

Chris deLong et al. “AS 15531/MIL-STD-1553B Digital Time Division Command/Response
Multiplex Data Bus”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

Avionics
Handbook

The

The Electrical Engineering Handbook Series

Series Editor

Richard C. Dorf
University of California, Davis

Titles Included in the Series
The Avionics Handbook, Cary R. Spitzer

The Biomedical Engineering Handbook, 2nd Edition, Joseph D. Bronzino

The Circuits and Filters Handbook, Wai-Kai Chen

The Communications Handbook, Jerry D. Gibson

The Control Handbook, William S. Levine

The Digital Signal Processing Handbook, Vijay K. Madisetti & Douglas Williams

The Electrical Engineering Handbook, 2nd Edition, Richard C. Dorf

The Electric Power Engineering Handbook, Leo L. Grigsby

The Electronics Handbook, Jerry C. Whitaker

The Engineering Handbook, Richard C. Dorf

The Handbook of Formulas and Tables for Signal Processing, Alexander D. Poularikas

The Industrial Electronics Handbook, J. David Irwin

The Measurement, Instrumentation, and Sensors Handbook, John G. Webster

The Mechanical Systems Design Handbook, Osita D.I. Nwokah

The RF and Microwave Handbook, Mike Golio

The Mobile Communications Handbook, 2nd Edition, Jerry D. Gibson

The Ocean Engineering Handbook, Ferial El-Hawary

The Technology Management Handbook, Richard C. Dorf

The Transforms and Applications Handbook, 2nd Edition, Alexander D. Poularikas

The VLSI Handbook, Wai-Kai Chen

The Mechatronics Handbook, Robert H. Bishop

Edited by

CARY R. SPITZER

Avionics
Handbook

The

AvioniCon, Inc.
Williamsburg, Virginia

Boca Raton London New York Washington, D.C.
CRC Press

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific
clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid directly to Copyright clearance
Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is
ISBN 0-8493-8348-X/01/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, or visit our Web site at
www.crcpress.com

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-8348-X

Library of Congress Card Number 00-048637
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

The avionics handbook / edited by Cary R. Spitzer.
p. cm. -- (Electrical engineering handbook series)

Includes bibliographical references and index.
ISBN 0-8493-8348-X (alk. paper)
1. Avionics. I. Spitzer, Cary R. II. Series.

TL695 .A8163 2000
629.135—dc21 00-048637
 CIP
© 2001 by CRC Press LLC

Preface

Avionics is the cornerstone of modern aircraft. More and more, vital functions on both military and civil
aircraft involve electronic devices. After the cost of the airframe and the engines, avionics is the most
expensive item on the aircraft, but well worth every cent of the price.

Many technologies emerged in the last decade that will be utilized in the new millennium. After proof
of soundness in design through ground application, advanced microprocessors are finding their way onto
aircraft to provide new capabilities that were unheard of a decade ago. The Global Positioning System
has enabled satellite-based precise navigation and landing, and communication satellites are now capable
of supporting aviation services. Thus, the aviation world is changing to satellite-based communications,
navigation, and surveillance for air traffic management. Both the aircraft operator and the air traffic
services provider are realizing significant benefits.

Familiar technologies in this book include data buses, one type of which has been in use for over 20
years, head mounted displays, and fly-by-wire flight controls. New bus and display concepts are emerging
that may displace these veteran devices. An example is a retinal scanning display.

Other emerging technologies include speech interaction with the aircraft and synthetic vision. Speech
interaction may soon enter commercial service on business aircraft as another way to perform some
noncritical functions. Synthetic vision offers enormous potential for both military and civil aircraft for
operations under reduced visibility conditions or in cases where it is difficult to install sufficient windows
in an aircraft.

This book offers a comprehensive view of avionics, from the technology and elements of a system to
examples of modern systems flying on the latest military and civil aircraft. The chapters have been written
with the reader in mind by working practitioners in the field. This book was prepared for the working
engineer and his or her boss and others who need the latest information on some aspect of avionics. It
will not make one an expert in avionics, but it will provide the knowledge needed to approach a problem.
© 2001 by CRC Press LLC

Biography

Cary R. Spitzer is a graduate of Virginia Tech and George Washington University. After service in the
Air Force, he joined NASA Langley Research Center.

During the last half of his tenure at NASA he focused on avionics. He was the NASA manager of a
joint NASA/Honeywell program that made the first satellite-guided automatic landing of a passenger
transport aircraft in November 1990. In recognition of this accomplishment, he was nominated jointly
by ARINC, ALPA, AOPA, ATA, NBAA, and RTCA for the 1991 Collier Trophy “for his pioneering work
in proving the concept of GPS aided precision approaches.” He led a project to define the experimental
and operational requirements for a transport aircraft suitable for conducting flight experiments and to
acquire such an aircraft. Today, that aircraft is the NASA Langley B-757 ARIES flight research platform.

Mr. Spitzer was the NASA representative to the Airlines Electronic Engineering Committee. In 1988
he received the Airlines Avionics Institute Chairman’s Special Volare Award. He is only the second federal
government employee so honored in over 30 years.

He has been active in the RTCA, including serving as chairman of the Airport Surface Operations
Subgroup of Task Force 1 on Global Navigation Satellite System Transition and Implementation Strategy,
and as Technical Program Chairman of the 1992 Technical Symposium. He was a member of the Technical
Management Committee.

In 1993 Mr. Spitzer founded AvioniCon, an international avionics consulting firm that specializes in
strategic planning, business development, technology analysis, and in-house training.

Mr. Spitzer is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and an Associate
Fellow of the American Institute of Aeronautics and Astronautics (AIAA). He received the AIAA 1994
Digital Avionics Award and an IEEE Centennial Medal and Millennium Medal. He is a Past President of
the IEEE Aerospace and Electronic Systems Society. Since 1979, he has played a major role in the highly
successful Digital Avionics Systems Conferences, including serving as General Chairman.

Mr. Spitzer presents one-week shortcourses on digital avionics systems and on satellite-based com-
munication, navigation, and surveillance for air traffic management at the UCLA Extension Division.
He has also lectured for the International Air Transport Association.

He is the author of Digital Avionics Systems, the first book in the field, published by McGraw-Hill and
Editor-in-Chief of The Avionics Handbook, published by CRC Press.

He and his wife, Laura, have a son, Danny.
His hobbies are working on old Ford products and kite flying.
© 2001 by CRC Press LLC

Contributors

Kathy H. Abbott
Federal Aviation Administration
NASA Langley Research Center
Hampton, VA

Daniel G. Baize
NASA Langley Research Center
Hampton, VA

John G. P. Barnes
Caversham
Reading, U.K.

Gregg F. Bartley
Boeing
Seattle, WA

Douglas Beeks
Rockwell Collins
Cedar Rapids, IA

Barry C. Breen
Honeywell
Monroe, WA

Dominique Briere
Aerospatiale
Toulouse, France

Ronald Brower
United States Air Force
Wright Patterson AFB, OH

Ricky W. Butler
NASA Langley Research Center
Hampton, VA

Christian P. deLong
Honeywell, Defense Avionics

Systems
Albuquerque, NM

James L. Farrell
VIGIL, Inc.
Severna Park, MD

Christian Favre
Aerospatiale
Toulouse, France

Thomas K. Ferrell
Ferrell and Associates Consulting
Vienna, VA

Uma D. Ferrell
Ferrell and Associates Consulting
Vienna, VA

Lee Harrison
Galaxy Scientific Corp.
Egg Harbor Twp., NJ

Steve Henely
Rockwell Collins
Cedar Rapids, IA

Richard Hess
Honeywell
Phoenix, AZ

Ellis F. Hitt
Battelle
Columbus, OH

Peter Howells
Rockwell Collins Flight Dynamics
Portland, OR

Sally C. Johnson
NASA Langley Research Center
Hampton, VA

Myron Kayton
Kayton Engineering Co.
Santa Monica, CA

Michael S. Lewis
NASA Langley Research Center
Hampton, VA

Thomas M. Lippert
Microvision Inc.
Bothel, WA

Robert P. Lyons, Jr.
United States Air Force
Arlington, VA

James N. Martin
The Aerospace Corporation
Chantilly, VA

Daniel A. Martinec
Aeronautical Radio, Inc. (ARINC)
Annapolis, MD

Frank W. McCormick
Certification Services, Inc.
Eastsound, WA

James Melzer
Kaiser Electro-Optics, Inc.
Carlsbad, CA

Jim Moore
Smiths Industries
Cheltenham, U.K.

Michael J. Morgan
Honeywell
Olathe, KS
© 2001 by CRC Press LLC

Dennis Mulcare
Science Applications

International Co.
Marietta, GA

Russell V. Parrish
NASA Langley Research Center
Hampton, VA

Michael Pecht
University of Maryland
College Park, MD

J. P. Potocki de Montalk
Airbus Industrie
Blagnac, France

Arun Ramakrishnan
University of Maryland
College Park, MD

Gordon R. A. Sandell
Boeing
Seattle, WA

John Satta
Zycad, Inc.
Dayton, OH

Dennis L. Schmickley
Boeing Helicopter Co.
Mesa, AZ

Grant Stumpf
Zycad, Inc.
Dayton, OH

Cary Spitzer
AvioniCon, Inc.
Williamsburg, VA

Jack Strauss
Zycad, Inc.
Dayton, OH

Toby Syrus
University of Maryland
College Park, MD

Pascal Traverse
Aerospatiale
Toulouse, France

Terry Venema
Zycad, Inc.
Dayton, OH

David G. Vutetakis
Douglas Battery Co.
Winston-Salem, NC

Randy Walter
Smiths Industries
Grand Rapids, MI

Robert B. Wood
Rockwell Collins Flight Dynamics
Portland, OR
© 2001 by CRC Press LLC

Contents

SECTION I Elements

Introduction Daniel A. Martinec

1 AS 15531/MIL-STD-1553B Digital Time Division Command/Response
Multiplex Data Bus Chris deLong

2 ARINC 429 Daniel A. Martinec

3 Commercial Standard Digital Bus Lee H. Harrison

4 Head-Up Displays Robert B. Wood and Peter J. Howells

5 Head-Mounted Displays James E. Melzer

6 Display Devices: RSD™ (Retinal Scanning Display)
Thomas M. Lippert

7 Night Vision Goggles Dennis L. Schmickley

8 Speech Recognition and Synthesis Douglas W. Beeks

9 Human Factors Engineering and Flight Deck Design Kathy H. Abbott

10 Batteries David G. Vutetakis

SECTION II Functions

Introduction Peter Potocki de Montalk

11 Boeing B-777: Fly-By-Wire Flight Controls Gregg F. Bartley
© 2001 by CRC Press LLC

12 Electrical Flight Controls, From Airbus A320/330/340 to Future Military
Transport Aircraft: A Family of Fault-Tolerant Systems
Dominique Briere, Christian Favre, and Pascal Traverse

13 Navigation Systems Myron Kayton

14 Navigation and Tracking James L. Farrell

15 Flight Management Systems Randy Walter

16 Synthetic Vision
Russell V. Parish, Daniel G. Baize, and Michael S. Lewis

17 Enhanced Situation Awareness Barry C. Breen

18 TCAS II Steve Henely

SECTION III Requirements, Design Analysis, Validation, and
Certification

Introduction Ellis F. Hitt

19 Setting Requirements Cary R. Spitzer

20 Digital Avionics Modeling and Simulation
Jack Strauss, Terry Venema, Grant Stumpf, and John Satta

21 Formal Methods Sally C. Johnson and Ricky W. Butler

22 Electronic Hardware Reliability
Arun Ramakrishnan, Toby Syrus, and Michael Pecht

23 Certification of Civil Avionics Frank McCormick

24 Processes for Engineering a System James N. Martin

25 Electromagnetic Environment (EME) Richard Hess
© 2001 by CRC Press LLC

SECTION IV Software

Introduction Robert P. Lyons, Jr.

26 Ada J. G. P. Barnes

27 RTCA DO-178B/EUROCAE ED-12B
Thomas K. Ferrell and Uma D. Ferrell

SECTION V Implementation

Introduction Cary R. Spitzer

28 Fault-Tolerant Avionics Ellis F. Hitt and Dennis Mulcare

29 Boeing B-777 Michael J. Morgan

30 New Avionics Systems —Airbus A330/A340
J.P. Potocki de Montalk

31 McDonnell Douglas MD-11 Avionics System Gordon R. A. Sandell

32 Lockheed F-22 Raptor Ronald W. Brower

33 Advanced Distributed Architectures Jim Moore
© 2001 by CRC Press LLC

Chris deLong et al. “AS 15531/MIL-STD-1553B Digital Time Division Command/Response..."
The Avionics Handbook

Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

I

Elements

Daniel A. Martinec

ARINC

1 AS 15531/MIL-STD-1553B Digital Time Division
Command/Response Multiplex Data Bus

 Chris deLong

Introduction

•

The Standard

•

Protocol

•

Systems-Level Issues • Testing

2 ARINC 429

Daniel A. Martinec

Introduction • ARINC 419 • ARINC 429 • Message and Word Formatting • Timing-
Related Elements • Communications Protocols • Applications • ARINC 453

3 Commercial Standard Digital Bus

Lee H. Harrison

Introduction • Bus Architecture •

Basic

Bus Operation• CSDB Bus Capacity • CSDB
Error Detection and Correction • Bus User Monitoring •

I

ntegration
Considerations • Bus Integration Guidelines • Bus Testing • Aircraft Implementation

4 Head-Up Displays

Robert B. Wood and Peter J. Howells

Introduction • HUD Fundamentals • Applications and Examples

5 Head-Mounted Displays

James E. Melzer

Introduction • What Is an HMD? • The HMD as Part of the Visually Coupled
System • HMD System Considerations and Trade-Offs • Summary



Display Devices: RSD™ (Retinal Scanning Display)

Thomas M. Lippert

Introduction • An Example Avionic HMD Challenge • CRTs and MFPs • Laser
Advantages, Eye Safety • Light Source Availability and Power Requirements • Microvision’s
Laser Scanning Concept • Next Step

7 Night Vision Goggles

Dennis L. Schmickley

Introduction • Fundamentals • Applications and Examples

8 Speech Recognition and Synthesis

Douglas W. Beeks

Introduction • How Speech Recognition Works: A Simplistic View • Recent
Applications • Flight Deck Applications

9 Human Factors Engineering and Flight Deck Design

Kathy H. Abbott

Introduction • Fundamentals • Additional Considerations

10 Batteries

David G. Vutetakis

Introduction • General Principles • Lead-Acid Batteries • Nickel-Cadmium
Batteries • Applications

The basic elements of the avionics suite on aircraft typically relate to the communications, navigation,
and surveillance (CNS) functions. The term

CNS

 is used widely throughout the aviation industry to
address those functions addressed later in this handbook. The elements described in this section con-
stitute the most fundamental “backbones” of the overall avionics suite performing the CNS functions.

