p

i
n S conv p conv

i

= + + +

= + +( ) + − +

= + +( ) + −( ) − + −( )
= + +

0
2

0
2

0
2

2

2

2

v v

v v

v

υ

υ

υ

Π Σ

−− −( ) + − +

= + − −( ) + − +

T s M I T S PV p

e P T s M I T S PV p

n

i
n

0
2

0
2 2

v v

v v

˙ ˙ ˙

   ˙ ˙ ˙( ) υ

˙ ˙ ˙ ˙ ˙E n T S PV p= + − +µ v



8.3  ANALYSIS OF IDEAL FLOW SYSTEMS

PART II 397

(8.43)

Again, the first of these equations is the Gibbs Fundamental form. Notice that it differs
from Equ.(8.32) by the term involving the rate of change of the momentum of the sys-
tem. Equ.(8.43) shows that the chemical potential of a fluid decreases with decreasing
speed.

The Gibbs Fundamental Form. The Gibbs Fundamental Form, Equ.(8.42), also holds
for specific or molar quantities, i.e., for molar energy, entropy, and volume. Molar
quantities are

(8.44)

These expressions are introduced in Equ.(8.42) which leads to

Using the same argument as before regarding the independence of n and dn/dt, we find
that

(8.45)

The GFF expressed with molar quantities has not changed from the result derived be-
fore in Equ.(8.35).

7. Are the terms PυIn in Equ.(8.30)(1) and PΠV in Equ.(8.30)(2) the same (due to the same
process) or do they refer to different phenomena?

8. If we hold a gas under pressure, momentum flows across its surface. Why is it still possible
to neglect mechanical phenomena (such as in the case discussed in Section 8.3.1)?

9. Why does it make sense that the GFF expressed in molar (or specific) quantities is the same
for systems that do or do not include mechanical effects? (See Equ.(8.35) and Equ.(8.45).)

EXAMPLE 8.3. Flow of an ideal incompressible fluid: Bernoulli’s law.

Derive the expression for the dependence of pressure on the speed of flow for the case of an
incompressible ideal fluid, without exchange of energy with the environment.

SOLUTION: The law of balance of energy for the fluid system between points 1 and 2 (see the
accompanying Fig. Ex.3) follows from Equ.(8.40):

This follows from our assumption that there is no exchange of energy with the surroundings;
therefore, the only currents of energy with respect to the system considered are the fluxes asso-
ciated with fluid flow at the inlet and the outlet of the system.
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Since the flow is ideal, there will not be any production of entropy between points 1 and 2. Equal
density of entropy of the incompressible fluid at the inlet and the outlet finally means that the
temperature of the fluid must remain constant. This, in turn, implies constant internal energy.
Therefore we find that:

This relation is what physicists normally call Bernoulli’s Law (for horizontal flow). Historical-
ly, it was derived on the basis of the momentum equation along a flow line of a fluid, not on the
balance of energy (the energy principle entered physics much later).

EXAMPLE 8.4. Measuring the temperature coefficient of enthalpy of air.

In Example 5.10 of Chapter 5, a way of measuring the “heat capacity at constant pressure”, i.e.,
the temperature coefficient of enthalpy, was presented on the basis of a closed systems analysis.
(a) Derive the same result using the control volume approach. (b) Estimate the magnitude of the
velocity term in the expression for the flow energy current.

SOLUTION: (a) We have three energy currents with respect to the vertical pipe in which heated
air is rising. Therefore, the equation of balance takes the form

h is the specific enthalpy. Here, the velocity term has been neglected. If the temperature coeffi-
cient of enthalpy increases linearly with temperature, the coefficient can be estimated by

with

(b) The speed of flow will be of the order of a few meters per second, which gives the change
of the velocity term in Equ.(8.40) a magnitude of less than 100 m2/s2 between the bottom and
the top of the pipe. The change of the enthalpy, on the other hand, has a magnitude of about
100 K · 1000 J/(K · kg) so we are justified in neglecting the kinetic energy of the fluid.

EXAMPLE 8.5. Isothermal compressors.

Air (modeled as an ideal gas) flows through a compressor (driven by a rotational process sup-
plying energy at a certain rate) at a steady rate. We desire the air to have the same temperature
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at the outlet as at the inlet. (a) Demonstrate using a control volume analysis that the air has to
be cooled and that the energy current due to cooling equals the mechanical energy current. (b)
Demonstrate that the process is reversible (assume there to be no friction).

(a) The steady-state expression for the balance of energy of the control volume in Fig. Ex.5.1
includes terms for flow, and mechanical and thermal processes:

Rearranging the terms leads to

The equation of state of the ideal gas was used to obtain the second line. For the final result we
made use of the fact that the energy of the ideal gas depends only upon temperature (which is
the same at the inlet and the outlet).

(b) The steady-state balance of entropy is

The last term drops out since the temperatures are the same. The entropy current in cooling is
obtained from the energy current IE,cool by dividing the latter by T. Since the energy current in
cooling equals the mechanical energy flux, we have

If we want to compress a certain amount of an ideal gas at constant temperature, the energy
needed is calculated according to

(see Chapter 5). For a constant stream of air, we get the energy current needed if we replace the
amount of substance by the flux of this quantity:

If we combine this with the expression for the production rate of entropy, we obtain a result of
zero. The model considered here is one of reversible processes.
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8.4 PROPERTIES OF SIMPLE FLUIDS

We are now in a position to say more about thermo-chemical properties of simple flu-
ids such as water or air that are modeled as either incompressible liquids or as an ideal
gas. In particular, we can use the relation between energy, entropy, and volume and
the chemical potential to learn more about the latter. One important result concerns the
temperature and pressure coefficients of the chemical potential that were already used
in Chapter 6.

8.4.1 The Chemical Potential and Molar Enthalpy of Uniform Fluids

Expressions for the chemical potential of ideal fluids were obtained in the previous
sections, see Equ.(8.33) and Equ.(8.43). In this section, the form excluding mechani-
cal effects, i.e., 

(8.46)

will be used to derive the chemical potential of incompressible fluids and the ideal gas
as functions of temperature and pressure. It is common to use the abbreviation

(8.47)

in the expression for the chemical potential which leads to

(8.48)

 is the molar enthalpy of the fluid (remember the brief introduction to enthalpy in
Section 5.3, Equ.(5.70)). Some of the results that shall be listed here were already ob-
tained in Chapter 6.

8.4.2 Incompressible Fluids

Let us begin by listing the properties of incompressible fluids that have been derived
so far: the molar volume is constant, the energy depends only on the temperature, and
so does the entropy:

(8.49)

These expressions are used to derive the molar enthalpy (Equ.(8.47)) and the chemical
potential (Equ.(8.46)). For the former we have

which leads to
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(8.50)

The chemical potential can be obtained by subtracting the product of temperature and
molar entropy:

Inserting Equ.(8.50) and the expression for the entropy, the chemical potential of an
incompressible fluid as a function of pressure and temperature becomes

(8.51)

Note that we need to know the absolute value of the entropy at the reference state to
calculate chemical potentials.

8.4.3 The Ideal Gas

The derivations proceed along the same lines as for incompressible fluids. First, we
have to list the properties of the ideal gas:

(8.52)

The first relation is the equation of state written for the molar volume, the second tells
us that the energy depends only upon the temperature, and the third has been formu-
lated for temperature and pressure as independent variables (see Chapter 5). Now the
enthalpy turns out to be

which means that

(8.53)

The derivation of the chemical potential as a function of pressure and temperature fol-
lows the same steps as before:

h h c T T P Pref ref ref− = −( ) + −( )υ

µ µ− = −[ ] − −[ ]
= − − −[ ]
= − − −( ) + −( )[ ]

ref ref

ref ref ref

ref ref ref ref

h T s h T s

h h T s T s

h h T s s T T s

             

             

µ µ υ− = −( ) + −( ) −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− −( )ref ref ref

ref
ref refc T T P P T c

T

T
T T sln

P RT

e c T T e

s R P P c T T s

V ref ref

ref P ref ref

υ =

= −( ) +

= − ( ) + ( ) +ln ln

h h e e P P

c T T R T T

ref ref ref

V ref ref

− = −( ) + ( ) − ( )[ ]
= −( ) + −( )

υ υ

            

h h c T Tref P ref− = −( )

µ µ− = − − −( ) + −( )[ ]ref ref ref ref refh h T s s T T s



CHAPTER 8.  FLOW SYSTEMS AND CONVECTIVE TRANSPORTS

402 THE DYNAMICS OF HEAT

which, with the help of the entropy in Equ.(8.52) leads to

(8.54)

We can easily derive expression where either pressure or temperature are kept con-
stant if we would like to know the dependence of enthalpy or the chemical potential
upon pressure or temperature only.

8.4.4 Temperature and Pressure Coefficients of Chemical Potentials

In Section 6.4.4, I introduced the coefficients used in the linear approximation of the
chemical potential as a function of temperature and pressure. If you inspect Equ.(6.24)
and Equ.(6.25), you will see that they correspond to the partial derivatives of the
chemical potential with respect to temperature or pressure. Here, we will derive them
for the special cases treated in the paragraphs above. Starting with the pressure coef-
ficient, the results for incompressible fluids and the ideal gas lead to the same general
expression:

(8.55)

The pressure coefficient corresponds to the molar volume of the fluid. The case of the
temperature coefficient is a little bit more complicated. Evaluation of the derivative of
Equ.(8.54) with respect to temperature at T = Tref shows that

which becomes

(8.56)

(Equ.(8.51) leads to the same result.) The temperature coefficient is equal to the neg-
ative molar entropy of the reference state. In Chapter 10, it will be demonstrated that
these results hold not only for the fluids investigated here, and not just for the refer-
ence state. For now they are enough to clarify some features of the tabulated values of
chemical potentials we have been using in our examples (Table 6.4). They show that
the chemical potential increases with pressure at constant temperature, and it decreas-
es with temperature at constant pressure (Equ.(6.32)). 

10. If the temperature is changed in an incompressible fluid, how does the pressure change?

11. Energy and enthalpy of the ideal gas appear to depend only upon the temperature. Does
this mean they cannot be changed when the pressure of a gas changes?

12. How could the absolute entropy of water at 50°C be calculated?
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8.5 IRREVERSIBILITY IN FLOW SYSTEMS

As in any other system, sources of irreversibility are always present. When fluids flow,
there is friction, and they undergo the typical irreversible processes that take place in
fluids at rest as well (absorption of radiation, chemical reactions, diffusion of electric-
ity, heat, and substances). In flow systems, there is an additional entropy producing
process, namely, mixing of fluids at different temperatures and pressures that will now
be investigated. A further entropy producing flow phenomenon is the so-called throt-
tling process where a fluid expands and its pressure is relaxed during flow through a
porous plug; this will be described further in Section 8.6.3 below.

8.5.1 Analysis of a Flow Heater

To demonstrate the usefulness of the analysis of flow systems, consider a fluid such
as water or air flowing through a duct as it is heated. The heating may be solar as in a
thermal solar collector, or it may be conventional from burning fuel or an electric heat-
er (Fig. 8.9). There is an entropy current IS due to heating accompanied by a flux of
energy, IE,th . At the inlet of the duct, the fluid has temperature Ti and pressure Pi ;
where it leaves the duct, temperature and pressure are To and Po , respectively.

Steady-state balances. If we operate the heater in steady-state, the laws of balance
of entropy and energy are expressed as follows:

(8.57)

(8.58)

Let us evaluate the balance of energy. The current due to heating is assumed to be
known. The expressions for flow energy are given by Equ.(8.19) and Equ.(8.21):

which is equivalent to 

(8.59)

Incompressible fluids. The last expression can be adapted to the case of incompress-
ible fluids such as water. Here, the temperature coefficient of energy is c, and the spe-
cific or molar volumes are the same at the inlet and at the outlet. In steady-state, the
energy current due to heating must therefore be equal to

(8.60)

This allows us to find the entropy production rate with the help of the equation of bal-
ance of entropy (Equ.(8.57)):

With the help of Equ.(8.60) and Equ.(8.11), this leads to

Figure 8.9:  A flow heater. A fluid 
flows through a duct (current In). 
Heating is quantified by IS , IE,th . 
The fluid enters with values 
(Ti , Pi ) and exits at (To , Po ).
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which then leads to

(8.61)

The ideal gas. The analysis of a simple gas flowing through a heater proceeds analo-
gously. Now, we make use of the equation of state of the ideal gas, PV = nRT or

. Equ.(8.60) changes to

With Equ.(8.22), we have the final result

(8.62)

This form is of particular interest. It tells us that if the temperature of a body of ideal
gas changes from Ti to To , and its pressure from Pi to Po , the amount of energy trans-
ferred in heating or cooling equals the temperature difference multiplied by the tem-
perature coefficient of enthalpy. 

Now we can return to the equation of balance of entropy and determine the entropy
production rate for this process:

Insertion of the constitutive relations yields

With Equ.(8.62) and Equ.(8.12), the result is

(8.63)

Using the enthalpy. In steady-state flow systems analysis of the type we are studying
here, it is quite common to use the enthalpy of a fluid to abbreviate the expressions.
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The constitutive law for flow energy is then

(8.64)

where Equ.(8.50) and Equ.(8.53) provide the concrete expressions for the enthalpy of
incompressible fluids and the ideal gas, respectively. These relations immediately
yield Equ.(8.60) and Equ.(8.62) for the steady-state current of energy in heating of the
fluid passing through the pipe in Fig. 8.9.

Mixing and entropy production in uniform flow systems. The application of the
balance of entropy with the production rate applied to a flow heater requires some ex-
planation. In the real situation, if we neglect fluid friction or other entropy producing
processes, there is no dissipation in the fluid system. The fluid’s temperature changes
in the direction of flow from Ti to To . Entropy enters conductively from outside and if
we treat the fluid as ideal (if it can be heated “easily”), there is no entropy production.
Adding and removing entropy convectively at inlets and outlets is not dissipative ei-
ther. So why do we have entropy production in the law of balance?

The reason is to be found in the form of the model. In contrast to the real situation
where the temperature of the fluid is a function of position in the direction of flow, our
model is one of uniform bodies. In the model in Fig. 8.9, or rather in the equations de-
fining the model, it is assumed that the fluid has a single temperature T, which is the
temperature at the outlet, T = To . In other words, there is a hot, well mixed fluid in the
duct, and cold air is added to it at the inlet. The new air is immediately mixed with the
hot air, and this is where entropy is produced.7 Entropy production resulting from mix-
ing will now be analyzed.

8.5.2 Filling a Hot Water Container: Mixing and Dissipation

Heat (entropy) storage systems for fluids such as water or gases are an important ele-
ment of domestic and industrial thermal applications, and they play an important role
in the heat budget of our planet. I will use the charging of storage elements to present
the formulation of models of dynamical systems that include convective transfers.
This serves to demonstrate the application of generalized dynamical laws of balance
and proper constitutive relations, and we will be able to prove the relations for entropy
production rates resulting from mixing of fluids on more general grounds.

Consider hot water (temperature Tf ) flowing into a water tank as in Fig. 8.10; the flow
rate is equal to Im . There is already water present (mass m) that has a temperature T.
Because of the inflow of fluid, the mass, entropy, and energy of the liquid in the con-
trol volume will increase. Since fluids at different temperatures are being mixed, there
should be dissipation. We are interested in the temperature of the system as a function
of time and in the rate of production of entropy. As far as the latter is concerned, we
should be getting the same result as in Equ.(8.61) with the exception of the pressure
term. To simplify matters a little, it is assumed that the pressure of the water entering

7. Since the production of entropy in a flow heater is a result of the type of model employed,
it should vanish in a continuum model of the flow and heating of a fluid through a pipe.
Indeed, if we divide the duct in Fig. 8.9 into several elements in the direction of flow, the
total entropy production rate becomes smaller, the more elements there are. In the limit of
many elements, the dissipation vanishes. 

I h IE flow n, =

Figure 8.10:  A liquid having 
temperature Tf flows into a tank 
with the same liquid at tempera-
ture T. The mass of liquid in the 
tank is m. Mass flow is Im .
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equals that of the water already in the tank, so we do not have entropy production due
to friction as the pressure of the entering stream is relaxed. (Also, neglect pressure
terms due to stacking of water in the gravitational field.)

Laws of balance. There are three laws of balance for the three fluidlike quantities that
make up our model: mass, entropy, and energy:

(8.65)

(8.66)

(8.67)

Possible heat loss from the tank is neglected. Entropy and energy are extensive quan-
tities, they scale with the amount of matter in the system: S = ms and E = me
(Equ.(8.34)). Since the amount of fluid (its mass, its volume, etc.) is changing, we
have to take the time derivatives of these products and obtain

(8.68)

(8.69)

The constitutive laws for convective currents and for specific entropy and energy of
incompressible media have been used before (Section 8.2.3 and Section 8.2.4). We
solve Equ.(8.68) for the entropy production rate, replace dm/dt by Im , use the GFF
(Equ.(8.45)) to get ds/dt in terms of de/dt, then use Equ.(8.68) and insert the constitu-
tive relations. This leads to

which finally turns into

(8.70)

The result is equivalent to what was derived in Equ.(8.61) with the pressure term ne-
glected.

8.5.3 Filling a Pressure Vessel With Hot Air

Here is a somewhat more sophisticated example of filling of a storage device, this time
for a compressible fluid (Fig. 8.11). There is an amount n of (ideal) gas at temperature
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T and pressure P present in the open system. Gas having a temperature Tf and a pres-
sure Pf is entering at a rate In . We would like to know how the vessel responds to the
inflow and how much entropy is produced in the mixing of the hot and cold air.

The laws of balance needed here are those of amount of substance, entropy, and ener-
gy (again, mechanical effects will be neglected):

(8.71)

(8.72)

(8.73)

The expression for entropy is the same as that already written in Equ.(8.66), but the
energy current in Equ.(8.73) is now the total current due to flow. With the flow energy
current given by Equ.(8.19), we can evaluate the energy balance:

The second step is a consequence of the equations of state of the ideal gas (Section
5.2.3). Since the energy is the product of molar energy and amount of substance, the
rate of change of energy is the derivative of this product. Therefore we have

If we use the product rule on the rate of change of entropy of the system, the balance
of entropy yields

The first term on the right hand side is obtained from the Gibbs Fundamental Form for
molar quantities, Equ.(8.35), and the difference of molar entropies is given by
Equ.(8.12). If we also insert the result just derived for the rate of change of the molar
energy, we have

Applying the equation of state of the ideal gas, and noting that the volume V of the

Figure 8.11:  Ideal gas having 
temperature Tf and pressure Pf 
flows into a tank containing the 
same gas at temperature T and 
pressure P. The amount of sub-
stance of gas in the tank is n. the 
current of amount of substance is 
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system is constant, we can prove that

so the final result for the production rate of entropy is

(8.74)

This is equivalent to Equ.(8.63) which was derived for the example of a steady-state
flow heater.

8.5.4 Experiment and Model of Mixing Hot and Cold Water

In Section 8.1, Fig. 8.1, an experiment of mixing of hot and cold water was presented.
We are now in a position to construct a dynamical model for this application. I will
simplify matters by de-coupling the hydraulic aspects from the thermal ones, and by
using the measured temperature of the hot water in Tank 1 (Fig. 8.12, left). The de-
coupling of hydraulic processes is achieved by measuring rather than predicting the
fluid currents occurring in the system. This leaves us with predicting the quantity and
the temperature of the fluid in Tank 2.

The model (Fig. 8.12, right) is constructed using the balances of mass and entropy for
Tank 2:

Remember that the mass fluxes are assumed to be known (they can be derived from
measurements of the mass of water as functions of time). The convective entropy cur-
rents are obtained from
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Figure 8.12:  Mixing of hot water 
(Tank 1) with cold water (Tank 
2). Right: Diagram of dynamical 
model for mass and temperature 
of the water in Tank 2.
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The temperature of the fluid is T1—the temperature of the water in Tank 1—for the
influx and T2—the water temperature in Tank 2—for the outflow. This is because the
liquid is stirred continuously in both tanks throughout the experiment. 

The entropy production rate is calculated from Equ.(8.74) by setting Tf = T1 and T =
T2. The entropy loss has been calculated with the help of Equ.(4.45) and Equ.(4.47).
Here I have simplified matters greatly by including evaporative loss from Tank 2 with
the conductive loss through the wall of the tin can. It turns our that the loss coefficient
for conduction (calculated from surface area and overall transfer coefficient of the
can) is about one third of the total to obtain satisfactory agreement between simulation
and experimental results (Fig. 8.13).

8.5.5 Dynamical Model of a Solar Hot Water System

The following example combines a flow heater with hot water storage in a simple yet
interesting technical system (see Fig. 8.14). Solar hot water heaters mainly consist of
two components: a collector and a hot water storage tank. Naturally, there is more to
it, but from a thermodynamics viewpoint, it makes sense to study this limited system.

The solar collector—the flow heater—consists of an absorber of solar radiation (a flat
metal sheet), pipes that allow water or a water-glycol mixture to flow past the absorber
so entropy can be collected, a glass cover to reduce entropy losses from the absorber
to the environment, and insulation on the back, again to prevent heat loss. The phe-
nomenon we are interested in from the perspective of flow systems is the heating of a
(relatively) cool fluid as it passes along a hot plate (see Section 8.5.1). If we treat the
absorber and the liquid present in the collector as a single body having a single tem-
perature, there are six processes with respect to this body: (1) absorption of entropy
and energy with radiation, (2) production of entropy due to absorption, (3 and 4) the
convective flows of entropy at inlet and outlet, (5) entropy production due to mixing
of the liquid flowing into the collector, and (6) entropy transfer to the environment
through the glass cover (see Fig. 8.14).

I c T T IS conv ref m, ln= ( )

Figure 8.13:  Data (dots) and 
simulation results (solid line) for 
temperature of water in the sec-
ond tank of Fig. 8.12.
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The tank is an even simpler system if the water is mixed continuously (in reality, one
wants to avoid mixing with its accompanying entropy production; without mixing,
layers of different temperatures form in the tank leading to a fairly complex system to
model). Hot water enters at one point, and the water having the temperature of the con-
stantly mixed liquid flows out toward the collector at another point. Entropy is pro-
duced due to mixing of warm and cool water, and there is heat loss to the environment.
Naturally, consumers will make use of the hot water during the day but this process is
neglected in the model whose diagram is shown in Fig. 8.15.

Here are some of the more interesting constitutive expressions for the processes visi-
ble in the model diagram of Fig. 8.15. The entropy current coming in with solar radi-
ation (or rather the part of it that is absorbed) is calculated as follows:

(8.75)

(see Equ.(7.35) and Equ.(7.36)). Tsun is the surface temperature of the Sun, i.e., the
temperature of solar radiation. Ac is the surface area of the collector, G is the irradiance
at this surface, and (τα) is the fraction of radiation transmitted through the glass cover
and absorbed by the collector (see Chapter 16 for more details).

The entropy production rate for the collector consists of two terms having to do with
absorption of radiation and with mixing of the incoming fluid (the former takes the li-
ons share):

(8.76)

where c is the specific heat of the liquid circulating in the system. The irreversibility
in the tank is due to mixing. It is calculated as follows:

(8.77)
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Finally, we need to express the convective entropy currents. There are two indepen-
dent ones related to the flow from the collector and from the tank:

(8.78)

We have to make sure that the flow is turned on only if the temperature of the liquid
in the collector is higher than the temperature in the tank.

The calculation of entropy losses is a standard one (see Chapter 7). A number of as-
sumptions have been made to simplify the model. Chief among these are the model of
a uniform collector (where all the components have the same temperature and the hot-
ness does not vary in the flow direction), complete mixing of the liquid in the tank, no
loss from pipes, and no energy consumption for pumping with its accompanying en-
tropy production due to flow resistance. If we take a simple sinusoidal function for the
daily irradiation G(t) (the same for every day which might happen for a sequence of
clear days), and choose a constant value for the mass flux, the temperatures of collec-
tor and tank fluids might look like those shown in Fig. 8.16.

Models of this type can be used to design solar heating systems. Playing with the pa-
rameters of the system can give us a feeling for adequate sizing. Moreover, if we quan-
tify entropy production, we have a means of designing for minimal irreversibility, a
subject we are going to take up in Chapter 9.

13. If air (or water) flows through a flow heater without mixing and without friction, why is
the process reversible? (Take only the fluid in the heater as the system.) Why did we get a
non-zero entropy production rate in our analysis of the flow heater? (See Fig. 8.9 and
Equ.(8.61) or Equ.(8.63).)

14. Why is the pressure term present in Equ.(8.61) missing from Equ.(8.70)?

15. When an incompressible fluid is mixed with one already present, and if the pressure of the
former is higher than that of the latter, there is dissipation due to the pressure effect. Why?
Is the term that applies to the mixing of air visible in the equation? (Equ.(8.74))

16. How could the system shown in Fig. 8.10 be changed if we want to include the effect of
pressure differences (upon entropy production) between incoming and stored fluid?

17. Why does the daily rise of temperature of water in the solar tank of Fig. 8.14 (see graph in
Fig. 8.16) get smaller day after day? (The irradiation is the same every day.)
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18. If water in the storage tank of a solar hot water system is constantly mixed, there is entropy
production due to this mixing. Clearly, mixing does not alter the energy of the system, so
there is no apparent “energy loss” due to this effect. Still, one tries to avoid mixing in solar
tanks. Why is a system with a layered tank (hot water on top of cooler water) more effi-
cient? Where does the loss due to entropy production become apparent?

EXAMPLE 8.6. The temperature of glycol in a tank with an inflow of hot glycol.

Imagine glycol having temperature Tf flowing into a tank also containing glycol at a temperature
T (the present mass of glycol is m, and the mass flux is Im). Assume the tank to be perfectly in-
sulated. Remember that glycol is a fluid having constant entropy capacitance (Fig. 4.37). (a) De-
termine the specific energy of glycol as a function of temperature. (b) Derive the entropy
production rate as a result of mixing of glycol at different temperatures. (c) Derive the differen-
tial equation for the temperature of glycol in the tank and solve it.

SOLUTION: (a) The energy of glycol can be calculated with the help of the Gibbs Fundamental
Form for incompressible fluids

which follows from Equ.(8.35). Since glycol has a constant (specific) entropy capacitance k, in-
tegration of this form leads to

(b) The derivation of the entropy production rate proceeds along the same lines that led to
Equ.(8.70) (Section 8.5.2). The laws of balance of entropy and of mass, the GFF, and the con-
stitutive expression for the convective current and the specific entropy lead to

With the help of the law of balance of energy we find that

This leads to the final expression for the entropy production rate due to mixing of a stream of
glycol with glycol in a tank:

(c) We can use the law of balance of entropy and appropriate constitutive relations to derive the
differential equation for the temperature of the liquid in the tank:
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which leads to

This is a separable differential equation for the variables T and m:

The index 0 refers to the initial state. Integrating leads to

The temperature of the incoming fluid is attained in the limit of a large amount of added glycol.

EXAMPLE 8.7. Isothermal incompressible fluid flow with friction.

As in the case of Bernoulli’s law (Example 8.3), consider the steady-state isothermal flow of an
incompressible fluid through a pipe. Include the effect of friction and derive an expression for
the rate of production of entropy in terms of the pressures and the speeds involved. Use a for-
mulation that involves the chemical potential of the fluid.

SOLUTION: A control volume analysis is performed on the system displayed in Fig. Ex.7 (see
also the figure of Example 8.3). In addition to the currents associated with the flow at points 1
and 2, there are fluxes of entropy and energy due to the cooling of the fluid. Since entropy is
produced and the temperature of the incompressible fluid is assumed to be constant, entropy has
to be emitted. The law of balance of entropy therefore reads

The contribution of the convective currents cancels out since the specific entropy of the isother-
mal incompressible fluid remains constant if the temperature is constant. Therefore, the entropy
current due to cooling is equal to the rate of production of entropy.

The equation of balance of energy includes the currents due to fluid flow and to cooling. They
can be written as

With the general expression for the chemical potential of the fluid (Equ.(8.43)), we obtain the
following result
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which can be transformed into

In contrast to the case of ideal flow, the sum of the pressure term and the velocity term is not
constant along the fluid stream.

EXAMPLE 8.8. Charging a hot water tank.

A tank containing 1000 liters of water at 20°C is charged with a stream of hot water at 60°C
while the same amount of water is withdrawn from an outlet (see Fig. Ex.8). The mass flux is
set equal to 0.05 kg/s. The water supplied to the tank instantaneously mixes with the fluid al-
ready there. There is heat loss to the surroundings at ambient temperature of 20°C; the heat loss
coefficient-surface area product is 10 W/K. (a) Calculate the temperature of the water in the tank
as a function of time. (b) Which parameters does the maximum temperature reached in the tank
depend upon? (c) Calculate the rate of production of entropy.

SOLUTION: (a) The law of balance of energy yields the differential equation for the tempera-
ture of the water as a function of time:

The terms in this equation can be expressed using the constitutive relations derived so far:

C is the temperature coefficient of energy of the water in the tank, and U denotes the (heat)
transfer coefficient from the tank to the environment. The differential equation can be integrated
directly:

which leads to

(b) The maximum temperature reached by the fluid inside the tank is equal to

Increasing the loss factor UA decreases the maximum possible temperature. If there is no heat
loss, the maximum temperature is the temperature of the water supplied to the tank.

M
P P

I T In s c0
1

1
2 2

2
2

1
1

2

1

2
0

ρ ρ
+

⎛

⎝
⎜

⎞

⎠
⎟− +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ =v v ( )

Π S
mP P I

T
= +

⎛

⎝
⎜

⎞

⎠
⎟− +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1
2 2

2
21

2

1

2ρ ρ
v v

Tin

T

T

Im

IS

Im

Figure Ex.8

˙
, , , , ,E I I IE flow E flow E loss= + +1 2

CT c I T T UA T Tm in a
˙ = −( )− −( )

C
dT

a bT
t

a c I T UAT

b c I UA

T

T

m in a

m

init −
=

= +

= +

∫

T t
a

b

a

b
T

b

C
tinit( ) exp= − −

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

T
a

b

c I T UAT

c I UA
m in a

m
max = =

+

+



8.5  IRREVERSIBILITY IN FLOW SYSTEMS

PART II 415

(c) The equation of balance of entropy for the control volume coinciding with the water in the
tank is

Since the rate of change of the entropy of the incompressible body of water is related to the rate
of change of its energy by the Gibbs fundamental form, we obtain

Performing a balance of entropy on flow systems is as important as it is for other processes.
Take the example of a hot water tank hooked up to solar collectors. If the water is stratified ac-
cording to temperature (warmer water at the top), rather than mixed, the efficiency of the system
will be higher. Naturally, with stratification, the amount of entropy produced, and therefore the
magnitude of the irreversibility of the process, is smaller than with mixing.

EXAMPLE 8.9. Analysis of a parabolic trough solar power plant.

Analyze some aspects of the operation of a solar thermal power plant that uses parabolic trough
mirrors to heat oil. The oil is used to produce steam to drive a heat engine.

Data and assumptions. Irradiance: 1000 W/m2, concentration factor for solar radiation: 40;
length of pipe carrying oil: 100 m, radius: 5.0 cm; specific heat of oil: 2000 J/(K · kg); ambient
temperature: 20°C. Assume the surfaces of the pipe to be perfect absorbers and emitters of ra-
diation. Convective heat transfer coefficient from pipe to air: 15 W/(K · m2). Assume the pipe
material to be a perfect conductor for heat. The oil leaves the pipe in the parabolic trough at TH
= 350°C. It is cooled in the power plant to TL = 300°C and returned to the pipe.

(a) Assume the pipe to be made of a single (thin) shell of glass. Construct a single body steady-
state model of the oil. Determine the rate of absorption of energy from radiation. Determine the
energy currents due to convective and radiative loss at the surface of the pipe. Use this to cal-
culate the (mass) flux of oil needed to satisfy the balance of energy in steady-sate. Determine
the ratio of losses to solar gain. What happens if the (direct) irradiance is reduced to 700 W/m2?
(b) Losses turn out to be a very high fraction in the model in (a). For this reason, assume the
pipe to have a second shell around the inner (oil carrying) pipe. Assume there is perfect vacuum
between the cylindrical shells. Create the new steady-state model and repeat the calculations of
problem (a). (c) A heat engine receives entropy from the oil from 100 parallel troughs. What is
the entropy current due to cooling of the oil? 

SOLUTION: (a) Assuming the pipe material to be a perfect conductor means that it will have
the same temperature as the oil and therefore does not have to be treated as a separate body. To
find the energy of radiation absorbed by the pipe (or rather, by the oil), assume that the Sun’s
light is concentrated onto half of the circumference of the circular pipe:

Let us assume that the temperature of the oil is an average 325°C = 598 K. Losses occur over
the entire surface of the pipe and are therefore equal to

The balance of energy allows us to calculate the mass flux of oil through the pipe:
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Losses are about 57% of solar gain. If the insolation drops to 700 W/m2, the losses amount to
about 81%.

(b) There are now two bodies to be considered, the pipe with its oil and the surrounding shell.
Assume the shell to be transparent for solar light but opaque for the radiation coming from the
hot inner pipe. Now the laws of balance of energy for the pipe and shell are

Again, the temperature of the pipe is taken to be the average of inlet and outlet temperatures of
the oil, and the shell is assumed to take a single temperature Tshell. For Tav = 598 K, the fraction
of losses drops to 23% and the temperature of the shell is 462 K (189°C). The mass flux of oil
needed to keep the operation at steady-state increases to 4.8 kg/s.

(c) The oil is cooled in the engine from 350°C down to 300°C. The current of the 100 parallel
troughs is 480 kg/s. In steady-state, the balance of entropy leads to

A completely reversible Carnot engine running between 325°C and 20°C would therefore have
a power of roughly 300 K · 80 kW/K = 2400 kW. A real engine might achieve half of this which
would translate into a thermal efficiency (solar to electric) of about 20%. This very rough esti-
mate agrees very well with the actual data that gives typical values of up to 25%.

8.6 FLUID FLOW WITHOUT HEATING OR COOLING

In this section, we will discuss examples where the flow is thermally isolated, namely
isentropic flow of the ideal gas, the throttling process, and the flow through a reactor
of a fuel undergoing combustion without losing heat to its surroundings. The first pro-
cess might model a rocket engine, while the second occurs in refrigeration systems us-
ing vapor compression, and in processes for liquefying gases. The third example will
lead to the notion of adiabatic flame temperature. We have already discussed one ex-
ample of the type treated here: if the fluid is incompressible and the flow isentropic,
we have the case for which Bernoulli’s law applies.

8.6.1 Steady State Equations of Balance

Independent of what happens inside the pipe, as long as there is no exchange of energy
through the walls channelling the flow, the only energy currents are the result of fluid
flow at positions 1 and 2 (Fig. 8.17). The equation of balance of energy therefore takes
the form

(8.79)
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Since the fluxes of amount of substance are of the same magnitude at the inlet and the
outlet, this is equivalent to

(8.80)

If we use Equ.(8.43) for the chemical potential of the fluid, we obtain

(8.81)

In applications, the state of the fluid at the inlet of the pipe might be specified, and we
may wish to compute the quantities at the outlet. The equation of balance of energy
does not generally suffice for getting the required answer. We therefore have to be
more specific about the details of the flow, and apply the other laws of balance as well.
The balance of entropy simply states that

(8.82)

The balance of momentum must be applied if information about forces upon sections
of the fluid (or the pipes) is desired; it will not be considered at this point.

8.6.2 Isentropic Flow of the Ideal Gas

In the case of the ideal gas we have the necessary constitutive information for comput-
ing what happens to the fluid. Equ.(8.81) becomes

(8.83)

(see Equ.(8.53)). This shows that the temperature of the fluid decreases with increas-
ing speed of flow. However, we are not able to calculate the state at the outlet from
this information and the specification of the state at the inlet. We need the equations
of balance of amount of substance (or mass) and of entropy:

(8.84)

(8.85)

Remember that the flow was assumed to be isentropic; in other words, it must be re-

µ µ1 1 1 0 1
2

2 2 2 0 2
2+ + = + +T s M T s Mv v

h h M2 1 0 2
2

1
21

2
− = − −[ ]v v

s I s In n S1 1 2 2+ = −Π

2

1

IS,conv

Ip,conv

In

Figure 8.17:  Assume that the 
fluid flowing through the pipe 
does not exchange any heat with 
the walls. As a consequence, the 
energy currents are only due to 
fluid flow.

c T T M c T T Mp ref p ref1 0 1
2

2 0 2
21

2

1

2
−( ) + = −( ) +v v

I I A A
P

T
A

P

T
An n1 2 1 1 1 2 2 2

1

1
1 1

2

2
2 2= ⇒ = ⇒ =          ρ ρv v v v

I I s s R
P

P
c

T

TS conv S conv p, , , ,           ln ln1 2 1 2
2

1

2

1

0= ⇒ = ⇒ −
⎛

⎝
⎜

⎞

⎠
⎟+

⎛

⎝
⎜

⎞

⎠
⎟ =



CHAPTER 8.  FLOW SYSTEMS AND CONVECTIVE TRANSPORTS

418 THE DYNAMICS OF HEAT

versible. The last forms hold for the ideal gas with a constant temperature coefficient
of enthalpy (Equ.(8.52)). Note that Equ.(8.85) leads to the well-known formula for
adiabatic changes of the ideal gas which was derived in Chapter 5.

8.6.3 The Throttling Process

In the throttling process, a fluid is allowed to flow through some sort of valve or po-
rous plug which reduces its pressure. If the valve is insulated, it will not lead to an ex-
change of energy and entropy with the surroundings, leaving our main assumption
valid. If the diameter of the pipe is changed so as to leave the speed of flow unchanged
upon expansion of the fluid, the expression of the balance of energy reduces to

(8.86)

The laws of balance for amount of substance and entropy take the forms

(8.87)

and

(8.88)

respectively. Clearly, the flow is irreversible, i.e., entropy is produced. Note that for
the ideal gas, the condition of constant enthalpy requires the temperature to remain
constant: ideal gases do not change their temperature as a result of throttling, and they
cannot be liquefied. For other gases, property data have to be known for the chemical
potential, entropy, energy, enthalpy, and specific volume. 

8.6.4 Adiabatic Mixing of Streams of Non-Reacting Ideal Gases

A generalization of the previous discussion leads to a practically relevant situation.
Gases are mixed dynamically when streams of different substances come together to
form a new mixture. In the following, steady-state adiabatic mixing of two streams of
different non-reacting ideal gases will be treated (see Fig. 8.19).

The situation is governed by three laws of balance, namely those for amount of sub-
stance, entropy, and energy. Details are determined by the properties of the gases at
the inlets and the outlet. If some of the conditions—flows, pressures, and tempera-
tures—are given, missing quantities can be calculated.
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Figure 8.18:  A gas is allowed to 
expand through a porous plug. If 
the fluid is near the point of con-
densation, the reduction in pres-
sure can lead to a decrease of 
temperature.
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Laws of balance. There are three flows at the two inlets and the single outlet defined
in Fig. 8.19, and each of them represents a bundle of flows of quantities. The steady-
state balance of amount of substance takes the form

(8.89)

Since the gases do not react, the substance A and B are still present in the original
amounts in stream 3:

(8.90)

The law of balance of entropy contains four terms: three convective flows and the pro-
duction rate:

(8.91)

Dissipation is due to mixing, temperature changes, and pressure changes. On the right
hand side, the average entropy of the mixture appears. According to the mixing rules
of non-interacting gases (Section 6.6.3) and the balance of amount of substance, the
right hand side can be written as follows:

(8.92)

The law of balance of energy only involves the convective currents of energy at the
three openings of the reactor in Fig. 8.19. According to what we derived above, the
convective energy current at each of the inlets and outlets equals the product of molar
enthalpy and current of amount of substance (if effects of speed and height in the grav-
itational field are neglected): 

(8.93)

As in the case of entropy shown above in Equ.(8.92), the right hand side can be written
as follows:

(8.94)

Entropies and enthalpies. Now we apply the property rules for ideal gases to the sub-
stances at points 1, 2, and 3. If we introduce reference values Tref and Pref for temper-
ature and pressure and set entropy and enthalpy equal to zero at the reference points,
we obtain:

(8.95)

The enthalpies are calculated for the same four conditions. Remember that the en-
thalpy of the ideal gas depends only on temperature:
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(8.96)

These rules for entropy and enthalpy apply to the model of the ideal gases having con-
stant temperature coefficients of enthalpy cP . Note that the pressures of gases A and
B at the exit (point 3), P3A and P3B , are the partial pressures of the respective compo-
nents in the mixture.

Partial pressures. The partial pressures of components A and B can be calculated
from the relative amounts of A and B. With

(8.97)

the partial pressures are

(8.98)

8.6.5 Flow With Combustion: Adiabatic Flame Temperature

How hot is the flame of burning fuel? The temperature is determined by three factors:
first, by the amount of entropy produced by the reaction; second, by how much entro-
py is retained by the combustion products; and, finally, by the temperature dependence
of the entropy of the substances involved in the reaction and in the flow through the
reactor. If you let the reaction take place at constant pressure, the rise in temperature
certainly cannot be the result of compression. Rather, the temperature of the combus-
tion products depends directly upon how much entropy they contain.

Consider a simple flow reactor (Fig. 8.20) with reactants entering at standard condi-
tions, and products of the reaction leaving at an unknown temperature T. The value of
T will be highest if there is no entropy lost to the surroundings: this is the condition to
which the name adiabatic flame temperature applies. Our steady-state analysis will
begin with the balance of entropy. The entropy leaving convectively with the products
of the reaction must be the entropy produced during combustion, plus the entropy sup-
plied by the reactants, i.e., by the fuel and the oxidizer:

(8.99)

During adiabatic operation, there will be no other entropy flux to or from the surround-
ings. The quantity which determines the entire outcome is the amount of entropy pro-
duced, which is governed by the magnitude of dissipation, which in turn depends upon
whether or not other processes are involved. Since the substances burn at a different
temperature from that of the entering fluid stream, there is indeed something else hap-
pening: the entropy entering the reactor with the reactants is lifted from temperature
T0 to a final value of T. Hence, the energy released by the combustion is divided
among two processes. Fig. 6.30 gives the rate at which energy is released; the expres-
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sions for the energy dissipated, and for the energy used in lifting an amount of energy,
are well known. Therefore, the balance of power reads:

(8.100)

νi is the stoichiometric coefficient of the i-th term in the reaction equation (Fig. 8.101
below). All three terms contain the unknown temperature of the combustion products.
If we manage to properly express all the quantities in the previous two equations, we
can solve the expressions—which are normally nonlinear—for T. First, the change of
the chemical potential for the reaction is computed in the following manner. Write the
reaction equation as follows:

(8.101)

Note that the stoichiometric coefficient multiplying the fuel has been set equal to one,
i.e., ν1 = 1. On the left, we have the reactants, which may include substances which do
not necessarily take part in the combustion. This is the case, for example, if a fuel is
mixed with air, containing mostly nitrogen. If we set i = 1, the power of the chemical
reaction takes the form

(8.102)

(see Equ.(8.48)). Πn,fuel is the rate at which fuel is burned in the reactor (remember
that the chemical potential difference and the consumption rate are both negative).
Next, the convective entropy currents have to be written down for the particular chem-
ical constituents of the fluids, and for the particular physical conditions:

(8.103)

Here, it is assumed that the fuel is completely consumed so that the rate of fuel con-
sumption must be equal to the flow of fuel. Combining the different parts, we arrive
at the following expression for the rate of production of entropy:

(8.104)

Note that in the first term on the right, the exit temperature T appears as a factor of
si (T0 ) (and not T0 ). These equations tell us that we must know the entropy and the en-
thalpy of reactants and products at their respective temperatures (and at constant pres-
sure), with the temperature of the products still unknown, if we want to do the
calculations. One way of doing this is by approximating the dependence of enthalpy
and entropy upon temperature using average temperature coefficients of enthalpy cP
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for the species. (Such values may be read off the graph in Fig. 5.14 of Chapter 5). The
nonlinear equations can be solved iteratively. 

Apart from the fuel and the oxidizer, there might be several other substances involved
in the flow through the reactor, as in the case of fuel mixed with air. Also, we might
use too much of the oxidizer or of the air, or too little; in the latter case some of the
fuel will not be burned. In either case, all these factors negatively influence the out-
come of the combustion process compared to the case of a mixture of fuel and the right
amount of the oxidizer (and nothing else). The amount of air delivering the proper
mass of oxygen for complete combustion of the fuel is called the theoretical amount
of air.

EXAMPLE 8.10. Temperature reduction in steam as a result of throttling.

Use the following steam table (Table 8.1) to estimate the reduction of the temperature resulting
from the irreversible expansion of steam. The diameter of the pipe is increased so that the pres-
sure of the steam is reduced from 1.0 bar to 0.70 bar. Initially, the steam is at a temperature of
120°C. Also calculate the new specific volume and the necessary change of the diameter of the
pipe. Finally, compute the entropy produced per kilogram of steam passing through the porous
plug in the throttling device.

SOLUTION: According to the balance of energy, the enthalpy of the fluid must remain constant
as a result of the process. The specific enthalpy at the inlet is h(P=1.0,T=120) = 2716.6 kJ/kg.
Finding this same value in the table for a pressure of 0.70 bar yields a temperature of
T2 = 118.3°C by linear interpolation between the appropriate values.

We use this new temperature to interpolate to find the specific volume and the specific entropy
of the fluid: υ2 = 2.559 m3/kg and s2 = 7.629 kJ/(K · kg).

With a value of υ1=1.793 m3/kg at the inlet, we can infer that the cross section of the pipe has
to increase by a factor of 1.427, which means that the radius at the outlet must be larger than at
the inlet by a factor of 1.195.

The specific entropy at the inlet is 7.467 kJ/(K · kg). Therefore, the amount of entropy produced
is 162 J/(K · kg).

EXAMPLE 8.11. Burning methane with oxygen and with different amounts of air.

(a) Let methane burn completely with oxygen. Determine the adiabatic flame temperature for
this reaction. (b) Calculate the theoretical amount of air for the combustion of methane. Assume

Table 8.1: A small portion of the steam tables

P / bar T / °C υ / m3/kg e / kJ/kg h / kJ/kg s / kJ/(K · kg)

0.70 100 2.434 2509.7 2680.0 7.534

120 2.571 2539.7 2719.6 7.638

160 2.841 2599.4 2798.2 7.828

1.0 100 1.696 2506.7 2676.2 7.361

120 1.793 2537.3 2716.6 7.467

160 1.984 2597.8 2796.2 7.660
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air to be composed of nitrogen and oxygen. (c) Determine the adiabatic flame temperature for
the theoretical amount of air. (d) Vary the amount of air (both up and down) and compute both
the flame temperature and the rate of production of entropy (per unit amount of methane). (e)
Demonstrate that Equ.(8.104) and the balance of entropy lead to the expression

The enthalpy of the entering mixture is equal to the enthalpy of the fluid stream exiting the re-
actor.

SOLUTION: (a) Methane and oxygen combine to form carbon dioxide and water according to

With only these substances present in their stoichiometric ratios, the rate of production of en-
tropy turns out to be

while the convective entropy currents at the inlet and the outlet are equal to

These last two relations provide for a second expression of the rate of production of entropy.
Numerical data about the entropies and the enthalpies of the species for different temperatures
are given in Table 8.2. Table 8.3 lists the convective entropy currents and the rate of entropy
production calculated according to the two forms given above. Since the rates have to be equal
at the condition of the adiabatic flame temperature, interpolation in the last two columns gives
the desired result (5240 K).

Note that the flame temperature calculated in the manner just presented coincides with the min-
imum of the entropy production (Sprod1) calculated for different temperatures. This is an exam-
ple of a phenomenon we will discuss in detail in Chapter 9.

(b) In air, there are 3.76 mole of N2 for every mole of O2. Therefore, if we write the reaction

v h T v h Ti i j j

products

0( ) = ( )∑ ∑
reactants

Table 8.2: Molar enthalpy and entropy of substances involved in combustiona

a.[h] = J/kmole; [s] = J/(K · kmole). Values calculated with property functions in EES (Klein et al., 1991).

T / K h_CH4 h_O2 h_CO2 h_H2O s_CH4 s_O2 s_CO2 s_H2O

298 –74870 0 –393520 –241820 186 205 214 189

1000 –36686 22705 –360161 –215795 248 243 269 233

2000 48678 59197 –302123 –169166 306 269 309 264

3000 145200 98084 –240730 –115419 345 284 334 286

4000 238396 139013 –177782 –58825 372 296 352 302

5000 320356 182045 –112279 –2589 390 306 367 315

6000 386171 227323 –41970 50808 402 314 379 325

7000 432540 275012 36083 99376 409 321 391 332
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Π
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equation with the theoretical amount of air, it takes the form

(c) Repetition of the procedure demonstrated in (a) with nitrogen included gives an adiabatic
flame temperature of 2330 K. Obviously, having inert nitrogen present changes the result con-
siderably. Even though nitrogen does not take part in the reaction, it has to be heated to the flame
temperature, which reduces the effect.

(d) If there is a positive surplus of air (more than the theoretical amount), the reaction equation
can be written in the following form:

The equation does not apply for negative X. (It has to be changed appropriately to take into con-
sideration that not all methane is burned.) Repeating the calculation for various values of X
gives the graph shown below (Fig. Ex.11).The curves for the rate of entropy production (calcu-
lated per unit amount of methane burned) and for the adiabatic flame temperature demonstrate
that the lowest irreversibility leads to the largest value of the flame temperature.

(e) Look again at the equation for the rate of production of entropy for case (a). The second ex-
pression in brackets is, itself, equal to the entropy produced per mole (according to the balance
of entropy, Equ.(8.99)). Therefore, the first term in brackets must be zero, proving the statement
about the enthalpies of the two fluid streams. We could have started our analysis with this result;
however, we wanted to base the derivation upon a consideration of entropy.

Table 8.3: Entropy transferred and entropy produceda

a.[IS] = J/(K · kmole); [ΠS] = J/(K · kmole).

T / K Se_in Se_out Sprod1 Sprod2

298 596 591 2687 –5

1000 596 734 855 138

2000 596 838 525 242

3000 596 906 443 310

4000 596 957 416 361

5000 596 997 409 401

6000 596 1029 411 433

7000 596 1056 416 460

CH O N CO H O + 2 3.76N24 2 2 2 22 3 76 2+ +( ) = + ⋅.

CH O N CO H O + 3.76N O24 2 2 2 2 22 3 76 2 2+ +( ) +( ) = + +( ) +X X X.
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EXERCISES AND PROBLEMS

1. A wind power generator having a cross section of 75 m2 is exposed to winds at a speed of
50 km/h. Behind the rotor, the flow surface increases by a factor of 1.6. The air can be treat-
ed as incompressible and with a density of 1.2 kg/m3. Assume its temperature to remain
constant. (a) What is the purely convective energy flow of the wind through the cross sec-
tion of the rotor? (b) At what rate is the energy transferred to the rotor? (c) The rotor turns
at a frequency of 0.5 Hertz. What is the current of angular momentum through the shaft of
the wheel to the generator?

2. Air having a temperature of 300 K and a pressure of 1.2 bar is flowing through a thermally
insulated porous plug with a mass flux of 0.20 kg/s. The duct has diameters of 10 cm and
15 cm at the at the inlet and the outlet, respectively. (a) Calculate the outlet temperature
and pressure. (b) What is the entropy production rate?

3. Hydrogen is burned with oxygen in a rocket engine. Knowing that the exit speed of the gas
is around 3000 m/s, estimate the temperature of the stream.

4. A pressure vessel of steel having a mass of 8 kg and a volume of 6.0 liters contains 4 liters
of water and 0.50 kg of nitrogen gas at a temperature of 20°C. The container stands on three
legs. On the bottom of the container is a hole with an automatic valve. (a) What is the pres-
sure of the gas? (b) At what speed does the water flow out of the hole immediately after it
is opened? (c) What diameter must the hole have so that the initial acceleration of the vessel
is 30 m/s2? 

5. There is hot water in an open tin can. The water flows out through a horizontal pipe. (a)
Does the thermal process (entropy flow and temperature change) have an influence upon
the hydraulic process, or can the two processes be calculated independent of each other?
(b) Consider the water in the can as a system. Formulate the instantaneous balance of mass.
(c) Again take the water in the can as the system. With the help of the balance of entropy,
prove that the rate of change of temperature is given by

m is the mass of the water in the system, T is the temperature. κ and GS denote the specific
entropy capacitance and the entropy conductance, respectively. lv and Im,v are the specific
entropy of vaporization and the current of mass of the evaporating water, respectively. Ta
stands for the ambient temperature.

6. Consider a solar collector consisting of a black absorbing metal sheet with a surface area
of 0.80 m2 and a rectangular air duct underneath. The flux of mass of air through the duct
is 0.10 kg/s. Inlet and outlet temperatures have been measured and are 27°C and 30°C, re-
spectively. Ambient temperature is equal to 17°C. (a) What are the entropy and energy cur-
rents with respect to the air? (b) Assume the convective heat transfer coefficient from the
absorber to the air in the duct to be 20 W/(K · m2). What must the average temperature of
the absorber be? (c) Assume the convective heat transfer coefficient from the absorber to
the ambient air to be 10 W/(K · m2). The metal sheet radiates like a black body. What is the
ratio of the heat losses due to radiation and convection to the environment? 

7. Imagine water having temperature Tf flowing into a tank containing water at a temperature
T (the present mass of water is m, and the mass flux is Im). Heat loss to the environment is
determined by an entropy conductance GS. (a) Formulate the entropy production rate as a
result of mixing water at different temperatures. (b) Derive the differential equation for the
temperature of water in the tank and solve it. 

8. A current of oxygen gas of 20 kg/s is continuously mixed with a current of hydrogen gas
of 1.0 kg/s. Use a value of 7/2R for the molar temperature coefficient of enthalpy of both
gases. (a) Temperatures and pressures of both streams are 300 K and 1.0 bar, and the pres-
sure of the exit stream is 1.0 bar. Calculate the exit temperature and the rate of entropy pro-
duction. (b) Repeat the calculation if the temperature of the incoming hydrogen gas is 400

Figure P.1
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K. (c) Repeat the calculation with the pressure of the incoming hydrogen gas being 2.0 bar
(at a temperature of 300 K). 

9. Model the heating of the air in a room as follows. As entropy is added to the air, it expands
and diffuses through the walls in such a way that it leaves the pressure in the room at a con-
stant value. Now take a constant value for the heating power. Show that, in this case, the
temperature of the air rises according to

if a value of 7/2R is taken for the molar temperature coefficient of enthalpy of air. Note that
it is assumed that the air remaining in the room does not lose any heat to the surroundings.

10. Consider the following strongly simplified model of the accretion of a planet. Matter with
a temperature To falls from far away onto the surface of a growing planet. (The planet is
surrounded by a gas of temperature To.) Assume the surface of the planet to radiate like a
gray body. (a) If the effect of the rate of change of the temperature can be neglected, show
that the surface temperature at an instantaneous value of the radius can be calculated using

where Im is the flux of mass falling upon the planet, cP is its specific temperature coefficient
of enthalpy, and e is the emissivity of the surface. (Hint: Treat the surface as an open control
volume and consider the law of balance of energy for this system; first derive the instation-
ary model.) (b) Show that this is equivalent to

(c) Model accretion by setting the rate of change of the planet’s radius equal to8

At t = 0 and at t = ta (total accretion time) this function is supposed to vanish, and the radius
of the planet grows from 0 to R during this period. Show that this leads to the following
expressions for the constants k1 and k2:

(d) Calculate T(r) for the following values of the parameters. To = 100 K, ρ = 5500 kg/m3,
cP = 800 J/(K · kg), R = 6.4 · 106 m, ta = 5 · 105 years, e = 1. (You should get the largest tem-
perature, roughly 1200 K, at a radius of 5000 km.)

8. Anderson (1989), p. 3.
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In Chapter 4 we learned that loss of power of thermal engines is related to entropy pro-
duction (Section 4.4.3). This observation suggests that we should avoid—or at least
minimize—entropy production if we want to optimize thermal engines. In this chapter
I would like to show by example that the idea of minimizing entropy production rates
is a powerful principle of thermal design

 

1

 

 and appears to be useful as well, when an-
alyzing natural systems.Applying this principle is a fitting conclusion to the introduc-
tory chapters of this book.

The idea will be described in the following and then applied to a number of processes
which are varied enough to demonstrate the wide applicability of entropy generation
minimization. The examples are taken from the field of engines (including solar power
systems), fluid and heat flow, heat storage, and the Earth’s atmosphere.
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When entropy is produced, a loss of available power is inevitable. We can conclude
this from the results derived in Section 4.4.3. We were able to quantify the loss in

as the final reservoir for entropy; usually this is the environment. For engineers this
indicates that a strategy trying to optimize power output or power requirement must
try to minimize the production of entropy. While this rule appears to be quite intuitive
after all that has been said about the role of entropy in thermal engines, it might be less
than obvious in the case of direct heating (without the use of heat pumps). After all, in
heating we require the most amount of entropy; so why should we not produce as
much as possible of the quantity responsible for making bodies warm? In this section
I will demonstrate that the minimization of entropy generation is a goal we generally
should try to embrace.

 

Electric power from fuels.

 

 Before we consider the case of direct heating, let us take
a brief look at processes that are commonly used to drive electric generators. There are

 

1. The concept of entropy generation minimization has been applied to many engineering
systems in recent decades. It has been formulated as a general principle of thermal design
(A. Bejan, 1988, 1996; Sieniutycz and de Vos, 2000). The approach has also been applied
to models of environmental economics (M. Ruth, 1993).

427

terms of the rate of generation of entropy and the temperature of the body which acts
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two examples that will make clear the usefulness of strategies for minimizing entropy
production: typical thermal power plants and fuel cells.

There is a source of dissipation which, in the case of a standard heat engine that uses
chemical fuels, is all but unavoidable. The fuels must be burned to be useful and en-
tropy is produced. This initial irreversibility is the reason for the upper limit on the
thermal efficiency of an ideal heat engine—the so-called Carnot efficiency given in
Equ.(4.27)—which can be increased only if the higher operating temperature of the
engine is raised. This rule is related to the fact that less entropy is produced per unit of
energy dissipated if the temperature is raised (Equ.(4.23)).

If we want to avoid the initial irreversibility inherent in thermal engines, we have to
consider completely different systems such as fuel cells for harnessing the chemical
power of fuels. At least in theory, this should be even better than burning fuels at high
temperatures. If ideal fuel cells existed, all the energy released could be made avail-
able for the electric process. The reason is simple: the chemical reactions are allowed
to run in a manner that does not lead to entropy production (Section 6.5.3). However,
since other processes in fuel cells are dissipative, there is room for designing them ac-
cording to the principle of minimal entropy production.

 

Using entropy wisely.

 

 The major rule to be followed, then, has to do with the use of
entropy once it has been generated. If the goal is, for example, heating of water for
domestic consumption, direct heating by fire appears to be utter waste. Instead of har-
nessing the available power of heat we let it conduct to the desired low temperature,
which means pure dissipation. If the entropy is used in engines we should likewise
avoid any drop in temperature which is not used for the envisioned purpose. Carnot,
without knowing much about rates of production of heat in a modern sense, expressed
this point succinctly:

 

2

 

Since every re-establishment of equilibrium in the caloric may be the cause of the pro-
duction of motive power, every re-establishment of equilibrium which shall be ac-
complished without production of this power should be considered as an actual loss.

 

By 

 

re-establishment of equilibrium

 

, he meant the fall of caloric (entropy) back to a
previous thermal level (temperature). We now know how to measure the actual loss,
namely as dissipation resulting from entropy production.

It appears that the rule to be given to those who build thermal engines is to avoid any
production of entropy. However, in real life, as a consequence of this requirement
nothing moves. 

 

Real

 

 processes which run at finite speed are dissipative.

 

3

 

 Therefore
the rule we are looking for must be expressed in the following form:

 

To optimize processes involving heat engines, we must minimize the rate of
production of entropy under realistic constraints.

 

Direct heating.

 

 While the rule of minimal entropy production appears to be fairly
straightforward for power processes, it might come as a surprise that it also holds for
heating processes. To understand this, we must first define the goal of heating. An op-

 

2. S. Carnot (1824), p. 22.

3. We considered 

 

ideal

 

 processes which run at finite speed in Chapter 5; they do not produce
entropy.
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timal heating process delivers the largest amount of entropy for a given heating power
to a body at a desired temperature 

 

T

 

, where the process takes place in an environment
at temperature 

 

T

 

a

 

 (see Fig. 9.1). The rule then takes the form:

 

For a fixed heating power, the body to be heated receives the largest amount
of entropy if the amount of entropy produced is minimal for the processes
involving heating and losses from the furnace.

 

The proof goes as follows. The body to be heated at constant temperature 

 

T

 

 receives
an entropy current 

 

I

 

S

 

1

 

, while a current 

 

I

 

S

 

2

 

 is associated with the losses from the fur-
nace. The production of entropy takes place in the furnace (which receives energy at
a fixed rate 

 

I

 

E

 

 

 

) and as a consequence of heat transfer from the furnace to the body to
be heated and to the environment. Altogether, the rate of production of entropy must
be equal to the sum of the entropy currents flowing into the body and the environment:

 

(9.1)

 

We can express the second entropy current in terms of the fixed energy current re-
ceived by the heating system as well as the temperatures involved:

 

(9.2)

 

This result demonstrates that the rate of production of entropy decreases as the amount
of entropy delivered for heating is increased.

There is a direct relationship between the cases of power engineering and heating. The
result demonstrated in Equ.(9.2) can be cast in terms of the available power of heat. If
we heat a body at a temperature surpassing that of the environment, we may subse-
quently use its entropy to drive a heat engine. In other words, we still have some avail-
able power which is proportional to both the temperature difference between body and
environment and the amount of entropy which can be drawn from the body. Therefore,
maximizing the heating of the body in question is equivalent to maximizing the avail-
able power of the heating process. Put in these terms, we can appreciate the generality
of the rules stated above. Accounting for entropy in all its aspects is not just a conve-
nient theoretical tool, it is the central task of those involved in the use of heat for any
purpose.
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Figure 9.1:  A furnace heats a 
body at a desired temperature T 
and the environment at Ta (loss-
es). Entropy is produced in the 
furnace and as a result of heat 
transfer. The furnace may be of 
any type, including solar.
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Consider once again the importance of being able to compute the rate of production of
entropy from a constitutive theory. The rule discussed here is nice but completely use-
less if we do not manage to calculate such quantities as the rate of generation of entro-
py and currents of entropy for concrete cases. The generic laws which we have been
using, i.e. the laws of balance of entropy and energy, alone, do not provide this infor-
mation.

 

1. Why should minimizing the irreversibilities of a system result in a maximum of useful
power? What is the role of an environment at a given fixed temperature in this argument?

2. Consider irreversible engines. Does the condition of maximum power always coincide
with the condition of minimal entropy production rate?

3. Why should one use fuel cells rather than combustion engines connected to generators (i.e.,
thermal power plants)?

4. From a thermodynamics standpoint, is it better to use heat pumps than burning fuels for
heating a home?

5. Why does minimizing entropy production make sense in a heating process, considering

 

that we want entropy for making a body warm?

 

EXAMPLE 9.1.

 

Optimizing a solar thermal engine with hot water production.

We can produce heat in a collector by absorbing solar radiation. Assume that the radiation is
completely absorbed; also assume that solar radiation does not bring any entropy with it. (This
is very nearly true; see Chapter 7.) The hot collector (simply a hot body) emits entropy to an
ideal Carnot heat engine and loses heat to the environment at temperature 

 

T

 

a

 

 

 

. The loss is mod-
eled in terms of a law such as in Equ.(4.48) with an overall heat loss coefficient 

 

h

 

. The engine
rejects the entropy received from the collector to a large body of water at a temperature 

 

T

 

2

 

 

 

,
which is larger than 

 

T

 

a

 

 thus providing both power and hot water at 

 

T

 

2

 

 

 

.

Take values of 290 K and 330 K for 

 

T

 

a

 

 and 

 

T

 

2

 

, respectively. The solar radiation is measured in
terms of the energy flux per unit area and is taken to be equal to 

 

G

 

 = 800 W/m

 

2

 

. The overall heat
loss coefficient is 

 

h

 

 = 4.0 W/(K

 

 

 

·

 

 

 

m

 

2

 

). (a) For which value of the temperature of the collector (

 

T

 

1

 

)
will the rate of production of entropy be minimal? Why would you expect a minimum of entro-
py production at all? (b) How large should the temperature of the collector be for the power of
the engine to reach its maximum? (c) Why don’t the minimum of entropy production and the
maximum of power coincide? Is there a quantity related to power that has a maximum coincid-

QUESTIONS

Engine
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Figure Ex.1
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ing with the minimum of entropy production? Would you run the system at maximum power or
at minimum entropy production?

 

SOLUTION:

 

 (a) The radiation is absorbed by the collector, leading to production of entropy at
the temperature of the collector 

 

T

 

1

 

. The rate of absorption of energy from solar radiation (

 

A

 

G

 

 

 

)
is equal to the rate of dissipation. (The collector does not do anything else but produce entropy.)
The rate of production of entropy from this source must therefore be equal to 

 

A

 

G

 

 / T

 

1

 

. On the
other hand, entropy flows from the collector to the environment at 

 

T

 

a

 

, leading to more entropy
being produced (see Section 4.6). Hence, the rate of production of entropy in the entire system
is made up of these two parts (all other processes proceed reversibly):

The minimum of this function is found by differentiating it with respect to the temperature of
the collector:

For the given numerical values, the minimum of production of entropy is obtained for a temper-
ature of 377 K. We expect the rate of production of entropy to have a minimum because it
should be large for both small and large values of the temperature of the collector but for op-
posing reasons. At high 

 

T

 

1

 

, the rate of production inside the collector will be small while the
losses, and therefore the entropy production due to the flow of heat, must be large. At small val-
ues of 

 

T

 

1

 

 we have exactly the opposite conditions. Since the effects are nonlinear we can expect
a function with a minimum.

(b) The balance of energy for the collector operating at steady-state is given by

With the help of the relationship between the current of entropy and the current of energy trans-
ferred to the heat engine,

we can now express the power of the engine:

Its derivative with respect to the temperature of the collector will yield the condition for maxi-
mum power:
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The numerical value is 402 K. The expressions for the minimum of entropy production and the
maximum power of the engine will only be the same if the “hot water” produced has the same
temperature as the environment.

(c) The rule that minimal production of entropy should deliver maximum output from engines
holds only for a single reservoir into which entropy is rejected. In this example, the entropy pro-
duced by the absorption of sunlight ends up in two environments which have different temper-
atures. The loss cannot be calculated by choosing one of the temperatures and multiplying it
with the rate of production of entropy. The entropy current rejected to the hot water still repre-
sents some available power. We can interpret the power of the engine as being 100% “pure”
availability. Therefore, if we add it to the available power of the current of entropy at 

 

T

 

2

 

 

 

, we
have a quantity whose maximum can be shown to coincide with the minimum of entropy pro-
duction.

 

9.2 A M

 

ODEL

 

 

 

OF AN ENDOREVERSIBLE ENGINE

Only a few decades ago, the following model of heat engines was proposed as a more
realistic alternative to the ubiquitous ideal Carnot engine.4 The major drawback of the
Carnot engine has not so much to do with the processes undergone by the working flu-
id but with the rate of transfer of entropy from the furnace to the engine, and from the
engine to the cooler. For these rates to be finite there must be finite temperature dif-
ferences if we think of transferring entropy conductively. No realistic heat exchanger
will work without such a drop of temperature. We may then run an ideal Carnot engine
between temperatures which are somewhat lower than that of the furnace and some-
what higher than that of the cooler, respectively (Fig. 9.2). Entropy conducted from
the furnace and to the cooler causes dissipation in the combined system of heat ex-
changers plus Carnot engine. We must face the reality that we either have a completely
ideal engine at zero power, or a nonideal device at finite power. What we can realisti-
cally strive for is an engine that operates with a minimum rate of production of entro-
py. There should be a minimum of entropy generation in the model engine proposed
in Fig. 9.2. If we do not allow for any temperature gaps between the heat exchangers
and the Carnot engine, the energy supplied from heating simply leaks directly to the
environment (cooler) and we have total dissipation. The same situation arises if the up-
per and the lower operating temperatures of the ideal Carnot engine are made equal.
Somewhere between these two extremes must lie the optimum condition for the small-
est possible rate of production of entropy and the largest mechanical power. Let us
look for it.

The model engine works as follows (Fig. 9.2). It is heated from the furnace at a con-
stant rate. In general, the engine can absorb part of the current, the fraction being de-

4. The type of heat engine called endoreversible was first proposed and analyzed by Curzon
and Ahlborn (1975). They calculated the power of the engine and determined the condition
for its maximum. The efficiency at maximum power, Equ.(9.12), has since been called the
Curzon-Ahlborn efficiency. A simpler derivation was given by DeVos (1985). The problem
was later investigated from the point of view of the minimization of the production of en-
tropy (Salamon et al., 1980; Andresen et al., 1984).
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termined by the rate at which entropy can flow through the heat exchanger (repre-
sented by the thermal resistor R1) to the ideal Carnot engine. The rest of the entropy
flux will leak directly to the environment via the thermal resistor R3. The core of the
engine, i.e. the ideal Carnot heat engine, will reject the entropy at the lower operating
temperature, thereby releasing energy in the mechanical process. The heat exchanger
serving the cooler (represented by the thermal resistor R2) must be designed to handle
this current of entropy. Naturally, once we have found the condition for maximum me-
chanical power and the flux of entropy associated with it, we will adjust the current of
entropy from the furnace to this value to avoid unnecessary leakage through R3. Be-
cause of the reversible Carnot engine at the core of the system the entire model has
been called an endoreversible engine.

We need to be able to calculate the effect of the heat exchangers included with the
model engine. It is important for us to know that the form of the simplest constitutive
law for heat transfer through an exchanger, Equ.(4.48), is quite applicable to our case.
Since we will find that the maximum efficiency of our model engine does not to de-
pend upon the coefficient multiplying the difference of temperatures, we do not have
to worry about the actual transport processes. 

We can now turn to the job of first calculating and then minimizing the rate of produc-
tion of entropy in the system of Fig. 9.2. The only dissipative elements in the engine
are the three thermal conductors, i.e. the heat exchangers and the machine itself, which
leaks entropy. The rate of production of entropy is equal to the sum of the rates due to
the three resistors:

(9.3)

As before, we calculate the production rates for steady-state conditions in terms of the
fluxes of entropy entering and leaving the bodies. In the following equations, all fluxes
represent absolute values, and, for convenience, the index E has been dropped from
the thermal energy currents. The overall rate of generation of entropy can be expressed
as follows:

Furnace T

To
Cooler (environment)

R1

R2

R3

System

ICHE

TT

(a) Furnace T

To
Cooler (environment)

R1

R2

R3

System

ICHE

TT

Iin

Iout

I*

I* – Iin

Tc

Toc

(b)

IE,mech

To
To

ToTo

Tc

Toc

ΠS3

Entropy Energy

ΠS1

ΠS2

Figure 9.2:  (a) The flow of entro-
py (solid arrows) in a system 
which contains an ideal Carnot 
heat engine (ICHE) and conduc-
tive resistances. The system is 
heated at a constant rate from the 
furnace. Due to the resistances of 
the heat exchangers to the ICHE, 
the flow of entropy in this branch 
is limited. Entropy is produced in 
the resistors. (b) Energy flow dia-
gram. The energy currents asso-
ciated with the currents of 
entropy are shown as heavy ar-
rows. It is found that minimizing 
the rate of production of entropy 
in the composite system will 
maximize the mechanical power.
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(9.4)

Four variables appear in this equation, namely the energy currents entering and leav-
ing the Carnot engine, and the upper and the lower operating temperatures of the ideal
engine. The total thermal energy current I* and the temperatures of the furnace and the
cooler are assumed to be fixed. We would like to eliminate three of the variables and
leave only the thermal energy current entering the Carnot engine in the equation. The
three elements of interest in our model system, namely the Carnot engine and the two
heat exchangers, furnish the necessary conditions. Since the engine operates without
dissipation, the current of entropy entering is equal to the current being emitted. This
leads to

(9.5)

The heat exchangers operate according to the simple constitutive law, Equ.(4.48),
which means that

(9.6)

and

(9.7)

The coefficients a and b are assumed to be constants. After eliminating these three
variables, the production rate of entropy is expressed in the single variable Iin : 

(9.8)

You will notice that the fixed heating power I* does not contribute to the condition for
the minimal generation rate we are going to calculate. Now we are ready to compute
the derivative of this expression with respect to the energy flux entering the Carnot en-
gine:

(9.9)

Setting the derivative equal to zero will deliver the condition for the energy flux at the
minimum rate of entropy production. After some lengthy algebra we get a quadratic
equation for Iin whose solution is

(9.10)

This should represent the thermal power at the upper operating temperature of the Car-
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not engine for maximum mechanical power. It depends upon the temperatures of the
furnace and the cooler, and on the physical properties of the heat exchangers which
are expressed by the factors a and b. The mechanical power itself is calculated accord-
ing to the rules for ideal Carnot engines (Section 4.4.3) leading to

(9.11)

More significantly, the efficiency of the model engine at maximum power is indepen-
dent of the dimensions of the heat exchangers. Just as in the case of the ideal Carnot
engine, it depends only upon the temperatures of furnace and cooler:

(9.12)

This is the result reported by Curzon and Ahlborn.5 The original derivation was done
in terms of the power of the engine whose maximum had to be determined. Today we
know that engines designed for maximum power obviously follow a basic principle,
namely minimizing production of entropy.

It is instructive to compare the actual efficiencies of a number of thermal power plants
(Fig. 9.3). It appears that they rather closely approach the efficiency of the model en-
gine in Fig. 9.2. The determining factor in such devices seems to be the transfer of en-
tropy to and from the actual engine, while the behavior of the fluid driving the engine
can be regarded as almost ideal.

This is an example of what has become the focus of interest in so-called finite-time
thermodynamics in recent years. Finite-time thermodynamics6 develops simple aggre-
gate models of dissipative processes. As such, it may be called a part of the modern
approaches which deal with processes rather than just states. Like continuum thermo-
dynamics, it demonstrates that a dynamical theory of heat can do more than just find
equilibrium values in thermal systems. Armed with an intuitive understanding of en-
tropy, we can do so much more than in classical thermodynamics.

5. Curzon and Ahlborn (1975).

6. For example, see J.M. Gordon (1990), and references therein.
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6. What is the meaning of endoreversible? What is an endoreversible Carnot engine?

7. Use the model shown in Fig. 9.2. Why doesn’t an engine run if it makes use of the entire
temperature difference between T and To?

8. A power plant has upper and lower temperatures of 600 K and 300 K, respectively, and an
efficiency of 32%. How closely does it perform to the formula of Curzon and Ahlborn?

EXAMPLE 9.2. Designing a thermal power plant at maximum power.

The Dungeness nuclear reactor built in Great Britain in 1965 performs very closely to the rule
given for thermal plants at maximum power, Equ.(9.12). The temperatures of its furnace and
cooler are 663 K and 298 K, respectively. Assume a plant of this type to be designed for 500
MW mechanical power. (a) How large must the heating power from the reactor be for the plant
to operate at maximum power? (b) Assume the heat transfer coefficients of both heat exchang-
ers to be equal (i.e. their physical characteristics are taken to be the same). Furthermore, take
the exchangers to be equally large. How large is the effective surface area of each of the heat
exchangers if the transfer coefficient has a magnitude of 1000 W/(K · m2)? (c) Determine the
upper and the lower operating temperatures of the Carnot engine for the heat exchangers de-
signed according to (b). (d) With fixed and equal heat transfer coefficients for both heat ex-
changers, is there a better way of distributing the available surface area than to make both
exchangers equally large?

SOLUTION: (a) The efficiency at maximum power of the endoreversible engine is given by
Equ.(9.12). Here it turns out to be

This figure determines the magnitude of the heating power necessary for optimal operation. If
we can avoid direct leakage of entropy, the requirement for the energy flux from the reactor is
simply equal to

(b) According to Equ.(9.10), the dimensions of the heat exchangers and the temperatures of fur-
nace and cooler, determine the heating power. Alternatively, ab/(a+b) in Equ.(9.10) is deter-
mined by the data given so far. With a = b we obtain

If the heat transfer coefficient has the magnitude stated above, the surface area of each of the
heat exchangers should be 1.39 · 104 m2. 

(c) The operating temperatures of the Carnot engine can be determined from the relations for
the rate of transfer of entropy (or energy) according to Equations (9.6) and (9.7). The formal
solutions are:
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and

which lead to numerical values of 554 K and 371 K, respectively.

(d) It appears to be reasonable to measure the cost of the heat exchangers in terms of their re-
quired surface area. We are therefore looking for the minimum total surface area delivering the
desired (fixed) output of the engine. In other words, we are looking for the minimum of x = a +
b subject to fixed Iin . The surface areas are determined by Equ.(9.11):

The minimum of x is found for a = 2/c which yields x = 4/c and b = a. In other words, if we have
to limit the total surface area of the heat exchangers, we should build them to be of equal surface
area at the hot and the cool ends of the engine.

9.3 MAXIMUM POWER OF A SOLAR THERMAL ENGINE

A question of practical interest is how much of the energy radiated to us by the Sun
could possibly be released for mechanical purposes by a heat engine. On the one hand,
we are used to very low efficiencies of commercial photovoltaic cells (little more than
10%); on the other hand we know that solar radiation transports entropy at a very high
temperature, which suggests a large value of the Carnot efficiency. At a temperature
of 5800 K for the entropy of radiation arriving from the Sun, we obtain ηC = 1 – 300
K / 5780 K = 0.95 for the thermal efficiency of an ideal Carnot engine (see Chapter
4). Here we have taken the temperature of the environment on Earth to be 300 K. In
other words, the available power of solar radiation is very high, which tells us that we
should use solar radiation as a high temperature source in thermal engines.

It is clear that it is impossible to achieve this kind of efficiency, even in theory. Radi-
ative transfer is dissipative by nature. To achieve finite rates of transfer, we need dif-
ferences of temperatures between the Sun and the receiver on Earth. Even if we could
build an ideal Carnot engine between these heat transfer elements, it would achieve a
thermal efficiency smaller than the 95% calculated above.

The statement of the problem reminds us of the model engine discussed in Section 9.2,
which we constructed to run at maximum power. We can do just the same in the case
of a solar thermal engine (Fig. 9.4). 