Digital data buses provide the necessary onboard digital communications among the avionics elements
comprising the overall airborne system. The avionics use digital data buses with (mostly) standardized
physical and electrical interfaces to send their internal data to other avionics. The data may comprise
sensor information, the results of internal calculations, system commands, information from internal
storage, relayed data, or any information that may be generated by a computational device. The overall
avionics suite, through the use of these interconnected digital data buses, operates similarly to ground-
based networks. A primary difference is the amount of certification required to ensure that the very
high level of integrity and safety required for aviation is maintained. Three widely used buses are
examined: AS 15531/MIL-STD-1553B Digital Time Division Command/Response Multiplex Data Bus;
ARINC 429 Digital Information Transfer System – Mark 33; and the Commercial Standard Digital Bus.

Batteries are an essential element to provide engine starting power and back up, sustaining power for
avionics, especially flight critical avionics.
Avionics performing the basic CNS functions are not the only critical elements of aircraft. Crew inter-
faces play an important role in assuring that the crew can interact with these avionics and that the aircraft
can be flown effectively and safely. This section provides a description of some advanced and evolving
technologies that can provide the crew situational awareness of the aircraft and the environment in which
the aircraft flies. Included are various display technol-ogies and speech recognition along with retinal
scanning displays. Guidance is also given on proven techniques for flight deck design, a task often
approached in an

ad hoc

, undisciplined manner.

1
AS 15531/MIL-STD-

1553B Digital
Time Division

Command/Response
Multiplex Data Bus

1.1 Introduction
Background • History and Applications

1.2 The Standard
Hardware Elements

1.3 Protocol
Word Types • Message Formats, Validation,
and Timing • Mode Codes

1.4 Systems-Level Issues
Subaddress Utilization • Data Wraparound • Data
Buffering • Variable Messsage Blocks • Sample
Consistency • Data Validation • Major and Minor Frame
Timing • Error Processing

1.5 Testing

1.1 Introduction

MIL-STD-1553 is a standard which defines the electrical and protocol characteristics for a data bus. SAE
AS-15531 is the commercial equivalent to the military standard. A data bus is similar to what the personal
computer and office automation industry have dubbed a “Local Area Network (LAN).” In avionics, a
data bus is used to provide a medium for the exchange of data and information between various systems
and subsystems.

1.1.1 Background

In the 1950s and 1960s, avionics were simple standalone systems. Navigation, communications, flight
controls, and displays consisted of analog systems. Often, these systems were composed of multiple boxes
interconnected to form a single system. The interconnections between the various boxes was accomplished
with point-to-point wiring. The signals mainly consisted of analog voltages, synchro-resolver signals,
and relay/switch contacts. The location of these boxes within the aircraft was a function of operator need,
available space, and the aircraft weight and balance constraints. As more and more systems were added,

Chris deLong
Honeywell, Defense Avionics
Systems
© 2001 by CRC Press LLC

the cockpits became crowded due to the number of controls and displays, and the overall weight of the
aircraft increased.

By the late 1960s and early 1970s, it was necessary to share information between various systems to
reduce the number of black boxes required by each system. A single sensor providing heading and rate
information could provide those data to the navigation system, the weapons system, the flight control
system, and pilot’s display system (see Figure 1.1a). However, the avionics technology was still basically
analog, and while sharing sensors did produce a reduction in the overall number of black boxes, the
interconnecting signals became a “rat’s nest” of wires and connectors. Moreover, functions or systems

FIGURE 1.1 Systems configurations.
© 2001 by CRC Press LLC

that were added later became an integration nightmare as additional connections of a particular signal
could have potential system impacts, plus since the system used point-to-point wiring, the system that
was the source of the signal typically had to be modified to provide the additional hardware needed to
output to the newly added subsystem. As such, intersystem connections were kept to the bare minimums.

By the late 1970s, with the advent of digital technology, digital computers had made their way into
avionics systems and subsystems. They offered increased computational capability and easy growth,
compared to their analog predecessors. However, the data signals — the inputs and outputs from the
sending and receiving systems — were still mainly analog in nature, which led to the configuration of a
small number of centralized computers being interfaced to the other systems and subsystems via complex
and expensive analog-to-digital and digital-to-analog converters.

As time and technology progressed, the avionics systems became more digital. And with the advent
of the microprocessor, things really took off. A benefit of this digital application was the reduction in
the number of analog signals, and hence the need for their conversion. Greater sharing of information
could be provided by transferring data between users in digital form. An additional side benefit was that
digital data could be transferred bidirectionally, whereas analog data were transferred unidirectionally.
Serial rather than parallel transmission of the data was used to reduce the number of interconnections
within the aircraft and the receiver/driver circuitry required with the black boxes. But this alone was not
enough. A data transmission medium which would allow all systems and subsystems to share a single
and common set of wires was needed (see Figure 1.1b). By sharing the use of this interconnect, the
various subsystems could send data between themselves and to other systems and subsystems, one at a
time, and in a defined sequence. Enter the 1553 Data Bus.

1.1.2 History and Applications

MIL-STD-1553(USAF) was released in August of 1973. The first user of the standard was the F-16. Further
changes and improvements were made and a tri-service version, MIL-STD-1553A, was released in 1975.
The first user of the “A” version of the standard was again the Air Force’s F-16 and the Army’s new attack
helicopter, the AH-64A Apache. With some “real world” experience, it was soon realized that further
definitions and additional capabilities were needed. The latest version of the standard, 1553B, was released
in 1978.

Today the 1553 standard is still at the “B” level; however, changes have been made. In 1980, the Air
Force introduced Notice 1. Intended only for Air Force applications, Notice 1 restricted the use of many
of the options within the standard. While the Air Force felt this was needed to obtain a common set of
avionics systems, many in industry felt that Notice 1 was too restrictive and limited the capabilities in
the application of the standard. Released in 1986, the tri-service Notice 2 (which supersedes Notice 1)
places tighter definitions upon the options within the standard. And while not restricting an option’s
use, it tightly defines how an option will be used if implemented. Notice 2, in an effort to obtain a
common set of operational characteristics, also places a minimum set of requirements upon the design
of the black box. The military standard was converted to its commercial equivalent as SAE AS 15531, as
part of the government’s effort to increase the use of commercial products.

Since its inception, MIL-STD-1553 has found numerous applications. Notice 2 even removed all
references to “aircraft” or “airborne” so as not to limit its applications. The standard has also been accepted
and implemented by NATO and many foreign governments. The U.K. has issued Def Stan 00-18 (Part 2)
and NATO has published STANAG 3838 AVS, both of which are versions of MIL-STD-1553B.

1.2 The Standard

MIL-STD-1553B defines the term Time Division Multiplexing (TDM) as “the transmission of information
from several signal sources through one communications system with different signal samples staggered
in time to form a composite pulse train.” For our example in Figure 1.1b, this means that data can be
transferred between multiple avionics units over a single transmission media, with the communications
© 2001 by CRC Press LLC

between the different avionics boxes taking place at different moments in time, hence time division.
Table 1.1 is a summary of the 1553 Data Bus Characteristics. However, before defining how the data are
transferred, it is necessary to understand the data bus hardware.

1.2.1 Hardware Elements

The 1553 standard defines certain aspects regarding the design of the data bus system and the black boxes
to which the data bus is connected. The standard defines four hardware elements: transmission media,
remote terminals, bus controllers, and bus monitors; each of which is detailed as follows.

1.2.1.1 Transmission Media

The transmission media, or data bus, is defined as a twisted shielded pair transmission line consisting
of the main bus and a number of stubs. There is one stub for each terminal (system) connected to the
bus. The main data bus is terminated at each end with a resistance equal to the cable’s characteristic
impedance. This termination makes the data bus behave electrically like an infinite transmission line.
Stubs, which are added to the main bus in order to connect the terminals, provide “local” loads, and
produce an impedance mismatch where added. This mismatch, if not properly controlled, produces
electrical reflections and degrades the performance of the main bus. Therefore, the characteristics of both
the main bus and the stubs are specified within the standard. Table 1.2 is a summary of the transmission
media characteristics.

The standard specifies two stub methods: direct and transformer coupled. This refers to the method
in which a terminal is connected to the main bus. Figure 1.2 shows the two methods, the primary
difference between the two being that the transformer coupled method utilizes an isolation transformer
for connecting the stub cable to the main bus cable. In both methods, two isolation resistors are placed
in series with the bus. In the direct coupled method, the resistors are typically located within the terminal,
whereas in the transformer coupled method, the resistors are typically located with the coupling trans-
former in boxes called data bus couplers. A variety of couplers are available, providing single or multiple
stub connections.

Another difference between the two coupling methods is the length of the stub. For the direct coupled
method, the stub length is limited to a maximum of 1 ft. For the transformer coupled method, the stub
can be up to a maximum length of 20 ft. Therefore for direct coupled systems, the data bus must be

TABLE 1.1 Summary of the 1553 Data Bus Characteristics

Data Rate 1 MHz
Word Length 20 bits
Data Bits per Word 16 bits
Message Length Maximum of 32 data words
Transmission Technique Half-Duplex
Operation Asynchronous
Encoding Manchester II Bi-phase
Protocol Command-Response
Bus Control Single or Multiple
Message Formats Controller-to-Terminal (BC-RT)

Terminal-to-Controller (RT-BC)
Terminal-to-Terminal (RT-RT)
Broadcast
System Control

Number of Remote Terminals Maximum of 31
Terminal Types Remote Terminal (RT)

Bus Controller (BC)
Bus Monitor (BM)

Transmission Media Twisted Shielded Pair Cable
Coupling Transformer or Direct
© 2001 by CRC Press LLC

routed in close proximity to each of the terminals, whereas for a transformer coupled system, the data
bus may be up to 20 ft away from each terminal.

1.2.1.2 Remote Terminal

A remote terminal is defined within the standard as “All terminals not operating as the bus controller or
as a bus monitor.” Therefore if it is not a controller, monitor, or the main bus or stub, it must be a remote
terminal — sort of a “catch all” clause. Basically, the remote terminal is the electronics necessary to transfer
data between the data bus and the subsystem. So what is a subsystem? For 1553 applications, the subsystem
is the sender or user of the data being transferred.

In the earlier days of 1553, remote terminals were used mainly to convert analog and discrete data
to/from a data format compatible with the data bus. The subsystems were still the sensor which provided
the data and computer which used the data. As more and more digital avionics became available, the

FIGURE 1.2 Terminal connection methods.

TABLE 1.2 Summary of Transmission Media Characteristics

Cable Type Twisted Shielded Pair
Capacitance 30.0 pF/ft max — wire to wire
Characteristic Impedance 70.0 to 85.0 ohms at 1 MHz
Cable Attenuation 1.5 dbm/100 ft at 1 MHz
Cable Twists 4 twists per foot maximum
Shield Coverage 90% minimum
Cable Termination Cable impedance (�2%)
Direct Coupled Stub Length Maximum of 1 ft
Transformer Coupled Stub Length Maximum of 20 ft
© 2001 by CRC Press LLC

trend has been to embed the remote terminal into the sensor and computer. Today it is common for the
subsystem to contain an embedded remote terminal. Figure 1.3 shows the different levels of remote
terminals possible.

A remote terminal typically consists of a transceiver, an encoder/decoder, a protocol controller, a buffer
or memory, and a subsystem interface. In a modern black box containing a computer or processor, the
subsystem interface may consist of the buffers and logic necessary to interface to the computer’s address,
data, and control buses. For dual redundant systems two transceivers and two encoders/decoders would
be required to meet the requirements of the standard.

Figure 1.4 is a block diagram of a remote terminal and its connection to a subsystem. In short, the
remote terminal consists of all the electronics necessary to transfer data between the data bus and the
user or originator of the data being transferred.

FIGURE 1.3 Simple multiplex architecture.

FIGURE 1.4 Terminal definition.
© 2001 by CRC Press LLC

But a remote terminal is more than just a data formatter. It must be capable of receiving and decoding
commands from the bus controller, and respond accordingly. It must also be capable of buffering a message-
worth of data, be capable of detecting transmission errors and performing validation tests upon the data,
and reporting the status of the message transfer. A remote terminal must be capable of performing a few
of the bus management commands (referred to as mode commands), and for dual redundant applications
it must be capable of listening to and decoding commands on both buses at the same time.

A remote terminal must strictly follow the protocol as defined by the standard. It can only respond
to commands received from the bus controller (i.e., it only speaks when spoken to). When it receives a
valid command, it must respond within a defined amount of time. If a message does not meet the validity
requirements defined, then the remote terminal must invalidate the message and discard the data (not
allow the data to be used by the subsystem). In addition to reporting status to the bus controller, most
remote terminals today are also capable of providing some level of status information to the subsystem
regarding the data received.

1.2.1.3 Bus Controller

The bus controller is responsible for directing the flow of data on the bus. While several terminals may
be capable of performing as the bus controller, only one bus controller is allowed to be active at any one
time. The bus controller is the only device allowed to issue commands onto the data bus. The commands
may be for the transfer of data, or the control and management of the bus (referred to as mode
commands).

Typically, the bus controller is a function that is contained within some other computer, such as a
mission computer, a display processor, or a fire control computer. The complexity of the electronics
associated with the bus controller is a function of the subsystem interface (the interface to the computer),
the amount of error management and processing to be performed, and the architecture of the bus
controller. There are three types of bus controllers architectures: a word controller, a message controller,
and a frame controller.