Consider the following simplified model (Fig. 9.4). First of all, we need a concentrator
for the sunlight to recreate conditions of the radiation field found at the surface of the
Sun. In other words we have to use mirrors which concentrate light in such a manner
as to make the solid angle (see Chapter 12) from which radiation flows towards the
absorber 2π (equivalent to radiation from a hemisphere). Under these conditions, a
blackbody absorber could reach the same temperature Ts as that of the surface of the
Sun. However, if this were the case, the net rate of transfer of entropy between the ab-
sorber and the Sun would drop to zero. To obtain a finite rate, the absorber’s temper-
ature must be smaller than the maximum Ts . For the same reason, the engine will not
be able to absorb the entire flux of entropy from the Sun which has been concentrated
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by the mirrors. A part of the current will be radiated into the environment, which has
a temperature of about 300 K (To). Since the heat engine is assumed to be ideal, it re-
jects the same amount of entropy to the environment that it absorbs from the concen-
trators. Let us neglect the irreversibility of the transfer of heat taking place at the
cooler; we simply assume the lower operating temperature of the engine to be To . En-
tropy will be produced due to radiative transfer from the concentrators to the absorber,
and from the mirrors to the environment (Fig. 9.4).

The power of the engine will depend upon two factors—the size of its absorber and
the upper operating temperature T. We expect the maximum power per unit absorber
area to coincide with the minimal rate of entropy production. Therefore we have to ex-
press this rate in terms of the temperatures involved. Just as in examples treated be-
fore, the rate of entropy production in a heat transfer element is given by the energy
flow through the element, and by the upper and the lower temperatures, respectively.
If I* is the energy current from the collectors, a part I will be absorbed by the engine.
As a result, the rate of entropy production is

(9.13)

The flux of energy absorbed by the engine depends on its surface area and on the tem-
peratures Ts and T :

(9.14)

If we insert this expression into Equ.(9.13), we obtain the rate of production of entropy
in terms of the unknown temperature T. We have only to determine the derivative of
ΠS with respect to T and set the result equal to zero, which yields

(9.15)
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Figure 9.4:  An ideal Carnot heat 
engine (ICHE) absorbs entropy 
from the light concentrated by 
the mirrors. Because of perfect 
concentration, the radiation 
serves as an entropy reservoir at 
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Sun. Since the upper operating 
temperature is smaller than Ts , 
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ed to the environment. Both ele-
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The solution of this nonlinear equation may be obtained by numerical methods. For
values of Ts = 5762 K and To = 300 K, the upper operating temperature of the heat en-
gine turns out to be 2465 K, which corresponds to a thermal efficiency of η1 = 0.88.
This value is smaller than the one calculated above for a completely reversible engine.
However, it is still very large, which again stresses the point that solar radiation should
not in every case be wasted for low temperature applications. Some existing solar ther-
mal power plants in the US reach efficiencies around 25%, a number which compares
favorably with current photovoltaic elements.7

9.4 ANALYSIS OF A SOLAR AIR HEATER

We have studied the occurrence of minimal entropy production rates in heating sys-
tems and in thermal engines. It turns out that in these cases, minimal irreversibility is
directly or at least closely related to the maximum of the available power of heat. Here
is an example that demonstrates that we can find a minimum of irreversibility in the
operation of a system even though energy considerations do not provide an optimum. 

We want to know if an air-cooled solar collector should be built long and narrow or
short and wide. For practical purposes, this question asks whether we should connect
a number of panels in series or in parallel to get an optimal effect.8 To build a model,
we shall consider a thin and wide rectangular duct through which air is pumped. The
upper side of the duct serves as the absorber of solar radiation. The lower side is per-
fectly insulated. The collector will be operated so that it delivers air at a prescribed
fixed outlet temperature for fixed given inlet temperature. This means we have to ad-
just the flux of mass of air through the collector when the length to width ratio is
changed.

The air will be treated as an ideal gas having constant specific heats. We will consider
steady-state conditions in our models unless otherwise stated. The models will be sin-
gle-node spatially homogenous representations of the systems. This means, for exam-
ple, that the temperature of the air in the collector has a single value that is assumed
to be equal to the outlet temperature.

In the following sub-sections, I will present two derivations of the same model. The
first takes the common approach found in engineering thermal design: the model is
formulated on the basis of energy considerations and the results are used to calculate
the overall entropy production rate for the entire systems. The second approaches the
problem directly by expressing entropy currents and entropy production rates for ev-
ery particular irreversible process and then finding the minimum of the total entropy
production rate. As mentioned above, the model provides a very interesting example
of Second Law analysis, i.e., an analysis based upon entropy, where considerations of
energy or power do not yield an optimal result.

7. These SEGS power plants running in California are a commercial success. They use linear
parabolic concentrators that reach a concentration factor of about 40. Steam is produced at
a temperature approaching 400°C. Currently, plants with a combined power of roughly 350
MW have been installed, and several more plants of the same basic design are being con-
structed.

8. This question was first considered by Oppliger (1993). Here I will present a simplified ver-
sion of his model.
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9.4.1 The Balance of Energy

Performing a steady-state balance of energy on the absorber and the air in the duct lets
us relate temperatures and energy fluxes. The energy fluxes with respect to the absorb-
er and the air are shown in Fig. 9.5.

In steady-state, the sum of all energy fluxes with respect to a system must be zero.
Here we have two systems—absorber and air. There are three energy fluxes with re-
spect to the absorber: the rate of absorption of energy IE,abs , the flux due to heat loss
IE,loss , and the rate of transfer of energy to the air IE,aa . For this system, the balance
of energy states that

(9.16)

In the case of the air it takes the form

(9.17)

Here, IE,air in and IE,air out represent the convective energy fluxes carried with the air
entering and leaving the collector. IE,pump is equal to the power of the pump that makes
the air flow through the collector duct.

Constitutive laws for the energy fluxes. We need constitutive expressions for the en-
ergy fluxes in order to make use of the laws of balance in Equations (9.16) and (9.17).
The rate of absorption of energy is commonly expressed as a fraction (τα) of the in-
solation which is the product of the irradiance G and the surface area A of the absorber:

(9.18)

(τα) is called the transmission-absorption factor of the absorber (including glass cov-
ers). The collector’s loss to the environment and the rate of transfer to the fluid in the
duct are written in terms of the temperature differences and an energy conductance
which is the product of a heat transfer coefficient and the surface area:

(9.19)

(9.20)
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TairFigure 9.5:  An air-cooled solar 
collector is divided into two sep-
arate systems—the absorber and 
the air. The figure shows the ener-
gy fluxes with respect to the sys-
tems. IE denotes an energy flux 
and T denotes temperatures.
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(9.21)

UL and Uaa are the heat transfer coefficients due to loss and transfer to the fluid, re-
spectively. The latter is a linearly increasing function of fluid speed v  in our model.
To obtain the desired outlet temperature for given fixed inlet temperature, the fluid
speed has to increase as the collector is made longer. The fact that the efficiency of
heat transfer increases with increasing flow speed will play an important role in the
interpretation of the results.

In Equ.(9.17), we have the net convective flux due to energy transport with the fluid.
For an ideal gas, this is

(9.22)

(see (8.62)). cp and Im are the specific heat at constant pressure and the mass flux of
the air, respectively. We still need to calculate the pumping power. It is determined
from a model of turbulent flow through the rectangular duct. The output of the model
is the pressure drop as a function of fluid speed. We can calculate the pumping power
from the pressure drop ∆P and the mass flux Im :

(9.23)

ρ is the density of the air obtained from the equation of state of the ideal gas. The
pumping power increases strongly as the collector is made longer and narrower.

The equations presented so far suffice to compute temperatures and energy fluxes. The
total convective energy flux IE,conv = IE,air out – IE,air in and the net gain IE,conv –
IE,pump are of particular interest. From an energy viewpoint, the net gain makes emi-
nent sense: it tells us how much energy is provided by the system. It is clear that we
have to pump harder as the collector is made longer and narrower, so we might expect
the net energy carried by the air flowing out of the collector to increase with increasing
collector length (Fig. 9.6). It might come as a surprise, though, that the net energy gain
also increases monotonically as a function of the length of the collector. There is no
indication of an optimal value of the length of the collector on the basis of energy
quantities.
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9.4.2 The Balance of Entropy

Optimal thermal design is based upon the condition of minimal irreversibility, i.e.,
minimal entropy production. Sometimes, minimal entropy production and optimal
values of energy quantities coincide, but in our example they do not. This makes a
Second Law analysis all the more important.

The law of balance of entropy is used to calculate the rate of production of entropy of
a system. In the steady-state, all the entropy fluxes IS and the rate of entropy produc-
tion ΠS in the system (Fig. 9.7) must add up to zero: 

(9.24)

Entropy fluxes and entropy production rates are measured in W/K. If constitutive ex-
pressions are introduced into this equation, we have

(9.25)

(see Chapters 7 and 8). R is the universal gas constant and M0 is the molar mass of the
ideal gas. The first term represents the entropy flux carried by the radiation of the Sun,
the second is the net convective entropy current carried by the air, and the third equals
the entropy current into the environment. The entropy production rate can now be cal-
culated for the steady-state processes undergone by our collector (see Fig. 9.7). This
result demonstrates that there is a condition for optimal thermal design: the entropy
production rate is found to be minimal at a certain value of the length of the collector
(see Fig. 9.6).

9.4.3 Revisiting the model

We now employ the direct approach for modeling the collector. To do so, we have to
consider all the processes taking place and determine entropy transfers and irrevers-
ibilities. The processes taking place are (1) absorption of radiation, (2) entropy loss to
the environment due to convection and radiation, (3) entropy transfer from the absorb-
er to the fluid, (4) convective entropy transfer and mixing and (5) fluid friction. As a
result we have five sources of entropy production (Fig. 9.8).

The laws of balance of entropy for the absorber and the air in the duct take the follow-
ing forms in steady-state:
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(9.26)

(9.27)

In Equ.(9.27), IS,conv denotes the net convective entropy current. The fluxes appearing
in the laws of balance are given by the following constitutive expressions. The entropy
carried by solar radiation is

(9.28)

The entropy current going from the hot absorber to the cooler air is determined by the
associated energy current and the temperature of the absorber:

(9.29)

The expression for the entropy current to the environment follows from the same con-
siderations:

(9.30)

Finally, we need the expression for the net convective entropy flux which is found
from Equations (8.9) and (8.52):

(9.31)

Finally, we determine the five entropy production rates and their sum total. These rates
have been calculated before in Chapters 7 and 8:

(9.32)
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(9.33)

(9.34)

(9.35)

(9.36)

The total entropy production rate is the sum of these five terms:

(9.37)

The energy quantities we are interested in can be calculated on the basis of the entropy
quantities and the temperatures. The results of the model are the same as those already
presented in Fig. 9.6: there is a minimum entropy production rate for a certain ratio of
length to width of the collector. While the energy yield gets better and better as we
make the collector longer and longer, our consideration of irreversibilities tells us that
an optimal design actually exists.

This behavior can be understood quite easily. The low value of the energy current at
small lengths is due to high thermal losses; its continued increase with growing length
is the result of the increase of the heat transfer coefficient between absorber and fluid.
If the collector is made longer, the flux of air must be made larger to maintain a con-
stant temperature at the outlet. Even though the thermal performance continues to im-
prove with increasing length, long collectors (i.e., collectors placed in series) are
basically heated by the pump instead of the Sun. Analysis of irreversibility tells us that
this strategy is not worth pursuing.

9. The net energy current of the collector equals the energy gained from the sun. Why does
this gain continue to increase if the collectors length is increased (at constant area)?

10. The total energy gained by the collector (from the Sun and from pumping) increases mono-
tonically as a function of length of the collector (Fig. 9.6); there is no optimum for a certain
length. Since the energy for pumping that comes from electricity is valued differently than
thermal energy (typically, it is three times as expensive per unit), could one possibly find
an economic optimum of the problem?

EXAMPLE 9.3. The balance of entropy for an electric flow heater with heat loss.

A fluid such as water is heated electrically while flowing through a pipe. Assume the tempera-
ture of the fluid to increase linearly along the pipe from ambient temperature to a maximum val-
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ue at the outlet. There is heat loss to the environment. Take the average of the product of the
heat loss coefficient and surface area of the pipe to be 20 W/K; the ambient temperature is 293
K, and the value of cp is 4200 J/(K · kg). The electrical power is 1000 W. (a) Estimate the total
rate of production of entropy by writing down the equation of balance for this quantity, using
the flux of mass as a parameter. (b) Show that the rate of production of entropy has a minimum
for a particular value of the mass flux of the fluid.

SOLUTION: (a) The equation of balance of entropy for the control volume shown in the upper
figure (Fig. Ex.3.1) takes the form

If we assume the boundary of the control volume touches the surroundings at ambient temper-
ature, the contribution to the production of entropy due to heat loss will be included. The sum
of the convective entropy currents is

The current of entropy entering the environment at Ta can be determined by

UA is the product of heat transfer coefficient and surface area. The temperature of the fluid los-
ing heat has been approximated by the arithmetic mean of inlet and outlet temperatures.

We still need to know the outlet temperature of the fluid. It can be calculated using the law of
balance of energy:

(b) Even though the equations do not look all that complicated, finding the minimum of the rate
of production of entropy is best accomplished numerically. The graph in Fig. Ex.3.2 shows this
quantity as a function of the flux of mass through the heater.

9.5 CHARGING AND DISCHARGING A HEAT STORAGE SYSTEM

The problem of minimizing entropy production also occurs in time-dependent prob-
lems involving the storage of entropy. Again, rather than delivering some theory, I will
treat an interesting example. 

Consider a building having a heat storage wall. In fact, just consider the wall itself,
which obtains heat from the Sun and discharges heat both to the surroundings and to
the room (Fig. 9.9). Take the control volume to include the wall, and let the surfaces
touch the environment on the outside and the air of the room inside; i.e., include in the
control volume all three sources of entropy production. Now, the law of balance of en-
tropy can be written in the form

(9.38)

where we have assumed that solar radiation does not deliver any entropy. The currents
and the rate of change are expressed by
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(9.39)

The last expression is a consequence of the balance of energy, which takes the form

(9.40)

Here, AaG is the product of absorptivity of the wall and solar irradiance. The problem
is to find expressions for the heat transfer coefficients from the wall to the surround-
ings and the room, and one for the relation between energy (or entropy) and the tem-
perature of the wall. If we treat the wall as spatially uniform, and if we take a simple
model for the computation of the transfer coefficients, we get

(9.41)

where d is the thickness of the wall. Heat is assumed to be transferred from the middle
of the wall out into the environment or into the room. It turns out that the total entropy
produced over a cycle of charging and discharging of the storage element has a mini-
mum for a particular value of the thickness of the wall (Fig. 9.10). Not surprisingly,
this value also coincides with the maximum of the entropy delivered to the room.

9.6 ATMOSPHERE AND WINDS

The Earth’s atmosphere provides for an interesting system whose operation can be un-
derstood partially with the help of rather simple models. The simplest and most fa-
mous of these probably are calculations of expected surface temperatures of a planet
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in the light of the Sun where the planet is treated as a uniform object in steady-state
(see Example 7.12 in Chapter 7).

In this section, I will repeat the example by showing that the result is obtained not only
by applying the balance of energy but also if we perform an analysis based on entropy
and minimize the entropy production rate. (There has been one such example before
where this approach could be applied successfully, namely, the calculation of the adi-
abatic flame temperature in Example 8.11, Chapter 8.) The model will then be extend-
ed by including an atmosphere—an absorbing and radiating layer above the surface.
The same method of calculating the minimal entropy production rate will yield the so-
lution of the model (the same solution one would also obtain by applying the balance
of energy). This is the simplest possible model for explaining the greenhouse effect.

A still more interesting model treats the atmosphere as a heat engine—similar to the
one discussed in Section 9.3—driving the winds on the planet.9 Here we have a free
parameter which is found by minimizing the total entropy production rate. The result
is the expected power of the winds on our planet. Finally, the model will be combined
with the one leading to a greenhouse effect. Interestingly, the numerical results are
close to real values.

9.6.1 Surface Temperature of a Planet Without an Atmosphere

Imagine a planet in the light of the Sun. It receives radiation (of which it absorbs a
fraction as ) that is uniform over an area equal to the cross section of the planet. If we
assume the surface to be perfectly conducting, its surface temperature can be taken to
be uniform. This means that the planet—a sphere—radiates uniformly in all directions
from its entire surface. This geometric effect—absorption over the cross section and
emission over the entire surface—can be taken into account of we assume a uniform
incoming irradiance for the entire planetary surface which is exactly one quarter of the
actual irradiance of the Sun (see the factor 1/4 in Equ.(9.43)1).

The model is one of a piece of surface having an area A (Fig. 9.11). There are two en-
tropy fluxes, one incoming, one outgoing, and entropy production rates due to absorp-
tion and emission. In steady-state, the balance of entropy of the system reads10

(9.42)

The entropy fluxes from the Sun—the part intercepted and absorbed—and from the
warm planetary surface have been calculated before in Section 7.4.3:

(9.43)

9. This problem was first treated in a different manner by Gordon and Zarmi (1989). Their
model is different and yields different values.

10. Remember the discussion of fields and bodies, and entropy fluxes and entropy source rate
in Section 7.1. If we want to be careful with concepts and terms, Equ.(9.42) applies to the
system made up of surface layer plus radiation fields.
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Figure 9.11:  Entropy fluxes and 
entropy production rates for a 
surface layer of a body in the 
light of the Sun.

0 1 2 1 2= + + +I IS S S SΠ Π

 

I A
T

I A T

S
s sc

s

S E

1

2
3

1

4

4

3

4

3

=

= −

a G

σ



CHAPTER 9.  MINIMIZATION OF ENTROPY PRODUCTION

448 THE DYNAMICS OF HEAT

Entropy production due to absorption of sunlight and emission from the surface have
been expressed in Section 7.4.3 as well:

(9.44)

If we add the contributions to entropy production in order to obtain the total irrevers-
ibility, insert the expressions for the entropy fluxes, and then determine the minimal
entropy production rate, we have a condition for the unknown surface temperature TE
of the planet. The derivation proceeds as follows:

If the derivative of the entropy production rate with respect to the unknown tempera-
ture is set equal to zero, we obtain

(9.45)

which is the same result as the one derived in Example 7.12. For as = 0.7 and Gsc =
1370 W/m2, the surface temperature of the model planet would be 255 K.

9.6.2 The Greenhouse Effect

Now imagine a layer of air above the ground (shown in the model of Fig. 9.11). The
presence of this element—which we are going to model as a uniform body—changes
the situation discussed above in several important ways (Fig. 9.12). To limit the de-
tails to be considered, assume the reflectance (albedo) of the planet to be due solely to
the atmosphere. This means we assume the air (the clouds, mostly) reflects a part of
the incoming radiation. Whatever is not reflected passes through (the atmosphere in
our model does not absorb shortwave solar radiation). Also, the ground is understood
to be a perfect absorber which means that it does not reflect either solar radiation or
the long-wave back-radiation from the warm atmosphere.11 The atmosphere absorbs
only long-wave radiation from the ground and emits its own (long-wave) radiation
both toward the ground and the sky. A part of the radiation from the warm ground is
assumed to pass unhindered through the atmospheric layer.

Laws of balance. The laws of balance of entropy have to be formulated for the ele-
ments of our model. With ΠSg = ΠS1 + ΠS2 + ΠS3 , the steady state balance of entropy
for the ground is

11. Remember that radiation from a gray body or surface that radiates and reflects can be
treated by introducing the concept of radiosity (Section 7.4.4).
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(9.46)

The symbols stand for the absolute values of the quantities involved. The total entropy
production rate in the ground is the sum of three terms: one for the absorption of solar
radiation, one for the absorption of the radiation from the atmosphere, and the third for
the emission of radiation of the ground at temperature Tg . The law of balance for the
atmosphere takes the form

(9.47)

where ΣSa is the rate of absorption of entropy by the atmosphere, and ΠSa is the sum
of entropy production rates due to absorption and emission.

Constitutive relations. IS1 and IS2 are the same as in Equ.(9.43), and ΠS1 and ΠS2 are
given by Equ.(9.44). ΠS3 is new in this model and it is given by

(9.48)

The rate of absorption of entropy by the atmosphere, ΣSa , is a fraction of the entropy
current IS2 (a realistic value for the absorptivity of the atmosphere is 0.87). The entro-
py currents from the atmosphere to the ground and to the sky are equal, and they are
given by

(9.49)

e is equal to the absorptivity of the atmosphere if this element is modeled as a gray
body, so we set e = 0.87. Expressions for the entropy production rates in the atmo-
sphere complete the model:

(9.50)
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The factor 2 in the last equation is due to the fact that the atmosphere radiates up and
down equally. If we use the same parameters as in the previous model and a value of
e = 0.87 for the atmosphere, numerically solving the equations yields temperatures of
248 K for the atmosphere and 294.5 K for the ground. The latter value is a major cor-
rection of the result for a planet without an atmosphere (Section 9.6.1) but it is a little
higher than the average temperature of the Earth which is about 288 K. We will get
another correction of this value in the right direction by assuming that a part of the en-
tropy radiated by the ground is used to drive the winds.

9.6.3 A Wind Engine

We can view the Earth’s atmosphere as a simple heat engine powered by the Sun. The
motive power of this engine drives the winds. Obviously, the processes involved are
highly dissipative, and we might ask what the efficiency of the engine would be at
maximum mechanical power or rather at minimal entropy production. As you will see,
the results of a simple model of a heat engine at minimal irreversibility yields a good
upper bound on the energy of the winds on the surface of the Earth.

As a first approximation, the winds are the result of differential heating of the surface
air leading to giant cells of ascending and descending air. Let us model the entire at-
mosphere as moving as one big cell above a flat surface at temperature Tg (Fig. 9.13).
To minimize any problems we shall only consider spatial and temporal averages. In
other words, we shall model a spatially uniform engine working in a steady state.

We shall consider the air as the endoreversible heat engine (HE in Fig. 9.13). This en-
gine receives entropy from the surface at an unknown temperature TaH. Naturally, TaH
must be smaller than the temperature of the Earth if entropy is to be transferred from
the ground to the air. A fraction of the entropy leaving the ground will be accepted
through a transfer layer TL by the engine, which we consider to run ideally. The rest
of the entropy absorbed by the surface will be radiated directly into space, which we
assume to have a temperature To of 3 K. In other words we do not include the green-
house effect in this first model of the winds.

The heated air will rise adiabatically, after which the entropy it received will be radi-
ated away into space. The temperature of the air at higher altitudes where radiation
into space takes place will be called TaL. After this step the air will sink back down to
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Figure 9.13:  The surface of the 
Earth is heated by solar radiation. 
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the surface, again without exchanging any entropy. The model presented here is an en-
doreversible Carnot engine which is a relatively crude approximation of actual condi-
tions. Nevertheless, we still can hope to obtain some interesting results.

While we have taken the model engine to work as an ideal Carnot heat engine, the en-
tire system, which includes the radiative transfer of entropy, is dissipative. Emission
of entropy from a body at higher temperature and absorption of it by a different body
at lower temperature leads to the production of entropy, and so does entropy transfer
from the ground to the air through the transfer layer TL (Fig. 9.13). It seems reason-
able to assume that the entire system will maximize power output by minimizing the
rate of production of entropy. Therefore we shall have to consider in detail the dissi-
pation occurring as a result of transfer processes. 

The system runs in steady-state mode. The laws of balance of entropy for Ground,
transfer layer TL, and heat engine HE are

(9.51)

Of the five entropy currents that occur in the model shown in Fig. 9.13, four are given
by independent expressions:

(9.52)

The equations have been written for a surface area of 1 m2. h is the heat transfer coef-
ficient for the air moving over the ground (we choose a value of 20 W/(K · m2)), and
the albedo is equal to the reflectivity of the planet (0.30). Rs and d symbolize the radius
of the Sun and the distance between Sun and Earth, respectively. Note that the last two
of these equations assume that the ground and the air radiate as black bodies.

There are four entropy production rates that have to be taken into account (we can ne-
glect entropy production at the surface of the Sun since this is constant and does not
play a role when we search for the minimum of entropy production). The first three
are part of our planet:

(9.53)
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and the fourth is associated with outer space:

(9.54)

The first, third, and fourth expression have to do with radiation, the second is the result
of dissipation in the transfer layer TL. The final condition is the one that lets us calcu-
late the power of the heat engine HE:

(9.55)

This completes our model. When we try to solve the equations we realize that there is
one unknown too many. We may take this to be the surface temperature of the Earth,
Tg . When we vary the value of Tg , the total entropy production rate

(9.56)

changes (Fig. 9.14). Interestingly, it attains a minimum at a particular value of Tg

which is close to 238 K (note that this value is smaller than the 255 K for the Earth
without an atmosphere). The power of the wind engine turns out to be about 18 W per
square meter. This number should be compared to the measured value which is about
7 W/m2 averaged over time and surface of our planet. The result is very interesting in
that it demonstrates that not just man-made engines may be designed according to the
rule of minimal rate of entropy production. The Earth’s atmosphere seems to follow
the same rule quite naturally.

9.6.4 Combining Greenhouse and Wind Engine

The final step in the series of models discussed here is a combination of planet with
greenhouse effect and wind engine (Fig. 9.15). The idea of this model is rather simple.
Part of the entropy that will leave the ground is picked up conductively by the air and
drives the wind engine. The part that is radiated directly into space in the model of
Fig. 9.13 is now (mostly) absorbed by the air which is heated and now radiates up and
down as in the model of Fig. 9.12. Basically, the equations presented in Section 9.6.2
and in Section 9.6.3 are combined and the minimum of the total entropy production
rate is determined.

If we use the same parameters as before, the results of the model are 267 K for the sur-
face temperature of the planet at minimal entropy production rate and a power of 26
W per square meter for the wind engine. The temperature moves in the right direction
but the power of the winds is too high. Apart from the shortcomings of the model (con-
sidering all the effects that have been neglected) there is one factor that is very uncer-
tain in the model as it stands. This is the emissivity of the air partaking in the wind
engine. Here it has been given a value of 1. This is most certainly much too high. If
we assume a relatively thin layer of the upper air in the wind engine to radiate into
space (this is the entropy current IS4), its absorptivity and therefore its emissivity
should be considerably less than one. We can search for a value for the emissivity
which yields a power of the winds of 7 W/m2 (at minimal irreversibility); we obtain
roughly 0.20 which does not seem totally unfounded. Moreover, the surface tempera-
ture turns out to be about 286 K which looks extremely good. However, we should not
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try to read too much into our simple models. They have been constructed as examples
of how to do “thermal design” on an interesting natural system.

EXERCISES AND PROBLEMS

1. Consider the flow of hot oil through a pipe. There are two sources of entropy production:
friction and entropy loss (to the environment). Represent the two contributions to irrevers-
ibility as functions of the pipe’s radius in a graph. What is the radius of the pipe for which
the total entropy production rate is minimal? What is the practical meaning of this result?
Data: Viscosity: 0.20 Pa · s, Length: 1.0 m, Heat transfer coefficient: 10 W/(K · m2), Volume
flux: 0.010 m3/s, Toil = 400 K, Ta = 300 K, laminar flow.

2. Define the total loss of power in the case of hot oil flowing through a pipe in terms of en-
ergy loss due to heat loss and of friction. Calculate the radius of the pipe for which the loss
is minimal. Why do you get a different result than the one calculated in Problem 1?

3. An endoreversible engine as presented in Section 9.2 is to be designed. It consists of the
reversible Carnot engine and two heat exchangers serving the furnace and the cooler. (a)
Prove that its power at maximum output can be written as

where f and c refer to the furnace and the cooler, respectively. (b) If the power is maximized
once more by optimally dimensioning relative sizes of the heat exchangers, we get

where hA = (hA)f + (hA)c is the total transfer coefficient multiplying the difference of tem-
peratures. Derive this result. (c) Show that the optimized power of such an engine increases
proportionally to (T – T0)2/T for differences of temperatures which are not too large. This
condition is quite applicable to today’s range of temperatures. What does this mean for the
designer of a power plant?

4. The furnace of a large thermal power plant was designed to deliver energy at a rate of up
to 2.0 GW at a temperature of 920 K. Cooling is done at an environmental temperature of
300 K. Model the engine as endoreversible. (a) How large is the current of entropy entering
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the system? (b) What is the optimal mechanical power if heat leakage is responsible for a
loss of 5% of the heating power? (c) What are the magnitudes of the rate of production of
entropy and of the loss of available power? Are they related by the rule expressed in Chap-
ter 4, Equ.(4.32)? 

5. Derive a general expression for the second law efficiency of an endoreversible engine.
Show that it is given by

6. Model a refrigerator as an endoreversible engine. Its purpose is to pump heat out of the cold
enclosure at a prescribed rate. The heat exchangers at the colder and at the warmer end have
been dimensioned so that the temperature differences across them are roughly equal. You
can now add a section of heat exchanger to only one of the existing exchangers. Which one
do you choose? Assume the temperature differences across the heat exchangers to be small
compared to the temperatures themselves and to the difference between the temperatures
of the cold enclosure and the environment. The added section of heat exchanger is small
compared to the existing ones.

7. Consider a solar furnace with a heat engine and a heat pump as in Problem 28 of Chapter
4. Water is to be heated at constant temperature Tw . The engines are supposed to be ideal
Carnot engines. Entropy is supplied to and rejected from engines and reservoirs at constant
temperatures. Assume the furnace to be an ideal absorber of solar radiation. The energy
losses from the furnace to the environment are taken to be proportional to the difference of
temperatures, with constant heat transfer coefficient h. (a) Derive the expression for the rate
of production of entropy for the entire system. (b) How large should the temperature of the
furnace be to minimize the production rate of entropy? (c) For which value of the temper-
ature of the furnace will the power of the heat engine be a maximum? Why is this value
different from the one computed in (b)? Should you try to minimize entropy production or
to maximize power output of the heat engine? (d) Show that the maximum of the total heat-
ing power with which the body of water is being heated occurs at the same temperature of
the furnace as that calculated for minimal entropy production.

8. An empty tank is filled with an externally heated fluid. Consider the irreversible processes
due to fluid flow and heat loss from the tank to the environment. Assume fluid friction
obeys the law of Hagen and Poiseuille. Heat loss from the tank should be proportional to
how much hot fluid is in the tank. (a) Give qualitative reasons to show that there should be
an optimal rate of charging of the tank. (b) Show that under these conditions, the optimal
charging time should be proportional to the square root of the frictional resistance (as in
Ohm’s law, see Chapter 1), and inversely proportional to both the square root of the total
heat transfer coefficient and the difference of temperatures between the hot fluid and the
environment. (Assume the temperature decrease of the fluid in the tank due to cooling to
be small; i.e., take the temperature of the heated fluid to remain constant.)

9. A tank containing a certain quantity of water at T0 is charged with a stream of hot water at
Tw while the same amount of water is withdrawn from an outlet. The mass flux is Im . The
water supplied to the tank instantaneously mixes with the fluid already there. There is heat
loss to the surroundings at ambient temperature Ta . Are there conditions of minimal entro-
py production?

10. Solar panels heat water flowing through them. Assume we want to have hot water at a cer-
tain temperature (such as 60°C). Basically, there are three possibilities for getting 60°C wa-
ter: (1) operate the solar collectors in such a way that they deliver water at precisely the
desired temperature; (2) if they deliver colder water, heat it electrically to the desired tem-
perature; (3) if the water from the collectors is too hot, mix in water having environmental
temperature. Show that the first of these approaches is the most efficient from a thermal
point of view. [Remark: Do the analysis for steady-state conditions. Radiation, tempera-
tures, and mass flux are assumed to be constant.]
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In this first chapter of Part III, I am going to develop an approach to the thermodynam-
ics of spatially uniform fluid systems and processes which has been inspired by con-
tinuum thermodynamics.

 

1

 

 It demonstrates the application of the laws of balance as the
starting point of a description of nature. In contrast to the method used in Part II, it
does not assume the form of the relationship between currents of entropy and of ener-
gy in heating and in cooling. Moreover, it does not follow the historical path of using
power cycles for developing the theory, as is common in thermodynamics. 

The following sections can be taken as a proof that the ideal gas temperature is the nat-
ural measure of the thermal potential. The method presented here will give you a firm-
er grounding in thermodynamics, and it will prepare you for the simple examples of
continuum physics discussed in the following two chapters. 

After developing the model of the dynamics of heat of a single viscous fluid, I will
repeat the approach for fluids undergoing chemical change. We will start with phase
changes and then move to proper reactions. The development should allow you to for-
mulate equivalent models for other materials such as elastic bodies.
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I will introduce a generalized approach to thermodynamic theory here by applying it
to a simple fluid, namely a single viscous uniform body that cannot change its phase.
With the exception of viscosity, this is the example of a material we have encountered
in Chapter 5 and again in Chapter 8 (for open systems) where we have assumed con-

thermodynamics of such ideal fluids leads to the same relations known from thermo-
statics, as you can verify by comparison with standard texts on this subject. In other
words, the ideal fluids considered so far attain the same properties during dynamical
processes as in equilibrium states. The materials for which the theory holds obey such
simple constitutive laws as to deliver results independent of the speed and other details
of processes. Even though the derivation is one of a theory of dynamics, time appar-
ently drops out of the equations in the end.

 

1. See I. Müller: 

 

Thermodynamics

 

 (1985).

457

stitutive relations allowing only for ideal processes. We have seen that a theory of

and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_11, 
  A Unified Approach to ThermodynamicsH.U. Fuchs, The Dynamics of Heat:
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If you change the conditions just a little bit, for example by introducing a viscous pres-
sure term, time appears explicitly in the results. This is what I would like to demon-
strate on the following pages. The previous results will then be obtained in the limit of
vanishing viscosity.

 

10.1.1 Viscous Pressure

 

First we should discuss how to include viscosity in the constitutive laws describing the
behavior of the fluid. This will tell us something about the particular form the assump-
tions should take upon which we will base the following development.

Imagine a viscous fluid. Naturally, the effect of viscosity will be felt only as long as
the fluid flows. In the case of a uniform body this means that its volume must change.
As long as viscous effects are neglected, we would assume the pressure of the fluid to
be expressed as a function of temperature and of volume; now, however, we will as-
sume the pressure, which is equivalent to the momentum current density across a sur-
face, to also depend upon the speed of the process:

 

(10.1)

 

P

 

|

 

E

 

 is the static pressure of the fluid, i.e., the value of the pressure attained when the
volume does not change, or if viscosity is neglected. As you can see, the rate of change
of the volume of the body is therefore included as one of the independent variables of
the theory. This will have important consequences for the assumptions to be made re-
garding the behavior of the fluid.

 

10.1.2 Assumptions

 

We need to make a number of assumptions to develop a theory of thermodynamics of
a particular type of material. Basically, the fundamental laws used so far, with the ex-
ception of the relation between currents of entropy and of energy in heating, and with
Equ.(1) replacing a simpler form of the equation of state, will furnish the foundation.
Naturally, leaving out one assumption calls for a replacement, unless it was an unnec-
essary one to begin with:

1. First, we have to agree on the independent variables of the theory. As before, they
will be the volume and the temperature of the uniform fluid, which now will be
joined by the rate of change of the volume. Therefore, entropy, energy, pressure,
and other quantities will be functions of 

 

V,

 

 

 

T

 

, and

 

 dV/dt:

 

This requirement carries over to quantities such as the entropy capacitance and
the latent entropy.

2. While we do not take the relation between currents of entropy, currents of energy,
and temperature for granted (i.e., we do not assume the important law 

 

I

 

E,th

 

 = 

 

T I

 

S

 

 

 

,
with 

 

T

 

 the ideal gas temperature, to hold), we accept a constitutive law for the flux
of energy in heating which makes it proportional to the flux of entropy.

 

2

 

 If we heat
twice as fast, i.e., if we double the current of entropy, we also double the current
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of energy associated with the heating:

 

(10.2)

 

We see that this is a particular constitutive assumption. The flux of energy asso-
ciated with compression and expansion of the uniform fluid, on the other hand, is
well known:

 

(10.3)

 

3. The additional assumption needed in place of knowledge of the full relation be-
tween the currents of entropy and of energy in heating can be furnished as follows.
We introduce ideal walls separating different fluid systems.

 

3

 

 Ideal walls are de-
fined to be those which do not contribute to thermal processes; i.e., they do not
produce entropy. This means that as part of the definition, the entropy flux across
an ideal wall is continuous:

 

(10.4)

 

where the roman numerals refer to the fluids separated by the wall. As the actual
assumption, we take for granted that two fluids separated by an ideal wall will
have the same temperature at the wall:

 

(10.5)

 

Naturally, the flux of energy is continuous across this wall as well (remember the
discussion in Section 4.8). Assuming the existence of such walls is necessary for
the measurement of temperature to work the way we know it: one of the fluids
separated by the wall would be the fluid of the thermometer, the other would be
the body whose temperature we wish to measure. Only the fluids, not the wall
separating them, may have an influence upon the temperatures (see Fig. 10.1).

4. With these preliminaries, we can state the laws of balance which we take to be val-
id in the current case. They are the expressions of balance of entropy (for the ther-

 

2. In continuum physics, we have Fourier’s law for the entropy flux density for fluids such as
those described by the Navier-Stokes-Fourier equations:

The same type of equation also applies to the thermal energy flux density:

Hence, the requirement of proportionality between these fluxes is satisfied. (See Chapter
12 for a more detailed discussion.) We have previously assumed constitutive laws of heat-
ing of uniform fluids for which this requirement is fulfilled as well.

3. For a discussion, see Müller (1985), p. 168–169. The assumption of the continuity of tem-
perature at an ideal wall, Equ.(10.5), replaces other assumptions which are made in differ-
ent approaches to thermodynamics.
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Figure 10.1:  Two fluids of the 
same type are separated by an 
ideal wall. Across such a wall, 
entropy and energy flux are con-
tinuous. Also, it is assumed that 
the temperature is the same on 
both sides.
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mal process), and of momentum (for the mechanical process). Therefore, we
postulate that

 

(10.6)

 

Obviously, we should include the effect of irreversibility as a consequence of the
viscosity of the material. Since the fluids are basically at rest, the balance of
momentum is trivial and will not be explicitly required any longer. 

5. Processes also satisfy the requirement of the balance of energy, in addition to the
laws of balance for the special processes taking place. Since the particular fluids
under investigation allow for thermal and mechanical changes only, the equation
of balance of energy takes the form

 

(10.7)

 

Remember that this law does not distinguish between different types of physical
processes; that is the responsibility of the other laws of balance.

 

10.1.3 Consequences of the Energy Principle

 

The crucial point about processes undergone by physical systems is that in addition to
the proper laws of balance, they always satisfy the energy principle, i.e., the law of bal-
ance of energy, as well. This requirement may be expressed as follows: 

 

Physical processes obey the energy principle. If these processes are
required to be thermal, they also satisfy the balance of entropy; the law
is then said to be a restriction upon the processes. If the phenomena are
also supposed to be mechanical, a second restriction applies to them,
namely the law of balance of momentum. Each particular law of bal-
ance serves as a restriction upon the form the laws governing a process
may take.

 

Now, such restrictions can be taken into account using Lagrange multipliers;

 

4

 

 both
Equations (10.6)

 

1

 

 and (10.7) are satisfied simultaneously if and only if

 

5

 

 

 

(10.8)

 

(Remember that we do not have to explicitly take the law of balance of momentum
into consideration here.) This is the starting point of one of the approaches developed
in continuum thermodynamics, which for lack of a better name, is called 

 

thermody-
namics with Lagrange multipliers

 

. Equ.(10.8) is obtained by subtracting the entropy
principle (multiplied by a Lagrange multiplier) from the law of balance of energy. Nat-
urally, 

 

λ

 

S

 

 must have the dimension of temperature for the equation to be dimensionally
correct.

The next steps consist of expressing the mechanical current of energy, which is a result
of changes of volume, and determining the time derivatives of the energy and entropy
functions. Since these quantities are functions of volume, temperature, and rate of
change of volume, we can write Equ.(10.8) as follows:
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(10.9)

 

To obtain this result, the derivatives of 

 

E

 

(

 

V,T,dV/dt

 

) and 

 

S

 

(

 

V,T,dV/dt

 

) have been writ-
ten in terms of their partial derivatives, and the law for the mechanical (compressional)
energy flux for uniform viscous fluids has been applied (remember Section 2.3.2 and
Equ.(10.3)). If we combine terms which are explicitly linear in the time derivatives of
the independent variables 

 

V

 

, 

 

T

 

, and 

 

dV/dt

 

, Equ.(10.9) becomes

 

4. Lagrange multipliers are known from extremal problems. Assume that a function
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) is to be maximized under the additional assumption that the two relations

 

g

 

i
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,
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2

 

,

 

x

 

3

 

) = 0, 

 

i

 

 = 1,2, have to be satisfied. These requirements mean that the three total
derivatives have to be zero:

The dot denotes a derivative with respect to some parameter. The restrictions are taken into
consideration using Lagrange multipliers 

 

λ

 

1

 

 and 

 

λ

 

2

 

. The last two equations are each mul-
tiplied by one of the factors and then added to the first. This leads to

The restrictions introduced here mean that two of the unknown functions 

 

x

 

i

 

 could be ex-
pressed in terms of the third. One may therefore chose the Lagrange multipliers such that
the first two terms in brackets are equal to zero. (These are equations for the two un-
knowns.) As a result, the third term in brackets must also be equal zero. We therefore obtain
three new relations

which have to be satisfied together with the two restrictions. In summary, we have five
equations for the unknowns 

 

x

 

i

 

, and for the Lagrange multipliers 

 

λ

 

i

 

. Because of the similar-
ity of their approach with the classical method of Lagrange multipliers, Liu and Müller (see
Müller, 1985) have chosen to call the 

 

λ

 

’s Lagrange multipliers.
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(10.10)

This equation must hold for all imaginable processes; i.e., it must be satisfied for all
values of the derivatives of the independent variables. Assume this to be the case for
a set of such values. Now change one of them just a little bit: in general, Equ.(10.9)
will not be satisfied anymore unless the factor multiplying this derivative is set equal
to zero. Since this reasoning applies to all terms explicitly involving the derivatives,
the following three equations must hold:

(10.11)

This leaves us with the residual equation

We can say a couple of things about this equation. For one, the assumption that the
fluxes of entropy and of energy in heating are proportional requires 

(10.12)

which at the same time means that

(10.13)

Obviously, the production of entropy is a direct consequence of the viscosity of the
fluid. Clearly, a must be negative or zero.

10.1.4 Determination of the Lagrange Multiplier

Equations (10.11) through (10.13) are the preliminary results of our theory. If we man-
age to determine the multiplier λS in terms of physical quantities, we will have the ba-
sis for deriving all desired results about the particular material investigated. 

There are still a couple of assumptions we have not used so far. First, we shall make
use of the idea regarding ideal walls. Imagine two uniform ideal fluids (I and II) to be

5. This proof, and the proof of the equivalence of these expressions to the requirement pre-
sented in Equ.(10.11), has been given by Liu (1972) for the general case. See also Müller
(1985, p. 170).
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separated by an ideal wall that only lets entropy and energy pass (see Fig. 10.1).
Equ.(10.12) holds for both fluids which means that

(10.14)

Since both fluxes and the temperature are continuous across the wall, this condition
reduces to

(10.15)

The volume and the rate of change of the volume of the two fluids are independent and
can be given any values; this means that the Lagrange multiplier may only be a func-
tion of temperature, and not of the other two independent variables. We have

(10.16)

The multiplier is a universal function of temperature, the same for all fluids of the type
considered here.

We have to perform one more step before we can apply the results to the ideal gas and
find the Lagrange multiplier. Since λS only depends upon the temperature of the fluid,
Equ.(10.11)(3) reduces to

which means that E – λSS is independent of dV/dt. Next, Equ.(10.11)(2) is transformed
into

This means that both the entropy and the energy of the fluid must be independent of
the rate of change of the volume, and Equ.(10.11)(3) can be dropped from the list of
results. These are strong restrictions upon the behavior of the material. We can say that

(10.17)

Now we are ready to determine the Lagrange multiplier. For the moment, we will set
the parameter a, which describes the effects of viscosity in Equ.(10.1), equal to zero.
Since we have additional constitutive information about the ideal gas, let us apply the
results to this body. We solve the first two parts in Equ.(10.11) for the derivatives of
the energy function, and take the derivative with respect to the other independent vari-
able:
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If the functions are assumed to be sufficiently smooth, the mixed derivatives must be
equal. Therefore, we obtain the condition

or

This finally leads to

(10.18)

This still holds for all fluids. In the case of the ideal gas, however, the special proper-
ties show that the right-hand side of Equ.(10.18) is equal to the inverse of the ideal gas
temperature. Remember that the energy of the ideal gas depends only upon tempera-
ture:

(10.19)

Integration of this result shows that the unknown Lagrange multiplier is the ideal gas
temperature:

(10.20)

In other words, the ideal gas temperature takes the role of the thermal potential. This
concludes the proof of the relation between currents of entropy and of energy in heat-
ing of uniform fluids. Considering that we allow for irreversibility, the result is even
more interesting than the equivalent statement which is traditionally derived for ideal
fluids by analyzing cyclic processes (see the Interlude of the First Edition).

10.1.5 Results for Uniform Viscous Fluids

Now that the main unknown factor of the theory has been determined, we can collect
the results and derive some more important expressions. First, the fluxes of entropy
and of energy in heating are related by

(10.21)

Second, the rate of production of entropy as a consequence of viscous pressure is

(10.22)

Since ΠS cannot be negative, we conclude that the parameter a in the law of viscous
pressure cannot take positive values:
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(10.23)

Furthermore, the properties of the fluids are such that the partial derivatives of energy
and of entropy are related by

(10.24)

This is a consequence of Equ.(10.11). This result can be used to derive the Gibbs fun-
damental form of the fluid. Since the time derivative of the energy is composed of par-
tial derivatives, according to

this quantity can be expressed using Equ.(10.24) to yield

(10.25)

Finally, if we introduce the entropy capacitance and the latent entropy; i.e., if we write

(10.26)

we see that the flux of entropy in heating can be expressed as follows:

(10.27)

Obviously, in the case of viscous fluids, heating depends upon the speed of the pro-
cess; in other words, it is no longer reversible. If you calculate processes undergone
by the fluids described in this section, time will appear explicitly in the equations; we
will have standard initial value problems that are absent from traditional thermody-
namics.

The results we have come across before in Chapter 5 can be derived as the limit of the
present theory for vanishing viscosity: if you set a = 0, you will obtain the previous
results. Aside from the inclusion of irreversibility, the new approach taken to thermo-
dynamics is the most important aspect of this section; in particular, it demonstrates
how we can derive the forms of potentials, such as the thermal potential which relates
fluxes of entropy and of energy. Remember that historically, the route via the proper-
ties of heat engines was chosen. Today, we trust the law of balance of entropy as a gen-
eral expression of the second law of thermodynamics; therefore, the development
presented here seems to flow naturally from what we have learned about thermal pro-
cesses. Moreover, note how time appears naturally in our relations: we have standard
initial value problems to solve.
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10.2 IDEAL FLUIDS WITH PHASE TRANSFORMATIONS

Consider a fluid composed of two phases of the same substance (Fig. 10.2). Both
phases are assumed to have the same temperature and pressure. Basically, this sounds
like the prescription for two unrelated, non-interacting fluids of the kind described in
the previous section (if you disregard viscosity). However, in this case, the parts of the
fluid are supposed to interact through a change of phase: one component can disappear
while the amount of the other phase increases. 

10.2.1 Assumptions

The assumptions that will be made in the course of the following derivation are mostly
the same as those introduced above in Section 10.1. In particular, we are again dealing
with ideal fluids and processes which do not produce entropy. Experience tells us that
fluxes of entropy are reversed upon reversal of the changes undergone by the two
phase fluids in chemical equilibrium shown in Fig. 10.2. Therefore, the equation of
balance of entropy looks like the one used above: 

(10.28)

where the entropy of the system is now the sum of the entropies of the two phases A
and B:

(10.29)

Note that in the current case, the independent variables include the amounts of sub-
stance of the components.

Currents of entropy and of energy in heating are again taken to be proportional, as in
Equ.(10.2), and we take the existence of ideal walls for granted.

We now have to add equations of balance for the two species A and B. There is no
flow of any substance across system boundaries, but both A and B can undergo phase
changes, leading to the production or destruction of the species. Therefore, the equa-
tions of balance read

(10.30)

(Neglecting transports of the substances across the system boundary in Fig. 10.2 is of
no fundamental significance.) Since the chemical reactions taking place are of a very
special nature—when a unit of one phase disappears, exactly one unit of the other
phase is produced—the rates of production and destruction are related by

(10.31)

Except for the balance of momentum, which, again, is trivial and does not have to be
considered separately, these are the laws of balance of the processes taking place in
the two phase fluids discussed here. As always, the processes also must satisfy the en-
ergy principle. The energy of the system can be changed only by energy flows due to
heating or cooling and compression or expansion.
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Figure 10.2:  A system com-
posed of two phases of the same 
fluid is heated. In addition to 
changes of volume and tempera-
ture, this case includes changes 
of amount of substance of the 
parts A and B. (When A loses an 
amount of substance, B gains 
just that much.) Temperature and 
pressure of the parts are assumed 
to be the same.
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10.2.2 Consequences of the Balance of Energy

Even though we have extended the nature of the fluids under investigation, the law of
balance of energy looks just like it did in the case of the single phase fluid. Since, with
the exception of energy, the only physical quantities exchanged across the boundary
of the system are entropy and momentum, the only energy currents are the thermal and
the mechanical ones; the latter is related to compression or expansion:

(10.32)

The expression for the exchange of energy in the compressional process is the same
one used for the power of non-viscous uniform fluids. This time, however, we can
write it with the volumes of both components in mind:

(10.33)

The method of taking the balance of energy into account simultaneously with the bal-
ance of all other relevant quantities, once more requires the introduction of Lagrange
multipliers. There is one such multiplier for every basic law of balance that is added
to the list, including the energy principle. In our case, this means that we have to in-
troduce three such factors, which we label λS, λnA, and λnB, respectively. The relation
to be satisfied then takes the form:

(10.34)

The following steps in evaluating the consequences of the energy principle are similar
to those in the case of the single phase fluid. However, they involve some more alge-
bra. First, we introduce the derivatives of the energy and the entropy with respect to
the independent variables. After collecting the terms that are explicitly linear in the
time derivatives of these independent variables, we obtain

The same arguments that led to Equations (10.11) and (10.12) also apply here. Start-
ing with the second one, the fluxes of entropy and of energy will be proportional if

(10.35)

For the remainder of the equation, we can say that it has to be satisfied for all possible
values of the rates of change of the independent variables. Since this requirement can
easily be violated unless all factors are identically zero, we end up with the following
relations:
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(10.36)

and, for the production rates of the species:

(10.37)

This last relation will prove to be important when we interpret the meaning of the
Lagrange multipliers that go with the species A and B. For now, we will use the rea-
soning presented when the Lagrange multiplier λS was determined. We start with a
single-phase fluid for which the result of the previous section applies: λS is equal to
the temperature. Then, a fluid (II) of this type is brought in contact with the two-phase
fluid (I) via an ideal wall. Again, the argument which led to Equ.(10.14) is used; here
it means that

(10.38)

All that remains to be done is to determine the multipliers λnA and λnB. 

10.2.3 The Chemical Potential of Pure Fluids

Take a closer look at Equ.(10.37). If we combine it with the relation between the pro-
duction rates, i.e., with Equ.(10.31), we see that the Lagrange multipliers of the two
phases of the fluid must be equal:

(10.39)

Since the phases are in chemical equilibrium, it makes sense to interpret the as yet un-
known factors as the chemical potentials of the fluid:

(10.40)

The rest of the equations derived above provide a means of relating the chemical po-
tentials to other variables of the fluids. By introducing the Lagrange multipliers into
the intermediate results, we obtain the laws that govern the behavior of pure fluids that
may undergo phase transformations. First, the fluxes of entropy and of energy in heat-
ing must be related by the ideal gas temperature:
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(10.41)

Then, the partial derivatives of the energy and the entropy functions satisfy the rela-
tions presented in Equ.(10.36). For each of the phases, we may now write

(10.42)

10.2.4 The Gibbs Fundamental Form and the Chemical Potential

Since the energy is a function of volume, temperature, and amount of substance, its
time derivative is

Introducing the laws derived in Equ.(10.42) and collecting terms leads to the Gibbs
fundamental form for fluids whose amount of substance may change:

(10.43)

This is an extension of the form used for single-phase fluids. Again, there is one such
relation for each of the phases. Now, we are ready to derive the relationship between
the chemical potential and other variables of the fluid. We write each of the extensive
quantities in Equ.(10.43) as the product of its density and the volume:

Taking the derivatives leads to

Since this relation must be satisfied for all possible (independent) values of the volume
and its time derivative, both factors in brackets must be identically zero. Otherwise,
the equation could be violated. The result of these considerations are the Gibbs funda-
mental form written in terms of the densities, and the relations between energy, entro-
py, density, and chemical potential:

(10.44)

and

(10.45)

The last formula has been rewritten by using molar quantities (see Equ.(8.46)).
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10.2.5 Temperature and Pressure Dependence of the 
Chemical Potential

We have made extensive use of the dependence of the chemical potential upon tem-
perature and pressure in the course of the applications presented in the previous sec-
tions. There, the proof was performed for special cases, but now we are in a position
to deliver a general derivation.

In the development of the theory we started with temperature, volume, and amount of
substance as the independent variables. With the Gibbs fundamental form, on the other
hand, energy, temperature, pressure, and the chemical potential are variables of entro-
py, volume, and amount of substance. Other forms of Equ.(10.43) are based on other
sets of independent variables. We need the set that includes temperature and pressure
in addition to amount of substance. This transformation is facilitated using the defini-
tion of the Gibbs free energy function G:

(10.46)

The time derivative of this quantity is equal to

Using Equ.(10.43), this can be written

(10.47)

which is an alternative fundamental form having independent variables P, T, and n.
According to Equ.(10.47), the partial derivatives of G(P,T,n) are equal to the volume,
the entropy, and the chemical potential, respectively:

(10.48)

(10.49)

(10.50)

Taking the derivative of Equ.(10.48) with respect to amount of substance, the deriva-
tive of Equ.(10.50) with respect to pressure, and equating the mixed derivatives

we obtain the first of the desired results:

(10.51)
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The second one is derived in just the same way:

(10.52)

These are the relations we used above. They are an example of the restrictions put
upon the multitude of quantities used for the description of phenomena; theory limits
the number of independent functions which might have to be measured in the lab if
property data are required (see Chapter 15).

10.2.6 The Clapeyron Equation

In Chapter 15, we will discuss in much more detail the fact that for phase changes,
pressure and temperature are related directly. This is a consequence of the equality of
the chemical potentials of both phases at the transition:

(10.53)

Since this holds for all values of the temperature, the derivative of the difference of
the potentials with respect to T must be zero:

(10.54)

Performing the differentiation leads to

We can introduce the temperature and pressure dependence of the chemical potentials
according to Equations (10.51) and (10.52), and obtain the Clapeyron equation:

(10.55)

In Chapter 15, we will make use of this result in the derivation of vapor pressure.

10.3 REACTION IN UNIFORM MIXTURES OF FLUIDS

Let us now treat the special case of reactions occurring in a closed system (no flow).
A fluid is composed of several species which may react; it may exchange heat, and it
is deformable. Still, we will treat the system as a uniform, non-viscous chunk of mat-
ter. The effects of motion will be neglected.

Again, we have to consider the proper expressions of balance which hold for entropy
and amount of substance. Since we have N different species, we arrive at

(10.56)
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While we do not allow for convective currents in our model, we can no longer exclude
the possibility of entropy being generated; indeed, we know that this is precisely what
happens in reacting fluids that cannot undergo other processes; we therefore have an
entropy production rate in the balance of entropy. As far as chemical substances are
concerned, there is an equation of balance for the amount of substance of each of the
species present.

Energy may be exchanged with the surroundings as a consequence of heating and of
deformation. Therefore, we have an equation of balance of energy with two terms de-
scribing exchange, namely:

(10.57)

For the non-viscous, uniform fluid, the flux of energy due to deformation is

(10.58)

where P is the total pressure of the fluid. Again, we will follow the derivation intro-
duced above, which leads to

(10.59)

as a consequence of the fact that all equations of balance should be satisfied simulta-
neously. To simplify the work, we have assumed the Lagrange multipliers to be
known. This equation is easily rearranged as follows:

(10.60)

For the same reasons as given above, the first and the second terms must be equal to
zero, which leads to the main result of the present case:

(10.61)

(10.62)

The first of these expressions is the Gibbs fundamental form of a fluid composed of
different substances, while the second demonstrates how much entropy is produced as
a consequence of the irreversible reactions between species.

Consequences of the theory are derived in a manner very similar to what we have seen
in Section 10.2. We have taken the energy and the entropy of the fluid to be functions
of volume, temperature, and N species. If we perform partial derivatives on the Gibbs
fundamental form, Equ.(10.61), and collect the terms, we get
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Since every one of the independent variables can be changed independently of the oth-
ers, each of the terms in brackets must be zero:

(10.63)

and

(10.64)

for i = 1…N. These relations are similar, but not equal, to what we have derived in
Equ.(10.42). In that case, the relations held for each individual phase composed of
only one species. In our current case, on the other hand, E and S are the energy and the
entropy of the entire mixture, and we have a total of N equations of the form given in
Equ.(10.64), where the derivatives of these functions are taken with respect to each of
the species of the mixture.

EXERCISES AND PROBLEMS

1. Consider a uniform viscous fluid like the one introduced in Section 10.1. Let the fluid have
a pressure, and entropy capacitance, and a latent entropy like the ideal gas, but let friction
be present. (a) Show that the energy added in heating of the fluid at constant volume is

where the indices i and f refer to the initial and the final states, respectively. (b) Consider
heating at constant pressure. Show that, in this case, the energy added in heating can be
expressed as

Show that this quantity is always less than the difference of the enthalpies at the end and
the beginning. (c) Assume the friction factor a, the rate of change of the volume, and the
energy current in heating to be given. Assume the rate of change of the volume to be con-
stant. Show that the initial value problem of the fluid takes the form

where V0 is the volume at t = 0.
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2. Consider the uniform viscous fluid described in Problem 1. Show that for isothermal heat-
ing at a temperature T with prescribed entropy current IS(t), the differential equation for the
volume becomes

3. Derive the initial value problem for adiabatic processes of an ideal gas having internal fric-
tion according to the model of Section 10.1. Assume the rate of change of volume to be
given as a particular function of time.

4. (a) Show how to obtain the temperature and the pressure of a simple fluid as derivatives of
the energy function. (b) Derive the energy of the ideal gas as a function of S and V. Show
that you can obtain both the entropy as a function of temperature and volume, and the equa-
tion of state of the ideal gas from this information.

5. Isothermal and adiabatic compressibilities, κT and κS, are defines as follows:

Demonstrate that κT and κS, are related by the factor γ (the ratio of the specific heats).

6. For the uniform fluids treated in Section 10.1, show that

7. The thermal coefficient of expansion is defined as αV = (1/V)∂V(P,T)/∂T. Prove the follow-
ing relationship:

Transform this relation to show that the specific temperature coefficients of enthalpy and
of energy are related by

where γ* is called the Grüneisen ratio. (κS is the adiabatic compressibility, respectively.)
Show that the Grüneisen ratio for the ideal gas is

8. Assume that the density ρ(T), the specific entropy capacitance κP(T) at constant pressure,
and the speed of sound c in a fluid are known from experiments as functions of temperature
for a given pressure. Determine from these values the ratio of the specific heats γ , the (iso-
thermal) compressibility κT , and the latent entropy with respect to volume.

9. Show that the law of adiabatic change of an ideal fluid written with temperature and density
as the independent variables is given by

where γ* is the Grüneisen ratio defined in Problem 7.
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So far we have used laws of balance and expressions for processes, i.e., for flows,
source rates and production rates, in their integral forms; in other words we have writ-
ten and applied the appropriate equations for an entire body. Now we will justify and
derive the proper equations of balance of mass, entropy, and momentum, for continu-
ous bodies. This will prepare the ground for theories of thermodynamics of continuous
processes which build upon these laws of balance and expressions for constitutive

I would like to emphasize that the following development will not be rigorous in either
the mathematical or the physical senses. Mathematical derivations will be performed
for the simplest geometrical cases of purely one-dimensional transports only, and the
physical scope of the laws will be limited to relatively simple phenomena.

 

1

 

 Still, I will
use ideas in their most fundamental form to motivate the laws of balance and some
simple constitutive relations of continuum physics, and general results will be present-
ed as extensions of simpler ones. The result will be an uncluttered presentation of a
subject often deemed difficult for beginners. 

 

11.1 L

 

IFE

 

 

 

AND

 

 M
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Let me introduce the ideas and some simple mathematical forms of spatially continu-
ous processes by discussing a particularly vivid case, namely, the migration of locusts.
As mentioned above, I will make many simplifying assumptions, but this will not limit
the importance of the results. The discussion will be exactly what we need as begin-

 

1. Neither restriction will fundamentally limit the applicability of the ideas. The general
mathematical forms for more complicated three-dimensional flow processes have the same
basic appearance as the simple one-dimensional ones. We will simply suggest that the der-
ivations presented here will carry over to the more advanced cases. When terms represent-
ing particular physical phenomena are left out of an equation for simplicity, it is assumed
that they could be included similarly to other terms for which the derivation is presented.
Those of you who wish to see a more rigorous treatment of the subject should turn to books
on fluid dynamics and continuum mechanics. See, for example, Malvern, 1969; Mase,
1970; Landau and Lifshitz, 1959; Lai, Rubin, and Krempl, 1978; and Whitaker, 1968.
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laws in analogy to how we have proceeded before in this book.
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ners if we want to connect understanding to formalism.

First of all, assume that the space in which locusts live is a very thin strip on the ground
effectively creating a single-dimensional domain (Fig. 11.1). The area (inside) of the
strip will be called 

 

volume

 

 even though it is not three-dimensional, and the sides of the
domain will be called 

 

surface

 

. At any given moment, there are certain numbers of in-
sects in different parts (elements) of their domain, and these numbers change from
place to place and in the course of time. Let us assume that there are always so many
insects that we cannot make out an individual one. Rather, we will see them as a con-
tinuous mass distributed in space.

When the insects fly, they are no longer part of their space. We can imagine the air
above the strip on which they live to be a “hyperspace” that allows the insects to dis-
appear at a point and reappear at some other point without moving through the domain
itself; this is a vivid description of radiative processes. In the domain itself, the insects
can crawl in either direction, and they can be swept along with water if there is a
stream in (parts of) their space. These processes are analogs of what we call conduc-
tion and convection in physics. Apart from these transport processes, the insects can
be born and die. All the processes taken together are responsible for changing the
numbers of insects in their space which leads to the law of balance for locusts.

There will be particular circumstances that determine the processes. Such circum-
stances are the numbers of insects at different locations, food resources, water on the
ground, currents of air, etc. We can even imagine more complex phenomena where
processes influence other processes or feed back on themselves, and just possibly the
history of the system might have an impact upon what is going on later. Such circum-
stances are the basis of what we call constitutive laws.

 

11.1.1 Locust Density and Densities of Process Quantities

 

In a description of spatially continuous systems, the number of locusts and quantities
denoting processes such as currents and production rates vary from point to point in
the domain in which the insects live. At any given time, the quantities we use to de-
scribe the system are functions of position. 

+ x

Air above domain
(”hyperspace”)

Domain of locust

Element of domain

x1 x2

A

A

V

Figure 11.1:  locusts in a single-
dimensional domain (in the strip, 
there is never any variation per-
pendicular to the x-direction). 
The insects can move in the x-di-
rection (positive or negative), and 
they can jump into or out of “hy-
perspace.” A part of the domain 
(element) has been singled out 
for formulating the law of bal-
ance of locusts. The shades of 
gray indicate locust density, the 
arrows symbolize processes. A is 
the width of the domain perpen-
dicular to x, and x1 and x2 denote 
the ends of the element chosen 
for analysis.
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Density of locusts.

 

 Take the number of locusts at a point of the domain, i.e., at some
location 

 

x

 

. We want to assume that there is absolutely no variation perpendicular to
the direction of 

 

x

 

. Apparently, defining the number of insects at a point does not make
much sense. Rather, we need to know the density of locusts as a measure of their dis-
tribution in space. From this density, the number of insects in the entire domain or a
part thereof, i.e., in an element (Fig. 11.1), can be calculated. Assume the element to
be fixed in space and call 

 

ρ

 

L

 

(

 

x

 

,

 

t

 

) the density of locusts which is a function of position
and time. Then

 

(11.1)

 

is the number of insects in the element shown in Fig. 11.1. 

 

A

 

 is the surface (side) of
this element which extends from 

 

x

 

1

 

 to 

 

x

 

2

 

; 

 

V

 

 is the two-dimensional volume of the el-
ement. Remember that the density of insects does not vary except in then 

 

x

 

-direction.

 

Conductive transports.

 

 Now turn to insects crawling in their space, i.e., either in pos-
itive or in negative 

 

x

 

-direction; we will deal with the other processes a little later. As
far as our element is concerned, the insects crawl across its surfaces at 

 

x

 

1

 

 and 

 

x

 

2

 

 (see
Fig. 11.2). The transports are described as conductive currents. Since the number of
locusts crossing a boundary per unit of time can vary on that boundary—here, perpen-
dicularly to the 

 

x

 

-direction—the transport process is described by a 

 

current density

 

 

 

j

 

L

 

on the line of width 

 

A

 

. Since the insects could crawl in any direction on the ground at
the location of the boundary, a current density is a vector quantity. Naturally, we shall
continue to assume that they move only in 

 

x

 

-direction (positive or negative), and that
the current density does not vary except in 

 

x

 

-direction (Fig. 11.2, b). This will make
the mathematics very simple: we only have an 

 

x

 

-component 

 

j

 

L

 

 

 

x

 

 of the vector. The net
current of locusts is determined as the integral of the current density over the total sur-
face 

 

A

 

 of the element:

 

(11.2)

 

The component of 

 

j

 

L

 

 used to calculate the current is obtained by the dot product with
the surface normal vector 

 

n

 

i

 

 at location 

 

x

 

i

 

 (Fig. 11.2).

 

2

 

 In our strongly simplified case,
the current turns out to be equal to 

 

j

 

L

 

 

 

x

 

 

 

A

 

 at 

 

x

 

1

 

 and equal to – 

 

j

 

L

 

 

 

x

 

 

 

A

 

 at 

 

x

 

2

 

. This still allows
the insects to crawl in either positive or negative direction at the two surfaces of the
element in Fig. 11.1; the direction is defined by the sign of 

 

j

 

. The net conductive cur-
rent is therefore

 

(11.3)

 

Births and deaths.

 

 For now, take a look at how to describe births and deaths, i.e., the
processes of production and destruction of the species—very much like a chemical re-
action (Chapter 6). What is the production rate of locusts 

 

Π

 

L

 

(

 

t

 

) in the element with

 

2. In mathematics, it is standard practice to choose the outward direction of a surface of a sys-
tem as the positive direction. This means that the surface normal vector points outwards
(see Fig. 11.2). Since we count a current going into a system as a positive quantity, this
leads to the negative sign in Equ.(11.2).

  
n t x t dV x t AdxL L L

x

x
( ) = ( ) = ( )∫ ∫ρ ρ, ,

V 1

2

Element

A

V

n1 n2

A

V

n1 n2

x1 x2
jLx,2

jLjL

jLx,1

(a)

(b)

Figure 11.2:  Distribution of cur-
rents on the surface of an ele-
ment. (a) General case, (b) purely 
single dimensional transport. If 
the dot product of the current 
density vector and the surface 
normal vector of unit length are 
calculated, the component (in-
cluding sign) of the current den-
sity is obtained.
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volume 

 

V

 

 

 

? Since the process can vary spatially 

 

inside

 

 the system, it has to be de-
scribed by a volume density—a quantity distributed in space. The resulting quantity
for the element is the integral of the 

 

production rate density

 

 

 

π

 

L

 

 over the volume:

 

(11.4)

 

As for everything else in this example, we assume that the production rate density var-
ies only in 

 

x

 

-direction. 

 

11.1.2 A Law of Balance of Locusts

 

Now we are prepared to formulate a first version of a law of balance for the element
under consideration. The number of locusts in the element changes because of migra-
tion on the ground (conduction) and births and deaths (production). The law of balance
of locusts is therefore

 

(11.5)

 

n

 

L

 

 

 

, 

 

I

 

L

 

 

 

, and 

 

Π

 

L

 

 are given by Equations (11.1), (11.3), and (11.4). Two of these are vol-
ume integrals, the second—the expression for the net current—looks different. Inter-
estingly, it can be transformed into a volume integral as well. For the simple case
discussed here, the formalism can be described quite intuitively. The net current
equals the difference of the current densities at the ends of the element. This difference
can be obtained as the integral in the 

 

x

 

-direction of the (spatial rate of) change of jx(x):

or

(11.6)

Now the pieces can be assembled and combined. Inserting Equations (11.1), (11.4),
and (11.6) into (11.5) leads to

Since the element is fixed in space, the time derivative of the integral on the left can
be transformed into

Now we have
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or

There is one final step to be made which is based upon an interpretation of the last ex-
pression. The combined terms in brackets can basically take any values, meaning that
their integral over the fixed volume of the element should not generally equal zero.
However, since the integral does vanish, the term in brackets must be equal to zero for
all values of x and t, so

(11.7)

This is called the local or differential form of the law of balance (of locusts) in contrast
to the integral form in Equ.(11.5). Since there are derivatives with respect to time and
position, the equation is a partial differential equation for the density, production rate
density, and current density. It still looks similar to the integral law of balance and,
with a little bit of practice, can be read, written, and understood almost as easily as the
simpler forms we have been using so far. We just have to get used to thinking in terms
of densities and remember that the local change of the current density3 matters—not
the current density itself.

11.1.3 Some Simple Constitutive Relations

If the laws of balance are the trunk of a tree, constitutive relations are its branches. The
image tells us something about the possible complexity of special material laws. I do
not intend to create a biologically viable theory here, so I will present just a couple of
the simplest possible relations that let us put branches onto Equ.(11.7).

Dying of locusts. Assume that in the time span of interest to us, locusts are not born;
they only die. One of the simplest ideas for a model of a death rate is to set it propor-
tional to the instantaneous number of insects living in a system. Therefore, the produc-
tion rate density must be proportional to the density of the insects:

(11.8)

fD is a factor describing the speed at which a population would die out according to
this relation—it is similar to a decay constant in radioactive decay.

Crawling of insects. Another simple idea used in biology that looks similar to exam-
ples found in physics and chemistry, deals with the migration of animals. Assume that
locusts tend to migrate in their space in the direction of lower insect density. Describ-
ing this idea with formal tools is quite simple (Fig. 11.3). Imagine the density as a
function of position to form a kind of landscape with the density as the level. Where
the landscape is steeper, the flow will be stronger. The quantity measuring how steep

3. The partial derivative of the single component of the current density is the single-dimen-
sional form of what is called the divergence of the current density vector (see Section
11.2.5).

  

∂ ( )
∂

+
∂ ( )

∂
− ( )

⎡

⎣
⎢

⎤

⎦
⎥ =∫ ρ

πL Lx
L

x t

t

j x t

x
x t dV

, ,
,

V
0

∂ ( )
∂

+
∂ ( )

∂
= ( )

ρ
πL Lx

L

x t

t

j x t

x
x t

, ,
,

π ρL D Lx t f x t, ,( ) = − ( )

x

ρ

Figure 11.3:  The density of lo-
custs as a function of position 
creates a kind of landscape. The 
slope of this landscape deter-
mines the strength of a diffusive 
flow.
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the density landscape is, is called the gradient of the density, ∂ρL / ∂x. So, the conduc-
tive current density of locusts may be set proportional to this gradient:

(11.9)

The factor k is Equ.(11.7) a kind of conductivity or diffusion coefficient. The minus
sign tells us that the flow is in the direction of decreasing density. Even though the gra-
dient looks just like the divergence (Equ.(11.7)) in a single spatial dimension, gradient
and divergence are two very different mathematical quantities.

The field equation for density. If the particular relations for the production rate den-
sity and the current density are introduced into the equation of balance, Equ.(11.7), we
obtain a partial differential equation for the density:

(11.10)

In continuum physics, an equation of this type is called a field equation. There are two
types of side conditions that have to be specified for a concrete solution: we need an
initial condition and boundary conditions. The initial condition might specify the den-
sity in the entire domain at an initial point of time. In the simple case discussed here,
there will be boundary conditions at either end of the domain, i.e., at x = 0 and x = L.
The conditions can take different forms. For example, the density may be prescribed
at either end of the space, or the flows may be given, or we may have a mixture of these
forms. Depending upon all the details, the differential equation and its side conditions
need to be solved numerically.

11.1.4 Radiation and Convection

To finish this introductory example, let me briefly describe how we can deal with the
other two types of processes: radiation and convection of locusts. The former will be
identified with flying locusts, the latter may be thought of as occurring if the insects
are swept along with a stream of water.

Radiative process. When the insects fly off, they leave their domain at the spot where
they were and lift off into what I called “hyperspace.” When they land again, they ap-
pear in the domain at a point. The process looks clearly like what we know from radi-
ation (see Chapters 7 and 12). Radiation is described by source rates. All we have to
do to apply the idea to the continuous case is to introduce a source rate density σ. The
source rate of locusts in an element (as in Fig. 11.1) is determined as the volume inte-
gral of the source rate density: 

(11.11)

This is equivalent to the relation between production rate and production rate density
defined in Equ.(11.4). Indeed, from a mathematical point of view, there is no differ-
ence between production and radiation for the system under consideration. The differ-
ence lies in the fact that, in the case of radiation, the insects come from a different
space—they are not born, i.e., not created out of nothing.
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Convective transport. As we have seen in Chapter 8, convective transports are de-
scribed by currents. This means that the mathematical forms used for conductive cur-
rents apply as well: there is a current density (a function distributed over the surface
of an element) and the divergence of this current density appears in the law of balance.

The only difference is in the particular form of the current. Imagine the locusts to be
caught by a stream, and their density in the water is ρL . We can directly apply the ideas
developed in Section 8.2.1 (see Fig. 8.3 and Equ.(8.3)). In the purely one-dimensional
case, the convective current of insects turns out to be equal to IL ,conv = AρLv, where v
is the flow speed of the water. The convective current density jL ,conv of locusts must
then equal

(11.12)

This form introduces a new quantity, namely, the flow speed that must be obtained
from some other information. In continuum physics, flow speed would be the solution
of a continuum model of the fluid. This means that a model involving convective pro-
cesses is generally a coupled problem dealing with the species in question and the flu-
ids that lead to convection.

General form of the law of balance of locusts. We can now combine the expres-
sions for the additional processes with the law of balance of locusts. The integral form
of the law of balance is

(11.13)

If we apply the same reasoning that led to Equ.(11.7), we obtain

(11.14)

for the most general local form of the law of balance of locusts. Again, with a little
practice, one can understand such equations quite easily.

In the following sections, we are going to study a generalized version of the case of
locusts, but applied to the phenomena of physics we are accustomed to. First, the terms
needed for a continuum description will be introduced, then the laws of balance of
mass, momentum, and entropy will be formulated before we finally turn to an example
of a continuum theory of thermodynamics. Such a theory involves constitutive laws in
addition to the laws of balance.

11.2 DENSITIES AND CURRENT DENSITIES

Equations of balance for a body relate the rate of change of system content, currents
across the surface of the system, and possibly, source rates and rates of production.
They tell us how quantities such as mass, entropy, and momentum of a body change
as a result of flow processes, and where appropriate, as a consequence of absorption
and production. While in integral form, these quantities refer to an entire body, in con-
tinuous processes they have to be transformed to reflect their distribution in space. En-
tering these distributions into the well-known forms of the equations of balance will
yield the desired result, namely equations of balance for continuous processes.
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11.2.1 The Density of Fluidlike Quantities

We have come across an example of a density in our discussion of locusts. The density
of a fluidlike quantity is our means of telling how the quantity is distributed over a giv-
en volume. The concept is easily grasped: if it is constant, the density multiplied by
the volume tells us how much of the quantity is contained in the volume; if it is vari-
able, we simply have to integrate the density over the volume to obtain the desired re-
sult (Fig. 11.4). A density is commonly introduced for the mass of a body. Integrating
the mass density ρm over volume yields the mass of the body contained in the volume:

(11.15)

This carries over to all quantities of a similar type, including entropy, momentum, and
energy. If we write ρQ for the density of a particular quantity, the amount Q of this
quantity contained in a given volume is calculated according to

(11.16)

For our current purpose, this definition is applied to entropy, mass, and momentum of
a system. It has been presented for mass in Equ.(11.15); as is customary in this special
case, we will not use the subscript m to denote mass: the symbol ρ is used for the mass
density of a body. The density of a particular quantity is often written in terms of the
specific value q = Q /m of the quantity and the mass density of the material containing
the quantity:

(11.17)

Using this form, Equ.(11.16) becomes

(11.18)

Entropy. Entropy is the fluidlike quantity of thermal processes. If we apply the general
expressions formulated above, we obtain the following equations for the entropy of a
system:

(11.19)

Momentum. For momentum, we obtain a perfectly analogous equation, at least in the
one-dimensional case:

(11.20)

The velocity v of matter represents its specific momentum, i.e., its momentum per
mass. Since momentum is a vector, we either have to write Equ.(11.20) as one vector
equation or as three component equations (in a Cartesian coordinate system):

(11.21)

or

Figure 11.4:  The density of a 
quantity tells us about its distri-
bution over a volume. Where the 
density is higher, more “stuff” is 
contained in a part of space. If 
the density changes in space, we 
have to integrate the distribution 
over volume to obtain the 
amount of the quantity con-
tained in a system.
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(11.22)

If we work with the components of momentum in a Cartesian coordinate system,4 we
can deal with definitions and laws as if momentum consisted of three independent sca-
lar quantities with properties similar to those of mass or entropy.

11.2.2 Source Rate Densities and Production Rate Densities

Some of the fluidlike quantities change as a consequence of source or production pro-
cesses. Sources are used to describe the interaction of bodies and fields where quanti-
ties are transported into and out of bodies without crossing their surfaces. Quantities
transferred in this way either originate or end up in another system; they are not pro-
duced in this manner. Since a source rate tells us the rate at which a fluidlike quantity
appears or disappears inside a body, and since this rate may be different in different
parts of a body, we again introduce the concept of a distribution function, this time of
the source rate over a volume. In other words, we use the spatial density σQ of the
source rate ΣQ to quantify its distribution. The relation between the source rate and its
density is known from the density of a quantity:

(11.23)

where fQ is the specific source rate (source rate per mass). If you wish to use this ex-
pression for a particular physical quantity such as entropy or momentum,5 you have
to substitute that quantity for Q . Remember, in the case of momentum you have to
write three independent equations for each of the Cartesian components of the mo-
mentum vector.

The same idea applies to the phenomenon of the production of a quantity. Again, the
rate of production may vary over the volume of a system, in which case we should in-
troduce the spatial density πQ of the rate of production ΠQ :

(11.24)

Of the quantities we are dealing with in this chapter—mass, entropy, momentum, and
energy—only entropy admits a (strictly non-negative) production term. 

4. For reasons of simplicity, whenever multidimensional forms of equations of balance will
be written in component form, a rectangular Cartesian coordinate system will be chosen.
More general coordinate systems are treated in books on continuum mechanics (for exam-
ple, Malvern, 1969).

5. As you know, there is no source term of mass if we use mass as a measure of amount of
substance (as we currently do). Substances cannot be transferred radiatively. If we actually
had to deal with mass as in gravitational processes, the equivalence of mass and energy tells
us that there could be radiative sources of mass in a system.
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11.2.3 Current Densities

The current density (or flux density) of a fluidlike quantity is used as the measure of
the distribution of a current over a surface, just as the density is used to describe the
distribution of a fluidlike quantity in space (see Fig. 11.5).

Let us start with the simplest possible case of a current density and its associated cur-
rent or flux, namely that of a flow perpendicular to a flat surface having a constant val-
ue of the current density on the surface. Naturally, in this case the flux is calculated
simply as the product of the absolute value of the current density and the surface area.
With a given orientation of the surface, the value of the flux is taken to be negative if
the current flows in the direction of the normal vector representing the orientation.
This means that, in this simple case, we can write the flux in the following form:

(11.25)

The dot denotes the scalar product of the vectors jQ and n. As before, for a surface of
a body, we will take the orientation positive for outward direction (Fig. 11.6). We can
now relax the condition that the flow must be perpendicular to the flat surface. The
same form as in Equ.(11.25) still applies; and it does so as well for a small part of a
curved surface cut by arbitrary flow lines as depicted in Fig. 11.5. In general, then, the
flux of an arbitrary flow field cutting through a curved surface must be given by the
surface integral

(11.26)

where A is the surface under consideration. This surface may be the closed surface of
a body or a part thereof.

Remember that we have to distinguish between two different types of currents if we
are dealing with material systems,6 namely those associated with convective and con-
ductive transports. If a fluidlike quantity flows through matter, the flux is said to be
conductive; if it flows with matter, we call the transport convective. Conductive trans-
ports are quantified in terms of a conductive current density jQ

(c). The convective cur-

6. There is a third type of current or flux associated with the transport of a fluidlike quantity
through a field.

Flow lines

j Q

n

∆A
Flow line

j Q

Surface

Surface
element

Figure 11.5:  Flow lines cutting 
through a surface present an im-
age of the distribution of a cur-
rent. The distribution is measured 
in terms of the current density 
over the surface. Note that the 
flux density of a scalar quantity is 
a vector with a direction tangen-
tial to the flow line. The orienta-
tion of this vector with respect to 
the surface normal vector n is 
used when calculating the flux of 
the quantity transported through 
space.

I AQ Q= − ⋅j n

I dAQ Q= − ⋅∫ j n
A

n

Figure 11.6:  The orientation of 
the surface of a body is taken to 
be positive for the outward direc-
tion. The normal vector n points 
away from the body.
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rent, on the other hand, can be expressed in terms of the specific value of the quantity
transported by matter and the flux of mass; see Section 8.2 of Chapter 8:

(11.27)

All we must do to obtain the continuum form of this relation is to calculate the flux of
mass for the spatially variable case. You know that the flux of mass is equal to the
product of the density of the material and its flux of volume. The latter quantity must
be given by the integral of the volume flux density over the surface:

(11.28)

As you can see, the volume flux density is equal to the speed of flow:

(11.29)

Therefore, the flux density of mass is the product of the density and the speed of flow:

(11.30)

This tells us that the convective current density of a quantity Q  is given by the product
of the specific quantity and the mass flux density:

(11.31)

Now, we have the means of expressing the total flux density of a particular quantity,
namely by adding up the conductive and the convective parts:

(11.32)

and, for stationary control volumes, the flux turns out to be

(11.33)

11.2.4 Current Densities of Mass, Entropy, and Momentum

To obtain the expressions pertaining to the particular quantities with which we are
dealing, we simply have to replace the general quantity Q  by either mass, entropy, or
momentum. Since mass (amount of substance) does not have a conductive flux, the
total flux density is given by the expression in Equ.(11.30):

(11.34)

Entropy is a fairly simple case since this quantity is a scalar just like mass or electric
charge. The specific entropy is abbreviated by s, while the conductive current density
of entropy is written as jS

(c):

(11.35)
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Momentum, on the other hand, presents us with a more complicated case since we
have to deal with a vectorial quantity. The problem is simplified if we treat each of the
components of the vector independently. As you recall from the brief presentation in
Chapter 3, a component of momentum can be thought of as flowing through matter
much like entropy or charge do. The flow of each of the components of momentum
results in a flow field like those shown in Chapter 3 and below in Fig. 11.7.

Here are the equations for a single component of momentum. You can build the com-
plete result for all three components by combining the parts. If we choose the x-com-
ponent, the specific value of x-momentum px is the x-component of the velocity.
Therefore, we have

(11.36)

In this case it might be instructive to present all three components of the current den-
sity:

(11.37)

These quantities have a simple graphical representation; jpxx, for example, represents
the current density of x-momentum flowing in x-direction, while jpxy is the current
density of x-momentum flowing in y-direction (see Fig. 11.7) Since there are three
components of current density vectors belonging to the three components of momen-
tum, a total of nine components7 form the momentum current density tensor.

11.2.5 Transformation of a Surface Integral (Divergence Theorem)

In Section 11.1.2, we transformed a surface integral into an integral over the volume
bounded by the surface. We treated the simple example of purely one-dimensional mi-

j v jpx x px
c= + ( )ρv

Figure 11.7:  Flow pattern of one 
component of momentum result-
ing from tension in a flat strip 
having a notch. The component 
of momentum whose flow is de-
picted here is the one identified 
with the direction of tension. See 
also Fig. 3.8.
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gration of locusts. Since the number of locusts is a scalar quantity, its current density
is a vector describing the three possible directions of flow of this fluidlike quantity. If
the current density vector has only one component, then locusts move in only one di-
rection. In this case, the locusts flux is

The second form on the right has been introduced to shorten the notation. This integral
can be transformed into a volume integral according to

We used this relation to derive the local form of the equation of balance of locusts
above in Section 11.1.2 (see Equ.(11.6)). In this form, the transformation is the sim-
plest example of what is called the divergence theorem or Gauss’s theorem. Let me
briefly write down this relation without giving a proof.8 If we define a current density
vector jQ on the closed surface of a body, the surface integral can be transformed into
an integral over the volume enclosed by the surface:

(11.38)

7. This quantity cannot be represented as a vector anymore; rather, it is a tensor which may
be written in matrix form

The negative conductive part of this quantity is commonly called the stress tensor

while the complete quantity would be called the momentum current tensor. The surface in-
tegral of a row of the tensor (for one of the components of the coordinate systems) is called
the component of the surface force

(Tx is the first row of the stress tensor), while the surface integral for the stress tensor is the
surface force vector
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where ∇·jQ is called the divergence of jQ . In rectangular Cartesian coordinates

(11.39)

The divergence of a vector written in component form is often abbreviated as follows:

(11.40)

In this notation it is assumed that a summation is carried out over all indices which
appear twice in the same term; xi , i = 1,2,3 stands for the three components (x,y,z) of
the coordinate system. In this form, the divergence looks like the expression used in
single-dimensional cases. In fact, the simplest examples usually suggest the proper
form of more complicated cases.

11.3 THE BALANCE OF MASS

Let us start with the first of the three fluidlike quantities for which we have to obtain
laws of balance, namely the amount of substance. The balance of amount of substance
is a necessary prerequisite for formulating theories applicable to fluid or otherwise de-
formable media. If we wish to quantify convective currents associated with processes
in open systems, we have to be able to write down the currents of amount of substance.
For practical reasons, however, engineers commonly use mass as a substitute for
amount of substance, and as long as there are no chemical reactions taking place inside
the material, there is no problem in doing so. Therefore, we will use a formulation
based on mass.

In the previous section we introduced the concepts and tools needed to formulate the
continuum forms of the laws of balance of fluidlike quantities. Starting with the inte-
grated form of the balance of mass

(11.41)

we can easily show how to obtain the appropriate local equation applicable to the con-
tinuous case. Let us apply this law to a stationary control volume of simple shape
(Fig. 11.8) and assume the flow field to be one-dimensional. In this equation, m is the
mass inside the control volume, while Im is the net current of mass across the surface
of the control volume. We shall replace the mass by the volume integral of the mass
density, and the flux by the surface integral of the flux density, as in Equ.(11.26). With
Equ.(11.34) this leads to

(11.42)

If we use the divergence theorem for the surface integral and apply the time derivative

8. For a derivation of the divergence theorem see Marsden and Weinstein (1985), Vol. III, p.
927.
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to the integrand of the first integral, we obtain

or

Since the integral must be zero for arbitrary volumes V, the last expression can only
be satisfied if the terms in brackets are equal to zero:

(11.43)

You can easily apply the transformations to the more general three-dimensional case

(11.44)

or

(11.45)

This looks very similar to the simpler expression. In contrast to Equ.(11.42) which is
the integral form of the law of balance of mass, Equ.(11.43) and its counterpart in
Equations (11.44) or (11.45) represent the local or differential form of this law. The
balance of mass often is called the equation of continuity.

11.4 THE BALANCE OF ENTROPY

Entropy is a scalar quantity just like mass, so the derivation of the local form of the
law of balance should lead to a result similar to what we have just seen. Consider as
we did in Fig. 11.8, the flow of a fluid in the x-direction only. As far as entropy is con-
cerned, we will include conductive and convective transports in the derivation, and
production of entropy in irreversible processes. Sources of entropy from radiation,
however, will be excluded here. The integral form of the equation of balance of entro-
py for the control volume in Fig. 11.8 then looks like

(11.46)

If we introduce densities and current densities as in Section 11.2, the law becomes

(11.47)

s is the specific entropy of the fluid, jS
(c) and πS represent the conductive entropy cur-

rent density and the density of the entropy production rate, respectively. Remember
that we are dealing with a purely one-dimensional case. If we now apply the transfor-
mation of the surface integral, we obtain
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The expression in brackets must be zero, which yields the local form of the law of bal-
ance:

(11.48)

The general three-dimensional case can be written in a form that looks just like the one
derived for purely one-dimensional transports. Applying the divergence theorem to
the generalized form of Equ.(11.47) yields

(11.49)

or

(11.50)

Extending this result to include the effects of sources from radiation is pretty simple.
How this is done will be demonstrated below for the case of momentum (remember
that gravity leads to sources of momentum).

11.5 THE BALANCE OF MOMENTUM

Basically, the law of balance of momentum is derived analogously to what you have
seen so far. While the fundamental ideas do not change, the current case can be rather
complex if we try to deal with it in the most general form. It is therefore all the more
important to discuss the simplest possible nontrivial case. Fortunately, purely one-di-
mensional flow of momentum is meaningful in physical terms, so let us deal with this
case in some detail.

One-dimensional convective transport of momentum is a simple concept: if a fluid
flows in one direction only, it carries only one single component of momentum. The
case of one-dimensional conductive transport is just as well known. Let the direction
of fluid flow define the spatial component we are talking about. Having the same com-
ponent of momentum flowing through the fluid simply means that the material is un-
der compression or tension in the same direction. A frictionless fluid flowing through
a straight pipe demonstrates what we mean: the conductive momentum current density
of the component parallel to the pipe’s axis is the pressure of the fluid.

In addition to conductive and convective modes of transport, we will consider sources
of momentum due to the interaction of the fluid with a field. If you imagine the fluid
flowing through a vertical pipe (Fig. 11.9), the action of the gravitational field leads
to the flow of momentum of the same (vertical) component directly into or out of the
body.

If we collect the different terms, the integral equation of balance of momentum for the
z-direction looks like
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(11.51)

where p stands for the z-component of momentum. As before, we introduce the proper
densities and flux densities and obtain

(11.52)

Now, we can apply the divergence theorem to this equation:

leading to the desired differential form of balance of momentum for the purely one-
dimensional example discussed so far:

(11.53)

The general case requires two additional steps. First, for a component of momentum,
we have to treat the momentum flux as a vector; this yields an equation similar to
Equ.(11.49) for the component. Second, we have to write analogous equations for the
other two components of momentum:

(11.54)

These three equations can be written as a single one using the momentum current ten-
sor introduced in Footnote 7. While the result can be presented in a compact form, the
actual equations are rather lengthy and difficult to read in their component form.

Let us briefly return to the meaning of the conductive momentum flux and the source
term in Equ.(11.53). For a simple fluid, the purely one-dimensional case of conductive
momentum transport describes the state of compression of that fluid. In other words,
the current density is the pressure of the fluid:

(11.55)

The source term, on the other hand, arises as the result of the gravitational interaction.
As described in Section 3.3, the gravitational field supplies momentum to the body,
leading to a source rate, which in integrated form, must be equal to the weight of the
body. The source density must therefore equal

(11.56)

which shows that the specific source rate fp introduced in Equ.(11.23) is the gravita-
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tional field strength g. The influence of fields other than the gravitational field can be
included in the same manner. Forces of this nature are called body forces.

11.6 THE MATERIAL DERIVATIVE AND LAWS OF BALANCE

The local form of the equations of balance derived above has a couple of features
which need explaining. The derivatives occurring in relations such as Equ.(11.48) or
Equ.(11.53) are partial derivatives, which means that, for example, the time derivative
must be taken at a fixed position. This form is often called the Eulerian form of the
partial differential equations describing the balance of fluidlike quantities. The second
feature is related to the first: the equations explicitly contain convective currents.

It is possible to transform the laws of balance using the balance of mass and to obtain
alternative forms which no longer contain the convective currents. As such, the result-
ing equations look as if they were written for closed systems for which convection
does not play a role. Instead, there appears a combination of derivatives of the density
of the quantity investigated, a combination which can be interpreted as a material de-
rivative. Let us see how this happens.

Take as an example the simple law of balance of entropy in Equ.(11.48). If you take
the derivative of some of the products occurring in the equation, you get

or

According to the law of balance of mass presented in Equ.(11.43), the term in the sec-
ond pair of brackets must equal zero. Therefore, the transformed law of balance looks
like

(11.57)

The convective current density has disappeared. Introducing the operator

(11.58)

which is commonly called the material time derivative or the substantial derivative,
Equ.(11.57) can be written as follows:

(11.59)

The time rate of change of the quantity s expressed by the material derivative is the
one measured by someone carried along with the fluid rather than by someone at a
fixed location.
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11.7 THE ENERGY PRINCIPLE

The law of balance of energy should be considered separately. The reason for this is
not that the energy principle is more important than any of the other fundamental laws
but that we should again stress that energy is special in that it appears equally in all
physical phenomena and not just in one special subject area. The formal expression of
this idea was applied in Chapter 10, where the energy principle was understood to put
restrictions upon the processes in question. It will be used again further below in Sec-
tion 11.8, where the theory of thermodynamics of viscous heat-conducting fluids will
be presented.

Since energy is exchanged in all types of physical processes, it is almost impossible,
and certainly not realistic, to try to present a totally general form of the law of balance.
The following discussion is in line with the area of applications considered here,
namely the thermomechanics of nonreacting fluid systems.

11.7.1 Energy Density and Energy Current Densities

Consider again a fluid flowing through a control volume such as in Fig. 11.8, and let
all transports be purely one-dimensional. In addition to mass, entropy, and momen-
tum, energy is transported across the faces of the control volume, and just like the oth-
er quantities, it can also be stored in the system. Since energy cannot be produced, we
will have to consider the density of energy in the fluid, energy density currents across
the surface, and sources of energy due to radiative transports.

The energy density of a fluid. A fluid contains an amount of energy that depends
upon its state, which in this case, can be described by temperature, pressure, and ve-
locity. It is common to associate a part of the energy content with the state of motion
of the material (i.e., the kinetic energy) while the rest is lumped together as the internal
energy of the fluid. This distinction was made in Chapter 8 where we discussed simple
applications of flow processes. The density of energy of the fluid is therefore written
as the sum of two parts, the density of internal energy, and the density of kinetic ener-
gy. If we use instead the specific values of internal energy and of kinetic energy, the
expression takes the following form:

(11.60)

Here, e is the specific energy, while u = e(i) stands for the specific internal energy (in-
trinsic part of e). Naturally, the second term on the right-hand side represents the ki-
netic energy per mass. The energy of a fluid system can then be written as follows:

(11.61)

Energy current densities. Energy can be carried into or out of a control volume across
the surface of the system. Such processes are described in terms of currents. Since the
exchange of energy may be the result of numerous different interactions, we should be
specific and discuss only those phenomena which are important to our current theme.
Other cases can be treated in analogy to what we do here. Since energy can be trans-
ferred convectively and conductively, we can say that
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(11.62)

In general, these current densities are vectors. The convective transport is the result of
the fluid carrying stored energy across the system boundary. We need the convective
energy flux density to quantify this process; it can be expressed in terms of the specific
energy and the flux of mass:

(11.63)

The conductive transport of energy presents a slightly more complicated problem,
since we might have to consider all sorts of transfer processes. Limiting our attention
to thermal and mechanical phenomena, however, leaves us with only two possibilities:
energy may be either added or withdrawn together with entropy in heating and cool-
ing, or it may flow across the system boundary as the result of the conductive ex-
change of momentum:

(11.64)

The former possibility gets short treatment; since we shall try to establish the relation-
ship between transports of entropy and of energy, we cannot say more about this case
so we simply introduce a thermal energy current density. The second term in this equa-
tion, on the other hand, is well known from mechanics. The exchange of energy is di-
rectly tied to the conductive flow of momentum, and to the speed of the fluid at the
surface of the system:

(11.65)

In three dimensions, a component of the energy flux density vector is obtained for
each component of momentum by calculating the scalar product of the momentum
current vector and the velocity. Adding up all the terms introduced so far yields the
desired expression for the energy current density:

(11.66)

As mentioned before, this equation has to be changed or extended if other processes
are to be taken into consideration.

The total energy flux with respect to the control volume in Fig. 11.8 is obtained by in-
tegrating the expression in Equ.(11.66) over the surface elements perpendicular to the
direction of flow:

(11.67)

Sources of energy. Energy can be directly supplied to the interior of a body or a con-
trol volume as a consequence of its interaction with fields. Three cases of interest to
us are the supply of energy together with momentum if we include the action of a grav-
itational field; sources of energy due to the absorption of electromagnetic radiation;
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and sources of energy such as those related to nuclear decay or chemical reactions in-
side the system. Describing these effects calls for introducing an energy supply densi-
ty such that

(11.68)

Gravitational interaction and absorption of radiation lead to a specific expression for
the source density, namely

(11.69)

where fp = g is the specific source rate of momentum (the specific body force) and r
denotes the specific rate of absorption of energy together with radiation. 

11.7.2 The Balance of Energy

Writing down the law of balance of energy as it applies to a fairly general case of the
thermomechanics of fluid systems, is as simple as the examples we have seen before.
The integral statement

(11.70)

can be written using the densities and the current densities:

(11.71)

Applying the integral transformation to the surface integral, collecting all the terms on
one side, and noting that the resulting volume integral must vanish identically, yields
the local form of the law of balance of energy:

(11.72)

Together with the laws of balance derived above for mass, entropy, and momentum,
this equation will furnish the starting point for the development of our example of con-
tinuum thermodynamics in Section 11.8.

11.7.3 The Balance of Energy in the Material Form

As mentioned in Section 11.6, the local equations of balance are often written using
the material derivative, Equ.(11.58), in which case they look like laws of balance writ-
ten for a particular body, i.e., for a closed system. Let us first motivate this particular
form for supply-free processes before attempting a derivation.

Imagine following a fluid in motion. For observers flowing along with a particular
body, the momentum of the material is always zero and, as a corollary, the kinetic en-
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ergy vanishes; they see only the internal energy of the fluid. The exchange of energy
with the environment takes two forms. The momentum flowing through the body does
so with or against a gradient of the potential of motion, i.e., with or against the gradient
of the velocity at the location of the body. The rate per volume at which energy is re-
leased is equal to the product of the current density of momentum and the gradient of
the velocity. A similar result holds for the thermal interaction; only here we do not
know the relationship between the flux of energy and the flux of entropy. The rate of
release of energy per volume in the body is equal to the gradient of the energy flux
density. Adding up the terms should yield

(11.73)

The second term in this equation is called the stress power.

This result is a consequence of Equ.(11.72), and the laws of balance of mass and of
momentum Equations (11.43) and (11.53); remember that we do not include any of
the source terms. In a first step, the law of balance of energy becomes

Together, the second and the fifth terms vanish because of the law of balance of mass,
while the first and the fourth terms yield the product of the density and the material
derivative of the internal energy. Therefore we have

If we can show that the expression inside the braces in this expression is zero, then the
proof of Equ.(11.73) is complete. Now, the spatial derivative of the momentum cur-
rent density can be replaced using the law of balance of momentum:

After some lengthy algebra, we find that this expression is equal to

This quantity vanishes because of the law of balance of mass. Naturally, for the three-
dimensional case, the derivation is more involved, but the result still holds in a form
similar to the one stated above.
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11.8 THERMODYNAMICS OF A VISCOUS HEAT CONDUCTING FLUID

The bulk of engineering work in the fields of fluid dynamics and heat transfer is built
upon the basis of the theory of heat-conducting viscous fluids, the subject we will dis-
cuss in this section. Except for constructing the constitutive laws applicable to the
field, we have already done most of the preparations necessary for the following de-
velopment. We must only assemble the parts and derive the consequences of the as-
sumptions, much like we did for the uniform viscous fluid in Chapter 10. If the
following lines look forbidding at first, keep in mind that it is the amount of algebra
needed which creates this impression. The results can be understood intuitively in
terms of what we have learned in the previous chapters.

The assumptions which the theory is based upon can be divided into three groups. The
first, the laws of balance of mass, entropy, momentum, and energy, has been discussed
above; we only must assemble them in the form which applies to our case. The second
is made up of the preliminary expressions for the constitutive laws which will be in-
troduced in Section 11.8.2 and the third group deals with the assumption of ideal walls
which we will not go into again (see Section 10.1 for more details).

11.8.1 The Laws of Balance

The laws of balance used in the field of nonreactive heat-conducting viscous fluids are
those of mass, entropy, momentum, and energy. For the following derivation, we will
stay with the simple one-dimensional case discussed in the previous sections. For
source-free processes, the appropriate forms of the first three laws are

(11.74)

while the balance of energy looks as follows

(11.75)

In component notation for three dimensions, the equations of balance for the three
main fluidlike quantities are as follows:

(11.76)

The balance of energy takes the form
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(11.77)

Remember that we have to sum over the indices which appear twice in an expression
(j = 1,2,3).

As you know from all the examples in the previous chapters, equations of balance do
not solve a problem by themselves. Moreover, they contain as their most important
quantities those which are often not accessible to measurement. If we wish to specify
the condition of a fluid in terms of density, velocity, and temperature at different
points in space for different times, i.e., if we wish to obtain the functions ρ(x,t), v(x,t),
and T(x,t), we will obviously have to eliminate quantities such as entropy and energy
from the equations. This goal is achieved if we know the proper constitutive laws with
whose help the equations of balance can be transformed into field equations for the
measurable quantities.

11.8.2 Constitutive Relations for a Navier-Stokes-Fourier Fluid

In this section we will present the constitutive laws which govern the behavior of vis-
cous heat-conducting fluids in a strongly simplified form. It is possible to include all
the interesting physical effects in the purely one-dimensional case. This reduces the
complexity of the calculations considerably. We will need preliminary forms of the
constitutive laws for the specific entropy and energy and for the flux densities of en-
tropy, momentum, and energy (for the case of heating). A suitable thermal equation of
state must be added to these.9

In many instances, gradients of temperature and velocity in fluids can be assumed to
be small, which leads to particularly simple forms of the constitutive laws with only
linear dependence on the gradients. We shall assume that

(11.78)

and

(11.79)

for the specific quantities, and

(11.80)

for the fluxes of momentum, entropy, and energy (for heating).10 Here, µ' is a viscosity

9. For more details on the proper constitutive laws, you should turn to books such as those by
Müller (1985) and Malvern (1969).
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which may include the bulk viscosity with the normal viscosity µ of the fluid, while
kS is the thermal conductivity with respect to entropy (i.e., the entropy conductivity);11

β is a function that will be related to kS later. We have used constitutive expressions
of these or similar forms before for the simple materials treated in previous chapters.
Remember that the terms involving gradients of temperature or velocity are the local
forms of our simpler expressions for conductive transports: a conductive flow is one
that depends upon the difference of its own potential. The first equation, Equ.(11.80)1,
reminds us of the special pressure law used in Section 10.1.1 where we dealt with a
uniform viscous fluid. Velocity gradients in one dimension mean that the fluid is either
being compressed or expanded, leading to viscous effects. The other two expressions,
Equations (11.80)2,3, are Fourier’s law of heat conduction.

11.8.3 Evaluation of the Energy Principle

We wish to be able to derive more detailed results about the constitutive laws and
quantities of a Navier-Stokes-Fourier fluid. As you remember, the laws of balance
serve as restrictions upon these relations. In particular, all processes must satisfy the
energy principle in addition to the laws of balance of amount of substance (mass), en-
tropy, and momentum. In Chapter 10, the approach using Lagrange multipliers was in-
troduced; we will now use it for the present case. The laws of balance are satisfied
simultaneously if and only if the following relation holds:

10. Actually, the preliminary forms are slightly more complicated. First, one exploits the prin-
ciple of material frame indifference and representation theorems for isotropic functions to
obtain rather general expressions for the constitutive laws (Müller, p. 4–7). These expres-
sions are linearized, leading to

for the three-dimensional case of the Navier-Stokes-Fourier fluid. When the equations of
balance are exploited, the functions a and b turn out to be equal to zero, meaning that the
entropy and the density take the same form in equilibrium as in nonsteady-state processes.
To simplify the derivation, we have omitted the terms relating to the gradient of velocity
from Equ.(11.78). Equ.(11.80)1 is the purely one-dimensional version of the expression for
the stress tensor for nonvanishing bulk viscosity, where

is the symmetric part of the velocity gradient tensor, and λ and µ are two independent pa-
rameters characterizing the influence of viscosity of the fluid.
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(11.81)

This expression is obtained by multiplying each of the equations of balance of mass,
entropy, and momentum by its own Lagrange multiplier, which here are called λρ, λS,
and λv, respectively, and then subtracting them from the energy principle Equ.(11.77).
For the following calculations, note that the constitutive quantities in the laws of bal-
ance are functions of ρ, T, dT / dx, and dv / dx. You can verify this by looking at
Equations (11.78) and (11.80). We should now calculate the derivatives with respect
to time and to position in Equ.(11.81), keeping in mind the dependencies just men-
tioned. This yields a long expression12 with terms containing the derivatives

(If we had included the terms that depend upon the gradient of velocity in the consti-
tutive expressions for specific entropy and energy (Footnote 10), the mixed derivative
of the velocity with respect to time and position would also need to be taken into ac-
count.) While terms containing the first six of these are expressly linear in these deriv-
atives (they do not occur again in the terms multiplying them), this is not true for the
last two derivatives, since these are among the list of independent variables of the con-
stitutive quantities. We separately assemble all the terms that are dependent upon the
derivatives listed above.13 Noting that the expressions multiplying the first six of the
derivatives must vanish identically (otherwise the expression in Equ.(11.81) may be
violated), we obtain six conditions which must be satisfied by the fluid, plus one re-

11. The bulk viscosity is defined as

where λ and µ have been introduced in the constitutive relations of the Navier-Stokes fluid
in Footnote 10. In terms of the deviators

the (conductive) momentum current can be written as follows:

(see Malvern (1967), p. 299). The pressure P* includes a bulk viscosity term in addition to
the pressure P in equilibrium. For fluids with vanishing bulk viscosity, the pressure term to
be used is the normal pressure, and the viscosity of a “one-dimensional” gas depends only
upon the normal viscosity µ. 
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sidual equation containing the rate of production of entropy; the second of these is
identical to the first, so we have only five conditions:

(11.82)

and the following residual equation involving the gradients of temperature and veloc-
ity:

(11.83)

This relation will be used to determine the rate of production of entropy as a conse-
quence of heat conduction and of viscosity.

12. There are essentially four parts associated with the four laws of balance included in the
combined expression of Equ.(11.81). Together they read:

Here, T,x and v,x are the gradients of temperature and velocity, respectively.
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11.8.4 Determination of the Lagrange Multipliers

A first look at Equ.(11.82)1 tells us that the Lagrange multiplier associated with the
equation of balance of momentum is equal to the velocity, a result which should not
surprise us at all: the velocity is the potential of motion.

Next, we are going to introduce the constitutive expressions for the fluxes of entropy
and of energy in heating, Equations (11.80)2,3, into Equ.(11.82)5. This yields a rela-
tion between the conductivity and the factor β :

which tells us that the Lagrange multiplier associated with entropy may depend only
upon density and temperature. It also yields an equivalent relation between the fluxes
themselves. You can introduce this latter relation in Equ.(11.82)3 which leads to the
following result:

13. After collecting the different terms, the expression in Footnote 12 becomes

Each of the first six expressions in braces must vanish; otherwise Equ.(11.81) may be vio-
lated. This leaves the residual equation

which will let us calculate the rate of production of entropy as a consequence of conduction
of heat and viscosity.
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This proves that the Lagrange multiplier may be a function only of temperature, and
we have

(11.84)

The residual equation now takes the following form:

(11.85)

This result has important consequences. Introducing the constitutive law for the flux
density of entropy and for the current density of momentum yields

In equilibrium, where the gradients of temperature and of velocity are zero, the rate of
production of entropy will vanish. Moreover, for the rate of production of entropy to
be minimal in equilibrium, its derivatives with respect to the gradients must vanish:

(E stands for equilibrium). The first condition is satisfied identically, while the latter
delivers an interesting relation for the Lagrange multiplier associated with mass:

(11.86)

As you may have noted, the Lagrange multiplier belonging to mass (amount of sub-
stance) already looks very similar to the chemical potential of the simple fluids dis-
cussed in Chapters 6 and 8.

11.8.5 Determination of the Lagrange Multiplier for Entropy

If we manage to determine the multiplier associated with entropy, the essential results
of this section will have been derived. We shall know the relation (11.84) between flux
densities of entropy and of energy in heating; the expression (11.85) for the rate of pro-
duction of entropy; and the Lagrange multiplier for mass, Equ.(11.86), which is in-
deed going to tell us that the latter is the chemical potential.

The derivation roughly goes as follows. We now use the condition of existence of ide-
al walls. Analogous to what we did in Section 10.1.4, we derive the result that for two
fluids separated by an ideal wall the Lagrange multiplier must be equal:
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This means that the Lagrange multiplier is a universal function; i.e., it must be the
same for different Navier-Stokes-Fourier fluids.

We can derive an expression for the rate of change of the specific entropy by combin-
ing Equ.(11.82)2 and Equ.(11.82)4. Taking into consideration the result derived in
Equ.(11.86) we arrive at

(11.87)

Since we assume the functions to be sufficiently smooth, this implies an integrability
condition of the form

Keep in mind that the Lagrange multiplier depends only upon temperature; you can
now derive the following differential equation for the multiplier:

(11.88)

Since this relation must hold for all types of fluids, it should also hold for the ideal gas,
in which case the right-hand side turns out to be equal to the inverse of the ideal gas
temperature. Therefore, we finally have the important result

(11.89)

As in previous examples of materials, the thermal potential is the ideal gas temperature
for the Navier-Stokes-Fourier fluid as well.

11.8.6 The Results for Navier-Stokes-Fourier Fluids

We can now assemble the results of the theory. Expressions for the relation between
fluxes of entropy and energy, for the rate of production of entropy, and for the
Lagrange multiplier for mass (i.e., the chemical potential) can be written in their final
form:

(11.90)

(11.91)

(11.92)

Equ.(11.91) also shows that the viscosity may not be a negative quantity (the rate of
production of entropy should be positive even if no conduction of heat is present), and
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Equ.(11.90) lets us calculate the factor β and the energy current due to conduction:

(11.93)

The index m in Equ.(11.92) reminds us that the chemical potential of the fluid has been
written for mass instead of for amount of substance. Multiplying the expression by the
molar mass delivers the result we know from the treatment of uniform fluids in Chap-
ter 8. From Equ.(11.87), we can also derive the Gibbs Fundamental Form for the heat-
conducting viscous fluids investigated here. Interestingly, it is the same as the one
known from the theory of uniform ideal fluids:

(11.94)

Here, it is written using the density of the fluid instead of the volume of a particular
body. The fact that some results look the same for reversible and for irreversible fluids
is often interpreted as meaning that Navier-Stokes-Fourier fluids do not deviate much
from equilibrium (a condition called local thermodynamic equilibrium). We normally
get such results for materials having linear constitutive relations like Fourier’s law or
Newton’s law of viscosity. A simple case of where all of this does not hold is the ex-
ample of heat conduction with inductive behavior.

11.8.7 The Thermal Energy Equation for the One-Dimensional NS Fluid

It is common to present the balance of energy in the material form with the constitutive
quantities introduced. The resulting relation is called the thermal energy equation. If
you start with Equ.(11.73) and use the constitutive relations in the form

then the balance of energy becomes

or

(11.95)

It is interesting to specialize this result to an incompressible fluid. Because of this new
condition, the first term with the rate of change of the density disappears and so do the
terms involving pressure and viscosity. (In one dimension, the speed of the incom-
pressible fluid may not change with position.) If we assume constant fluid properties,
we finally get
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(11.96)

With the exception of the second term, which is the result of fluid flow, i.e., of con-
vection, this equation is identical to the one we will derive for time-dependent conduc-
tion of heat through a stationary body (see Chapter 13). An incompressible fluid with
all quantities (mass, entropy, and momentum) flowing in only a single direction, dis-
plays the effects of the transport of entropy both due to conduction and to convection.
Since there are no velocity gradients and no shear forces (requiring sideways flow of
momentum), there are no viscous effects, and the momentum flux density (i.e., the
pressure) must remain constant in the direction of flow. As a result, there is no refer-
ence to the mechanical processes to be found anymore in the resulting energy equa-
tion. This will not be the case for two-dimensional incompressible flow which we will
study in the following section.

11.9 LESSONS OF CONTINUUM THERMODYNAMICS

Even though we have only had a very brief encounter with continuum thermodynam-
ics up to this point, we can draw some important conclusions.

In view of our normal tendency to divide our description of the world into small, neat
compartments, maybe the most important of the insights gained from continuum ther-
modynamics is that the classical field of thermodynamics and the subject of heat trans-
fer form a natural unity. Despite all the claims of text books that heat transfer and
thermodynamics do not mix, we do not have to artificially separate the two. Thermo-
dynamics of uniform bodies can be presented as a theory of the dynamics of heat using
the proper laws of balance of entropy, momentum, energy, etc., and associated consti-
tutive relations; these same equations of balance are then used as the starting point for
investigations of the flow of heat.

Problems in engineering and in the sciences are not solved if we put up high walls
around each subject. Rather, if we accept the images inherent in continuum physics
for the description of simpler examples as well, these walls are brought down. Intro-
ductory physics and thermodynamics would profit considerably from a careful look at
what continuum processes have to tell us. Students who have grown up with this kind
of mental picture will more easily venture into the exciting combined field of thermo-
dynamics and heat transfer.

Continuum processes are clearly irreversible. While the quest for a description of re-
versible processes is understandable, and while theories of the dynamics of such pro-
cesses can be built and applied successfully, the belief that reversibility requires
equilibrium in the sense of static conditions has led classical thermodynamics into a
tight corner out of which it can escape only if the lessons of continuum physics are
learned. If you have followed the development of ideas in this book, you will have
seen that everyday phenomena suggest an image of heat as the fundamental extensive
thermal quantity leading directly to the equation of balance of entropy. Applying this
law to continuum processes is therefore natural and straightforward, and its success
tells us that self-imposed limitations in classical thermodynamics are unjustified and
unnecessary. 

The development of continuum physics in the 20th century should give us the courage
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to strengthen and renew our teaching of classical physics, to expose students of the sci-
ences and engineering to the foundations of the classical fields, so that these founda-
tions may be applied to the solution of current and future problems.

EXERCISES AND PROBLEMS

1. Consider the model of the life and migration of locusts (Section 11.1). Show that, on purely
mathematical grounds, we cannot distinguish between production rate densities and source
rate densities. What is their difference, then?

2. Create a uniform systems representation of the spatially continuous case of the law of bal-
ance of the locust model. Divide the one-dimensional space into a number of elements. In-
clude migration on the ground and births and deaths. (a) Sketch the diagram of a system
dynamics model. (b) Write the equation(s) for a single element of this pseudo-finite-ele-
ment model. (c) Compare the equation(s) to the continuous case. Can the uniform model
be recovered from the continuous case, or vice-versa? (d) In the uniform case, it appears to
be impossible to distinguish between (conductive) flows and birth or death rates on purely
mathematical grounds. Why? What is their difference, then?

3. Consider the locust model as in Equ.(11.10). (a) Write the equation for constant conduc-
tivity and no births and deaths. (b) What will the solution of this equation be for the time-
independent (steady-state) case? What (and how many) boundary conditions are needed?
How does the solution depend upon the particular boundary conditions you chose?

4. Consider the locust model as in Problem 3 but take a non-zero death rate as in Equ.(11.10);
the death rate is assumed to be independent of time and space. What will the steady-state
solution of this equation for constant conductivity be? What (and how many) boundary
conditions are needed?

5. Add food as a new species to the one-dimensional locust model. The food resource cannot
move, it can only be produced and destroyed. (a) Formulate the law of balance of food for
the spatially and temporally continuous case. (b) Write constitutive relations for the pro-
duction of food (example: logistic growth) and for destruction (consumption), and add
these to the law of balance.

6. Show that the component form of the general equation of balance of momentum should be
written as follows:

Write all of the equations in fully expanded form.

7. Show that the law of balance of entropy in the form of Equ.(11.59) looks as if it represented
the case of pure conductive transport of entropy. Does the law expressed by Equ.(11.59)
exclude the phenomenon of convection? Can you explain the name material derivative giv-
en to the operator in Equ.(11.58)?

8. Write the law of balance of mass using the material derivative. Do the same for the simple
case of pure one-dimensional transport of momentum.

9. In the purely one-dimensional case, gradients and divergences look the same. Explain their
differences and write gradient (of a scalar function) and divergence (of a vector field) for a
two-dimensional case.

10. Derive the general three-dimensional form of the substantial (material) derivative. Write
the result both in coordinate-independent form and by using Cartesian coordinates.

11. Consider a flat car filled with water and travelling horizontally. Water flows out of the bot-
tom through a hole. Determine the flux densities and the fluxes of momentum with respect
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∂

∂
ρ σ

t x
ji

j
i j pij

c
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to a stationary control volume.

12. Perform a direct derivation of the balance of energy for purely one-dimensional convective
and conductive flow of entropy as in Equ.(11.96). (Hint: Use a stationary control volume
and compute convective and conductive currents of energy associated with entropy transfer
only.)

13. Derive the complete expression for the rate of production of entropy for general three-di-
mensional flow of a Navier-Stokes-Fourier fluid.



   

C

 

HAPTER 

 

12 

 

T

 

HERMODYNAMICS

 

 

 

AND

 

 R

 

ADIATIVE

 

 T

 

RANSFER

 

In this final chapter of Part III, thermal radiation will be studied from various perspec-
tives that go beyond the uniform systems view taken in Chapter 7. The treatment of-
fered here will not be a complete continuum model; rather, we will take a closer look
at some aspects that make radiation unique among the heat transfer modes. Certain
forms of distributions of radiation need careful consideration. First, we need to take a
look at the angular distribution of radiation in space (Section 12.1), then the spatial

tral distribution and polarization will be discussed in detail (Section 12.3 and Section
12.4). Applications of radiative transfer—essentially in the field of solar energy engi-
neering—will be treated in Chapter 16.
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The most important point for us to understand about radiation is that we have to dis-
tinguish between the transport of entropy and energy through the radiation field, and
absorption and emission of radiation by bodies (Section 12.2). The latter phenomenon
is the result of the interaction of bodies and fields. Since the details of radiative trans-
fer of entropy are at least as complicated as the transport of entropy by convection, we
shall deal only with its most fundamental aspects. 

 

12.1.1 The Flow of Entropy and Energy Through the Radiation Field

 

Entropy and energy are transported through space by electromagnetic radiation. Since
visible light is the most obvious part of the spectrum of radiation, we shall often use
the term 

 

light

 

 instead of the word 

 

radiation

 

. As a first step, we will discuss the flow
of entropy through the radiation field in the absence of bodies, examples of which are
furnished by radiation in a cavity such as in Fig. 7.14, or in the space between the Sun
and the Earth. Radiative transport is more complicated than conduction or convection
in the sense that it is not sufficient to specify a radiative flux density vector of entropy
(or energy) at every point of space. There is such a vector quantity which describes the
net rate per unit area at which entropy is transported at a given point (Fig. 11.5). This
net rate is, however, the result of entropy being carried by radiation in every direction
of space at every point. Put differently, light may be traveling in any direction of space
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and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_13, 
  A Unified Approach to ThermodynamicsH.U. Fuchs, The Dynamics of Heat:

© Springer Science+Business Media, LLC 2010 



 

C

 

HAPTER 

 

12.  T

 

HERMODYNAMICS

 

 

 

AND

 

 R

 

ADIATIVE

 

 T

 

RANSFER

 

510

 

T

 

HE

 

 D

 

YNAMICS

 

 

 

OF

 

 H

 

EAT

 

from a point and it may arrive at this point from any imaginable direction. Only if we
manage to describe the flow of radiation in detail will the condition of the field be
specified completely.

 

Distribution functions and intensity.

 

 To mathematically describe the radiation field,
a 

 

distribution function

 

 is commonly introduced which is used to specify two funda-
mental properties of this system. First, radiation possesses a 

 

density of entropy

 

 and en-
ergy at every point in space and time. Second, at every point in space, radiation is
traveling in different directions which cover at least a thin cone of finite solid angle,
however small (Fig. 12.1). Rays of perfectly parallel light do not exist. Radiation may
even be flowing in all directions of space in equal amounts, in which case the field is
called 

 

isotropic

 

. To capture this feature, we determine the 

 

distribution of directions

 

 of
flow, i.e., the fraction of the density of entropy (or energy) which belongs to radiation
moving in a cone pointing in a given direction (Fig. 12.1).

Both these properties, namely density and distribution of directions, are included in
the distribution functions for entropy and energy (in the following, 

 

X

 

 will stand for ei-
ther quantity). The function 

 

f

 

X

 

(t,

 

r

 

,

 

Ω

 

)

 

 is said to represent the density of entropy or en-
ergy of radiation at time 

 

t

 

 and at point 

 

r

 

 traveling in a cone about the direction ΩΩΩΩ

 

divided by the solid angle covered by the cone. The definition of this distribution func-
tion tells us that we obtain the density of quantity 

 

X

 

 by integrating the distribution over
the complete sphere (solid angle 4

 

π

 

):

 

(12.1)

 

In the theory of heat transfer, we are interested in the rate of flow of entropy or energy
in given directions. The entropy contained in the field is transported at the speed of
light. In this respect, radiative transfer resembles convection where entropy stored is
transported with the speed of the flowing medium. The same relation therefore holds
between the density of entropy (or of energy) and the flux density in the case of radi-
ation as well. In other words, the quantity

 

(12.2)

 

represents the flux density of quantity 

 

x

 

 at point 

 

r

 

 of radiation traveling within the cone
of Fig. 12.1 which is pointing in direction ΩΩΩΩ

 

 divided by the solid angle of the cone.
This quantity is called the 

 

intensity of radiation

 

, measured either in terms of entropy
or of energy (the units are W/(K

 

 

 

·

 

 

 

m

 

2

 

 

 

·

 

 

 

sr) and W/(m

 

2

 

 

 

·

 

 

 

sr), respectively, where sr is the
unit of the solid angle). To be specific, for the measurement of the intensity at point 

 

r

 

we imagine a small area perpendicular to the direction ΩΩΩΩ

 

.  We compute the flux of the
radiation flowing within a narrow cone pointing in the direction of the vector ΩΩΩΩ

 

 

 

and
divide this quantity by the surface area to obtain the flux density of the fraction of ra-
diation under consideration. Finally, we divide the result by the solid angle of the
cone. Note that the condition of the radiation field is described completely in terms of
either the distribution functions or the intensities.

Now, using the intensity, we may express the density of quantity 

 

X

 

 of the radiation
field. By combining Equations (12.1) and (12.2) we obtain: 

 

(12.3)

ρ
π
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Figure 12.1:  Radiation con-
tained in a small volume about 
point r travels in all possible di-
rections. A certain fraction of this 
radiation will be flowing in the 
direction within the solid angle 
shown in the figure. The flux den-
sity per unit solid angle is called 
the intensity of the radiation.
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The intensity of blackbody radiation

 

. The special case of isotropic radiation is of
particular importance for us. Just consider the radiation contained in the cavity of
Fig. 7.14. Black body radiation does not depend upon the properties of the cavity
walls. The only parameter influencing this type of radiation is the temperature 

 

T

 

. Since

 

T

 

 is the same everywhere, the entropy arriving from different directions in the cavity
must be the same. In other words, the intensity is independent of direction. Therefore,
the integral in Equ.(12.3) may be evaluated easily. The solid angle of the complete
sphere is 4

 

π

 

 

 

. For this reason, we obtain the following expression for the 

 

density of iso-
tropic radiation:

 

(12.4)

 

We may now express the intensities of 

 

blackbody radiation

 

 in terms of the densities
of entropy and of energy which have been derived in Section 5.4:

 

(12.5)

 

and

 

(12.6)

 

In these relations, the index 

 

b

 

 refers to blackbody. These equations support the claim
about the temperature dependence of entropy and energy fluxes in radiation made in
Section 7.4.1.

 

The flux density

 

. One of the problems encountered in radiative heat transfer calcula-
tions is the question of how much entropy and energy penetrate a given surface in a
certain amount of time. Related to this problem is the computation of one-sided fluxes,
i.e., the rates at which entropy or energy flow from one side of a surface to the other.
Consider a part of an imaginary or real surface of size 

 

∆

 

 

 

A

 

 in a radiation field, such as
in Fig. 12.2. The orientation of the surface is determined by the unit vector 

 

n

 

 normal
to the surface. The rate at which entropy or energy flow through this area is equal to
the corresponding flux through an imaginary sphere of radius 

 

r

 

 centered on it. Consid-
er the portion of the radiation which travels through the surface within a narrow cone
in the direction of the vector 

 

Ω

 

.  The latter is tilted at an angle 

 

θ

 

 with respect to 

 

n

 

. The
cone cuts a circular area out of the imaginary sphere, and the radiation flux 

 

I

 

X

 

 through
the cone is proportional to this area; furthermore, it is inversely proportional to the
square of the distance from 

 

∆

 

 

 

A

 

. In other words, the flux is proportional to the solid
angle of the cone. Finally, it is proportional to the projection of 

 

∆

 

 

 

A

 

 perpendicular to
the direction of the flow of radiation, which is 

 

∆

 

 

 

A

 

 

 

cos(

 

θ

 

). The flux density of radiation
contained within the cone is found by dividing the flux by 

 

∆

 

 

 

A

 

. The total flux density
is finally obtained by integrating over the entire sphere, i.e., over the complete solid
angle. Combining all of this information, we can express the flux density of quantity

 

x

 

 as follows:

 

(12.7)

 

This quantity is not a vector, as a proper flux density would be. Rather, it is the com-
ponent of the flux density vector in the direction of 

 

n

 

. However, this point does not

ρ
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X Xc
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Figure 12.2:  Part of an imagi-
nary (or real) surface is penetrat-
ed by radiation. The vector n 
determines the orientation of the 
surface. Consider entropy flow-
ing within a cone centered on the 
direction of the vector Ω (which 
represents part of the total entro-
py flux through the surface ∆ A). 
The flux through the surface due 
to radiation in the cone depends 
upon the orientation of the cone 
with respect to the surface. The 
problem is to compute either the 
total flux with respect to ∆ A, or 
the one-sided or hemispherical 
flux.j i dX X= ( )∫ cos
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have to concern us here. Note that the fluxes given by Equ.(12.7) are zero for isotropic
radiation: equal amounts of entropy or energy flow from one side to the other, and
back again. This condition is satisfied, for example, by blackbody radiation inside a
cavity, or by radiation in an extended body where the radiation and body have the
same temperature. 

The flux density of radiation flowing from one side of a surface to the other is called
the 

 

hemispherical flux density j

 

X

 

 

 

' . It is of practical importance since it represents, for
example, the entropy or the energy radiated per time and per unit area by the surface
of a hot body (Section 7.4). The hemispherical flux density is obtained by integrating
the expression in Equ.(12.7) over a hemisphere instead of over the entire sphere. For
isotropic radiation the result is particularly simple:

(12.8)

Details of the derivation of this equation are provided below in Equ.(12.13). The result
for the hemispherical flux density of entropy and energy of blackbody radiation is of
special interest:

(12.9)

and

(12.10)

where

(12.11)

Here, σ is called the Stefan-Boltzmann constant. It is a combination of the radiation
constant a and the speed of light. It has a value of σ = 5.67 · 10–8 W · m–2 · K–4. It was
used in Chapter 7 to calculate radiative entropy and energy transfer.

Hemispherical flux density for isotropic radiation. To obtain the rate of transfer of
entropy or energy flowing through a surface towards one side, we need to evaluate
Equ.(12.7) for the flux density for a hemisphere. As before the variable X stands for
either entropy or energy of radiation:

(12.12)

The intensity has to be integrated over one side of the area A (Fig. 12.3). Remember
that we are dealing with isotropic radiation. This means that the quantities appearing
in the integral are independent of the longitudinal angle. We can divide the surface of
the hemisphere into small circular rings whose areas are

The hemisphere has a radius of unity. Therefore, the area of a ring translates directly
into the solid angle associated with it. Now we can perform the integration indicated
in Equ.(12.12), which leads to:

j iX X'= π

j TSb '=
4

3
3σ

j TEb '= σ 4

σ =
1

4
ca

j i dX X' cos( )
( )

= ∫ θ
π

Ω
2

Figure 12.3:  Radiation flows 
isotropically from the lower to-
ward the upper side of surface A. 
The total entropy or energy car-
ried through the surface from one 
side to the other per unit time is 
called the hemispherical flux 
density.

θ
dθ

dΩ
sin(θ)

A

d dΩ = ( )2π θ θsin



12.1  RADIATIVE TRANSPORT OF HEAT

PART III 513

(12.13)

This result holds for isotropic radiation in general. jX ' represents the amount of quan-
tity X transferred from one side of an area A to the other, per time and per unit area. It
includes all the radiation traveling in all directions seen from one side of the surface
A. This is the result presented above in Equ.(12.8).

12.1.2 The Radiation Shape Factor

The formulas derived for the fluxes of entropy or energy exchanged between surfaces
hold only for the special case where all the radiation emitted by one of the bodies is
intercepted by the other, as with the small piece of matter inside the cavity in Fig. 7.14.
In many practical cases, the geometrical arrangements are more complex. The partic-
ular geometry is taken into account via a radiation shape factor (which also is called
the view factor or the configuration factor).

As a more general case, consider two black surfaces as in Fig. 12.4. The orientation of
each of the surfaces is given by a unit normal vector. Let us calculate the flux of energy
emanating from surface 1 which is intercepted by a small part of the second area. This
quantity is the intensity of radiation emerging from A1, multiplied by the direction co-
sine of angle θ1, and by the solid angle subtended by the small area on surface 2. Fi-
nally we have to multiply this expression by the area on surface 1 from which the
radiation originates. The flux of energy flowing from surface 1 to surface 2 is then

(12.14)

The solid angle subtended by a small area on surface 2 may be expressed in terms of
the distance r between the surfaces and the projection of this area perpendicular to r.
Using the direction θ2, Equ.(12.14) becomes

(12.15)

If we now invoke the law of Stefan and Boltzmann, the final result is

(12.16)

The same kind of expression emerges for the flux of radiation flowing from surface 2
to A1, with the temperature T2 substituted for T1. The net flux therefore must be

(12.17)

It is customary to write this in an abbreviated form which resembles the original ex-
pression for the law of Stefan and Boltzmann:

(12.18)
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Figure 12.4:  Radiative ex-
change of heat between two 
black surfaces. Their sizes and 
orientations are arbitrary. The 
figure shows a part of the radia-
tion flowing from surface 1 to-
ward surface 2.
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Therefore, the radiation shape factor F12 is related to the surfaces exchanging radia-
tion by

(12.19)

Note that we could have started by considering the radiation from surface 2. We would
have obtained the same result, only with the surface area A1 replaced by A2. Therefore,
F21 is related to F12 by

(12.20)

In practice, the computation of the integral may only be possible using numerical
methods. Moreover, the result of Equ.(12.19) is not general. First of all, we have con-
sidered only two surfaces exchanging heat; second, the surfaces have been assumed to
be black. Relaxing either of these conditions introduces additional complexities.1

12.2 ABSORPTION, EMISSION, AND KIRCHHOFF’S LAW

So far, we have discussed the flow of entropy through the radiation field only in the
absence of bodies. Now we shall consider the interaction of a body with a radiation
field in the space which is occupied by both systems.2 In general, a body is bounded
while the field associated with it may extend beyond the space filled by matter, in
which case radiation penetrates the surface of a material body (Fig. 12.5).

12.2.1 Interaction of matter and radiation

Matter emits light, and it absorbs light. It may also scatter radiation. Emission, absorp-
tion, and scattering are the processes which make up the interaction of bodies with ra-
diation. From the viewpoint of a body, emission and absorption are volumetric
processes. In other words, light is emitted and absorbed by every part of a body. En-
tropy is not transported through matter; rather it appears in, or disappears from, every
arbitrarily small part. Entropy appearing in a body disappears in the radiation field,
and vice-versa. Obviously, this type of transport is comparable to the transport of mo-
mentum from fields to bodies due to their interaction. This is not to say that entropy
does not flow through the space occupied by a body. However, if this is the case, en-
tropy is transported through the radiation field. While radiation is created or destroyed
in the processes of emission and absorption, scattering changes the direction of a ray
of light without absorbing it. Even though this process may be important in some cases
(just think of the scattering of light in the Earth’s atmosphere), we shall neglect it in
the following discussion. Still, one point deserves to be mentioned: while absorption

1. For more details see Siegel and Howell (1992), Chapter 6.

2. Here, we can only touch upon this subject. If you wish to know more about it, you should
read the book by Max Planck: The Theory of Heat Radiation (1906), which is still one of
the best accounts of the physics of these phenomena. A modern and detailed text on the
subject is Thermal Radiation Heat Transfer by Siegel and Howell (1992).
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Figure 12.5:  For a bounded body 
interacting with a radiation field, 
the field may extend beyond the 
volume occupied by the body.
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and emission depend on the frequency of radiation, this influence is particularly pro-
nounced in scattering. In general, the magnitude of scattering increases strongly with
increasing frequency of the light. This fact explains the blue color of the sky. Thus, we
need to take into account the spectral dependence of the quantities introduced so far.
However, we shall leave this point out of consideration for the moment and return to
it in Section 16.1.2.

12.2.2 Processes at surfaces

Radiation which travels through a medium undergoes the three types of interaction
mentioned before. When a ray of light reaches the surface of a body, however, we
must deal with additional processes, namely reflection and refraction at the surface,
and transmission into the medium adjacent to the body. These phenomena are known
from optics, and they satisfy the laws of propagation of electromagnetic radiation at
interfaces. Again, we shall not deal with these laws in any depth. Nevertheless, we
need to know a few facts about the processes occurring at interfaces (see Fig. 12.6). In
general, a surface separating two media will reflect at least part of the light incident
upon it. The fraction of light reflected is called the reflectivity. The reflection may ei-
ther be specular, in which case we shall call the surface smooth; or diffuse, which is
the case for rough surfaces. The reflectivity usually depends on the angle of incidence
of the ray of light, and on the wavelength. Also, a surface may be smooth for radiation
of a particular frequency, and rough for light of another wavelength. If the reflection
is specular and complete, we call the surface a mirror; if the reflection is complete and
totally diffuse, the surface is called white. The opposite of a white surface is a black
one, with zero reflectivity. The fraction of light incident on a surface and absorbed by
the second body is called the absorptivity. By definition, the absorptivity of a black
body is equal to 1. Black surfaces do not really exist in nature; for example, a smooth
surface separating two optically different media cannot transmit all radiation incident
upon it. In particular, if the speed of propagation of light is different in the bodies
touching each other, the reflectivity cannot be zero. In general, therefore, a black sur-
face should be rough, the body admitting the light should be thick enough for the ra-
diation not to emerge from the other side, and it should not scatter radiation; otherwise
the light transmitted would flow back towards the first body. With a smooth interface,
the optical properties of the media must be the same for radiation to be transmitted
completely.

12.2.3 Sources and sinks of radiation

Let us now turn to a more formal discussion of the interaction of matter and radiation.
If we disregard scattering, the interaction is described using the source rates of entropy
and energy which were introduced in the laws of balance in Equations (7.5) and (7.6).
These determine the net rate at which an entire body exchanges entropy or energy with
the field. If conditions inside a body vary from point to point, we have to introduce the
density of the source rate, or simply, the source density of entropy or energy. These
quantities have the units W/(K · m3) and W/m3, respectively. The source rates are ob-
tained for a body by integrating the densities over its volume V :

(12.21)

1

2

Figure 12.6:  Surface phenomena 
involving radiation occur wher-
ever different bodies touch. A 
“body” may also be vacuum.
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Again, x stand for entropy or energy. These densities play the same role as some quan-
tities introduced previously, such as mass and entropy densities, the density of entropy
production, the distribution function introduced above, or flux densities and the inten-
sity of radiation. They all describe the spatial distribution of physical quantities, a fea-
ture we cannot do without in a continuum.

Physically, the source rate or its density are the result of emission and absorption of
radiation by matter. It is customary to introduce emission and absorption coefficients
of energy to describe the interaction of bodies and fields in more detail. These coeffi-
cients incorporate information concerning the distribution of directions of radiation.
At every point inside a body, matter may emit radiation in any direction, and radiation
which is absorbed may stem from rays traveling in different directions. The emission
coefficient εΕ is defined as the rate of emission of energy per volume and per solid an-
gle. In other words, the expression

(12.22)

represents the density of the rate of emission of energy. Absorption is introduced in
terms of a coefficient α which plays a role comparable to ε. It is the rate at which en-
ergy is absorbed from the field per volume and per solid angle. The radiation absorbed
depends on the intensity of radiation present in the field; in fact, for a short distance in
the direction of a ray, the absorption density is proportional to the intensity. For this
reason, one defines the absorption coefficient κΕ,  which when multiplied by the inten-
sity, yields the density of the rate of absorption per solid angle:

(12.23)

The absorption coefficient κE has units 1/m. It describes the fraction of energy ab-
sorbed by the body from the field over a small distance, divided by this distance. Ob-
viously, the density of the rate of absorption of energy is obtained if we integrate αE
over the solid angle:

(12.24)

Armed with these quantities we can finally express the source density of radiation in
terms of emission and absorption coefficients. With

(12.25)

we obtain for a body contained in volume V :

(12.26)

Remember that all of these quantities have been defined with respect to the body, and
not with respect to the radiation field. The signs appearing in Equations (12.25) and
(12.26) reflect this assumption. Since both the rate of absorption and the rate of emis-
sion are taken to be positive quantities, emission leads to a loss of entropy in a body,
while the body will gain entropy through absorption. The results just derived will now
be used in formulating an important relation in radiative transfer.
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12.2.4 Kirchhoff’s Law

The foregoing discussion involves the definition of quantities which are used in a con-
tinuum theory. Now, we will motivate an important relation of the theory of radiative
transfer—a simple relationship between the coefficients of absorption and of emission
called Kirchhoff’s law.

To appreciate this law, we must first figure out the condition of the radiation field gen-
erated by a body. Initially, we shall assume this body to be very large and isotropic. It
is supposed to be enclosed by an adiabatic wall. If conditions are not uniform at the
beginning, they will soon be, because of conduction and radiative exchange of heat.
In a fluid, differences in pressure and density will quickly smooth out. After some
time, we will have a uniform isotropic body in steady state. In the end, the only free
parameter describing the state of a body of given composition will be the temperature.
Under these circumstances, the radiation field will be isotropic and uniform as well.
First of all, the intensity of radiation must be isotropic and the same for points of the
body far enough from the surface. These points are not influenced by the wall, and
there is no reason why conditions should be different at different locations. For every
bundle of rays propagating through a small surface inside the body within a small solid
angle, there is light flowing with equal intensity in the opposite direction converging
toward the imaginary surface. In other words, the intensity must be isotropic and uni-
form and may depend only upon the temperature and the composition of the medium.

Actually, the state of the radiation field cannot be any different near the surface of the
body under consideration. A ray flowing from the surface toward points inside the me-
dium must have the same intensity as a ray traveling in exactly the opposite direction
from interior points towards the wall. If this were not the case, we would end up with
a net transport of entropy and energy in a particular direction. This would disturb the
uniform and steady conditions which have already been reached. As a consequence,
the body whose field we are investigating does not have to be large at all. Indeed, it
may be arbitrarily small and of any shape, and the radiation field will be uniform and
isotropic throughout.

We may now consider small bodies of differing composition in contact with each oth-
er. Each body shall be taken to be uniform and isotropic. If they have the same tem-
perature, entropy will flow from one to the other only by means of radiation. Assume
the speed of propagation of light to be same in all of them, and let each ray be trans-
mitted directly through the surfaces. (Actually, these conditions can be relaxed, and
the problem of the speed of light can be taken care of;3 however, we shall not discuss
this point here). The same kind of reasoning tells us that the intensity of radiation must
be the same in two adjacent media. A ray traveling in a particular direction from one
of the bodies will be transmitted by the wall separating the different regions of space.
It should not matter to the second body where the ray comes from. Again, its intensity
must be the same as that of a ray propagating in the opposite direction. Therefore, we
conclude that the intensity of radiation found in a large body made up of small regions
of different materials cannot depend on its composition. All in all, only the tempera-
ture may influence the state of the radiation field. This conclusion is very important:
it means that if we know the intensity as a function of temperature for one medium, we
know it for all media in the system.

3. M. Planck (1906, 1921).
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Finally, consider one of the parts of the body to be a cavity surrounded by matter. For
the reasons just listed, the radiation inside this cavity must be the same as that found
inside the volume occupied by matter. Remember that for simplicity the optical prop-
erties of all media, and therefore also of empty space, have been assumed to be the
same. Since we know the field in the cavity to be that of blackbody radiation, the same
must be true for the field of the entire uniform and isotropic body. In other words, the
intensity of radiation is given by Equations (12.5) and (12.6).

Now we are ready to state Kirchhoff’s law. Under stationary conditions in a body of
the type discussed, the net source rate of energy must be zero. If this were not so, the
body would heat up and cool down at different points, contrary to our assumption.
Therefore, the expression in Equ.(12.26) must vanish. Since this is true for bodies of
any size and shape, the integrand, which itself is an integral over solid angle, is equal
to zero at every point inside the body. Finally, since the radiation field is isotropic, we
find that

(12.27)

In other words, while the coefficients of absorption and of emission depend upon the
composition of bodies (and on temperature), their ratio is a universal function of tem-
perature only. If one of the coefficients is known, the other may be calculated from
Kirchhoff’s law. Note that Equ.(12.27) holds at every point in a body.

We have found Kirchhoff’s relation by considering uniform conditions with the radi-
ation field having the same temperature as matter. At first sight it may appear as if this
is true only if the radiation has blackbody characteristics. However, the coefficients of
absorption and emission depend only on the properties of matter, not on those of the
field. Their ratio must therefore be independent of the actual intensity of radiation. If
the radiation inside a body is not black, the net source rates of entropy and energy sim-
ply do not vanish. Indeed, if i is the intensity of radiation in a volume occupied by mat-
ter, the source rate of energy turns out to be

(12.28)

This result, which is a consequence of Kirchhoff’s law, has been derived from the ex-
pression in Equ.(12.26). 

Remember that, in deriving Equ.(12.28), scattering has not been considered. Under
conditions found here on Earth, its influence may often be left out of consideration;4

in astrophysical applications, however, it may be much more important.5 Also, the
phenomenon of stimulated emission of radiation has been ignored. The emission co-
efficient introduced above is that of spontaneous emission. Stimulated emission re-
sults from radiation present in a medium, and its effect is proportional to the intensity
of light passing through the medium. Since this is true for absorption as well, stimu-
lated emission tends to reduce the value of the absorption coefficient. We may still

4. However, this certainly cannot be done if the flow of solar radiation through the Earth’s at-
mosphere is to be calculated (Chapter 16).

5. S. Chandrasekhar (1960).
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work with Equ.(12.26), replacing the absorption coefficient by a somewhat different
expression.6 

12.2.5 Radiative Transfer Through a Medium with a Temperature 
Gradient

How does the interior of the moon cool, or how is entropy transported through a star?
It might surprise you that in both of these cases radiative transfer plays an important
role, even though the bodies appear to be virtually opaque. Still, if transport by means
of conduction or convection is not efficient enough, then entropy must flow through
the radiation field inside the bodies while it is continually absorbed and emitted. 

Consider one-dimensional heat flow through a planar slab of matter as in Figure 34.
Consider two surfaces facing each other at a distance equal to the mean distance be-
tween consecutive events of emission and absorption of radiation, which is sometimes
called the mean free path of the radiation. We model absorption and emission of en-
tropy inside the body by the absorption and emission of these surfaces. Each surface
radiates entropy and energy toward the other, according to its temperature. If they are
at the same temperature, there is no net flux of entropy or energy between them. How-
ever, if one of them has a lower temperature than the other, a net flux results. If we
assume conditions where the radiation field is that of a black body, the net current den-
sity in the direction of decreasing temperature can be approximated by the temperature
gradient. The expression

can be written

(12.29)

In this form, the transfer of entropy looks very similar to that of conduction: the flux
of entropy or energy is proportional to the temperature gradient of the material. The
factor multiplying the gradient can be interpreted as a kind of thermal conductivity
(with respect to energy):

(12.30)

Because of this, radiative transfer of heat through matter with a temperature gradient
is often called diffusion of radiation. Its efficiency depends upon the properties of the
body expressed by the mean free path. Particularly in astronomy, the mean free path
is replaced by the opacity, which is defined as the fraction of radiation absorbed by a
slab of matter (Problem 6).

Note that we have introduced the flux density of entropy here as in conduction and
convection, even though entropy is transported radiatively. However, as you can tell
from this discussion, we can easily interpret the net result of this transport in terms of

6. Zel’dovich, Raizer (1966), vol. I, p. 118.

Figure 12.7:  Radiative transfer 
through a planar medium having 
a temperature gradient. If the two 
surfaces have different tempera-
tures, there results a net flow of 
entropy and energy through the 
field from the hotter to the cooler 
surface.

x

Net flux

∆x = lmean

T T + ∆T

j T T T T TE = +( ) −[ ] ≈σ σ∆ ∆
4 4 34

j l T
dT

d xE mean= − 4 3σ

k l TE rad mean, = 4 3σ



CHAPTER 12.  THERMODYNAMICS AND RADIATIVE TRANSFER

520 THE DYNAMICS OF HEAT

the flow of entropy through the body which is permeated by the radiation field. In fact,
we do not even consider the field anymore in our description.

12.3 THE SPECTRAL DISTRIBUTION OF RADIATION

In the preceding sections we have neglected an important feature of radiation, namely
its spectral dependence. Just about all the quantities introduced so far depend on the
frequency of the light transporting entropy and energy. For example, in the forms stat-
ed above, Kirchhoff’s law cannot generally hold with a single value of absorptivity
and emissivity independent of frequency. With the model of gray surfaces we were not
able to account for the temperatures attained by bodies in the light of the Sun (remem-
ber Example 7.12). The difficulty can be resolved only if we accept that absorption
and emission depend upon the frequencies of the light absorbed or emitted. 

Therefore, we need to know the spectral distribution of radiation. The problem of how
to obtain it from first principles was solved for blackbody radiation by Max Planck.7

He was able to calculate the distribution of energy and entropy in the normal spec-
trum, i.e., in the spectrum of blackbody radiation. Moreover, he argued how, on the
basis of Wien’s displacement law, the results can be extended and the temperature of
rays of monochromatic radiation can be derived. Since we must often deal with non-
blackbody radiation, this is an important result, which we are going to use in calculat-
ing the entropy of solar radiation here on Earth (Chapter 16).

In the following paragraphs we will first explain how to introduce the spectral depen-
dence of radiative quantities. Then, Kirchhoff’s law will be stated in its general form,
and Planck’s result for the distribution of energy and entropy in the normal spectrum
will be presented. Finally, the reasoning which leads to a generalization of the results
to nonequilibrium radiation will be outlined. As before, a number of simplifications
will be made. The influence of the speed of light in different media will not be consid-
ered; and we will neglect scattering of radiation until we treat the special case of solar
radiation in the Earth’s atmosphere.

12.3.1 Dependence of Radiative Quantities Upon Frequency

The fundamental terms used in the description of the radiation field are the distribution
functions fX and the intensities iX . Obviously, these must depend upon the frequency
of a ray of light. To capture this property of radiation, we introduce the spectral dis-
tribution functions fXν and the spectral intensities iXν . (As before, X stands for both
entropy and energy.) Again these represent some sort of density, this time with respect
to frequency. If we integrate these densities over the entire range of frequencies of the
electromagnetic spectrum, we recover the overall quantities introduced before:

(12.31)

and

7. M. Planck: The Theory of Heat Radiation (1906).
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(12.32)

The volume densities of entropy and energy of the radiation field have therefore a
spectral dependence as well. The spectral density of entropy and the spectral density
of energy of the field are denoted by ρSν and ρEν , respectively. They are obtained in
terms of the spectral distribution function or the spectral intensity if we replace the
original quantities in Equ.(12.3) by the spectral ones. As a consequence, the densities
are computed by integration of the spectral functions over frequency:

(12.33)

In fact, if appropriate, all the quantities introduced in the previous paragraphs relate to
their spectral counterparts in just this way. There is one exception to the rule, namely
the absorption coefficient κE defined by Equ.(12.23). The spectral coefficient κEν ex-
ists, but it cannot be integrated by itself to give the original quantity. Rather, we have
to replace Equ.(12.23) by

(12.34)

This equation must be integrated over the entire range of frequencies to yield the ex-
pression found in Equ.(12.23).

The relation between the density and the intensity of radiation derived for isotropic
flow carries over to the spectral quantities. For entropy and energy, we have

(12.35)

Often, the spectral densities and intensities are written with respect to wavelength λ
instead of frequency. Since the total intensity iX must be the same if calculated from
the spectral intensity with respect to frequency or from the spectral quantity iXλ , we
get

The last step is a consequence of the relation between the speed of propagation of ra-
diation, its frequency, and its wavelength, i.e., c = ν λ . Comparing the first and the
third integrals we obtain

(12.36)

for the law of transformation from frequency-dependent quantities to those referring
to wavelength.

The spectrum of solar radiation. An example of the spectral distribution of radiation
is provided by the solar spectrum. The Sun radiates mostly in the visible part but its
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light also contains important contributions from ultraviolet and infrared radiation.
Fig. 12.8 shows the intensity of solar radiation outside the Earth’s atmosphere, which
should correspond to the light produced in the photosphere of the Sun. Note that ac-
cording to Equ.(12.36), the peak of the distribution is not at the same wavelength if
the spectral values are measured with respect to the frequency of radiation.

12.3.2 Kirchhoff’s Law

We can more generally express the source rate of energy which was first calculated in
Equ.(12.26). The quantities relating to the absorption and emission of radiation have
to be integrated over frequency, solid angle, and volume:

(12.37)

This leads to an important result, Kirchhoff’s law, which can now be stated in its gen-
eral form:

(12.38)

Kirchhoff’s law results from Equ.(12.37) if we accept that the source rate must vanish
separately for each frequency in a uniform body under steady-state conditions for
which the radiation field is that of blackbody radiation. (Therefore, the blackbody in-
tensity appears in Equ.(12.38).) If the source rate did not vanish for every color of light
separately, the spectral distribution of radiation would change due to selective absorp-
tion and emission. This contradicts our assumption that the spectral intensity of the ra-
diation field should not change with time. Remember that the intensity of blackbody
radiation must be independent of the medium; the reasons are the same as those given
in Section 12.2. Therefore, while the spectral coefficients of absorption and of emis-
sion in general depend upon the material absorbing and emitting radiation, their ratio
is a unique function of temperature.
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solar radiation. The spectrum is 
similar to that of radiation from a 
black body at a temperature of 
about 5800 K (see Fig. 12.10). 
The integral of this quantity tak-
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12.3.3 Wien’s Displacement Law

Recognizing that radiation quantities depend upon frequency raises the question of the
form of the spectral distribution of blackbody radiation. A first step toward solving
this problem can be made by deriving Wien’s displacement law. The idea is to calcu-
late the change of the frequency distribution of radiation which results from reversible
adiabatic compression or expansion of radiation contained in a cavity with perfectly
reflecting walls, and with no trace of an absorbing or emitting medium inside (see
Fig. 12.9). It is important to recognize that the following derivation holds for radiation
of any spectral distribution, not just for blackbody radiation;8 however, we will as-
sume the radiation in the cavity to be isotropic.

Let us now calculate the rate of change of the spectral energy of the radiation inside
the cavity as the piston is pulled or pushed. The spectral energy is the product of the
instantaneous volume of the cavity and the spectral energy density. In other words, we
wish to calculate the quantity

The frequency distribution will change as a result of radiation hitting the moving pis-
ton, i.e., as a consequence of the Doppler effect. Let us consider a particular frequency
ν. If radiation of that frequency bounces off the piston, it will have a different color.
This means that the spectral energy at frequency ν will be reduced by just the amount
of energy contained in the radiation flowing toward the piston. With isotropic light,
the spectral energy flux striking the piston of surface area A must be

which is the rate at which the spectral energy at frequency ν is depleted. The second
effect will add radiation of frequency ν to the spectrum. If light of a frequency ν1,
which is larger than ν, strikes the receding mirror, it will become radiation of frequen-
cy ν. The formulas for the Doppler effect let us calculate the relation which must hold
between the rays of the two different frequencies ν and ν1:9

(12.39)

8. If the cavity contains absorbing and emitting matter, the radiation within it would become
blackbody radiation. This is why the walls must be perfectly reflecting.

9. For relative speeds u of observer and light source which are small compared to the speed
of light, the relation should be

which reduces to Equ.(12.39); ν is the frequency of the reflected radiation while ν1 is that
of the original light. Note that the light reflected from the receding mirror seems to come
from a source which recedes at twice the speed of the mirror. Naturally, a ray parallel to
the mirror will not experience any Doppler shift.

Figure 12.9:  Radiation of an ar-
bitrary spectral distribution is ex-
panded adiabatically inside a 
cavity having reflecting walls and 
a piston. The radiation striking 
the moving piston changes its 
frequency as a result of the Dop-
pler effect.
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θ is the angle between the direction of a ray and the normal to the surface of the piston,
and v  is the speed of the piston. The spectral intensity of the light which will add to
the rays of frequency ν is iEν1. This quantity can be approximated by iEν as follows:

If we calculate the difference between frequencies according to the Doppler effect and
neglect higher order terms in the expansion, we obtain

for the intensity of the radiation which will be changed into light of the desired fre-
quency. We again have to integrate this quantity over the hemisphere to get the energy
flux responsible for increasing the spectral energy at frequency ν :

Note that the product of the speed of the piston and its surface area is equal to the rate
of change of the volume of the cavity. Now, the balance of energy for frequency ν is
given by

which, according to Equ.(12.35)2, is equivalent to

This finally yields the differential equation

(12.40)

for the spectral energy density during an adiabatic change. Since this quantity must be
a function of volume and frequency, Equ.(12.40) can be changed to

(12.41)

which has the general solution10

(12.42)

This result is called Wien’s displacement law, and holds for every frequency indepen-
dent of the particular spectral distribution of the radiation. It reduces the complexity
of the problem by reducing the spectral densities and intensities to functions of a single
argument. (Before, we had to take them as functions of frequency and volume, or as
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will be shown, of temperature.) The law shows that if we know the distribution for a
specific value of the volume, the function f may be found which then lets us calculate
the spectral energy distribution for any other volume.

If we assume the original spectrum of the radiation in the cavity to be that of black-
body radiation, we can apply the relation between its volume and temperature during
adiabatic changes as calculated in Chapter 5 (Section 5.4):

(12.43)

Using this relation, Equ.(12.42) can be transformed into a relation which shows that
the spectrum should depend upon the ratio of temperature and frequency:

(12.44)

The concrete law found to hold for the spectral distribution of blackbody radiation is
indeed of the form suggested by Wien’s displacement law; see Equ.(12.50). 

12.3.4 Entropy and Temperature of Radiation

Recall what we know about the thermodynamics of blackbody radiation. We can de-
rive the Gibbs fundamental relation for the integral quantities from the results of Sec-
tion 5.4. The total entropy and energy of radiation inside volume V satisfy

(12.45)

According to Equ.(5.76) of Chapter 5, the radiation pressure is one-third the energy
density. If we introduce the densities of entropy and of energy, the Gibbs fundamental
form becomes

Assembling the terms which depend either upon the volume or upon its rate of change,
and noting that the latter two quantities are independent, we end up with the following
two results: 

10. This may be shown by inserting the result back into the differential equation. The two de-
rivatives of the spectral energy density with respect to volume and to frequency are

This shows that Equ.(12.41) is satisfied by the solution given in Equ.(12.42).
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(12.46)

(12.47)

The second of these is the Gibbs fundamental relation for the integral radiation densi-
ties. Now, while the total entropy density is a function only of the energy density, its
spectral counterpart is a function of both spectral energy density and frequency:

We therefore can write the rate of change of the spectral entropy density in terms of
the rates of change of the independent variables:

Integration over the entire range of frequencies yields

Here, we have used the facts that the rate of change of the frequency is independent of
the frequency itself, and that the spectral densities of entropy must vanish both for
small and for very large frequencies, because otherwise, its integral would not be fi-
nite. If we apply the result to steady-state blackbody radiation, we note that the rate of
change of the entropy density should be zero. Since this is true for the rate of change
of the energy density as well, the relation

yields the result that the derivative of the spectral entropy density with respect to the
spectral energy density must be a constant. As a consequence of the Gibbs fundamen-
tal relation for the densities, Equ.(12.47), this constant must be the inverse of the tem-
perature of the radiation under consideration:

(12.48)

This equation states the law of the spectral distribution of blackbody radiation; if we
manage to find the entropy of radiation, we will be able to compute the energy distri-
bution. (This is what Planck set out to do.) While this result was derived for blackbody
radiation, it must be of more general importance since, as Planck noted:11
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For since ρSν depends only on ρEν and ν, monochromatic radiation,
which is uniform in all directions and has a definite energy density ρEν ,
has also a definite temperature given by ∂ρSν /∂ρEν = 1/ T, and, among
all conceivable distributions of energy, the normal one is characterized
by the fact that the radiations of all frequencies have the same temper-
ature.