A word controller is the oldest and simplest type. Few word controllers are built today and they are
only mentioned herein for completeness. For a word controller, the terminal electronics transfers one
word at a time to the subsystem. Message buffering and validation must be performed by the subsystem.

Message controllers output a single message at a time, interfacing with the computer only at the end
of the message or perhaps when an error occurrs. Some message controllers are capable of performing
minor error processing, such as transmitting once on the alternate data bus, before interrupting the
computer. The computer will inform the interface electronics of where the message exists in memory
and provide a control word. For each message the control word typically informs the electronics of the
message type (e.g., an RT-BC or RT-RT command), which bus to use to transfer the message, where to
read or write the data words in memory, and what to do if an error occurs. The control words are a
function of the hardware design of the electronics and are not standardized among bus controllers.

A frame controller is the latest concept in bus controllers. A frame controller is capable of processing
multiple messages in a sequence defined by the computer. The frame controller is typically capable of
error processing as defined by the message control word. Frame controllers are used to “off-load” the
computer as much as possible, interrupting only at the end of a series of messages or when an error it
can not handle is detected.

There is no requirement within the standard as to the internal workings of a bus controller, only that
it issue commands onto the bus.

1.2.1.4 Bus Monitor

A bus monitor is just that. A terminal which listens to (monitors) the exchange of information on the
data bus. The standard strictly defines what bus monitors may be used for, stating that the information
obtained by a bus monitor be used “for off-line applications (e.g., flight test recording, maintenance
recording or mission analysis) or to provide a back-up bus controller sufficient information to take over
as the bus controller.” Monitors may collect all the data from the bus or may collect selected data.
© 2001 by CRC Press LLC

The reason for restricting its use is that while a monitor may collect data, it deviates from the command-
response protocol of the standard in that a monitor is a passive device that does not transmit a status
word, and therefore can not report on the status of the information transferred. Therefore, bus monitors
fall into two categories: a recorder for testing, or as a terminal functioning as a back-up bus controller.

In collecting data, a monitor must perform the same message validation functions as the remote
terminal and, if an error is detected, inform the subsystem of the error (the subsystem may still record
the data, but the error should be noted). For monitors which function as recorders for testing, the
subsystem is typically a recording device or a telemetry transmitter. For monitors which function as back-
up bus controllers, the subsystem is the computer.

Today it is common that bus monitors also contain a remote terminal. When the monitor receives a
command addressed to its terminal address, it responds as a remote terminal. For all other commands, it
functions as a monitor. The remote terminal portion could be used to provide feedback to the bus controller
of the monitor’s status, such as the amount of memory or time left, or to reprogram a selective monitor as
to what messages to capture.

1.2.1.5 Terminal Hardware

The electronic hardware between a remote terminal, bus controller, and bus monitor does not differ
much. Both the remote terminal and bus controller (and bus monitor if it is also a remote terminal)
must have the transmitters/receivers and encoders/decoders to format and transfer data. The requirements
upon the transceivers and the encoders/decoders do not vary between the hardware elements. Table 1.3
lists the electrical characteristics of the terminals.

All three elements have some level of subsystem interface and data buffering. The primary difference
lies in the protocol control logic and often this just a different series of micro-coded instructions. For
this reason, it is common to find 1553 hardware circuitry that is also capable of functioning as all three
devices.

There is an abundance of “off-the-shelf” components available today from which to design a terminal.
These vary from discrete transceivers, encoders/decoders, and protocol logic devices to a single dual
redundant hybrid containing everything but the transformers.

TABLE 1.3 Terminal Electrical Characteristics

Requirement Transformer Coupled Direct Coupled Condition

Input Characteristics

Input Level 0.86–14.0 V 1.2–20.0 V p–p, l–l
No Response 0.0–0.2 V 0.0–0.28 V p–p, l–l
Zero Crossing Stability �150.0 nsec �150.0 nsec
Rise/Fall Times 0 nsec 0 nsec Sine Wave
Noise Rejection 140.0 mV WG 200.0 mV WGN BE 1b per
Common Mode Rejection �10.0 V peak �10.0 V peak line-gnd, DC-2.0 MHz
Input Impedance 1000 ohms 2000 ohms 75 kHz–1 MHz

Output Characteristics

Output Level 18.0–27.0 V 6.0–9.0 V p–p, l–l
Zero Crossing Stability 25.0 nsec 25.0 nsec
Rise/Fall Times 100–300 nsec 100–300 nsec 10%–90%
Maximum Distortion �900.0 mV �300.0 mV peak, l–l
Maximum Output Noise 14.0 mV 5.0 mV rms, l–l
Maximum Residual Voltage �250.0 mV �90.0 mV peak, l–l

a WGN � White Gaussian Noise.
b BER � Bit Error Rate.

Na R 107
© 2001 by CRC Press LLC

1.3 Protocol

The rules under which the transfers occur is referred to as “protocol”. The control, data flow, status
reporting, and management of the bus is provided by three word types.

1.3.1 Word Types

Three distinct word types are defined by the standard. These are command words, data words, and status
words. Each word type has a unique format yet all three maintain a common structure. Each word is
20 bits in length. The first three bits are used as a synchronization field, thereby allowing the decode clock
to re-sync at the beginning of each new word. The following 16 bits are the information field and differ
among the three word types. The last bit is the parity bit. Parity is based on odd parity for the single
word. The three word types are shown in Figure 1.5.

Bit encoding for all words is based on bi-phase Manchester II format. The Manchester II format
provides a self-clocking waveform in which the bit sequence is independent. The positive and negative
voltage levels of the Manchester waveform is DC balanced (same amount of positive signal as there is
negative signal) and as such is well suited for transformer coupling. A transition of the signal occurs at
the center of the bit time. A logic “0” is a signal that transitions from a negative level to a positive level.
A logic “1” is a signal that transitions from a positive level to a negative level.

The terminal’s hardware is responsible for the Manchester encoding and decoding of the word types.
The interface that the subsystem sees is the 16-bit information field of all words. The sync and parity
fields are not provided directly. However, for received messages, the decoder hardware provides a signal
to the protocol logic as to the sync type the word was and as to whether parity was valid or not. For
transmitted messages, there is an input to the encoder as to what sync type to place at the beginning of
the word, and parity is automatically calculated by the encoder.

FIGURE 1.5 Word formats.
© 2001 by CRC Press LLC

1.3.1.1 Sync Fields

The first three bit times of all word types is called the sync field. The sync waveform is in itself an invalid
Manchester waveform as the transition only occurs at the middle of the second bit time. The use of this
distinct pattern allows the decoder to re-sync at the beginning of each word received and maintain the
overall stability of the transmissions.

Two distinct sync patterns are used: the command/status sync, and the data sync. The command/status
sync has a positive voltage level for the first one and a half bit times, then transitions to a negative voltage
level for the second one and a half bit times. The data sync is the opposite — a negative voltage level for
the first one and a half bit times, then transitions to a positive voltage level for the second one and a half
bit times. The sync patterns are shown in Figure 1.5.

1.3.1.2 Command Word

The Command Word (CW) specifies the function that a remote terminal(s) is to perform. This word is
only transmitted by the active bus controller. The word begins with a command sync in the first three
bit times. The following 16-bit information field is as defined in Figure 1.5.

The five-bit Terminal Address (TA) field (bit times 4–8) states to which unique remote terminal the
command is intended (no two terminals may have the same address). Note that an address of 00000 is
a valid address, and that an address of 11111 is reserved for use as the broadcast address. Also note that
there is no requirement that the bus controller be assigned an address, therefore the maximum number
of terminals the data bus can support is 31. Notice 2 to the standard requires that the terminal address
be wire programmable externally to the black box (i.e., an external connector) and that the remote
terminal electronics perform a parity test upon the wired terminal address. The Notice basically states
that an open circuit on an address line is detected as a logic “1,” that connecting an address line to ground
is detected as a logic “0,” and that odd parity will be used in testing the parity of the wired address field.

The next bit (bit time 9) is the Transmit/Receive (T/R) bit. This defines the direction of information
flow and is always from the point of view of the remote terminal. A transmit command (logic 1) indicates
that the remote terminal is to transmit data, while a receive command (logic 0) indicates that the remote
terminal is going to receive data. The only exceptions to this rule are associated with mode commands.

The following five bits (bit times 10–14) are the Subaddress (SA)/Mode Command (MC) bits. Logic
00000 or 11111 within this field shall be decoded to indicate that the command is a Mode Code Command.
All other logic combinations of this field are used to direct the data to different functions within the
subsystem. An example might be that 00001 is position and rate data, 00010 is frequency data, 10010 is
display information, and 10011 is self-test data. The use of the subaddresses is left to the designer, however,
Notice 2 suggests the use of subaddress 30 for data wraparound.

The next five bit positions (bit times 15–19) define the Word Count (WC) or Mode Code to be
performed. If the Subaddress/Mode Code field was 00000 or 11111, then this field defines the mode code
to be performed. If not a mode code, then this field defines the number of data words either to be received
or transmitted depending on the T/R bit. A word count field of 00000 is decoded as 32 data words.

The last bit (bit time 20) is the word parity bit. Only odd parity shall be used.

1.3.1.3 Data Word

The Data Word (DW) contains the actual information that is being transferred within a message. Data
words can be transmitted by either a remote terminal (transmit command) or a bus controller (receive
command). The first three bit times contain a data sync. This sync pattern is the opposite of that used
for command and status words and therefore is unique to the data word type.

The following 16 bits of information are left to the designer to define. The only standard requirement
is that the most significant bit (MSB) of the data be transmitted first. While the standard provides no
guidance as to their use, Section 80 of MIL-HDBK-1553A and SAE AS-15532 provides guidance and lists
the formats (i.e., bit patterns, resolutions, etc.) of the most commonly used data words.

The last bit (bit time 20), is the word parity bit. Only odd parity shall be used.
© 2001 by CRC Press LLC

1.3.1.4 Status Word

The Status Word (SW) is only transmitted by a remote terminal in response to a valid message. The status
word is used to convey to the bus controller whether a message was properly received or the state of the
remote terminal (i.e., service request, busy, etc.). The status word is defined in Figure 1.5. Since the status
word conveys information to the bus controller, there are two views as to the meaning of each bit — what
the setting of the bit means to a remote terminal, and what the setting of the bit means to a bus controller.
Each field of the status word, and its potential meanings, is examined below.

1.3.1.4.1 Resetting the Status Word
The Status Word, with the exception of the remote terminal address, is cleared after receipt of a valid
command word. The two exceptions to this rule are if the command word received is a Transmit Status
Word Mode Code or a Transmit Last Command Word Mode Code. Conditions which set the individual
bits of the word may occur at any time. If after clearing the status word, the conditions for setting the
bits still exists, then the bits shall be set again.

Upon detection of a error in the data being received, the Message Error bit is set and the transmission
of the status word is suppressed. The transmission of the status word is also suppressed upon receipt of
a broadcast message. For an illegal message (i.e., an illegal Command Word), the Message Error bit is
set and the status word is transmitted.

1.3.1.4.2 Status Word Bits
Terminal Address. The first five bits (bit times 4–8) of the information field are the Terminal Address
(TA). These five bits should match the corresponding field within the command word that the terminal
received. The remote terminal sets these bit to the address to which it has been programmed. The bus
controller should examine these bits to insure that the terminal responding with its status word was
indeed the terminal to which the command word was addressed. In the case of a remote terminal to
remote terminal message (RT-RT), the receiving terminal should compare the address of the second
command word with that of the received status word. While not required by the standard, it is good
design practice to insure that the data received are from a valid source.

Message Error. The next bit (bit time 9) is the Message Error (ME) bit. This bit is set to a logic “1” by
the remote terminal upon detection of a error in the message or upon detection of an invalid message
(i.e., Illegal Command) to the terminal. The error may occur in any of the data words within the message.
When the terminal detects an error and sets this bit, none of the data received within the message shall
be used. If an error is detected within a message and the ME bit is set, the remote terminal must suppress
the transmission of the status word (see Resetting of the Status Word). If the terminal detected an illegal
command, the ME bit is set and the status word is transmitted. All remote terminals must implement
the ME bit in the status word.

Instrumentation. The Instrumentation bit (bit time 10) is provided so as to differentiate between a
command word and a status word (remember, they both have the same sync pattern). The instrumen-
tation bit in the status word is always set to logic “0.” If used, the corresponding bit in the command
word is set to a logic “1.” This bit in the command word is the most significant bit of the subaddress
field, and therefore would limit the subaddresses used to 10000–11110, hence reducing the number of
subaddresses available from 30 to 15. The instrumentation bit is also the reason why there are two mode
code indentifiers (00000 and 11111), the latter required when the instrumentation bit is used.

Service Request. The Service Request bit (bit time 11) is such that the remote terminal can inform
the bus controller that it needs to be serviced. This bit is set to a logic “1” by the subsystem to indicate
that servicing is needed. This bit is typically used when the bus controller is “polling” terminals to
determine if they require processing. The bus controller upon receiving this bit set to a logic “1” typically
does one of the following. It can take a predetermined action such as issuing a series of messages, or it
can request further data from the remote terminal as to its needs. The later can be accomplished by
requesting the terminal to transmit data from a defined subaddress or by using the Transit Vector Word
Mode Code.
© 2001 by CRC Press LLC

Reserved. Bit times 12–14 are reserved for future growth of the standard and must be set to a logic
“0.” The bus controller should declare a message in error if the remote terminal responds with any of
these bits set in its status word.

Broadcast Command Received. The Broadcast Command Received bit (bit time 15) indicates that the
remote terminal received a valid broadcast command. Upon receipt of a valid broadcast command, the
remote terminal sets this bit to logic “1” and suppresses the transmission of its status words. The bus
controller may issue a Transmit Status Word or Transmit Last Command Word Mode Code to determine
if the terminal received the message properly.

Busy. The Busy bit (bit time 16) is provided as a feedback to the bus controller as to when the remote
terminal is unable to move data between the remote terminal electronics and the subsystem in compliance
to a command from the bus controller.