Planck therefore extended the notion of radiation temperature to monochromatic radi-
ation. We may think of this as a result of both the existence of a clear relation between
energy and entropy for every color of light, and the fact that rays having different fre-
quencies and traveling in different directions in a cavity without absorbing substances
do not interact. Therefore, radiation of any spectral distribution will stay undisturbed
inside such a cavity. If you start with blackbody radiation of a given temperature, you
may change the spectral values of energy and entropy of all frequencies but one by
adding or withdrawing some radiation. The spectral entropy and energy densities of
the particular frequency being considered will not change, their relation will still be
the same, and we should still associate with it the temperature belonging to the original
blackbody radiation. 

We can now derive Wien’s displacement law for the spectral entropy density of radi-
ation. Equ.(12.44) may be inverted to yield

Since the inverse of the radiation temperature is given by Equ.(12.48), we obtain by
integration

(12.49)

This law has a significance for every frequency, i.e., for every ray of a given color and,
therefore, for radiation of arbitrary spectral distribution as well.12

12.3.5 Planck’s Law of the Spectral Distribution of Blackbody Radiation

At the beginning of this century, Planck managed to derive an expression for the spec-
tral intensity of blackbody radiation on the basis of the newly introduced quantum hy-
pothesis. We shall begin by presenting the result for the spectral energy intensity:

(12.50)

11. M. Planck (1906), paragraph 93.

12. The general forms of the laws should contain reference to the speed of light which may be
different in different media. Since we have assumed c to be the same in all media, its ap-
pearance is not required. See Planck (1906), paragraph 94, for the general forms of the
laws.
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h and k stand for Planck’s constant and Boltzmann’s constant, respectively. Their nu-
merical values are h = 6.63 · 10–34 J · s and k = 1.38 · 10–23 J/K. Planck’s formula beau-
tifully reflects measurements made of the spectral intensity of blackbody radiation
(see Fig. 12.10). The overall intensity of black-body radiation (Equ.(12.6)) may be ob-
tained from Equ.(12.50) by integrating over the entire spectrum. Note that the spectral
energy density, which is obtained by virtue of Equ.(12.35), i.e.,

(12.51)

has indeed the functional dependence suggested by Wien’s displacement law given in
Equ.(12.44). 

12.3.6 Spectral Entropy Distribution and Temperature of Radiation

The fundamental relationship between the entropy and the energy of radiation which
is expressed by Equ.(12.48) lets us calculate the spectral entropy density of radiation
as a function of the energy density and of frequency. As you can verify by taking the
derivative, ρSν must be given by13

(12.52)

The index b for blackbody has been removed from the entropy and energy densities.
If we assume Equ.(12.51) to hold individually for every frequency, independently of
whether the distribution of radiation is that of a black body, then 

(12.53)

also defines a temperature of radiation at frequency ν according to

13. Write Equ.(12.52) in the form

The derivative ∂ρSν /∂ρEν is

which, by Equ.(12.51), is the reciprocal of the absolute temperature of the radiation at fre-
quency ν. If we wish to extend the concept of temperature to monochromatic radiation, as
we have implicitly done, we can do so by defining a temperature of light at frequency ν
which the ray would have if it were part of an entire blackbody spectrum, i.e., by using
Equ.(12.51).

ρ ν
π ν

ν νE b h kTT
h

c e
,( ) =

−

8

1

3

3
1

Figure 12.10:  The Planck func-
tion x3/(ex – 1), where x = hν/kT, 
is a dimensionless representation 
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(12.54)

We interpret this as the temperature of monochromatic rays. The result will be used in
a practical application when we attempt to compute the entropy and the temperature
of solar radiation passing through the Earth’s atmosphere (Chapter 16). 

12.4 POLARIZATION OF RADIATION

Electromagnetic radiation consists of transverse waves. We may construct an image
of a wave in which the vector of the electric field vibrates in a definite plane that also
contains the direction of propagation of that wave, as in Fig. 12.11. Such a wave is said
to be plane polarized. A ray of unpolarized light, such as undisturbed blackbody radi-
ation, consists of waves with a random distribution of planes of vibration of the elec-
tric field. Viewed head on, completely polarized and unpolarized light would appear
as presented at the bottom of Fig. 12.11. 

Originally unpolarized radiation may become (partly) polarized as a result of several
types of processes. Reflection, double refraction in calcite crystals, passage through
polarizing sheets, and scattering are all sources of polarized light. It is found that the
intensity of a beam of radiation in any state of polarization can be calculated as the
sum of two plane polarized components where the planes must be perpendicular to
each other but can otherwise have an arbitrary orientation. If we use the notation iν for
the intensity of a plane polarized component, we can say that

(12.55)

and

(12.56)

The intensity of the beam is independent of the orientation ϕ of the planes of polariza-
tion. i max and i min, which are the maximum and minimum values attained by two per-
pendicular plane-polarized components, are called the principal values of the intensity
Their respective planes are called the principal planes of vibration. These relations
hold for the energy intensity, and for the entropy intensity for independent (noncoher-
ent)14 components. For example, the integral intensities of entropy and of energy are
calculated in terms of

14. If the light is (partly) coherent, the entropy intensity calculated from arbitrary components
is larger than the sum of the entropy intensities associated with the principal planes of po-
larization. See Planck (1906), p. 100–102.

T
h

k h

c E

ν

ν

ν

π ν

ρ

=

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

8
1

3

3
ln

Figure 12.11:  Electromagnetic 
radiation consists of waves with 
the electric field vibrating in par-
ticular planes. Plane polarized 
light consists of waves which 
have only a single plane of vibra-
tion, while unpolarized radiation 
consists of waves with randomly 
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(12.57)

Now, the spectral values of the single (principal) components are computed using the
following relations:

(12.58)

(12.59)

where i stands for either of the two principal components. For an arbitrary state of po-
larization, we introduce the degree of polarization P and calculate

(12.60)

These values are then inserted in Equ.(12.59), from which we can calculate the entro-
py and the temperature of polarized radiation.

EXERCISES AND PROBLEMS

1. The intensity of solar radiation. (a) Derive the intensity with respect to energy of solar ra-
diation near the Earth. The energy flux density of the Sun’s radiation at the Earth is 1360
W/m2 (the solar constant). The Sun’s radius is 7.0 · 108 m, and its distance from the Earth
is 1.5 · 1011 m (one astronomical unit). (b) If you consider this to be the intensity of black-
body radiation, what is its equivalent temperature? Compare the result to the surface tem-
perature of the Sun, which from spectroscopic measurements, is known to be 5780 K.
What is the importance of this result? (c) Derive the relation between the intensity with re-
spect to entropy and with respect to energy for blackbody radiation. Compute the entropy
flux density of solar radiation at the Earth’s distance.

2. Hemispherical flux density of blackbody radiation. (a) Apply the result for the hemispher-
ical flux density of isotropic radiation to blackbody radiation, i.e., derive Equ.(12.9). (b)
Compute the numerical values of the hemispherical energy flux density of radiation at the
surface of the Sun and inside an oven which is kept at a temperature of 300°C.

3. The radiation shape factor for two disks (Fig. P.3). Compute the radiation shape factor F12
for two disks perpendicular to the same center line. Assume the first disk to be very small,
having a surface area A1, while the second disk has radius R. Show that it is equal to

How large is the shape factor F21?

4. Radiation networks: gray surfaces and shape factors. Assume the disks of Problem 3 to
have gray surfaces with absorptivities a1 and a2, respectively. Calculate the rate of transfer
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of energy between the bodies if their temperatures are T1 and T2, respectively. Show that
the surface characteristics and the geometrical arrangement may be written in the form of
resistances. Their combined influence is represented by the sum of the three resistances.
Compute a numerical result for the energy flux for two disks 1.0 m apart, the first with a
surface area of 0.50 m2, the second with an area of 0.010 m2. Assume their temperatures
to be 1000°C and 20°C, respectively. The larger of the surfaces has an absorptivity of 0.95,
while that of the smaller one is 0.30.

5. Extinction of a ray of light. (a) Consider a cube of length ∆x  and surface area A filled with
a fluid. A narrow cone of light passes through the surface A. Show that the coefficient of
absorption is the fractional change of the intensity of radiation per unit length. (b) The at-
tenuation (extinction) of a ray of light is due to both absorption and scattering. The scatter-
ing coefficient β is defined in the same manner as the coefficient of absorption. Derive the
differential equation for the intensity of light as a function of position x along the ray. (c)
The intensity measured in terms of energy of a ray of light is attenuated to half its value
when passing through 20 km of air. Compute the average of the sum of coefficients of ab-
sorption and scattering (with respect to energy).

6. Mass absorption coefficient and the diffusion of radiation. The mass absorption coefficient
(opacity) κρ of matter is defined as the fraction of radiant energy absorbed divided by the
mass density. To be precise, it is defined by the law of absorption:

In other words, the opacity and the mean free path must be related by 

The numerical factor in this relation is of the order of unity. Compute a rough value of the
mean free path and the opacity of stellar material. Take a star, such as our Sun, with a cen-
tral temperature of 15 million K, a radius of 700000 km, a mass of 2 · 1030 kg, and a net
energy flux of 4 · 1026 W. Estimate the quantities for a median point inside the star.

7. The blackbody spectrum in terms of the wavelength. (a) Derive the formula for the spectral
energy intensity of blackbody radiation in terms of wavelength and present a nondimen-
sional form of the result, as was done for the frequency distribution in Fig. 12.10. (b) De-
termine the location of the maximum of the spectral distribution and give the numerical
result for the radiation of the Sun if it is interpreted as blackbody radiation at 5780 K. (c)
Derive the expression for the spectral entropy intensity with wavelength as the independent
variable. 

8. Converting monochromatic light to blackbody radiation. Consider sunlight which is passed
through a filter that blocks out radiation except for a narrow band of frequencies ∆ν. The
light of the Sun has a temperature Ts = 5800 K. The filtered ray is allowed to pass into a
cavity where it is converted to blackbody radiation. (a) Calculate the temperature of the re-
sulting blackbody radiation assuming the frequency interval of the filtered light lies be-
tween 490 nm and 500 nm. (b) How much entropy has been produced in the process?

9. Consider the transport of heat with radiation in the interior of a star which we model as
being in spherically symmetric hydrostatic equilibrium; changes of volume of the gas are
assumed not to disturb this situation. Nuclear reactions release energy, with the source rate
given by the specific rate σE,r (i.e., the rate divided by the mass). The luminosity L(r) is the
total energy flux penetrating the spherical surface at radius r. (a) Model stellar matter as a
simple fluid and show that the rate of change of the specific entropy s (entropy per mass)
must be given by

dj

dx
j= −κ ρρ

lmean ~ κ ρρ( )−1

T s
L

mE r˙ ,= −σ
∂
∂
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Here, the independent variable has been changed to the mass m(r) inside the sphere of
radius r. (b) Show that the gradient of the luminosity ∂L / ∂m is given by

for a monatomic ideal gas. (c) Show that the gradient of luminosity inside a star is deter-
mined by the source rate due to reactions only if steady-state conditions prevail.

10. The precise definition of the mass absorption coefficient for diffusion of radiation through
matter, i.e., the opacity κρ (Problem 6), actually is given by

where lmean is the mean distance travelled by radiation before being absorbed. Show that
the luminosity inside a star where all the energy is transported by radiation is given by

∂
∂

σ ρ
ρ

L

m

d

dt

P
E r= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟,

3

2
2 3

5 3

lmean =
4

3

1

κ ρρ

L r
r T dT

dr
( ) = −

64

3

2 3

πσ
κ ρρ



THE DYNAMICS OF H

 

EAT

 

533

 

P

 

ART

 

 IV

 

S

 

PECIAL

 

 P

 

ROCESSES

 

 

 

AND

 

 S

 

YSTEMS





   

C

 

HAPTER 

 

13 

 

C

 

ONDUCTION

 

 

 

AND

 

 C

 

OUPLED

 

 T

 

RANSPORTS

 

Conductive phenomena are ubiquitous in nature and in technical and social systems.
We have already seen and discussed examples of uniform models of conduction in flu-
ids and electricity (Chapter 1), in mechanics (Chapter 3), heat (Chapter 4), and chem-
ical processes (Chapter 6). Finally, the foundation was laid for the treatment of con-
duction in continuous models (Chapter 11).

Conductive transports are not only important and interesting for their applications,
they also are fundamental for our understanding of energy in models of physical pro-
cesses. Among the transport processes—conduction, convection, and radiation—only
the first relates directly to the notion of power which has been so important in the for-
mulation of the theory of the dynamics of heat: the power of a conductive current of

fected. Furthermore, conductive transports of different fluidlike quantities such as en-
tropy, charge, and amount of substance, are coupled in important ways leading to
phenomena such as themoelectricity and thermodiffusion.

In this chapter, I will develop the theory of the conduction of entropy in a single spatial
dimension. This is simpler than the treatment of continuum thermodynamics demon-
strated in Chapter 11, which should allow us to formulate some models in detail and
actually solve them. Subsequently, a question will be raised which has vexed theories
of conduction: in theory, conductive transports are infinitely fast. A simple model of
the conduction of entropy will be presented where transport speeds are finite—the
model makes use of the idea of inductive processes. Finally, thermoelectricity will be
introduced more formally than in Chapter 4. This will serve as an example of how to
deal with coupled conductive phenomena.
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Here, the equation of balance of entropy for a single spatial dimension will be devel-
oped. Applications to conduction will be discussed in Section 13.2. Basically, the
equations have been derived before, first for the phenomena involving a biological
species—locust living in a single-dimensional space (Section 11.1)—and then for the
transport of entropy under fairly general circumstances (Section 11.4). It makes sense
to repeat the derivation for entropy in a single dimension, just to get better acquainted
with the formulation of spatially continuous models. This should also prepare us for
solving some simple examples by hand.
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entropy is determined by this current and the temperature difference by which it is ef-
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13.1.1 Current Density and Flux of Entropy

 

As before, we take the step from uniform to continuous models by introducing spatial-
ly distributed quantities—the densities of entropy currents over a surface and the den-
sity of entropy inside a body. Let me begin with currents. In a single dimension, the
component of the 

 

entropy current density

 

 vector obviously has a distinct sign depend-
ing upon the direction of flow with respect to the choice of positive coordinate (see
Fig. 13.1). This sign is independent of the body and the surface through which entropy
is flowing.

As you know, we also need a quantity related to flows which allows us to do the ac-
counting for entropy with respect to a chosen body. We have to be able to tell how
much entropy is flowing across the entire surface or parts thereof. For this reason, we
introduce the 

 

entropy flux

 

 

 

I

 

S

 

 which is a signed scalar quantity defined with respect to
a body and (a part of) its surface. In the simple one-dimensional case depicted in
Fig. 13.1, the magnitude of the entropy flux must be given by the product of the cur-
rent density and the surface area. To make the definition precise, we have to introduce
the orientation of the surface of a body, using a unit vector 

 

n

 

 perpendicular to the sur-
face at every point and pointing outward, i.e., away from the body under consideration
(Fig. 13.1). With this vector, the flux of entropy through either of the two surfaces of
the body cut by the current in Fig. 13.1 is given by the scalar product

 

(13.1)

 

In other words, we count the flux as a positive quantity if the current is flowing into
the body. The net flux is computed by the sum over discrete parts of the surface:

 

(13.2)

 

In the case depicted in Fig. 13.1, the net flux is

 

(13.3)

 

13.1.2 Steady-State Balance of Entropy for a Continuous Body

 

Let us derive the differential form of the law of balance of entropy in conductive trans-
port. This is necessary since we want to obtain conditions for every point inside a body
as befits a theory describing a continuum. We start from the equation of balance of en-
tropy for a 

 

body

 

. In the steady state, the net current must be equal to the production
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Figure 13.1:  A one-dimensional 
current cuts through a body with 
plane surfaces perpendicular to 
the flow of heat. A flux IS is asso-
ciated with each surface. Its sign 
tells us whether the current is 
flowing into or out of the body.
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rate of entropy:

 

(13.4)

 

This much we can read from the equation of balance of entropy for conduction, as in
Equ.(7.1), by setting the rate of change of the entropy content equal to zero. The der-
ivation, which in one dimension is a very simple example of the more general case,
proceeds as follows: We express the quantities in Equ.(13.4) in terms of integrals of
densities over the body. Let us start with the flux of entropy. It expresses the net rate
of flow of entropy across the surface of the body. Above, we introduced the 

 

current
density

 

, which describes the distribution of the current over the boundary. Obviously,
we will obtain the net flux if we integrate the current density over the surface of the
system:

 

(13.5)

 

A

 

  

 

is the closed surface of the body. In the one-dimensional case the current density is
a function of the position variable

 

 x

 

 only. Since entropy flows only in the 

 

x

 

-direction,
the integral over the surface is strongly simplified. There are contributions only from
the flow across the faces of the body (Fig. 13.1). 

Now we proceed to derive the rate of production of entropy for the entire body in terms
of a 

 

production density

 

. Since the production of entropy takes place inside a body, it
is a volumetric process. A density is the proper quantity for expressing such a phenom-
enon. The production rate for the body is given simply by the integral of the associated
density over the volume:

 

(13.6)

 

Here, 

 

π

 

S

 

 is the 

 

density of the rate of generation of entropy

 

 in the body, and 

 

V

 

  

 

is the
volume. Next, we change the variable of integration to the volume in Fig. 13.5. This
is achieved by replacing the current density by its derivative with respect to

 

 x

 

, and in-
tegrating over 

 

x

 

 as well. Because of the balance of entropy we set the result equal to
the expression in Equ.(13.6):

 

(13.7)

 

or

 

(13.8)

 

Note that the expression 

 

dx dA

 

 is equal to 

 

dV

 

. This equation lets us draw an important
conclusion: The integral can be equal to zero under all circumstances only if the inte-
grand is identical to zero. This means that

 

(13.9)

 

which is 

 

the differential form of the equation of balance of entropy in the steady state

 

for one-dimensional flow. It holds at every point of the body, and not just as an overall
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expression for the entire body. It expresses a simple idea, namely, that the spatial rate
of change of a current of a nonconserved quantity depends upon the rate at which this
quantity is produced at every point. Obviously then, the spatial rate of change of a con-
served quantity in one-dimensional flow should be zero.

 

13.1.3 Balance of Entropy for Conduction and Supply

 

In Section 7.4.2, we first came across the mode of transfer in which entropy appears
inside bodies without flowing over system boundaries via currents, and without being
created in the system. This is the case in radiative transfer, which we have modeled
using sources (or sinks) of entropy inside a body.

Another important class of sources of entropy are chemical and nuclear reactions.
Normal fires, and the fires inside stars which are driven by nuclear reactions, create
vast amounts of entropy. If we do not count the entropy and energy they release to be
part of the system under consideration, entropy and energy are effectively added from
outside. Looked at this way, entropy is not created in the system, which means that
there must be source rates, rather than production rates of entropy which account for
these processes.

In this section we will discuss the role of source terms in the equation of balance of
entropy. At the same time, we will ask about the role of energy in the processes just
listed. The description will be limited to one-dimensional steady state cases. We will
assume entropy to appear or disappear at every point of a body, while it is transported
through the body by conduction.

 

Entropy supply.

 

 We have already seen instances of how the increase of entropy inside
a system without transport across surfaces is described mathematically. One way of
adding entropy is by production. Irreversibility appears in the equation of balance of
entropy by way of the production rate, as seen in Equations (7.1) or (7.2). The partic-
ular case associated with the conduction of heat is described by a production rate per
volume 

 

π

 

S

 

, which will be derived in Equ.(13.24). The second possibility, i.e., sources
and sinks of entropy, is modeled in an analogous manner. This is evident in the case
of radiation, where a source rate was first introduced in Equ.(7.5).

Mathematically, there is no difference between production and source terms in the
equation of balance of entropy. Physically, this means that either type of process leads
to the appearance (or possibly the disappearance) of entropy in a way which cannot be
described by currents across surfaces, but must be modeled as sources or sinks.

 

Balance of entropy.

 

 For a formal derivation of the laws governing conduction with
supply, we can start with the equation of balance, which holds for the entire body un-
der steady-state conditions: 

 

(13.10)

 

The term 

 

Σ

 

S

 

 describes all effects of the supply of entropy. Proceeding as we did in Sec-
tion 13.1.2, this becomes

 

(13.11)

 

Transformation of the integrals leads to

0 = + +IS S SΠ Σ
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(13.12)

 

13.1.4 Balance of Entropy in Time-Dependent Conduction

 

The interaction of storage and flow of entropy is the most general problem we are con-
fronted with in thermodynamics. In steady-state transport processes, bodies lose as
much entropy by outflow as they gain by production and inflow. If the transport pro-
cesses are to change in time, it must be due to the change of the amounts of entropy
and energy which are stored in systems. In other words, the properties of bodies
(which might be described by the entropy capacitance and the latent entropy) are re-
sponsible for the existence of dynamical processes.

Consider bodies that conduct heat. If the amount of stored entropy is allowed to
change, we are dealing with time-dependent conduction. The proper equation of bal-
ance of entropy for an extended body conducting heat is

 

(13.13)

 

The difference between this and Equ.(13.4) is the appearance of the time rate of
change of the entropy of the body. 

Now we will derive the differential form of the equation of balance. (Recall the pro-
cedure of Section 13.1.2.) All three quantities appearing in Equ.(13.13) are integrals
of associated quantities which vary from point to point in a body. Remember that a
surface density is associated with the flux of entropy 

 

I

 

S

 

 

 

. This surface density is the flux
density. If this quantity is integrated over the surface, the flux is recovered. We obtain
the rate of production of entropy, on the other hand, if we integrate the density of the
rate of production over the volume of the body. (See Equ.(13.6).)

In the same manner, a 

 

density of entropy

 

 

 

ρ

 

S

 

 is associated with the entropy of a body.
Just as the mass of a body is obtained by integrating the mass density over the volume,
we recover the entropy of the body by evaluating the integral of the density of entropy
over the volume:

 

(13.14)

 

If we insert the integral expressions listed above into the law of balance of entropy in
Equ.(13.13), we arrive at

 

(13.15)

 

This equation must be transformed somewhat to yield the final differential form we
are looking for. Since we are treating conduction through stationary bodies, the vol-
ume under consideration does not change with time. Therefore, we may place the time
derivative in the left-hand side under the integral. The first term on the right is trans-
formed as in Equ.(13.7). All of these changes lead to
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Now all three terms may be combined:

 

(13.16)

For the same reason given after Equ.(13.8), the expression in the integral must be zero
for all values of the independent variables. The resulting equation is the differential
form of the equation of balance of entropy for time-dependent, one-dimensional con-
duction:

(13.17)

Since we have two independent variables, namely time and position in the x-direction,
the equation is a partial differential equation. The first term is due to the storage of en-
tropy, and the second one describes conduction, while the third (on the right-hand
side) is responsible for the production of entropy.

1. What quantities are introduced to describe (a) the distribution of entropy in a body, (b) the
distribution of a current of entropy over a surface, (c) the distribution of an entropy produc-
tion rate inside a body?

2. The orientation of the surface of a body is assumed to be positive for the outward direction.
How do you ensure that the flux of entropy is counted as a positive quantity for a current
flowing into the body?

3. Consider single-dimensional steady-state conduction of entropy. Why is the divergence of
the entropy current density not equal to zero?

4. How would you distinguish between entropy source rates and entropy production rates?

EXAMPLE 13.1. Dynamical law of balance of entropy for conduction and supply.

What is the dynamical form of the law of balance of entropy (in a single spatial dimension) if
the supply of entropy (such as in radiation) is included?

SOLUTION: The derivation of this form of the equation of balance is a simple extension of what
was derived in Section 13.1.3 and Section 13.1.4. The balance of entropy for an entire body is

If densities are introduced, we obtain

which the leads to

This demonstrates that—purely on the basis of the law of balance—we cannot distinguish be-
tween sources and production of entropy.
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13.2 CONSTITUTIVE THEORY OF CONDUCTION IN A SINGLE DIMENSION

In this section we shall turn to the discussion of the constitutive theory of conduction.
Entropy flows from warmer to cooler places. It is therefore impossible for bodies
which conduct heat to be homogeneous as far as temperature is concerned. We have
to give every point of a body its own temperature which may differ from temperatures
at arbitrarily close neighboring points. Such an approach is called a field description
of the phenomenon.

A body that conducts entropy undergoes changes of shape and volume, and parts of it
may flow relative to other parts. The description of these processes is rather complex.
Therefore, at this point, we will treat only the simplest possible case of conductive
transport—the flow of entropy through an otherwise unchanging body. We will call
this situation pure conduction of heat. Thus, the only independent variable of our the-
ory, apart from time, will be the temperature which is now a function of time and po-
sition.

It turns out that we need three additional pieces of information to complete the stan-
dard model of thermal conduction: an expression for the flow of entropy in terms of
spatial changes of temperature,1 another expression for the relationship between tem-
perature and entropy density, and the energy principle relating to thermal processes.

13.2.1 Fourier’s Law of Conduction of Entropy

We have seen twice before (in Chapters 7 and 11) that a simple assumption as to how
a conductive current of entropy depends upon circumstances leads to good models of
the transport of entropy in conduction. In Equ.(7.14), we already derived the form of
this assumption, which is called Fourier’s law, for the spatially continuous case:

(13.18)

If you imagine the spatially varying temperature in a body to create something like a
thermal landscape, Fourier’s law expresses the idea that the flow of entropy at a given
point depends upon how steep the slope of this field is, i.e., the temperature gradient
dT/dx, and upon local properties, i.e. the entropy conductivity kS .

In Chapter 11 (Equ.(11.90) in Section 11.8.6) we were able to derive the relation be-
tween the current densities of entropy and energy in conduction:

(13.19)

T is the local temperature. This means that the thermal conductivity with respect to en-
ergy, kE , is given by the product of the temperature of a material and its entropy con-
ductivity. Note that Equ.(13.19) is the local equivalent of what we have taken for
granted in our description of uniform dynamical systems in Part II of the book.

1. It turns out that the simplest model of a current of entropy—Fourier’s law—predicts infi-
nite speeds of propagation of conductive disturbances. Later in this chapter, we will see
what it takes to get a result that is more physically appealing.

j k
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13.2.2 The Balance of Energy in Conduction of Entropy

We still need the law of balance of energy for a body undergoing conduction. If we
neglect all other processes except the conductive flow of entropy, there is only one en-
ergy flow term in the law of balance:

(13.20)

Just as for entropy, this equation can be transformed so that it applies to the spatially
continuous case. Terms for the energy density, ρE , and the (conductive thermal) ener-
gy current density, jE , are introduced and related to the overall quantities. Transform-
ing Equ.(13.20) leads to:

(13.21)

Equ.(13.17) shows that we arrive at this result for a quantity that does not admit pro-
duction. This is the differential form of the law of balance of energy, which now re-
places the overall balance in Equ.(13.20). We will see how this law, together with the
relationship between fluxes of entropy and energy (Equ.(13.19)), leads to a determi-
nation of the density of the production of entropy in Equ.(13.9). 

13.2.3 The Generation of Entropy in Conduction

With Fourier’s law, we have solved only one part of the problem of the balance of en-
tropy. Since entropy is produced in conductive transport, we still need an expression
for the production term in the equation of balance. The problem will be solved for
steady-state processes. Actually, as we have seen in Chapter 11, the result holds for
general processes as well.

The result is a consequence of the combination of the laws of balance of entropy and
energy. As before, we will consider purely one-dimensional flow of heat (Fig. 13.1).
The relationship between the fluxes of entropy and energy (Equ.(13.19)) leads to

(13.22)

According to the steady-state balance of energy, this expression is equal to zero. As a
consequence we have

(13.23)

Comparison to Equ.(13.9) demonstrates that the density of production of entropy in
conduction takes the form:

(13.24)

Let us develop a graphical interpretation of this result. Where does the energy come
from for the production of entropy in the case of conduction? We can use the image
of entropy flowing from a higher level to a lower one just as we did in the case of op-
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erating a heat engine. The waterfall picture used for heat engines also applies to our
current case: entropy falling from a higher to a lower temperature releases energy for
a follow-up process. Something, however, must be vitally different in the cases of con-
duction of heat and the operation of a heat engine. No directly visible process is driven
by the energy released in the fall of entropy if heat is transported conductively. There
are no mechanical, electrical, or other phenomena occurring. So what is happening to
the energy released when entropy flows from points of higher to points of lower ther-
mal potential? The energy must be used for something, even if we cannot see it right
away.

We know the answer to this question. In the conduction of heat, the energy is used to
produce entropy; i.e., the energy drives a thermal process, not a mechanical or an elec-
trical one. You might say that the energy flowing through a body has been “enriched”
with more entropy; that is all. This is not as unusual as might appear at first. We can
compare the conduction of heat to a number of different processes sharing the same
fundamental property. The flow of electrical charge through a resistor, the flow of gas
(as in the free expansion of air), or the flow of momentum between two bodies rubbing
against each other, are all examples of the class of processes in which the energy re-
leased drives entropy production. Since we often say that heat is produced by friction,
we can interpret the conduction of heat as a case of “thermal friction.” Just as in the
other cases, the rate of entropy production is given by the ratio of the rate at which en-
ergy is dissipated, and the temperature at which the process is taking place (the term
jS dT/dx in Equ.(13.24) is the density of the dissipation rate of energy).

13.2.4 The Field Equation for Temperature

The conduction of heat has forced us to change the description of thermal processes
from single values of temperature to fields of temperature. In a body which transports
heat conductively, the temperature changes from point to point. (If we do not consider
steady-state conditions, it also changes in time.) Here, we will derive an equation gov-
erning the field of temperature in steady-state conduction. Such an equation is a field
equation, which as we shall see, follows from the fundamental law of balance of en-
tropy combined with the particular constitutive law describing conduction (i.e., Fou-
rier’s law).

Fourier’s law for the current density of entropy will be cast in a form using the con-
ductivity with respect to energy:

(13.25)

First, we need the spatial derivative of this expression:

which according to the equation of balance of entropy, Equ.(13.9), must be the pro-
duction density of entropy which, in turn, is given by Equ.(13.24). With the current
density replaced by Fourier’s law, the latter quantity becomes
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According to the equation of balance of entropy we get the following result:

which is equivalent to

(13.26)

This equation is the one-dimensional field equation for temperature in steady-state
heat conduction.

13.2.5 Supply of Energy and Entropy

In steady-state, and if supply is included, the balance of energy takes a rather simple
form. In the absence of energy sources, the spatial rate of change of the energy current
density is zero since energy is not generated. Now, however, we have sources which
lead to the following equation of balance of energy in the steady state:

(13.27)

A key point in thermodynamics concerns the relationship between sources of entropy
and of energy. When entropy is supplied to a body which has a particular temperature,
a definite amount of energy must be supplied as well. Our discussion so far suggests
that the constitutive relation between currents of entropy and of energy, and between
dissipation rate and production rate should carry over to the supply of entropy and en-
ergy as well:

(13.28)

σE is the density of the rate at which energy is supplied to the body from some other
system. We can motivate this relation on the basis of the constitutive theory of simple
fluids provided in Chapter 5. In a homogeneous body, the Gibbs fundamental relation
tells us that the energy increases at T times the rate of increase of entropy. If there are
only sources of entropy, then Equ.(13.28) directly follows for such fluids.

13.2.6 The Field Equation for Temperature in Conduction with Supply

We can prove Equ.(13.28) to be correct by deriving the field equation for temperature
from the equation of balance of entropy. The balance of entropy with supply (see
Equ.(13.12)), Fourier’s law, and Equ.(13.24) yield
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(13.29)

This becomes the field equation for temperature in the presence of entropy sources:

(13.30)

The same field equation derived from the balance of energy yields

(13.31)

which is equivalent to Equ.(13.30) if and only if the relationship between sources of
entropy and energy is given by Equ.(13.28).

5. Consider the law of balance of entropy in Equ.(13.17). Which constitutive laws, and how
many of them, are required to complete a model of time dependent conduction?

6. Why is there a negative sign in Fourier’s law of conduction? Can one compare this expres-
sion to Ohm’s law for the conduction of charge? What is the multidimensional form of
Fourier’s law?

7. Is the entropy production rate in Equ.(13.24) always non-negative?

8. What condition does kE have to satisfy for the temperature gradient in one-dimensional
conduction (steady-state, no supply) to be constant?

EXAMPLE 13.2. The temperature gradient in a bar.

(a) Assume the thermal conductivity with respect to energy, i.e., the factor kE , to be independent
of temperature. Determine the temperature in a long bar as a function of the position in the bar.
The values of the temperature are Tu and Tl at the upper and the lower faces of the bar, respec-
tively. (b) What is the solution if the conductivity kS is constant?

SOLUTION: (a) If the conductivity with respect to energy is constant, the field equation for tem-
perature, Equ.(13.26), becomes

for constant kE . This demonstrates that the temperature must be a linear function of the position
in the bar, which leads to

where L is the length of the bar, and x is measured from the hotter end. Note that the temperature
decreases linearly along the bar, a result which was derived before.

(b) If the conductivity kS is independent of temperature, the conductivity with respect to energy
must be a linear function of temperature, namely
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The field equation for temperature tells us that, in this case, the product of the temperature gra-
dient and the temperature must be a constant:

Integration of this differential equation yields the following result:

The boundary conditions are the same as in the first case.

EXAMPLE 13.3. The field equation in spherical symmetry.

Derive the field equation for temperature in steady-state conduction for spherically symmetric
heat flow. Determine the temperature as a function of radius in a spherical shell for constant
thermal conductivity with respect to energy (kE ).

SOLUTION: As in the previous example, we use the balance of energy. For steady-state condi-
tions, the equation of balance for a spherically symmetric shell reads

If we insert the expression for the surface area of a sphere, and divide the resulting equation by
the volume of the shell, which is equal to

we get the following difference equation:

If we neglect all higher order terms in ∆r and ∆j, and after taking the limit for ∆r → 0, the dif-
ferential equation of balance for energy in spherical coordinates becomes:

or

To obtain the field equation for temperature, we simply introduce Fourier’s Law for the energy
current into the equation of balance, which leads to

If kE is independent of the temperature, this differential equation yields the following result. The
first integration tells us that the product of the radial variable squared and the temperature gra-
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dient must be a constant, which will be called – B. Therefore, the temperature is inversely pro-
portional to the radial variable r. The second integration delivers another constant A, and the
final result turns out to be 

in the shell. The constants A and B are determined by the appropriate boundary conditions.

EXAMPLE 13.4. The temperature in a bar which is heated internally.

Consider a bar of length L and constant conductivity with respect to energy which can conduct
heat only in the direction of its axis. It is attached to entropy reservoirs at constant temperatures
T0 and TL at x = 0 and x = L, respectively. Let us take T0 ≥ TL . It is heated internally with a con-
stant energy source rate. (This might be due to radioactive heating, as in the previous example.)
(a) Determine the steady-state temperature of the bar as a function of position. (b) Would it be
possible for the temperature to have a minimum in 0 ≤ x ≤ L? (c) Determine the condition for
the temperature to decrease monotonically from T0 to TL . (d) What is the alternative? 

SOLUTION: (a) Under the given conditions the differential equation for the temperature is

(E1)

with boundary conditions

The solution of Equ.(E1) is a quadratic function which turns out to be 

(E2)

It is easy to see that for a vanishing source rate the solution turns out to be identical to the one
given in Example 13.2, in which case the temperature is a linear function of position.

(b) A quadratic function has an extremum. Here, the second derivative of the temperature with
respect to position, i.e., the value of – σE / kE is negative, which tells us that the extremum is a
maximum, not a minimum. A minimum would be possible only if there were an energy sink
instead of a source in the bar.

(c) For the temperature to decrease monotonically from its value at the hotter end, the maximum
of the quadratic function obviously must lie outside the range of the bar, i.e., outside 0 ≤ x ≤ L.
We find the position of the maximum by setting the first derivative of Equ.(E2) equal to zero,
which yields

Since T0 – TL is positive, the position of the maximum may not be larger than x = L / 2. For this
maximum to lie outside the bar it must therefore be negative. This is the case if

We can understand intuitively that the source rate may not be too large for entropy still to be
transported from the hotter to the cooler reservoir.
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(d) The alternative to the situation just described is the following. The maximum of temperature
lies in the range 0 ≤ x ≤ L / 2. In this case the temperature gradient is zero or positive at the end
of the bar which is in contact with the hotter entropy reservoir. Entropy will not flow from the
reservoir into the bar; rather, it will flow from the point of maximum temperature inside the bar
towards both ends! This happens if

i.e., if the source rate of energy becomes large. For increasing values of the source rate, the point
of maximum temperature moves towards the middle of the bar. Remember that these consider-
ations hold only for steady state conditions.

EXAMPLE 13.5. The flow of heat through the Earth’s mantle, with sources of entropy.

Assume that just about all the entropy which flows out of the surface of the Earth is produced
by radioactive decay in the mantle. Calculate the temperature at the base of the mantle if all the
entropy is transported conductively. The mantle–core boundary is at a depth of 3400 km. The
Earth’s radius is 6400 km. Take the conductivity with respect to energy to be constant and equal
to 1 W/K · m. The temperature gradient at the surface is 0.06 K/m. Take the surface temperature
to be 0°C.

SOLUTION: We can derive the differential equation for temperature in spherical symmetry by
going through the same development as in Example 13.3. If we allow for sources, the equation
of balance of energy turns out to be

If we use Fourier’s law we obtain the field equation:

if the conductivity with respect to energy is constant. This equation can be changed into a sim-
pler one using the following transformation of variables:

We obtain

The particular solution of this equation is proportional to the third power of the radius, while the
solution of the homogeneous equation is a linear function. Taken together, the solution of this
equation is given by

Together with the boundary conditions
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we arrive at the following result for the temperature as a function of radius:

We now need a value for the density of production of energy due to radioactive decay. This rate
must be the flux of energy through the surface of the Earth, which can be calculated from the
temperature gradient and the conductivity. If we divide this quantity by the volume of the crust
we obtain

Now the numerical values in the temperature function look like

If we insert the value for the radius of the core–mantle boundary, we obtain a temperature of
120,000 K. Even though it is smaller than what we got in Example 7.5, this value is still much
too high for the mantle to remain solid. We have made some strongly simplifying assumptions
regarding the conductivity and the distribution of the entropy sources. Still it seems rather im-
probable that entropy can be transported through the mantle of the Earth by conduction alone.
In fact, there must be a mechanism much more efficient than conduction, namely, convection.

13.3 TIME DEPENDENT CONDUCTION

The law of balance of entropy for time dependent conduction was already derived in
Equ.(13.17) for the case of no supply. Naturally, constitutive relations are needed if
we attempt to solve this equation. Here, we must obtain three relations, namely for the
density, the flux density, and the density of the production rate of entropy. The last two
are known from the previous development of steady state processes. Fourier’s law,
Equ.(13.18), determines the flux density while the rate of production of entropy is giv-
en by Equ.(13.24). So, now we still need to develop the expression for the relation be-
tween entropy and temperature for the spatially continuous case.

13.3.1 Capacitive Relation

The form of the constitutive relation for storage of entropy is new. For our present pur-
pose, consider a rigid conductor. Entropy storage is expressed using the entropy ca-
pacitance Κ of the rigid body (Equ.(4.39)). We simply have to transform the original
definition of the entropy capacitance. For a uniform body, we may do this as follows:

(13.32)

The entropy capacitance divided by the volume of the body is the product of the en-
tropy capacitance per mass and the mass density. Therefore, we have

(13.33)
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Here, κ is the specific entropy capacitance of the conductor, and ρ is its density. In
general, they are dependent upon the conditions at a particular location.

13.3.2 The Field Equation for Temperature

If this determination is inserted together with Equ.(13.18) and Equ.(13.24) into the
equation of balance of entropy, Equ.(13.17), we obtain, after some algebra, the field
equation for temperature for time-dependent conduction:

(13.34)

Instead of the quantities referring to entropy, the temperature coefficient of energy and
the conductivity with respect to energy have been introduced. 

The result is a partial differential equation for temperature as a function of time and
position. Its solution may be very difficult or even impossible to obtain in analytical
form. Most often, in practical cases, numerical methods are used to compute a solu-
tion. Naturally, the solution is subject to proper initial and boundary conditions. The-
ories of analytical and numerical solutions of equations such as Equ.(13.34) are
beyond the scope of this book. The derivations performed in this section are important
simply as examples of how we can deal with the equation of balance of entropy and
constitutive relations in somewhat more complicated situations.

EXAMPLE 13.6. Penetration of heat into the upper layers of soil.

What is the effect of periodic changes of temperature at the surfaces of the Earth? How far be-
low the surface can one still notice daily or yearly changes having amplitudes of 7.5 K and 15
K, respectively?

SOLUTION: We need a simplified model of the penetration of heat into the upper layers of the
ground. Assume the soil to have a constant temperature (in space and in time) in the absence of
the changes at the surface. Model the ground as a body with a plane surface extending infinitely
into the vertical direction downward (Fig. Ex.6.1). The material is assumed to have constant
properties. These assumptions reduce the problem to one of purely one-dimensional conductive
heat transfer, which can be described using Equ.(13.34):

The second form holds for constant conductivity. The factor multiplying the spatial derivative
of the temperature is called the thermal diffusivity α. The field equation for temperature can
therefore be written as follows:

with

The boundary condition at the surface takes the form
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This partial differential equation can be solved as follows. Assume the solution to be separable,
which means that we can write

Now the differential equation becomes

Since we have functions of only one variable on the left and functions of the other on the right,
this equation can be satisfied only if each side is a constant K, which means that

These are ordinary differential equations with simple solutions:

In summary, the solution of the partial differential equation can be written

The boundary condition at the surface tells us that

Now, it makes sense to change to the complex domain. Both the real part and the imaginary part
of a complex function are solutions of the differential equation. Instead of K = ω, we write K =
iω, which leads to

for the real part. This can be transformed into

The minus sign must be chosen, since otherwise the temperature would increase with increasing
depth.

The graph in Fig. Ex.6.2. shows the solution for a periodic change of temperature at the surface
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with a period of one year and an amplitude of 15°C. The curves are for different times, where
the time is given as a fraction of a year. The thermal diffusivity of the soil was taken to be
5.0·10–7 m2/s. It is seen that the disturbance decreases to a few degrees some 5 m into the
ground. A daily disturbance is felt only to a depth which is about 20 times smaller than for the
yearly temperature fluctuation. 

A periodic climate change with a period of 1 million years, on the other hand, would be felt to
a depth of several thousand meters (the curves are similar if the depth variable is scaled as the
square root of the period of variation).

13.4 TRANSPORT OF ELECTRICITY

Electricity—electrical charge—can be transported in various ways, such as by ohmic
diffusion or by convection. Here, diffusion will be described briefly to prepare the sec-
tion on thermoelectricity (Section 13.6). Diffusion of charge in ohmic materials can
be treated analogously to diffusion of entropy. Moreover, if we add inductive effects,
wavelike transports can be discussed which brings up an interesting question when we
compare the flow of entropy to that of charge (Section 13.5).

13.4.1 The Law of Balance of Electric Charge

Charge is a scalar fluidlike quantity just like entropy. Indeed, in a couple of respects,
its behavior is simpler than that of entropy. Charge cannot be produced or destroyed,
and there are no sources of charge due to radiative transports. For these reasons, the
law of balance of charge for a body is

(13.35)

if we neglect convective flows. As in the case of entropy, we introduce densities to
transform this simple expression:

(13.36)
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If we use the divergence rule, we obtain the local form of the law of balance of charge:

(13.37)

in a single spatial direction. This result is equivalent to Equ.(13.17) with πQ = 0. As
before, the law of balance of charge will be made use of in conjunction with appropri-
ate constitutive relations. Here, I will only use those for ohmic conduction and for dif-
fusion coupled with inductive effects.

13.4.2 Constitutive Relations for Conduction and Induction

There are constitutive relations between (1) potential and stored charge, (2) gradient
of potential and current of charge, and (3) gradient of potential and rate of change of
current of charge. The first is the capacitive relation of the material, the second is
Ohm’s law, and the third is the law of induction. The capacitive relation can be for-
mulated as follows:

(13.38)

where is the volumetric electric capacitance of the material (capacitance per vol-
ume). This compares to Equ.(13.33), i.e., to the thermal capacitive relation between
entropy and temperature of a material which is written with the specific entropy ca-
pacitance instead.

Ohmic transport and the diffusion equation. The constitutive relation for ohmic
transport is equivalent to Fourier’s law of the conduction of entropy, Equ.(13.18):

(13.39)

The relations just formulated, i.e., Equ.(13.38) and Equ.(13.39), can be introduced in
the law of balance of charge, Equ.(13.37). Doing so leads to

(13.40)

which is the field equation for the electric potential equivalent to the field equation for
temperature presented in Equ.(13.34). This is called a diffusion equation.

Inductive effects and the wave equation. Inductive effects were discussed in
Chapters 1 and 3. The local form of the law of induction states that the gradient of the
(inductive) electric potential leads to the rate of change of the electric current. If we
use Equ.(3.41) as a guide, we see that the local form of the law of induction in electric
conductors can be written as follows:

(13.41)

where A is the cross section of the conductor and L’ is the inductance per length. In a
conductor having a finite conductivity, the gradient of the potential is made up of the
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gradients due to conduction and to induction: 

(13.42)

This is equivalent to Equ.(1.37) for the transport of a fluid. Introducing this and the
expression in Equ.(13.38) into the law of balance in Equ.(13.37) yields

(13.43)

As mentioned before in Section 3.6, this expression is called a wave equation. In con-
trast to Equ.(3.44), it contains a dissipative term due to conduction with a finite con-
ductivity. Giving the conductivity of the material an infinitely high value, i.e., setting
the resistivity equal to zero, leads to a wave equation equivalent to Equ.(3.44):

(13.44)

13.4.3 The Speed of Propagation of Electrical Pulses

The wave equation for undamped transports as in Equ.(13.44) admits a simple general
solution for travelling waves. Consider the function ϕ (0 , x) shown as a solid line in
Fig. 13.2. If it travels to the right at speed c without changing its shape, we can say that

(13.45)

This can be introduced in Equ.(13.44) which leads to

Comparison with the original equation Equ.(13.44) shows that the speed of propaga-
tion c is related to the inductance per length and the capacitance per length of the con-
ductor by

(13.46)

Now consider pure conduction of charge. Obviously, the difference between this and
the situation that leads to the wave equation Equ.(13.43) has to be found in the consti-
tutive law of Equ.(13.42) which includes the effect of induction. Without induction we
have L’ = 0. Using this condition in Equ.(13.43) leads to

(13.47)

Since Equ.(13.47) requires L’ = 0, this also means that the speed of propagation of an
electrical pulse must be infinitely high in pure conduction. Clearly, this is an unreal-
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istic result which shows that the classical theory of conduction has its shortcomings.
We can defend its use by noticing that the model yields useful results in the case of
very small inductance. This condition is met in many electrical, chemical, and thermal
phenomena.

13.5 INDUCTIVE THERMAL BEHAVIOR

Irrespective of the material undergoing thermal processes, all the examples discussed
so far have led to the same basic result concerning the functional dependence of en-
tropy and energy. We have found that even in irreversible processes the local behavior
of materials is the same as that encountered in the simplest of all cases, namely, in stat-
ic conditions or in the dynamics of uniform ideal fluids. The entropy and the energy
of a simple material have always been found to depend only upon temperature and
density. We have discovered the same type of Gibbs Fundamental Form in each ex-
ample. Because of this similarity, we speak of local thermodynamic equilibrium pre-
vailing even in the case of irreversible processes such as those treated for heat-
conducting viscous fluids.

Despite the success of the models of materials treated so far, in at least one case it has
been known for a long time that something is amiss: the simple theory of conduction
of heat based upon Fourier’s law predicts infinite speed of propagation of thermal dis-
turbances. This we can conclude by analogy with the case of pure electric conduction
treated in Section 13.4.3. 

We do not have to advance theories of more complicated materials to find the need to
extend the usual results of thermodynamics. We will see in this section that pure con-
duction of heat calls for a treatment where the energy and the entropy of a body are
functions of nonequilibrium variables in addition to local temperature and density, if
we wish to solve the problem of infinite speed of propagation of thermal pulses. A
simple derivation of the consequences for thermodynamics of the additional assump-
tion will be given for the case of conduction in a rigid conductor of constant density.

13.5.1 Classical Theory of the Speed of Thermal Transports

Normal conduction of heat through a rigid conductor is described by the laws of bal-
ance of entropy and energy for constant density of the conductor:

(13.48)

by Fourier’s law of conduction

(13.49)

and by the relation between energy currents and entropy currents:

(13.50)
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s and e are the specific entropy and specific energy of the materials, respectively. Con-
sequences of this are the expression for the rate of production of entropy

(13.51)

and the simple Gibbs Fundamental Form

(13.52)

This means that the entropy and the energy of the body are functions of temperature
only. Furthermore, as derived in Section 13.3, the field equation for temperature in a
rigid conductor is

(13.53)

which follows from Equ.(13.34) for constant values of the conductivity with respect
to energy. The field equation should be compared to Equ.(13.47) for the conduction
of charge. Clearly, the two are equivalent. The equation representing conduction alone
is obtained from more general laws if induction is neglected. Doing so means setting
the inductance equal to zero, which, in turn, means that the speed of propagation of
the waves approaches infinity, Equ.(13.46). In other words, the classical theory of
conduction predicts infinite speed for thermal pulses. This is a totally unphysical re-
sult; a resolution of this problem will now be presented.

13.5.2 Thermal Inertia

If we assume a current of entropy to have some type of “inertia” associated with it, we
should simply include a thermal inductance with the law of conduction of heat, i.e.,
with Fourier’s law, which then becomes 

(13.54)

where τS, the relaxation time of the current of entropy, is equal to the ratio of thermal
inductance to thermal resistance; i.e., it is equivalent to the inductive time constant
known from electricity or from hydraulics. Equ.(13.54) is known as the law of Max-
well-Cattaneo for the conduction of heat (which is commonly formulated for the flow
of energy). Combined with the law of balance of energy in pure heat conduction, this
leads to a hyperbolic partial differential equation for the temperature, i.e., to a wave
equation (telegrapher’s equation) for the conduction of entropy. As we have seen be-
fore, such a field equation means that thermal disturbances propagate with finite
speed, which in this case is given by 

(13.55)

Here, c and ρ are the specific temperature coefficient of energy and the density of the
material, respectively. Zero relaxation time for currents of heat, i.e., immediate reac-
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tion to changes of temperature gradients, therefore leads to infinite speed of propaga-
tion as predicted by Fourier’s law of conduction of heat. Phenomena which predict
finite speed disturbances in thermal processes are known to exist in high-frequency
processes where frequencies become comparable to the inverse of the inductive time
constant (ultrasonic propagation in gases, neutron scattering in liquids), or in solids at
very low temperatures (second sound).

A qualitative explanation of inductive phenomena usually involves the notion of the
energy associated with the processes. In electrodynamics, the energy of the magnetic
field is increased or decreased in accordance with the change of the magnitude of the
currents of charge. In hydraulics, on the other hand, the energy change of the flowing
fluid, i.e., its kinetic energy, is associated with changes of currents. At first, we might
look in vain for the energy related to the “inertia” of currents of entropy. However, the
energy flowing together with entropy represents a flux of mass: energy has inertia.
Changing the currents of entropy leads to a change of the associated flux of energy
(mass), which should provide the effect we have been looking for.

13.5.3 Conduction Including Inductive Effects

It will be shown now that we should include the flux of entropy as one of the indepen-
dent variables of a theory of conduction if we wish to account for phenomena which
predict finite speed of propagation of heat.2 Having equations like those presented in
the previous section calls for evolution equations not only for the entropy (and the en-
ergy), but for their currents as well. Therefore, let us assume a Gibbs Fundamental Re-
lation of the form 

(13.56)

which implies

(13.57)

and

(13.58)

The equations of balance of entropy and of energy, i.e., Equ.(13.48), remain un-
changed. If we plug the Gibbs relation into the law of balance of energy, we obtain

which is equivalent to

2. The treatment given here is a variation on the theme presented in a paper by Jou and Casas-
Vázquez (1988). I am discussing the phenomenon using entropy rather than energy.
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Now compare this result to the equation of balance of entropy. We obtain the follow-
ing expressions for the flux of energy in terms of the flux of entropy, and for the rate
of production of entropy:

(13.59)

(13.60)

Note that we again have the well-known relation between currents of entropy and en-
ergy in conduction. The entropy production rate is different from Equ.(13.51), how-
ever. Now we exploit the fact that the entropy production may not be negative. The
simplest possibility for this to be the case is if

Comparison with the constitutive law assumed to hold for the current of energy, i.e.,
with the law of Maxwell-Cattaneo (13.54) allows us to identify the coefficients a and
b used in the previous relations:

Therefore, the rate of production of entropy turns out to be

(13.61)

while the Gibbs Fundamental Form is given by

(13.62)

Naturally, for vanishing relaxation time τS (or for vanishing time rates of change of
fluxes) the results are equivalent to the usual case of heat conduction according to Fou-
rier’s law. It is obvious that the requirement of finite speed of propagation of thermal
disturbances requires the fluxes to be included in the list of the independent variables
of the theory. The resulting entropy and energy of a body are called nonequilibrium
entropy and energy; in addition to terms which depend only upon temperature and
density, i.e., upon the equilibrium conditions, they include a term involving the square
of the entropy flux.3 This requirement distinguishes the extended version of irrevers-
ible thermodynamics from the usual one.

3. See Jou and Casas-Vázquez (1988), p.332.
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9. Dynamical models of thermal processes can be produced for simple materials which admit
so-called equilibrium relations. What is the meaning of this? What then is the meaning of
non-equilibrium relations?

10. Explain Equ.(13.54) in terms of the power of thermal processes.

11. Why should the expression in parentheses in Equ.(13.60) be made proportional to the cur-
rent of entropy?

13.6 THERMOELECTRICITY

Thermoelectric devices were first discussed in Section 4.7.2 from the viewpoint of
spatially uniform systems. Now, we are going to develop the description of thermo-
electricity based upon spatially continuous models.4 Apart from the typical approach
that uses entropy as the fundamental thermal quantity, this section will demonstrate a
simplified derivation of the relation between the Seebeck coefficient and the Peltier
factor. It is based upon the same continuum physics model which is used to present
the theory of thermoelectricity.

Applications of thermoelectricity have met with increased interest in recent years.
Thermoelectric power generation in space or cooling of electronic devices are just two
of many examples. The fact that temperatures at the surfaces of Peltier devices can be
controlled easily and quickly has led to applications in biology and medicine.5

13.6.1 Observations

There are two observations which allow us to create a formal description of the ther-
moelectric effect. First, if a temperature gradient is established through a thermoelec-
tric device, we can measure a gradient of the electric potential. Second, if electricity
is made to flow through a device, entropy is forced to flow along with charge.

Thermoelectric coefficients. The Seebeck coefficient ε and the Peltier factor α are
introduced as follows. The former establishes the relation between the temperature
gradient and the gradient of the electrochemical potential µec if no electric current is
allowed to flow through the thermoelectric device:

4. Discussions of important aspects of thermoelectricity can be found in W. C. Scott (1962):
“Electron Levels, Electrochemical Effects, and Thermoelectricity,” Am. J. Phys. 30, 727-
737; P. L. Walstrom (1988): “Spatial dependence of thermoelectric voltages and reversible
heats,” Am. J. Phys. 56, 890-894; J. M. Gordon (1991): “Generalized power versus effi-
ciency characteristics of heat engines: The thermoelectric generator as an instructive illus-
tration,” Am. J. Phys. 59, 551-555; Chen et al. (2007): “Irreversible transfer processes of
thermoelectric generators,” Am. J. Phys. 75, 815-820. See also references therein. 

5. D. A. Van Baak (1992): “Temperature servomechanisms using thermoelectric modules,”
Am. J. Phys. 60, 803-815; G. Reid et al. (2001): “A system for applying rapid warming or
cooling stimuli to cells during patch clamp recording or ion imaging,” Journal of Neuro-
science Methods 111, 1–8; S. M. Rothman et al. (2005): “Focal cooling for epilepsy,” Ep-
ilepsy & Behavior 7, 214–221.

QUESTIONS
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(13.63)

∇ is the symbol for the multidimensional gradient. This is the formal expression of our
knowledge gained from the use of thermocouples. A temperature difference of 1 K
leads to an electro-chemical potential difference of ε volts.

µec is the electro-chemical potential (of the charge carriers in the material) per charge
of one mole of charge carriers, i.e., it is the standard electro-chemical potential divided
by the Faraday constant (see Chapter 6). If concentration differences and the temper-
ature dependence of the chemical part of the potential can be neglected, µec equals the
electric potential (measured in volts). This is the case for a voltmeter used to measure
the voltage across a thermoelectric device.6 

The Peltier coefficient α is the factor that determines the coupling between currents of
charge and of entropy.7 It is observed that, even for isothermal conditions, entropy is
transported through a thermoelectric cooling device (Peltier device) if an electric cur-
rent jQ is made to flow through it. This observation is summarized as follows:

(13.64)

j denotes a current density vector. Expressed graphically, an electric current sweeps α
units of an entropy current along with it when there is no temperature difference. Note
that the entropy flow in Equ.(13.64) is expected to be non-dissipative in contrast to
conduction of entropy that is caused by a temperature gradient.

13.6.2 Assumptions

We base our reasoning on the standard form of the laws used to model thermal and
electric processes. These are (1) the laws of balance of entropy and of charge (or of
number of particles of the charge carrier); (2) the law of balance of energy supple-
mented by the expression for the total energy current in terms of the flows of entropy
and charge. Constitutive laws for the flows of charge and entropy suggested by exper-
iments, as discussed above, will be described in Section 13.6.3.

We shall write the equations for the purely one-dimensional case with flows only in
the axial direction of a rod made of a conducting material. Furthermore, we shall treat
the steady-state case.

Balance of entropy and charge. The thermoelectric effect is the result of the cou-
pled flow of entropy and charge in a conducting material. Therefore, we shall make
use of the steady-state forms of the laws of balance of entropy:

(13.65)

and of charge:

6. For details see P. L. Walstrom (1988).

7. In traditional texts, the factor Tα is commonly called the Peltier coefficient. See for exam-
ple, Zemansky and Dittman (1981), p. 338.

∇ = − ∇µ εec T

j jS Q= α

dj

dx
S

S= π



13.6  THERMOELECTRICITY

PART IV 561

(13.66)

x denotes the single independent spatial variable. See the Sections 13.1 - 13.4 for more
details concerning these laws of balance. Note that possible sources of entropy have
not been included.

Energy. The steady-state law of balance of energy is very simple: the divergence of
the total energy flux density must be equal to zero:

(13.67)

The total energy current jE can be split into two terms, each arising from the transport
of one of the basic quantities (i.e., entropy and charge):

(13.68)

This follows directly from our image of entropy and charge as energy carriers.

13.6.3 Constitutive Laws

There is one constitutive law for each of the flux densities of charge and of entropy. If
we allow for an electric current through a thermoelectric generator, Equ.(13.63) is
generalized to:

(13.69)

σ is the electric conductivity of the material. If we combine the two terms on the right
hand side, we see that there is a combined thermo-electro-chemical potential (i.e., µtec
= µec + ε T ) that gives rise to the electric current:

(13.70)

The second constitutive relation is a generalization of Equ.(13.64). Allowing for a
temperature gradient we have:

(13.71)

Here, kS is the entropy conductivity of the material. Equ.(13.71) suggests that the en-
tropy current consists of a non-dissipative and a dissipative term. If Equ.(13.69) is in-
serted into Equ.(13.71), the two laws may be summarized as follows:

(13.72)
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symmetric. In our case, this means that we should expect the following relation to
hold:

(13.73)

This will be demonstrate in the following sections.

13.6.4 Entropy Production

As stated above, we shall gain additional information on the material coefficients of
the theory, i.e., the Seebeck coefficient and the Peltier factor, by considering the form
of the terms in the equation for the entropy production rate and for the power of the
thermoelectric process (for the latter, see Section 13.6.5).

We begin with the law of balance of energy in Equ.(13.67) and insert Equ.(13.68).
Taking into account the laws of balance of entropy and charge, the density of the en-
tropy production rate is obtained:

(13.74)

The two terms on the right hand side represent the thermal and the electric power of
the processes, respectively. Since these contain non-dissipative parts, only the sum of
the two terms can be equal to the entropy production rate. By itself, a single term does
not represent a part of the entropy production rate. If we insert the constitutive laws of
Equ.(13.69) and Equ.(13.71), we see that

(13.75)

The first and the last of the terms are non-dissipative parts of the thermal and the elec-
tric power, respectively. Since they do not add to the production of entropy, their sum
must cancel in Equ.(13.75). This leads immediately to α = ε (Equ.(13.73)) and to

(13.76)

This is what we should have expected from our knowledge of dissipation due to the
conduction of entropy and of charge. 

13.6.5 Power of thermoelectric processes

Since the phenomena of thermoelectric power generation and of Peltier cooling are as-
sumed to be caused by the same underlying effect, we should expect a relation to exist
between the Seebeck coefficient and the Peltier factor. In fact, as we know, they are
equal. This can be shown to be a consequence of the dependence of the entropy pro-
duction and the power upon fluxes, gradients, and material factors such as α and ε.

Take the case of thermoelectric power generation. A current of entropy is established
as a consequence of a temperature difference. This leads to an electric and two dissi-
pative processes. The density of the power of the driving thermal process pth is equal to
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(13.77)

which can be expressed with the help of Equ.(13.69) and Equ.(13.71):

(13.78)

In this expression, we can interpret all three terms on the right hand side. The third is
the dissipation rate as a consequence of thermal conduction. The first must represent
the dissipation rate due to charge conduction, whereas the second determines the non-
dissipative power of the electric process driven by a part of the input power.8 The sum
of the three terms must obviously equal the total power of the thermoelectric process.
Again, these identifications lead us to conclude that the Seebeck coefficient and the
Peltier factor should be equal.

13.6.6 Thermo-electric potential and electro-thermal transport

The results of the previous two sections rest upon the differentiation between irrevers-
ible and non-dissipative parts of the thermoelectric effect. They may be summarized
in the following graphical interpretation of this phenomenon.

1. The transports of charge and of entropy are coupled according to Equ.(13.64).
This leads to a non-dissipative part of the total entropy current (the dissipative
part is due to conduction):

(13.79)

2. It is this coupling, i.e., the non-dissipative entropy transport, which leads to the
thermo-electric potential (or rather, to its gradient):

(13.80)

The assertion that 2 follows from 1 is equivalent to saying that the energy released as
a consequence of the non-dissipative entropy transport is equal to the energy made
available to the thermoelectric process:

(13.81)

Once more, this results in the equality of the Seebeck coefficient and the Peltier factor.
The steps and the reasoning presented here may be taken as a simple description of
thermoelectricity.

8. Integration of the second term for the thermoelectric generator shows that this term is in-
deed equal to the rate at which energy is made available to the user of the device, if we set
ε = α. See also Walstrom (1988).
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13.6.7 Summary

If we accept some strong physical reasoning with regard to the nature of the dissipative
processes inherent in thermoelectricity, we can apply the same equations used to mod-
el the phenomena to demonstrate the equality of the Seebeck coefficient and the Pelt-
ier factor. 

The argument starts with the assumption that the only irreversibilities are the result of
conduction of entropy and charge. As a consequence, we reason that the coupling of
entropy currents to currents of electric charge causes a non-conductive flow of entropy
(Equ.(13.64) and Equ.(13.79)) which is non-dissipative; it leads to the reversible ef-
fect of a thermoelectric device. Since we know the expressions for the irreversibilities
due to the conduction of charge and entropy, we have prior knowledge of the form of
the entropy production rate: it should be as presented in Equ.(13.76). This immediate-
ly leads to the desired result.

Should we accept such reasoning? There are compelling reasons for doing this. The
alternative would be to appeal to the Onsager relations. Simply appealing to some-
one’s result without the accompanying proof is probably worth less to the learner than
reasoning based on assumptions that can be motivated and whose consequences can
be inspected. Moreover, the derivation of Onsager’s reciprocity relations suffers from
limitations. Therefore, they are usually taken for granted at the macroscopic level. A
general proof in macroscopic physics is still missing.9

12. What kind of experiment could be used to justify Equ.(13.64)?

13. Why should we use the electro-chemical potential rather than the pure electric potential
when we formulate thermo-electric phenomena?

14. What is the meaning of the thermo-electro-chemical potential?

15. When discussing Equ.(13.71), it was stated that there are two different entropy transports.
What do these transports represent?

16. Consider thermoelectric cooling. What are the origins of the entropy transports occurring
in a Peltier device? What is the condition that cooling actually takes place?

17. In what sense is Equ.(13.76) self-evident?

18. Why do the first and last terms on the right hand side of Equ.(13.75) represent non-dissi-
pative processes? Why does this mean that they do not contribute to entropy production?

EXERCISES AND PROBLEMS

1. The ends of a copper cylinder length 0.50 m and diameter 0.05 m have constant tempera-
tures of 373 K and 273 K. Entropy is conducted in the direction of the axis of the cylinder
only. The thermal conductivity with respect to energy of copper is 384 W/(K · m), which
we assume to be constant. Calculate (a) the energy current density, (b) the energy flux, and

9. For a proof in a special case, see I. Müller, Thermodynamics (Pitman, Boston, 1985), p.
203-208.

QUESTIONS
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(c) the production densities of entropy at the ends of the cylinder. (d) From the production
density as a function of position determine the production rate of entropy in the copper bar.
Show that the result is equal to the net current of entropy.

2. Derive the field equation for temperature in steady-state conduction on the basis of the bal-
ance of energy instead of the balance of entropy.

3. According to Table 7.1, the conductivity with respect to entropy of water depends less
upon temperature than its counterpart, the conductivity with respect to energy. Taking the
former quantity as constant for steady-state conduction through a slab of water (a) should
the temperature gradient be steeper at the hotter or at the cooler side? (b) Show that the field
equation for temperature should take the form

4. Calculate (a) the source density of energy and (b) the production (or source) density of en-
tropy in a 1-kg sample of enriched uranium at a temperature 300 K. Uranium has a density
of 18950 kg/m3. Assume there to be 97% U-238 and 3% U-235. The energy released in the
decay of one nucleus is roughly 4.2 MeV and 4.6 MeV, respectively. The half-lives of the
two isotopes are 4.5 · 109 years and 7.1 · 108 years, respectively.

5. Consider the conduction of heat through the Earth’s crust, whose geometry can be taken as
flat. Allow for sources of entropy in the material which are assumed to be distributed even-
ly, and let the conductivity with respect to energy be constant. (a) Show that the tempera-
ture profile from the base of the crust to the surface is

for a given energy flux jE (0) at the base and surface temperature TL . (The thickness of the
crust is L.) (b) Determine the dependence of the temperature gradient near the surface upon
the conductivity, the energy flow at the base, and the source rate of energy in the material.
(c) Calculate the surface temperature gradient for a thickness of the crust of 50 km, a ther-
mal conductivity of 2.5 W/(K · m), and a source rate of 1.25 · 10–6 W/m3.

6. Repeat the calculation of the steady-state temperature profile in a slab of matter such as the
Earth’s crust (Problem 5), but this time for a source rate of energy which decreases expo-
nentially from the surface. Again, boundary conditions are given at the bottom (the energy
flux is fixed) and at the top (the temperature is specified).

7. Show that for pure conduction, with sources of heat in the material, the field equation for
temperature must take the form

in radial symmetry if non-steady-state conditions are considered.

8. Show that the following holds for the density of the entropy production rate

both for conduction with and without inductive effects. Why is the form derived in
Equ.(13.61) different from the simpler for classical conduction, i.e., from Equ.(13.51)?
How does this difference arise?

9. Show that the field equation for temperature in a single-dimensional thermoelectric device
operated dynamically is given by
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Here, ρel is the electric resistivity, and ρ and c are the density and the specific heat of the
material, respectively. kE symbolizes the thermal (energy) conductivity. (a) What are the
assumptions concerning material properties of the device? (b) Use qualitative reasoning to
justify the equation by identifying the meaning of its parts. (c) Provide a formal derivation
based on the equations formulated in Section 13.6.2 and Section 13.6.3. 

10. Consider a thermoelectric device (as in Problem 9) operated as a cooler. To study the be-
havior of the cold end under fast transient operation, formulate boundary conditions for the
following case: the cold end of the device is thermally insulated, the hot end is kept at a
steady temperature.

11. The thermal energy currents at the hot and cold ends of thermoelectric generators are com-
monly written as follows:

h and c stand for hot and cold, respectively. (a) What are the assumptions regarding the
(energy) conductance GE. (b) Derive these expressions from what you know about the con-
duction of heat. Show that the terms ±RIQ

2 / 2 are a consequence of the special assumptions
made here. (c) Use the expressions to derive the power and the efficiency of the generator. 

12. While the steps that lead from Equ.(13.75) to Equ.(13.76) may be convincing on physical
grounds, they are not necessary for purely mathematical reasons. For the entropy produc-
tion rate in Equ.(13.75) to be strictly non-negative, we only require the following condi-
tions: kS ≥ 0, σ ≥ 0, and 4 kS / σ ≥ (ε – α)2. Prove this statement.
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Convective transport of heat leads to many interesting natural phenomena and to im-
portant technical applications. Theoretically, the subject is very demanding. For this
reason we have so far dealt with convection only briefly. In Chapter 7, we used a sim-
ple expression to calculate heat transfer at a solid-fluid interface. Knowing the heat
transfer coefficient, we can establish a relation which serves as a boundary condition
for processes inside a particular body. Uniform flow systems were discussed in Chap-
ter 8, which led to expressions for entropy and energy transported by a fluid.

Here we will take a second step by also considering the effect of convection at surfaces
upon the fluid carrying away, or delivering, entropy. If we still assume the heat trans-
fer coefficients at interfaces to be given, and if we treat simple fluid flow as in Chapter
8, we can calculate the performance of devices such as solar collectors and heat ex-
changers. In addition to these technical applications, convective heat transfer in an at-
mosphere (or inside a star) will be discussed. 
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It should be obvious that the fundamental problem of how to calculate heat transfer
coefficients has still not been solved. While we have derived more or less general re-
sults for the Navier-Stokes-Fourier fluid in Chapter 11, the present section will dem-
onstrate how the equations can be specialized to apply to a simple case of boundary

by looking at the proper laws of balance and constitutive relations, we will get a first
encounter with how heat transfer coefficients can be calculated.

The application to be treated here will first require a generalization of the equations to
the two-dimensional case. Second, we will apply a number of special assumptions that
hold for steady laminar and incompressible boundary layer flow, which will lead to a
considerable reduction of complexity of the equations. Finally, we will see how the
relations can be applied to the problem of forced flow over a flat plate.

 

14.1.1 The Boundary Layer

 

We first encountered the problem of heat transfer at a solid-fluid interface in Section
7.3, where the boundary layer developing at the surface of a solid body was briefly
described. Here, some remarks will be added to the previous treatment.

567

layer flow. Convective heat transfer at a solid-fluid interface leads to this type of flow;

and Heat Transfer, Graduate Texts in Physics, DOI 10.1007/978-1-4419-7604-8_15, 
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The boundary layer is the region near a surface in which the conditions of the fluid
change from those at the surface to those in the free stream. All the interesting action
takes place in this normally very thin layer. Naturally, there is no sharp line dividing
the boundary layer from the undisturbed fluid. Therefore, it is common to specify that,
say, 99% of the change of velocity and temperature perpendicular to the surface will
occur between the surface and the line depicting the “edge” of the boundary layer in
Fig. 14.1. Note that the change of temperature and of velocity do not have to take place
over the same normal distance, which means that the thermal boundary layer and the
velocity boundary layer do not have to have the same thickness (these thicknesses are
denoted by 

 

δ

 

t

 

 and 

 

δ

 

, respectively). It is clear that to solve a convective heat transfer
problem, we will have to determine the temperature and velocity profiles over the
range of the surface.

From the discussion in Chapter 7 (see, in particular, Section 7.3.2) we can infer what
it takes to determine the heat transfer coefficient with respect to energy. There, we
found that this quantity can be calculated as follows:

 

(14.1)

 

Here, 

 

h

 

 is the heat transfer coefficient used to calculate the energy flux associated with
the conductive flux of entropy at the interface; 

 

k

 

Ef

 

 is the thermal conductivity of the
fluid. Obviously, in addition to fluid properties, we need to know the temperature gra-
dient at the surface, which in turn depends upon the conditions in the boundary layer.

Since the velocity and the thermal boundary layers are related, we need to know the
mechanical conditions as well. Indeed, we may say that the entire problem starts with
the effect of friction at the surface over which the fluid is flowing. To specify this phe-
nomenon, we introduce a dimensionless friction coefficient which is defined as the ra-
tio of the shear stress at the surface and the density of kinetic energy of the fluid in the
free stream:

 

(14.2)

 

Introduction of Newton’s law of friction (see Section 3.2.3 and Chapter 11) yields

 

(14.3)
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Figure 14.1:  Boundary layer 
flow was discussed briefly in 
Chapter 7, Section 7.3. Tempera-
ture and speed vary in a thin layer 
from their values at the interface 
to the free stream values of the 
fluid. If the geometrical arrange-
ment extends far in the direction 
perpendicular to the drawing, we 
basically can treat the flow as 
two-dimensional.
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Therefore, the conditions in the velocity boundary layer determine the friction coeffi-
cient, or vice versa. Again, knowing the conditions of the fluid at the interface is of
central importance in calculating the outcome of convective heat transfer.

 

14.1.2 The General Equations for Two Dimensional Flow

 

The laws of balance and the constitutive relations were listed for the general case of
three-dimensional flow in Section 11.8. The only difference between the two- and the
three-dimensional cases is to be found in the indices 

 

i

 

 and 

 

j

 

, which for the present case,
extend only from 1 to 2. Taking into consideration the results of the thermodynamic
constitutive theory presented there, the laws of balance are

 

(14.4)

 

if they are written in the material form.

 

1

 

 It is customary to leave out the law of balance
of entropy, and include the results of the constitutive theory of the thermal processes
with the energy equation. The material derivative and the symmetric part of the veloc-
ity gradient tensor are given by

 

(14.5)

(14.6)

 

For our purpose, 

 

i,j

 

 = 1,2. The constitutive laws pertaining to the Navier-Stokes-Fou-
rier fluid are

 

(14.7)

 

The laws relating to entropy are included, for example, in the expression for the ther-
mal energy current. (You can start with Fourier’s law for conduction of entropy, use
the relation between fluxes of entropy and of energy derived for the Navier-Stokes-
Fourier fluid, and arrive at Equ.(14.7)

 

3

 

.) 

 

1. See Malvern (1969), p. 206–230, for a derivation of the laws of balance in the form given
here. They are motivated by the one-dimensional case treated in the previous sections. As
before, it is assumed that a summation is performed over indices appearing twice in a term.
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14.1.3 The Navier-Stokes Equations for Steady Laminar and 
Incompressible Flow in Two Dimensions

 

As suggested by Fig. 14.1, we can treat our example as a case of two-dimensional
flow. If we assume the flow to be developed, we no longer take changes in time into
account. Also, with the exception of high speed flow of gases, fluids can normally be
considered to be nearly incompressible. 

 

Mass and momentum equations

 

. Now, we will write out the equations of balance
for mass and for the 

 

x- 

 

and the 

 

y

 

-components of momentum, introduce the constitutive
laws, and apply the restrictions:

 

(14.8)

 

The derivation for the case of the balance of mass is quite simple. Since the density is
taken to be constant (both in space and in time), Equ.(14.4)

 

1

 

 takes the form

There are two momentum balance equations. We shall perform the derivation for the

 

x

 

-component only. First, because of steady-state conditions, we have

The constitutive law for the momentum current density is given by

Because of the particular form of the balance of mass for the present case, the second
term on the right-hand side is zero:

which means that

The sum of the two spatial derivatives of the momentum current density vector is
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equal to

Addition of the parts yields the desired result. The derivation proceeds analogously for
the second component of momentum.

In general, we can say that the divergence of the velocity vector is zero for incom-
pressible fluids. The momentum equations, on the other hand, contain terms referring
to convection, to stress power due to the spatial change of pressure, and to viscous fric-
tion. 

 

The energy equation.

 

 The energy equation (with the enthalpy substituting for the in-
ternal energy) turns out to be

 

(14.9)

 

This can be derived as follows. The derivation of the law of balance of energy can be
obtained as follows. In two dimensions, the energy equation Equ.(14.4)
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 looks like
this:

The four components of the momentum current density tensor (the conductive part)
are the following
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Inserting these into the energy equation yields

The terms containing the pressure add up to zero because of the equation of balance
of mass. The rest yields the result given in Equ.(14.9); as a last step, you must only
introduce the specific enthalpy 

 

h

 

 = 

 

u

 

 + 

 

P/

 

ρ

 

.

 

14.1.4 The boundary layer approximations

 

Several approximations apply to the case of boundary layer flow. The consequences
of steady-state incompressible flow have already been worked out. First, the law of
balance of mass applies as derived above in Equ.(14.8)

 

1

 

, namely:

 

(14.10)

 

Now, we take into account (1) that the speed of flow parallel to the flat surface (as in
Fig. 14.1) should be considerably larger than that normal to it, and (2) that the gradi-
ents of velocity and of temperature in the 

 

y

 

-direction are much larger than those in the

 

x

 

-direction. Moreover, we assume (3) the variation of pressure in the direction of flow
to be small and (4) fluid properties to be constant. Then, as the first consequence of
assumption (1), all terms in the second momentum equation Equ.(14.8)

 

3

 

 involving the
velocity in the normal direction are very small, leaving us with

which means that the pressure should be approximately constant in the 

 

y

 

-direction. In
the first momentum equation, however, only the pressure gradient and the friction
term involving the 

 

x

 

-gradient of the parallel flow speed are small compared to the oth-
er terms—assumptions (1–3). This leads to

or

 

(14.11)

 

where the ratio of the dynamic viscosity and the density of the fluid is called the 

 

kine-
matic viscosity

 

. The energy equation, finally, attains a structure quite similar to the law
of balance of momentum in the 

 

x

 

-direction. In addition to the previous assumptions,
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we also assume (5) the effect of viscous production of entropy to be small, and (6) con-
ductive heat transfer to essentially take place in the direction normal to the flow. This
yields

If we take the enthalpy of the incompressible fluid to be a linear function of tempera-
ture; i.e., if

we obtain the following relation:

 

(14.12)

 

The quantity 

 

α

 

 is called the 

 

thermal diffusivity

 

 (which is proportional to the entropy
diffusivity). If we compare this last result with Equ.(14.11), we can see that the kine-
matic viscosity plays the role of momentum diffusivity. Even though we use the ener-
gy equation for derivation, heat transfer is the transfer of entropy. On the basis of the
fundamental quantities entropy and momentum, the thermal and mechanical phenom-
ena in a boundary layer are structurally analogous. It is interesting to note that the dif-
fusion of a chemical species at an interface can be treated in the same manner, leading
to another deep analogy.

 

2

 

 Obviously, diffusive transport occurs with entropy, momen-
tum, and charge, as much as it does with chemical substances.