In the earlier days of 1553, the Busy bit was required because many of the subsystem interfaces (analogs,
synchros, etc.) were much slower compared to the speed of the multiplex data bus. Some terminals were
not able to move the data fast enough. So instead of potentially losing data, a terminal was able to set
the Busy bit, indicating to the bus controller is could not handle new data at that time, and for the bus
controller to try again later. As new systems have been developed, the need for the use of Busy has been
reduced. However, there are systems that still need and have a valid use for the Busy bit. Examples of
these are radios, where the bus controller issues a command to the radio to tune to a certain frequency.
It may take the radio several seconds to accomplish this, and while it is tuning it may set the Busy bit to
inform the bus controller that it is doing as it was told.

When a terminal is busy, it does not need to respond to commands in the “normal” way. For receive
commands the terminal collects the data, but does not have to pass the data to the subsystem. For
transmit commands, the terminal transmits its status word only. Therefore, while a terminal is busy
the data it supplies to the rest of the system are not available. This can have an overall effect upon the
flow of data within the system and may increase the data latency within time-critical systems (e.g., flight
controls).

Some terminals used the Busy bit to overcome design problems, setting the Busy bit whenever needed.
Notice 2 to the standard “strongly discourages” the use of the Busy bit. However, as shown in the
example above, there are valid needs for its use. Therefore, if used, Notice 2 now requires that the Busy
bit may only be set as the result of a particular command received from the bus controller and not due
to an internal periodic or processing function. By following this requirement, the bus controller, with
prior knowledge of the remote terminal’s characteristics, can determine what will cause a terminal to
go busy and minimize the effects on data latency throughout the system.

Subsystem Flag. The Subsystem Flag bit (bit time 17) is used to provide “health” data regarding the
subsystems to which the remote terminal is connected. Multiple subsystems may logically “OR” their bits
together to form a composite health indicator. This single bit is only to serve as an indicator to the bus
controller and user of the data that a fault or failure exists. Further information regarding the nature of
the failure must be obtained in some other fashion. Typically, a subaddress is reserved for built-in-test
(BIT) information, with one or two words devoted to subsystem status data.

Dynamic Bus Control Acceptance. The Dynamic Bus Control Acceptance bit (bit time 18) is used to
inform the bus controller that the remote terminal has received the Dynamic Bus Control Mode Code
and has accepted control of the bus. For the remote terminal, the setting of this bit is controlled by the
subsystem and is based upon passing some level of built-in-test (i.e., a processor passing its power-up
and continuous background tests).

The remote terminal upon transmitting its status word becomes the bus controller. The bus controller,
upon receipt of the status word from the remote terminal with this bit set, ceases to function as the bus
controller and may become a remote terminal or bus monitor.

Terminal Flag. The Terminal Flag bit (bit time 19) is used to inform the bus controller of a fault or
failure within the remote terminal circuitry (only the remote terminal). A logic “1” shall indicate a fault
condition. This bit is used solely to inform the bus controller of a fault or failure. Further information
© 2001 by CRC Press LLC

regarding the nature of the failure must be obtained in some other fashion. Typically, a subaddress is
reserved for BIT information, or the bus controller may issue a Transmit BIT Word Mode Code.

Parity. The last bit (bit time 20), is the word parity bit. Only odd parity shall be used.

1.3.2 Message Formats, Validation, and Timing

The primary purpose of the data bus is to provide a common medium for the exchange of data between
systems. The exchange of data is based upon message transmissions. The standard defines 10 types of
message transmission formats. All of these formats are based upon the three word types just defined.
The 10 message formats are shown in Figures 1.6 and 1.7. The message formats have been divided into
two groups. These are referred to within the standard as the “information transfer formats” (Figure 1.6)
and the “broadcast information transfer formats” (Figure 1.7).

The information transfer formats are based upon the command/response philosophy that all error-
free transmissions received by a remote terminal be followed by the transmission of a status word from
the terminal to the bus controller. This handshaking principle validates the receipt of the message by the
remote terminal.

FIGURE 1.6 Information transfer formats.

FIGURE 1.7 Broadcast information transfer formats.
© 2001 by CRC Press LLC

Broadcast messages are transmitted to multiple remote terminals at the same time. As such, the
terminals suppress the transmission of their status words (not doing so would have multiple boxes trying
to talk at the same time and thereby “jam” the bus). In order for the bus controller to determine if a
terminal received the message, a polling sequence to each terminal must be initiated to collect the status
words.

Each of the message formats is summarized in the following subsections.

1.3.2.1 Bus Controller to Remote Terminal

The bus controller to remote terminal (BC-RT) message is referred to as the receive command since the
remote terminal is going to receive data. The bus controller outputs a command word to the terminal
defining the subaddress of the data and the number of data words it is sending. Immediately (without
any gap in the transmission), the number of data words specified in the command word are sent.

The remote terminal upon validating the command word and all of the data words will issue its status
word within the response time requirements (maximum of 12 �sec).

The remote terminal must be capable of processing the next command that the bus controller issues.
Therefore the remote terminal has approximately 56 �sec (status word response time 12 �sec, plus status
word transmit time 20 �sec, plus intermessage gap minimum 4 �sec, plus command word transmit time
20 �sec, to either pass the data to the subsystem or buffer the data.

1.3.2.2 Remote Terminal to Bus Controller

The remote terminal to bus controller (RT-BC) message is referred to as a transmit command. The bus
controller issues only a transmit command word to the remote terminal. The terminal, upon validation
of the command word, will first transmit its status word followed by the number of data words requested
by the command word.

Since the remote terminal does not know the sequence of commands to be sent and does not normally
operate upon a command until the command word has been validated, it must be capable of fetching from
the subsystem the data required within approximately 28 �sec (the status word response time 12 �sec,
plus the status word transmission time 20 �sec, minus some amount of time for message validation and
transmission delays through the encoder and transceiver).

1.3.2.3 Remote Terminal to Remote Terminal

The remote terminal to remote terminal (RT-RT) command is provided to allow a terminal (the data
source) to transfer data directly to another terminal (the data sink) without going through the bus
controller. The bus controller may, however, collect and use the data.

The bus controller first issues a command word to the receiving terminal immediately followed by a
command word to the transmitting terminal. The receiving terminal is expecting data, but instead of
data after the command word it sees a command sync (the second command word). The receiving
terminal ignores this word and waits for a word with a data sync.

The transmitting terminal ignored the first command word (it did not contain its terminal address).
The second word was addressed to it, so it will process the command as an RT-BC command as described
above by transmitting its status word and the required data words.

The receiving terminal, having ignored the second command word, again sees a command (status)
sync on the next word and waits further. The next word (the first data word sent) now has a data sync
and the receiving remote terminal starts collecting data. After receipt of all of the data words (and
validating), the terminal transmits its status word.

1.3.2.3.1 RT-RT Validation
There are several things that the receiving remote terminal of an RT-RT message should do. First, Notice
2 requires that the terminal time out in 54 to 60 �sec after receipt of the command word. This is required
since if the transmitting remote terminal did not validate its command word (and no transmission
occurred) then the receiving terminal will not collect data from some new message. This could occur if
the next message is either a transmit or receive message, where the terminal ignores all words with a
© 2001 by CRC Press LLC

command/status sync and would start collecting data words beginning with the first data sync. If the
same number of data words were being transferred in the follow-on message and the terminal did not
test the command/status word contents, then the potential exists for the terminal to collect erroneous data.

The other function that the receiving terminal should do, but is not required by the standard, is to
capture the second command word and the first transmitted data word. The terminal could compare the
terminal address fields of both words to insure that the terminal doing the transmitting was the one
commanded to transmit. This would allow the terminal to provide a level of protection for its data and
subsystem.

1.3.2.4 Mode Command Formats

Three mode command formats are provided for. This allows for mode commands with no data words
and for the mode commands with one data word (either transmitted or received). The status/data
sequencing is as described for the BC-RT or RT-BC messages except that the data word count is either
one or zero. Mode codes and their use are described later.

1.3.2.5 Broadcast Information Transfer Formats

The broadcast information transfer formats, as shown in Figure 1.8, are identical to the nonbroadcast
formats described above with the following two exceptions. First, the bus controller issues commands to
terminal address 31 (11111) which is reserved for this function. And secondly, the remote terminals
receiving the messages (those which implement the broadcast option) suppress the transmission of their
status word.

The broadcast option can be used with the message formats in which the remote terminal receives
data. Obviously, multiple terminals cannot transmit data at the same time, so the RT-BC transfer format
and the transmit mode code with data format cannot be used. The broadcast RT-RT allows the bus
controller to instruct all remote terminals to receive and then instructs one terminal to transmit, thereby
allowing a single subsystem to transfer its data directly to multiple users.

Notice 2 allows the bus controller to only use broadcast commands with mode codes (see Broadcast
Mode Codes). Remote terminals are allowed to implement this option for all broadcast message formats.
The Notice further states that the terminal must differentiate the subaddresses between broadcast and
nonbroadcast messages (see Subaddress Utilization).

1.3.2.6 Command and Message Validation

The remote terminal must validate the command word and all data words received as part of the message.
The criteria for a valid command word are that the: word begins with a valid command sync, valid
terminal address (matches the assigned address of the terminal or the broadcast address if implemented),
all bits are in a valid Manchester code, there are 16 information field bits, and there is a valid parity bit
(odd). The criteria for a data word are the same except a valid data sync is required and the terminal
address field is not tested. If a command word fails to meet the criteria, the command is ignored. After
the command has been validated, and a data word fails to meet the criteria, then the terminal shall set
the Message Error bit in the status word and suppress the transmission of the status word. Any single
error within a message shall invalidate the entire message and the data shall not be used.

1.3.2.7 Illegal Commands

The standard allows remote terminals the option of monitoring for Illegal Commands. An Illegal Com-
mand is one that meets the valid criteria for a command word, but is a command (message) that is not
implemented by the terminal. An example is if a terminal only outputs 04 data words to subaddress 01
and a command word was received by the terminal that requested it to transmit 06 data words from
subaddress 03, then this command, while still a valid command, could be considered by the terminal as
illegal. The standard only states that the bus controller shall not issue illegal or invalid commands.

The standard provides the terminal designer with two options. First, the terminal can respond to all
commands as usual (this is referred to as “responding in form”). The data received is typically placed
in a series of memory locations which are not accessible by the subsystem or applications programs.
© 2001 by CRC Press LLC

This is typically referred to as the “bit bucket.” All invalid commands are placed into the same bit bucket.
For invalid transmit commands, the data transmitted is read from the bit bucket. Remember, the bus
controller is not supposed to send these invalid commands.

The second option is for the terminal to monitor for Illegal Commands. For most terminal designs,
this is as simple as a look-up table with the T/R bit, subaddress, and word count fields supplying the
address and the output being a single bit that indicates if the command is valid or not. If a terminal
implements Illegal Command detection and an illegal command is received, the terminal sets the Message
Error bit in the status word and responds with the status word.

1.3.2.8 Terminal Response Time

The standard states that a remote terminal, upon validation of a transmit command word or a receive
message (command word and all data words) shall transmit its status word to the bus controller. The
response time is the amount of time the terminal has to transmit its status word. To allow for accurate
measurements, the time frame is measured from the mid-crossing of the parity bit of the command word
to the mid-crossing of the sync field of the status word. The minimum time is 4.0 �sec, the maximum
time is 12.0 �sec. However, the actual amount of “dead time” on the bus is 2 to 10 �sec since half of the
parity and sync waveforms are being transmitted during the measured time frame.

The standard also specifies that the bus controller must wait a minimum of 14.0 �sec for a status
word response before determining that a terminal has failed to respond. In applications where long
data buses are used or where other special conditions exist, it may be necessary to extend this time to
20.0 �sec or greater.

1.3.2.9 Intermessage Gap

The bus controller must provide for a minimum of 4.0 �sec between messages. Again, this time frame
is measured from the mid-crossing of the parity bit of the last data word or the status word and the mid-
crossing of the sync field of the next command word. The actual amount of “dead time” on the bus is
2 �sec since half of the parity and sync waveforms are being transmitted during the measured time frame.

The amount of time required by the bus controller to issue the next command is a function of the
controller type (e.g., word, message, or frame). The gap typically associated with word controllers is
between 40 and 100 �sec. Message controllers typically can issue commands with a gap of 10 to 30 �sec.
But frame controllers are capable of issuing commands at the 4-�sec rate and often must require a time
delay to slow them down.

1.3.2.10 Superseding Commands

A remote terminal must always be capable of receiving a new command. This may occur while operating
on a command on bus A and after the minimum intermessage gap, a new command appears, or if
operating on bus A and a new command appears on bus B. This is referred to as a Superseding Command.
A second valid command (the new command) shall cause the terminal to stop operating on the first
command and start on the second. For dual redundant applications, this requirement implies that all
terminals must, as a minimum, have two receivers, two decoders, and two sets of command word
validation logic.

1.3.3 Mode Codes

Mode codes are defined by the standard to provide the bus controller with data bus management and
error handling/recovery capability. The mode codes are divided into two groups: with and without data
words. The data words that are associated with the mode codes, and only one word per mode code is
allowed, contains information pertinent to the control of the bus and do not generally contain informa-
tion required by the subsystem (the exception may be the Synchronize with Data Word Mode Code).
The mode codes are defined by bit times 15–19 of the command word. The most significant bit (bit 15)
can be used to differentiate between the two mode code groups. When a data word is associated with
© 2001 by CRC Press LLC

the mode code, the T/R bit determines if the data word is transmitted or received by the remote terminal.
The mode codes are listed in Table 1.4.

1.3.3.1 Mode Code Identifier

The mode code identifier is contained in bits 10–14 of the command word. When this field is either
00000 or 11111 then the contents of bits 15–19 of the command word are to be decoded as a mode code.
Two mode code identifiers are provided such that the system can utilize the Instrumentation bit if desired.
The two mode code identifiers shall not convey different information.