 

14.1.5 Nondimensional Form of the Boundary Layer Equations and 
Similarity Parameters

 

Solving the differential equations for boundary layer flow, even in their reduced form
of Equations (14.10) – (14.12), is no small feat. Doing this for different geometries
and fluids having different properties under varying conditions would be even more
daunting. Therefore, it is imperative to be able to reduce the amount of work by intro-
ducing dimensionless forms of the equations and dimensionless groups of quantities
and fluid properties. It is found that the results depend for a given geometry upon these
dimensionless groups only.

First, we introduce the following dimensionless independent and dependent variables:

 

(14.13)

 

2. See, for example, Incropera and DeWitt, 1981.
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Here, L is some characteristic length associated with the geometry of the body over
which the fluid is flowing. In the case of a flat plate, we may take L to represent its
length. With these quantities, the simplified boundary layer equations become

(14.14)

where the dimensionless Reynolds and Prandtl numbers have been introduced:

(14.15)

The Reynolds number represents approximately the ratio of inertial to viscous effects
in the fluid, while the Prandtl number is the ratio of the momentum and the thermal
diffusivities. The Reynolds number can also be used to express the friction coefficient:

(14.16)

If the dimensionless variables are introduced in the relation for the heat transfer coef-
ficient in Equ.(14.1), we obtain

(14.17)

A third dimensionless group is introduced, which relates the convective heat transfer
coefficient to the conductive one:

(14.18)

As you can tell from the definition, this factor is the dimensionless temperature gradi-
ent at the surface of the solid body.

Results of the determination of convective heat transfer coefficients are now cast in
the form of relations between the dimensionless groups which hold for a given geom-
etry, independent of fluid properties and flow conditions as long as the basic restric-
tions apply (i.e., those restrictions which led to the reduced form of the differential
equations). The dimensionless equations suggest that the x-velocity is some universal
function of the dimensionless coordinates and the Reynolds number, the friction factor
depends only upon x* and the Reynolds number; and the dimensionless temperature
may be obtained from a universal function of the coordinates, the Reynolds number
and the Prandtl number. Therefore, for prescribed geometry, the Nusselt number is a
universal function of the position along the surface, the Reynolds number, and the
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Prandtl number:

(14.19)

For example, the equations can be integrated for laminar flow over a flat plate:

(14.20)

This holds as long as the Prandtl number is larger than 0.6.3 The subscript x refers to
the position in x-direction along the flat plate. The local Nusselt number Nux has to be
integrated if we wish to obtain the average value up to position x. For this case, it turns
out that the average value up to position x is twice the local value at x.

Naturally, other geometries and flow conditions lead to different and often much more
complicated problems. Turbulent flow, for example, cannot be treated analytically, at
least not without the introduction of additional strong assumptions. Turbulent mixing
in the boundary layer leads to greatly increased thermal and momentum diffusivities4

for which we do not have simple expressions, since they depend upon the state of mo-
tion and not just upon fluid properties. In many heat transfer applications of practical
interest, experimental determination of the heat transfer coefficient is required. Fortu-
nately, the dimensionless groups help to reduce the complexity of the problem just as
they did in the theoretical example. In other words, as in the case of an analytical cal-
culation, we should try to measure the Nusselt number in terms of the Reynolds and
the Prandtl numbers to obtain empirical relations analogous to what we have seen in
Equ.(14.20).

1. How is the entropy transfer coefficient at an interface defined? 

2. The equations of balance, Equations (14.4), contain time derivatives. Why are they absent
from Equations (14.8) and Equ.(14.9)?

3. In the derivation of Equ.(14.9), four components of the momentum current density tensor
are listed. Why are there four components? How can the forms be motivated?

4. What is the importance of the non-dimensional groups introduced to describe boundary
layer flows?

14.2 A STUDY OF SOLAR COLLECTORS

Basically, any object which absorbs the light of the Sun is a solar collector. Therefore,
we should include in this list the leaves of trees, buildings, soil, the oceans, or photo-
voltaic cells, just to name a few. You can see the range of phenomena induced by the
Sun’s rays. The “collectors” may produce substances, they may lead to the flow of
electric charge, or they may produce heat (i.e., entropy). Here we shall look only at the
latter effect in simple technical devices.

3. See, for example, Incropera and DeWitt (1981), p. 313–318.

4. Incropera and DeWitt (1981), p. 293–296.

N Re Pru f x L= ( )*, ,

C uf x x x x, .   ,    .= =−0 664 0 3321 2 1 2 1 3Re N Re Pr
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A thermal solar collector is a device which absorbs a part of the solar radiation falling
upon it, leading to entropy production in the absorber. If we let a fluid flow across the
absorber, we may harness some of the entropy which has been created (Fig. 14.2). In
the simplest possible geometrical arrangement, we have a flat absorber plate possibly
made out of some thin metal sheet. We may then let a fluid (liquid or air) flow through
a rectangular duct behind the absorber, with the fluid wetting its entire surface area.
Commonly, the collector is insulated at the bottom, and a transparent cover is placed
above the absorber plate; both devices reduce the loss of entropy to the environment.
The ducts for fluid flow in the collector are often different from (and more complicat-
ed than) what we have assumed here, leading to more difficult geometrical arrange-
ments for the transfer of heat between an absorber and fluid. This point will be further
discussed below.

Basically, a thermal solar collector of the type discussed here is a flow heater (see
Chapter 8 for a treatment of uniform models of flow heaters). Unlike the models in-
troduced in Chapter 8, the ones created here will take into account the spatial variation
of temperature of the fluid in the duct.

14.2.1 The Balance of Energy for a Solar Collector

Fig. 14.2 shows the fluxes of energy with respect to the absorber. They will be used to
express the balance of energy (and of entropy) with respect to the absorber. In a second
step, we will perform the balance of energy with respect to the entire collector. First,
we have the flux associated with solar radiation falling upon the collector.5 As you
know, unless the surface is a black body, only part of the radiation will be absorbed,
while the rest will be reflected back to the environment. The ratio of radiation ab-
sorbed to radiation falling upon the surface defines the optical properties of a collector
which depend upon the absorber, the cover, and the type of radiation. Usually, for the
purpose of an overall balance, their combined effect is described by a factor known as
the transmission-absorption product (τα); see Section 9.4.1 and Chapter 16.

The losses of the collector plate to the environment, on the other hand, are calculated

5. Naturally, radiation falling upon the collector includes the radiation of the atmosphere as a
body at or near environmental temperature. This contribution is not included with the solar
irradiance G, but rather with the losses of the collector to the environment.

Absorber

Fluid

Insulation

Fluid flow

Reflection

Loss

Gain

Insolation
Figure 14.2:  Simple flat-plate 
solar collector consists of a flat 
absorber plate (possibly includ-
ing a cover for reducing the loss-
es to the top). Absorption of solar 
radiation leads to the production 
of entropy in the plate. A fluid 
flowing across the bottom of the 
plate can carry away some of the 
entropy. The figure shows the 
simplest possible geometry for 
absorber and fluid flow. The fat 
arrows denote the energy fluxes 
with respect to the absorber.
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in terms of a heat loss coefficient Ut (top loss coefficient). In the following analysis,
we shall assume losses to occur only through the top of the collector. The last energy
flux is due to convective transfer at the absorber-fluid interface. To describe its effect,
we introduce the heat transfer coefficient from the plate to the fluid (abbreviated by
Upf ). All three coefficients characterizing a collector, i.e., (τα), Ut , and Upf , may de-
pend upon the conditions under which it is operated.

If we collect all the terms, a steady-state balance of energy for the absorber takes the
form (Fig. 14.3):

(14.21)

The indices p and f refer to the absorber plate and the fluid, respectively. As usual, a
stands for ambient. G is the total irradiance with respect to the surface of the collector.
This equation holds for every point of the surface, with the temperatures of the fluid
and the plate changing in the direction of fluid flow (but, for our simple geometry, not
in the direction perpendicular to the flow). Naturally, we have a problem concerning
the meaning of the temperatures Tf  and Tp if we want to apply Equ.(14.21) directly for
the entire collector of surface area A. In this case, just think of the temperatures as
some appropriate average value for the respective system. 

The equation of balance of entropy will be written below for the collector as the sys-
tem. First, however, let us express the overall balance of energy. In this case, we have
to include the convective currents of energy due to fluid flow into and out of the col-
lector, while the flux from the plate to the fluid drops out:

(14.22)

As just mentioned, in this equation Tpm represents the proper average value. Normally,
we take both the temperature coefficient of enthalpy of the fluid and the pressure as
constants, which permits us to use Equ.(8.60) for the convective current.

Since the temperature of the collector plate is not easily accessible, one replaces the
temperature of the absorber in Equ.(14.22) using Equ.(14.21). As a result, the (aver-
age) temperature of the fluid appears in the law of balance:

IE,use is the useful energy current, i.e., the convective current with respect to the col-
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Figure 14.3:  Process diagram 
for the collector showing fluxes 
of entropy and energy. Almost all 
the entropy transferred to the flu-
id and to the environment is pro-
duced in the system.
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lector. The factor multiplying the term in parenthesis is called the collector efficiency
factor and it is commonly abbreviated F'. Using this definition leads to the expression
for the useful energy current in terms of the fluid temperature:

(14.23)

If you rewrite the efficiency factor in a slightly different form, you can see that it cor-
responds to the ratio of the thermal resistances between the absorber and the environ-
ment on the one hand, and between the fluid and the environment on the other.

Different fluid duct geometries. Usually, the geometrical arrangement of the fluid
ducts is different from the simple case assumed so far. This holds especially for col-
lectors using liquids for heat transfer. Therefore, if Upf  is still used for the heat transfer
coefficient from metal to fluid, the collector efficiency factor F' cannot be computed
as done in Equ.(14.23). Take the case of a liquid flowing through thin pipes attached
to the absorber. Obviously, heat has to flow through the absorber sheet to the pipes
before it can enter the fluid. The efficiency will be reduced both because of this pro-
cess and because of the fact that the fluid surface may be smaller than that of the flat
absorber. The efficiency factor will depend not only upon the heat transfer coefficient,
but also upon the distance between the pipes, the thickness and the conductivity of the
absorber sheet, and the inner surface area of the pipes carrying the fluid. Therefore,
the task of computing the efficiency factor can be quite complicated.6 However, with
a known efficiency factor, a reduced heat transfer coefficient can be calculated and
used as in the equations presented above (Example 14.2).

14.2.2 Temperature Distribution in the Direction of Fluid Flow

Equ.(14.23) holds only with the appropriate average of the temperature of the fluid as
an overall balance of energy. We may approximate this value by the arithmetic aver-
age of the fluid temperatures at the inlet and the outlet of the collector (as shown in
Example 14.1). A better expression, however, requires considering the change of tem-
peratures in the direction of fluid flow in the collector. This is achieved by treating the
example as a continuous problem in one spatial dimension (Fig. 14.4).

6. See for example Duffie and Beckman (1991), Chapter 6.
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Figure 14.4:  Fluid flowing 
through the collector heats up in 
the direction of flow. The law of 
balance of energy for the control 
volume between x1 and x2 leads 
to an expression for the tempera-
ture as a function of position.



14.2  A STUDY OF SOLAR COLLECTORS

PART IV 579

The law of balance of energy for the control volume of length x2–x1 can be used to
derive the expression for the temperature of the fluid as a function of position x. The
fluid portion in the control volume is heated from above, and it flows into and out of
the volume. If we use Equ.(14.23) in the form

the law of balance for the control volume is

Here, W is the width of the collector. The left-hand side represents the convective cur-
rent due to the fluid entering and leaving, while the right-hand side is the integral of
the energy current density over the top surface area of the control volume. The equa-
tion transforms into the differential equation

(14.24)

whose solution is

(14.25)

If we take the value of Tf  at the outlet, subtract it at the inlet, and multiply by the prod-
uct of cP and Im , we obtain the useful energy current:

Basically, this result represents a transformation of the expression used previously in
Equ.(14.23) where the mean fluid temperature is replaced by the temperature of the
fluid at the inlet to the collector. As a consequence, the collector efficiency factor F'
is replaced by the heat removal factor FR :

(14.26)

where

(14.27)

Equ.(14.26) allows us to calculate the useful energy current of a flat-plate solar col-
lector in terms of environmental parameters, the current of mass through the collector,
and the inlet temperature of the fluid. The collector can be characterized by two pa-
rameters, FR(τα) and FR Ut ; considering that FR includes the efficiency factor, we
may say that there are three values defining the device—(τα), Ut , and F'. In practical
cases, these parameters are measured (Example 14.1).
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14.2.3 The Balance of Entropy for a Solar Collector

While it is convenient to obtain the results concerning the thermal performance of a
collector in terms of the balance of energy, this law alone does not suffice for a com-
plete description of its operation. If we wish to include the evaluation of irreversibili-
ties in our analysis, we have to perform a balance of entropy for the collector.

An overall balance is written quite easily. Again, we shall treat steady-state operation.
Essentially, we take four currents of entropy with respect to the collector as a whole
into consideration, as well as the rate of production of entropy. The four currents are
due to radiation, heat loss, and the fluid entering and leaving the collector. Production
is the result of the absorption of radiation, heat transfer to the fluid and heat flow into
the environment. The overall balance then takes the form

(14.28)

If we properly place the boundary of the control volume, all sources of irreversibility
will be included. In particular, this means that for the incoming radiation we take the
surface of the cover of the collector, while for the losses the boundary will coincide
with the environment at ambient temperature. Now the terms in Equ.(14.28) take the
following form:

(14.29)

This result allows us to calculate the rate of production of entropy since, in principle,
all the other quantities are known. As before, Ts is the temperature of solar radiation.
The energy current due to the loss to the environment can be computed using the bal-
ance of energy expressed in Equ.(14.26), while the specific entropy of the fluid at the
inlet and the outlet is obtained in terms of the values of temperature and pressure at
the respective points. The net convective current of entropy can be calculated for con-
stant pressure and constant value of the temperature coefficient of enthalpy according
to Equ.(8.9) with Equ.(8.11) or Equ.(8.52)3.

14.2.4 Dynamical Model of a Solar Collector

A solar collector is a dynamical system, storing entropy and energy. A steady-state
analysis might therefore not be appropriate. However, coupled with a heat storage el-
ement of much higher capacity, the simplification can be justified, although, in some
cases, it might be necessary to consider the dynamical behavior of the collector. 

We may start with the law of balance of energy. In analogy to what we have seen in
previous chapters, we can write

(14.30)

Here, Cc is the temperature coefficient of energy of the collector, or possibly of a col-
lector element. (In the latter case, the collector can be thought of as composed of sev-
eral elements put in series which improves upon the approximation.) This value must
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include the absorber, the cover, the fluid, and the insulation. Equ.(14.30) represents a
particularly simple approximation of the terms in the equation of balance of energy of
a uniform collector or collector element. The temperature of the element is approxi-
mated by the mean temperature of the fluid in it. Typical values used for Cc are be-
tween 5000 J/K and 10000 J/K for one square meter of collector area for a collector
with liquid as heat transfer fluid.

5. What is the meaning of the power of solar radiation (Ps) included in the diagram on the left
of Fig. 14.3? Why is it not possible to calculate this quantity in analogy to typical expres-
sion for the power of a process (as introduced in Chapter 2)?

6. Under what circumstances is the energy current from the (hot) absorber to the fluid in the
collector equal to the net convective energy current of the fluid flowing through the collec-
tor?

7. Are all sources of irreversibility included in the expression for the entropy production rate
in a collector given in Equ.(14.29)?

8. Consider a thermal solar collector hooked up to a storage tank for the heated fluid. Why is
it possible (and often sensible) to treat the collector as being in (pseudo) steady-state hav-
ing a balance of energy given by Equ.(14.26).

9. Why does Equ.(14.26) lead to a simpler—and actually more accurate—expression for dy-
namical models of collectors and (hot) fluid storage tanks than Equ.(14.23)?

EXAMPLE 14.1. Measuring the characteristic parameters of a flat-plate collector.

Measurements of the thermal efficiency of a flat-plate solar collector are made for conditions
where the collector directly faces the Sun. The efficiency is plotted as a function of 

where Tf,am is the arithmetic mean of the fluid inlet and outlet temperatures. Measurements were
performed with a constant flux of mass of 40 liters per hour per square meter of collector area
(see Figure Ex.1). The temperature coefficient of enthalpy of the fluid is 3800 J/(K · kg).

(a) Derive the expression for the efficiency of a solar collector as a function of x. (b) Determine
the values of FRUt and FR(τα)n for the values shown in the accompanying graph. The index n
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with the transmission-absorption product stands for normal incidence of solar radiation. (c) It is
known from detailed calculations that the collector efficiency factor F' is 0.92. Calculate the ac-
tual optical efficiency (τα)n and the actual heat loss factor Ut .

SOLUTION: (a) The thermal efficiency of the collector is defined as the ratio of the energy de-
livered by the heated fluid and the energy incident upon the collector:

The useful energy current should be expressed similarly to Equ.(14.23), with F' replaced by Fam 

since Tfm has been replaced by Tf,am :

We may expect the efficiency factor Fam to be nearly equal to F' , considering that the arithmetic
mean of the collector fluid temperature will not deviate all that much from the proper average
value. Therefore, the efficiency turns out to be

which is close to

This shows that efficiency data plotted as a function of the coefficient x introduced above should
yield a linear relation if the collector parameters are independent of the conditions under which
the device is operated. 

(b) The data plotted in the graph yield approximate values of F'(τα)n and F'Ut . Approximating
the measured values by a least-squares linear fit, we obtain

Since the measured values of the efficiency were obtained with the collector directly facing the
Sun, we get the transmission-absorption product for normal incidence. We transform the ex-
pressions to calculate the desired parameters of the collector. A simple way of doing this is the
following. Since the heat removal factor FR is used with the inlet temperature of the fluid in
Equ.(14.26) for the useful energy current, we should replace the arithmetic mean of the fluid
temperature by the inlet value, which leads to

You can show that this is an approximation to the expression given in Equ.(14.26) with the exact
heat removal factor of Equ.(14.27). A comparison of this result with the first equation for the
useful energy current yields

and
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The numerical results turn out to be

(c) Knowing the collector efficiency factor, the actual collector parameters can be calculated:

This is a collector with a fairly high optical efficiency, but with a mediocre heat loss factor.

EXAMPLE 14.2. A thermosyphon collector.

In a thermosyphon collector, the fluid circulates without a pump. Instead of forced convection,
the process operates because of density gradients in the differentially heated fluid. (See Fig.
Ex.2 below.)

Assume the fluid in the tank to be well mixed, and approximate the temperature of the fluid in
the rising part of the hydraulic circuit, including the collector, by the average temperature. Also
assume the density of the fluid to be a linear function of temperature. Fluid resistance may be
modeled by the law of Hagen and Poiseuille. Calculate the steady state flux of mass through the
collector. 

SOLUTION: The natural circulation is the result of different hydrostatic pressures in the rising
and falling parts of the hydraulic circuit. In the steady state, the driving pressure difference is
equal in magnitude to the one resulting from flow resistance:

∆ρ is the difference of densities of the fluid in the two parts of the circuit. It can be expressed
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as follows:

where Tf,in is the temperature Ts of the fluid in the storage tank. The parameter b is the temper-
ature coefficient of the density of the fluid. The collector outlet temperature is calculated using
the balance of energy expressed by Equ.(14.23):

The last term is the rate of energy input to the system as a consequence of the natural circulation;
the energy comes from the gravitational field. It turns out that this term is very small compared
to the others in the equation of balance of energy; it will therefore be neglected.

Now, the temperatures can be eliminated from the last equation using the first three relations.
This leaves us with a quadratic equation for the volume flux:

This demonstrates that the circulation depends upon the instantaneous temperature of the fluid
in the storage tank. As the fluid temperature in the tank rises during charging, the circulation is
found to decrease. Since, compared to the storage unit, the collector and hydraulic circuit prob-
ably react quickly to changing conditions, the steady-state analysis appears to be appropriate.

EXAMPLE 14.3. Charging and discharging of seasonal ground heat storage.

A spatially uniform model of a cylindrical underground heat storage element hooked up to a so-
lar collector field for charging during summer, and with a building for discharging during win-
ter, can be used to approximate the much more complicated spatially continuous problem (see
Figure Ex.3).

The system consists of a collector field of surface area Ac and described by the usual collector
parameters. Pipes carry the heated fluid to the ground storage unit which is a cylinder of radius
R and length L. (See the figure below.) There are N parallel pipes, each heating an interior cyl-
inder. (The interior cylinders uniformly cover the storage unit.) The ground storage cylinder los-
es heat to the surroundings. Discharging in winter occurs through the floor heating system of a
building.

The model is described as follows. Charging is done during the six months from spring to fall.
The irradiance is twice the average value for half the time (roughly 8 · 106 seconds), i.e., the usu-
al amount of energy is delivered to the collectors. Collector parameters are assumed to be con-
stant, as is the flux of mass of the collector fluid. The fluid, which flows through N parallel
pipes, is cooled from Tf,out to Tf,in while flowing down through the storage unit (in and out refer
to the collector). 

The storage in the ground is supposed to have uniform values of density, temperature coefficient
of energy, and thermal conductivity, and a single value of temperature at any time. Heat flow
should be radial only (no heat loss through the top or bottom of the cylinder). Delivery of heat
to each interior cylinder is described by an average value UAint which is calculated from the flu-
id in the pipe through half of the radius of the cylinder. Heat loss from the entire storage unit to
the surroundings is calculated with a value UAstore , representing a thick cylindrical shell with
radii which are half and twice the radius R of the storage unit. The temperature of the ground
surrounding the storage unit is assumed to be constant.

∆ ∆ρ = = +( )−
⎡

⎣
⎢

⎤

⎦
⎥b T b T T Tf out f in s

1

2 , ,

  
c I T T AF U T T T PIp m f out f in t f out f in a V, , , ,−( ) = ( ) − +( )−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥+' τα G

1

2
∆

  

2
02

c R

bgh
I

AF U R

bgh
I AF U T T

p v
V

t v
V t s a

ρ
τα+ − ( ) − −( )[ ] =

'
' G



14.2  A STUDY OF SOLAR COLLECTORS

PART IV 585

During discharging in winter, parameters for the storage space are the same. Heat is delivered
at a constant temperature to rooms in the building. The value of UAfloor of the floor heating sys-
tem is given.

(a) Derive the differential equation of the temperature of the storage unit as a function of time
for charging. Present its analytical solution. (b) With an initial temperature of the ground storage
unit at the beginning of winter, derive the temperature as a function of time. (c) Give an expres-
sion for the total amount of entropy produced for an entire cycle of charging and discharging
which carries the storage from an initial temperature back to the same value. (d) If the only pa-
rameter varied in the entire system is the length L of the storage unit, do you expect a minimum
of entropy production for a cycle for a particular value of L?

Neglect pipe losses and energy required for pumping the fluids during charging and discharg-
ing.

SOLUTION: (a) The storage unit receives energy from the collector fluid and loses energy to
the ground. The overall balance of energy for charging therefore takes the form

with

For Tfm we take the arithmetic mean of the fluid inlet and outlet temperatures

which also depend upon the performance of the collectors:

Ta is the average ambient temperature for the period of charging. The value of UAfs for heat
transfer from the fluid to an interior cylinder is given by
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where Rint is the radius of an interior cylinder 

and rpipe and Upipe are the radius and the heat transfer coefficient of the pipe; k is the thermal
conductivity of the ground. The value of UAstore is calculated simply:

There are three equations for the energy current IE,fs and one for the arithmetic mean of the fluid
temperature. First, we can eliminate Tf,out and obtain an expression for Tf,in:

If we plug this into the expression for the energy current delivered by the collector, we arrive at

This looks like a slightly different version of the equation for the energy delivered by a collec-
tor; note that the variable temperature occurring is the temperature Ts of the storage unit. Now,
the differential equation for Ts is given by

where

The analytical solution of this simple differential equation is

Here, Tso is the initial value of the temperature of the storage unit. Remember that the parameter
t runs for only half the time span of charging, since we use twice the average insolation. (This
models the fact that the Sun shines for only half the day.)

(b) The process of discharging is modeled similarly using the equation of balance of energy for
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the uniform storage space:

The energy currents are calculated as follows: 

This time, however, the energy current IE,fs also obeys the expression

Combining all the information yields the following differential equation

with

which has the simple analytic solution

where Tss is the initial temperature for discharging, which is the temperature of the storage unit
at the end of summer.

(c) If you consider a system including the collectors, the storage unit, and the floor of the build-
ing, you will see that there are three currents of entropy and energy (each) leaving the system,
while one is entering (associated with solar radiation). If we neglect the entropy delivered with
the light of the Sun, the total amount of entropy produced in one cycle of the system can be writ-
ten as follows:

The integrated form of the balance of energy for the period of charging is given by

This allows for all relevant quantities to be computed for the process of charging. For discharg-
ing, we similarly obtain:
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(d) Changing the length of the cylindrical storage unit (while leaving all other parameters un-
touched) will result in different storage temperatures. Increasing the length will decrease the
maximum temperature reached. Now, having a high temperature after charging is going to in-
crease losses (both from the collectors and from the storage to the ground). Very low storage
temperatures, on the other hand, will make it difficult to discharge the unit. We should expect
an optimal performance of the system for some value of L. Numerical calculations show that
this is indeed the case. As we should expect, heating of the house will be optimal for minimal
total entropy produced.

14.3 HEAT EXCHANGERS

Transferring heat from one system to another is a common task in engineering, and
having to do so efficiently is becoming more and more important in applications such
as energy engineering. Basically, any device which lets heat pass from one side to the
other may be considered to be a heat exchanger. However, we normally speak of heat
exchangers if heat is to be passed from a hot fluid stream to a colder one. In many cas-
es, heat exchangers have to be used if different fluids are needed at different stages of
operation in thermal equipment. There are many basic heat exchanger designs which
differ in their geometrical arrangements, in the fluids used, and in the processes un-
dergone by the fluids when they emit or absorb heat. Well known examples of heat
exchangers are radiators for heating rooms or cooling of car engines, or the steam gen-
erators used in power plants where steam is to be produced using a fluid heated by the
Sun or by a nuclear reactor. 

14.3.1 The Principle of Operation of Heat Exchangers 

As an example of a particularly simple geometrical arrangement, consider a counter-
flow heat exchanger with the two fluids passing through ducts in opposite directions
(Fig. 14.5) while heat flows from the hotter to the cooler body. Imagine both fluids to

flow through thin but wide and long rectangular ducts separated by a wall which is re-
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Figure 14.5:  In the simplest pos-
sible geometrical arrangement, 
two fluids flowing through rect-
angular ducts exchange heat 
across the common flat surface. If 
the temperature of the fluids is al-
lowed to vary only in the direc-
tion of flow, we have a one-
dimensional problem. In a 
counter-flow heat exchanger, the 
fluids pass each other in opposite 
directions.
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sponsible for the transfer of heat. Assume the temperature of each fluid to vary only
in the x-direction.

The temperature distribution in the fluids as a function of position is sketched in
Fig. 14.6. The temperature of the hotter fluid flowing in the upper duct decreases in
the direction of x, while the hotness of the cooler fluid increases in the opposite direc-
tion. Naturally, the temperature of the upper fluid must always be higher than the cor-
responding value for the lower one.

In a parallel-flow heat exchanger, the fluids enter and leave the device on the same
side. At the point where they enter, the fluids have the largest difference of tempera-
tures (Fig. 14.7). This difference then decreases in the direction of flow, a situation
which is different from that of a counter-flow heat exchanger.

The main factors which determine the quality of a heat exchanger are the surface area
through which the two fluids exchange entropy and energy, and the heat transfer co-
efficients for the exchange of heat between the fluids and the wall separating them.
(Assuming that the wall does not add much to thermal resistance, the two convective
heat transfer coefficients determine the outcome.) At each point of the surface the en-
ergy current density is given by the total local heat transfer coefficient and the local
difference of the temperatures of the fluids. Since the temperature difference is vari-
able over the surface, the total energy flux from one side of the exchanger to the other
is commonly expressed in terms of an average product of surface area and transfer co-
efficient Ah, and a mean temperature difference ∆Tm:

(14.31)

(Note that here and in the following equations, ∆T is taken as a positive quantity for
positive flow.) The first of these factors depends upon the nature of heat transfer be-
tween the fluids and the wall separating them, and on the heat exchanger geometry,
while the mean temperature difference7 is a function of the inlet and outlet tempera-
tures of the fluid and of the geometrical arrangement of the fluid currents. Naturally,
the energy current being transferred is equal in magnitude to the difference of the con-
vective energy fluxes associated with each of the fluids entering and leaving the heat
exchanger. Therefore we can write:

7. For reasons which will become clear shortly, this temperature difference often is called the
log mean temperature difference.

Figure 14.6:  Flow diagram of 
counter-flow heat exchangers 
(left). The levels of the fluid cur-
rents symbolically represent the 
fact that heat is transferred from a 
higher to a lower thermal level. 
The temperature profiles of the 
two fluid streams have the forms 
shown (right). In counter-flow 
heat exchangers, the temperature 
difference between the fluids 
does not vary as strongly as in 
other arrangements.
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(14.32)

The subscript h refers to the hotter of the two fluids, while c denotes the cooler one;
the product of temperature coefficient of enthalpy and of the current of mass is gener-
ally called the “capacitance flow rate.”

14.3.2 Heat Exchanger Effectiveness

The heat exchangers we are going to study will all be “ideal” in the sense that they are
not supposed to lose any entropy to the surroundings; in other words, all the heat given
up by the hotter fluid will be taken up by the second, cooler one. The exchange of en-
tropy between the fluids, however, cannot be ideal since entropy is produced as a re-
sult of the transfer from higher to lower temperatures. The quality of a heat exchanger
is therefore expressed in terms of a factor called the heat exchanger effectiveness. This
is defined as the ratio of the actual transferred energy current and the current which
could be passed between the fluids under ideal circumstances, i.e., if no temperature
difference were needed:

(14.33)

The latter of these quantities is determined by the largest temperature difference found
and by the smaller of the two capacitance rates. It should be clear that the effectiveness
of a heat exchanger depends upon the heat transfer factors and upon the capacitance
rates of the fluids. At this point, we will simply state the result for counter-flow and
parallel-flow exchangers (a derivation for the balanced counter-flow type will be giv-
en below). In the case of counter-flow heat exchangers, the effectiveness is given by

(14.34)

where

(14.35)

The coefficient NTU is called the number of transfer units. This result does not apply
if the two capacitance rates are equal. Under these special circumstances, the effec-
tiveness of the counter-flow heat exchanger must be calculated according to

(14.36)

If the capacitance flow rates are equal, the heat exchanger is said to be balanced. The
equation for the effectiveness of parallel-flow heat exchangers is the following:

I c I T T

I c I T T

E P m h h h

E P m c c c

= ( ) −( )
= ( ) −( )

1 2

1 2

ε =
( ) −( )

I

c I T T
E

P m h cmin 1 2

ε =
− − −( )( )

− − −( )( )
1 1

1 1

exp *

* exp *

NTU C

C NTU C

C
c I

c I

NTU
Ah

c I

P m

P m

P m

* =
( )
( )

=
( )

min

max

min

ε =
+
NTU

NTU1



14.3  HEAT EXCHANGERS

PART IV 591

(14.37)

The definition of the factors in this result is the same as the one presented for counter-
flow exchangers in Equ.(14.35).

14.3.3 The Balance of Energy

The derivation of the governing differential equations is another example of the ap-
proach we used for flat-plate solar collectors. First, we are going to develop the appro-
priate equations of balance in integral form for an entire system from which the
differential equations will be derived.

Consider one of the ducts of the counter-flow heat exchanger or a piece thereof as de-
picted in Fig. 14.5. In such a system, we have three currents of entropy and the asso-
ciated fluxes of energy, namely the convective currents entering and leaving a duct,
and the conductive flow from the upper to lower duct through the wall separating the
fluids. In the steady state, the balance of energy takes the following form:

(14.38)

Remember that W is the width of the duct. This expression holds for both ducts if we
apply the proper signs to the two cases. 

The sum of the convective fluxes may be expressed in terms of the mass currents, the
temperature coefficients of energy of the fluids, and the temperatures at the ends of the
ducts. The conductive flux is the integral of the flux density over the surface of a duct.
The flux density can be calculated using the transfer coefficient h and the temperature
difference between the fluids of the upper and the lower ducts at position x:

(14.39)

If we apply this relation to the fluids in the two ducts, we obtain

(14.40)

Now we divide each of these equations by the difference of the positions of the end
and the beginning of the ducts, i.e., by x2 – x1, and take the limit for very small ∆x. In
the first term of either equation we get the derivative of the temperature of the fluid
with respect to position. We recover the integrand from the second term. The resulting
differential equations then look like

(14.41)
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These are two coupled differential equations for Th and Tc as unknown functions of
position. The system of equations represents a two-point boundary value problem.
Usually, the temperature of the fluids at their respective inlets would be given, and the
variation of temperature with position is then calculated.

14.3.4 Derivation for Balanced Counter-Flow Heat Exchangers

The derivation of the following equations can be carried over to more general exam-
ples. We begin by subtracting Equ.(14.41)2 from Equ.(14.41)1 to obtain a differential
equation for the difference between the fluid temperatures. For balanced heat ex-
changers, the two capacitance flow rates are equal; i.e.,

which leads to

(14.42)

This tells us that the temperature difference between the two fluids is the same at every
point in the direction of flow. We now apply the expressions for the currents of energy
according to Equations (14.31) and (14.32). Noting that the temperature of the hot flu-
id at the outlet is equal to the value of the temperature of the cold fluid plus the con-
stant temperature difference between the fluids, we get

which can be transformed to yield

(14.43)

Remember that ∆T is the mean temperature difference ∆Tm in our case. Since the tem-
peratures in this equation are those of the fluids at their respective inlets, the temper-
ature difference can be calculated. If we apply the definition of the effectiveness
according to Equ.(14.33), we find that

which is the result presented in Equ.(14.36). Now, since the temperature difference is
constant, the temperature of the first fluid stream is easily calculated from the differ-
ential equation

Using the result for this difference, we find that
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(14.44)

where L is the length of the heat exchanger duct. This shows that the fluid tempera-
tures are linear functions of position for the example of the balanced counter-flow heat
exchanger.

14.3.5 The Rate of Entropy Production

Heat exchangers produce entropy as a matter of fact; the reversible exchanger does not
exist. Therefore, it is imperative to quantify the magnitude of the irreversibility of heat
transfer in such devices. Here, we will derive the expression for the rate of entropy
production in a balanced counter-flow heat exchanger for negligible pressure drop of
incompressible fluids in the ducts.

A look at the left side of Fig. 14.6 shows that the only fluxes of entropy with respect
to the heat exchanger are the four convective currents associated with fluid flow. In
steady-state operation, the law of balance of entropy takes the form

(14.45)

where s is the specific entropy of the fluid. (Remember that currents leading into the
system are counted as negative quantities.) In the case of a fluid having a constant tem-
perature coefficient of enthalpy, the specific entropy is

which yields the expression for the rate of production of entropy

Since the temperature difference is related to the effectiveness of the heat exchanger
according to

we can write

(14.46)

You can tell very easily from this relation that the rate of production of entropy van-
ishes for both ideal heat exchangers (ε = 1) and for those with ε = 0. For intermediate
values, there is a maximum of entropy production. While the first of these results is to
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be expected, the latter appears to be paradoxical. However, it can be understood of we
realize that the condition ε → 0 means that the exchanger lets less and less heat pass
from the hotter to the cooler fluid. Therefore it represents a vanishing heat exchanger,8

which certainly does not produce any entropy. This problem demonstrates that we
cannot analyze heat exchangers without pressure drop by themselves if we wish to
find optimal solutions for the design of a thermal system. The difficulty is resolved
with ease, if the effect of the heat exchanger upon an entire system is considered. It is
then found that the irreversibility of the total system decreases monotonically with in-
creasing effectiveness of the heat exchanger. If we consider both heat transfer irrevers-
ibility and fluid flow irreversibility, however, there are optimal designs for the heat
exchangers alone. 

10. Why is an ideal heat exchanger necessarily dissipative? What, then, does “ideal” mean?

11. Which parameter has to be adjusted (and how) to make a heat exchanger more effective?

12. Why is a counterflow heat exchanger better than a parallel flow exchanger if viewed from
the perspective of dissipation?

13. Why should we consider fluid flow irreversibility along with dissipation due to entropy
transfer if we wish to find minimal entropy production rates for a heat exchanger?

EXAMPLE 14.4. Heat exchanger in a solar hot water system.

Consider a simple solar hot water heater with a collector, a balanced counter-flow heat exchang-
er, and a hot water tank. On the collector side, the fluid is a mixture of water and glycol with a
value for the temperature coefficient of enthalpy of 3800 J/(K · kg) and a mass flux of 0.10 kg/
s. On the storage side, the fluid is water.

(a) Calculate the flux of mass necessary on the storage side if the heat exchanger is to operate
in balanced mode. (b) With an average heat transfer coefficient of 1000 W/(K · m2) from fluid
to fluid, how large should the exchanger surface area be if we wish to have a heat exchanger
effectiveness of 90%? (c) It is found that the temperature of the water leaving the storage tank
is 20°C, while the temperature of the water-glycol mixture leaving the collector is 80°C. Calcu-
late the temperature of the water entering the storage tank, and the value of the energy current
transferred. (d) Could you just as well let the heat exchanger operate in parallel-flow mode?

8. See Bejan (1988), p. 614–634, for a comprehensive discussion of heat exchanger irrevers-
ibilities (including those associated with friction).

QUESTIONS

Solar
collector

Heat
exchanger

Storage
tank
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SOLUTION: (a) Since the heat exchanger is to be operated in balanced mode, the two capaci-
tance flow rates are equal. Therefore we have

(b) The effectiveness of the balanced counter-flow heat exchanger is given in Equation (222).
With the definition of NTU, we obtain

(c) The current of energy transferred between the fluids can be calculated using the definition
of the effectiveness in Equ.(14.33):

Since the effectiveness and the inlet temperatures of the two fluid streams are known, we find
that an energy current equal to

is transferred from the collector loop to the storage loop. (This is a fairly large energy flux for
a solar hot water system; these conditions can be achieved on a good day with some 40 – 50 m2

of collector surface area. This result puts the surface area needed for the heat exchanger into
perspective.) With this value known, we can compute the outlet temperatures of the two fluid
streams:

(d) With an effectiveness of 0.90 for the balanced counter-flow heat exchanger, the value of
NTU is 9. Using this number also for the operation in parallel-flow mode, Equ.(14.37) yields an
effectiveness of 0.50, which is considerably less than the value of 0.90 in counter-flow.

EXAMPLE 14.5. Entropy production in an air-to air heat exchanger with friction.

Write the law of balance of entropy for steady-state operation of an air-to-air heat balanced
counter-flow heat exchanger. Give the result for the limiting case of high effectiveness and low
pressure drops.

SOLUTION: In this example, we need to know the specific entropy of air entering and leaving
the heat exchanger. Since we wish to include the effects of changes of temperature and of pres-
sure, we should give the specific entropy in terms of these two variables. If the air is modeled
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as an ideal gas, the specific entropy is given by

See Chapter 5. In the steady state, the rate of production of entropy is equal to the sum of the
four convective fluxes of entropy; this yields

The first term was derived in Equ.(14.46). This part of the expression therefore becomes

if we set 1 – ε << 1, which should hold for large values of the effectiveness. Further modification
of the term leads to

The pressure term leads to the following contribution to the rate of production of entropy:

where the last step is a consequence of the assumption that the pressure drops are small com-
pared to the absolute values of the pressure of the fluids.

14.4 STABILITY IN FREE CONVECTION

Sometimes it is not a pump which drives fluid motion in convective heat transfer. In
the presence of a gravitational field, convection may take place as a result of buoyancy
effects. This phenomenon is well known from boiling water, or from vertical motion
of air in the Earth’s atmosphere. The latter problem attracted a lot of attention more
than 100 years ago when Kelvin tried to calculate the temperature gradient in the at-
mosphere. Later, it was recognized that this type of convection is responsible, under
certain circumstances, for heat transfer inside stars. Here we will discuss the question
of how free convection takes place in an atmosphere of an ideal gas.

The condition of convective stability. First we have to answer the question of when
free convection occurs. The fluid may be at rest, in which case heat is transported con-
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ductively or radiatively. Therefore, there must be special conditions which lead to the
onset of convective motion, i.e., to convective instability. To find the condition of sta-
bility, consider the following model (Fig. 14.8). A fluid parcel is somehow displaced
upward from its normal environment. Before the displacement, the values of density,
pressure, and temperature inside the parcel are the same as those of its surroundings.
The fluid will expand at its new position to adjust its pressure to the new value. As a
consequence, the density will decrease. If the new density inside the parcel is larger
than that of the surroundings in the upper position, i.e., if

(14.47)

the displaced mass will sink back to its initial position. In this case the fluid layer is
stable against convection, and Equ.(14.47) is said to be the criterion of convective sta-
bility. If Equ.(14.47) is not satisfied, the layer is unstable and the parcel will keep mov-
ing since it is less dense than the environment; convection will start to take over.

We will be able to say more about the new density of the fluid parcel only if we know
more about the conditions satisfied during the expansion. Assume convective motion
to take place fast enough for adiabatic conditions to prevail. As a result, the blob of
matter rising upward does not exchange heat with its environment. Only at the end,
i.e., when the parcel has risen to the top of the convective layer, does it emit heat to
the cooler surroundings. Since the expansion of the blob of ideal gas takes place adi-
abatically, we can compute the new density according to the Laplace-Poisson law of
adiabatic change:

(14.48)

Here, P1 and P2 refer to the pressure in the lower and the upper positions, respectively.
The values are the same inside the blob and the surroundings at any moment. The old
density is the same inside the parcel and outside in the lower position. If we apply the
law of adiabatic change to a small vertical displacement we can write the pressure and
the density at the upper position in terms of the values at the lower point. With

and

we transform the stability criterion of Equ.(14.47) to

(14.49)

It is convenient to express this condition in terms of the temperature gradient dT/dz.
Since for the ideal gas

ρnew

ρold = ρ1

P1  ,  ρ1

P2  ,  ρ2

Figure 14.8:  A blob of fluid ris-
ing in an atmosphere in a gravita-
tional field. It is assumed to 
expand adiabatically over the dis-
tance it travels. If its density is 
greater than that of the surround-
ings at its new position, it will 
sink back down: convective mo-
tions will die out. The layer is 
said to be stable against convec-
tion.
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the final form of the stability criterion is the following:

(14.50)

According to Example 5.6, the quantity on the right-hand side is the adiabatic temper-
ature gradient. Since both the pressure and temperature gradients are negative quanti-
ties, the criterion expresses the following result: If the magnitude of the actual
temperature gradient dT/dz is smaller than the magnitude of the adiabatic tempera-
ture gradient, the fluid layer is stable against convective motion.

14.4.1 Calculating the Energy Flux Due to Convection

Which value will the temperature gradient take if convection is responsible for the
transport of heat? According to Equ.(14.50), all we know is that its magnitude will be
greater than the magnitude of the adiabatic gradient. The excess of the actual gradient
over the adiabatic gradient is responsible for the magnitude of the net convective flux
of heat or energy:

(14.51)

Here, ∆z is the average distance travelled by the moving blobs, while cP is the specific
temperature coefficient of enthalpy of the gas; v  is the average velocity of the parcels.
The excess of the temperature gradient over the adiabatic one has been abbreviated by
∆∇T. Note that we have neglected the kinetic energy term in Equ.(14.51). In practice,
it may be very difficult to compute the actual temperature gradient. There are some
cases, however, in which the excess is extremely small, and the gradient is very nearly
the adiabatic one (Problem 16).

In Equ.(14.51), the average distance travelled by the blobs of air plays a central role.
There is a particular approach to calculating this quantity called the mixing length ap-
proximation. Assume the parcels of matter rising in free convection to be carried over
an average distance which is called the mixing length lmix . If we assume gradients to
be constant over the mixing length, we can develop an approximation for the net en-
ergy flux carried over this distance. However, we still need an expression for the av-
erage velocity of the parcels in that equation. The velocity attained by a parcel is a
consequence of the acceleration due to buoyancy. According to Equ.(14.49), the ex-
cess of density ∆ρex for a distance ∆ z is equal to

where is the excess of temperature for the same distance which appears in Equa-
tion (237). Half of this density excess multiplied by the gravitational field strength g
is the average net force per volume over the distance ∆ z . If we multiply this quantity
by the distance ∆ z , we obtain the kinetic energy per volume gained by the parcel:
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vf is the final velocity of the blob, which we take to be twice the average value. This
equation allows us to eliminate the flow speed from the expression for the net energy
flux. Using the mixing length lmix for the distance ∆ z , we obtain the following expres-
sion for the energy flux density:

(14.52)

EXERCISES AND PROBLEMS

1. Consider laminar flow over a flat plate. Show that the heat transfer coefficient increases as
the square root of the velocity of the free stream. Also show that the average heat transfer
coefficient over a length L of the plate is equal to twice its local value at L. How do you
derive the entropy transfer coefficient from this result?

2. Consider a pebble bed through which air is pumped. (Pebble bed heat storage is one of the
means of storing energy from the sun for heating purposes.) Show that in the purely one-
dimensional case the differential equations for the temperature of the air and of the pebbles
as a function of time and of axial position are given by

Here, A is the cross section of the pebble bed, while e denotes the bed void fraction. h* is
the heat transfer coefficient between air and pebbles multiplied by the pebble surface per
unit bed volume. The following additional assumptions have been made: no heat loss to the
environment and no temperature gradient within the pebbles. 

3. If you include in the balance of energy, the energy delivered by the pump to maintain the
pressure of the air in an solar air collector, how does the form of the equation of balance of
entropy in Equ.(14.29) change?

4. Express the law of balance of entropy for a flat-plate solar collector in steady-state opera-
tion. Do this for uniform models and for models where the temperature of the fluid (and of
the absorber) change in the direction of flow.

5. A fluid is flowing through a pipe which is being heated from outside. (This setup can be
found in line focus concentrators for solar radiation.) Show that the differential equation
for the temperature of the fluid as a function of position in the direction of flow is given by

where

can be called the efficiency factor of the tubular heater. UL is the heat loss coefficient from
the pipe to the surroundings (see Problem 12 of Chapter 7 for a numerical example) while
Ufa , which represents the heat transfer coefficient from the fluid to the environment, was
calculated in Problem 12 of Chapter 7. σE is the rate of absorption of energy per length of
pipe, and Ta is the ambient temperature. 
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6. In Problem 5, assume F' and UL to be constant. Show that the convective energy flux which
is carried away by the fluid in the heated pipe can be expressed by

where

is called the heat removal factor for the pipe of length L. Tf,in is the inlet temperature of the
fluid. Note that the result is similar in structure to the one obtained for flat-plate solar col-
lectors (Section 14.2).

7. Consider a parabolic trough concentrator for solar light with a metal pipe running along
the line focus. A fluid is pumped through the pipe. Take the concentration factor of the ra-
diation to be C, and give the pipe a radius r and a length L. (a) If you neglect convective
losses and if the heat transfer coefficient from the surface of the pipe absorbing sunlight to
the fluid is very large, show that the differential equation for the temperature of the fluid in
the direction of flow is

Here it has been assumed that all the light falling onto the mirrors (expressed in terms of
direct solar irradiance Gb , i.e., the irradiance excluding diffuse light) is concentrated onto
the projection area of the pipe, and that a fraction (τα) of the incoming radiation is
absorbed. The factor e is the emissivity of the pipe. (b) Calculate the exit temperature of
the fluid for given operating conditions and for inlet temperature Tf,in .

8. The analysis of the solar air collector of Section 9.4 can be repeated for different heights
of the air duct. Changing this parameter changes the location of the minimum of the rate
of production of entropy. It is found that the minima for different heights are approximately
found for collector lengths which leave the cross section of the duct constant. Can you ex-
plain this behavior?

9. Derive the equations for the effectiveness of counter-flow and parallel-flow heat exchang-
ers (Equ.(14.34) and Equ.(14.37)).

10. Compare balanced counter-flow and parallel-flow heat exchangers, both with an NTU of 5.
Which of the exchangers has the higher effectiveness?

11. Compare balanced and unbalanced counter-flow heat exchangers. If they are built identi-
cally, do they have the same effectiveness? (To be concrete, take the smaller of the two ca-
pacitance flow rates to be equal to the one used in the balanced mode.)

12. Explain in qualitative terms why the effectiveness of a parallel-flow heat exchanger oper-
ated in balanced mode cannot be greater than 0.5. (Hint: see Fig. 14.7.)

13. For convective motion in the mantle of the Earth it is found that the Grüneisen ratio γ* (de-
fined in Problem 7 of the Chapter 10) is not constant, but varies inversely as the density of
the material.9 Show that, in this case, the solution of the differential equation of adiabatic
motion can be written as follows:

9. See Stacey(1992), p. 305 and appendixes therein.
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14. Show that the adiabatic temperature gradient of a fluid in hydrostatic equilibrium can be
expressed by

Again, γ* is the Grüneisen ratio defined in Problem 7 of the Chapter 10.

15. As we have found before in examples in Chapter 7, the entropy generated in the Earth’s
interior cannot be transported by conduction because this mode of heat transfer is not ef-
fective enough under the given circumstances. It is therefore assumed that heat must be
transferred convectively, and the material of the mantle is modeled as an ideal fluid as dis-
cussed in the Interlude. Make a model of convective motion of the Earth’s mantle in which
a blob of matter rises adiabatically from the interior to the surface (as in the model for the
Earth’s atmosphere in Section 9.6, or as discussed in Section 14.4). (a) Assume that the
heating at a given radius is due to entropy production as the result of radioactive decay
(which is assumed to be distributed evenly over the entire mantle) at smaller radii, and fric-
tion which assumes all the energy released by the heat engine represented by the convective
motion to be dissipated whereby more entropy is returned to the rising matter. Show that
in this case, the entropy current entering a thin shell at radius r and driving the heat engine
is given by

where rc and R are the radius of the core (bordering on the mantle) and the radius of the
Earth, respectively. IE(R) is the energy flux penetrating the Earth’s surface from the interior
of the planet. (b) It is found that the gravitational field g is roughly constant in the entire
mantle. Show that in this case

(c) Show that if you assume the temperature gradient through the mantle to be adiabatic, it
can be expressed by

where γ* is the Grüneisen ratio defined in Problem 7 of the Chapter 10, and κs is the adia-
batic compressibility of the material. (Hint: See Problem 14.) (d) The values of the differ-
ent physical parameter of the Earth’s interior have to be derived from seismic and other
measurements.10 Take an average density of 4500 kg/m3, and average values of 10 N/kg,
0.8, and 3 · 10–12 /Pa for the gravitational field, the Grüneisen ratio, and the adiabatic com-
pressibility, respectively. The lower boundary of the mantle is at 3500 km from the center
of the Earth, and the energy flux through the surface is 31 · 1012 W. Estimate the efficiency
of the convective motion interpreted as a heat engine.

10. See Stacey (1992) for numerical values for the Earth’s interior.
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16. Estimate the amount by which the actual temperature gradient inside a massive main se-
quence star surpasses the adiabatic gradient. In a star of about 5 solar masses (which makes
it 1031 kg) heat is carried by convection in the innermost parts, and by radiation further out.
The energy flux not too close to the center may be taken to be the total flux of 2.4 · 1030 W
(which is about three to four orders of magnitude larger than the luminosity of the Sun).
The radius of such a star is 1.75 · 109 m, and its central temperature has a value of some 27
million K. (The values reported here are the result of numerical modeling.) Would you say
that convection inside such a star follows the assumption that heat is not exchanged during
upward (and downward) motion of the blobs?
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In this chapter, I will go more deeply into some phenomena having to do with phase
change and mixtures of gases such as moist air. These will lead to important applica-
tions in engineering and the natural sciences. First, there will be a description of phase
change that makes use of concepts developed in the previous chapters. Then I turn to

evaporation. Simple models of vapor power and refrigeration cycles will conclude this
chapter.
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In Chapter 5, phase change of simple fluids was discussed from the viewpoint of the
entropy needed to melt or vaporize a substance. Then, in Chapter 6, the phenomenon
was described as a chemical reaction. This led to explanations of the change of melting
or boiling points, and vapor pressure. The chemical viewpoint prepares us for the dis-
cussion of the entropy necessary for phase changes, vapor pressure and Clapeyron’s
law, and property tables. 

 

15.1.1 A Description of Phase Changes

 

Here, we will describe in more concrete terms what happens to a fluid as a conse-
quence of fusion, vaporization, or sublimation. So that we will not always have to
mention all three processes, we will usually choose one of them as an example. We
will see how much entropy and energy are involved in a phase change, and we will
discover that there exist clear relations between the temperature and the pressure at the
transition. In Chapter 4 and 5, we described the melting or the vaporization of a body
using the 

 

TS

 

 diagram of the process, a tool which we will use again. We will begin by
describing the processes of vaporization and condensation.

 

Vaporization of water.

 

 For the sake of argument, consider 1 kg of water being heated
from 0°C at a constant pressure of 1 bar (Fig. 15.1). For water being heated, entropy
and temperature rise from values of zero along the section of the curve at the bottom
left (for entropy, this is an arbitrary choice). During this phase, water is said to be a

 

compressed (subcooled) liquid

 

. Since water is nearly incompressible, the relation is
approximated by the one derived in Chapter 4 (Equ.(4.42)):

X
X
X
X
X
XXXXXXXXXXXXXXXXXXXXXXXXX

X

X

X

X

X

X

0

100

200

300

400

500

0 2 4 6 8 10

T / °C

s / kJ/(K�·�kg)

P = 1 bar

Figure 15.1:  For 1 kg of water 
being heated at constant pressure 
of 1.0 bar, the temperature rises 
as a function of the entropy con-
tent. The horizontal section of the 
curve corresponds to the phase 
during which vaporization takes 
place: addition of entropy does 
not change the temperature of the 
fluid.
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mixtures of two phase fluids such as moist air which will allow me to briefly discuss
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(15.1)

 

This agrees well with what can be read from Fig. 15.1. (Remember that 

 

c

 

P

 

 for water
is about 4200 J/(kg

 

 

 

·

 

 

 

K).) At a temperature of 100°C, the water begins to boil. Just be-
fore the onset of boiling, the fluid is said to be a 

 

saturated liquid

 

. While the entropy
of the fluid increases, the temperature stays constant: the curve cuts horizontally
through the 

 

TS

 

 diagram at the temperature of vaporization. During this part of the pro-
cess, the fluid is a 

 

mixture of liquid and vapor

 

. Finally, when all the water has been
turned into steam, the temperature of the vapor begins to rise again as its entropy in-
creases. Again, there is a name for the fluid just after the point when all of it has turned
into gas: it is called a 

 

saturated vapor

 

. When heated, pure vapor (without any liquid
left) is said to be 

 

superheated water vapor

 

. Equ.(15.1) can be accepted as an approx-
imation for the actual relation between temperature and entropy for the gas as well, if
we take steam as an ideal gas having a constant temperature coefficient of enthalpy,
see Chapter 5. (According to Fig. 15.1, the average value of 

 

c

 

P

 

 between 100°C and
200°C is around 2000 J/(kg

 

 

 

·

 

 

 

K).)

 

Amount of substance, entropy, and energy.

 

 Let us take a closer look at the transi-
tion and the balance of entropy and energy (Fig. 15.2). Consider the pure liquid at the
boiling point. Entropy is added, and a certain amount of the liquid is transformed into
vapor. Looked at from the viewpoint of a chemical reaction, we may say that only one
substance is involved on either side of the reaction equation

As a consequence, if the change of amount of substance of species A is 

 

∆

 

n

 

, then the
corresponding change for B is – 

 

∆

 

n

 

:

 

(15.2)

 

The subscripts 

 

l

 

 and 

 

g

 

 indicate the liquid and vapor (gaseous) phases, respectively. In
terms of the change of the amount of substance of the vapor, the entropy necessary for
vaporization can be written as follows:

 

(15.3)

 

Observation tells us that vaporization at constant pressure and temperature proceeds
reversibly. This means that the entropy added to the liquid phase will be present in the
vapor phase (Fig. 15.3). The 

 

latent entropy

 

 

 

l

 

 of the phase change can therefore be ex-
pressed in terms of the entropies of the liquid and the gas:

 

(15.4)

 

The phase change is also described in terms of the energy exchanged (see Fig. 15.2).
Since the process takes place at constant temperature, the energy added for vaporiza-
tion is the product of 

 

T

 

v

 

 and 

 

S

 

e,v

 

 as expressed by Equ.(15.3). If we remember that the
phase change also takes place at constant pressure, we can conclude that the energy
added in heating is equal to the change of enthalpy of the fluid, see Chapter 5. Part of
the energy is used to raise the internal energy, while the rest is emitted because of the
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Figure 15.2:  A certain amount of 
a liquid vaporizes. The entropy 
added remains in the body, while 
part of the added energy goes to-
ward expansion. The added ener-
gy is equal to the change of 
enthalpy of the fluid body.
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Figure 15.3:  The entropy of va-
porization can be read from the 
TS diagram, where the value cor-
responds to the length of the hor-
izontal section of the curve. 
Points l and g denote the states of 
saturated liquid and of saturated 
vapor (gas).
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expansion of the fluid. In summary, the change of entropy and the change of enthalpy
(the latent enthalpy of vaporization) are related by

 

(15.5)

 

Naturally, these relations can also be expressed on the basis of mass rather than
amount of substance. We simply introduce the specific entropy of vaporization 

 

l

 

v

 

 and
relate it to the difference of the specific entropies of the fluid in the liquid and the va-
por phases. Then, in Equ.(15.5), we have the specific enthalpy and the specific entro-
py. The latent enthalpy of vaporization is sometimes abbreviated by 

 

∆

 

h

 

v

 

 

 

.

 

Vaporization at different pressures.

 

 From experience we know that water boils at
different temperatures depending upon the pressure of the fluid. If the pressure is low-
er than 1 bar, the boiling point is also lower. Since the change in pressure hardly af-
fects the properties of liquid water, we expect a 

 

TS

 

 diagram of the process of heating
to start off just as in the lower left of the curve in Fig. 15.1. Then, however, the curve
must break off at an earlier point and cut across the diagram horizontally. Measure-
ments show that more entropy is needed to vaporize the same amount of water at lower
pressure. Finally, when all the water has turned into steam, the temperature continues
to climb again. For higher pressures, the changes with respect to the case of 1 bar are
just the opposite. If the 

 

TS

 

 curves for different values of the pressure are drawn in the
same diagram, we get the result shown in Fig. 15.4. The amount of energy necessary
for vaporization depends not only upon the amount of entropy needed, but also upon
the temperature of vaporization. It turns out the amount of energy necessary for vapor-
ization decreases with increasing pressure.

There are some interesting points to note. The horizontal sections of the 

 

TS

 

 curves, i.e.,
those parts which display the process of vaporization, form a bell-shaped area on the

 

TS

 

 diagram (Fig. 15.5). The diagram can be divided into three sections, one on the left
of the bell for the 

 

compressed liquid phase

 

; one to the right, for the 

 

superheated vapor

 

;
and the bell area itself, where 

 

mixtures of liquid and vapor

 

 are present. The liquid
phase basically occupies only a very thin strip along the saturated liquid line; this is
because the properties of liquid water do not depend strongly upon pressure. Only for
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Figure 15.4:  TS diagram for 1 kg 
of water heated from 0°C at con-
stant pressure. The curves are for 
different values of pressure, rang-
ing from 0.1 bar to 300 bar. The 
last set of points shows that when 
the pressure is larger than the 
critical pressure of 220 bar, the 
vapor does not condense any 
more. The values were computed 
using the Steam-NBS function 
implemented in the program EES 
(Klein et.al, 1991). 
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very large pressures, of the order of hundreds or thousands of bar, do the properties of
water differ considerably from the saturated state. The curve bounding the bell is di-
vided into two parts; the left denotes the states of 

 

saturated liquid

 

 (pure liquid just at
the verge of vaporization), and the right shows the states of 

 

saturated vapor

 

 (pure va-
por on the verge of condensation). The two sections meet at the top of the bell, at a
point called the 

 

critical point

 

. If you have water vapor at pressures above the critical
pressure of 220.9 bar, and you cool the vapor at constant pressure, it will no longer
condense. Rather, as you can see in Fig. 15.4, the temperature will pass above the crit-
ical temperature of 374.14°C for values of the specific entropy of 4.43 J/(K

 

 

 

·

 

 

 

kg).

 

The pressure-temperature relation for boiling.

 

 Obviously, there is a relation be-
tween the boiling point, i.e., the temperature of vaporization, and the pressure at which
the transition takes place. As Fig. 15.4 demonstrates, the higher the pressure, the high-
er the temperature. Such a relation is rather different from what we know about liquids
or gases. With incompressible liquids, the properties depend only upon the tempera-
ture, and the pressure does not come into play. For gases, on the other hand, two inde-
pendent properties define the temperature; one variable, such as the pressure, is not
enough. For this reason, the relation between temperature and pressure at vaporization
is remarkable. A typical pressure-temperature curve for a fluid appears in Fig. 15.6.
Note that the line has a beginning and an end. The end we already know: it is the crit-
ical point of the fluid. The beginning of the line, however, will be understood shortly,
when we transfer our description to the other two phase transitions as well. The begin-
ning point is called the 

 

triple point

 

 of the substance.

 

Pressure-temperature relations for all three phase transitions.

 

 Most of the obser-
vations made about vaporization can be transferred to melting and sublimation (the di-
rect transition between solid and vapor). Specific amounts of entropy are needed for
these transformations (or are emitted for the reverse processes); the energy required is
related to this quantity by the temperature of the phase transitions. While the process
runs at constant pressure, the temperature stays constant. In each case, the pressure is
only dependent upon the temperature during the change.

Take the case of water freezing or ice melting. Even though it is harder to observe,
changes of pressure affect the melting point; the reason for the difficulty lies in the fact
that the pressure-temperature curve for melting is very steep (Fig. 15.7). On the other
hand, this effect leads to the phenomenon of freezing water being able to split rocks:
water freezing at temperatures only slightly below 0°C develops a tremendous pres-
sure. Having observed this, we have to conclude that the pressure-temperature relation
for melting has a negative slope, unlike what we know of the vaporization of water,

S
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Vapor + liquid

Critical point

Superheated vapor

Saturated
vapor line

Compressed
liquid

Saturated
liquid

Figure 15.5:  The line for saturat-
ed fluid (liquid and vapor) is 
shown in the TS diagram. The 
dome shaped area below the line 
is occupied by the mixed phase of 
liquid and vapor. The line sepa-
rates this area from those of the 
compressed liquid and the super-
heated steam.

T

Critical point

Triple point

P

Figure 15.6:  At vaporization, 
pressure and temperature of the 
fluid are directly related. P is 
called the vapor pressure at T.
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and, in fact, just about unlike anything else known in nature. Water expands upon
freezing, while most other substances contract.

For the third phase transition, sublimation, an analogous pressure-temperature relation
exists. The three lines meet in a single point, the so-called triple point, where all three
phases coexist. Drawing the three 

 

P(T)

 

 functions leads to the phase diagrams shown
in the graphs above.

 

15.1.2 Phase Transformations and Chemical Equilibrium

Phase changes can be understood in terms of chemical reactions (Chapter 6). If the
chemical potential of a phase is higher at given pressure and temperature than that of
another phase, the former will change into the latter. The conditions necessary for the
changes to occur can therefore be found by considering chemical equilibrium between
the phases. This section will show how easily the chemical potential may be used to
understand phenomena related to phase transitions.

Melting and vaporization as chemical reactions. Phase changes can be viewed as
a particular kind of chemical transformation, subject to the same laws we have studied
in Chapter 6, where we were able to calculate what happens as a consequence of a
chemical reaction on the basis of the chemical potentials of the substances. Here, the
substances are solid (s), liquid (l), and gaseous water (g). If you look at Table 6.2, you
see that at standard conditions, liquid water has the lowest chemical potential. This
means that we should expect both ice and vapor to change into liquid water at a tem-
perature of 25°C and a pressure of 1 atm.

The values of the temperature coefficients of the chemical potential found in Table 6.2
allow us to compute approximate values for the temperatures of the melting point and
the point of vaporization, if the pressure remains constant. Points of phase transitions
are obviously those where two phases coexist. If ice becomes liquid at a temperature
of 25°C, because under this condition its chemical potential is larger than that of the
liquid, we simply ask at which value of the temperature the tendency of water to
change into ice has become equally large as the drive of ice to melt. In other words,
we want to know the temperature for which the two chemical potentials have become
equal:

(15.6)
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Vapor

Critical
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Critical
point

Triple
point

Triple
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LiquidSolid

Figure 15.7:  Phase diagrams for 
water (left) and other substances 
(right) show the pressure-temper-
ature relations of the phase tran-
sitions solid-liquid, liquid-vapor, 
and solid-vapor. At the triple 
point, which has unique values of 
pressure and temperature, the 
three phases coexist. At tempera-
tures (and pressures) above the 
critical point, liquid and vapor 
are indistinguishable.
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Since the potentials change with temperature according to Equ.(6.24), the condition
expressed in this equation becomes

(15.7)

Solving this simple equation, we obtain 274.7 K for the melting point of water. Con-
sidering that this is just a linear approximation, the result is quite acceptable.

Pressure dependence of the melting point. The problem of the change with pres-
sure of the melting point and the temperature of vaporization is even more interesting,
since it involves both changes in pressure and in temperature. Again, the chemical po-
tentials of liquid and solid (or gaseous) water have to be equal at the actual melting
point (or point of vaporization), and again the potentials change with temperature, and
this time also with pressure. Therefore, the following condition must be satisfied:

(15.8)

For simplicity, assume the reference temperature to be the value of the melting point
Tf at the reference pressure, in which case the standard potentials of ice and water are
equal. With this in mind, we arrive at a relation between the change of pressure and
temperature:

(15.9)

Using the values for water from Table 6.2, we obtain an interesting result, which is
that the melting point of ice decreases with increasing pressure (with the correspond-
ing values at 0°C we get the result of ∆P/∆T = – 135 bar/K). This is so because the
pressure coefficient of ice is larger than that of water, a condition which holds only for
water, and maybe one or two other substances. Generally, the temperature of the melt-
ing point increases with increasing pressure. The same is true for the temperature of
vaporization, which increases if more pressure is applied. This also holds for water:
water boils at higher temperature if the pressure is increased (see the discussion about
vaporization at different pressures presented below).

In Chapter 8, and again in Chapter 10 (Equations (10.51) and (10.52)), we saw that, at
least for the bodies we have studied, the temperature coefficient of the chemical po-
tential is the negative molar entropy of the substance, and the pressure coefficient is
the molar volume. Applying this and writing l and s for liquid and solid, respectively,
Equ.(15.9) becomes

(15.10)

This result is of much more general importance than could be guessed from the deri-
vation. It is called Clapeyron’s law, and it shows that the change of pressure accom-
panying a change of temperature of phase transformation depends upon the entropy
necessary for the phase change and the change of volume of the fluid (remember the
formal derivation in Section 10.2.6). Another derivation of this result based on a cyclic
process will be presented below. Note that you can apply Equ.(15.10) to vaporization
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as well. Since the change of volume is much larger in vaporization, the change of pres-
sure with a change of boiling point should be much less dramatic than what we have
observed for melting ice.

15.1.3 Vapor Pressure

What is it that makes the states of saturated liquid or vapor special? What is the rela-
tion between the pressure of the fluid and the temperature at which it changes its
phase? To answer these questions, consider some liquid put into an otherwise empty
container. It is easy to see what happens if you place a drop of the liquid at the top of
the mercury column in a pressure gauge (Fig. 15.8). Even though the weight of the
drop is so small as not to add to the pressure of the column of mercury, the top of the
mercury column is observed to go down; obviously, there is some fluid in the previ-
ously empty space at the top of the gauge which has a noticeable pressure. We inter-
pret this observation by assuming that a part of the drop has vaporized, and the
pressure of the vapor is responsible for the change of height of the mercury column.
Naturally, the pressure of the remaining liquid at the top of the gauge is the same as
that of the vapor, and this pressure is called the vapor pressure of the fluid. It is further
observed that the vapor pressure depends only upon the temperature of the fluids in-
volved, as long as there always is at least a little bit of liquid left. How can we under-
stand this relation between the temperature of the fluids and the vapor pressure?

For a given temperature, after the physical variables have assumed constant values, the
situation of the fluid and its vapor is that of an insulated system inside a container
(Fig. 15.9). Since volume and energy are kept constant, the only possible changes in-

side the container are the transformation of vapor into liquid (or vice versa), and the
production of entropy. According to Equ.(6.34), the entropy production rate equals

(15.11)

Assume for the moment that the chemical potential of the vapor is larger than that of
the liquid. In this case, we expect some of the substance to go from the vapor into the
liquid phase. Since this process will stop when equilibrium conditions have been
reached, we have to conclude that the chemical potentials of the vapor and of the liquid
phase have to be equal in equilibrium; it is equally likely for liquid to change into va-
por as it is for vapor to condense:

(15.12)
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Figure 15.8:  Detecting the pres-
sure of the vapor which forms 
from the liquid at the top of a 
mercury gauge.
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Figure 15.9:  The chemical po-
tential of the vapor inside the 
container changes much more 
strongly with pressure than the 
chemical potential of the liquid. 
Therefore, it is easy to conceive 
of conditions for which µg is ei-
ther smaller or larger than µl . In 
the latter case, some of the vapor 
will condense. When the chemi-
cal potentials are equal, the phas-
es are in equilibrium.
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We can estimate the value of the vapor pressure of water at a temperature of 25°C from
the values found in Table 6.2. With the temperature given, the values of the chemical
potential depend only upon pressure. Since, in Table 6.2, they are given for the stan-
dard pressure of 1 atm, we have to change the potentials to the condition of the as yet
unknown vapor pressure. If we treat water vapor as an ideal gas, and water as an in-
compressible fluid, we have

(15.13)

as the condition of chemical equilibrium between liquid water and its vapor at 25°C.
If you plug in some values, you will notice that the pressure term for the liquid is very
small compared to the other terms, which means that the actual pressure of the liquid
does not greatly influence the result. (For example, giving the liquid a larger pressure
than the value P in the diagram of Fig. 15.9 will shift the horizontal line upward by a
very small amount.) The important parameter is the vapor pressure. Solving the con-
dition for the value of Pv yields

(15.14)

(see Fig. 15.10). With the values taken from Table 6.2, the vapor pressure of water at
298 K is estimated to be 3150 Pa. This is close to the measured value of 3169 Pa (see
Table 15.1).

 

Interpreting the condition of equilibrium in Equ.(15.12), we conclude that a particular
relation between temperature and pressure exists as long as there is equilibrium be-
tween the phases. The pressure of the vapor cannot be changed independently of tem-
perature as in the case of a single phase gas with constant amount of substance. The
main difference is that in this case the gas is in equilibrium with its condensate. When
the temperature is increased, more vapor is added to the vapor phase; when the tem-
perature is decreased, some of the vapor can change into the liquid phase. This free
exchange of amount of substance is responsible for the fact that the vapor pressure of
a substance is a unique function of temperature. The answer to the question posed at
the beginning of the section can now be given: the points of the bell-shaped curve in
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Fig. 15.5 are those for which the chemical potentials are the same at a given tempera-
ture. They correspond to the conditions of chemical equilibrium between liquid and
vapor.

Estimate of the temperature dependence of vapor pressure. We can get a first
impression of the dependence of the vapor pressure on temperature, if we use the for-
mulas for the temperature dependence of the ideal gas and incompressible fluids from
Section 8.4. In other words, we treat the vapor as an ideal gas, and the liquid as incom-

Table 15.1: Properties of saturated water (liquid–vapor)a

a.Values computed according to the Steam-NBS function implemented in the program EES (Klein et. al, 1991).

T 

°C

Pv 

bar

µl = µg

kG

sl

kJ/K · kg

sg

kJ/K · kg

υl*1000

m3/kg

υg

m3/kg

el

kJ/kg

eg

kJ/kg

0.01 0.00612 0.000 0.0000 9.1541 1.0002 205.987 0.00 2374.5

5 0.00873 –0.003 0.0763 9.0236 1.0001 147.0239 21.02 2381.4

10 0.01228 –0.014 0.1510 8.8986 1.0003 106.3229 41.99 2388.3

15 0.01706 –0.031 0.2242 8.7792 1.0009 77.8971 62.92 2395.2

20 0.02339 –0.054 0.2962 8.6651 1.0018 57.7777 83.83 2402.0

25 0.03169 –0.084 0.3670 8.5558 1.0030 43.3566 104.75 2408.9

30 0.04246 –0.120 0.4365 8.4513 1.0044 32.8955 125.67 2415.7

35 0.05627 –0.162 0.5050 8.3511 1.0060 25.2204 146.58 2422.5

40 0.07381 –0.211 0.5723 8.2550 1.0079 19.5283 167.50 2429.2

45 0.09590 –0.265 0.6385 8.1629 1.0099 15.2634 188.41 2435.9

50 0.12344 –0.326 0.7037 8.0745 1.0122 12.0367 209.31 2442.6

60 0.19932 –0.464 0.8312 7.9080 1.0171 7.6743 251.13 2455.8

80 0.47373 –0.807 1.0753 7.6112 1.0290 3.4088 334.88 2481.6

100 1.01322 –1.235 1.3069 7.3545 1.0434 1.6736 418.96 2506.1

120 1.98483 –1.743 1.5278 7.1297 1.0603 0.8922 503.57 2529.1

140 3.61195 –2.329 1.7394 6.9302 1.0797 0.5090 588.85 2550.0

160 6.17663 –2.987 1.9429 6.7503 1.1019 0.3071 674.97 2568.3

180 10.01927 –3.714 2.1397 6.5853 1.1273 0.1940 762.12 2583.4

200 15.53650 –4.508 2.3308 6.4312 1.1564 0.1273 850.58 2594.7

220 23.17846 –5.364 2.5175 6.2847 1.1900 0.0862 940.75 2601.6

240 33.44673 –6.281 2.7013 6.1423 1.2292 0.0597 1033.12 2603.1

260 46.89449 –7.256 2.8838 6.0009 1.2758 0.0422 1128.4 2598.4

280 64.13154 –8.287 3.0669 5.8565 1.3324 0.0302 1227.53 2585.7

300 85.83784 –9.371 3.2534 5.7042 1.4037 0.0217 1332.00 2562.8

320 112.79318 –10.506 3.4476 5.5356 1.4984 0.0155 1444.35 2525.2

340 145.94085 –11.691 3.6587 5.3345 1.6373 0.0108 1569.93 2463.9

360 186.55306 –12.924 3.9153 5.0542 1.8936 0.0070 1725.64 2352.2

370 210.29877 –13.558 4.1094 4.8098 2.2068 0.0050 1843.33 2235.2

373 217.98862 –13.751 4.2259 4.6537 2.4852 0.0041 1912.45 2153.2
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pressible. With Equ.(8.54), the chemical potentials of the two fluids are

(15.15)

The pressure term in the chemical potential of the liquid and the terms with the tem-
perature coefficients of enthalpy are relatively small compared to the entropy terms.
Accepting this additional approximation, the condition of equilibrium leads to

(15.16)

We can use this result to compute the temperature for which the vapor pressure is the
standard pressure of 1 atm. The values of Table 6.2 yield a temperature of 97°C, which
is acceptably close to the actual value considering the approximations made.

15.1.4 The Clapeyron Equation

Considering that the vapor pressure is only a function of temperature, its values can
be found. All we need to know are a starting value and the change of vapor pressure
with temperature. As you will see shortly, the laws of thermodynamics provide for a
relation between the derivative of the vapor pressure with respect to temperature and
changes of properties of the fluid. The initial value is delivered by a single observation
such as the one which tells us that at a temperature of 100°C the vapor pressure of wa-
ter must be 1 atm.

In Section 10.2.6, a formal derivation of the following result was given. Here, we will
consider a cyclic process of a substance which undergoes evaporation and condensa-
tion. Take a four step cycle which starts with the evaporation of a fluid at constant tem-
perature and pressure (Fig. 15.11). The change of volume is from Vl to Vg , while the
entropy changes from Sl to Sg (both changes are positive). Next, let the gas be cooled
just a little bit at constant volume so that the temperature decreases by a very small
amount ∆T. At this slightly lower temperature, allow the vapor to condense; this pro-
cess will again take place at constant pressure. The volume returns to Vl , and very
nearly the same amount of entropy is emitted as was absorbed during vaporization.
This will be the case if the second step is made so small that it does not add consider-
ably to the overall balances. Finally, the liquid is brought back to the initial state by a
slight heating at constant volume.

The cycle described is that of a heat engine. We can evaluate the energy released in
the fall of entropy, and the energy used for the mechanical process, and equate them
(remember that steps 2 and 4 of the cycle do not contribute much to the balances):

(15.17)

This is the relation between changes of temperature and changes of vapor pressure we
have been looking for; it can be brought into the form known as Clapeyron’s equation:
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(15.18)

If you wish, you can express the change of the entropy from the liquid to the vapor
state using the enthalpy of the fluid, Equ.(15.5).

1. When water is evaporated, how much of the added entropy and energy will be in the steam? 

2. What can be said about the chemical potentials of liquid and vapor (or solid and liquid)
along the corresponding pressure-temperature function separating the phases in the PT
phase diagram of Fig. 15.7?

3. Consider the TS diagram of the phase transition from liquid to vapor in Fig. 15.5. At which
points or along which lines are the chemical potentials of liquid and vapor equal?

4. If the vapor pressure curve for water is to be calculated on the basis of the models of in-
compressible fluid and ideal gas, which relations must be used?

EXAMPLE 15.1. Change of melting point of water with a change of pressure.

Determine the change of pressure accompanying a change of the melting point of ice. (a) Cal-
culate the temperature and the pressure coefficients of the chemical potential of water and ice
for 0°C, and then use Clapeyron’s equation. The temperature coefficients of enthalpy of water
and of ice are 4200 J/(K · kg) and 2100 J/(K · kg), respectively. (b) Use the fact that the energy
needed to melt ice is 334 kJ/kg. (See also Example 6.5.)

SOLUTION: (a) Modeling water and ice as bodies with constant temperature coefficients of en-
thalpy, we can calculate their change of entropy from standard temperature to 0°C:

Considering that the molar entropy is the negative temperature coefficient of the chemical po-
tential given in Table 6.2, we obtain for it:

For liquid water, the figure is 63.3 J/(K · mole). Note that the pressure coefficients of the chem-
ical potential, i.e., the molar volumes, of ice and of water will not change much from their values
in Table 6.2. Now, with Equ.(15.9), the result is

(b) Starting with Clapeyron’s equation in the form of Equ.(15.10), we see that the right-hand
side can be expressed in terms of the energy supplied to ice as it melts. The entropy and the en-
ergy necessary for melting are related by Equ.(15.5), which means that Clapeyron’s equation
can be written as follows:
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With the value of the latent enthalpy of fusion, we obtain – 138 bar/K for ∆P/∆T.

EXAMPLE 15.2. Changes of vapor pressure and enthalpy of vaporization.

(a) Express the approximate result for vapor pressure as a function of temperature in terms of
the change of the enthalpy of vaporization. Use the temperature of vaporization at 1 atm as a
reference. (b) Determine the vapor pressure and the standard chemical potential of mercury va-
por at 25°C.

SOLUTION: (a) First, with a pressure of 1 atm and its corresponding temperature of vaporiza-
tion as the reference point, the standard chemical potentials of vapor and liquid are equal. Using
the relation between the entropy and the enthalpy of vaporization leads to

where bp stands for boiling point. This means that a measurement of the enthalpy of vaporiza-
tion yields fundamental information about a fluid (as an ideal gas).

(b) We can apply the result just obtained with Tbp = 630 K, and 57 kJ/mole for the molar en-
thalpy of vaporization. This leads to

or Pv = 0.54 Pa. This value, in turn, can be used to calculate the chemical potential of gaseous
mercury at 25°C and 1 atm. We use the same derivation which led to Equ.(15.14):

Remember that the standard value of the chemical potential of liquid mercury is set equal to ze-
ro. This gives a value of + 30.0 kG (compared to the more accurate figure of 31.84 kG).

EXAMPLE 15.3. The Clausius-Clapeyron equation for the ideal gas.

Derive the expression of the Clapeyron equation as it holds for the ideal gas and show that this
is equivalent to the approximation of the pressure-temperature relation for vapor pressure de-
rived in Equ.(15.16) or above in Example 15.2. Assume the enthalpy of vaporization to be con-
stant.

SOLUTION: Written using the enthalpy of vaporization, Clapeyron’s equation becomes

For the ideal gas, we use the equation of state, and we neglect the volume of the liquid phase
compared to its value in the vapor phase. Therefore, the equation becomes

Integration of this equation yields
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which is equivalent to what was derived before. Clapeyron’s equation specialized to the ideal
gas is called the Clausius-Clapeyron equation.

15.2 MIXTURES OF TWO-PHASE FLUIDS: MOIST AIR 

In this section, we will discuss one more application of the ideas of chemical transfor-
mation, namely the thermodynamics of mixtures of two ideal gases when one can un-
dergo phase changes. Moist air furnishes such an example—dry air and water vapor.
While the air itself is a mixture, it can be treated as a single component, since in the
range of temperature and pressure found in our atmosphere, its constituents all behave
identically as ideal gases; in other words, we do not notice that dry air itself is com-
posed of different parts. The case of the second component, however, is quite differ-
ent. With liquid (or solid) water present, water vapor in the air can condense (or
directly turn into frost or ice); or water can evaporate (and ice can sublimate). Thus,
the conditions in the atmosphere are such that water can undergo phase transitions. We
are all familiar with water condensing on window panes on a cold day, droplets form-
ing on a pipe carrying cold water, dew accumulating on the grass in the morning, or
frost forming on the ground.

These and their reverse processes can again be understood as chemical phenomena.
When vapor condenses out of moist air, this simply means that, under the given cir-
cumstances, the chemical potential of the water vapor is larger than that of the liquid
phase. On the other hand, when water evaporates from the surface of a pond, the ten-
dency of liquid to go into the vapor phase is stronger than the reverse drive.

We can use our knowledge of the concepts of vapor pressure and chemical equilibrium
between phases to state these observations in more precise language. Consider evap-
oration of water into the air above a liquid surface (as in Fig. 15.12). Obviously, if wa-
ter diffuses from the liquid into the air, chemical equilibrium has not been attained.
There is less water vapor in the air than there could be under the condition of equilib-
rium, or, put differently, the gas above the water surface is said to have a humidity
which is smaller than the humidity at saturation. When the air is saturated with water
vapor, the chemical potential of the vapor phase and of the liquid phase are equal, and
there are equal rates of water evaporating and vapor condensing.

To give you an impression of the amount of water vapor present in the air, consider
standard conditions of temperature and pressure. You know that at 25°C, the vapor
pressure of water is about 3000 Pa or 0.030 bar (see Table 15.1). As we have seen be-
fore, it hardly matters that the pressure of the liquid is 1 atm because of the presence
of the air: the chemical potential of liquid water changes only slightly when its pres-
sure changes. Therefore, the value of the vapor pressure calculated under the assump-
tion that only water is present can be used perfectly well in the present case. We can
now say that at saturation the amount of water in the air is 0.03 mole per 1 mole of air
(equivalent to about 20 g of H2O in 1 m3 of air). With such numbers, it is clear that the
vapor component also behaves as an ideal gas. As far as the body of moist air is con-
cerned, we can treat it as a mixture of two ideal gases and apply the rules found in Sec-
tion 6.6.3.
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15.2.1 Description of the State of Moist Air

It is customary to define two interrelated quantities with whose help the state of moist
air can be described. These are the humidity ratio (also called specific humidity or ab-
solute humidity), and the relative humidity. First, it should be clear that the pressure
of the mixture is P, while the partial pressures of dry air and of vapor are Pa and Pv ,
respectively, with

(15.19)

The humidity ratio ω is defined as the ratio of the mass of water vapor mv and the mass
of dry air ma:1

(15.20)

Using the equation of state of the ideal gas this can be transformed into

(15.21)

The numerical value 0.622 applies for dry air and water. The second quantity intro-
duced, the relative humidity φ, is defined as the ratio of the amount of water vapor ac-
tually present and the amount present when the air is saturated with vapor:

(15.22)

The laws of ideal gases let us change this to

(15.23)

where Pg is the saturation vapor pressure at the temperature under consideration (in
the following, the index g will be used to indicate saturation). Note that the relative
humidity and the humidity ratio are convenient definitions for expressing the case of
moist air in terms of the laws of mixtures of ideal gases introduced in Section 6.6.3.
As far as physics is concerned, nothing new has been formulated. What we can say,
however, is that at a relative humidity smaller than 1, the chemical potential of the va-
por µv is smaller than its value for the condition at saturation µg, the change stemming
from the difference in actual vapor pressure from the saturation pressure. Therefore

(15.24)

Since the temperature is the same for the actual condition and for the assumed condi-
tion of saturation, the enthalpy of the vapor is what it would be at saturation:

1. Sometimes, the specific humidity is defined as the ratio of mass of water vapor mv to mass
of (humid) air m:

and therefore differs slightly from the humidity ratio.
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(15.25)

This holds for an ideal gas (see Fig. 15.29 for actual values). Therefore, the entropy of
the vapor (sv), deviates from its value at saturation (sg):

(15.26)

15.2.2 The Dew Point

Assume a state of moist air with a relative humidity less than the saturation value of
1. This means that the chemical potential of the vapor at the given temperature is
smaller than the potential of the liquid phase (Fig. 15.13). Now, what happens if the
temperature of the mixture and the liquid water decreases? The chemical potentials of
the vapor and the liquid phase increase, but not at the same rate. From Table 6.2, we
see that the magnitude of the slope for the gaseous phase is greater, which means that
the potentials become equal at a particular value of the temperature. At this point, wa-
ter vapor in the air will begin to condense. For obvious reasons, this temperature is
called the dew point. Using a table of saturation vapor pressure, dew points can be eas-
ily computed (Example 15.4). Here, we will give a formal derivation assuming the va-
lidity of the ideal gas model.

We have to find the temperature for which the chemical potentials of the vapor in the
air and of the liquid water phase are equal, given a starting condition at temperature
T0 and pressure P0. The chemical potential of the liquid changes from the standard val-
ue only because of the change of temperature:

(15.27)

The potential of the vapor, on the other hand, is different from the standard value for
two reasons: the pressure Pv at temperature T0 is different from P0; and the tempera-
ture is now at the dew point:

(15.28)

Now, the actual vapor pressure Pv can be expressed in terms of the saturation value if
we introduce the relative humidity:

(15.29)

Equating the chemical potentials, i.e., Equations (15.27) and (15.29), furnishes a non-
linear condition for the unknown temperature of the dew point. We need only the sat-
uration pressure Pg0 at the original temperature T0, which can be calculated from the
approximation given in Equ.(15.16) or found in tables. The formulas are rather accu-
rate, and compare well with the measured values found in steam tables. Remember
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that, apart from the assumption of validity of the ideal gas model, we have neglected
some terms in the temperature dependence of the chemical potentials.

15.2.3 Adiabatic Saturation and Wet Bulb Temperature

Below, an equation will be used that relates the humidity ratio of moist air to the wet
bulb temperature. The process taking place around a wet bulb thermometer is similar
to the model of adiabatic saturation that will be discussed now. 

Adiabatic saturation. Take a stream of moist air passing over the surface of some
water as in Fig. 15.14. The air picks up extra moisture until it is saturated. Since no
conductive transfer of entropy is involved, the process is called adiabatic saturation.
Consider a control volume encompassing a section of the air stream and a small part
of the water which delivers the moisture. In a steady state, the amount of water vapor
flowing out with the saturated air will be the sum of the mass entering with the some-
what dryer air, and the mass of the water evaporating from the surface (this latter mass
is replenished through the control surface):

(15.30)

Here, a, l, and v denote dry air, liquid water, and water vapor, respectively. For the
balance of energy, we will assume the velocity terms to be negligible. Also, the moist
air will be considered to be a simple mixture of dry air and water vapor at total pressure
P. At the inlet, the temperature is T1, and the humidity ratio is ω1, while at the outlet
we have T2 and ω2 (in the saturation process, the incoming air is assumed to cool to
the temperature of the water which is at T2). Now, the energy currents can be written
in terms of the enthalpy of the fluids (see Equ.(8.40)):

(15.31)

As before, the index g is used for the saturated vapor state. Using the balance of mass
we can express the current of water from the reservoir. Dividing by the current of mass
of dry air introduces the humidity ratio. If we also replace the enthalpy of the unsatur-
ated vapor at T1 by the corresponding value for the saturated state at T2 (remember
Equ.(15.25)), we get:

(15.32)

Wet bulb temperature. The condition of an ideal gas of constant amount of substance
is fixed by two values such as the pressure and the temperature. A third value is obvi-
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Saturated airFigure 15.14:  A stream of moist 
air passes over a water surface 
and picks up additional water un-
til it is saturated. The air cools to 
T2, and in the steady state, the 
water will have the same temper-
ature (if the body of water is not 
too large).
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ously needed if a mixture such as moist air is described for which the amount of vapor
can change. A suitable third value might be the humidity ratio. However, humidity is
not so readily measured, which is why it would be simpler to specify an additional
temperature. Here, we will show how the temperature measured by a thermometer
whose bulb is surrounded by a wet wick can be used to find the humidity of the air.

The temperature measured by a simple thermometer is called the dry bulb temperature
of the moist air. If you surround the bulb of the thermometer with a wick saturated with
water, it will show a lower temperature for the same conditions of the air, the value
being called the wet bulb temperature (Fig. 15.15). The reason for the lower tempera-
ture is this: As the air, which is assumed to be not saturated, passes over the bulb with
the wick, water will evaporate, increasing the humidity of the air. Indeed, we will as-
sume the air to become saturated by the process—analogous to the process of adiabat-
ic saturation discussed above, meaning that the saturated air has the same temperature
as the water. The entropy necessary to vaporize the water in the wick comes from the
water and from the air itself, which means that the temperature of the stream of air
leaving the wick is lower than the normal air temperature. This new temperature is the
temperature taken by the water in the wick; therefore, the wet bulb thermometer shows
the lower temperature of the saturated air.

If the wet bulb thermometer is ventilated properly, the process taking place here is a
close approximation to adiabatic saturation. It is specified by the temperatures and
humidities of the original moist air and of the saturated air. The value of the humidity
ratio can then be calculated from Equ.(15.32):

(15.33)

where ω' is computed according to Equ.(15.21) for the saturated air at the wet bulb
temperature, i.e.,

(15.34)

The condition of adiabatic saturation may be satisfied by the wet bulb thermometer
only to a limited extent. The real wet bulb phenomenon is influenced by the rate of
evaporation and the rate of diffusion through the wick. Still, the agreement is accept-
able, and the wet bulb temperature is commonly used as the representation of the adi-
abatic saturation temperature.

5. In general, is the molar entropy of water vapor in the air smaller than, equal to, or larger
than at saturation? Why is this so?

6. Why is moist air less dense than dry air (at the same temperature and pressure)? What does
this mean for moist air coming off vegetation, the ground, or lakes?

7. Why can we assume that the enthalpy of water vapor in moist air is generally equal to the
enthalpy of the vapor if the air is saturated with moisture?

8. In practice, what is the condition for the stream of air exiting the adiabatic saturator in
Fig. 15.14 to be saturated and have the same temperature as the water (T2)?

Figure 15.15:  Dry and wet bulb 
thermometers for measuring the 
humidity of air. A wick saturated 
with water surrounds the second 
thermometer. If the air is not sat-
urated, this thermometer will 
show a lower temperature than 
the dry bulb instrument.
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EXAMPLE 15.4. Calculating a dew point using tabular data.

(a) At a temperature of 30°C and standard pressure, the relative humidity of air is measured at
75%. Determine the temperature at which water vapor would begin to condense. Use the data
given in Table 15.1. (b) The temperature of the air drops to 20°C. What fraction of the vapor
present in the air will condense?

SOLUTION: (a) At 30°C, the saturation vapor pressure is 4246 Pa. With a relative humidity of
75%, the actual vapor pressure (the partial pressure of the water vapor in the air) is

The value of 3185 Pa almost precisely corresponds to the saturation vapor pressure at 25°C.
This means that at 25°C, the air would be saturated with the amount of water vapor it actually
contains, and the vapor would begin to condense.

(b) At 25°C and with a vapor pressure of 3185 Pa, the air could just retain the initial amount of
water present at a relative humidity of 100%. At 20°C, however, the vapor pressure is only 2340
Pa. If we allow for 100% relative humidity at that state, the air could contain only the fraction
2340/3190 = 0.73 of the initial amount of water. An initial amount of

will be reduced to 0.94 mole/m3. For every cubic meter of air, 6.3 g of water will condense.

EXAMPLE 15.5. The height above ground of cloud formation

Make the following model of the vertical circulation of air. Moist air (not saturated) rises adia-
batically due to convective instability. With a relative humidity of 0.50, and standard pressure
and temperature at the ground, calculate the level above ground at which condensation of the
water vapor should set in. Explain why this happens for a temperature which is lower than the
dew point calculated for the ground.

SOLUTION: The quantities which are constant for the process are the entropy and the humidity
ratio. (Before the onset of condensation, the amount of water vapor in the air remains constant.)
One therefore should calculate these two quantities for the conditions at the ground. In function-
al form, this might look like

so = Entropy(AirH2O,T=298,P=100,R=0.5)

w = HumRat(AirH2O,T=298,P=100,R=0.5)

Tables (or computer programs) yield values of 5.788 kJ/(K · kg) and 0.00992, respectively. Af-
ter this preparation, values of the temperature, and the specific volume can be taken from tables
as a function of decreasing pressure. Again, using functions implemented in EES (Klein et al.,
1991), we have

so = Entropy(AirH2O,T=T,P=P,w=w)

v = Volume(AirH2O,T=T,P=P,w=w)

Then, using the law of hydrostatic equilibrium, the volume can be integrated over the pressure
to yield the height as a function of pressure:

Finally, the chemical potential of liquid water and of water vapor have to be expressed:

mu_l = Mo*(Enthalpy(Water,T=T,X=0)–T*Entropy(Water, T=T,X=0))
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mu_v = Mo*(Enthalpy(Water,T=T,P=Pv)–T*Entropy(Water, T=TP=Pv))

w = 0.622*Pv/(P–Pv)

Results are given in Table 15.2 and in the accompanying graph (Fig. Ex.5.1). The graph shows
that, up to a certain height (about 1400 m, temperature of 284.5 K), the chemical potential of
the vapor is smaller than that of liquid water (the chemical potential of liquid water increases
because of the effect of decreasing temperature). At this point, the relative humidity becomes 1.
We therefore expect cloud formation to begin at about this level above ground.

The dew point calculated for the values at the ground, on the other hand, is 286.9 K. A plot of
the chemical potential of liquid water and water vapor as a function of temperature can demon-
strate the influence of a change of pressure upon the dew point. Lowering the pressure leaves
the potential of the liquid more or less unchanged, while that of the vapor decreases. This shifts
the line representing the chemical potential of the vapor downward, leading to an intersection
with the line for the liquid at a lower temperature.

EXAMPLE 15.6. Calculating the wet bulb temperature of moist air.

Take the same conditions for moist air as in Example 15.4 (75% relative humidity at 30°C and
1 atm). How large is the corresponding wet bulb temperature?

Table 15.2: Properties of moist air at constant entropy and humidity ratio

P / kPa T / K υ / m3/kg h / m µl / kG µv / kG

100 298.0 0.869 0 –0.0838 –1.7880

98 296.3 0.882 178 –0.0729 –1.5647

96 294.6 0.895 360 –0.0625 –1.3383

94 292.8 0.909 543 –0.0527 –1.1085

92 291.0 0.923 730 –0.0436 –0.8752

90 289.2 0.937 920 –0.0350 –0.6382

88 287.4 0.952 1110 –0.0271 –0.3976

86 285.5 0.968 1310 –0.0200 –0.1530

84 283.6 0.985 1510 –0.0135 –0.0135
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SOLUTION: In addition to the definition of relative humidity in terms of the vapor pressure and
the saturation vapor pressure, we will need to simultaneously solve Equ.(15.21), Equ.(15.33)
and Equ.(15.34). For the stated problem, namely finding the wet bulb temperature, the equations
are nonlinear. We will have to find the values of enthalpies and pressures for the quantities ap-
pearing in the equations, partly for the still unknown value Twb . Below you will find the rela-
tions to be set up if the thermodynamic property data are given in the form of programmed
functions. Compare the solution of these equations with a solution attempted using tabulated
values.

Given data: phi = 0.75

T1 = 30

P1 = 101.3

Properties: ha_T = Enthalpy(Air,T=T1)

ha_Twb = Enthalpy(Air,T=Twb')

hg_T = Enthalpy(Steam,T=T1,X=1), 

hg_Twb = Enthalpy(Steam,T=Twb,X=1)

hl_Twb = Enthalpy(Steam,T=Twb,X=0)

Pg_Twb = Pressure(Steam,T=Twb,X=1)

Pg_T = Pressure(Steam,T=T1,X=1)

Relations: w = ((ha_Twb–ha_T)+w'*(hg_Twb–hl_Twb))/(hg_T–hl_Twb)

w' = 0.622*Pg_Twb/(P1–Pg_Twb)

w = 0.622*Pv_T/(P1–Pv_T)

phi = Pv_T/Pg_T

Solution: ha_T = 303.6 kJ/kg ha_Twb = 299.9

hg_T = 2555 hg_Twb = 2549

hl_Twb = 110.2

P1 = 101.3 kPa Pg_T = 4.246

Pg_Twb = 3.425 Pv_T = 3.184

phi = 0.750

T1 = 30.0°C Twb = 26.3

w = 0.0202 w' = 0.0218

The solution of the problem was performed completely within the program EES (Klein et al.,
1991). The form of the property functions is pretty much self explanatory. Air stands for dry air,
while Steam denotes water (liquid and vapor). The temperature and its wet bulb counterpart are
denoted by T and Twb, respectively, while w is used for the humidity ratio. X is the quality (de-
fined in Equ.(15.59); X=0 is for saturated liquid, while X=1 is for saturated vapor).

15.3 EVAPORATION

The term evaporation is most commonly used to describe vaporization of some water
from a larger body of water and subsequent transfer of the vapor into the air surround-
ing the body of water. In this section, evaporation or condensation of water, and the
mixing of water vapor with air will be considered from a dynamical perspective. Such
processes are important in nature (think of the evaporation of water from lakes, from
soil, or from leaves), in chemical engineering (where we let other substances evapo-
rate as well), in power engineering (cooling towers), and in air conditioning.



15.3  EVAPORATION

PART IV 623

15.3.1 Evaporation and Diffusion of Water Vapor in Air

Consider a body of water with unmoving air above it. If the air is not saturated, there
is a difference of chemical potentials between the liquid water and the water vapor in
the air leading to the transfer of more water vapor into the air. Water must evaporate,
so the concentration of vapor will be higher in a layer adjacent to the body of water
than further away from it. As a result, the vapor diffuses upward into the drier air (see
Fig. 15.16).

This process continues until the air above the water is saturated. If it is continuously
removed—which normally is the case in an open space—evaporation from the surface
of the body of water continues as long as liquid water remains. Evaporation does not
depend upon the water being warmer than the air. In fact, the process described works
even when the water is cooler than the air. All that is needed is a higher concentration
of water vapor near the surface of the water compared to points further away.

Evaporation of warm water: a simple model. Hot water is poured into a glass and
placed on a scale. The water stands at a depth d from the top of the container (see
Fig. 15.17, left). Mass, water and air temperature, and relative humidity are measured
as functions time. The temperature decreases as a result of cooling (Fig. 15.17, right)
which is mostly due to evaporation: the mass of the water decreases quite steeply at
higher temperatures whereas the flow of vapor into the air decreases to a lower and
almost constant value for water temperatures close to the temperature of the air (see
Fig. 15.17, center).

If evaporation is due to the diffusion of vapor from the surface of the liquid at z = 0 a
distance d through the air, we can formulate a simple relation for the flow of amount
of substance of water vapor (remember Section 6.7):

(15.35)

Here,  stands for the concentration of vapor in the air at z = d and z = 0, respectively.
hv is transfer coefficient for amount of substance, and A symbolizes the cross section
of the water surface. If we treat the vapor as an ideal gas, its concentration is propor-
tional to its partial pressure. Therefore, Equ.(15.35) transforms into

(15.36)

Pg is the saturation vapor pressure and φ denotes the relative humidity. Here, I have

Figure 15.16:  Evaporation from 
a body of water can be under-
stood as the diffusion of water va-
por from a saturated layer of air 
near at the surface of the water to 
points further away where the air 
is not saturated.
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assumed that the vapor is always at the temperature of the air, Ta, even near the surface
of the water which is at Tw . In the layer at the surface of the body of water, the air is
saturated. The transfer coefficient hv will depend upon the depth of the water in the
container, and upon the diffusivity of water vapor in air.

If the measured temperatures (Fig. 15.17) are used to predict the flow of mass Im,v =
M0v Im,v from the surface of the water, we get the dashed line shown in Fig. 15.18; at
first sight, it compares relatively well with the measured mass (dots) but clearly shows
different behavior. For this reason. let us extend the model to one which includes the
spatial variation of conditions in the container of Fig. 15.17.

Diffusion of vapor in air. First, we have to understand the precise nature of the trans-
ports in the container of Fig. 15.17 in the column of moist air above the body of water.
Let us assume that there is variability in the vertical direction only, and that the situa-
tion is in steady-state. There must certainly be a conductive (diffusive) flux of water
vapor whose current density of amount of substance at a point z in the column of hu-
mid air will be abbreviated by jnv (Fig. 15.19). In a mixture of gases such as dry air
and water vapor, if one of the components diffuses in one direction, there must be an
equal diffusive flux of the other component in the opposite direction. This is so be-
cause, in steady-state, one mole (or one molecule) of vapor must be replaced by one
mole (or one molecule) of air. So we have a current density of dry air jna at point z. 

The downward flux of air has important consequences. If there were nothing to bal-
ance it, air would accumulate at the surface of the water. Since this is not the case, we
need a convective (or bulk) flux of humid air going up where the flux of (dry) air must
equal the diffusive downward flux of (dry) air. Since the air is humid, water vapor is
transported convectively, so we have an additional flux of water vapor going upward
(see Fig. 15.19).

The laws of balance of amounts of substance (of air and of water vapor) and coupling
between the fluxes can be formulated quite simply. First, we should note that the flux-
es are independent of position z since we have steady-state conditions. Second, the dif-
fusive flux density of air is equal in magnitude to the diffusive flux density of water
vapor:

(15.37)

Since air has to remain balanced in the column above the body of water, we have

(15.38)

The subscript c stands for convective transports. Finally, there is the convective trans-
port of vapor which is coupled to the convective flux of air. Since the amount of vapor
in the air equals the molar fraction of the amount of humid air, we have

(15.39)

(The current of humid air equals the sum of currents of air and vapor.) Now, the total
current density of vapor is the sum of its diffusive and convective parts which leads to:

(15.40)

Figure 15.18:  Evaporation of hot 
water from an open container as 
in Fig. 15.17. Dots are measured 
values of the mass of the remain-
ing water. The dashed line is the 
result of the model presented in 
Equ.(15.36). The solid line re-
sults from a version of the model 
in Equ.(15.44).
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Now, constitutive relations have to be introduced. For one, the diffusive current den-
sity of vapor can be formulated as in Section 6.7.2:

(15.41)

(The diffusivity of water vapor in air is about 2.4 · 10–5 m2/s at 300 K.) Furthermore,
the concentration of water vapor can be expressed in terms of the pressure of this com-
ponent by using the ideal gas relation:

(15.42)

For isothermal situations, the temperature is equal to the ambient temperature every-
where. If we introduce Equations (15.41) and (15.42) into Equ.(15.40) and integrate
the first order differential equation from z = 0 to z = d, and remember that the current
densities are constant, we obtain

(15.43)

A denotes the cross section of the container from which water evaporates, and Pva and
Pg are the water vapor pressure in the air far from the container (given by its temper-
ature and relative humidity) and the saturation vapor pressure at the same temperature,
respectively.

Evaporation of hot water. Let us revisit the experiment described in Fig. 15.17. The
water is hotter than the environment for most of the time, so we do not have isothermal
conditions as assumed in the derivation performed above. If we assume the column of
air above the water to be at Ta , and the water at Tw , we could apply Equ.(15.43) and
get a simple result:

(15.44)

Interestingly, the pressure dependence of this expression fits data well, as shown by
the solid line and the dots in Fig. 15.18. However, for an actual fit, the current in
Equ.(15.44) has to be multiplied by a constant factor of the order of 10. While the form
of Equ.(15.44) seems to apply to the evaporation of hot water from a container, the
strength of the current is considerably larger than predicted by the simple model. Fur-
thermore, experiments with different values of the depth of the water level do not
show the dependence on d expected from Equ.(15.43) or (15.44). Vapor condenses on
the inside of the glass container and evaporates again at different heights and joins the
vapor coming from the surface of the body of water. This may explain the differences.

15.3.2 Evaporative Cooling

Evaporative cooling can be taken to mean two different things. On the one hand, bod-
ies (solids, liquids) are cooled if a liquid at their surfaces evaporates. We have seen
this effect several times already such as in the drop of temperature of a wet thermom-
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eter (Fig. 6.8). On the other hand, we may direct our attention to the air that is involved
in evaporation and takes up vapor; its temperature is reduced. This plays a role in air-
conditioning: in a hot and dry climate, we may want the comfort of cooler and more
humid air. Below, two applications will be discussed: forcing dry air through a wet pad
and the cooling of already cold water sitting in a container.

Dry air flowing through a wet pad. Consider a simple duct through which air can
flow. The temperature of the air is to be lowered by evaporation of water in a pad
through which the air is forced (Fig. 15.20). If we assume the system to be thermally
insulated and if we can neglect mechanical and gravitational effects, the situation is
similar to the one discussed in adiabatic saturation (Section 15.2.3) or to the case of
mixing of streams of fluids (Section 8.6.4). For this reason, only the laws of balance
will be formulated here.

There are three inflows and two outflows (Fig. 15.20). The steady-state balances of
mass for air and water take the form

(15.45)

The law of balance of entropy contains six terms: one each for the incoming and out-
going substances and the production rate:

(15.46)

The law of balance of energy only involves the convective currents of energy for the
five currents in Fig. 15.20: 

(15.47)

At both he inlet and the outlet, the currents of mass of vapor and air are related by the
humidity ratios defined in Equ.(15.20). To complete a model, we need expressions for
the entropies and enthalpies of air and water or steam for the conditions of tempera-
ture, pressure, and humidities that apply in the situation depicted in Fig. 15.20.

Evaporation of cold water. Water having the same temperature as the environment
can still become colder by evaporation if it is inside a well insulated container that is
open at the top. Historically, in dry climates, water was kept cool by storing it in am-
phoras which were sprayed with water, and fans were used to keep the air flowing over
the wet containers.

Here is an experiment and dynamical model that shows how to deal with this situation.
Water having roughly the temperature of the environment is poured into a relatively
well insulated container that is open at the top. It is placed on an automatic scale, and
water and air temperature, and relative humidity of the environment, are measured as
functions of time (Fig. 15.21). We need to track the entropy and mass of the water and
the entropy of the container in our model (it turns out that the dynamics of the contain-
er has to be taken into account if we want to get a good fit between model and data;
see Fig. 15.21, center):

(15.48)

Figure 15.20:  Relatively dry, hot 
air flows through a pad soaked 
with water. Because of evapora-
tion, the temperature of the hu-
mid air exiting the duct is 
lowered, and its humidity is in-
creased.
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(15.49)

Note that, in principle, there should be a conductive entropy current going directly
from the water to the air (or vice-versa); however, the simulation is not affected great-
ly by this addition.

Figure 15.21:  Evaporation of cold water in a relatively well insulated container that is open at 
the top. Mass (left) and water and air temperature (center) have been measured as functions of 
time (dots denote data). The relative humidity during the experiment was 0.15. Right: Diagram 
of a system dynamics model. Note that there is more to the model not shown here (top left of 
the diagram). Here, w, v, a, and c denote water, vapor, air, and container, respectively.

Constitutive laws have been assumed to be as follows. Since temperature differences
are fairly small, entropy production due to conductive transfer has been neglected and
transport models have been assumed to be linear. In particular, the flow of water evap-
orating from the surface of the water in the tank is modeled as in Equ.(15.36):

(15.50)

The relation has been formulated for the flux of mass rather than for amount of sub-
stance. Gm,v is a conductance for mass transfer. Conductive currents of entropy have
been written accordingly. Note that the temperature of the water in the tank can be cal-
culated on the basis of its specific entropy which equals the ratio of instantaneous val-
ues of entropy and mass. Together with expressions for vapor pressure and the specific
entropy of vapor, the missing quantities can be calculated. Here is the relation for the
evaporative current of entropy:

(15.51)

where svap is the specific entropy of the steam leaving the surface of the body of water.
The model performs quite well (see the solid lines in the diagrams on the left and at
the center of Fig. 15.21).

15.3.3 Cooling Towers

Consider cooling towers as a last application of evaporative cooling. Where the cool-
ing needed for a large thermal power plant cannot be done by transferring the entropy
to a river, a cooling tower may be used. Here, water used for the condenser of the plant
is sprayed into a stream of relatively dry air so that a part of the water evaporates. The
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portion of the cooling water that does not evaporate has given up entropy. Together
with makeup water (used to replenish the flow of water through the condenser), the
colder cooling water is returned to the condenser of the plant.

The processes going on can be envisioned in a schematic similar to the one showing
evaporative cooling in Fig. 15.20. In place of the wet pad, we have cooling water fall-
ing through the stream of air forced through the device. (Naturally, the geometry of an
actual cooling tower will be different from what we discuss here, but the processes can
still be understood by the schematic shown in Fig. 15.22.)

Assume the power plant is designed to eject a current of entropy IS1 to the cooling wa-
ter. At least this amount of entropy will have to be carried away by the moisturized air
leaving the cooling tower.

We can calculate the performance of a cooling tower using the type of (steady-state)
model discussed above and applied in Example 15.6 and Example 15.7. To exercise a
less formal approach, consider the following simplified model that is suitable for esti-
mates. The entropy coming from the power plant (IS1) has to be communicated to the
environment (IS2). If we assume the entropy current leaving the cooling tower with the
humid air to be equal to the one from the power plant, we neglect entropy production
in the tower and the entropy current with makeup water. (Entropy production is mostly
due to mixing of water, vapor, and air at different conditions, and the dissipation of
the energy used for pumping, which is neglected here anyway.)

If we assume further that the temperature of the air flowing though the cooling tower
does not change much, its entropy will not either. Therefore, all the entropy commu-
nicated to the tower from the power plant has to be in the water that is evaporated and
added to the airflow:

(15.52)

This is so because ω Ima is the current of water vapor in air if Ima is the current of dry
air (Equ.(15.20)). sv denotes the specific entropy of vapor at its temperature and (par-
tial) pressure. If we specify the condition of the air at the inlet and outlet of the cooling
tower, we can calculate the humidity ratios according to what we have learned in the
previous sections. Calculating the entropies poses a small problem. Equ.(15.52) shows
that we cannot just work with the difference of the entropies at two states. To deal with
this case properly, we have to make sure we have the entropy with respect to a well
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defined state that holds for both points 1 and 2. This can be insured by setting the en-
tropy of liquid water equal to zero at T = 273 K and P = 101.3 kPa. The entropy of the
vapor can be calculated from this if the entropy of vaporization and the temperature
coefficient of enthalpy of the vapor are known (Example 15.9).

9. What kind of reasoning leads to the expression in Equ.(15.35)?

10. Why are the fluxes in the model of Fig. 15.19 spatially constant (independent of z)?

11. Why does the current of vapor in evaporation inside a container depend upon the ratio of
the pressures of the dry air far from the water and near its surface?

12. If hot dry air is cooled by evaporating some water (as in Fig. 15.20), what happens to the
exit temperature of the stream of air if the flow of water is increased? Do you expect there
to be a minimum of entropy production for some water current, or does the entropy pro-
duction rate vary monotonically?

13. Why is it possible to neglect entropy production in the model shown in Fig. 15.21

14. What are the conditions necessary for the entropy current leaving a cooling tower to be
equal to the one rejected by the power plant? Where do you expect these conditions to be
violated most strongly?

EXAMPLE 15.7. Cooling air by humidification.

Hot (40°C) dry (φ = 0.1) air flows through an evaporative cooler as in Fig. 15.20. The current
of mass of the air alone is 1.0 kg/s. How much water needs to be added each second to cool the
air to 28°C? (The water added has a temperature of 25°C) What will the relative humidity of the
air at that point be? Ambient pressure is taken to be 1.0 atm.

SOLUTION: We formulate the laws of balance of energy and mass, the constitutive relations,
and the properties of the substances in EES (Klein et al., 1991). The laws of balance take the
forms

ha_T1*I_ma_1 + hg_T1*I_mv_1 + hw_Tw*I_mw_1 = 

ha_T2*I_ma_2 + hg_T2*I_mv_2

I_ma_2 = I_ma_1

I_mv_2 = I_mv_1 + I_mw_1

The constitutive relation needed are

Pv_T1 = phi_1*Pg_T1

w_1 = 0.622*Pv_T1/(P1-Pv_T1)

I_mv_1 = w_1*I_ma_1

w_2 = I_mv_2/I_ma_2

Pv_T2 = w_2/(w_2 + 0.622)*P1

phi_2 = Pv_T2/Pg_T2

and the pressures and enthalpies can be evaluated with the help of

Pg_T1 = Pressure(Steam,T=T1,X=1) ha_T1 = Enthalpy(Air,T=T1)

hg_T1 = Enthalpy(Steam,T=T1,X=1) ha_T2 = Enthalpy(Air,T=T2)

hg_T2 = Enthalpy(Steam,T=T2,X=1) hw_Tw = Enthalpy(Steam,T=Tw,X=0)

QUESTIONS
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Pg_T2 = Pressure(Steam,T=T2,X=1)

If we now define the given quantities:

phi_1 = 0.1 T1=40 Tw = 25

P1=101.3 I_ma_1 = 1 T2 = 28

the model can be solved. It turns out that we need a current of water of 5.0 g/s to achieve the
stated goal. The relative humidity of the cooler air will be 0.405.

EXAMPLE 15.8. Parameters for mass and entropy transfer in evaporative cooling of water.

Use the results of the experiment shown in Fig. 15.21 to estimate (a) the conductivity for mass
for the evaporative process, and (b) the overall entropy conductivity of the container.

SOLUTION: (a) Consider the situation after t = 15000 s when the processes have almost reached
steady-state conditions. The first diagram in Fig. 15.21 shows that the current of mass is almost
constant at a value of roughly (0.184 – 0.165) kg / 20000 s = 9.5 · 10–7 kg/s. To determine the
mass conductivity, we use Equ.(15.50)

The humidity was 0.15, and the temperatures of air (21.5°C) and of water (15°C) were read from
the diagram at the center of Fig. 15.21. Saturated vapor pressures were taken from Table 15.1.

(b) If we use the steady-state version of the law of balance of entropy for the water as expressed
by the diagram on the right in Fig. 15.21, i.e.,

we can find the overall entropy conductivity from the water to the environment. We need to in-
troduce constitutive relations in the law of balance:

which leads to

The specific entropy of the vapor has been taken from Table 15.1.

EXAMPLE 15.9. Estimating evaporation in a cooling tower.

Use the strongly simplified model of a cooling tower that led to Equ.(15.52) in order to find the
flow of cooling water, the current of air and the amount of water evaporated for the following
thermal power plant. Calculate the fraction of water that has to be resupplied (makeup water). 

The plant has an electric power of 260 MW. The endoreversible part operates between 300°C
and 40°C. The cooling water circulating through the tower arrives with a temperature of 40°C
and returns to the condenser at 25°C. The temperature and humidity of the incoming air are
25°C and 20%, respectively; for the outgoing air they are 30°C and 90%.

SOLUTION: We first calculate the entropy current emitted by the (endoreversible part of the)
engine. For a power of 240 MW and a temperature drop of 260 K, the current of entropy is
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If we assume that the entropy can be communicated to the cooling water without dissipation,
the current of cooling water is calculated from

The state of the air at the inlet and outlet to the cooling tower allows us to calculate the vapor
pressures:

Saturated vapor pressures have been taken from Table 15.1. Now we estimate the (specific) en-
tropy of vapor using the ideal gas model and the reference state Tref , Pv,ref :

Here, cpv = 1870 J/(K · kg) is the specific temperature coefficient of enthalpy of water vapor (it
depends slightly upon temperature). Tref = 273, and sv,ref  and Pv,ref  are determined as follows.
We set the entropy of liquid water equal to zero at 273 K. At this temperature, it takes about
9160 J/K of entropy to evaporate 1 kg of water which then ends up at a pressure of 0.61 kPa (see
Table 15.1). Therefore,

This model yields pretty good results when compared to values found in Table 15.1. Using this
determination, the specific entropies at points 1 and 2 turn out to be equal to sv1 = 9310 J/(K · kg)
and sv2 = 8510 J/(K · kg), respectively.

To find the current of mass of dry air necessary for making the operation of the cooling tower
possible, we use Equ.(15.52) together with Equ.(15.21):

Setting IS2 = IS1 and plugging in values yields a result of Ima = 5900 kg/s. This allows us to cal-
culate the currents of water vapor at points 1 and 2 (23 kg/s and 143 kg/s) from which we find
the rate at which water has to evaporate, namely, 120 kg/s. This equals 2.0% of the cooling wa-
ter. [These estimates are pretty good. A model based on the balance of energy—which implic-
itly includes dissipation—using actual property values yields 5500 kg/s for the current of
cooling water, and a rate of evaporation of 112 kg/s.]

15.4 VAPOR POWER AND REFRIGERATION CYCLES

In this last section of this chapter we will be dealing mostly with engineering applica-
tions of the thermodynamics of fluid systems, i.e., with vapor power cycles and refrig-
eration systems.2 
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Fluid processes which include phase changes will allow us to apply what we have
learned about pure ideal fluids in Section 15.1 and Section 15.2, and to combine the
information with ideas discussed in the parts on fluid flow (mainly Chapter 8). In prac-
tical applications, fluids which can be treated as pure, run through cyclic processes
while flowing through different parts of an engine, such as compressors or turbines,
pumps or throttles, and so on. In contrast to what we discussed earlier, the fluids will
be allowed to evaporate and to condense at various stages of the cycles.

15.4.1 Property Data and the Computation of Processes

If you want to calculate processes of simple fluids undergoing temperature and pres-
sure changes, and phase changes and mixing, you will need detailed information about
the properties of the substances involved. These properties are reported in the form of
tables or graphs, of which the steam tables for water are the most famous. Even though
you can also take advantage of computer programs providing the information in func-
tion format,3 it helps to look at the actual numbers when you learn about the subject.
An overview of the three main segments of fluid states is shown in Fig. 15.23 (see also
Fig. 15.5). Table 15.1 provides values for saturated water (liquid or vapor; mixtures
are calculated from the values of the saturated fluids). Also, if you wish to be able to
calculate changes in the region of the superheated vapor, appropriate tables have to be
available (see Table 15.3 and Figures 15.28 and 15.29). Properties of subcooled or
compressed liquid water complete the list of necessary materials (Fig. 15.25). 

Saturated fluids. To orient ourselves to the properties of fluids, it is convenient to start
with the state of saturation, since the saturation line naturally divides the domain of
independent variables into the different sections discussed above. The transition from
the liquid to the gaseous state of a fluid is outlined in the TS diagram. To catch this
transition, one computes the values of thermodynamic properties of the saturated flu-
id, i.e., of saturated liquid and saturated vapor. We have seen what distinguishes the
saturated fluid (and mixtures of the phases) from the rest: it is the nature of the chem-
ical potential at those particular conditions. As we have learned during the description
of phase changes, the chemical potential remains unchanged. Therefore, the potential
is the same for both the liquid and the vapor at a given temperature.

The chemical potential of both phases is listed in the third column in Table 15.1. As
you can show by directly calculating the potential using energy, volume, and entropy,
its values are indeed equal for the liquid and the vapor:

(15.53)

Continuing with Table 15.1, the second column reports the vapor pressure of the fluid,
while the last six columns list entropy, specific volume, and specific energy of both
the liquid and the vapor. The values are given on a mass basis (specific values).

So far, we have used the TS diagram only for reporting fluid properties, but other dia-
grams are used as well. In Fig. 15.24, the distinctive saturation curve is presented for
the refrigerant R123. The information is given in the TS and the pressure-enthalpy di-

2. For more information, see Moran and Shapiro (1992), or Cengel and Boles (2002).

3. See EES (Klein et al., 1991).
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Figure 15.23:  Compressed (sub-
cooled) liquid, superheated 
steam, and mixtures of vapor and 
liquid are the main forms of a 
pure fluid.
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agrams. Depending on your purpose, you might use either diagram to discuss vapor
processes.

Subcooled (compressed) liquid. If a fluid exists in liquid form only, it may either
satisfy the special condition of saturation (in which case its states would be found on
the saturation line in Fig. 15.23), or it may be found in the subcooled (compressed) re-
gion. Since liquids are hard to compress, their condition usually does not deviate much

Table 15.3: Properties of superheated water vapora

a.Units as in Table 15.1.

0.3 bar 1.0 bar 3.0 bar

T / °C s υ e s υ e s υ e

80 7.8282 5.4015 2483.8

120 8.0358 6.0273 2542.4 7.4665 1.7931 2537.0

160 8.2229 6.6485 2601.0 7.6591 1.9838 2597.5 7.1274 0.6506 2586.9

200 8.3944 7.2676 2660.1 7.8335 2.1723 2657.6 7.3108 0.7163 2650.2

240 8.5535 7.8855 2719.9 7.9942 2.3594 2718.1 7.4765 0.7804 2712.6

280 8.7021 8.5026 2780.7 8.1438 2.5458 2779.2 7.6292 0.8438 2775.0

320 8.842 9.1193 2842.3 8.2844 2.7317 2841.1 7.7716 0.9067 2837.8

360 8.9743 9.7356 2904.9 8.4171 2.9173 2904.0 7.9057 0.9692 2901.2

400 9.1001 10.3518 2968.5 8.5432 3.1027 2967.7 8.0327 1.0315 2965.4

440 9.2201 10.9677 3033.2 8.6634 3.2879 3032.5 8.1536 1.0937 3030.5

480 9.3349 11.5836 3098.9 8.7785 3.4730 3098.3 8.2692 1.1557 3096.6

520 9.4452 12.1994 3165.7 8.8889 3.6581 3165.2 8.3800 1.2177 3163.7

10 bar 30 bar 100 bar

T / °C s υ e s υ e s υ e

200 6.6932 0.2059 2621.5

240 6.8805 0.2274 2692.2 6.2251 0.0682 2618.9

280 7.0454 0.2479 2759.6 6.4445 0.0771 2709.0

320 7.1954 0.2678 2825.6 6.6232 0.0850 2787.6 5.7093 0.0192 2588.2

360 7.3344 0.2873 2891.3 6.7794 0.0923 2861.3 6.0043 0.0233 2728.0

400 7.4648 0.3066 2957.2 6.9210 0.0994 2932.7 6.2114 0.0264 2832.0

440 7.5882 0.3257 3023.6 7.0521 0.1062 3003.0 6.3807 0.0291 2922.3

480 7.7055 0.3447 3090.6 7.1750 0.1129 3073.0 6.5287 0.0316 3005.8

520 7.8177 0.3635 3158.5 7.2913 0.1195 3143.2 6.6625 0.0339 3085.9

560 7.9254 0.3823 3227.2 7.4022 0.1260 3213.8 6.7862 0.0362 3164.0

600 8.0292 0.4011 3297.0 7.5084 0.1324 3285.0 6.9022 0.0384 3241.1

640 8.1293 0.4198 3367.7 7.6105 0.1388 3357.0 7.0119 0.0405 3317.9
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from that of the saturated liquid, if the pressure is not too high. Fig. 15.25 shows a
small region of the TS diagram of water near the liquid saturation line. It demonstrates
that, for a pressure of 300 bar, the temperature is larger by only about 5 K if the entro-
py is held constant. Put differently, for pressures in the range of up to a few hundred
bar, the states lie in a narrow band around the saturation line. Entropy, energy, and vol-
ume of the liquid may be approximated by the saturated liquid data for the desired
temperature, independently of pressure. Enthalpy, on the other hand, can be given by

(15.54)

where the index l refers to the state of liquid saturation.

Note that, under these conditions, the lines of constant enthalpy are nearly horizontal,
meaning that this quantity is constant for constant temperature.(We can draw the same
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conclusion from the equation above for small specific volume and pressures that are
not too large.) This is what we would expect of an incompressible substance. Take a
closer look at the model of an incompressible fluid. Such a fluid is commonly defined
as one having a constant specific volume, and whose energy depends only upon tem-
perature. The enthalpy is then given by

(15.55)

Under these circumstances, the temperature coefficient of energy (the specific heat at
constant volume) is a function of temperature only, and the temperature coefficient of
enthalpy (i.e., the specific heat at constant pressure) must be equal to the former:

(15.56)

Changes of energy and of enthalpy are obtained by integrating the appropriate expres-
sions. For constant coefficients, the results take the form

(15.57)

The same arguments applied to the entropy of the incompressible fluid yield the result,
which again holds for constant c:

(15.58)

These are all relations we have used before in applications. In summary, to compute
property data for the compressed liquid, we may use data of the saturated liquid for a
desired temperature, and adjust the enthalpy for pressure as in Equ.(15.54). Changes
in temperature are taken into account according to the equations given above.

Mixtures of liquid and vapor: the quality. The conditions for which mixtures of a
liquid and its vapor exist need special attention. It is customary to describe the prop-
erties in terms of the composition of the mixture, which is quantified by stating how
much vapor is present relative to the total fluid:

(15.59)

This quantity is called the quality of the mixture (Fig. 15.26). Note that it is equivalent
to the notion of the mole fraction (of vapor) of a two-component mixture. All the in-
termediate states of the mixed fluid (liquid plus vapor) can be computed on the basis
of the values of the saturated fluid. This means that we do not need additional data for
this set of conditions. A fluid with a quality of 0 or 1 simply corresponds to pure liquid
or pure vapor, respectively. States with a quality between these values are found on
the horizontal line in the TS diagram connecting the conditions of liquid and vapor.
(See Fig. 15.27.)
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The total volume, entropy, energy, and enthalpy of the fluid mixture are expressed as
the sum of the corresponding quantities for the liquid and the vapor. To start with the
volume, the total specific volume is defined as the total volume divided by the total
mass

which is equivalent to

(15.60)

Exactly the same forms can be shown to apply to the other properties:

(15.61)

Note that the values of sl and sg, for example, are those of the saturated states, which
correspond to points on the saturation curve of Fig. 15.26. With this information, the
values corresponding to any mixture of liquid and vapor can be computed.

Superheated vapor (steam). When we finally have pure vapor, the conditions of the
fluid can be changed quite drastically with relatively modest changes of pressure and
temperature. This is demonstrated in Fig. 15.28, which shows the part of the TS dia-
gram of water to the right of the saturation line. The most important feature of the data
presented in the figure is this: vapor can be treated as an ideal gas only if the pressure
is not too high. The conditions for which the ideal gas model applies are marked by
the horizontal sections of the lines of constant enthalpy. As you remember, this model
requires the enthalpy of the fluid to be a function of temperature only. If the conditions
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of the ideal gas are satisfied, we can apply all the simple relations derived in the pre-
vious sections and chapters. Fig. 15.29 indicates that water vapor contained in the at-
mosphere can be treated in this simple manner. This simplifies applications in
atmospheric physics and air conditioning to a certain degree. In the realm of the “real”
gases, however, detailed property data, again in the form of tables, graphs, or comput-
er programs, have to be provided (Table 15.3). Calculations by hand are tedious but
instructive, at least during the learning phase. Sketching processes in diagrams, how-
ever, always helps in visualizing the appropriate information.

Calculating processes including phase transitions. Pure fluids that are allowed to
go through phase changes play an important role in the sciences and in engineering.
So far, we have a theory of uniform reversible processes, as discussed in the previous
section. Even though real cases hardly ever conform to the conditions of this model,

Figure 15.28:  Superheated va-
por region of the TS diagram pro-
vides data about the vapor state 
of the fluid. Lines of constant 
pressure and enthalpy are given. 
Where the lines of constant en-
thalpy are horizontal, we can 
consider the vapor to be in the 
ideal gas state. Computations 
were done using the program 
EES (Klein et at., 1991).
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its results can still be applied. As long as we can provide information about the values
of some variables at certain states, changes occurring between those states can be com-
puted for the fluid even if irreversibilities are present. In the absence of more detailed
information about actual processes, it is important to be able to approximate them by
simple models. Experience shows that the results derived provide for a good basis
from which to discuss of concrete cases in engineering and the sciences.

15.4.2 Vapor Power Cycles

Detailed fluid properties play an important role in the design of power plants which
use vapor power cycles such as the steam power plant of Fig. 15.30. The thermal part
of the plant consists of a boiler, turbine, condenser, and feedwater pump. A fluid such
as water circulates through the boiler where steam is produced (points 1 to 2 in
Fig. 15.30). Then the steam drives the turbine (points 2 to 3) and enters the condenser,
where it is turned into liquid water (points 3 to 4). The feedwater pump increases the
pressure of the fluid to the value at the inlet to the turbine (points 4 to 1), completing
the cycle.

Principle of operation of a steam power plant. We can model the cycle undergone
by the fluid as a sequence of steps that we have studied before. First consider each step
to be reversible. Starting with the process in the boiler, liquid water at high pressure
(P1) is first heated and then evaporated; assume the step to be finished when all the
water is turned into saturated vapor (point 2 in Fig. 15.31). We shall learn later about
the consequences of superheating for the vapor power cycle. The step leading from
point 1 to point 2 is supposed to take place at constant pressure (P2 = P1). A simplified
model of what happens to the fluid expresses the energy current of heating in the boiler
as follows:

(15.62)

Im is the current of mass of the fluid flowing through the main loop of the power plant,
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Figure 15.30:  Steam power 
plant. Four devices operate on the 
water. The feedwater pump in-
creases the pressure of the cold 
water. This water is then heated 
and evaporated in the boiler. 
Steam at high pressure drives the 
turbine and is thereby expanded 
adiabatically. Finally, the con-
denser turns the low pressure 
steam into water. The dashed line 
is the surface of the system that 
encloses the fluid operating in the 
power plant.
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and T1 can be approximated by T4. (The feedwater pump does not strongly increase
the temperature of liquid water.) The upper and the lower temperatures of the cycle
are determined by the pressure associated with the appropriate point. Alternatively,
the first term in Equ.(15.62) can be computed using the enthalpy of the fluid.

The second step of the cycle, from point 2 to point 3, is taken to be an isentropic (adi-
abatic and reversible) expansion of the fluid. According to Fig. 15.31, the quality of
the steam leaving the turbine is less than 1, which means that droplets of water form
in the turbine. This effect can easily lead to problems with operating the engine. There-
fore one tries to keep the quality as high as possible, which can be achieved by super-
heating the steam (see below). The energy released in this step is transferred to the
electric generator of the power plant; it can be calculated either directly or indirectly
by calculating the other rates of energy transfer in the cycle.

The condenser, which is basically a heat exchanger operating at constant pressure,
turns the steam which has not already condensed, into liquid water. Here, all the en-
tropy added to the cycle in heating is removed and transferred to the environment
through a cooling tower or similar device. The rate of energy transfer is easily calcu-
lated to be equal to

(15.63)

The final step from point 4 back to point 1 consists of raising the pressure of the liquid
to its upper value. The pump is supposed to operate reversibly and adiabatically. Since
the density of the liquid usually does not change appreciably, the energy current nec-
essary for operating the pump is computed as follows:

(15.64)

Overall, the current of energy delivered by the power plant is calculated from a steady
state balance of energy for the system within the dashed line in Fig. 15.30:

(15.65)

Superheating in the power cycle. If heating of the fluid in the boiler is not stopped
at the point where all the liquid has turned into saturated vapor, the cycle depicted in
Fig. 15.31 changes as demonstrated in Fig. 15.32. The superheating is done in a heat
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exchanger separate from the boiler, called the superheater. The boiler and superheater
are known as the steam generator. Superheating has two main effects: first, the aver-
age temperature of heating of the fluid is higher than it would be without the additional
process, leading to increased efficiency of the steam engine; second, the problem of
low quality of the steam leaving the turbine is alleviated. You may even get pure vapor
(quality equal to 1) at the exit of the turbine.

Irreversibilities in a vapor power plant. There are numerous sources of entropy pro-
duction in a vapor power plant. If you look at Fig. 15.30, you can identify different
processes leading to irreversibilities. First, there is the case of generation of heat that
is normally accomplished by combustion. As you follow the path of entropy through
the plant, you next have to consider the effect of the heat exchangers in the boiler and
the condenser. In the fluid undergoing the Rankine cycle, entropy production chiefly
occurs in the turbine and the pump, with the turbine usually contributing much more
strongly. This latter effect is depicted in Fig. 15.33.

It is important to consider the rates of entropy production in the entire plant if we wish
to quantify the losses occurring as a result of irreversibility (Example 15.13).

15.4.3 Vapor Refrigeration and Heat Pump Systems

Refrigeration and the application of heat pumps to heating systems are two areas
where intensive research and development are taking place. The common refrigerants
used to date have to be replaced because they are responsible for reducing the ozone
layer when released into the environment; and heat pumps have to compete with cheap

Figure 15.32:  Vapor power cycle 
(ideal Rankine cycle) with super-
heating of the steam. 
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fossil fuel for a place in heating systems. Finally, in the future, we may wish to replace
these sources of energy by those provided directly or indirectly by the Sun, again forc-
ing us to adapt the technical systems.

A vapor Carnot refrigeration or heat pump cycle. We discussed the principle of
operation of refrigerators or heat pumps in Chapter 4. There we saw that entropy is
pumped from a lower temperature space, using supplied energy, to a higher tempera-
ture environment. A simple device for achieving this is a fluid running through a re-
verse Carnot cycle. If a substance is used which changes its phase in the range of
temperatures and pressures encountered, the cycle may look like the one depicted in
Fig. 15.34. Starting at point 1, the fluid which has just absorbed the entropy removed
from the cold environment, is compressed isentropically to a state corresponding to
point 2. Its temperature has therefore changed from the lower value, TL , to the higher
one, TH . The fluid is then condensed at TH to form a saturated liquid at state 3, reject-
ing the entropy it received during the step from point 4 to point 1. To ready the work-
ing fluid for picking up entropy again, its temperature must be reduced back to TL
which is achieved by an isentropic expansion to state 4. Finally, the fluid is evaporated
while entropy is transferred into it from the cold space. This completes the cycle lead-
ing through points 1–2–3–4–1.

A technical realization of the Carnot cycle described uses four elements as shown in
Fig. 15.35. We need a compressor to let the fluid undergo the step from point 1 to point
2. As in previous discussions, we first assume the process undergone by the fluid to
be reversible; in other words, step 1–2 is a reversible adiabatic compression. Conden-
sation of the high temperature and high entropy fluid takes place at constant pressure
and temperature in the condenser, which is in contact with the high temperature envi-
ronment. During step 2–3, the entropy picked up from the cold environment is rejected
to the space at high temperature. The subsequent isentropic expansion requires a tur-
bine which delivers useful energy for driving the compression. Finally, we need an
evaporator in contact with the cold space.

A more realistic vapor refrigeration cycle. Even if we could achieve this reversible
operation of the Carnot cycle, we would still not realize it in practice for two reasons.
First, since the fluid in state 1 is a mixture of liquid and vapor, the presence of liquid
droplets might damage the compressor. Therefore, step 1–2 in Fig. 15.34 is replaced
by one where we have only vapor (see Fig. 15.36). The latter process is called dry
compression, in contrast to the wet compression discussed above.
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Figure 15.34:  Carnot refrigera-
tion cycle in the liquid-vapor re-
gion of a fluid. The cycle runs in 
the opposite direction from a 
Carnot power process.

Figure 15.35:  Reversible four-
step vapor refrigeration cycle re-
quires four components. Evapo-
rator and condenser are in contact 
with the cold and the warm spac-
es, respectively. Commonly, the 
turbine is replaced by a throttling 
valve as in Fig. 15.36. 
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Second, the turbine normally is left out of the cycle. First of all, step 3–4 delivers only
a small amount of energy compared to the energy needed for compression. Addition-
ally, turbines operate rather poorly under the conditions called for in a refrigeration
cycle. Therefore, the turbine is replaced by a simple throttling valve; the liquid at point
3 is allowed to expand freely while conserving its specific enthalpy:

(15.66)

Naturally, this process is irreversible as is step 1–2, under realistic conditions in the
compressor (not shown in Fig. 15.36).

Absorption refrigeration. Energy is needed to raise entropy from a cold space to
warmer surroundings. In the refrigeration cycles discussed, this energy is provided
during the compression stage of the refrigerator or the heat pump. The compressor
needs to be driven mechanically (or electrically) requiring other than thermal energy
sources. There is a way, however, to use heat from a high temperature source to drive
a refrigeration cycle. 

Consider the setup as Fig. 15.37 which provides the technical means for an absorption
refrigeration cycle. At point 1, a refrigerant, such as ammonia, leaves the evaporator
as vapor. Next, the vapor enters the first of three elements which replace the compres-
sor of a standard refrigerator. This device is an absorber, in which ammonia is ab-
sorbed by liquid water to form a strong water-ammonia solution. This step is exother-
mic, meaning that entropy will be rejected to the environment, requiring a means of
cooling the absorber. The liquid solution then enters a pump which increases the pres-
sure of the fluid to the level needed subsequently in the condenser. Since the fluid is a
liquid, compressing it requires much less energy than has to be supplied in the com-
pression step of a normal refrigerator. The strong solution leaves the pump at high
pressure and enters a generator where a high-temperature source of entropy drives the
ammonia out of the solution.

Now the process splits into two paths. The weak solution (essentially water obtained
after the ammonia has been driven out) returns to the absorber through a valve which
allows for the pressure of the fluid to be reduced to its value in the lower portion of
the cycle. Ammonia vapor at high pressure and temperature, on the other hand, enters
the condenser, where the entropy picked up from the space to be cooled is rejected to
the environment. The vapor finishes its cycle by passing through the throttling valve

h h3 4=

Figure 15.36:  A realistic vapor 
refrigeration cycle includes a 
throttling valve rather than a tur-
bine for the expansion step. Also, 
step 1–2 is performed with vapor 
only, instead of with a mixture of 
vapor and liquid.
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from point 3 to point 4, and by subsequently flowing through the evaporator where it
again absorbs entropy.

If you consider the thermodynamics of this entire process, you will notice that the en-
ergy needed to pump entropy from the cold space to the warmer surroundings is pro-
vided by lowering entropy from the high temperature source through the generator to
the absorber and into the fluid used to cool the latter device. In effect, we have a “ther-
mal transformer” in analogy to electrical or mechanical transformers (a gear box
would provide an example of the latter). The flow diagram in Fig. 15.37 provides an
explanation of the process.

Having a means of pumping heat without the need for electrical power allows for re-
frigeration and heat pump processes to be directly driven by the Sun. Absorption re-
frigeration has been studied extensively in solar energy engineering. The solar
collectors, absorber, pump, and generator, however, may increase the cost of such sys-
tems considerably, making them too expensive where electrical power is cheap.

15. How are properties of mixtures of liquid and vapor calculated?

16. What is the meaning of the saturation line?

17. Consider an amount of liquid being converted into steam. What can be said about the
chemical potential of the mixture of liquid and steam along the horizontal line in 15.26?

18. What does Equ.(15.54) tell us about the chemical potential of a compressed liquid at dif-
ferent pressures for a given temperature?

19. Why is the temperature coefficient of enthalpy of an incompressible fluid equal to the tem-
perature coefficient of energy?

20. What problem can occur in a turbine if the steam flowing in is saturated?

21. Why does step 3-4 in Fig. 15.36 run to the lower right in the TS diagram?

Figure 15.37:  In an absorption 
refrigeration or heat pump sys-
tem, the energy needed to pump 
entropy from a cold to a warm 
space is provided by a thermal 
process running between a gener-
ator and an absorber. In the ab-
sorber, the fluid of the refriger-
ation cycle (ammonia) is ab-
sorbed by a liquid (water). In the 
generator, heat from a high tem-
perature source drives the refrig-
erant out of the strong solution. 
The former step is exothermic, 
while the latter is endothermic. 
(See also Herrmann, 2009.)
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EXAMPLE 15.10. The entropy of a mixture of water and water vapor.

Water is found to vaporize at a temperature of 200°C. If there are 12 kg of liquid water and 18
kg of water vapor present, how large is the entropy of the mixture? Estimate the necessary val-
ues from Fig. 15.27.

SOLUTION: First, we determine the quality of the mixture of steam and water. It is given by

Now we need only the specific entropies of saturated water and of saturated steam at a transi-
tional temperature of 200°C. According to Fig. 15.27, the values are 2300 J/(K · kg) and 6400 J/
(K · kg), respectively. Using Equation (201a), we calculate the specific entropy of the mixture
to be equal to

With a total mass of 30 kg, the final result is 143 kJ/K.

EXAMPLE 15.11. Energy currents and efficiency of an ideal Rankine cycle.

An ideal Rankine cycle is operated for water at a high pressure of 80 bar and a low pressure of
0.1 bar. Steam is not superheated. (a) With a current of water of 100 kg/s, estimate the energy
current with respect to the fluid in the boiler; use the diagrams showing fluid properties provid-
ed in this chapter. (b) How large is the energy current leaving the power plant due to cooling?
(c) What is the power necessary to operate the feedwater pump? (d) Calculate the thermal effi-
ciency of the cycle. (e) If the water used for cooling the plant enters at a temperature of 20°C
and leaves at 35°C, how large does the current of mass of the cooling liquid have to be? (f) Cal-
culate the quality of the fluid after isentropic expansion. (g) If the quality at the end of isotropic
expansion is equal to 1, what is the efficiency of the cycle?

SOLUTION: Since you will probably solve the problem by reading property values from the
graphs, you will get only approximate results. (Try solving this same problem with values read
from tables or computed using appropriate programs.) First consider Fig. 15.4, which has been
redrawn in a slightly different manner in Fig. 15.33 and Fig. Ex.11. Both cycles, i.e., those with
and without superheating, have been superimposed on the graph below. The former joins the
points 1 – 2' – 2'' – 3' – 4 – 1, while the latter includes point 2 and 3.

The lines of constant pressure for 0.1 bar, 60 bar, and 150 bar have been included. For the upper
pressure of 100 bar, we have to interpolate in the diagram. We can read the following values
from this graph and from Figures 15.10 and 15.27 (see Table 15.4 below):

(a) The energy current added to the steam in heating from point 1 to point 2'' can be estimated
as in Equ.(15.62):

(b) Condensation takes place at constant temperature from point 3' to point 4:

(c) The energy current necessary for compressing the liquid from the state at point 4 to the one
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at point 1 turns out to be rather small:

(d) The numbers computed so far let us calculate the thermal efficiency of the plant:

(e) The entire energy current discharged in the condenser must be carried away by the cooling
water. For this fluid, we can assume conditions of constant pressure and constant temperature
coefficient of enthalpy. Therefore we have

(f) By extrapolating the lines of constant quality in Fig. 15.27 down to a temperature of 50°C,
we obtain a value of x = 0.7 for the quality of the vapor at point 3'.

(g) To answer this question, we have to recalculate the quantities obtained above, this time in-
cluding superheating of the steam from point 2'' to point 2. The important quantity to be read
from the graph is the specific entropy of 8.0 kJ/(K · kg) at a temperature of about 1000°C at point
2. Estimates of the additional or new energy currents are

The new thermal efficiency turns out to be ((256+210)–236)/(256+210) = 0.49.

Table 15.4: Steam properties at low and high pressure in the cycle

Pressure Tevaporation sl sg

0.1 bar 50°C 0.7 kJ/(K · kg)

80 bar 300°C 3.2 kJ/(K · kg) 5.7 kJ/(K · kg)
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EXAMPLE 15.12. Entropy production and efficiency of a turbine.

The isentropic efficiency of a turbine is defined as the ratio of its actual power and the power it
would have if it were operated isentropically. (a) Draw a flow diagram for the operation of the
turbine. (b) Derive an expression for the rate of entropy production of the turbine in terms of the
efficiency, the enthalpies of the fluid at points 2 and 3s in Fig. 15.33, and the current of mass of
the fluid.

SOLUTION: (a) According to the discussion of flow processes in Chapter 8, the flow diagram
including the effect of irreversibility must look as shown in Fig. Ex.12. While the current of
amount of substance is constant, the flux of entropy increases because of irreversibility.

(b) The energy current associated with the mechanical process of the turbine can be calculated
as the difference of the energy fluxes entering and leaving the system together with the steam.
According to Section 8.3, the latter currents can be written in terms of the flux of amount of
substance, the chemical potentials, and the molar entropies:

The term multiplying the current In is equal to the difference of the molar enthalpies of the fluid
at points 2 and 3s in Fig. 15.33. Therefore we have

While the quantity on the left-hand side is the real power of the turbine, the first term on the
right is the isentropic power. With the definition

we can express the rate of production of entropy as follows:

EXAMPLE 15.13. Contributions to irreversibility in a steam power plant.

Consider a power plant running a vapor cycle as described in Example 15.11 (without super-
heating). Allow for the adiabatic expansion in the turbine to be irreversible. Additional infor-
mation is provided about the situation in the heat exchangers and in the burner. Calculate the
relative importance of the different sources of irreversibility. (a) Assume that methane is burned
as fuel using the theoretical amount of air. The hot gases are cooled to 500°C in the heat ex-
changer, where steam is produced, before they are emitted through the stack of the power plant.
Calculate the flux of mass of methane and air necessary to operate the cycle. Calculate the rates
of production of entropy for the combustion and for heat transfer in the heat exchanger. (b) Let
the turbine have an isentropic efficiency of 90%. Calculate the rate of entropy production in the
turbine. (c) What is the rate of entropy production in the heat exchanger where the steam is con-
densed? (d) Express each contribution to the rate of production of entropy as a fraction of the
total irreversibility.
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SOLUTION: There are four sources of irreversibility to be considered (the contribution to the
production of entropy in the pump is neglected). The schematic of the plant shows the corre-
sponding four control volumes.

(a) Burning of methane with air was discussed in Example 8.11. In the accompanying diagram,
the flame temperature and the rate of entropy production per mole of methane burned in unit
time can be found.

The energy current IE,1–2'' was calculated in Example 15.11 as 255 MW. Now, two expressions
for the balance of energy for both the burner and the heat exchanger, and for the heat exchanger
alone, can be established:

In is the flux of amount of substance for methane, and Tex denotes the temperature of the exhaust
gases. Ta is set equal to 298 K. With Tflame = 2330 K and Tex = 773 K, the flux of amount of
substance of methane turns out to be 400 mole/s, which translates into a mass flux of 6.4 kg/s
for methane and 110 kg/s for air. Now, with the results of Example 8.11, the rate of production
of entropy in the burner must be equal to

The balance of entropy for the heat exchanger, on the other hand, takes the form
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or

(b) The rate of entropy production in the turbine can be calculated according to the results of
Example 15.12. The numbers computed in Example 15.11 tell us that the isentropic power of
the turbine is 256MW – 162 MW = 94 MW. Therefore, the rate of entropy production is

(c) We have to recalculate the specific entropy of the steam leaving the turbine and entering the
condenser. This is done simply by adding the entropy produced in the turbine to the value at
point 2 in the power plant. With s3 = s3' + 0.29 kJ/(K · kg) = 6.0 J/(K · kg), the balance of entropy
for the condenser is given by

The mass flux of the cooling water has to be recalculated as well; its new value is 2720 kg/s.

(d) Relative contributions to irreversibility and fluxes of entropy with respect to the entire plant
appear in Table 15.5.

EXERCISES AND PROBLEMS

1. Prove that the density of moist air is always smaller than that of dry air at the same tem-
perature and pressure.

2. During the day, at a temperature of 30°C, the relative humidity of the air was measured to
be 60%. How far does the temperature have to drop at night for dew to form on the grass?

3. Show that the humidity ratio given in terms of the wet bulb temperature by Equ.(15.33) can

Table 15.5: Irreversibilities in a power plant

Contribution Fraction of total

Entropy production as a result of combustion 0.44

Entropy production in boiler heat exchanger 0.46

Entropy production in turbine 0.04

Entropy production in condenser heat exchanger 0.06

Entropy flux with fuel and exhaust 0.18

Entropy flux to environment through condenser 0.82
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be approximated as follows:

What approximations have to be made? Give an interpretation of the first of these equa-
tions.

4. Show that the expression for the total flux of water vapor in a column of (still) humid air
above a body of water is given by Equ.(15.40).

5. Derive the differential equation for diffusion of water vapor in a container as in Fig. 15.19,
and show that its solution is given by Equ.(15.43).

6. A stainless steel temperature probe is placed in water and then removed with a drop of wa-
ter hanging from its end. Data can be found in Equ.(6.8). Create a simple system dynamics
model that might explain this phenomenon. What parameters need to be known if we wish
to use the model to determine the current of water from the drop due to evaporation?

7. The Rankine-Process is a model for the processes undergone by the working fluid (water
and steam) in a power plant with a steam turbine (solid line in the diagram). From 1 to 2,
the water is warmed by heating. At the same time, the pressure is raised to 60 bar. Further
heating leads to total evaporation (2 to 3). Then, at constant pressure, the steam is further
heated (3 to 4). Between 4 and 5, the steam is expanded isentropically in the turbine (the
pressure here reduces to 1 bar. Then the steam is condensed in a cooler (5 until 1). In the
following, consider 1 kg of water.

(a) Treat the steam from point 3 to 4 as an ideal gas with a temperature coefficient of
enthalpy (specific heat at constant pressure) of 3000 J/(K · kg). How much entropy must be
introduced to the gas so that its temperature increases as seen in the diagram? Compare
your theoretical calculation with the diagram. (b) How much energy is released in the
cooler into the environment per kilogram of water? (The process from point 5 to 1). What
is the flow of energy to the environment when the mass flow of the working fluids through
the plant is 800 kg/s?

8. Determine the vapor pressure of Refrigerant 123 (R123) as a function of temperature. It is
known that at 0°C the vapor pressure is 32.7 kPa. Use data from Fig. 15.24 and compare
your result to Fig. P.8.

9. Express the efficiency of the ideal Rankine cycle in terms of the average temperature of
heating. Neglect the feed-water pump.

10. Discuss the effect of changing the upper and the lower operating pressures of the Rankine
cycle. Why is a condenser used in vapor power plants if steam leaving the turbine could be
discharged directly to the environment?

11. Calculate the Carnot efficiency of the cycles running between the upper and the lower op-
erating temperatures occurring in the processes of Example 15.11 (300°C and 40°C, with-
out superheating). Does the difference between the Carnot efficiencies and the values
calculated in that example result from dissipation?
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12. Assume the furnace of the Carnot cycle proposed in Problem 11 to operate at 500°C and
the condenser at 20°C, respectively. The cycle undergone by the working fluid is supposed
to be the same as before. Calculate the rate of production of entropy and the rate of loss of
availability.

13. (a) Estimate the efficiency of a vapor power cycle without superheating designed for the
fluid R123. The heat is supposed to be delivered by solar collectors such as vacuum tubes.
Saturated liquid enters the evaporator at a pressure of 8.0 bar, while the condenser operates
at a temperature of 30°C. (Use property data found in Fig. 15.24 and Fig. P.8.) (b) If the
collectors deliver an energy current of 350 W per square meter of collector area, what is
the minimum collector area needed per kW of power of the engine?

14. Estimate the amount of entropy produced in the throttling process of a refrigerant if the fol-
lowing data are given: the initial and the final pressure, and the initial and the final specific
volume of the fluid.

15. Superheated water vapor at a pressure of 30 bar and a temperature of 300°C expands isen-
tropically to a state with a temperature of 100°C. (Such a change might occur for adiabatic
expansion of an ideal fluid in a turbine.) (a) Calculate the specific entropy and enthalpy of
the fluid. (b) Determine the pressure and the temperature at which the fluid begins to con-
dense. (c) Calculate the pressure and the quality of the fluid mixture at the final state. Per-
form the calculations by interpolation of the graphs provided above.

16. Superheated water vapor at a pressure of 10 bar and a temperature of 400°C is expanded
in an isobaric process until the state of saturated liquid is reached. (a) How much entropy
must be emitted or absorbed by 10 kg of the fluid? (b) How much energy is transferred in
heating or in cooling? (c) How much energy has been transferred as a consequence of the
mechanical process? Use tables provided in this chapter for calculations.
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In this final chapter, solar radiation and aspects of its nature that are important in solar
energy engineering will be discussed. The results concerning radiative transfer of en-
tropy and energy, and spectral distributions of radiation derived in Chapter 12 will be
made use of.
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Our Sun is a rather average main sequence star

 

1

 

 of spectral type G2

 

2

 

 which means that
it has a surface temperature of a little less than 6000 K and pours out radiation with an
energy flux of 4

 

 

 

·

 

 

 

10

 

26

 

 W. At the distance of the Earth, this flux has thinned out to a
flux density (normal irradiance) of 1360 W/m

 

2

 

. This is the radiation which penetrates
the Earth’s atmosphere, sets in motion many of the processes in the air and in the
oceans, and makes possible the existence of life. 

In the last section of this chapter, we will consider the origin and the form of solar ra-
diation found outside our atmosphere, before discussing radiative processes in the at-

radiation found at the surface of the Earth including a process which was left out of
consideration so far, namely, scattering of radiation. Finally, two subjects of interest
in solar energy engineering will be addressed: the concentration of sunlight to achieve
high temperatures, and the absorption of radiation by simple flat solar collectors.

 

16.1.1 The Origin of Solar Radiation

 

Stars such as our Sun are spheres made of hydrogen and helium (plus a small fraction
of the heavier elements), which under the influence of their own gravity attain high

 

1. Main sequence stars are those in the first and longest phase of their life, during which they
burn hydrogen at their centers. On astrophysics in general, see F. H. Shu (1982); on stars
in particular, see C. Payne-Gaposhkin (1979), or I.S. Shklovskii (1978).

2. The spectra of normal stars are put into a sequence representing decreasing surface tem-
perature which corresponds to changing the apparent color of the star from blue to red. The
sequence is labeled O B A F G K M, and it represents surface temperatures from some
20000 K to about 3000 K.
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mosphere. This should lead to an assessment of the entropy and the temperature of the
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pressures and temperatures at their centers that allow nuclear reactions to occur. It is
believed that all the energy released as a consequence of these reactions is carried out-
ward and radiated away from the surface. Since solar material is fairly opaque, the ra-
diation we receive essentially originates in a thin layer at the surface of the star. This
radiation then spreads through space, a process which preserves the essential charac-
teristics of the light, namely, its entropy and energy intensity and, therefore, its tem-
perature.

 

The interior of the Sun.

 

 Our central star is a sphere of gas with a radius of about
696,000 km and a mass of 1.989

 

 

 

·

 

 

 

10

 

30

 

 kg, made out of hydrogen (70% by mass), he-
lium (27%), and a sprinkling of heavier elements (3%).

 

3

 

 The composition of stars is
derived from spectral observations of their surfaces. Naturally, to take this as the com-
position of the interior as well, we must have reason to believe that a star is well mixed.
Indeed, it is assumed that during formation the material of a star is subject to heavy
mixing, leading to a uniform composition. Now, since few stars, including our Sun,
are found to be precisely at the beginning of their life, we can assume that the changes
of composition due to nuclear reactions in the interior do not reach the surface. Models
of the structure of main sequence stars show that convection occurs in these objects
either deep inside the core, or near the outer layers only, which prevents mixing of the
interior and the surface. 

Therefore, new stars can be considered to be uniform spheres of gas. For a given com-
position, there is essentially only one parameter which distinguishes between different
stars and influences their evolution from newly born to old and highly evolved—the
mass of the object. Masses of stars span a range of about one hundredth of the mass of
our Sun to maybe 100 times its mass. Since during their first stage of evolution as main
sequence stars changes occur rather gradually, one is justified in approximating their
structure as spherically symmetric fluid bodies in hydrostatic equilibrium. A simple
calculation

 

4

 

 shows that the pressure at the center of a sphere with the properties of our
Sun should be around 6

 

 

 

·

 

 

 

10

 

14

 

 Pa. Assuming ideal gas properties we then estimate the
central temperature of the Sun to be some 10 million K. This result justifies the initial
assumption that the matter inside a star must behave very much like an ideal gas

 

5

 

 even
at densities of 100 times that of water, a value which comes close to that at the center
of the Sun. The temperatures found at and near the center of a star are high enough to
allow for hydrogen burning to occur (hydrogen fuses into helium). These nuclear re-
actions release the vast amounts of energy which, in the end, are carried away with the
radiation from the surface of the star. Before this can happen, however, entropy and
energy need to be transported from the interior to the surface.

It is found that, again for properties encountered in main sequence stars, conduction
of heat is negligible. This leaves convection and radiation as modes of transfer. If the
temperature gradient required for the diffusion of radiation (see Section 12.2.5) is not
too large, radiation will prevail and the gas inside the star will be stable against con-
vective disturbances (Section 14.4). If, on the other hand, the temperature gradient re-

 

3. Numbers can be found in K.R. Lang (1980).

4. Consider a column of fluid extending from the center to the surface and calculate its weight
from an average value of the gravitational field inside the star. See Schwarzschild (1958)
for a simple discussion of the interior state of stars.