1.3.3.2 Mode Code Functions

The following defines the functionality of each of the mode codes.
Dynamic Bus Control. The Dynamic Bus Control Mode Code is used to provide for the passing of the

control of the data bus between terminals, thus providing a “round robin” type of control. Using this
methodology, each terminal is responsible for collecting the data it needs from all the other terminals.
When it is done collecting, it passes control to the next terminal in line (based on some predefined
sequence). This allows the applications program (the end user of the data) to collect the data when it
needs it, always insuring that the data collected is from the latest source sample and has not been sitting
around in a buffer waiting to be used.

Notices 1 and 2 to the standard forbid the use of Dynamic Bus Control for Air Force applications.
This is due to the problems and concerns of what may occur when a terminal, that has passed the control,
is unable to perform or does not properly forward the control to the next terminal, thereby forcing the
condition of no terminal being in control and having to reestablish control by some terminal. The
potential amount of time required to reestablish control could have disastrous effects upon the system
(i.e., especially a flight control system).

A remote terminal that is capable of performing as the bus control should be capable of setting the
Dynamic Bus Control Acceptance Bit in the terminal’s Status Word to logic “1” when it receives the mode
code command. Typically, the logic associated with the setting of this bit is based on the subsystem’s

TABLE 1.4 Mode Code

T/R Mode Code Function Data Word Broadcast

1 00000 Dynamic Bus Control No No
1 00001 Synchronize No Yes
1 00010 Transmit Status Word No No
1 00011 Initiate Self-Test No Yes
1 00100 Transmitter Shutdown No Yes
1 00101 Override Transmitter Shutdown No Yes
1 00110 Inhibit Terminal Flag Bit No Yes
1 00111 Override Inhibit Terminal Flag Bit No Yes
1 01000 Reset No Yes
1 01001 RESERVED No TBD
1 • • No •
1 • • No •
1 01111 RESERVED No TBD
1 10000 Transmit Vector Word Yes No
0 10001 Synchronize Yes Yes
1 10010 Transmit Last Command Word Yes No
1 10011 Transmit BIT Word Yes No
0 10100 Selected Transmitter Shutdown Yes Yes
0 10101 Override Selected Transmitter Shutdown Yes Yes

1/0 10110 RESERVED Yes TBD
• • Yes •
• • Yes •

1/0 11111 RESERVED Yes TBD
© 2001 by CRC Press LLC

(computer’s) ability to pass some level of confidence test. If the confidence test passes, then the bit is set
and the status word is transmitted when the terminal receives the mode command, thereby saying that
it will assume the role of bus controller.

The bus controller can only issue the Dynamic Bus Control mode command to one remote terminal
at a time. The command obviously is only issued to terminals that are capable of performing as a bus
controller. Upon transmitting the command, the bus controller must check the terminal’s status word
to determine if the Dynamic Bus Control Acceptance Bit is set. If set, the bus controller ceases to function
as the controller and becomes either a remote terminal or a bus monitor. If the bit in the status word is
not set, the remote terminal which was issued the command is not capable of becoming the bus controller;
the current controller must either remain the bus controller or attempt to pass the control to some other
terminal.

Synchronize. The synchronize mode code is used to establish some form of timing between two or
more terminals. This mode code does not use a data word, therefore the receipt of this command by a
terminal must cause some predefined event to occur. Some examples of this event may be the clearing,
incrementing, or presetting of a counter; the toggling of an output signal; or the calling of some software
routine. Typically, this command is used to time correlate a function such as the sampling of navigation
data (i.e., present position, rates, etc.) for flight controls or targeting/fire control systems. Other uses
have been for the bus controller to “sync” the back-up controllers (or monitors) to the beginning of a
major/minor frame processing.

When a remote terminal receives the Synchronize Mode Command, it should perform its predefined
function. For a bus controller, the issuance of the command is all that is needed. The terminals status
word only indicates that the message was received, not that the “sync” function was performed.

Transmit Status Word. This is one of the two commands that does not cause the remote terminal
to reset or clear its status word. Upon receipt of this command, the remote terminal transmits the
status word that was associated with the previous message, not the status word of the mode code
message.

The bus controller uses this command for control and error management of the data bus. If the remote
terminal had detected an error in the message and suppressed its status word, then the bus controller
can issue this command to the remote terminal to determine if indeed the nonresponse was due to an
error. As this command does not clear the status word from the previous message, a detected error by
the remote terminal in a previous message would be indicated by having the Message Error bit set in the
status word.

The bus controller also uses this command when “polling.” If a terminal does not have periodic
messages, the RT can indicate when it needs communications by setting the Service Request bit in the
status word. The bus controller, by requesting the terminal to transmit only its status word, can determine
if the terminal is in need of servicing and can subsequently issue the necessary commands. This “polling”
methodology has the potential of reducing the amount of bus traffic by eliminating the transmission of
unnecessary words.

Another use of this command is when broadcast message formats are used. As all of the remote
terminals will suppress their status words, “polling” each terminal for its status word would reveal whether
the terminal received the message by having its Broadcast Command Received bit set.

Initiate Self-Test. This command, when received by the remote terminal, shall cause the remote terminal
to enter into its self-test. This command is normally used as a ground-based maintenance function, as
part of the system power-on tests, or in flight as part of a fault recovery routine. Note that this test is
only for the remote terminal, not the subsystem.

In earlier applications, some remote terminals, upon receipt of this command, would enter self-test
and go “offline” for long periods of time. Notice 2, in an effort to control the amount of time that a
terminal could be “offline,” limited the test time to 100.0 �sec following the transmission of the status
word by the remote terminal.

While a terminal is performing its self-test, it may respond to a valid command in the following ways:
(a) no response on either bus (“off-line”); (b) transmit only the status word with the Busy bit set; or
© 2001 by CRC Press LLC

(c) normal response. The remote terminal may, upon receipt of a valid command received after this mode
code, terminate its self-test. As a subsequent command could abort the self-test, the bus controller, after
issuing this command, should suspend transmissions to the terminal for the specified amount of time
(either a time specified for the remote terminal or the maximum time of 100.0 �sec).

Transmitter Shutdown. This command is used by the bus controller in the management of the bus. In
the event that a terminal’s transmitter continuously transmits, this command provides for a mechanism
to turn the transmitter off. This command is for dual redundant standby applications only.

Upon receipt of this command, the remote terminal shuts down (i.e., turns off) the transmitter
associated with the opposite data bus. That is to say if a terminals transmitter is babbling on the A bus,
the bus controller would send this command to the terminal on the B bus (a command on the A bus
would not be received by the terminal).

Override Transmitter Shutdown. This command is the complement of the previous one in that it
provides a mechanism to turn on a transmitter that had previously been turned off. When the remote
terminal receives this command, it shall set its control logic such that the transmitter associated with the
opposite bus be allowed to transmit when a valid command is received on the opposite bus. The only
other command that can enable the transmitter is the Reset Remote Terminal Mode Command.

Inhibit Terminal Flag. This command provides for the control of the Terminal Flag bit in a terminal’s
status word. The Terminal Flag bit indicates that there is a error within the remote terminal hardware and
that the data being transmitted or the data received may be in error. However, the fault within the terminal
may not have any effect upon the quality of the data, and the bus controller may elect to continue with
the transmissions knowing a fault exists.

The remote terminal receiving this command shall set its Terminal Flag bit to logic “0” regardless of
the true state of this signal. The standard does not state that the built-in-test that controls this bit be
halted, but only the results be negated to “0.”

Override Inhibit Terminal Flag. This command is the complement of the previous one in that it provides
a mechanism to turn on the reporting of the Terminal Flag bit. When the remote terminal receives this
command, it shall set its control logic such that the Terminal Flag bit is properly reported based upon
the results of the terminal’s built-in-test functions. The only other command that can enable the response
of the Terminal Flag bit is the Reset Remote Terminal Mode Command.

Reset Remote Terminal. This command, when received by the remote terminal, shall cause the terminal
electronics to reset to its power-up state. This means that if a transmitter had been disabled or the
Terminal Flag bit inhibited, these functions would be reset as if the terminal had just powered up. Again,
remember that the reset applies only to the remote terminal electronics and not to the entire box.

Notice 2 restricts the amount of time that a remote terminal can take to reset its electronics. After
transmission of its status word, the remote terminal shall reset within 5.0 �sec. While a terminal is
resetting, it may respond to a valid command in the following ways: (a) no response on either bus
(“offline”); (b) transmit only the status word with the Busy bit set; or (c) normal response. The remote
terminal may, upon receipt of a valid command received after this mode code, terminate its reset function.
As a subsequent command could abort the reset, the bus controller, after issuing this command, should
suspend transmissions to the terminal for the specified amount of time (either a time specified for the
remote terminal or the maximum time of 5.0 �sec).

Transmit Vector Word. This command shall cause the remote terminal to transmit a data word referred
to as the vector word. The vector word shall identify to the bus controller service request information
relating to the message needs of the remote terminal. While not required, this mode code is often tied
to the Service Request bit in the Status Word. As indicated, the contents of the data word inform the bus
controller of messages that need to be sent.

The bus controller also uses this command when “polling.” Though typically used in conjunction with
the Service Request bit in the status word, wherein the bus controller requests only the status word
(Transmit Status Word Mode Code) and upon seeing the Service Request bit set would then issue the
Transmit Vector Word Mode Code, the bus controller can always ask for the Vector Word (always getting
the status word anyway) and reduce the amount of time required to respond to the terminal’s request.
© 2001 by CRC Press LLC

Synchronize with Data Word. The purpose of this synchronize command is the same as the synchronize
without data word, except this mode code provides a data word to provide additional information to
the remote terminal. The contents of the data word are left to the imagination of the user. Examples
from “real world” applications have used this word to provide the remote terminal with a counter or
clock value; to provide a backup controller with a frame identification number (minor frame or cycle
number); and to provide a terminal with a new base address pointer used in extending the subaddress
capability.

Transmit Last Command Word. This is one of the two commands that does not cause the remote
terminal to reset or clear its status word. Upon receipt of this command, the remote terminal transmits
the status word that was associated with the previous message and the Last Command Word (valid) that
it received.

The bus controller uses this command for control and error management of the data bus. When a
remote terminal is not responding properly, then the bus controller can determine the last valid command
the terminal received and can re-issue subsequent messages as required.

Transmit BIT Word. This mode command is used to provide detail with regards to the Built-in-Test
(BIT) status of the remote terminal. Its contents shall provide information regarding the remote terminal
only (remember the definition) and not the subsystem.

While most applications associate this command with the Initiate Self Test Mode Code, the standard
requires no such association. Typical use is to issue the Initiate Self Test Mode Code, allow the required
amount of time for the terminal to complete its tests, and then issue the Transmit BIT Word Mode Code
to collect the results of the test. Other applications have updated the BIT word on a periodic rate based
on the results of a continuous background test (e.g., as a data wraparound test performed with every
data transmission). This word can then be transmitted to the bus controller, upon request, without having
to initiate the test and then wait for the test to be completed. The contents of the data word are left to
the terminal designer.

Selected Transmitter Shutdown. Like the Transmitter Shutdown Mode Code, this mode code is used to
turn off a babbling transmitter. The difference between the two mode codes is that this mode code has
a data word associated with it. The contents of the data word specifies which data bus (transmitter) to
shutdown. This command is used in systems which provide more than dual redundancy.

Override Selected Transmitter Shutdown. This command is the complement of the previous one in that
it provides a mechanism to turn on a transmitter that had previously been turned off. When the remote
terminal receives this command, the data word specifies which data bus (transmitter) shall set its control
logic such that the transmitter associated with that bus be allowed to transmit when a valid command
is received on that bus. The only other command that can enable the selected transmitter is the Reset
Remote Terminal Mode Command.

Reserved Mode Codes. As can be seen from Table 1.4, there are several bit combinations that are set
aside as reserved. It was the intent of the standard that these be reserved for future growth. It should
also be noticed from the table that certain bit combinations are not listed. The standard allows the remote
terminal to respond to these reserved and “undefined” mode codes in the following manner: set the
message error bit and respond (see Illegal Commands); or respond in form. The designer of terminal
hardware or a multiplex system is forbidden to use the reserved mode codes for any purpose.

1.3.3.3 Required Mode Codes

Notice 2 to the standard requires that all remote terminals implement the following four mode codes:
Transmit Status Word, Transmitter Shutdown, Override Transmitter Shutdown, and Reset Remote
Terminal. This requirement was levied so as to provide the multiplex system designer and the bus
controller with a minimum set of commands for managing the multiplex system. Note that the above
requirement was placed on the remote terminal. Notice 2 also requires that a bus controller be capable
of implementing all of the mode codes, however, for Air Force applications, the Dynamic Bus Control
Mode Code shall never be used.
© 2001 by CRC Press LLC

1.3.3.4 Broadcast Mode Codes

Notice 2 to the standard allows the broadcast of mode codes (see Table 1.4). The use of the broadcast
option can be of great assistance in the areas of terminal synchronization. Ground maintenance and
troubleshooting can take advantage of broadcast Reset Remote Terminal or Initiate Self, but these two
commands can have disastrous effects if used while in flight. The designer must provide checks to insure
that commands such as these are not issued by the bus controller or operated upon by a remote terminal
when certain conditions exists (e.g., in flight).

1.4 Systems-Level Issues

The standard provides very little guidance in how it is applied. Lessons learned from “real world”
applications have led to design guides, application notes, and handbooks that provide guidance. This
section will attempt to answer some of the systems-level questions and identify implied requirements
that, while not specifically called out in the standard, are required nonetheless.

1.4.1 Subaddress Utilization

The standard provides no guidance on how to use the subaddresses. The assignment of subaddresses and
their functions (the data content) is left to the user. Most designers automatically start assigning subad-
dresses with 01 and count upwards. If the Instrumentation bit is going to be used, then the subaddresses
must start at 16.

The standard also requires that normal subaddresses be separated from broadcast subaddresses. If the
broadcast option is implemented, then an additional memory block is required to receive broadcast
commands.

1.4.1.1 Extended Subaddressing

The number of subaddresses that a terminal has is limited to 60 (30 transmit and 30 receive). Therefore,
the number of unique data words available to a terminal is 1920 (60 � 32). For earlier applications,
where data being transferred were analog sensor data and switch settings, this was more than sufficient.
However, in some of today’s applications, in which digital computers exchanging data, or for a video
sensor passing digitized video data, the number of words is too limited.