5. The atoms inside a star must be completely ionized, leading to a gas made out of nuclei
and electrons, both behaving as ideal gases for the states found inside main sequence stars.
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quired for transporting all the heat becomes too large, convection will set in and totally
dominate the transport mechanisms. Now, numerical models of the interior of well
mixed spheres of gas show that stars of solar mass are stable against convection in
their inner parts. Further out toward the surface, however, radiation can no longer car-
ry the fluxes of entropy and energy; convection starts and takes over the transport all
the way to the surface. With stars whose mass is larger than about twice that of the sun
the interior state is just the opposite. Because of the much higher rate of release of en-
ergy at the center compared to solar-type stars, convection is required for the inner
parts while radiation occurs in the outer layers.

Changes of the initial structure of stars are essentially a consequence of nuclear reac-
tions near the center which slowly change the composition of the gas.

 

6

 

 As a result, the
interior structure changes considerably. It is interesting to see that during the hydrogen
burning phase, the exterior appearance of the main sequence stars does not change
nearly as much.

 

Radiation from the surface of stars.

 

 Models calculated on the basis of the processes
just described yield the radius and the luminosity of the star in addition to details on
the interior state.

 

7

 

 These values allow for the temperature of the surface of the star to
be calculated if we assume the radiation to be that of a black body (Fig. 12.10). As we
know from the laws of hemispherical emission from the surface of a black body, the
relation between hemispherical flux, surface area, and temperature yields

 

(16.1)

 

In astronomy, the energy flux carried away from the surface of a star is called the lu-
minosity 

 

L

 

. Currently, the luminosity of the Sun, as measured from the radiation above
the Earth’s atmosphere,
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 is 3.844
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 m, the equivalent
blackbody temperature for the surface of the Sun is 5777 K. If we do this calculation
for the one-parameter sequence of models of gas spheres for varying mass, we may
plot the result in a luminosity-temperature diagram which is called the Hertzsprung-
Russell diagram (Fig. 16.1). The most interesting result of these computations shows
that the surface properties put the model stars along a line from the upper left to the
lower right in the diagram precisely where observations place the so-called main se-
quence stars. Therefore, main sequence stars are interpreted as stars in the first phase
of their life, during which they transform hydrogen into helium. They stay in a narrow
band along the main sequence in the Hertzsprung-Russell diagram as long as they
have enough hydrogen at the center for this type of nuclear reaction to occur.

 

The radiation field at the surface of the sun and at the distance of the Earth.

 

 As
you can see by comparing the measured spectrum of solar radiation with that of a
black body of equivalent temperature (Fig. 16.2), for the purpose of solar energy en-
gineering solar radiation quite nicely approximates the ideal case.

 

6. Stars of solar mass have a luminosity which allows them to burn hydrogen at their centers
for some 10 billion years. A star of 5 solar masses, however, burns so fast that hydrogen
will be depleted in the inner regions in about 70 million years.

7. See D.D. Clayton (1968) for an account of stellar structure and evolution. 

8. The value of the luminosity of the Sun is the result of the integration of the WRC spectrum
over wavelength (Figures 12.8 and 16.2).

L R Ts s= 4 2 4π σ
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Figure 16.1:  Hertzsprung-Rus-
sell diagram of main sequence 
stars. The diagram shows the log-
arithm of the ratio of the lumi-
nosity of a star to that of the sun 
as a function of the logarithm of 
the surface temperature. The re-
sult holds for models of zero age 
main sequence (ZAMS) stars. 
Results of model calculations 
have been taken from Iben 
(1967).
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The radiation emitted by our Sun originates in the uppermost layers at the surface.
This part of the Sun is called the photosphere; obviously, conditions there are more
complicated than envisioned by the model of a black body. What you cannot see in the
spectrum in Fig. 16.2 are the many narrow absorption lines which result from atomic
absorption in the outermost layers of the photosphere. These lines provide most of the
detailed information about the conditions at the surface of our star. In particular,
through spectroscopy we determine the composition of the Sun’s surface. In the last
century, a new element was found in the solar spectrum in this way which received the
name of the Sun, helium.

Following the discussion of the laws for monochromatic radiation in Section 12.3, we
may derive the values of the entropy intensity and the temperature for different wave-
lengths for the radiation at the surface of the Sun. According to Equations (12.50) and
(12.35), and Problem 7 of Chapter 12, the entropy intensity is given by 

 

(16.2)

 

while the monochromatic temperature is computed from Equ.(12.52) which yields

 

(16.3)

 

Calculation of the monochromatic temperature and the entropy intensity for both the
measured values of the solar spectrum and its equivalent blackbody spectrum shows
(Fig. 16.3) that the difference between the actual radiation and the ideal one is small.
Integration of the spectral entropy intensity yields a value which is only slightly larger
for the blackbody spectrum than for the actual one. (Since turning solar radiation into
an equivalent blackbody spectrum should produce entropy, this result is to be expect-
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Figure 16.2:  Black body spec-
trum for a temperature of 5770 K 
superimposed on the spectrum of 
solar radiation observed above 
the surface of the Earth’s atmo-
sphere. Since the properties of 
the radiation do not change on 
their way from the Sun to the 
Earth, the spectrum is equal to 
that found at the surface of the 
Sun, multiplied by the (constant) 
solid angle of the Sun as seen 
from the Earth.
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ed.) Especially in the range where the Earth’s atmosphere lets most of the radiation
pass, the deviation is very small. We should expect changes in the radiation from
blackbody conditions to result mostly from the interaction with our atmosphere.

 

16.1.2 Absorption, Scattering, and Polarization in the Atmosphere

 

The Earth’s atmosphere changes the physical state of solar radiation arriving at the
surface of our planet considerably (Fig. 16.4). Different molecules absorb some of the
light, and molecules and aerosols scatter part of it. As a result, for cloudless skies, we
have both direct and diffuse radiation, where the diffuse part is composed of the light
which has been scattered. There is still another effect which should be taken into ac-
count: scattering polarizes the rays that are essentially unpolarized before they hit the
atmosphere.

Naturally, the magnitude of the effects depends both upon the properties of the atmo-
sphere and its thickness, i.e., the amount of air solar rays must penetrate (Fig. 16.4).
The latter quantity is called relative 

 

air mass

 

, where an air mass equal to 1 means that
the sun is precisely overhead. If we give the position of the sun in the sky in terms of
its zenith angle 

 

θ

 

, we can calculate the distance solar rays have to travel through the
atmosphere to the observer. For angles not too close to 90°, the relative air mass 

 

m

 

a

 

 is

 

(16.4)

 

Note that the solar irradiance for the horizontal surface at the top of the atmosphere
depends upon the zenith angle of the Sun as well:

 

(16.5)

 

where 

 

G

 

sc

 

 is the solar constant of 1367 W/m

 

2

 

, which is obtained from integration of
the WRC spectrum (Fig. 16.2). The following points will be discussed for a cloudless
atmosphere only.
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Figure 16.3:  Monochromatic 
temperature of the radiation from 
the surface of the sun both for 
measured values and for a black-
body spectrum at 5777 K. Also 
shown are the entropy intensities 
for measured values and for the 
equivalent blackbody spectrum.
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Attenuation of solar radiation.

 

 The influence of the Earth’s atmosphere is commonly
described in terms of 

 

attenuation or extinction coefficients

 

 which should be given for
every wavelength. An extinction coefficient is the sum of absorption coefficient and
scattering coefficient, i.e.,

 

(16.6)

 

(see Problem 5 in Chapter 12), and it is defined so that

 

(16.7)

 

which, for constant attenuation coefficients along a path 

 

s

 

 turns out to be equivalent to

 

(16.8)

 

In these equations, 

 

s

 

 is the length of the path travelled by a ray in the atmosphere, and
the index 

 

o

 

 refers to the radiation above the atmosphere. In solar radiation computa-
tions, it is common to refer the extinction coefficients to relative air mass, which
means that you need to replace 

 

s

 

 by 

 

m

 

a

 

 

 

, according to Equ.(16.4), in the equations.
Since the term containing the exponential function gives the ratio of the transmitted
light to the incident light, it is called the 

 

transmittance

 

 

 

τ

 

 of the atmosphere:

 

(16.9)

 

where 

 

k

 

λ

 

 replaces the normal extinction coefficient. If the coefficients and the original
undisturbed spectrum are known, the effect of the atmosphere can be computed for ev-
ery wavelength upon which the total influence is obtained by integration over the
spectrum.

 

Absorption and scattering.

 

 Absorption of a ray of light by a clear atmosphere is due
to molecular effects, and strongly depends upon wavelength, leading to absorption
bands in the solar spectrum at the surface of the Earth. In the part of the radiation ex-
tending from short wavelengths up to 0.35 µm, the most important contribution to mo-
lecular absorption comes from ozone; absorption bands due to water vapor influence

θ

m = 1

Figure 16.4:  When solar radia-
tion penetrates the Earth’s atmo-
sphere, it is both absorbed and 
scattered. In addition, while ex-
traterrestrial radiation is more or 
less unpolarized, scattering po-
larizes the light arriving at the 
surface of the planet. All these ef-
fects change the relative amounts 
of entropy and energy of radia-
tion, therefore leading to changes 
of the monochromatic tempera-
tures.

µ κ βλ λ λ= +E E

di

ds
iE
E

λ
λµ

s
s

( )
= − ( )

i i sE E oλ λ µs( ) = −( )exp

τ λ λ= −( )exp k ma



 

16.1  S

 

OLAR

 

 R

 

ADIATION

 

P

 

ART

 

 IV

 

657

 

the radiation mostly between 1 µm and 4 µm; and the uniformly mixed gases mainly
absorb at wavelengths above 2 µm. Aerosols add a little bit to absorption but their
main influence is upon scattering and will be considered later (Fig. 16.5).

 

9

 

The spectral transmittance of ozone is calculated in terms of the attenuation coefficient

 

k

 

O

 

λ

 

 

 

, the amount of ozone, which is given as an equivalent length 

 

l

 

 in cm, and the air
mass 

 

m

 

a

 

:

 

10

 

(16.10)

 

The attenuation coefficient has been measured and is given in tables. For uniformly
mixed molecular absorbers such as CO

 

2

 

 and O

 

2

 

 

 

, the combined effect is

 

(16.11)

 

while water vapor absorption is calculated according to

 

(16.12)

 

where 

 

w

 

 is the amount of precipitable water given in cm.

 

11

 

 Note that the form of these
laws for the transmittance differ somewhat from the simple form presented above in
Equ.(16.9); they are the result of parameterization of more detailed absorption calcu-
lations.

 

9. The discussion in this section is based upon Iqbal (1983), Chapter 6. 

10. We should use the relative air mass for ozone which differs from the normal value for large
zenith angles of the Sun (Iqbal, 1983, Chapter 5).

11. See Iqbal (1983), Chapter 5.4.
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Let us now turn to a brief description of scattering. Light traveling along a beam
through the atmosphere is partly absorbed and partly scattered; only the contribution
which is not influenced by either mechanism is transmitted to the ground. Scattering
removes radiation from a beam by changing the direction of incoming radiation; the
frequency and energy of the scattered component are not changed, but the change of
directional distribution certainly leads to changes in the intensity of the light. The lat-
ter process has important consequences for the entropy and the temperature of scat-
tered radiation (see below); scattering is an irreversible process.

There are two distinct effects to be taken into account, namely scattering from mole-
cules (Rayleigh scattering) and from larger particles (Mie scattering). The distribution
of the directions of scattered radiation is not generally isotropic. While in Rayleigh
scattering equal amounts are scattered in forward and backward directions, forward
scattering is preferred in Mie scattering. There is a clear difference between scattering
and absorption in that the former is a continuum effect while the latter is selective with
respect to wavelength.

Both effects are described in terms of the part of the incident ray which is transmitted
without being scattered. In the case of Rayleigh scattering, the transmittance is calcu-
lated as follows:

(16.13)

Note that in this and the following formula, the wavelength must be given in µm. Mie
scattering may be expressed in terms of two factors α and β which describe the turbid-
ity of the atmosphere:12

(16.14)

The factor β varies from 0 to 0.4 for clean to very turbid atmosphere (visibility ranging
from 340 km to less than 5 km), while α is around 1.3.

Note that scattering strongly depends upon the frequency of light, short wavelengths
being preferred. Rayleigh scattering in particular leads to the filtering out of blue light
from a beam. The transmittance due to this effect is zero at 0.3 µm, while at 0.6 µm it
is already above 90%; this explains the blue color of the sky.

12. Angström’s turbidity formula for aerosols; see Iqbal (1983), p. 117–119.

Figure 16.6:  Scattering of a ray 
of light leads to a redistribution 
of directions of radiation without 
changing the energy and the fre-
quency. In Rayleigh scattering, 
forward and backward scattering 
are favored equally over side-
ways scattering. In Mie scatter-
ing, due to larger particles, 
forward scattering is dominant.
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Calculation of direct and diffuse radiation upon the ground. The formulae pre-
sented for absorption and for scattering now allow us to calculate the solar radiation
expected at the ground for the case of cloudless atmospheres. The direct ray is atten-
uated as a result of both absorption and scattering, which means that the part transmit-
ted can be calculated from the radiation incident upon the atmosphere and the product
of all transmittances:

(16.15)

Here, Gλo is the spectral irradiance at the top of the atmosphere, measured for a surface
normal to the rays, while Gλhb represents the transmitted spectral direct (beam) irradi-
ance for a horizontal surface. The amount of radiation scattered is then calculated ac-
cording to

(16.16)

where s stands for scattered. There is a problem with calculating the diffuse radiation
reaching the ground from the total amount scattered unevenly in all directions. The
simplest possibility, which still neglects the effect of light reflected from the ground
and scattered back by the atmosphere, is to assume that exactly half of the originally
scattered radiation flows downward from the sky to the ground. (This is the assump-
tion made in the calculations which led to the results presented in Fig. 16.7.) The sum
of the direct and the diffuse radiation is called global radiation.

The entropy and the temperature of solar radiation. According to Planck’s theory
presented in Section 12.3, we can associate a spectral entropy intensity and a mono-
chromatic temperature with radiation of a given spectral energy intensity. To find the
entropy and the temperature according to Equations (16.2) and (16.3) we have to cal-
culate the energy intensity for direct and diffuse radiation from Equations (16.15) and
(16.16), respectively. For the former we obtain 
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Figure 16.7:  Computed spectral 
distribution of direct and diffuse 
solar radiation for the horizontal 
surface for a cloudless sky. It is 
assumed that precisely half of all 
the radiation scattered flows in 
the direction of the ground. The 
sum of direct and diffuse irradi-
ance is called global irradiance. 
The computation starts with the 
WRC spectrum and assumes ab-
sorption and scattering according 
to the relations presented in this 
section. Values of absorption co-
efficients have been taken from 
Iqbal (1983). See also Fig. 16.5.
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(16.17)

where Ωs is the solid angle of the Sun as seen from the Earth, which is equal to

The cosine of the zenith angle of the Sun appears in Equ.(16.17) since we have to take
a surface normal to the direction of the direct beam. For the diffuse component of solar
radiation, on the other hand, we take the light scattered to the horizontal surface. If we
assume half of the radiation scattered in all directions to reach the ground, and if we
take this component to have an isotropic distribution over the hemisphere, the energy
intensity is given by

(16.18)

This follows from Equ.(12.13) for isotropic hemispherical radiation. The values ob-
tained from Equations (16.17) and (16.18) are plugged into the relations for the entro-
py intensity and the monochromatic temperature. The temperature of solar radiation
is presented in Fig. 16.8 for the spectrum shown in Fig. 16.7.

Obviously, absorption and scattering will change black radiation into nonblack light.
Both effects reduce and redistribute the spectral intensities leading to a spectrum of
temperatures for radiation which originally had only a single temperature. We may in-
troduce the “effective” temperature of a component of radiation by comparing the in-
tegral values of entropy and energy intensity. According to Equ.(12.5) and its counter-
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part for energy we may write

(16.19)

This quantity is shown in Fig. 16.8 for both direct and diffuse solar radiation. Calcu-
lations show that the effective temperature of direct light is only slightly smaller than
the temperature of the surface of the Sun, even for relatively low elevation of the Sun
in the sky. (For the spectrum calculated in Fig. 16.7 the value turns out to be roughly
5100 K.) The temperature of diffuse light from the sky still has a surprisingly high
temperature of around 1700 K. Detailed studies of the entropy of solar radiation13

demonstrate that the main assumption made here with regard to diffuse light, namely,
that it is supposed to be isotropic, is acceptable. Assuming realistic angular distribu-
tions leads to changes in the results of only a few percent.

Polarization of solar radiation. There is another effect which could be of interest be-
cause of its influence upon the entropy and the temperature of radiation, namely po-
larization. For the case of solar radiation in the Earth’s atmosphere we need models of
the degree of polarization as a function of the angles of incidence of diffuse light (scat-
tered and reflected). Again, for realistic models of solar radiation, the effect of polar-
ization upon the temperature of radiation is relatively minor. Allowing for complete
polarization, however, reduces the entropy of radiation by about 20% compared to the
value for unpolarized light.13 

1. How can the radiant power of the Sun be obtained from measurements of the solar con-
stant? Assuming that the energy current from the surface of the Sun has been obtained, how
can we infer the Sun’s surface temperature?

2. Consider a main sequence star having 1000 times the luminosity of the Sun (Fig. 16.1).
How do you find its radius?

3. Are the values of the Sun’s radiation shown in Fig. 16.2 for the surface of the Sun or for
its radiation above the Earth’s atmosphere?

4. What is the meaning of air mass 1?

5. What is the condition of validity of Equ.(16.9)?

6. How does knowledge of the entropy and the energy of radiation yield its temperature?

7. If we wish to make use of solar radiation for engineering applications (such as in solar ther-
mal or photovoltaic systems), what is the importance of knowing the temperature of the
direct and diffuse components of radiation? (See Fig. 16.8.)

EXAMPLE 16.1. Calculating direct and diffuse spectral irradiances.

Calculate the spectral irradiances of direct and diffuse sunlight for a wavelength of 600 nm for
the following atmospheric conditions. The solar elevation is taken to be 30°. The amount of
ozone and of water vapor are set to 0.35 cm and 2.0 cm, respectively. The Angstöm coefficients
for the turbid atmosphere are set equal to β = 0.10 and α = 1.3, respectively.

13. Kabelac and Drake, 1992, p. 239–246.

i T iE eff S=
3

4

QUESTIONS
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SOLUTION: According to Iqbal (1983), the values of the extraterrestrial spectral irradiation and
the molecular absorption coefficients are given by

We have to calculate the transmission coefficients due to absorption and to scattering according
to Equations (16.10) through (16.14). Since the absorption coefficients for the uniformly mixed
gases and for water vapor are equal to zero at the chosen wavelength, we only have to take into
account Equ.(16.10) for absorption by ozone:

Since the elevation of the Sun is 30°, the zenith angle is 60° which yields a value for the relative
air mass of 2.0. Scattering leads to following two transmittances:

All in all, the direct spectral irradiance on the horizontal must be

The diffuse radiation, on the other hand, is

where we have assumed that half of the scattered light strikes the ground. These values can also
be read from the curves in Fig. 16.7.

EXAMPLE 16.2. Entropy produced in scattering.

Consider solar radiation penetrating the Earth’s atmosphere, and assume it to be undisturbed
blackbody radiation of temperature 5777 K. Calculate the entropy generated if all the radiation
in the wavelength band 595 – 605 nm is scattered isotropically in all directions.

SOLUTION: We first have to calculate the entropy intensity of the incident radiation for the
spectral range chosen:

where
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Plugging in values yields

and

Now, half of the irradiance is scattered into the hemisphere. The energy intensity of the scattered
light is therefore

The scattered entropy flux density turns out to be

Comparison with the original result shows that the rate of entropy production per square meter
is 2.19 · 10–3 W/(K · m2).

EXAMPLE 16.3. Monochromatic temperature of solar radiation.

Calculate the monochromatic temperature of direct and diffuse solar radiation at 600 nm for the
conditions used in Example 16.1.

SOLUTION: Monochromatic temperatures are calculated according to Equ.(16.3):

Now, the direct and the diffuse irradiances have been computed in Example 16.1. The normal
direct spectral irradiance is 464 W/(m2µm)/cos(60°) = 9.28 · 108 W/(m2m), while the value for
the diffuse light is 162 W/(m2µm) = 1.62 · 108 W/(m2m). The spectral energy intensities are
therefore equal to
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and

The appropriate temperatures then turn out to be

which can also be read off the curves displayed in Fig. 16.8. For a less turbid atmosphere and
for higher elevation of the Sun, the temperature of the direct beam approaches that of the surface
of the sun. Diffuse radiation has a surprisingly high temperature which might be useful in solar
energy engineering.

16.2 SELECTIVE ABSORBERS

Experience shows that bodies having different surface characteristics attain different
temperatures if they are exposed to the light of the Sun. Gray bodies which have the
same geometrical properties should, on the other hand, all have the same temperature
if placed in the same radiation field (see Example 7.12). For this reason, we should
generally expect the rates of absorption and emission to depend upon the frequency of
the radiation involved in the processes. The most striking case of selective absorption
and emission of radiation is the greenhouse effect, which heats up the surfaces of the
Earth and of Venus and the interior of glass-covered spaces well beyond levels expect-
ed from an oversimplified analysis.

16.2.1 Temperature of Absorbers Exposed to the Light of the Sun

Consider a body in sunlight. If the light is not concentrated, it will most likely attain a
temperature of a few hundred Kelvin, and radiate with a spectrum bearing the mark of
this hotness. On the other hand, solar radiation that is absorbed has a much higher tem-
perature. Therefore solar radiation and radiation emitted by bodies here on Earth es-
sentially occupy two distinct regions of the spectrum. Now consider a body with a
surface having a high absorptivity for radiation at short wavelengths (solar radiation)
but being a poor emitter for long wavelength radiation. The simplest model for dealing
with this case is to treat the absorptivity of surfaces as having two distinct but constant
values for the two separate frequency intervals of interest. Each value represents some
average for radiation in each of the two sections of the spectrum (Fig. 16.9).

To find surface temperatures we may perform a balance of energy analysis for a selec-
tively absorbing and emitting body exposed to solar radiation. In this analysis we will
neglect the angular dependence of radiation properties. In other words, let us assume
all surfaces to radiate isotropically in one hemisphere. If Aa is the effective surface ab-
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sorbing solar radiation, and if Gν  is the spectral irradiance of solar radiation at the sur-
face of the absorber, the rate of absorption of energy must be

(16.20)

The absorptivity depends upon frequency and is denoted by aν . The emission from the
surface obeys the relation derived in Equ.(7.55), again with the absorptivity (emissiv-
ity) taken as a function of frequency:

(16.21)

A fraction aν of the spectral blackbody intensity is emitted at each frequency. Here, A
is the emitting surface area, and T is the surface temperature of the body exposed to
the Sun’s radiation. This factor determines the spectral distribution of the radiation be-
ing emitted. Since Gν  depends on the spectrum of solar radiation, the absorptivity does
not drop out of the equations as in the case of gray bodies. As a result, the temperature
attained by a selective surface strongly depends upon the average values of the absorp-
tivity (or the emissivity) for the respective range of frequency of radiation (visible for
the Sun’s light, infrared for bodies at around room temperature).

16.2.2 A Daisy World

There is a nice example of a model of a planet where the presence of life leads to a
self-regulating mechanism which keeps the temperature within a narrow range even
though the sun is getting brighter all the time. The model is called a daisy world,14 and
it addresses the question of how the surface of the Earth could have had a relatively
stable temperature over the course of billions of years, even though the radiation of the
Sun must have increased considerably during the same period. This should have led
to a steady increase of the surface temperature of our planet.

Imagine a planet without life circling the central star of the planetary system. The lu-
minosity of the star is supposed to increase as a function of time. If the planet’s surface
has constant radiative properties, its temperature will increase in accordance with the

14. A.J. Watson and J.E. Lovelock (1983).
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Figure 16.9:  Spectrum of solar 
radiation and of infrared radia-
tion emitted by a body exposed to 
the light of the Sun. The absorp-
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sivities) are taken to be different 
in the two distinct ranges of fre-
quencies occupied by solar light 
and by infrared radiation.
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change of luminosity of the Sun (Fig. 16.10). Now assume that black daisies start
growing, leading to an increase of the absorptivity at visible wavelengths: the planet
will grow hotter than it otherwise would. Now, as the central star continues brighten-
ing, white daisies, which have a lower absorptivity, start replacing the black ones. This
will tend to lower the temperature of the surface of the planet. All in all, it is possible
to envisage a relatively simple model of a planet whose interaction with life leads to a
surface temperature which stays within narrow bounds for quite a while.

Figure 16.10:  Simulation results of a simple model of a self-regulating daisy world. The radia-
tive properties of the planet without life were taken as constant. The absorptivity in the visible 
part of the spectrum is taken to be larger for black daisies than for white ones, with the absorp-
tivity of the dead surface somewhere in between. The emissivity at infrared wavelengths has 
been assumed to be the same for all three materials (black and white daisies, and rocks). As the 
central Sun gets brighter, first black daisies start to grow and cover the planet, making the sur-
face warmer than it would otherwise be. As the luminosity of the Sun grows further, the black 
daisies get too hot, which lets them slowly die. White daisies, which do not get that hot in the 
same light, start growing later. As their number increases sharply, due to proper temperatures 
and increasing space on the planet, the average surface temperature first drops. Finally, it also 
gets too hot for the white daisies, leading to their demise. The temperature of the planet finally 
approaches that of the dead surface again. (This is an example of a simple system dynamics 
model created with Stella™. It consists of two first-order differential equations representing the 
laws of balance of the number of black and white daisies, respectively. The constitutive laws 
used are those for the temperature of the different types of surfaces, and laws governing the re-
productive rates of the flowers.)

8. Is it possible to have surfaces that absorb solar radiation that tend to be cooler than the en-
vironment?

9. For the situation depicted in Fig. 16.9, do you expect the absorber to attain a temperature
higher or lower than that of the environment?

10. Photovoltaic panels work better if they are cooler. What does this mean for the solar reflec-
tance of the panel, and its infrared emittance?

11. Compare a body that is a perfect absorber and emitter to a body that is a perfect absorber
for solar radiation but has a lower than perfect emittance for infrared radiation. What is the
effect of the imperfection upon the entropy production rate in steady-state?
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EXAMPLE 16.4. Temperature of absorbers on Earth.

Consider a flat disk and a piece of white paper both facing the Sun. The disk is made out of cast
iron, for which the average absorptivity for solar radiation is 0.95. For the radiation emitted by
the surface (at a temperature not far from 300 K) the value is 0.21. The sheet of paper has values
of 0.28 and 0.95 for the absorptivities for solar radiation and for its own radiation, respectively
(Table 7.3). Assume the bodies to emit radiation evenly from both surfaces. Consider radiation
from the environment to be blackbody radiation at a temperature of 20°C. The irradiance of so-
lar radiation is taken to be 800 W/m2. What are the temperatures reached in the steady state by
the surfaces if you neglect convection?

SOLUTION: The balance of energy takes a simple form. Since the absorptivities are constant
(but different for absorption and emission), we get

Since the temperature of the body will not be very different from that of the environment, we
can assume the absorptivity to be the same for this component as for the radiation from the body
itself. 

We obtain the following numerical values for the surface made out of cast iron:

For the piece of paper the result is quite different, due to the different values of the absorptivi-
ties:

As we might have expected, the paper does not get as hot as the cast iron disk. Note that the
environment has a relatively large influence upon the result, at least in the second case. Natu-
rally, convection due to current of air flowing over the surfaces would prevent the bodies from
getting as hot as calculated.

EXAMPLE 16.5. The Earth as a selective absorber.

(a) Model the surface of the Earth as a uniform selective absorber. With an average temperature
of 15°C and an absorptivity for the Sun’s light of 0.70, how large is the emissivity (absorptivity)
at infrared wavelengths? (b) What is the expected effect of the increase of the amount of green-
house gases in the atmosphere? (c) Different latitudes receive different amounts of radiation
from the Sun in the course of the year. The following formula gives a rough representation of
the actual values observed:

s(x) represents relative values so that the integral of s(x) over the range of x is equal to 1. Model
the temperature of the Earth as a function of latitude if you assume a constant absorptivity of
0.70 for the Sun’s light, and a constant emissivity of 0.61 (calculated from the average values
according to the first problem).15 Assume that only radiation is responsible for the temperatures
attained.

SOLUTION: (a) We can repeat the analysis of Example 7.12, this time with differing values for
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the absorptivities for emission and absorption. The balance of energy yields

where V and IR stand for visible and infrared, respectively; Gsc is the solar constant. The absorp-
tivity (emissivity) in the infrared therefore must be

(b) The effect of the greenhouse gases can be modeled by lowering of the emissivity at infrared
wavelengths.

(c) If there is no other type of heat transfer in the latitudinal direction, there must be a balance
of energy for each strip of constant latitude which takes the form

We can solve this equation for different values of x to obtain the hypothetical latitudinal distri-
bution of temperature (see the diagram).

If the modeled temperature distribution is compared to the measured average temperature as a
function of latitude, it is observed that the actual values do not change as much over the globe
as the numbers obtained from the model. Convective currents from the equator to the poles re-
distribute the entropy, making the temperature gradient from the equator to the poles much
smaller.

16.3 CONCENTRATING SOLAR RADIATION FOR POWER ENGINEERING

Considering that direct solar radiation has a temperature nearly as high as the surface
of the Sun suggests that we should be able to exploit sunlight as a high-temperature
“fuel” with which bodies can be heated to hotnesses approaching that of the Sun. Solar
energy engineering16 and materials research could benefit from such a source.

15. See R.S. Lindzen (1990) for a slightly different model and more details.
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To heat a body to the temperature of the surface of the Sun we must place it in a radi-
ation field similar to the one found there. The difference between direct solar radiation
on Earth and the radiation at the surface of our star is not to be found in the intensity
but rather in the angular distribution: on Earth, solar radiation comes from a small sol-
id angle, while at the surface of the Sun it strikes the body from all directions of a
hemisphere. The radiation field found there can be recreated here at the focus of an
ideally concentrating mirror, and if you place the body at that focus, it will receive the
kind of radiation needed for attaining the same high temperature. A simple argument
shows how we can calculate the maximum concentration necessary for the desired ap-
plication. Without concentration, a body having a surface perpendicular to the direct
rays of the Sun receives an energy flux equal to ΩsiE . Ideally, the energy flux should
be π iE . Therefore, we need a concentration C calculated according to

(16.22)

Let us give a more careful thermodynamic argument of why the number just calculat-
ed corresponds to the maximum value of concentration of sunlight permitted by the
law of balance of entropy.17 Consider a setup as in Fig. 16.11, which concentrates the
radiation from a source onto an absorber. First, the concentration factor of the concen-
trating device is defined by

(16.23)

where Aa and Aabs are the surface areas of the aperture and the absorber, respectively.
The largest possible concentration factor must be related to the highest possible tem-
perature attained by a body receiving radiation from the sun. Now, from a balance of
entropy performed for the bodies exchanging radiation we know that if radiation is
transferred from body 1 to body 2, the rate of production of entropy is larger than
zero—see Equ.(7.47)—and the temperature of the second body is smaller than that of

16. Detailed information on concentration of sunlight and on related optical problems in solar
energy engineering can be found in the books by A. Rabl (1985, Chapter 5) and by J. Duffie
and W. Beckman (1991, Chapter 7).

17. Note that the result depends upon the index of refraction of the medium through which the
light travels before hitting the absorber. Therefore, higher values of concentration can be
attained which do not violate the laws of thermodynamics.
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Figure 16.11:  Radiation from a 
source can be concentrated by a 
device having an aperture and an 
absorber. The ratio of the surface 
areas of the aperture and the ab-
sorbing body is called the con-
centration factor.
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the first. The highest possible value of the hotness of body 2 is reached when the rate
of production of entropy vanishes, which is equivalent to saying that the temperatures
of the bodies must have become equal and the net rate of transfer of energy must have
dropped to zero.

We can express the energy currents flowing from one body to another in terms of the
fraction F12 of the radiation emitted by the first of these bodies which is intercepted
by the second.18 If the surfaces radiate like black bodies, the energy current flowing
from body 1 to body 2 will then be

Conversely, the energy flux leaving body 2 which is intercepted by body 1 will be ex-
pressed by

The condition of maximum concentration leads to equality of these expressions,
which yields the important result

(16.24)

We can apply this relation to the surface of the arrangement of source, aperture, and
absorber shown in Fig. 16.11, to obtain

from which we conclude that the concentration factor can be calculated in terms of

In the case of maximal concentration, all the radiation entering the aperture should
flow to the absorber; this requires the factors F for radiation from the source to the ap-
erture and from the aperture to the absorber to be equal, resulting in

For this ratio to be maximal, the factor Fabs-s which describes the flow of radiation
from the absorber back to the source, must have its largest possible value which is ob-
viously 1. This yields the result for the largest possible concentration factor:

(16.25)

18. If the radiation emitted by body 1 and received by body 2 gets there directly without inter-
mediate reflection(s), this fraction is equal to the radiation shape factor introduced before
in Section 12.1.2.

 I A TE,12 12 1 1
4=F σ

  I A TE,21 21 2 2
4=F σ

  A A1 12 2 21F F=

A A

A A
s s a a a s

s s abs abs abs s

F F

F F
− −

− −

=

=

  
C s a abs s

a s s abs

= − −

− −

F F
F F

C abs s

a s

= −

−

F
F

C
Fa s

max =
−

1



16.3  CONCENTRATING SOLAR RADIATION FOR POWER ENGINEERING

PART IV 671

Note that the factor Fa-s must be the radiation shape factor Fa-s since there are no in-
termediate reflectors between the source and the aperture. This shape factor has been
calculated in Problem 3 of Chapter 12. The arrangement used there is equivalent to
what we have in the case of the Sun aligned with a (small) circular surface directly fac-
ing our star. Obviously, the result is equal to the square of the sine of the half-angle θs
subtended by the Sun for an observer on the Earth. Since we have to have a concen-
trator whose aperture sees only the Sun if we wish to obtain maximal concentration,
this angle is equal to the acceptance half-angle θa of the optical setup. Therefore:

(16.26)

This is indeed what we had derived before on the basis of the simple argument pre-
sented in Equ.(16.22).

EXAMPLE 16.6. Maximum concentration of line focus concentrators

Use arguments like those which led to Equ.(16.22) to show that the maximum concentration
reached in a line focus concentrator is given by

where θa is the acceptance half-angle of the concentrator. Calculate the corresponding value for
direct sunlight.

SOLUTION: We should consider a thin long cylinder receiving direct sunlight from the narrow
angle (0.5°) subtended by the sun. How much more light would it receive if we had isotropic
radiation with the same intensity as that of direct solar light coming from the part or all of the
upper half of a cylindrical dome as in the figure?

When working with linear concentrators, we have to deal with angles instead of solid angles. In
reverting the flow of radiation, we can argue as follows: the light emitted by the cylindrical pipe
in the center spreads into the upper half-space and over the dome. The flux of energy or entropy
associated with this flow must be

The factor cos(θ ) is a consequence of the projection of the radiation onto the plane receiving it.
According to the geometry in the accompanying figure, this can be transformed into

for isotropic radiation. If we have sunlight which comes only from a narrow angle ωs flowing
from all over the dome towards the pipe, the energy flux just calculated would correspond to C
times the actual flux:

Now, since the angle (not the solid angle) subtended by the Sun is 2Rs /d = 2sin(θa), where Rs
and d are the radius and the distance of the Sun, respectively, we conclude that the concentration
factor is indeed given by the formula presented above. For direct sunlight, the maximum possi-
ble concentration factor turns out to be 214.
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EXAMPLE 16.7. Steady-state temperatures reached in a parabolic trough concentrator.

Consider an uncovered metal pipe having a radius of 4.0 cm at the center of a line focus para-
bolic concentrator. Take the concentrated light (with a concentration ratio 40) to be perfectly
intercepted by the cross section presented by the pipe. (a) If only radiation is considered to cause
heat loss, calculate the temperature reached by the pipe in the steady state. The pipe absorbs a
fraction (τα) = 0.95 of the incoming light, and its emissivity is 0.90 at infrared wavelengths. The
irradiance onto the aperture of the concentrator is 900 W/m2, and the ambient temperature is
20°C. (b) Calculate the width of the parabolic trough concentrator.

SOLUTION: (a) A simple balance of energy will deliver the temperature reached by the pipe
absorbing concentrated solar light. In the steady state, we have

which gives us

(b) Since the concentration is 40, the aperture, i.e., the width of the parabolic trough, must be
40 times as wide as the pipe. Therefore, the width is 3.2 m.

16.4 TRANSMISSION AND ABSORPTION IN FLAT-PLATE SOLAR 
COLLECTORS

The concepts of absorption, reflection, and transmission of radiation can be applied to
a nice example in the field of solar energy engineering, namely the computation of the
amount of light absorbed by a flat-plate collector. Consider a flat piece of metal (the
absorber) covered by one or more sheets of glass, as in Fig. 16.12. The Sun’s light is
partly reflected, absorbed, and transmitted by the cover. Part of the transmitted radia-
tion is reflected back through the cover, and the rest is absorbed, which is what we
would like the collector to do. In general, the radiative properties needed here, i.e., the
reflectance, absorptance, and transmittance,19 all depend upon the frequency of the
light; moreover, reflection and absorption properties also depend upon the angles of
incidence. In the following development, we shall take these properties to be indepen-
dent of wavelength, which for reflection and transmission of the cover, is quite correct
for normal glass.20 Also, the absorptance of the absorber will be assumed to be inde-
pendent of the angles of incidence of radiation. Finally, we shall be working with ef-
fective angles of incidence for diffuse light, which allows us to deal with the problem
in a simple manner.

19. Often, in engineering, the terms absorptance and emittance are used for absorptivity and
emissivity, respectively, rather than for the rates of absorption and emission per unit area
by a surface. See … for the original definitions.

20. Duffie and Beckman (1991), Chapter 5.7.
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16.4.1 The Transmittance-Absorptance Product of a Collector

Let us start with the final step in the chain of events leading to absorption of light. We
introduce the effective transmittance τ of the cover system we are going to calculate
later. If α is the absorptance of the absorber plate, a fraction τ α of incident light is ab-
sorbed while the rest (which equals (1–α)τ), is reflected back up to the cover. Then, if
ρd is the reflectance of the cover system for diffuse reflected light from the absorber,
radiation with a relative intensity of (1–α)τ ρd  is reflected back down again in the di-
rection of the absorber; see Fig. 16.12. This process continues infinitely many times
leading to

for the effective transmittance-absorptance product. Note that (τα) should be consid-
ered as a new quantity and not as the product of τ and α. The result can be transformed
to yield

(16.27)

16.4.2 Transmittance of the Cover Without Absorption

Transmittance through one or more sheets of glass is not equal to unity, even if we ne-
glect absorption, because of the reflection of light at the surfaces of the covers. When
a ray of light is refracted at the surface of a body, part of it is also reflected (see
Fig. 16.13). The reflection depends both upon the nature of the refracting materials,
i.e., upon the index of refraction n, and upon the nature of light, i.e., its state of polar-
ization. It is common to split a ray of light into two plane polarized components, one
perpendicular to the plane as in Fig. 16.13, the other parallel to that plane. The fraction
of incident light of a particular reflected component is calculated according to21

21. For a derivation, see Siegel and Howell (1992), p. 102–108.
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Figure 16.12:  Light to be ab-
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by the glass cover reduce the 
amount of radiation incident 
upon the absorber.
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(16.28)

for the parallel and the perpendicular components, respectively. If the incident light is
unpolarized, the total reflection is equal to the average of the values calculated using
the previous result:

(16.29)

Now, the transmittance τ of unpolarized light is not simply 1 – r, since part of a trans-
mitted ray is reflected back up at the second interface of a cover sheet (as in
Fig. 16.14), and so on. This results in a total transmittance of

(16.30)

for, say, the normal component of polarization. The other component is treated in the
same manner. Therefore, our final result for the transmittance of a single nonabsorbing
sheet of glass will be

(16.31)

for unpolarized incident radiation; the index r reminds us that this is the transmittance
due to reflection. For N identical covers the formula becomes

(16.32)

16.4.3 Transmittance with Absorption in the Cover

The absorption of radiation in a cover sheet made of glass can be calculated in the
same manner as was done with absorption of radiation in the Earth’s atmosphere; see
Section 16.1.2. The length of the path of light in a glass cover is L /cos(θ2) where L is
the thickness of the cover. If κ is the coefficient of absorption (the extinction coeffi-
cient) in the glass, the transmittance due only to absorption is

(16.33)

For N covers, we simply use N times the thickness L. Now, with the effect of absorp-
tion present, the equations for transmittance, reflectance, and absorptance of the cover
system are more complicated than what we would have without this effect. (See
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Problem 5.) A satisfactory approximation for solar collectors is the following:

(16.34)

This is a consequence of the fact that the transmittance due to absorption in the glass
is nearly 1.

Transmission and absorption of diffuse radiation. Diffuse radiation, either scattered
from the sky or reflected from the ground, cannot be handled that easily. To include
these contributions to radiation, effective incidence angles should be introduced which
can be used in the equations presented here. For diffuse light from the sky, an effective
angle of 60° delivers satisfactory solutions for all slopes of collectors. (The slope is
the angle between the plane of the collector and the horizontal.) For radiation reflected
from the ground, however, the effective incidence angle used varies from 90° to 60°
for collector slopes from 0° to 90°, respectively.22 

EXAMPLE 16.8. Normal transmittance-absorptance product of a solar collector.

A collector with a single sheet of glass as a cover is oriented directly toward the sun. The glass
has a thickness of 3 mm and an extinction coefficient of 12 m–1. Its refractive index is 1.53. The
absorptance of the absorber for solar light is 0.92. (a) Calculate the transmittance-absorptance
product for direct light and for diffuse light from the sky. (b) What is the rate of absorption of
sunlight by this collector (per surface area) if the direct and the diffuse irradiances are 600 W/
m2 and 400 W/m2, respectively? (c) Consider direct radiation only and assume it to be black-
body radiation with a temperature of 5777 K; also assume that the radiation which is not ab-
sorbed by the collector is unaffected by transmission and reflection. Calculate the rate of
production of entropy for the process of the interaction of the direct component of sunlight with
the collector if the absorber is at a temperature of 70°C.

SOLUTION: (a) To find the desired result we need the quantities in Equ.(16.34) which means
we have to compute the transmittances of the cover due to reflection and due to absorption. The
angles of incidence of direct and of diffuse light are 0° and 60°, respectively. Therefore, we cal-
culate the appropriate quantities for these two angles:

We need Snell’s law to calculate the reflection factors r at normal incidence and at 60°:

In the case of normal incidence we combine this law with Equ.(16.29). Let both angles θ1 and
θ2 go to zero. In this limit, the parallel and the perpendicular components of r become

22. Duffie and Beckman (1991), p. 227.
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Therefore we have

At 60° incidence, θ2 is 34.5°. The reflection coefficients turn out to be

The transmission coefficients due to the process of reflection now are calculated as

and

Now we are ready to calculate the approximate optical properties of the cover systems. Accord-
ing to Equ.(16.34) we obtain

Equ.(16.27) allows us to compute the transmittance-absorptance products for the two incidence
angles:

Note that the diffuse reflectance of the cover for light reflected from the absorber is equal to the
value calculated for 60°.

(b) The rate of absorption of energy of the collector is calculated simply as the product of the
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transmittance-absorptance product and the irradiance:

(c) If we wish to consider only the first part of the interaction of sunlight with the collector, we
may simply assume heat loss and removal of heat not to be present. (The total rate of production
of entropy due to all processes will certainly be larger than the number calculated here.) The law
of balance of entropy for the absorber then takes the form

where

Tc and Ts are the temperature of the absorber and of solar radiation, respectively. Therefore, the
rate of production of entropy per unit surface due to solar radiation is given by

Because of the high temperature of solar radiation, incident sunlight delivers only a small part
of the entropy which appears in the absorber as the result of absorption. The loss of available
power due to this process alone reaches almost 400 W/m2 (for 20°C ambient temperature).

EXERCISES AND PROBLEMS

1. Calculate the normal spectral irradiance for solar radiation at the distance of the Earth for
a blackbody spectrum of temperature 5777 K. (Normal means for a plane perpendicular to
solar rays.)

2. Integration of the spectral entropy intensity of solar radiation according to the WRC spec-
trum (Fig. 16.3) yields a value of 4620 W/(K · m2 · sr), while the integral value of the energy
intensity is 2.011 · 107 W/(m2 · sr). Derive the equivalent blackbody temperature and calcu-
late the entropy current density for such radiation near the Earth.

3. An experiment on the disinfection of water using solar radiation showed23 that a dose of
2000 kJ/m2 of radiation in the wavelength band between 350 nm and 450 nm was required
to kill bacteria in a particular sample. Estimate how long the sample has to be exposed to
sunlight at midlatitudes around noon on a clear day in summertime.

23. Wegelin et al. (1994).
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4. Calculate the steady-state temperature reached by a cylindrical absorber at the line focus
of a parabolic trough concentrator. Assume that the absorber is surrounded by a glass pipe
and that convective losses from the surface of the pipe have to be taken into account. (See
Example 16.7 and Problem 12 in Chapter 7.)

5. Show by use of ray-tracing techniques such as the one used in Section 16.4, that the trans-
mittance, reflectance, and absorptance of the glass cover of a flat-plate solar collector are
given by

for the component of light which is polarized at right angles to the plane of incidence
(Fig. 16.13). Show that Equ.(16.34) is a good approximation to these equations.

6. Consider the absorptance of cavities and rooms. Light falls from the outside on the opening
of a cavity (which might be a room with a window for the opening). The surface area of
the opening is Aa, while the area of the inner surfaces is Ai. The absorptance of the inner
walls is assumed to be αi (independent of the angle of incidence and the wavelength). (a)
Show that the total absorptance is given by

if the opening is not covered. (Hint: Consider rays bouncing off the interior walls and
assume that after each reflection, there is a probability of Aa /Ai for the ray to escape
through the hole.) (b) Show that the result must be

if there is a window with a transmittance to direct light τ and a transmittance to diffuse
reflected light from the interior of τd .

7. For the collector and the situation discussed in Example 16.8, estimate the rate of produc-
tion of entropy due to heat loss to the ambient if the energy current due to this effect is 40%
of the irradiance. Compare this value to the rate of production of entropy due to absorption
by the collector.
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TABLE S.1:
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a

 

Steffan-Boltzmann constant J

 

 

 

·

 

 

 

m

 

–3

 

K

 

–4

 

A

 

Surface area, cross section m

 

2

 

A

 

Rate of absorption of radiant energy per unit 
area

 

 

 

W

 

 

 

·

 

 

 

m

 

–2

 

a

 

Absorptivity

 

 

 

B

 

Magnetic flux density T

 

c

 

Speed of sound, speed of light m

 

 

 

·

 

 

 

s

 

–1

 

c , c

 

V

 

Specific temperature coefficient of energy J

 

 

 

·

 

 

 

K

 

–1

 

kg

 

–1

 

c

 

P

 

Specific temperature coefficient of enthalpy J

 

 

 

·

 

 

 

K

 

–1

 

kg

 

–1

 

Molar temperature coefficient of enthalpy J

 

 

 

·

 

 

 

K

 

–1

 

mole

 

–1

 

Molar temperature coefficient of energy J

 

 

 

·

 

 

 

K

 

–1

 

mole

 

–1

 

Concentration mole

 

 

 

·

 

 

 

m

 

–3

 

C Coulomb (unit of electrical charge) 

 

C

 

Capacitance (electrical) F

 

C

 

Temperature coefficient of energy J

 

 

 

·

 

 

 

K

 

–1

 

C

 

Concentration ratio

 

COP

 

Coefficient of performance

 

C

 

f

 

Friction coefficient

 

 

 

C

 

P

 

Temperature coefficient of enthalpy J

 

 

 

·
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–1

cP

cV
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C

 

V

 

Temperature coefficient of energy J

 

 

 

·

 

 

 

K

 

–1

 

C

 

V

 

Hydraulic capacitance m

 

3

 

Pa

 

–1

 

C’

 

Momentum capacitance per length kg

 

 

 

·

 

 

 

m

 

-3

 

C*

 

Ratio of capacitance rates

Ct Carnot (unit of heat—entropy)

°C Degrees Celsius 

 

d

 

ij

 

Components of the velocity gradient tensor 
(symmetric part)

s

 

–1

 

D

 

Diffusion constant m

 

2

 

s

 

–1

 

e

 

Specific energy

 

 

 

J

 

 

 

·

 

 

 

kg

 

–1

 

Molar energy J

 

 

 

·

 

 

 

mole

 

–1

 

E

 

Energy of system (energy content) J

 

E

 

Young’s modulus N

 

 

 

·

 

 

 

m

 

–2

 

E

 

chem

 

Energy exchanged (transported) in chemical pro-
cess

 

E

 

el

 

Energy exchanged in electric process J

 

E

 

mech

 

Energy exchanged in mechanical process J

 

E

 

th

 

Energy exchanged in thermal process (heating 
and cooling)

J

 

E

 

Electric flux density V

 

 

 

·

 

 

 

m

 

–1

 

E

 

Emissive power (rate of radiant energy emitted 
per unit area)

W

 

 

 

·

 

 

 

m

 

–2

 

E

 

b

 

Emissive power of black body W

 

 

 

·

 

 

 

m

 

–2

 

f

 

Degrees of freedom 

 

f

 

Q

 

Specific source

 

 

 

rate of quantity 

 

Q

 

F

 

Force (flux of momentum) N

 

F

 

12

 

Radiation shape factor

 

F’

 

Solar collector

 

 

 

efficiency factor

 

F

 

R

 

Solar collector heat removal factor

 

F

 

Faraday’s constant C

 

 

 

·

 

 

 

mole

 

–1

 

g

 

Gravitational field strength N

 

 

 

·

 

 

 

kg–1

G Gravitational constant N · m2kg–2

G Conductance

GE Energy conductance W · K–1

GS Entropy conductance W · K–2

GV Hydraulic conductance m3Pa–1s–1

G Gibbs free energy J
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G Irradiance (rate of incident radiant energy per 
unit area)

W · m–2

Gsc Solar constant W · m–2

h Height m

h Specific enthalpy J/kg

Molar enthalpy J · mole–1

h Planck’s constant J · s

h Overall heat transfer coefficient with respect to 
energy

W · K–1m–2

h Convective heat transfer coefficient with respect 
to energy

W · K–1m–2

hS Overall entropy transfer coefficient W · K–2m–2

H Enthalpy J

H Magnetic field strength A · m–1

iS Entropy intensity of radiation W · K–1m–2s–1

iSν Spectral entropy intensity (with respect to fre-
quency)

W · K–1m–2s · sr–1

iSλ Spectral entropy intensity (with respect to wave-
length)

W · K–1m–2m–1sr–1

iE Energy intensity of radiation W · m–2sr–1

iEν Spectral energy intensity (with respect to fre-
quency)

W · m–2s · sr–1

iEλ Spectral energy intensity (with respect to wave-
length)

W · m–2m–1sr–1

I Current; flux 

IE Flux of energy W

IL Flux of angular momentum kg · m2s–2

Im Flux of gravitational mass kg · s–1

Imag Hertz magnetic current A

In Flux of amount of substance mole · s–1

Ip Flux of momentum N

IQ Flux of electrical charge A

IS Flux of entropy W · K–1

IV Volume flux m3s–1

J Joule (unit of energy) 

j Flux density 

j Flux density vector 

jE Energy flux density W · m–2

TABLE S.1: Symbols using latin letters
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jp Momentum flux density N · m–2

jS Entropy flux density W · K–1m–2

Jp Momentum current density tensor N · m–2

k Boltzmann’s constant J · K–1

kE Thermal conductivity with respect to energy W · K–1m–1

kS Thermal conductivity with respect to entropy W · K–2m–1

K Kelvin (unit of temperature) 

Κ See Greek letter kappa

Kp Chemical equilibrium constant

l , L Length m

lf  , lv Specific entropy of fusion (vaporization) J · K–1kg–1

Molar latent entropy of fusion (vaporization) J · K–1mole–1

L Electrical inductance H

L Luminosity of star W

LV Hydraulic inductance Pa · s2m–3

L’ Momentum inductance per length N–1m–2

L Loss of available power W

m Meter (unit of length) 

m Mass of a body kg

ma Air mass

mole Unit of amount of substance

M0 Molar mass kg · mole–1

n Amount of substance mole

n Unit normal vector on surface (directed outward) 

NA Avogadro’s constant

N Newton (unit of momentum flux—force) 

Nu Nusselt number

NTU Number of transfer units

p Momentum N · s

P Pressure Pa

P Power W

Pav Available power W

Pdiss Rate of dissipation of energy W

Pa Pascal (unit of pressure) 

Pr Prandtl number

q Specific enthalpy of fusion J · kg–1

TABLE S.1: Symbols using latin letters

Symbol Meaning SI-units

l lf v,  
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qn Molar enthalpy of fusion J · mole–1

Q Electrical charge C

Q Substancelike quantity

q Specific quantity

r Radial variable m

r Specific enthalpy of vaporization J · kg–1

r Specific rate of absorption of energy W · kg–1

R Universal gas constant, 8.31 J/(K · mole) J · K–1mole–1

R Electrical resistance Ω

R Radius m

Re Reynolds number

RE Thermal resistance with respect to energy K · W–1

RS Thermal resistance with respect to entropy W–1 · K2

Rm Specific gas constant J · K–1kg–1

RV Hydraulic resistance Pa · s · m–3

s Second (unit of time)

s Entropy per mass (specific entropy) J · K–1kg–1

Molar entropy J · K–1mole–1

S Entropy; entropy content of a body J · K–1

Se Entropy exchanged in a process J · K–1

Sgen Amount of entropy produced in a system J · K–1

t Time s

T Ideal gas temperature, absolute temperature K

T Conductive part of momentum current density 
tensor (stress tensor)

N · m–2

u Specific internal energy J · kg–1

U Voltage V

U Internal energy J

U Overall heat transfer coefficient W · K–1m–2

Umag Magnetic tension V

u Specific energy, internal energy per mass J · kg–1

v Velocity m · s–1

V Volume of a body m3

w Amount of precipitable water

W Watt (unit of energy flux or power) 

W Width m

TABLE S.1: Symbols using latin letters

Symbol Meaning SI-units

s
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x Position variable m

x Quality 

y Mole fraction

z Vertical distance m

z Ionization number of atom

TABLE S.2: Symbols using Greek letters

Symbol Meaning SI-units

α Absorptivity (absorptance) m2s–1

α Peltier coefficient J · K–1 C–1

α Thermal diffusivity

αl Linear temperature coefficient of expansion K–1

αR Linear temperature coefficient of electrical resis-
tance

K–1

αV Temperature coefficient of expansion of volume K–1

αµ Temperature coefficient of chemical potential mole · K–1

β Temperature coefficient of pressure K–1

βE Scattering coefficient m–1

βµ Pressure coefficient of chemical potential mole · Pa–1

γ Adiabatic exponent, ratio of entropy capacities

γ ' Polytropic exponent

γ Volume coefficient of thermal expansion K–1

δ Kronecker symbol

ε Heat exchanger effectiveness

ε Seebeck coefficient V · K–1

η Efficiency

ηc Carnot efficiency

ηI Thermal efficiency, first law efficiency

ηII Second law efficiency

θ Celsius temperature ˚C

TABLE S.1: Symbols using latin letters

Symbol Meaning SI-units
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κ Specific entropy capacitance J · K–2kg–1

Molar entropy capacitance J · K–2mole–1

κ Bulk viscosity Pa · s

κE Absorption coefficient m–1

κS Adiabatic compressibility Pa–1

κT Isothermal compressibility Pa–1

Κ Entropy capacitance J · K–2

ΚV Entropy capacitance at constant volume J · K–2

ΚP Entropy capacitance at constant pressure J · K–2

λ Wavelength m

λX Lagrange multiplier for quantity X

ΛV Latent entropy with respect to volume J · K–1m–3

ΛP Latent entropy with respect to pressure J · K–1Pa–3

µ Viscosity Pa · s

µ Chemical potential G = J · mole–1

µ Attenuation coefficient m–1

µo Permeability constant H · m–1

ν Frequency s–1

ν Kinematic viscosity m2s–1

ν Stoichiometric coefficient

π Volume density of rate of production

πS Volume density of rate of production of entropy W · K–1m–3

Π Rate of production

Πn Rate of production of amount of substance mole · s–1

ΠS Rate of production of entropy W · K–1

ρ Density (general)

ρ Mass density of a body kg · m–3

ρ Reflectivity (reflectance)

ρE Energy density J · m–3

ρS Density of entropy of body J · K–1m–3

σ Steffan-Boltzmann constant W · m–2K–4

σ Volume density of source rate 

σE Volume density of source rate of energy W · m–3

σS Volume density of source rate of entropy W · K–1m–3

Σ Source rate

ΣE Source rate of energy W

TABLE S.2: Symbols using Greek letters

Symbol Meaning SI-units

κ
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ΣS Source rate of entropy W · K–1

τ Time constant s

τ Transmittance

τ Quantum of amount of substance mole

τ Relaxation time s

(τα) Transmission-absorption product

υ Specific volume (inverse density) m3kg–1

Molar volume m3mole–1

ϕ Potential

φ Relative humidity

Ω Ohm (unit of electrical resistance)

ω Angular velocity s–1

ω Humidity ratio

TABLE S.3: Subscripts and superscripts

Symbol Meaning

a Air

a Ambient

a average

ad Adiabatic

av Available

b Body

b Beam

b Blackbody

c Carnot

C Capacitive

(c) Conductive (part of a) flux

chem Chemical

cond Conductive

conv Convective

TABLE S.2: Symbols using Greek letters

Symbol Meaning SI-units

υ
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d, diff Diffuse

e Exchanged

el Electrical

eq Equilibrium

E Energy, with respect to energy

E Equilibrium

EC Electro-chemical

f Final

f Fluid, solvent

f Fusion

f Formation

g Gas, gaseous, vapor

gen Generated

grav Gravitation

GC Gravito-chemical

h Horizontal

H High (high temperature, temperature of furnace…)

hp Heat pump

hydro Hydraulic

i Initial

in In, flowing inward

kin Kinetic

l Liquid

l Linear

L Angular momentum

L Inductive

L Low (low temperature, temperature of cooler…)

m Mass

m Mean

mag Magnetic

max Maximum

mech Mechanical

min Minimum

net Sum, total (net current)

o , 0 Reference point

o , out Out, flowing outward

TABLE S.3: Subscripts and superscripts

Symbol Meaning
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p Momentum, with respect to momentum

p Absorber plate

P Pressure, with respect to pressure, at constant pressure

Q Charge

Q With respect to quantity Q

r Radiation

rad Radiative

refr Refrigerator

R Resistive, electrical resistance

S Entropy, with respect to entropy

s Surface

s Sun, solar

s Solid

s Solute

s Storage, store

t Top

th Thermal

TE Thermo-electric

v Vaporization, vapor

V Volume, hydraulic, with respect to volume, at constant volume

wb Wet bulb

x,y,z Spatial coordinates, with respect to spatial coordinate

λ With respect to wavelength

ν With respect to frequency

TABLE S.3: Subscripts and superscripts

Symbol Meaning
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The following short glossary is provided because the generalized version of thermo-
dynamics presented in this book requires a generalization of and sometimes a change
from usual terminology. Only the most important terms are included. Expressions in
italics can be found elsewhere in the glossary.

 

Amount of substance

 

 Formal measure of an amount of substance as used in the
sense of chemistry (the “number of moles”, the “number of particles”).

 

Availability

 

 The amount of energy that can be released (see 

 

release of energy

 

) in the
fall of 

 

entropy

 

 from points of high to points of low 

 

temperature

 

. Quite generally,
the amount of energy that can be released in the fall of a 

 

fluidlike quantity

 

 through
a potential difference.

 

Balance of energy

 

 Application of the general 

 

law of balance

 

 to 

 

energy

 

.

 

Balance of entropy 

 

Application of the general 

 

law of balance

 

 to 

 

entropy

 

.

 

Binding energy

 

 Binding energy to the current of a fluidlike quantity which thereby is
lifted from a lower to a higher 

 

potential

 

. Same as 

 

using energy

 

. Opposite of 

 

releas-
ing energy

 

.

 

Caloric

 

 Used as an alternative term for 

 

heat

 

. The caloric theory of heat can be ren-
dered formal and correct in a modern sense if it is accepted that caloric is not con-
served (that it can be produced). In this case it turns out to be equivalent to the

 

entropy

 

 of a body.

 

Chemical driving force

 

 The difference of the 

 

chemical potential

 

.

 

Chemical potential

 

 The 

 

potential

 

 associated with processes which have to do with
the change or the flow of 

 

amount of substance

 

.

 

Continuous processes

 

 Processes which are spatially continuous, i.e. processes in
which the variables change from point to point inside a body or a system.

 

Constitutive relations

 

 The laws which are not generic but differentiate between bod-
ies and circumstances. (Generic laws see 

 

laws of balance

 

)

 

Current

 

 Informal term for the phenomenon of the transport of a 

 

fluidlike quantity

 

.
Also used colloquially for the formal measure which is called 

 

flux

 

.

 

Current density

 

 Formal measure of the local condition of a current. The 

 

flux

 

 is the
surface integral of the current density. For a scalar 

 

fluidlike quantity

 

, the current
density is a vector.

 

Density

 

 Spatial density of a 

 

fluidlike quantity

 

. The integral of the density of such a
quantity over the volume of a system delivers the amount of the fluidlike quantity
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stored in the system.

 

Dissipation rate

 

 Rate at which energy is bound (see 

 

binding of energy

 

) as the result
of the 

 

production

 

 of 

 

entropy

 

. 

 

Dissipative process

 

 A process during which 

 

entropy

 

 has been produced, i.e. an 

 

irre-
versible process

 

.

 

Driving force

 

 Informal term for the difference of a 

 

potential

 

. The thermal driving
force is the difference of the thermal potentials at two points in space, i.e. the dif-
ference of 

 

temperatures

 

.

 

Dynamics

 

 A theory of dynamics requires the formulation of the 

 

laws of balance

 

 and
the 

 

constitutive relations

 

 appropriate for a particular case. Models of dynamical
processes rely upon the clear distinction between laws of balance and the constitu-
tive relations.

 

Energy 

 

Quantity that accompanies all physical processes and takes the same role in
all of them. Used to quantify the coupling of processes (

 

releasing energy

 

). Flows
together with 

 

fluidlike quantities

 

 in conductive processes (

 

energy carrier

 

).

 

Energy carrier

 

 

 

Fluidlike quantity

 

 (in conductive processes).

 

Energy current

 

 The amount of energy crossing the surface of a system in unit time as
the result of a transport process. It must be distinguished from 

 

power

 

.

 

Entropy

 

 Formal for a quantity of 

 

heat

 

 or 

 

caloric

 

. Entropy is the 

 

fluidlike quantity

 

 of
thermal processes and thus obeys a 

 

law of balance

 

. It can be stored (see 

 

heat func-
tion

 

), it can flow (

 

entropy current

 

), and it can be created (see 

 

production

 

).

 

Entropy current

 

 Measure of the transfer of 

 

entropy

 

 across the surface a a system.

 

Entropy production

 

 The process of the 

 

production

 

 of 

 

entropy

 

 as the result of an 

 

irre-
versible process

 

.

 

Entropy production rate 

 

The rate at which 

 

entropy

 

 is produced in an 

 

irreversible
process

 

. 

 

Exchanged quantity

 

 The amount of a 

 

fluidlike quantity

 

 which has crossed the sur-
face of a system together with a 

 

current

 

 in a certain interval of time. Formally
equal to the integral of the 

 

flux

 

 over time.

 

Extensive quantities

 

 Quantities which scale with the size of a system are said to be
extensive. The 

 

fluidlike quantities

 

 are a subset of the extensive quantities. An exam-
ple of a non-fluidlike extensive quantity is provided by the volume.

 

First law of thermodynamics

 

 The 

 

law of balance

 

 of energy. It includes only rates of
change of the energy content, energy 

 

currents

 

, and energy 

 

source rates

 

.

 

Fluidlike quantities

 

 Physical quantities which possess a 

 

density

 

 and a 

 

current density

 

(and possibly 

 

source densities

 

 and 

 

production densities

 

) are called fluidlike. 

 

Laws
of balance

 

 can be written for them. They form a subset of the 

 

extensive quantities

 

.
The classical fluidlike quantities are momentum, angular momentum, 

 

entropy

 

,
charge, amount of substance, and (gravitational) mass.

 

Flux

 

 Formal measure of the amount of a 

 

fluidlike quantity

 

 crossing the surface of a
system in unit time (informally, the same quantity is called a 

 

current

 

). The flux is
counted as positive for a current flowing out of the system.

 

Flux density

 

 The surface density of a 

 

flux

 

. The surface integral of a flux density deliv-
ers the flux. Equivalent to 

 

current density

 

.
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Heat

 

 Informal term for 

 

entrop

 

y. Equivalent to 

 

caloric

 

. (Commonly the energy
exchanged in heating is called heat; this usage is not followed in this text.)

Heating The process of the transfer of heat (entropy) across the surface of a body
excluding convective transports. The opposite process is cooling.

Heat capacity Used in the sense of entropy capacitance, i.e. as the derivative of the
entropy function with respect to temperature. The usual “heat capacities” are called
the temperature coefficients of energy and of enthalpy.

Heat function The formal expression of the assumption that a body contains a certain
amount of heat, where the heat stored is a function of the independent variables
describing the properties of the body. This heat function turns out to be equivalent
to the entropy of the body.

Hotness The hotness manifold is the primitive concept for describing the ordering of
bodies according to the sensation of how hot they are. The numerical measure of
the hotness is the temperature.

Intensive quantities The quantities which remain the same if a body is divided into
parts. A subset of the intensive quantities are the potentials.

Irreversible process A process which leads to the production of entropy.

Irreversibility Opposite of reversibility. The condition of irreversibility means that
entropy is produced during a process.

Law of balance The formal relation which holds for the rate of change of the fluid-
like quantity of a body and its currents (and possibly its source rates and produc-
tion rates).

Level Informal term for potential. Levels are the conjugate quantities (conjugate with
respect to energy) of the fluidlike quantities.

Minimization of entropy production Minimizing irreversibility is achieved by min-
imizing the rate of production of entropy.

Potential Formal term for the quantities which take the role of physical levels, other-
wise known as the intensive quantities. There is a potential associated with each of
the fluidlike quantities. The classical potentials are velocity (for momentum), angu-
lar velocity (for angular momentum), temperature (for entropy), the electrical
potential (for charge), the chemical potential (for amount of substance), and the
gravitational potential (for gravitational mass).

Potential difference Difference of potential at two points in space.

Power The rate of release of energy or the rate of binding of energy. Power is associ-
ated with an internal process as opposed to an external process (i.e. a transport pro-
cess which is quantified by energy currents).

Power of heat Colloquial for the power associated with the fall of entropy from
points of higher to points of lower temperature. This is Carnot’s puissance du feu.
Integrating the power of heat over time delivers the availability.

Production Informal term for the phenomenon of production of a fluidlike quantity.
A quantity which is produced can accumulate inside a system even without being
transported into the system. Production (or destruction) is associated with noncon-
servation of a quantity. 

Production rate Formal measure of the production of a fluidlike quantity. It describes
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the amount of the quantity produced inside a system per unit time. A negative pro-
duction rate means the quantity is destroyed.

Production (rate) density The spacial density of the production rate. Its volume
integral delivers the production rate.

Releasing energy Release of energy when the current of a fluidlike quantity goes
from higher to lower potential. Opposite of binding of energy.

Reversibility The condition of reversibility means that there is no entropy production
during a process.

Second law of thermodynamics The law of balance of entropy. (Historically, it is
not clear what to call the Second law of thermodynamics; in traditional thermody-
namics, we find countless forms of the Second law. Here, the simplest and—for
us—most useful choice has been made.)

Source Informal for processes as by which a fluidlike quantity is transferred into a
system without having to cross the surface of the systems. This happens as the
result of the interaction of bodies and fields. 

Source rate Formal measure of a source of a fluidlike quantity. It determines the
amount of the quantity delivered to the system per unit time.

Source (rate) density The spatial density of the source rate. Its volume integral
delivers the source rate.

Superconducting process A transport process of a fluidlike quantity which does not
require a driving force.

Temperature Measure of the hotness of a body. Temperature is like the coordinate on
the hotness manifold. Temperature serves the role of the thermal potential.

Temperature coefficient of energy The derivative of the energy with respect to
temperature at constant volume. Normally called heat capacity at constant volume.

Temperature coefficient of enthalpy The derivative of the enthalpy with respect to
temperature at constant pressure. Normally called heat capacity at constant pres-
sure.

Thermostatics Theories of thermostatics try to derive the conditions pertaining only
to static thermal situations. Usually, these conditions are derived by maximizing or
minimizing functions such as the entropy or the energy of a system.

Uniform processes Spatially uniform processes, i.e. processes in which variables of
a system have the same value at every point at a given moment.

Using energy Same as binding of energy.
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TO
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C

 

HAPTER

 

 4

 

Note: If the term 

 

heat

 

 is used, it is used in the
sense of entropy.

1. Different size bodies.

2.

 

T

 

 measures how warm an object is.

3. Thermal capacitance of the body of wa-
ter f must be higher than that of the 
piece of copper.

4. Temperature difference is driving force 
for flow, flow is in direction of decreas-
ing 

 

T

 

.

5. No, heat can also melt a body. No, we 
can compress air.

6.

 

T

 

 changes independently of changes of 
heat.

7. Heat can be produced or taken from the 
environment. For the body, it does not 
matter where heat comes from.

8. Energy for pumping heat (like pumping 
water). More energy is needed to pump 
additional heat.

9. Looks analogous to electricity (

 

P

 

 = 

 

UI

 

Q

 

 
= 

 

U

 

2

 

/

 

R

 

). We assume that the heat flow 
is proportional to 

 

∆

 

T

 

.

10. Fire, flow of electricity, friction, chem-
ical reactions, absorption of sunlight, 
diffusion of substances.

11. All processes except for the production 
of heat can be reversed.

12. No heat flow. Heat inside air has been 
compressed into smaller space.

13. Could change by more because of pro-
duction of entropy.

14. The rate at which energy is needed to 
pumped the entropy (not equal to the 
rate at which energy is made available).

15. Thermal power is the same.

16. Thermal power: 1.0 W. Used inside the 
battery.

17. For an element of the bar, the thermal 

power is 

 

∆

 

T

 

 multiplied by the local en-
tropy current.

18. 24 kg.

19. Ohm’s law and capacitive relation.

20. Hot water in the environment has a 
cooling curve analogous to the one 
found in discharging of a capacitor.

21. It freezes and boils. Its density has a 
maximum at 4°C.

22. Pressure of the ideal gas. Pressure is ab-
solute, electric, gravitational potentials, 
and speed are not. (See also Question 
9.)

23. In a voluntary process, energy is re-
leased. There is no other process than 
dissipation.

24. No.

25. Yes (example: expansion of air).

26. Upward to the right.

27. The gas has to be heated to keep its 
temperature.

28. Horizontal to the left. Entropy of sys-
tem decreases. Entropy is communicat-
ed to environment.

29. Thermal energy currents are added.

30. Engine gets more efficient.

31. See Question 9.

32. Ct = J/K, W/K, W/K.

33. 5000 W/K.

34. 0.5. 0.3/0.5 = 0.6.

35. Difference of thermal energy currents 
equals thermal power.

36. Since 

 

P

 

diss

 

 = 

 

T

 

Π

 

S

 

 

 

, the relevant temper-
ature difference is 

 

T

 

 – 0.

37. 1.0 W/K. 1.0 W/K and 400 W.

38. 20 W/K.

39. They are equal.

40. It is defined as the useful (= thermal) 
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power divided by the energy current 
from the heater (rather than the useful 
power divided by the thermal power).

41. 10.

42. Loss of power is always positive, and it 
is proportional to the entropy produc-
tion rate.

43. Otherwise, entropy production rates 
would be undetermined.

44. Entropy added to a material can also 
lead to changes of volume. Tempera-
ture can also change as a result of ex-
pansion or compression.

45. Linear measure 

 

TS

 

 relation. Yes.

46. 7.7 J/(K

 

2

 

kg).

47. Zero.

48. 1400 J/K. 420 kJ.

49. Since 

 

k

 

 =

 

c/T

 

 with 

 

c

 

 = const. Or it leads 
to Equ.(4.40) with 

 

c

 

 = const.

50. Increases. Decreases.

51. It varies as the inverse of temperature. 
Take the derivative of Equ.(4.42) with 
respect to temperature.

52. Heating and cooling of simple bodies 
in an environment of constant temper-
ature (

 

T

 

 behaves like 

 

U

 

 of a capacitor).

53. Energy is released in the fall of entropy 
from high to low T; if there is no other 
obvious process, the energy is dissipat-
ed.

54. It increases by 100%.

55. A junction is not considered a storage 
element for entropy, so the steady-
state balance applies.

56. The actual temperatures matter.

57. Because of entropy production.

58. Entropy would not flow (could neither 
enter nor leave the engine).

59. The fall of entropy through a part of 
the total temperature difference is as-
sumed to be reversible. The model can 
be quite useful for real engines.

60. Entropy is absorbed and emitted at 
constant temperatures.

61. The transport of entropy with charge is 
assumed to be non-dissipative.

62. Entropy flows conductively from hot 
to cold, reducing the effect of pump-
ing.

 

C

 

HAPTER

 

 5

 

1. Entropy of steam and water together 
decreases, entropy of environment in-
creases. 

2. Wax melts, absorbing entropy from 
the water without changing its temper-
ature.

3. Only if the substance is not flowing 
into or out of the control volume. 

4. Yes, phase change by itself is revers-
ible.

5. The energy added is part of the change 
of the energy of the system; another 
part is related to the change of volume.

6. Roughly 550 J/(K·kg).

7. More entropy can be stored in a given 
volume. Phase change temperature 
should be in the range of temperatures 
required for hot water.

8. Because 

 

T

 

 is constant (see Equ.(5.4)).

9. Both temperature and volume can 
change.

10. The entropy that leads to a volume 
change at constant 

 

T

 

, per unit volume.

11. The entropy that leads to a change of 
temperature at constant 

 

V

 

, per unit 
temperature.

12. Constant pressure heating.

13. It takes less entropy to change the tem-
perature of air at constant volume.

14. Constant 

 

p

 

 curve is less steep.

15. The entropy in the gas is compressed 
into a smaller volume. For a formal an-
swer, see Equ.(5.39).

16. Close to adiabatic.

17. Isothermal compression give larger 
change of V (entropy is emitted by the 
air).

18. The compression is close to adiabatic 
which makes the air hot. This in turn 
makes the pump hot: non-adiabatic 
phase of cooling of air.

19. When 

 

dV/dt

 

 = 0, we have 

 

dT/dt

 

 = 0. 
With 

 

I

 

S

 

 

 

≠

 

 0, the condition no longer 
holds.

20. Latent entropy with respect to volume 
is positive (

 

T

 

 > 4°C) or negative (0°C 
< 

 

T

 

 < 4°C). Adiabats have a minimum 
(Fig. 5.13).

21. The difference of the entropy capaci-
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tances at constant p and constant V is 

 

R/
T

 

.

22. Take values for O

 

2

 

 and N

 

2

 

: 

 

c

 

V

 

 = 2.5

 

R

 

, 

 

c

 

P

 

 = 3.5

 

R

 

. Adiabatic exponent: 1.4.

23. Heat transfer produces entropy.

24. Entropy is exchanged between the dry 
part and the water vapor component.

25. Processes undergone by the materials 
modeled here are reversible.

26. 0 = 

 

TdS/dt

 

 – 

 

PdV/dt

 

.

27.

 

c

 

P

 

/

 

c

 

V

 

 = (

 

T

 

κ

 

P

 

)/(

 

T

 

κ

 

V

 

).

28.

 

∆

 

E

 

 = 

 

C

 

V

 

 

 

(

 

T

 

2

 

 – 

 

T

 

1

 

). 

 

Λ

 

V

 

 = 

 

P/T

 

, and 
Equ.(5.66). Alternatively: 

 

C

 

V

 

 is the 
temperature coefficient of energy, and 
the energy of the ideal gas only de-
pends upon temperature.

29. Part of it is emitted to the environment 
as a consequence of expansion. Energy 
stored = energy absorbed – 

 

P

 

∆

 

V

 

.

30. – 10 kJ. 

31. Entropy is absorbed at temperatures 
lower than the highest one, and emitted 
at temperatures higher than the lowest 
one.

 

C

 

HAPTER

 

 6

 

1. Smaller amount of substance means 
smaller pressure.

2. More than twice as much H

 

2

 

 than O

 

2

 

, 
H

 

2

 

 will be left over.

3. See Fig. 6.1 and interpretation given 
there.

4. Compare to two communicating con-
tainers containing fluids of different 
densities.

5. Energy is released by chemical reac-
tions, used to pump electric charge. 
Batteries do not get fresh fuel.

6. First reaction emits entropy, second re-
action takes entropy from its environ-
ment.

7. Chemical potentials of water and (satu-
rated) vapor are equal.

8. Temperature of boiling point rises.

9. 18 g.

10. 0.091

11. 500 moles of H

 

2

 

 , 250 moles of O

 

2

 

 gas, 
500 moles of water.

12. 0.0060 mole/min. 0.46 g/min, – 0.184 

g/min, 0.28 g/min.

13. 1.0

 

 

 

·

 

 

 

10

 

–6

 

 mole/s.

14. Higher chemical potential in air (it will 
flow into water, since there is 4 times 
more toluene in water in equilibrium).

15. Changes of 

 

all

 

 chemical potentials 
have to be considered to find the chem-
ical potential difference at higher 

 

T

 

.

16. Driving force is negative potential dif-
ference. Compare to voltage in electric-
ity.

17. The chemical potential difference of a 
transformation has to be equal to zero 
in equilibrium.

18. Boiling point is lowered. Chemical po-
tential of air decreases.

19. Energy is released; energy is used. 
Charging a battery.

20. Chemical power in reactions would not 
be definite if potential were not abso-
lute.

21. Substances A and B are destroyed and 
make energy available (according to 
their amounts); this energy is used by C 
(according to its amount).

22. Power equals difference of all energy 
currents going in and all energy cur-
rents going out.

23. Voltage across terminals drops. OC 
voltage is not affected (no reactions).

24. Entropy is emitted, entropy is ab-
sorbed.

25. Yes, entropy of products must be 
smaller than entropy of reactants.

26. Entropy of products must be smaller 
than entropy of reactants.

27. Substance and charge must be directly 
coupled.

28. Gravitochemical potential is constant.

29. Logarithmic dependence.

30. Chemical potential of CO

 

2

 

 is smaller in 
water (having no CO

 

2

 

). Use chemical 
equilibrium.