Most terminal designs establish a block of memory for use by the 1553 interface circuitry. This block
contains a address start pointer and then the memory is offset by the subaddress number and the word
count number to arrive at a particular memory address.

A methodology of extending the range of the subaddresses has been successfully utilized. This method
uses either a dedicated subaddress and data word, or makes use of the synchronize with data word mode
code. The data word associated with either of these contains an address pointer which is used to reestablish
the starting address of the memory block. The changing of the blocks is controlled by the bus controller
and can be done based on numerous functions. Examples are operational modes, wherein one block is
used for startup messages, a different block for take-off and landing, a different block for navigation and
cruise, a different block for mission functions (i.e., attack or evade modes), and a different block for
maintenance functions.

Another example is that the changing of the start address could also be associated with minor frame
cycles. Eight minor frames could have a separate memory block for each frame. The bus controller could
synchronize frames and change memory pointers at the beginning of each new minor frame.

For computers exchanging large amounts of data (e.g., GPS Almanac Tables) or for computers that
receive program loads via the data bus at power-up, the bus controller could set the pointers at the
beginning of a message block, send 30, 32-word messages, move the memory pointer to the last location
in the remote terminals memory that received data, then send the next block of 30, 32-word messages,
continuing this cycle until the memory is loaded. The use is left to the designer.
© 2001 by CRC Press LLC

1.4.2 Data Wraparound

Notice 2 to the standard does require that the terminal is able to perform a data wraparound and
subaddress 30 is suggested for this function. Data wraparound provides the bus controller with a
methodology of testing the data bus from its internal circuitry, through the bus media, to the terminal’s
internal circuitry. This is done by the bus controller sending the remote terminal a message block and
then commanding the terminal to send it back. The bus controller can then compare the sent data
with that received to determine the state of the data link. There are no special requirements upon the
bit patterns of the data being transferred.

The only design requirements are placed upon the remote terminal. These are that the terminal,
for the data wraparound function, be capable of sending the number of data words equal to the largest
number of data words sent for any transmit command. This means that if a terminal maximum data
transmission is only four data words, it need only provide for four data words in its data wraparound
function.

The other requirement is that the remote terminal need only hold the data until the next message.
The normal sequence is for the bus controller to send the data, then in the next message it asks for
it back. If another message is received by the remote terminal before the bus controller requests the
data, the terminal can discard the data from the wraparound message and operate on the new
command.

1.4.3 Data Buffering

The standard specifies that the any error within a message shall invalidate the entire message. This implies
that the remote terminal must store the data within a message buffer until the last data word has been
received and validated before allowing the subsystem access to the data. To insure that the subsystem
always has the last message of valid data received to work with would require the remote terminal to, as
a minimum, double buffer the received data.

There are several methods to accomplish this in hardware. One method is for the terminal elec-
tronics to contain a First-In First-Out (FIFO) memory that stores the data as it is received. Upon
validation of the last data word, the terminal’s subsystem interface logic will move the contents of
the FIFO into memory accessible by the subsystem. If an error occurred during the message, the
FIFO is reset.

A second method establishes two memory blocks for each message in common memory. The subsystem
is directed to read from one block (block A) while the terminal electronics writes to the other (Block B).
Upon receipt of a valid message, the terminal will switch pointers, indicating that the subsystem is to
read from the new memory block (block B) while the terminal will now write to block B. If an error
occurs within the message, the memory blocks are not switched.

Some of the “off-the-shelf” components available provide for data buffering. Most provide for double
buffering, while some provided for multilevels of buffering.

1.4.4 Variable Message Blocks

Remote terminals should be able to transmit any subset of any message. This means that if a terminal
has a transmit message at subaddress 04 of 30 data words, it should be capable of transmitting any
number of those data words (01–30) if so commanded by the bus controller. The order in which the
subset is transmitted should be the same as if the entire message is being transmitted, that being the
contents of data word 01 is the same regardless of the word count.

Terminals which implement Illegal Command detection should not consider subsets of a message
as illegal. That is to say, if in our example above a command is received for 10 data words, this should
not be illegal. But, if a command is received for 32 data words, this would be considered as an illegal
command.
© 2001 by CRC Press LLC

1.4.5 Sample Consistency

When transmitting data, the remote terminal needs to ensure that each message transmitted is of the
same sample set and contains mutually consistent data. Multiple words used to transfer multiple precision
parameters or functionally related data must of the same sampling.

If a terminal is transmitting pitch, roll, and yaw rates, and while transmitting the subsystem updates
these data in memory, but this occurs after pitch and roll had been read by the terminal’s electronics,
then the yaw rate transmitted would be of a different sample set. Having data from different sample rates
could have undesirable effects on the user of the data.

This implies that the terminal must provide some level of buffering (the reverse of what was described
above) or some level of control logic to block the subsystem from updating data while being read by the
remote terminal.

1.4.6 Data Validation

The standard tightly defines the criteria for the validation of a message. All words must meet certain
checks (i.e., valid sync, Manchester encoding, number of bits, odd parity, etc.) in order for each word
and each message to be valid. But what about the contents of the data word? MIL-STD-1553 provides
the checks to insure the quality of the data transmission from terminal to terminal, sort of a “data in
equals data out,” but is not responsible for the validation tests of the data itself. This is not the
responsibility of the 1553 terminal electronics, but of the subsystem. If bad data are sent, then “garbage
in equals garbage out.” But the standard does not prevent the user from providing additional levels of
protection. The same techniques used in digital computer interfaces (i.e., disk drives, serial interfaces, etc.)
can be applied to 1553. These techniques include checksums, CRC words, and error detection/correction
codes. Section 80 of MIL-HDBK-1553A which covers data word formats even offers some examples
of these techniques.

But what about using the simple indicators embedded within the standard. Each remote terminal
provides a status word — indicating not only the health of the remote terminal’s electronics, but also
that of the subsystem. However, in most designs, the status word is kept within the terminal electronics
and not passed to the subsystems. In some “off-the-shelf” components, the status word is not even available
to be sent to the subsystem. But two bits from the status word should be made available to the subsystem
and the user of the data for further determination as to the validity of the data. These are the Subsystem Flag
and the Terminal Flag bits.

1.4.7 Major and Minor Frame Timing

The standard specifies the composition of the words (command, data, and status) and the messages (infor-
mation formats and broadcast formats). It provides a series of management messages (mode codes), but it
does not provide any guidance on how to apply these within a system. This is left to the imagination of the user.

Remote terminals, based upon the contents of their data, will typically state how often data are collected
and the fastest rate they should be outputted. For input data, the terminal will often state how often it
needs certain data to either perform its job or maintain a certain level of accuracy. The rates are referred
to as the transmission and update rates. It is the system designer’s job to examine the data needs of all
of the systems and determine when data are transferred from whom to whom. These data are subdivided
into periodic messages — those which must be transferred at some fixed rate, and aperiodic messages,
those which are typically either event driven (i.e., the operator pushes a button) or data driven (i.e., a
value is now within range).

A major frame is defined such that all periodic messages are transferred at least once. This is therefore
defined by the message with the slowest transmission rate. Typical major frame rates used in today’s appli-
cations vary from 40 to 640 �sec. There are some systems that have major frame rates in the 1- to 5-sec range,
but these are the exceptions, not the norm. Minor frames are then established to meet the requirements
of the higher update rate messages.
© 2001 by CRC Press LLC

The sequence of messages within a minor frame is again left undefined. There are two methodologies
that are predominately used. In the first method, the bus controller starts the frame with the transmission
of all of the periodic messages (transmit and receive) to be transferred in that minor frame. At the end of
the periodic messages, the bus controller is either finished (resulting in dead bus time — no transmissions)
until the beginning of the next frame, or the bus controller can use this time to transfer aperiodic
messages, error handling messages, or transfer data to the back-up bus controller(s).

In the second method (typically used in a centralized processing architecture), the bus controller issues
all periodic and aperiodic transmit messages (collects the data), then processes the data (possibly using
dead time during this processing), and then issues all the receive messages (outputting the results of the
processing). Both methods have been used successfully.

1.4.8 Error Processing

The amount and level of error processing is typically left to the systems designer but may be driven by
the performance requirements of the system. Error processing is typically only afforded to critical
messages, wherein the noncritical messages just await the next normal transmission cycle. If a data bus
is 60% loaded and each message received an error, the error processing would exceed 100% of available
time and thereby cause problems within the system.

Error processing is again a function of the level of sophistication of the bus controller. Some controllers
(typically message or frame controllers) can automatically perform some degree of error processing. This
usually is limited to a retransmission of the message either once on the same bus or once on the opposite
bus. Should the retried message also fail, the bus controller software is informed of the problem. The
message may then be retried at the end of the normal message list for the minor frame.

If the error still persists, then it may be necessary to stop communicating with the terminal, especially
if the bus controller is spending a large amount of time performing error processing. Some systems will
try to communicate with a terminal for a predefined number of times on each bus. After this, all messages
to the terminal are removed from the minor frame lists, and substituted with a single transmit status
word mode code.

An analysis should be performed on the critical messages to determine the effects upon the system if
they are not transmitted or the effects of data latency if they are delayed to the end of the frame.

1.5 Testing

The testing of a MIL-STD-1553 terminal or system is not a trivial task. There are a large number of
options available to the designer including message formats, mode commands, status word bits, and
coupling methodology. In addition, history has shown that different component manufacturers and
designers have made different interpretations regarding the standard, thereby introducing products that
implement the same function quite differently.

For years, the Air Force provided for the testing of MIL- STD-1553 terminals and components. Today
this testing is the responsibility of industry. The Society of Automotive Engineers (SAE), in conjunction
with the government, has developed a series of Test Plans for all 1553 elements. These Test Plans are
listed in Table 1.6.

TABLE 1.6 SAE 1553 Test Plans

AS-4111 Remote Terminal Validation Test Plan
AS-4112 Remote Terminal Production Test Plan
AS-4113 Bus Controller Validation Test Plan
AS-4114 Bus Controller Production Test Plan
AS-4115 Data Bus System Test Plan
AS-4116 Bus Monitor Test Plan
AS-4117 Bus Components Test Plan
© 2001 by CRC Press LLC

Further Information

In addition to the SAE Test Plans listed in Table 1.6, there are other documents that can provide a great
deal of insight and assistance in designing with MIL-STD-1553:

MIL-STD-1553B Digital Time Division Command/Response Multiplex Data Bus
MIL-HDBK-1553A Multiplex Applications Handbook
SAE AS-15531 Digital Time Division Command/Response Multiplex Data Bus
SAE AS-15532 Standard Data Word Formats
SAE AS-12 Multiplex Systems Integration Handbook
SAE AS-19 MIL-STD-1553 Protocol Reorganized
DDC 1553 Designers Guide
UTMC 1553 Handbook

And lastly, there is the SAE 1553 Users Group. This is a collection of industry and military experts in
1553 who provide an open forum for information exchange, and provide guidance and interpreta-
tions/clarifications with regard to the standard. This group meets twice a year as part of the SAE Avionics
Systems Division conferences.
© 2001 by CRC Press LLC

Daniel A. Martinec “ARINC 429”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

2
ARINC 429

2.1 Introduction
2.2 ARINC 419
2.3 ARINC 429

General • History • Design Fundamentals

2.4 Message and Word Formatting
Direction of Information Flow • Information Element •
Information Identifier • Source/Destination Identifier •
Sign/Status Matrix • Data Standards

2.5 Timing-Related Elements
Bit Rate • Information Rates • Clocking Method • Word
Synchronization • Timing Tolerances

2.6 Communications Protocols
Development of File Data Transfer • Bit-Oriented
Communications Protocol

2.7 Applications
Initial Implementation • Evolution of Controls • Longevity
of ARINC 429

2.8 ARINC 453

2.1 Introduction

ARINC Specifications 419, 429, and 629 and Project Paper 453 are documents prepared by the Airlines
Electronic Engineering Committee (AEEC) and published by Aeronautical Radio, Inc. These are among
over 300 air transport industry avionics standards published since 1949. These documents, commonly
referred to as ARINC 419, ARINC 429, ARINC 453, and ARINC 629, describe data communication systems
used primarily on commercial transport airplanes. A limited number of general aviation and military
airplanes also use these data systems. The differences between the systems are described in detail in the
subsequent sections.

2.2 ARINC 419

ARINC Specification 419, ‘‘Digital Data Compendium,” provides detailed descriptions of the various
interfaces used in the ARINC 500 series of avionics standards prior to 1980. ARINC Specification 419
is often incorrectly assumed to be a standalone bus standard. ARINC Specification 419 provides a
summary of electrical interfaces, protocols, and data standards for avionics built prior to the airlines’
selection of a single standard, i.e., ARINC 429, for the distribution of digital information aboard
aircraft.

Daniel A. Martinec
ARINC
© 2001 by CRC Press LLC© 2001 by CRC Press LLC

2.3 ARINC 429

2.3.1 General

ARINC Specification 429, ‘‘Digital Information Transfer System (DITS),” was first published in 1977 and
has since become the ARINC standard most widely used by the airlines. The title of this airline standard
was chosen so as not to describe it as a ‘‘data bus.” Although ARINC 429 is a vehicle for data transfer, it
does not fit the normal definition of a data bus. A typical data bus provides multidirectional transfer of
data between multiple points over a single set of wires. ARINC 429’s simplistic one-way flow of data
significantly limits this capability, but the associated low cost and the integrity of the installations have
provided the airlines with a system exhibiting excellent service for more than two decades. Additional
information regarding avionics standards may be found at URL http://www.arinc.com/aeec.

2.3.2 History

In the early 1970s the airlines recognized the potential advantage of implementation of digital equipment.
Some digital equipment had already been implemented to a certain degree on airplanes existing at that
time. However, there were three new transport airplanes on the horizon. These were the Airbus A-310
and the Boeing B-757 and B-767. The airlines, along with the airframe and equipment manufacturers,
established a goal to create an all-new suite of avionics using digital technology.

Obviously, with digital avionics came the need for an effective means of data communications among
the avionics units. The airlines recognized that the military was also in the early stages of development
of a data bus that could perform the data transfer functions among military avionics. The potential for
a joint program to produce a data bus common to the air transport industry and the military exhibited
a potential for significant economical benefits.

 The early work to develop the military’s data bus was taken on by the Society of Automotive Engineers
(SAE). Participants in the SAE program emanated from many parts of the military and private sectors
of aviation. A considerable effort went into defining all aspects of the data bus with the goal of meeting
the needs of both the military and air transport users. That work culminated in the development of the
early version of the data bus identified by Mil-Std 1553 (see Chapter 1).

Early in the process of the Mil-Std 1553 development, representatives from the air transport industry
realized that the stringent and wide range of military requirements would cause the Mil-Std 1553 to be
overly complex for the commercial user and would not exhibit the flexibility to accommodate the varying
applications of transport airplanes. Difficulty in certification also was considered a potential problem.
The decision was made to abandon a cooperative data bus development program with the military and
pursue work on a data bus to more closely reflect commercial airplane requirements.

Numerous single transmitter/multiple receiver data transfer systems were being used on airplanes built
in the early 1970s. These proved to be reliable and efficient compared to the more complex data buses
of the time. These transfer systems, described in ARINC Specification 419, were considered as candidates
for the new digital aircraft.

While none of the systems addressed in the ARINC Specification could adequately perform the task, each
exhibited desirable characteristics that could be applied to a new design. The result was the release of a new
data transfer system exhibiting a high level of efficiency, extremely good reliability, and ease of certification.
ARINC 429 became the industry standard. Subsequent to release of the standard, numerous low-cost
integrated circuits were produced by solid-state component manufacturers. ARINC 429 was used widely
by the air transport industry and even found applications in non-aviation commercial and military
applications. ARINC 429 has been used as the standard for virtually all ARINC 700-series standards for
‘‘digital avionics” used by the air transport industry.

Aeronautical Radio Inc. has maintained and provided the necessary routine updates for new data
word assignments and formats. There were no significant changes in the basic design until 1980 when
operational experience showed that certain shorted wire conditions would allow the bus to operate in
© 2001 by CRC Press LLC

a faulty condition. The bus would operate in this condition with much reduced noise immunity. This
condition also proved to be very difficult to locate during routine maintenance. In response, the airlines
suggested that the design be changed in order to ensure that the bus would not continue to operate
when this condition occurred. A change to the receiver voltage thresholds and impedances solved this
problem.

No basic changes to the design have been made since that time. ARINC 429 has remained a reliable
system and even today is used extensively in the most modern commercial airplanes.

2.3.3 Design Fundamentals
2.3.3.1 Equipment Interconnection

A single transmitter is connected with up to 20 data receivers via a single twisted and shielded pair of
wires. The shields of the wires are grounded at both ends and at any breaks along the length of the cable.
The shields are kept as short as possible.

2.3.3.2 Modulation
Return-To-Zero (RZ) modulation is used. The voltage levels are used for this modulation scheme.

2.3.3.3 Voltage Levels

The differential output voltages across the transmitter output terminal with no load is described in the
following table:

 The differential voltage seen by the receiver will depend on wire length, loads, stubs, etc. With no
noise present on the signal lines the nominal voltages at the receiver terminals (A and B) would be

HI �7.25V to �11V

NULL �0.5V to �0.5V

LO �7.25V to �11V

HI(V) NULL(V) LO(V)

Line A to
Line B

�10 � 1.0 0 � 0.5 �10 � 1.0

Line A to
Ground

5 � 0.5 0 � 0.25 �5 � 0.5

Line B to
Ground

�5 � 0.5 0 � 0.25 �5 � 0.5
© 2001 by CRC Press LLC

In practical installations impacted by noise, etc. The following voltages ranges will be typical across the
receiver input (A and B):

HI �6.5V to �13V

NULL �2.5V to �2.5V

LO �6.5V to �13V

Line (A or B) to ground voltages are not defined.
Receivers are expected to withstand without damage steady-state voltages of 30 VAC RMS applied

across terminals A and B, or VDC applied between terminal A or B and the ground.

2.3.3.4 Impedance Levels

2.3.3.4.1 Transmitter Output Impedance
The transmitter output impedance is 70 to 80 (nominal 75) ohms and is divided equally between lines
A and B for all logic states and transitions between those states.

2.3.3.4.2 Receiver Input Impedance
The typical receiver input characteristics are as follows:

Differential Input Resistance RI � 12,000 ohms minimum
Differential Input Capacitance CI � 50 pF maximum
Resistance to Ground RH and RG � 12,000 ohms
Capacitance to Ground CH and CG � 50 pF

The total receiver input resistance including the effects of RI, RH and RG in parallel is 8000 ohms
minimum (400 ohms minimum for 20 receivers). A maximum of 20 receivers is specified for any one
transmitter. See below for the circuit standards.

2.3.3.4.3 Cable Impedance
The wire gauges used in the interconnecting cable will typically vary between 20 and 26 depending on desired
physical integrity of the cable and weight limitations. Typical characteristic impedances will be in the range
of 60 to 80 ohms. The transmitter output impedance was chosen at 75 ohms nominal to match this range.

2.3.3.5 Fault Tolerance

The electrical power on an airplane is provided by a generator on each engine. The airplane electrical system
is designed to take into account any variation in engine speeds, phase differentials, power bus switching,
etc. However, it is virtually impossible to ensure that the power source will be perfect at all times. Failures
within a system can also cause erratic power levels. The design of the ARINC 429 components take power
variation into account and are not generally susceptible to either damage or erratic operation when those
variations occur. The ranges of those variations are provided in the following sections.

2.3.3.5.1 Transmitter External Fault Voltage
Transmitter failures caused by external fault voltages will not typically cause other transmitters or other
circuitry in the unit to function outside of their specification limits or to fail.

29�
© 2001 by CRC Press LLC

2.3.3.5.2 Transmitter External Fault Load Tolerance
Transmitters should indefinitely withstand without sustaining damage a short circuit applied:

a. across terminals A and B, or
b. from terminal A to ground, or
c. from terminal B to ground, or
d. b and c above, simultaneously.

2.3.3.6 Fault Isolation

2.3.3.6.1 Receiver Fault Isolation
Each receiver incorporates isolation provisions to ensure that the occurrence of any reasonably probable
internal LRU or bus receiver failure does not cause any input bus to operate outside its specification
limits (both undervoltage or overvoltage).

2.3.3.6.2 Transmitter Fault Isolation
Each transmitter incorporates isolation provisions to ensure that it does not under any reasonably
probable equipment fault condition provide an output voltage in excess of:

a. a voltage greater than 30 VAC RMS between terminal A and B, or
b. greater than �29VDC between A and ground, or
c. greater than �29 VDC between B and ground.

2.3.3.7 Logic-Related Elements

This section describes the digital transfer system elements considered to be principally related to the logic
aspects of the signal circuit.

2.3.3.7.1 Digital Language
Numeric Data — The ARINC 429 accommodates numeric data encoded in two digital languages, (a) BNR
expressed in two’s complement fractional notation, and (b) BCD per the numerical subset of ISO Alphabet
No. 5. An information item encoded in both languages is assigned a unique address for each (see Section 2.4.3).

Discrete Data — In addition to handling numeric data as specified above, ARINC 429 is also capable
of accommodating discrete items of information either in the unused (pad) bits of data words or, when
necessary, in dedicated words.

The rule in the assignment of bits in discrete numeric data words is to start with the least significant
bit of the word and to continue towards the most significant bit available in the word. There are two
types of discrete words. These are general purpose discrete words, and dedicated discrete words. Seven
labels (270 XX–276 XX) are assigned to the general purpose discrete words. These words are assigned in
ascending label order (starting with 270 XX), where XX is the equipment identifier.

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
P SSM DATA PAD DISCRETES

MSB LSB

SDI LABEL

Generalized BCD Word Format

P SSM BCD CH #1 BCD CH #2 BCD CH #3 BCD CH #4 BCD CH #5 SDI 8 7 6 5 4 3 2 1

0 0 0

4 2 1
0 1 0

8 4 2 1
0 1 0 1

8 4 2 1
0 1 1 1

8 4 2 1
1 0 0 0

8 4 2 1
0 1 1 0 0 0 1 0 0 0 0 0 0 1

Example 2 5 7 8 6 DME DISTANCE
BCD Word Format Example (No Discretes)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
P SSM DATA PAD DISCRETES

MSB LSB

SDI LABEL

Generalized BCD Word Format
© 2001 by CRC Press LLC

Maintenance Data (General Purpose)—The general purpose Maintenance words are assigned labels in
sequential order as are the labels for the general purpose Discrete words. The lowest octal value label assigned
to the Maintenance words is used when only one Maintenance word is transmitted. When more than one
word is transmitted the lowest octal value label is used first and the other labels used sequentially until the
message has been completed. The General Purpose Maintenance words may contain Discrete, BCD, or BNR
Numeric data. They do not contain ISO Alphabet No. 5 messages. The General Purpose Maintenance words
are formatted according to the layouts of the corresponding BCD/BNR/Discrete data words shown above.

2.4 Message and Word Formatting

2.4.1 Direction of Information Flow

The information output of a system element is transmitted from a designated port (or ports) to which
the receiving ports of other system elements in need of that information are connected. In no case does
information flow into a port designated for transmission. A separate data bus (twisted and shielded pair
of wires) is used for each direction when data are required to flow both ways between two system elements.

2.4.2 Information Element

The basic information element is a digital word containing 32 bits. There are five application groups for
such words, BNR data, BCD data, Discrete data, Maintenance data (general) and Acknowledgment, ISO
Alphabet No. 5 and Maintenance (ISO Alphabet No. 5) data (AIM). The relevant data handling rules are
set forth in Section 2.4.6. When less than the full data field is needed to accommodate the information
conveyed in a word in the desired manner, the unused bit positions are filled with binary zeros or, in the
case of BNR/BCD numeric data, valid data bits. If valid data bits are used, the resolution may exceed the
accepted standard for an application.

2.4.3 Information Identifier

The type of information contained in a word is identified by a six-character label. The first three characters
are octal characters coded in binary in the first eight bits of the word. The eight bits will identify the
information contained within BNR and BCD numeric data words (e.g., DME distance, static air tem-
perature, etc.) and identify the word application for Discrete, Maintenance, and AIM data.

The last three characters of the six-character label are hexadecimal characters used to provide for
identification of ARINC 429 bus sources. Each triplet of hexadecimal characters identifies a system
element with one or more DITS ports. Each three character code (and black box) may have up to 255
eight-bit labels assigned to it. The code is used administratively to retain distinction between unlike
parameters having like labels assignments.

Octal label 377 has been assigned for the purpose of electrically identifying the system element. The
code appears in the three least significant digits of the 377 word in a BCD Word format. The transmission
of the equipment identifier word on a bus will permit receivers attached to the bus to recognize the
source of the DITS information. Since the transmission of the equipment identifier word is optional,
receivers should not depend on that word for correct operation.

2.4.4 Source/Destination Identifier

Bit numbers 9 and 10 of numeric data words are used for a data source/destination identification
function. They are not available for this function in alpha/numeric (ISO Alphabet No. 5) data words
of this document or when the resolution needed for numeric (BNR/BCD) data necessitates their use
for valid data. The source/destination identifier function may find application when specific words need
to be directed to a specific system of a multisystem installation or when the source system of a
multisystem installation needs to be recognizable from the word content. When it is used, a source
equipment encodes its aircraft installation number in bits 9 and 10 as shown in the following table. A
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

sink equipment will recognize words containing its own installation number code and words containing
code ‘‘00,” the ‘‘all-call” code.

Equipment will fall into the categories of source only, sink only, or both source and sink. Use of the
SDI bits by equipment functioning only as a source or only as a sink is described above. Both the source
and sink texts above are applicable to equipment functioning as both a source and a sink. Such equipment
will recognize the SDI bits on the inputs and also encode the SDI bits, as applicable, on the outputs.
DME, VOR, ILS, and other sensors, are examples of source and sink equipment generally considered to
be only source equipment. These are actually sinks for their own control panels. Many other types of
equipment are also misconstrued as source only or sink only. If a unit has a 429 input port and a 429
output port, it is a source and sink! With the increase of equipment consolidation, e.g., centralized control
panels, the correct use of the SDI bits cannot be overstressed.

Note: In certain specialized applications of the SDI function the all-call capability may be forfeited so
that code ‘‘00” is available as an ‘‘installation no. 4” identifier.

When the SDI function is not used, binary zeros or valid data should be transmitted in bits 9 and 10.

2.4.5 Sign/Status Matrix

This section describes the coding of the Sign/Status Matrix (SSM) field. In all cases the SSM field uses
bits 30 and 31. For BNR data words, the SSM field also includes bit 29.

The SSM field is used to report hardware equipment condition (fault/normal), operational mode (func-
tional test), or validity of data word content (verified/no computed data). The following definitions apply:

Invalid Data—Is defined as any data generated by a source system whose fundamental characteristic
is the inability to convey reliable information for the proper performance of a user system. There
are two categories of invalid data, namely, ‘‘No Computed Data” and ‘‘Failure Warning.”

No Computed Data—Is a particular case of data invalidity where the source system is unable to compute
reliable data for reasons other than system failure. This inability to compute reliable data is caused
exclusively by a definite set of events or conditions whose boundaries are uniquely defined in the
system characteristic.

Failure Warning—Is a particular case of data invalidity where the system monitors have detected one
or more failures. These failures are uniquely characterized by boundaries defined in the system
characteristic.

Displays are normally ‘‘flagged invalid” during a ‘‘Failure Warning” condition. When a ‘‘No Computed
Data” condition exists, the source system indicates that its outputs are invalid by setting the sign/status
matrix of the affected words to the ‘‘No Computed Data” code, as defined in the subsections which follow.
The system indicators may or may not be flagged depending on system requirements.

While the unit is in the functional test mode, all output data words generated within the unit (i.e.,
pass-through words are excluded) are coded with ‘‘Functional Test.” Passthrough data words are those
words received by the unit and retransmitted without alteration.