31. Depends upon its molar fraction.

32. Diffusion.

33. Pressure and chemical potential of the 
liquid are lowered.

34. Salt dissociates into two ions.

35. The chemical potential of the liquid is 
lowered; at the original boiling point, 
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vapor condenses. Effect of change of 

 

µ

 

 
is larger for salt.

36. For given driving force (

 

∆

 

µ

 

), the cur-
rent depends upon how much sub-
stance there is to be transported.

37. Smaller than 1?

38. The net flux becomes zero.

39.

 

µ

 

 of water is proportional to its pres-
sure.

40. There is always solute in the cells. The 
difference of water pressure (osmotic 
pressure) does not go to zero.

41. Both phenomena are caused by the re-
spective chemical potential difference 
which takes the same form. Equ.(6.75) 
and Equ.(6.88).

42. Third order (quadratic in the concen-
tration of hydrogen, linear in the con-
centration of oxygen).

43. Exponential decaying to zero.

44. Concentration of B remains (almost) 
constant.

45. The chemical driving force is logarith-
mic but the concentrations are expo-
nentials as functions of time.

46. Product concentration is small. Prod-
uct concentration is large. Concentra-
tions of products and reactants are 
comparable. Transfer of a substance 
between identical environment.

47. – 1415 J/mole.
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1. Temperature difference. Pressure dif-
ference.

2. No. Specific entropy of water remain-
ing in tank stays constant.

3. Current of entropy: distributed over a 
surface; entropy source rate: distribut-
ed over a volume.

4. In the former case, entropy is not pro-
duced, it is only transported.

5. Yes, and yes.

6. 25 W/K.

7. Because of entropy production.

8. For the second material: slower reac-
tion to changes.

9. No.

10. Convective mixing.

11. Different temperatures, different 
(thickness of) boundary layer.

12. It increases in thickness. Temperature 
decreasing toward the plate.

13. With 10 cm thickness, neglecting con-
vection would lead to an error of about 
20%.

14. Transfer resistances from water to 
metal and through metal are very 
small.

15. The expression for conduction con-
tains the thickness of the layer, the ex-
pression for convection does not.

16. Radiation flows in different directions 
at a point in space. Emission and ab-
sorption are volumetric processes.

17. Radiation is more like convection (de-
pends upon storage density of entro-
py). Yes.

18. The current of entropy away from the 
body is larger than the source (sink) 
rate in the body (by a factor 4/3).

19. 20

20. 19 of 20 units of what flows away are 
produced.

21. Yes, the temperature is still the same 
(see Equ.(7.33) and Equ.(7.34)).

22. In parallel.

23. Not for a gray surface. Yes, for a selec-
tive surface.

24. Yes (Table 7.3).
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1. Specific entropy does not change. Spe-
cific entropy is reduced.

2. Its speed.

3. Pressure (and possibly speed and grav-
itational potential) also factors in.

4. Flow of energy stored in compressed 
spring. Energy flow due to pushing the 
spring.

5. They are equal if the volume of the 
substance cannot change.

6. First, 

 

T

 

1

 

 will decrease, 

 

T

 

2

 

 will stay 
constant. Later, 

 

T1 will stay constant 
and T2 will increase.

7. Different phenomena (pushing fluid 
versus compressing it).

8. The effect mentioned here does not 
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necessarily lead to motion of the center 
of mass.

9. Specific quantities refer to a part of the 
fluid—we move with the fluid.

10. Pressure does not change.

11. They can be changed if the temperature 
changes with pressure.

12. Use the temperature coefficient of the 
chemical potential at standard condi-
tions, and add the entropy related to the 
temperature change.

13. Entropy transfer is reversible too (the 
fluid receives entropy at the proper 
temperature everywhere). In our mod-
el, dissipation is due to the fact that we 
treat the fluid as uniform.

14. Equ.(8.70): fluid flowing in is at the 
same pressure as fluid already present.

15. Relaxation of pressure: energy is re-
leased and dissipated. Second term in 
Equ.(8.74).

16. Liquid flows in through a throttle.

17. The fluid in the tank gets hotter every 
day: collector losses increase.

18. With stratified water, cooler water re-
turns to collector, making the collector 
more efficient. Mixing leads to higher 
losses in the collector.

CHAPTER 9

1. Entropy that is produced has to be emit-
ted to the environment and takes energy 
with it.

2. Only if there is a single constant tem-
perature of the environment that re-
ceives the rejected entropy.

3. In fuel cells, the reactions run without 
entropy production (theoretically).

4. Yes. They use entropy that is already 
available in the environment.

5. Higher losses means more entropy pro-
duction.

6. The cyclic operation of the fluid in the 
engine works reversibly. The fluid un-
dergoes heating and cooling at constant 
temperatures.

7. Entropy needs temperature differences 
to flow into and out of the engine.

8. ηCA = 29%.

9. Flow speed increases which makes the 
heat transfer from absorber to fluid 
more efficient.

10. Yes.

CHAPTER 13

1. (a) Entropy density; (b) entropy current 
density; (c) entropy production density.

2. Introduce a negative sign in the surface 
integral (Equ.(13.5)).

3. Because of entropy production.

4. Sources: entropy flows from some-
where else.

5. Three. For (a) entropy density, (b) en-
tropy current density, (c) entropy pro-
duction rate density.

6. Entropy flows in the direction of de-
creasing temperature.

7. Yes; introduce Fourier’s law.

8. kE has to be constant.

9. Equilibrium relations: no flows as inde-
pendent variables (only T, P…).

10. Example: energy released in a flow of 
entropy through a temperature differ-
ence is used to drive a flow (dissipa-
tion) and to change the flow (inertia).

11. So that the entropy production rate will 
certainly be positive or zero.

12. Use Peltier element between two bod-
ies of water at equal temperatures. 
Measure rates of change of T in terms 
of IQ.

13. Charged particles flow through differ-
ent materials.

14. A combination of electro-chemical po-
tential with temperature (Equ.(13.70)).

15. Non-dissipative transport of charge and 
entropy; dissipative conduction.

16. Transport of entropy with charge in one 
direction; conduction in the other direc-
tion. Coupled transport has to be stron-
ger than conduction.

17. Two sources of irreversibility: conduc-
tion of entropy and of charge.

18. jQdT/dx can be positive or negative, so 
these terms must represent non-dissipa-
tive processes. Dissipation means en-
tropy production.



APPENDIX 4.  ANSWERS TO QUESTIONS

702 THE DYNAMICS OF HEAT

CHAPTER 14

1. Divide Equ.(14.1) by Ts.

2. Equations for developed flow.

3. Two pressure terms (including longi-
tudinal friction), two shear friction 
terms.

4. For given geometry, flow behavior de-
pends on the dimensionless groups 
only.

5. Difference between incoming and out-
going radiative fluxes. See Answer to 
Question 17., Chapter 7.

6. Steady-state and no loss from fluid to 
environment.

7. Yes. 

8. The collector’s capacitance is much 
smaller than that of the storage ele-
ment.

9. Equ.(14.26) includes Tf,in which is the 
temperature of the water in the tank. In 
Equ.(14.26), the spatial temperature 
variation is treated properly.

10. Entropy transfer through ∆T. Ideal: no 
entropy loss to the environment.

11. Increase NTU.

12. Average ∆T is smaller.

13. Two counteracting effects are needed.

CHAPTER 15

1. All of entropy, not all of the energy.

2. They are equal.

3. Along horizontal (constant T) lines in 
the liquid-vapor area.

4. Equ.(15.15).

5. Smaller (smaller µ because of φ < 1, 
equal h).

6. Molar mass of moist air is lower (M0 of 
water is low). Moist air rises.

7. Equal temperatures, ideal gas model.

8. The stream of air has to remain in the 
adiabatic saturator long enough.

9. Evaporation as diffusive (conductive) 
transport of vapor through air: see con-
duction of charge or entropy.

10. Single-dimensional steady-state flow 
of a non-reacting species.

11. Transform the argument of the loga-

rithm in Equ.(15.43).

12. Temperature decreases, humidity in-
creases. More evaporation means more 
mixing means more dissipation.

13. Small temperature differences.

14. No dissipation between plant and envi-
ronment. This is violated noticeably in 
the condenser. 

15. From the values pertaining to saturated 
liquid and saturated vapor.

16. It separates mixtures if liquid and va-
por from liquid or vapor.

17. It remains constant.

18. Specific entropy s is constant, so µ in-
creases with pressure, see Equ.(15.53).

19. The volume is independent of temper-
ature (Equations (15.55) and (15.56)).

20. Saturated vapor will partly condense.

21. Entropy is produced in the valve.

CHAPTER 16

1. Radiant power: solar constant multi-
plied by surface of sphere surrounding 
Sun having radius equal to Sun-Earth 
distance. Temperature from black-
body radiation law. 

2. Surface temperature from Fig. 16.1, 
use black-body radiation law.

3. Above the Earth’s atmosphere.

4. Distance of air crossed by Sun’s rays if 
the Sun is vertically above us.

5. Constant attenuation coefficient.

6. Treat radiation as a thermal system and 
use basic thermodynamic relations 
(Part III).

7. Temperature gives us the incoming en-
tropy and energy, allows calculation of 
dissipation.

8. Selective absorber with low solar ab-
sorptivity and low infrared emissivity.

9. Temperature will be higher than that of 
the environment.

10. This effect does not have anything to 
do with reflectance and emittance. 
Losses and dissipation are temperature 
dependent.

11. T of imperfect emitter is higher, entro-
py production rate is lower.
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1. dV/dt = – 0.010 m3/s. (a) IV3 = 0.0125 
m3/s – 10^–4 m3/s2 · t. (b) 0.10 m3.

2.

3.

4. CV = A/(2·

 

ρ

 

·g)

5. (a) IV = 4.81·10^–6 m3/s. (b) PA = 1.0 
bar, PB = 1.0078 bar, PC = 1.027 bar, 
PD = 1.0 bar. (c) Exponential functions 
approaching h = 0.20 m with a time 
constant of 208 s.

6.

7. (a) Two tanks connected by pipe, addi-
tional pipe for outflow, valves for each 
pipe. (c) dV1(t)/dt = - IV1, INIT V1 = 
C1*p1_init, dV2(t)/dt = IV1 - IV2, 
INIT V2 = C2*p2_init, IV1 = 
delta_pR_1/R1, IV2 = IF (TIME > 50) 
THEN delta_pR_2/R2 ELSE 0, 
delta_pC_1 = V1/C1, delta_pC_2 = V2/
C2, delta_pR_1 = delta_pC_1-
delta_pC_2, delta_pR_2 = delta_pC_2. 
(d) UC2 mirrors the UC1, time constant 
of 6.0 s. (e) 1.5·10^–4 F. (f) 100 k

 

Ω

 

 

 

. (g) 
IV1 = 0 A, IV2 = 2.0·10^–5 A, dUC1/dt 
= 0 V/s, dUC2/dt = – 0.133 V/s.

8.

9. (b) dM/dt = P – V, dP/dt = Diff/L, Diff 
= E – M; First equation: Law of bal-
ance. Second equation: analogous to 
law of induction. Diff: analogous to 
pressure difference. Unit (dimension) 
of L: time squared. (e) Undamped Os-
cillation, Period = 2

 

π

 

 SQRT(L).

10. (a) IL starts at 0, IC becomes negative.

 

C
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1. PPump = 3.02 kW.

2. (b) Vf^2/(2CV). Energy is stored in the 
system.

3.

4.

5. (a) Uf = U1i·C1/(C1+C2), Q1f = 
U1i·C1^2/(C1+C2), Q2f = U1i·C1·C2/
(C1+C2). (b) No. (c) Two communicat-
ing tanks, energy loss because of fric-
tion when water flows.

6. (a) IQ(t) = – |UB|/R·exp(–t/tau). (c) PB 
= – 0.86 W, PR = 0.44 W, PC = 0.42 W. 
(d) IE_BC = 0.86 W, IE_CR = 0.44 W. 
(e) 0.42 W. (f) Depends upon emission 
of heat.

7.

8. (a) 1.25·10^14 J. (b) 8.75·10^14 J. (c) 
40 MW, 30 MW. (d) 8.75·10^14 J. (e) 
4·10^15 J (in Switzerland).

9.

10. (a) 62.5·10^9 J. (b) 0.20 m3/s.

11. (b) 0.13 J. (c) 0.13 J. (d) E_diss = 0.050 
J. (e) 1.34 s 

 

≤

 

 t 

 

≤

 

 1.45 s, 0.065 J.

12.
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1.

2.

3. Positive source rate of momentum, neg-
ative current through rope. Free-body 
diagram: Force of gravity FG, Force of 
rope FR, FG = Sigma_p, FR = Ip.

4. djp/dx = 

 

ρ

 

·g. jp(x) = 

 

ρ

 

·g·(– L + x).

5.

6. (a) Larger change of speed belongs to 
smaller glider. (b) 3.1·10^–3. (c) 0.419 
N. (d) Radiative (source rate).

7.
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8. (a) 10^6 N/m. (b) 0.314 s. (c) Shorten-
ing of springdamping force points in 
the direction of force of spring. 
Stretching of spring: damping force 
points opposite to force of spring. This 
explains the jump of the acceleration 
of the car at about 1.04 s. 10^5 N.

9. (a) 0.944 N, – 3.78 N. (b) 77.7 N, – 
17.66 N.

10. – 4.21 N.

11. (a) dp/dt = (v + vg)·Im. (b) v(m) = v0 + 
|vg|·ln(m0/m) and m(t) = m0 – |Im|·t.

12. v(t) = v0·exp(–|Im|/m·t).

13. (a) Mass is changing. (b) 18 9 m/s^2, 
54.2 m/s^2. (c) 1280 m/s.

14.

15.

 

∆

 

r·tau/(2

 

π

 

·r^3·l·omega).

16. Lp = 1/D (D: spring constant). Omega 
= 1/SQRT(CpLp) = SQRT(D/m).

17.

18.

19. 560 N.

20.

 

∆

 

E = 1/2·D·stretching^2.
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1.

2.

3.

4.

5. The bodies get heavier and more inert, 
i.e., their mass increases. We do not 
know if the body has become hotter or 
faster.

6.

7. Commonality: can be stored and can 
flow.

8.

9. ± 6.2·10^7 N/m^2.

10. 50·10^–6 K^–1.

11. 461°C.

12.

13. (a) dS/dt = IS_in, 

 

∆

 

S = Se,in. (b) dS/dt 
= 

 

Π

 

_S – IS_out, 

 

∆

 

S = Sprod – Se,out. 
(d) dS/dt = 

 

Π

 

_S. (f) dS_stone/dt = – 
IS1, dS_cont/dt = + IS2 – IS3, |IS2| > 
|IS1|. (g) 0 = 

 

Π

 

_S – IS_out.

14. IS_net = 100 W/K. dS/dt = 100 W/K.

15. (a) Absorbed: 2250 J/K, emitted: 3000 
J/K. (b) – 750 J/K. (c) – 750 J/K.

16. (a) – 70 W/K + 5.0 W/(K·s)·t. (b) – 
1000 J/K, – 400 J/K.

17.

18. (b) Entropy is produced, so more en-
tropy and energy are emitted to the en-
vironment.

19. (a) 2.04 W/K. (b) 2.27 W/K.

20. (a) dS/dt = IS. (b) dS/dt = 

 

Π

 

_S.

21. 0.055 W/K.

22. 1.4·10^–8 W/K.

23. (b) 3.33·10^6 W/K. (c) 5.56·10^6 W/
K, 3.33·10^9 W. (d) 2.22·10^6 W/K. 
(e) 7.78·10^6 W/K.

24. (b) 444 W/K. (c) 267 kW. (d) 444 W/K, 
133 kW. (e) 300 kW. (f) 556 W/K.

25. (a) 1.02 W/K. (b) 281 W. (c) 0.38.

26. (a) 0.625 W/K. (b) 147 W. (c) Entropy 
is produced because of entropy trans-
fer in the insulation of the freezer, and 
in the heat exchangers of the heat 
pump. (d) 0.171 W/K.

27.

28. B is better by a factor of 4.

29.

30. (a) 0.135 W/K. (b) 103 J/K.

31. 940 J/K and 345 kJ.

32.

33. 1/2·K·(Tf^2 – Ti^2).

34. 60.7 MJ.

35.

36.

37. (a) 36 kJ/K^2 and 10.8 MJ/K. (b) 10.1 
W/K. (c) 101 W. (d) 371 W.

38. (a) 1200 W/(K·m^2). (b) – 100 kJ and 
100 kJ. (c) 1.0·10^–3 W/K^2.

39. 1190 J/(K·kg), 0.175 W/(K·m). Entro-
py related values: 4.0 J/(K^2kg), 
5.8·10^–4 W/(K^2m).

40. (a) IS = 0. (b) Yes, because of entropy 
transfer. (d) 2.0 W/K. (e) dT1/dt = – 
0.0286 K/s, dT2/dt = 0.0429 K/s, dT3/
dt = – 0.0143 K/s. (f) Final tempera-
ture: 50 °C, time constants of the order 
of 1000 s.

41. (b) roc_P = T_diff/tA. (d) dP/dt + 
(TH–TC)/tA·P = (TD–TC)/tA. (e) 1.25 
s. (f) Like charging of a capacitor, final 
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temperature: 40°C.

42. (a) 3.41·10^–3 W/K. (b) 4.7·10^–3 W/
K (electric fraction: 0.73). (c) 0.073 W. 
(d) 0.073 W / 1.53 W = 0.048.

43. (a) 0.30 W/K. (b) 0.014 W/K.

44. (a) Hot water: dS/dt = – IS_Peltier – 
IS_loss + 

 

Π

 

_S_mixing. (b) – 0.034 K/s 
and 0.029 K/s. (c) 0.20 W/K. (d) 

 

P

 

 = 
1.07·10^–4 W/K^2 · 

 

∆

 

T^2. (f) 

 

P

 

_el = 
0.50 W, 

 

P

 

_th = 12 W, efficiency: 4%.
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1. (a) IE_th / dn/dt / T. (b) 1230 J/(K·kg).

2.

3. (a) 7.0 g/s. (b) 3 g/s.

4. (a) 0.822 W/K. (b) – 1.15·10^–4 kg/s. 
(c) – 0.108 W/K. (d) 6210 J/(K·kg).

5. 946 m^3.

6. 0.0405 m.

7.

8. (a) – 1.73 kJ. (b) Se = – 5.77 J/K.

9. f = 2

 

π

 

·SQRT(

 

γ

 

·P·A^2/(m·V)).

10. (a) 1.21. (b) – 0.90·CV/T. Entropy is in-
jected into the gaseous component 
when the temperature decreases.

11.

 

ρ

 

 = b·T^n (n = 1/(

 

γ

 

* – 1)); P = 
B·

 

ρ

 

^(1+1/n).

12. E_comp = CV·(Tf – Ti).

13.

14. (b) 

 

γ

 

 = (Pi – P0)/(Pf – P0). (c) Energy of 
the gas is the same if the temperature is 
the same.

15. (a) Change of volume; – 50 kJ. (b) 
Heating; + 50 kJ. (c) Only energy ex-
changed in heating can be shown.

16.

 

∆

 

E = T·

 

∆

 

S – P·(Vgas – V liquid); 2.09 
kJ. (See also Table 15.1.)

17. 2°C: dE/dt < 0. 20°C: IE,mech < 0, 
IE_th > 0; cannot be decided on the ba-
sis of what we know at this point.

18. (a) 4.92 MJ. (b) 10^6 Pa. (c) IE_mech = 
– nRT / (V1 + dV/dt·t) · dV/dt, dV/dt = 
– 1.93 m^3/s, V1 = 21.4 m^3.

19. 154.3 J/(K·mole).

20.

21. 8°C.

22.

23. No heating, no friction. dS/dt = 0. dE/dt 

= IE,comp. = – P·dV/dt. Energy de-
creases.

24.

25.

26. Function shifts to the left.

27. All the entropy stays in the body; 

 

∆

 

E / 
E_th = 1/

 

γ

 

.

28.

29. (a) 39.7 mole; 1.15 kg. (b) 3.47·10^–4 
W/K. (c) 2.87 J/K^2; 4.01 J/K^2. (d) 
8.65·10^–5 K/s.

30. (a) – 2.14 kJ. (b) 5.36 J.

31. (a) 2.9 mm. (b) 37.5 mJ.

32.

33. P = 5·10^14 Pa, T = 2·10^7 K, Pr = 
4·10^13 Pa = 0.08 P.

34. (a) Entropy of universe turns out to be 
constant. (b) 1/10^4. (c) R(t)/R0 = 

 

ρ

 

_rad,0/

 

ρ

 

_matter,0 · 

 

ρ

 

_matter/

 

ρ

 

_rad; 
densities are comparable at a zize 10^4 
times smaller than today.

35. (a) V·T^3 = V0·T0^3, 

 

γ

 

 = 4/3. (b) 
E_th_isothermal = 4/3·a·T^4·

 

∆

 

V, 
E_mech_isothermal = – 1/3·a·T^4·

 

∆

 

V; 

 

∆

 

E = a·T^4·

 

∆

 

V.

36. (b) P = 2/3·

 

ρ

 

_E. (c) CV = 3/2·n·R. 

37.

38. Statics: computation of equilibrium 
states. Dynamics: requires “equations 
of motion.,” i.e., combinations of the 
balance of entropy in dynamical form 
and constitutive relations.
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1.

2. – 1.3 mole/min (consumption).

3.

4. – 394.4 kG.

5.

6. Gaseous (200, 300, 400 K): – 210.1, – 
229, –247.8 kG. Liquid: –230.3, –237« 
–244.3 kG. Solid: – 232.2, – 236; – 
241.2 kH.

7.

8. (a) 1.7. (b) – 1320 G.

9. (a) CH4 + 2O2 

 

→

 

 Co2 + 2H2O. (b) 
2744.5 J/(K·mole). (c) – 242.64 J/
(K·mole). (d) – 2987 J/(K·mole) (emit-



 

A

 

PPENDIX 

 

5.  S

 

OME

 

 S

 

OLUTIONS

 

 

 

OF

 

 E

 

ND

 

 

 

OF

 

 C

 

HAPTER

 

 P

 

ROBLEMS

 

706

 

T

 

HE

 

 D

 

YNAMICS

 

 

 

OF

 

 H

 

EAT

 

ted). (e) – 890 kJ/mole. (f) – 55.6 MJ/
kg.

10. 8.64·10^–14 J = 0.54 MeV.

11. – 237 kJ/mole.

12. 49.6 kPa.

13.

14. 1 / 1.3·10^26.

15. 3.7.

16.

17. 1.35 bar.

18. 9.40·10^(–6) mole/L and 12.8·10^(–6) 
mole/L.

19. 10^(–7) mole/L; pH = 7.

20.

21. (a) 25.6 bar. (b) 260 m.

22. 2.56·10^9 W.

23.

 

∆

 

s = + 43.34 J/(K·mole); s_prod = 
30.60 J/(K·mole); endothermic.

24. – 1.9°C.

25. Yes. 

 

∆

 

µ(25°C) = – 9.12 kG, 

 

∆

 

µ(45°C) 
= – 9.99 kG.

26.

27. Fraction of NH3 increases with in-
creasing pressure.

28. (a) Ice: 41.5 J/(K·mole), water : 63.3 J/
(K·mole); – 136 bar/K. (b) – 138 bar/
K.

29. (a) Hg gas condenses. (b) 0.27 Pa. (c) 
22 mg/m^3. 0.2 h per week. (d) 1.5 
times higher.

30. Density of entropy production rate: 
R·D / c · (dc/dx)^2.

31.

32.

33. Ag-108: Half life = 143.7 s, N0 = 
53600. Ag-110: Half life = 22.4 s, N0 
= 22800.

34.

35. (a) nA_final = 1.5 mole, nB_final = 0, 
nC_final = 0.5 mole. (b) dnA/dt = InA 
– V·k·cA·cB^2; dnB/dt = InB – 
2·V·k·cA·cB^2; dnC/dt = – InC + 
V·k·cA·cB^2. (c) InA = 1.0 mole/h, 
InB = 2.0 mole/h; nA(equ) = 20 mole, 
nB(equ) = 3.536 mole.
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1. (a) 1.0 W/K. (b) dS/dt 

 

≥

 

 1.0 W/K. (c) – 
1.0 W/K; no (conductive) fluxes.

2. (a) – 400 K/m. (b) jS = 800 W/
(K·m^2), jE = 3.2·10^5 W/m^2, kE = 
800 W/(K·m). (c) – 0.80 W/K.

3. 203 W. The energy current decreases 
when a mineral deposit builds up.

4.

5. (a) 18.1 kW. (b) 9.6 m.

6. (a) 463 K. (b) 334 K.

7.

8. T_Sirius = 9100 K.

9. (a) 4.1·10^14 W/K. (b) 2.8·10^13 W/
K. (c) 3.82·10^14 W/K. (d) 5.17·10^14 
W/K.

10. (a) 120 W. (b) C·dT/dt = alpha·G_Sun 
– A·h·(T – Ta) – A·

 

σ

 

·(T^4 – Ta^4) – ef-
ficiency·G_Sun. (c) 0.56 K/s. (d) 331.4 
K. (e) 

 

P

 

_el_final = 78 W.

11.

12. h(300 K) = 5 W/(K·m^2), h(500 K) = 
11 W/(K·m^2), h(800 K) = 32 W/
(K·m^2).

13. 105 min.

14. 1.3 days.

15. (a) 4.85·10^4 s. (b) 2.09 W/K. (c) 
0.78·10^5 J/K. (d) 22.7 MJ.

16. (a) 250 W/K. (b) 9.7·10^7 J/K. (c) 30 
kW.

17.
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1. (a) 121 kW. (b) 73.5 kW. (c) 23.4 kNm.

2.

3. 2800 K.

4.

5. (a) Viscosity changes with tempera-
ture, and there is a current of substance 
due to evaporation. (b) dm/dt = – 
Im,pipe – Im,evaporation. 

6.

7.

8. (a) 300 K, 6425 W/K. (b) 344.4 K, 
6760 W/K. (c) 300 K, 9310 W/K.

9.



 

A
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10.

CHAPTER 9

1. Minimum entropy production rate at a 
radius of 0.040 m.

2. Loss of energy from the pipe and 
pumping power do not add up to the 
loss of available power.

3.

4. (a) 2.174·10^6 W/K. (b) 815 MW. (c) 
1.776·10^6 W/K, 5.33·10^8 W; yes.

5.

6. Add the additional heat exchanger sur-
face at the cold end.

7. (a) ΠS = IE/TH – hA·(2 – TL/TH – TH/
TL). (b) 482 K. (c) 514 K; two sinks for 
entropy at different temperatures. 

8. (a) Balance of losses due to friction and 
to heat loss. (b) Dt_opt^2 = 1/T · RV · 
V^2 / (Ah) · T · Ta / (T – Ta)^2.

9.

10.

CHAPTER 10

1.

2.

3.

4.

5.

6.

7.

8. (1) γ = 1 + αV^2·c^2 / κP; (2) κT = 1/ρ 
· (αV^2/κP + 1/c^2); (3) ΛV = ρ · 
αV·c^2·κP / (κP + αV^2·c^2); where 
αV = – 1/ρ · ∂ρ/∂T is the temperature 
coefficient of expansion.

9.

CHAPTER 11

1. Both processes lead to source rate den-
sities. In the case of production, the 
quantity appearing in a system is not 
coming from a different system.

2.

3. (a) ∂ρ/∂t – k · ∂2ρ/∂x2 = 0. (b) ∂2ρ/∂x2 

= 0, ρ(x) = a + b·x, two boundary con-
ditions are needed.

4.

5. (a) ∂ρf/∂t = πf(t,x), πf = net production 
– destruction rate,ρf = density of food.

6.

7. No; convection is implicity in the form 
using the material derivative.

8.

9. Gradient of a scalar function: grad(f) = 
(df/dx , df/dy); Divergence of a vector 
field: div(j) = djx/dx + djy/dy.

10. Coordinate independent form for a sca-
lar function f: Df/Dt = df/dt + v·grad(f); 
v and grad(f) are vectors, the product is 
the scalar product.

11.

12.

13.

CHAPTER 12

1. (a) 2.0·10^7 W/(m^2·sr). (b) 5770 K; 
temperature of sunlight at the distance 
of the Earth is equal to the surface tem-
perature of the Sun. (c) iEb = 3/4 · T · 
iSb; iSb = 4.6·10^3 W/(K·m^2·sr); 0.32 
W/(K·m^2).

2. (b) Sun: 6.3·10^7 W/m^2; oven: 
6.1·10^3 W/m^2.

3. F21 = A1/A2 · F12.

4. IE = σ/R_total · (T1^4 – T2^4); R_total 
= 958 1/m^2.

5. (a) κE = – 1/∆x · ∆iE / iE. (b) diE/dx = 
– µ·iE, where µ = κE + βE. (c) 3.5 · 
10^(–5) 1/m.

6. l_mean = 0.06 m; κρ = 0.01 m^2/kg.

7. (a) y = 1/x^5 · 1/(exp(1/x) – 1). (b) 501 
nm.

8. (a) 2330 K. (b) The new entropy of ra-
diation is 2.7 times the old entropy.

9.

10.

CHAPTER 13

1. (a) 7.68·10^4 W/m^2. (b) 603 W. (c) 
110 W/(K·m^3) and 206 W/(K·m^3). 
(d) 0.59 W/K.
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2.

3. (a) Steeper at the colder end.

4. (a) 0.19 W/m^3. (b) 6.2·10^(–4) W/
(K·m^3).

5. (b) dT/dx (L) = – sE/kE · L – 1/kE · 
jE(0). (c) – 0.025 K/m. 

6.

7.

8. According to Equ.(13.54), the term in 
parentheses in Equ.(13.61) equals jS/
kS.

9. (b) First two terms arise in thermal 
conduction alone; third term is due to 
dissipation in electric process.

10. dT/dx(cold) = 0; T(hot) = const.

11. (a) GE = const. (c) Power = a · IQ · (Th 
– Tc) – R · IQ^2; efficiency = Power / 
IE,th,h.

12.

CHAPTER 14

1.

2.

3.

4. Uniform model: includes entropy pro-
duction due to mixing of incoming flu-
id stream with fluid present in the 
collector. This term does not occur in 
continuous models.

5.

6.

7.

8.

9.

10. Counter-flow: 0.833; parallel flow: 
0.500.

11. Strongly unbalanced: e_unbalanced > 
e_balanced; nearly balanced: 
e_unbalanced ≈ e_balanced.

12.

13.

14.

15. Power = 4.4·10^12 W, efficiency ≈ 0.3.

16. Excess of gradient: 6.4·10^(–8) K/m, 
compared to actual gradient of 
1.1·10^(–2) K/m.

CHAPTER 15

1. Moist air has smaller molar mass than 
dry air.

2.

3.

4. Use Equ.(15.37) – Equ.(15.39).

5. jnv,tot = – D/(R·Ta) · P/(P–Pv) · dPv/
dz. (Remember: x = Pv/P.)

6. See Fig. 15.21 for a dynamical model 
that represents a similar situation.

7. (a) 1470 J/(K·kg) vs. 1550 J/(K·kg). (b) 
2.24 MJ/kg; 1.8·10^9 W.

8.

9. 1 – T_out/T_in_av.

10. Efficiency increases if (1) boiler pres-
sure is increased, (2) if condenser pres-
sure is decreased. A condenser allows 
the pressure at the cold end to be de-
creased below atmospheric pressure.

11. 1 – 313/573 = 0.45 > 0.37 for the 
Rankine efficiency. Ideal Rankine cy-
cle does not produce entropy, so the 
difference is not due to dissipation.

12.

13. (a) 0.15. (b) 19 m^2.

14.

15. (a) 6500 J/(K·kg), 3000 kJ/kg. (b) 
190°C, 10 bar. (c) 1.0 bar, 0.9.

16. (a) – 53.26 kJ/K. (b) – 25.0 MJ. (c) 
3.05 MJ. 

CHAPTER 16

1. 1.79·10^9 W/(m^2·m).

2. 5800 K, 0.32 W/(K·m^2).

3.

4. See Problem 12 in Chapter 7, add a 
convective term A1·h_12·((T1 – T2) to 
the expression for IE from absorber to 
glass cover.

5.

6.

7. Pi_S_loss = 0.20 W/K, Pi_S_abs = 2.3 
W/K for 1.0 m^2 of collector area.
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A

 

absorption refrigeration 642
Accademia del Cimento 6
accounting, see laws of balance
adiabatic demagnetization 234
adiabatic flame temperature 420–422
adiabatic process 127

adiabatic mixing 418–420
differential equation 208
fluid flow 416–422
ideal gas 207–210
irreversible 130

adiabatic saturation 618–619
see also mixtures, moist air

adiabatic temperature gradient, see atmo-
sphere

air
mass fractions 295
molar mass 295
temperature coefficient of enthalpy 398
temperature coefficients of energy and 

enthalpy 296
theoretical amount 422

air mass, see solar radiation
air thermometer 100

Kelvin scale 100
amount of substance

and pressure of dilute gases 250
balance, see balance of amount of sub-

stance
chemical reactions 260–261
concept 259–265
currents 265
measuring amounts of stuff 27
production rate 190, 265
unit 250, 260

amount, measure of 27
analogical reasoning 3, 5, 14, 21, 25, 55, 65
analogies

blood flow and electric circuit 23
Carnot, waterfall and heat engine 7, 

106
diffusion 573

electrical and chemical pumps 277
entropy and momentum 573
momentum and charge 84
rotation and electricity 65–69

angular momentum 67
capacitance 67
current 67
transfer 67

angular speed, as rotational level 67
atmosphere

adiabatic temperature gradient 218, 
598, 601

carbon dioxide 320–326
cloud formation 620
winds, model of 450–453

attenuation, see radiation
availability 154, 432, 650

available power 145
loss of available power 139, 145, 427
maximum of 430
of a body of water 154

Avogadro’s number 262

 

B

 

balance of amount of substance 29, 257, 
264–265, 388, 466, 471, 488, 624
phase change 190

balance of angular momentum 66
balance of charge 24, 25, 29, 30, 552–553

Kirchhoff’s First law 30
thermoelectricity 560

balance of energy 62–65
conduction 542
conservation 54
continuous processes 495–496
flywheels 68
heat exchangers 591
ideal fluid 200
in entropy transfer 338
including sources 544
including thermal processes 131
material form 495
restriction, constitutive theory 202
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simple material 147
thermal energy equation in fluid flow 

505
thermoelectricity 170, 172, 561

balance of entropy 9, 118, 126, 337
body and field 336
chemical reactions 314
conduction 332, 535–540
convection 334
differential form 537, 540
exothermic/endothermic reaction 281
heat exchangers 593
ideal fluid 199
including sources 337, 515
introduced 125
local form 489
phase change 190, 604
radiation 335–337
reaction of H2 and O2 286
Second Law 141, 465
simple material 147
solar collectors 580
supply and conduction 538–545
thermoelectricity 171, 560
time dependent conduction 539–556
transport processes 331–337

balance of heat, see balance of entropy
balance of locusts, continuous form 478
balance of mass

constant mass 86
continuous processes 488
equation of continuity 489
water rocket 79

balance of momentum 74
as restriction upon processes 460
for control volume 88
introduced 81
local form 490
Newton's law 42, 81
uniform fluid 460

balance of volume 21, 29, 30, 39
ideal fluid 200
lentils, soaking 306
open systems 390

battery 36, 285
and fuel cell 254
characteristic 36
in RC circuit 38
lead storage battery, voltage 285
process diagram 254
voltage 31

Bernoulli’s law 397
black body, see radiation
blood

cells, permeability 308
circulatory system 22

flow 22
storage in aorta 23

body force, see force
body, distinct from control volume 334
Boltzmann’s constant 528
boundary layer 567–569

approximations 572
introduced 351
thermal boundary layer 351, 568
two dimensional flow 569
velocity boundary layer 351, 568

Boyle and Mariotte, law of 203

 

C

 

caloric and heat 113
caloric equation of state

paramagnetic substance 235
caloric theory 2
capacitance 20

electric 35
hydraulic 34
momentum 75
thermal, see entropy capacitance

capacitance flow rate, see heat exchangers
capacitance–pressure function 35
capacitive pressure difference 34
capacitive time constant 40
capacitive voltage 35
capacitor 18

as storage element 27
carbon dioxide

in atmosphere 320–326
solubility in water 326

cardiovascular system 22
Carnot cycle, see cycles
Carnot efficiency, introduced 136
Carnot engine, see heat engines
Carnot, Sadi 2, 6
causation, and power 5
change 28

integral of rate of change 28
of entropy, from capacitance 149
of state 239–240
of volume, from capacitance 35

characteristic
batteries 36
capacitive 34, 35, 37
capacitive, electric 35
diode 33
entropy-temperature 146
laminar flow 32
ohmic 33
pumps 36
resistive 32
turbulent flow 32
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charge
and momentum 84–85
change of charge 30
conduction and induction 553
current 28
diffusion 552
electrolysis 261
exchanged 30
transporting heat 105
wave equation 553

charging and discharging 38
chemical driving force 251, 267–273

and energy 276
chemical potential difference 251
defined 269
equilibrium 270

chemical equilibrium 251
and chemical driving force 267, 270
equilibrium concentration 258
phase change 256, 607–609

chemical potential 251, 267–273
battery 20
component of a mixture 290
concentration dependence 273, 293
dependence upon temperature and 

pressure 272, 293–294, 470
difference, as driving force 251
flow systems 394, 397
gradient 302
ideal gas 287, 290, 293, 317, 401
incompressible fluid 287
isotopes 271
mixtures 290
moist air 616–617
Navier-Stokes-Fourier fluids 505
Nernst potential 301
of formation 279
phase change 256, 272, 607
pressure coefficient 273

molar volume 294
pure fluids 468
solute and solvent 292–293
temperature coefficient 272

molar entropy 294
uniform fluids 400
values 278–281
vapor and liquid 609
water 271
zero point 279

chemical processes
electrochemical 277
energy 275–277
energy transfer 275
power 275

chemical pumps 277–278

chemical reactions
amount of substance 260–261
battery 285
dynamical models 309–318
entropy production 281, 313
entropy transfer 313
equilibrium 316–318
equilibrium constant 311
exothermic and endothermic 281
kinetics 309–313
laws of balance 309
phase change 190, 607
radioactive decay 316
reaction rate 310
spontaneous and driven 268
uniform mixtures of fluids 471–473
waterfall image 268

circuit
electric 31
pulmonary (blood flow) 22
systemic (blood flow) 22

Clapeyron’s law, see phase change
Clausius, Rudolf 2
coefficient of performance, see heat pumps
cognitive science 4
collectors, see solar collectors
combined potentials 282–284
combustion

heating values 281
methane, different amounts of air 422

compressed liquid 603
compression, energy transfer 62
compressors, isothermal 398
concentration 262–264, 292

and chemical potential 267, 273, 282
diffusion 302
equilibrium 305
gradient 302

conductance
electric 33
hydraulic 33
thermal (energy) 157
thermal (entropy) 156

conduction
balance of energy 542
balance of entropy 332, 536–538
chains of RC elements 40
charge 84, 552
conductance 345
entropy 132, 157, 485, 541
entropy production 173, 344, 542–543
entropy transfer 332–333
field equation for temperature 543
including supply (sources) 538–539
infinite speed 555–556
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influence of induction 556
locusts 477
Maxwell-Cattaneo equation 556
momentum 33, 82–85, 486
resistance 345
substances 264, 301
time dependent 549–552

conductivity
diffusion of radiation 519
electric 34, 85
entropy 341, 343
momentum conductivity 85
thermal, with respect to energy 343, 

541
conservation

caloric 3
charge 29
energy 54
momentum 81
of elements 265

constitutive laws 9
and laws of balance 10
electric 24, 32–38
heat and thermal processes 116
hydraulic 21, 32–38
locusts 479
metaphoric roots 9
thermoelectricity 171, 561

constitutive theories
black body radiation 231–232
energy as restriction 202
ideal gas 206
NSF fluid 498
viscous gas 457

continuity, see balance of mass
continuous processes

conduction 541–552
laws of balance 488–496
Navier-Stokes-Fourier fluid 497–505
thermoelectricity 559
transport of electricity 552

control volume 88, 334
convection 301, 331

adiabatic, moist air 215
amount of substance 264
balance of entropy 334
boundary layer 351
boundary layer equations 567
convective current density 485
convective stability 596
energy current density 494
entropy 125, 485
entropy transfer 333–334
forced convection 334
free convection 334, 596
heat transfer coefficient 352

in Earth's mantle 600
locusts 480
momentum 87
transport processes 384–390

convective currents
dissolved substances 384
energy 388
entropy 387
momentum 386

convective heat transfer coefficient, see 
heat transfer coefficient

cooling towers 627–629
cooling, see heating
critical point 606
Curie constant 234
current

amount of substance 257
angular momentum 67
charge 28
energy 60, 132
entropy 118, 125
introduced 27
momentum 75, 81, 386, 486
rate of change 42
volume 28

current density
amount of substance 302
energy 493
entropy 343, 485, 536
general 484–485
mass 485
momentum 81, 486

cycles
Carnot cycle 138, 206
heat pump 640–642
Otto cycle 224

efficiency of 228
Rankine cycle 639
refrigeration 640–643
Stirling cycle 223–224
strange Carnot cycles 210
superheating, power cycle 639
vapor power 638–640

 

D

 

daisy world 665
Debye temperature 153
density 34, 37

energy 493
entropy 482
general 481–483
in equation of state of ideal gas 204
momentum 482
production rate 478, 483, 537
source rate density 483

dew point, see mixtures, moist air
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diastolic pressure 22
difference, as driving force 19
differential equations, for initial value prob-

lems in thermodynamics 4
diffusion 40, 48, 302–303, 573

blood cells 253
charge 40, 361, 394, 403, 552

diffusion equation 553
entropy 126, 332, 361, 394, 403
entropy production 125
infinite speed of propagation 46
model of chained tanks 40
momentum 40, 84, 394
no wave-like transports 46
radiation 519
vapor in air 624

diffusion equation 553
diffusion, see also conduction
diffusivity 302

entropy 573
momentum 573
thermal 573

dimensionless groups 573
Nusselt number 574
Prandtl number 574
Reynolds number 574

displacement law, see radiation, Wien's dis-
placement law

dissipation
as internal process 180
entropy production 134
loss of power 145

dissipation rate, introduced 135
dissolved gases

CO2 in sea water 323
oxygen in water 299

distribution function, see radiation
divergence theorem 486–488
Doppler effect, see radiation
driving force 26

chemical 251, 267–273
electric 19, 84
for convection 333
for the flow of heat 102
gravitational 38
hydraulic 18
thermal 100, 109, 124
thermal (in conduction) 332

dynamical models
see system dynamics model(s)
uniform 10

 

E

 

Earth
as a selective absorber 667
conduction through mantle 350

conduction with sources 548
convection in mantle 600
surface temperature 376
winds in atmosphere 450–452

effectiveness of heat exchangers, see heat 
exchangers

efficiency 57
Carnot 136
first law 136
second law 136
thermal 136

elastance 34, 35
electric charge, see charge
electric potential, see potential
electricity

balance of charge 30, 552
capacitance 35
charge 27
conductance and resistance 33
conduction 553
current of charge 28
diffusion equation 553
induction 41, 553
LCR circuits 43
potential 31
potential difference 31
RC models 38
voltage 31
wave equation 553

electrochemical potential 282
electrochemical processes 277
electrolysis 261
emissive power, see radiation
emissivity, see radiation
endoreversible engine, see heat engines
endothermic reactions 255, 281
energy

adiabatic expansion 227
balance of, see balance of energy
carriers of 60–62, 134, 561
chemical processes 275–277
conservation, see balance of energy
coupling of processes 51–55
equivalence to mass 89
ideal gas 221
intrinsic part of (molar) energy 396
isothermal compression 205
measure of accomplishment 52
mixtures 290
paramagnetism 236
properties of 54
rate of release, see power
released 52, 496

as integral of power 59
in conduction of entropy 543

simple materials 149
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source rate density in radiation 515
sources 338, 494
storage 53, 62–65

capacitors 65
flywheel 68
gravitational field 63
inductors 65
moving body 89
pressure vessels 64
with entropy 147

storage and balance 62–65
thermal processes 131–141
thermoelectricity 170, 172
transfer 53, 60–62, 92

and carriers 60–62
ideal gas 227
in compression 62
in heating and cooling 133
through radiation field 509–513
translational motion 88

using (binding) 52
energy current

chemical 275
compression of fluid 91
convective 388
due to flowing pressurized fluid 388
electric 61
magnetic processes 69
mechanical 89
thermal 132, 134, 157, 181, 464, 504
total, due to flow 389

energy current density 493–494
energy density 493
energy principle 9, 460, 499

in continuum physics 493–496
energy transfer, see energy
energy, see also power
engines, see heat engines
enthalpy 222

flow systems 389, 400, 405
ideal gas 219
of fusion 191, 193
of vaporization 192, 193
phase change 605
temperature coefficient of 210
uniform fluids 400

entropy 1, 3, 111, 124–126
as energy carrier in heating 134
balance of, see balance of entropy
black body radiation 232
caloric 3, 8
capacitance, see entropy capacitance
change 125
conductivity 341, 499, 541
content, see entropy, storage
current, see entropy current

density 482
diffusivity 573
endothermal reaction 255
exchanged 125, 201–202, 225, 286
in phase change 190
Lagrange multiplier 464, 503
latent, see latent entropy
loss of 119, 382, 409, 442
materials with constant c 151
maximum entropy postulate 241–244
mixtures 290
moist air 617
nonequilibrium 558
paramegnetism 235
production, see entropy production
properties 124
radiation, see radiation
relation with temperature and energy 

132–135
reservoir 118, 427
solids 152
sources 337, 515, 538–539
specific 148
storage 118, 124, 158, 161, 167, 445

ideal gas 217
Peltier element 170
see balance of entropy
time-dependent condution 539

thermal charge 113
transfer, see entropy transfer
transport and production 9
transported, see entropy, exchanged
units 115

entropy capacitance 119, 148–151
at constant magnetization 235
at constant pressure 205
at constant volume 202
black body radiation 231
ideal gas 210
ratio of entropy capacitances 209
table of 151
water 152

entropy current 125
Carnot engine, ideal 141
conduction 340–344
continuity at ideal wall 181
convective 387
density 343, 485, 489, 536, 677
flow across surfaces 333
Fourier's law 340–344, 541
thermoelectric device 171

entropy production
chemical reactions 281–282, 313, 472
combustion 424
conduction 344, 542–543
diffusion 126, 129, 291
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dissipation 134, 432–437
engine, maximum power 433–434
entropy produced, as integral of pro-

duction rate 126
extended theory of conduction 558
flow heater 405, 444
flow systems 403–411
free expansion of gas 242
from constitutive theory 430
heat exchangers 593–594, 595
heat transfer 138, 160–173, 331–337
irreversibility 124
minimal in equilibrium 503
minimization 427–453

atmosphere and winds 446–453
endoreversible engine 432
flow heater with loss 444
for heating purposes 428
heat storage system 445
solar air heater 439
solar thermal engine 430, 437

mixing 291, 405
Navier-Stokes-Fourier fluids 504
processes 126
radiation 364–366
scattering 662
solar collectors 580
thermoelectric device 171, 562
vapor power plant 640, 646–648

entropy transfer 331–337
chemical reactions 313
conductance 156

composite interfaces 162
conduction 332–333, 541–552
convection 333–334
entropy transported, see entropy, ex-

changed
in heating and cooling 156–163
overall transfer 156
radiation 335–337
thermal resistor 158
through radiation field 509–513

entropy transfer coefficient 157
convective 352

equation of state
black body radiation 231
gas with radiation 233
ideal gas 203–204
paramagnetic substance 234
thermal 203

equilibration 17
chemical potential 267
electric potentials 19
pressures 18
temperatures 100
uniform bodies in thermal contact 348

equilibrium 18
chemical 270, 607–613
chemical reactions 316–318
local thermodynamic equilibrium 505, 

555
re-establishment of 428
thermal 239, 241

equilibrium constant
and chemical potential difference of 

formation 318
chemical reactions 311
transport of substances 304

evaporation 622–629
chilling effect of water 255
cold water 626
cooling 625
cooling towers 627, 630
current of amount of substance 623
diffusion of vapor 623
warm water 623, 625

evaporative cooling 625–629
exchanged quantity, as integral of current 29
experiment

adiabatic compression 101
air thermometer 100
blood cells in solution 253
bodies of water in thermal contact 100
capacitors in electric circuit 18
citric acid and baking soda 255, 314
collision of gliders with magnets 73
communicating tanks 17
compressing air 101
conduction in copper bar 346
conduction of heat, metal bar 102
cooling and heating water in a can 101
cooling hot water in cold thick-walled 

container 358
cooling liquid wax 194
driving charge apart 19
dynamics of incandescent bulb 372
electric breaking of flywheel 68
evaporation of warm water 623
heating and evaporating water in an 

open container 382
melting ice 103
mixing hot and cold water in a flow 

system 382
mixing salt and water, flow system 385
mutarotation of glucose 252
Peltier cooler 104
rotational collision 66
Rüchardt 207, 212
soaking dried lentils 306
soaking potato cores 252
steel ball falling in oil 77
Stirling engine 105
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thermoelectric generator 106
transport of toluene 250
vaporization of water 104
water rocket train 78
wet bulb thermometer 256

extended irreversible thermodynamics 557
extensive quantities 27, 70

amount of substance 27
charge 27
entropy 117
heat 109
magnetic 70
momentum 89
see fluidlike quantities

extinction, see radiation

 

F

 

Faraday’s constant 261
field equation for density of locusts 480
field equation for temperature 543, 550
field equation, general 498
fields, interaction with bodies 76, 85–87, 

336
finite-time thermodynamics 435
first law efficiency 136
First Law of thermodynamics 140
flow heater 403–405

entropy production 405
steady-state balances 403

flow systems
analysis 392–397, 403–411
chemical potential 394, 397
energy currents 393, 396
entropy production 403–411
excluding mechanical effects 392
Gibbs fundamental relation 394, 395, 

396, 397
ideal 392–397
laws of balance 393, 395
mechanical effects 395–397
open systems 79, 383

flow, see current
flow, see flow systems
flow, see transport processes
fluid flow

adiabatic 416–422
Bernoulli’s law 397
boundary layer flow 567
combustion 420–422
mixing length approximation 598
Newton’s law for viscous fluids 84
similarity parameters, see dimension-

less groups
thermal energy equation 505
throttling process 418
turbulence 575

fluidlike quantities 9, 10, 17, 26
see also extensive quantities
transport modes 91

fluids
compression 90
ideal, see ideal fluid 198
incompressible 400, 635

chemical potential 287
energy equation 505

Navier-Stokes equations 570
Navier-Stokes-Fourier 459

constitutive laws 498, 499
GFF 505
laws of balance 497

Newtonian 84
properties 400–402
property data 632–638
saturated 632–633
uniform viscous 457–465
with phase transformation 466–471

flux 27
density 27, 484
electric and magnetic 27
synonym for current 27

flywheel
electric breaking 68
energy storage 68
process diagram 69

force
body force 86
momentum current 81
surface force 81, 487
synonym for power 4–8

force dynamic gestalt 4
and analogy 8

Fourier's law 340–344, 459, 499, 541, 555
for energy current 343

freezing point
effect of pressure 274
effect of salt 298
equility of chemical potentials 256

fuel
heating values 281
oxydizer 421
theoretical amount of air 422

fuel cells 278, 428

 

G

 

gas constant 203
Gauss's theorem, see divergence theorem
Gay-Lussac, law of 123, 203
GFF (Gibbs Fundamental Form) see Gibbs 

fundamental relation
Gibbs fundamental relation

and chemical potential 469
black body radiation 231
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extended theory of conduction 558
flow systems 394, 395, 396, 397
for specific or molar quantities 394
ideal fluids 221
moving body 89
Navier-Stokes-Fourier fluids 505
paramagnetism 236
similarity in different cases 555
simple material 147
uniform reactive fluid 472
uniform viscous fluid 465

Gibbs’ paradox 292
gradient

chemical potential 302
temperature 343, 498, 541
velocity 498

gravitation
gravitational potential 38
source of momentum 85

gravito-chemical potential 284
gray surface, see radiation
greenhouse effect 448–450
Grüneisen ratio 474

 

H

 

Hagen-Poiseuille relation 33, 84
heat 109–117

and entropy 111
and hotness 109–110
balance of 115
dynamical models 10
extensive thermal quantity 112
falling from higher to lower levels 106
fluidlike quantity 112
generation 107
non-conservation 113
not equal to energy 110
not equal to temperature 101
power of 115
production 113
storage 112, 189, 378, 445, 584, 599
thermal charge 113

heat content
heat as extensive quantity 109
heat as fluidlike quantity 115
see entropy, storage

heat engines
and heat exchangers 168
and heat transfer 167–174
and waterfalls 7
atmosphere 450
Carnot cycle 138, 206, 224, 450
Carnot engines 138, 168, 206
Curzon-Ahlborn 169, 432–435
dissipative 138
endoreversible 168, 433–435

ideal Carnot engine 432
maximum power 432–435
optimization 168
Otto engine 223
process diagrams 135
solar thermal 437–439
Stirling engine 223
vapor power 638–640

heat exchangers 588–594
and engines 168
balance of energy 591
balance of entropy 593
balanced 590
capacitance flow rate 590
counter-flow 588, 592
effectiveness 590–593
entropy production 593
mean temperature difference 589
number of transfer units 590
parallel-flow 589
principle of operation 588
product of surface area and transfer co-

efficient 589
heat pumps

Carnot cycle 641
dissipative 145
Peltier cooler 104, 170
process diagrams 135
vapor cylces 640

heat transfer
and thermodynamics 3, 506
at solid-fluid boundary 351–354
entropy production, see entropy pro-

duction, heat transfer
in heat engines 432
overall transfer 156
see also entropy transfer
see conduction
see convection
see radiation

heat transfer coefficient
for laminar flow over flat plate 575
for loss from solar collectors 370
introduced 157, 352–353
local 352
overall 354
radiative 371, 377

heating
absorption and emission of radiation 

362–363
at constant temperature 128, 200–202
at constant volume 127, 202–203
energy transfer in 133
entropy transfer 156–163
ideal fluid 203
ideal gas 200–205
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ideal gas, energy transfer 222
ideal gas, P and T as independent vari-

ables 204
of simple fluids 127
room at constant pressure 426
uniform, model of 146
viscous fluids 465
with a heat pump 153

heating values of fuels 281
Henry’s law 300
Hertzsprung-Russell diagram, see stars
hotness

absolute zero 109
and heat 109–110
and temperature 108
concept 108

humidification of air 629
hydraulic circuit, pressure differences 31
hydraulic power plants, data 56
hydraulics

capacitance 34
current of volume 28, 29
current of water 17
fluxes of volume 29
induction 41
LCR circuits 43
pressure 28
pressure difference 30
rate of change of volume flux 42
RC models 38
volume 27

hydrostatic pressure 37

 

I

 

ice, formation on surface of a lake 356
ideal fluid

balance of energy 200
balance of entropy 199
balance of volume 200
energy transfer 200
entropy capacitance 202, 205, 210, 

465
Gibbs fundamental relation (GFF) 221
heating 200–203
latent entropy 201, 205, 207, 232, 465
laws of balance 199

ideal gas
adiabatic process 207–210
chemical potential 287
constitutive laws 206–211
density 204
determination of thermal potential 464
energy 220–222
enthalpy 219, 220–222
entropy capacitances 210
entropy content 217

free expansion 242
gas constant 203, 288
heating 200–205
isentropic flow 417
isochoric heating 202
latent entropy 221
mixtures 288–292
partial pressure 289
properties 401
reactions, equilibrium concentrations 

317
relations between latent entropy and 

entropy capacitance 205
thermal equation of state 203–204

ideal walls 180–182, 459, 462, 503
continuity of entropy current 181
continuity of temperature 181

incompressible, see fluids
inductance

air, per length 217
blood in aorta 46
electrical 43, 554
hydraulic 43
mechanical 93
thermal 556

induction
electric 43
hydraulic 42
power 58
thermal 94, 556
waves 48, 94, 553

inductive pressure difference 42
inductive voltage 47
inertia

fluid 42, 45
in economic model 50
inductive effects 42
mass 75, 89
thermal 556

integral transformation
divergence theorem 486

intensity 7
chemical 249, 271
electrical 19
of heat 182
quality 4
see also intensive quantities

intensity, see radiation
intensive quantities 17, 26

and extensive quantities 27
electric 19
electric potential 27, 31
pressure 27
see also potential
thermal 109
velocity 75, 88
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irreversibility 107, 114
and time 225
entropy production 124
generation of heat 107
see entropy production

isentropic
compression or expansion 639
flow 417

isochoric heating, ideal fluid 202
isothermal process 128

compression, energy exchanged 205
heating, ideal fluid 200
heating, water (0°C to 4°C) 201

isotopes, chemical potential 271

 

J

 

junction rule (Kirchhoff’s First Law) 30

 

K

 

Kelvin scale, see temperature
kinetics, see chemical reactions
Kirchhoff's law, see radiation
Kirchhoff’s Second Law

electric 31
hydraulic 31

 

L

 

Lagrange multipliers 461
for entropy 464, 503
Navier-Stokes-Fourier fluids 500, 502
thermodynamics with 460
uniform fluids with phase change 467
uniform viscous fluids 462

laminar flow 33
latent entropy 129, 201

black body radiation 231
ideal fluids 201
ideal gas 202, 207
phase change 189–192, 604
sign of 201
water (0°C to 4°C) 201
with respect to magnetization 235
with respect to pressure 205
with respect to volume 201

latent heat 201
storage 189, 193–196

latent heat, see latent entropy
laws of balance 9, 20

accounting 29
continuous form 478
continuous processes 488–492
differential form 479
flow systems 393, 395
instantaneous form 29
integrated form 29, 488
local form 479, 488

open systems 390
laws of balance, also see balance of…
LCR circuits 43
LCR models 43
level diagram

electric potential 31
pressure 30
temperature 157

level quantity 28
and energy transfer 61
angular speed 67
difference and conductive transport 92
difference and power 55
difference and releasing energy 52
electric 26
gravitational potential 57
hydraulic 26
mechanical 75
see also potential
speed 75
thermal 100

level, see level quantity
liquids, compressed 605
liquids, subcooled 633–635
local thermodynamic equilibrium 505
locusts

balance of 478
births and deaths 477
conductive transports 477
constitutive laws 479
densities of process quantities 476
migration 475–481
population dynamics 475
radiation and convection 480

log mean temperature difference, see heat 
exchangers

loop rule 31
and power 60
Kirchhoffs’s Second Law 31

loss of power 139, 145, 168
entropy production 139, 144, 427, 432
in thermal conduction 160

luminosity, see stars

 

M

 

magnetic current 69
magnetic tension 69
magnetism and heat 234–238
magnetocaloric coupling 235
mass 27

as momentum capacitance 75
equivalence to energy 89
inertial 75

mass fraction 263
mass-volume fraction 263
material derivative 334, 492, 569
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mean free path, see radiation
melting point

ice, calculated 274
ice, effect of salt 298
see phase change

mixing
entropy production 291, 405
fresh and salt water 385
hot and cold water 408
non-reacting gases 418–420

mixing length approximation 598
mixtures

entropy production 291
moist air 616–617, 637

adiabatic saturation 619
dew point 617–618
humidity ratio 616
relative humidity 616
wet bulb temperature 618–619

partial pressure 289
quality 635
see ideal gas
TS diagram for superheated water va-

por 637
two phase fluids 615–619

models, see system dynamics model(s)
moisture, see mixtures, moist air
molality 263
molar (or mole) fraction 263, 288
molar concentration 263
molar energy 290
molar entropy 263, 290
molar mass 27

air 295
defined 250, 260
equation of state of ideal gas 204
matter inside stars 233

molar quantities 262
molar volume 263
molarity 263
molinity 263
moment of inertia 67
momentum

capacitive relation 75
density 482
diffusivity 573
sources 85

momentum current 75, 81
convective 79, 386
force 81

momentum current tensor 487
momentum transport

comparison with charge 84
conductive 33, 82–85, 486
convective 79, 87, 386, 486
current density 81

flow pattern 82
friction 77
gravitational 77
light 90
radiative 85
stress 82–85
through magnetic field 76
wave equation 93

 

N

 

Navier-Stokes equations, see fluids
Nernst potential 301
Newton's law of motion

convective momentum currents 88
see balance of momentum

NSF fluid, see fluids, Navier-Stokes-Fouri-
er

NTU (number of transfer units), see heat ex-
changers

nuclear reactions 270
Nusselt number 574

 

O

 

Ohm's law 84
ohmic transport 33, 43, 552, 553
opacity, see radiation
open systems, see flow systems
optimization

and minimization of entropy produc-
tion 430

atmosphere and winds 450
Curzon-Ahlborn engine 432
heat storage 445
solar air heater 439
solar hot water heater 430
solar thermal engine 437

oscillations 41–46
electromagnetic 43
hydraulic 43
LCR circuit 43

osmosis 292
blood cells 253, 308
dried lentils 305
potato cores 252
water pressure 306

osmotic pressure 292

 

P

 

paramegnetic substance 234
partial pressure, see pressure, partial
Peltier coefficient, see thermoelectricity
Peltier device

cooler (heat pump) 104
dynamical model 170–172
generator 106

permeability, red blood cells 308
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pH value 324
phase change 189–196, 603–607

amounts of substance 190
as chemical reaction 607
balance of energy 604
balance of entropy 604
change of enthalpy 605
chemical equilibrium 607–613
chemical potential 272, 607
Clapeyron’s law 471, 608, 612–613
cooling liquid wax 195
critical point 606
energy and change of volume 193
enthalpy 193
entropy 190
heat is needed 104
latent enthalpy of fusion 191
latent enthalpy of vaporization 192
latent entropy 191, 604
latent entropy of fusion 191
latent entropy of vaporization 192
melting point

pressure dependence 608
moist air 616
pressure-temperature relation 606–607
refrigerant R123 634
saturation line 605, 606, 632–634, 636
sublimation 607
temperature dependence of vapor pres-

sure 611
TS diagram 129, 190
TS phase diagram 606
vapor pressure 609–612
vaporization at different pressures 605

phase change material (PCM) 194
phase diagrams 607
photon gas 230
Planck's formula, see radiation
Planck’s constant 528
planet

greenhouse and wind engine 452
greenhouse effect 448
temperature, without atmosphere 447

Poiseuille relation 33, 84
Poisson and Laplace, law of 209
polarization 529–530

degree of polarization 530
energy intensity 530
entropy intensity 530
plane polarized 529
principal values 529
solar radiation 661

polytropic exponent 216
polytropic process 215–216

compression of ideal gas 219
population dynamics 475

potential
and energy current 60
and energy transfer 53
and fluidlike quantity 52
and stored quantity 34
and transport mode 91
chemical, see chemical potential
combined 282–284
electric 27
electrochemical 282
gradient of 62
gravitational 38, 57
gravito-chemical 284
momentum transfer 84
synonym for level quantity 28
thermal 109, 134, 139, 465
thermo-electric 563

potential difference
across conductor 33
analogies 65
as driving force 21, 26
caused by process 30
causing process 30
electric 19
electric, and voltage 31
inductive 43, 58
loop rule 24
power 55, 59
pressure difference 26
pumping through 26
releasing energy 52, 60
thermal 135
voltage 19, 26
voluntary and involuntary processes 26

potential energy 55
power 59

available power, see availability
balance of, in circuits 60
chemical 275
electric process 55
exergetic power 139
gravitational process 56
hydraulic process 58
inductive process 58
loss 139, 168
loss of available power 145
rate at which energy is released 55
rotational process 69
synonym for force 5
thermal 133
translational motion 88
waterfall 57

power of heat 4, 7, 115, 132, 428, 439
Prandtl number 574
pressure 17

ambient 23
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equilibration 18
in mmHg 22
osmotic 292
partial 289–290

air and vapor 616, 620, 623
component of a mixture 289
dilute solution 292

vapor 609–612
pressure and storage 34
pressure coefficient of chemical potential, 

see chemical potential
pressure difference 18, 30–31

capacitive 34
driving force 18
hydraulic circuit 31
inductive 42
resistive 32

pressure vessel
filling with hot air 406

pressure–volume characteristic 34
primitive quantities 9, 27
process

chains of processes 53
examples of coupling 52
voluntary and involuntary 26

process diagrams 26
adding energy to system 61
battery 254
bodies in thermal contact 162
chains of processes 53
chemical processes 275
coupling of processes 27
electric breaking of flywheel 69
electric heater 105
electric water pump 51
electrochemical processes 278
electrolytic cell 278
entropy production in heat transfer 161
fluid undergoing heating and compres-

sion 199
heat engine 105, 135
heat engine and heat exchangers 168
heat engine, dissipative 139
heat pumps 135
hydroelectric power plant 57
Peltier cooler 104
Peltier heat pump 174
pumps 36, 54
solar collector 577
thermolectric generator 173
viscous flow 52
waterfall image 26

production rate
amount of substance 265
density 478, 483, 537
entropy 118, 126

entropy, see also entropy production
locusts 477
volume 62, 200

property data 632–638
pulmonary circuit 22
pump characteristic 36, 250
pumping

energy required 72
of charge 36
of entropy 141
of fluidlike quantity 52
of heat 104
through potential difference 26
uphill, and energy used 52

pumps 36
as power supply 24
characteristic diagram 36
pressure difference 30, 36

 

Q

 

quality, see mixtures
quantity

as measure of amount or size 4
fluidlike 9
of electricity 18
of fluid 18
of heat 2
of motion 73

 

R

 

radiation
absorption 362–363, 514–516
absorption coefficient 516
attenuation 656
balance of energy 231, 515, 524, 664
balance of entropy 231, 335–337, 515, 

669
black body radiation 229–233, 360–

362, 520
energy 230
energy density 230, 232
entropy 232
entropy capacitance 231
Gibbs fundamental relation 525
intensity 511
Kirchhoff's law 522
latent entropy 231
pressure 230
spectral distribution 520, 527–

528
thermodynamics of 525

configuration factor, see radiation, 
shape factor

diffusion of radiation 519
distribution functions 510
Doppler effect 523
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emission 362–363, 514–516
spontaneous 518
stimulated 518

emission coefficient 516
emissivity 367
entropy 525–527

density 525
intensity of solar radiation 654

entropy production 364–366
entropy transfer 335–337
extended parallel plates 369
extinction 531, 656
extinction coefficient 674
flux density 511
from opaque surfaces 360–369
from the surface of stars 653
gray surfaces 366–368, 520
heat transfer coefficient 377
hemispherical emissive power 361
hemispherical flux density 512–513
inside stars 233
intensity 510

black body radiation 511
interaction of bodies and fields 336–

337
interaction with matter 514
Kirchhoff's law 366, 517–519, 522
mean free path 519
monochromatic radiation 520, 527
networks 530
opacity 531
Planck's formula 527
polarization, see polarization
radiosity 369
reflectivity 366
selective absorbers and emitters 371–

372, 664–666
shape factor 513–514
Snell's law 675
solar, see solar radiation
source rate 516
sources 337, 515–516
spectral

density 521
distribution 520–529
distribution functions 520
entropy density 526, 528
temperature 660

spectral intensity 520
transformation from frequency to 

wavelength 521
Stefan-Boltzmann constant 361, 512
temperature 230, 231, 525–527, 528
thermal 229–230
view factor, see radiation, shape factor
wavelength 521

Wien’s displacement law 520, 523–525
radiation shape factor, see radiation
radiative transfer 360–363, 509–514, 519–

520
radioactive decay 258, 270, 316
radiosity, see radiation
Rankine cycle, see cycles
rate of change 28

charge 30
entropy 119, 125
in law of balance 29
mass 86
momentum 76, 88
of current 44
of momentum flux 93
volume 28
volume flux 42

RC models 38
reaction rate, see chemical reactions
reflectivity, see radiation
refrigerant R123 634
refrigeration 631–643

absorption cycle 642
Carnot cycle 641
see cylces

regenerator, Stirling engine 224
resistance 20

electric 33
hydraulic 33
thermal 160, 347, 350, 356, 556

resistive fluid flow 32
resistive pressure difference 32
resistive voltage 24, 32
resistor 19, 32, 69, 101

thermal 158, 160, 162, 433
Reynolds number 574
rotation 65–69

angular momentum 66
angular speed 67
moment of inertia 67

 

S

 

saturated liquid 604
saturated vapor 604, 606
scattering

entropy production 662
Mie scattering 658
Rayleigh scattering 658
see also solar radiation

sea water, chemistry 323–326
Second Law 117, 137, 140
second law efficiency 136

heat pump 137
ideal and real engine 136

second sound 94, 557
Seebeck coefficient, see thermoelectricity
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selective absorbers, see radiation
similarity groups, see dimensionless groups
sink, see source
sky temperature 371
Snell’s law 675
solar collectors

air heater 439–444
balance of energy 576–578
balance of entropy 442, 443, 580
duct geometries 578
dynamical model 580
efficiency 581
efficiency factor 578
entropy production 444, 576
flat plate 575–581
heat loss coefficient 370–371
heat removal factor 579
temperature distribution 578–579
thermosyphon collector 583
top loss coefficient 577
transmission-absorption 576, 672–675

solar constant, see solar radiation
solar hot water system 409–411
solar power plant, parabolic trough 415
solar radiation 651–675

absorption 655–657
air mass 655
at surface of the Sun 653
attenuation coefficient 656
cloudless atmosphere 655
concentration 668–671
diffuse radiation 659
entropy 659
entropy intensity 654
extraterrestrial spectrum 654
global radiation 659
maximum power of heat engine 437–

439
monochromatic temperature 654
origin 651–653
polarization 661
scattering 658
solar constant 375, 655, 668
temperature 659–661
temperature of diffuse light 661
temperature of direct beam 661
transmittance through atmosphere 656
transmittance-absorptance of collector

diffuse radiation 675
direct radiation 673

solid angle 437, 510, 513
of the Sun 660

solubility
effect of temperature 326
Henry’s law 300

solutions
chemical potential 292–293
concentration, dilute 292
dilute 292–293
Henry’s law 300
mole fractions 293
partial pressure 292
reactions, equilibrium concentrations 

317
solute 292
solvent 292

sound
propagation in air 214
speed of sound in ideal gas 217

source rate 480
energy 362
entropy 337, 362, 363, 373
momentum 85, 88

source rate density 483, 515
sources 483

energy 494, 544
entropy 544
field equation with sources 545
locusts 480
momentum 85

specific entropy, introduced 148
specific heat 149
specific heat at constant pressure, see tem-

perature coefficient of enthalpy
specific heat constant volume, see tempera-

ture coefficient of energy
specific momentum 386
specific source rate 483

momentum 495
spectral density of radiation 521
spectral intensity of radiation 520
speed of sound 94, 217
spin, see angular momentum
stars

composition 652
convection 652
evolution 653
Hertzsprung-Russell diagram 653
hydrogen burning 652
luminosity 653
main sequence 651–653
mass 652
molar mass 233
radiation in the interior 233
structure 652–653

steam engine, see heat engine
steam power plant 638–639
Stefan and Boltzmann law 232
stiffness, of container walls 34
Stirling engine 223–224
stoichiometric coefficient 317, 421
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storage 34
charge 27
energy 62–65
entropy 118, 124, 158, 161, 167, 170, 

445, 539
heat 112
hot water tank 414
latent heat 189, 193–196
seasonal ground heat storage 584–588
volume 27

storage and pressure 23, 34
stress 82

pure tension or compression 80
shear stess 83

stress power 496
stress tensor, see momentum current tensor
subcooled liquid 603
sublimation 607
substances

amount of substance 259–261
and electric charge 261, 277, 282, 283
basic building blocks 259–260
current 302, 384
transport 301–307

different environments 303–305
dynamical models 301
equilibrium constant 304
laws of balance 301
osmosis 305–307

transport across membranes 301
transport as chemical transformation 

267–270
substantial derivative, see material deriva-

tive
Sun

central temperature 531
composition 652
interior 652
mass 652
opacity 531
photosphere 654
radius 652
spectral type 651
surface temperature 375, 653

superconductivity
electrical 85
mechanical 85
thermal 12

superheated vapor 605
superheating in power cycle 639
supply, see sources
surface force 81, 487
surface integral 484
system

closed 334, 381, 398, 471
control volume 334

material derivative 492
open 334, 381
uniform 3

system dynamics model
blood flow, inductive 45
bodies in thermal contact 162
citric acid and baking soda 314–316
CO2 in atmosphere and oceans 322, 

325
communicating capacitors 21
communicating tanks 20
conduction in copper bar 346
cooling hot water in cold thick-walled 

container 359
cooling liquid wax 195
cooling of water 118
diffusion 40, 303
dynamics of incandescent bulb 373
electric breaking of flywheel 68
electric windkessel 24
entropy and temperature 151
evaporation of cold water 627
gliders with magnets 74
heating of cold water in can 158
mixing of hot and cold water 408
mixing salt and water, flow system 385
mutarotation of glucose 311
oscillation, hydraulic 44
Peltier device 170–172
propagation of sound in air 214
radioactive decay 259
RC chain 40
rotational collision of flywheels 66
Rüchardt’s experiment 212
soaking dried lentils 307
solar hot water system 410
steel ball falling in oil 77
toluene in water and air 257
water rocket train 78
wave propagation 47
windkessel 24, 45

system dynamics models
LCR 43–48
RC 38–41
structure 20–21
thermal capacitors and resistors 161
transport of substances 301

systolic pressure 22

 

T

 

telegrapher's equation 94
temperature

absolute scale 124
absorbers on Earth 667
as thermal level 100
as thermal potential 134
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Celsius scale 120
coefficient of pressure 123
continuity at ideal wall 181
field equation 543, 550
final temperature reached in thermal 

contact 241
ideal gas temperature 122
Kelvin scale 124
measure of hotness 108
monochromatic, of solar radiation 654
of radiation 528
of sky 371
phase change 104
radiation 525–527
reaching low temperatures 237
scales 108
spectral, of radiation 660
thermometry 120–124
universe 248
wet bulb 618, 621

temperature coefficient
of chemical potential, see chemical po-

tential
of expansion 121, 122
of pressure 123
of resistance 122

temperature coefficient of energy 149, 211
magnetization 236
mixtures 294
solids 150
specific heat 149, 211
table of 151
values for gases 211

temperature coefficient of enthalpy 211
for air 226
mixtures 294
relation to temperature coefficient of 

energy 219
specific heat 211

temperature difference
thermal driving force 102, 109

temperature gradient 541
adiabatic 218, 601
in atmosphere 218
in conduction 343

temperature, not equal to heat 101
temperature-entropy diagram, see TS dia-

gram
theory of heat

caloric 2
mechanical 2

thermal capacitors 161
thermal charge 113
thermal conductivity 499
thermal contact 160
thermal driving force, see driving force

thermal efficiency 136, 224, 228, 416, 428, 
581

thermal expansion 121
thermal inertia 556
thermal interface 157
thermal potential 139, 465
thermal power 116, 133

in conduction 160
in dissipation 135
pumping entropy 137

thermal resistor 158, 161, 433
thermal transfer layer 157

convective-radiative 158
thermocouple 175
thermodynamics

and heat transfer 3, 506
dynamical models 11
extended irreversible 3, 557–558
finite-time 435
heat-conducting fluids 497–505
rational 3
speed of processes 6
theory of statics of heat 238–241
viscous fluids 457–465

thermoelectric device
entropy current 171
entropy production 171
generator 106, 169
heat pump 104, 169
Peltier cooler 175
Peltier device 104, 169–176
process diagram 173, 174
Second Law efficiency 174
voltage 171

thermo-electric potential 563
thermoelectric power 106, 562
thermoelectric processes 169–171

energy principle 172
thermoelectricity

balance of energy 561
balance of entropy and charge 560
constitutive laws 171, 561
coupled transport 170
entropy production 562
equality of Peltier and Seebeck coeffi-

cients 173
Peltier coefficient 170, 560
Sebeck coefficients, table of 175
Seebeck coefficient 169, 559
thermoelectric voltage 169

thermometer
dynamical response 163
gas thermometer 123
resistive 122
wet bulb 256
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thermostatics 238–241
maximum entropy postulate 241

Third Law of thermodynamics 150
throttling process 418

temperature reduction 422
tides 86
time and irreversibility 225, 457, 465
time constant 39, 40

capacitive 40
inductive 43
thermal, capacitive 160

transmittance, see solar radiation
transport processes

conductive 92
convective 87, 92, 384–390
diffusive transport 573
energy 92
fields and bodies 86
heat transfer 111
radiation 92
radiative 85, 360, 480, 493, 509–514
thermal, see entropy transfer
thermal, speed of 555

TS diagram
adiabatic process 127, 208
entropy-temperature characteristic 146
heating at constant volume 128
introduced 127
isothermal process 128
J.W.Gibbs 117
liquid-vapor mixture of water 636
Otto cycle 225
paraffin 197
phase change 129
subcooled water 634
superheated water vapor 637
vaporization of water 605

tungsten
electric resistivity 122
emissivity 367

turbulence, see fluid flow
turbulent flow 33
TV diagram

adiabatic process of ideal gas 208
Carnot cycle 206
heating at constant temperature 201
in history of thermodynamics 201
isochoric heating 202
Otto cycle 225
Stirling cycle 224
strange Carnot cycles 210

 

U

 

uniform dynamical models 10
uniform heating 146

uniform processes 11, 100, 160, 189, 199
dynamical models 158, 161, 321
dynamics 12
equilibrium 12
irreversibility 221, 464
nonuniform conditions 346
radiation 229
reacting systems 310
reversible 238
temperature 100, 180
thermal superconductors 12, 13
thermodynamics 457–473

uniform systems 3

 

V

 

vapor 604
saturated 604, 606
superheated 605, 636–637

vapor power processes 631–643
vapor pressure 609–612
velocity gradient tensor 569
viscosity 82

bulk viscosity 499
dynamic viscosity 572
kinematic viscosity 572
momentum conductivity 85
Newton’s law for viscous fluids 84

viscous pressure 458
voltage 19, 30–31

electric circuit 31
lead storage battery 285

volume 27
change of volume 28
exchanged 29
law of balance of volume 29
molar 402
partial molar volume 297
production rate 62, 200

 

W

 

walls, see ideal walls
warming factor 148
water

anomaly 121, 210
chemical potential 271
chemistry of sea water 323–326
compressed liquid 603
density 121
liquid-vapor mixture 604, 636
saturated liquid 604, 611
subcooled (TS diagram) 634
subcooled liquid 603
superheated vapor (TS diagram) 637
vapor pressure 610
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vaporization 603–606
TS diagram 605

vaporization at different pressures 605
waterfall

archetype of physical process 55
chemical process, image of 268
waterfall diagram of heat engine 133

wave equation 93–94
charge 553
for heat conduction 556

wave guide 94
wave propagation 47

in chains of LCR elements 46

speed 48
speed of electric pulses 554
speed of mechanical pulses 94

wet bulb thermometer 256, 619
Wien's displacement law, see radiation
windkessel 23, 24, 45

model of systemic circuit 23
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