When the SSM code is used to transmit status and more than one reportable condition exists, the
condition with the highest priority is encoded in bits number 30 and 31. The order of condition priorities

Bit No. Installation No.

10 9 See text

0 0
0 1 1
1 0 2
1 1 3

is shown in the table below.

Each data word type has its own unique utilization of the SSM field. These various formats are described
in the following sections.

2.4.5.1 BCD Numeric

When a failure is detected within a system which would cause one or more of the words normally output
by that system to be unreliable, the system stops transmitting the affected word or words on the data bus.

Some avionic systems are capable of detecting a fault condition which results in less than normal
accuracy. In these systems, when a fault of this nature (for instance, partial sensor loss which results in
degraded accuracy) is detected, each unreliable BCD digit is encoded ‘‘1111” when transmitted on the
data bus. For equipment having a display, the ‘‘1111” code should, when received, be recognized as
representing an inaccurate digit and a ‘‘dash” or equivalent symbol is normally displayed in place of the
inaccurate digit.

The sign (plus/minus, north/south, etc.) of BCD Numeric Data is encoded in bits 30 and 31 of the word
as shown in the table below. Bits 30 and 31 of BCD Numeric Data words are ‘‘zero” where no sign is needed.

The ‘‘No Computed Data” code is annunciated in the affected BCD Numeric Data word(s) when a
source system is unable to compute reliable data for reasons other than system failure. When the
‘‘Functional Test” code appears in bits 30 and 31 of an instruction input data word, it is interpreted as
a command to perform a functional test.

2.4.5.2 BNR Numeric Data Words

The status of the transmitter hardware is encoded in the Status Matrix field (bit numbers 30 and 31) of
BNR Numeric Data words as shown in the table below.

A source system annunciates any detected failure that causes one or more of the words normally output
by that system to be unreliable by setting bit numbers 30 and 31 in the affected word(s) to the ‘‘Failure
Warning” code defined in the table below. Words containing this code continue to be supplied to the
data bus during the failure condition.

The ‘‘No Computed Data” code is annunciated in the affected BNR Numeric Data word(s) when a
source system is unable to compute reliable data for reasons other than system failure.

When the ‘‘Functional Test” code appears as a system output, it is interpreted as advice that the data
in the word result from the execution of a functional test. A functional test produces indications of 1/8
of positive full-scale values unless indicated otherwise in an ARINC equipment Characteristic.

Failure Warning Priority 1
No Computed Data Priority 2
Functional Test Priority 3
Normal Operation Priority 4

BCD Numeric Sign/Status Matrix

Bit No

31 30 Function

0 0 Plus, North, East, Right, To, Above
0 1 No Computed Data
1 0 Functional Test
1 1 Minus, South, West, Left, From, Below
© 2001 by CRC Press LLC

If, during the execution of a functional test, a source system detects a failure which causes one or more
of the words normally output by that system to be unreliable, it changes the states of bits 30 and 31 in
the affected words such that the ‘‘Functional Test” annunciation is replaced with a ‘‘Failure Warning”
annunciation.

The sign (plus, minus, north, south, etc.) of BNR Numeric Data words are encoded in the Sign Matrix
field (bit 29) as shown in the table below. Bit 29 is ‘‘zero” when no sign is needed.

Some avionic systems are capable of detecting a fault condition which results in less than normal
accuracy. In these systems, when a fault of this nature (for instance, partial sensor loss which results in
degraded accuracy) is detected, the equipment will continue to report ‘‘Normal” for the sign status matrix
while indicating the degraded performance by coding bit 11 as follows:

This implies that degraded accuracy can be coded only in BNR words not exceeding 17 bits of data.

2.4.5.3 Discrete Data Words

A source system annunciates any detected failure that could cause one or more of the words normally
output by that system to be unreliable. Three methods are defined. The first method is to set bits 30 and
31 in the affected word(s) to the ‘‘Failure Warning” code defined in the table below. Words containing
the ‘‘Failure Warning” code continue to be supplied to the data bus during the failure condition. When
using the second method, the equipment may stop transmitting the affected word or words on the data
bus. This method is used when the display or utilization of the discrete data by a system is undesirable.
The third method applies to data words which are defined such that they contain failure information
within the data field. For these applications, the associated ARINC equipment Characteristic specifies
the proper SSM reporting. Designers are urged not to mix operational and BITE data in the same word.

The ‘‘No Computed Data” code is annunciated in the affected Discrete Data word(s) when a source
system is unable to compute reliable data for reasons other than system failure. When the ‘‘Functional

Status Matrix

Bit No

Function31 30

0 0 Failure Warning
0 1 No Computed Data
1 0 Functional Test
1 1 Normal Operation

Status Matrix

Bit No.
29 Function

0 Plus, North, East, Right, To, Above
1 Minus, South, West, Left, From, Below

Accuracy Status

Bit No.
11 Function

0 Nominal Accuracy
1 Degraded Accuracy
© 2001 by CRC Press LLC

Test” code appears as a system output, it is interpreted as advice that the data in the Discrete Data word
contents are the result of the execution of a functional test.

2.4.6 Data Standards

The units, ranges, resolutions, refresh rates, number of significant bits, pad bits, etc. for the items of
information to be transferred by the Mark 33 DITS are administered by the AEEC and tabulated in
ARINC Characteristic 429.

ARINC Characteristic 429 calls for numeric data to be encoded in BCD and binary, the latter using
two’s complement fractional notation. In this notation, the most significant bit of the data field represents
one half of the maximum value chosen for the parameter being defined. Successive bits represent the
increments of a binary fraction series. Negative numbers are encoded as the two’s complements of positive
value and the negative sign is annunciated in the sign/status matrix.

In establishing a given parameter’s binary data standards, the unit’s maximum value and resolution
are first determined in that order. The least significant bit of the word is then given a value equal to the
resolution increment, and the number of significant bits is chosen such that the maximum value of the
fractional binary series just exceeds the maximum value of the parameter, i.e., equals the next whole binary
number greater than the maximum parameter value less one least significant bit value. For example, to
transfer altitude in units of feet over a range of zero to 100,000 ft with a resolution of 1 ft, the number of
significant bits is 17 and the maximum value of the fractional binary series is 131,071 (i.e., 131,072 � 1).

Note that because accuracy is a quality of the measurement process and not the data transfer process,
it plays no part in the selection of word characteristics. Obviously, the resolution provided in the data
word should equal or exceed the accuracy in order not to degrade it.

For the binary representation of angular data, the ARINC 429 employs ‘‘degrees divided by ” as
the unit of data transfer and ±1 (semicircle) as the range for two’s complement fractional notation
encoding (ignoring, for the moment, the subtraction of the least significant bit value). Thus the angular
range 0 through 359.XXX degrees is encoded as 0 through ±179.XXX degrees, the value of the most
significant bit is one half semicircle and there are no discontinuities in the code.

This may be illustrated as follows. Consider encoding the angular range 0 to 360 in 1 increments.
Per the general encoding rules above, the positive semicircle will cover the range 0 to 179 (one least
significant bit less than full range). All the bits of the code will be ‘‘zeros” for 0 and ‘‘ones” for 179 , and
the sign/status matrix will indicate the positive sign. The negative semicircle will cover the range 180 to
359 . All the bits will be ‘‘zeros” for 180 . The codes for angles between 181 to 359 will be determined
by taking the two’s complements of the fractional binary series for the result of subtracting each value
from 360. Thus, the code for 181 is the two’s complement of the code for 179 . Throughout the negative
semicircle, which includes 180 , the sign/status matrix contains the negative sign.

2.5 Timing-Related Elements

This section describes the digital data transfer system elements considered to be principally related to
the timing aspects of the signal circuit.

Discrete Data Words

Bit No.

Function31 30

0 0 Verified Data, Normal Operation
0 1 No Computed Data
1 0 Functional Test
1 1 Failure Warning

180�

� � �
� �

� �
�

� � � �

� �
�

© 2001 by CRC Press LLC

2.5.1 Bit Rate

2.5.1.1 High-Speed Operation

The bit rate for high-speed operation of the system is 100 kilobits per second (kbps) ±1%.

2.5.1.2 Low-Speed Operation

The bit rate for low-speed operation of the system is within the range 12.0 to 14.5 kbps. The selected
rate is maintained within 1%.

2.5.2 Information Rates

The minimum and maximum transmit intervals for each item of information are specific by ARINC
Specification 429. Words with like labels but with different SDI codes are treated as unique items of
information. Each and every unique item of information is transmitted once during an interval bounded
in length by the specified minimum and maximum values. Stated another way, a data word having the
same label and four different SDI codes will appear on the bus four times (once for each SDI code)
during that time interval.

Discrete bits contained within data words are transferred at the bit rate and repeated at the update
rate of the primary data. Words dedicated to discretes should be repeated continuously at specified rates.

2.5.3 Clocking Method

Clocking is inherent in the data transmission. The identification of the bit interval is related to the
initiation of either a HI or LO state from a previous NULL state in a bipolar RZ code.

2.5.4 Word Synchronization

The digital word should be synchronized by reference to a gap of four bit times (minimum) between the
periods of word transmissions. The beginning of the first transmitted bit following this gap signifies the
beginning of the new word.

2.5.5 Timing Tolerances

The waveform timing tolerances are shown below:
© 2001 by CRC Press LLC

2.6 Communications Protocols

2.6.1 Development of File Data Transfer

ARINC Specification 429 was adopted by AEEC in July 1977. Specification 429 defined a broadcast data
bus. General provisions were made for file data transfer. In October 1989, AEEC updated a file data
transfer procedure with a more comprehensive process that will support the transfer of both bit- and
character-oriented data. The new protocol became known popularly as the ‘‘Williamsburg Protocol.”

2.6.1.1 File Data Transfer Techniques

This ‘‘File Data Transfer Techniques” specification describes a system in which an LRU may generate
binary extended length messages ‘‘on demand.” Data is sent in the form of Link Data Units (LDU)
organized in 8-bit octets. System Address Labels (SAL) are used to identify the recipient. Two data bus
speeds are supported.

2.6.1.2 Data Transfer

The same principles of the physical layer implementation apply to file data transfer. Any avionics system
element having information to transmit does so from a designated output port over a single twisted and
shielded pair of wires to all other system elements having need of that information. Unlike the simple
broadcast protocol that can deliver data to multiple recipients in a single transmission, the file transfer
technique can be used only for point-to-point message delivery.

2.6.1.3 Broadcast Data

The broadcast transmission technique described above can be supported concurrently with file data
transfer.

2.6.1.4 Transmission Order

The most significant octet of the file and least significant bit (LSB) of each octet should be transmitted
first. The label is transmitted ahead of the data in each case. It may be noted that the Label field is encoded
in reverse order, i.e., the least significant bit of the word is the most significant bit of the label. This
‘‘reversed label” characteristic is a legacy from past systems in which the octal coding of the label field
was, apparently, of no significance.

2.6.1.5 Data Bit Encoding Logic

A HI state after the beginning of the bit interval returning to a NULL state before the end of the same
bit interval signifies a logic ‘‘one.” A LO state after the beginning of the bit interval returning to a NULL
state before the end of the same bit interval signifies a logic “zero.”

2.6.1.6 Bit-Oriented Protocol Determination

An LRU will require logic to determine which protocol (character- or bit-oriented) and which version
to use when prior knowledge is not available.

Parameter High-Speed Operation Low-Speed Operation

Bit Rate 100 kbps � 1% 12–14.5 kbps
Time Y 10 	sec � 2.5% Za 	sec � 2.5%
Time X 5 	sec � 5% Y/2 � 5%
Pulse Rise Time 1.5 � 0.5 	sec 10 � 5	sec
Pulse Fall Time 1.5 � 0.5 	sec 10 � 5	sec

Note: Pulse rise and fall times are measured between the 10% and 90% voltage
amplitude points on the leading and trailing edges of the pulse and include time
skew between the transmitter output voltages A-to-ground and B-to-ground.

aZ � 1/R where R � bit rate selected from 12–14.5 kbps range.
© 2001 by CRC Press LLC

2.6.2 Bit-Oriented Communications Protocol

This subsection describes Version 1 of the bit-oriented (Williamsburg) protocol and message exchange
procedures for file data transfer between units desiring to exchange bit-oriented data assembled in data
files. The bit-oriented protocol is designed to accommodate data transfer between sending and receiving
units in a form compatible with the Open Systems Interconnect (OSI) model developed by the Interna-
tional Standards Organization (ISO). This document directs itself to an implementation of the Link layer,
however, an overview of the first four layers (Physical, Link, Network, and Transport) is provided.

Communications will permit the intermixing of bit-oriented file transfer data words (which contain
System Address Labels [SALs]) with conventional data words (which contain label codes). If the sink
should receive a conventional data word during the process of accepting a bit-oriented file transfer
message, the sink should accept the conventional data word and resume processing of the incoming file
transfer message.

The data file and associated protocol control information are encoded into 32-bit words and trans-
mitted over the physical interface. At the Link layer, data are transferred using a transparent bit-oriented
data file transfer protocol designed to permit the units involved to send and receive information in
multiple word frames. It is structured to allow the transmission of any binary data organized into a data
file composed of octets.

1. Physical Medium. The physical interface is described above.
2. Physical Layer. The Physical layer provides the functions necessary to activate, maintain, and

release the physical link which will carry the bit stream of the communication. The electrical
interface, voltage, and timing, described above, is used by the interfacing units. Data words will
contain 32 bits; bits 1 through 8 will contain the System Address Label (SAL) and bit 32 will be
the parity (odd) bit.

3. Link Layer. The Link layer is responsible for transferring information from one logical network
entity to another and for enunciating any errors encountered during transmission. The Link layer
provides a highly reliable virtual channel and some flow control mechanisms.

4. Network Layer. It is the responsibility of the Network layer to ensure that data packets are properly
routed between any two terminals. The Network layer performs a number of functions. The
Network layer expects the Link layer to supply data from correctly received frames. The Network
layer provides for the decoding of information up to the packet level to determine which node
(unit) the message should be transferred to. To obtain interoperability, this process, though simple
in this application, must be reproduced using the same set of rules throughout all the communi-
cations networks (and their subnetworks) on-board the aircraft and on the ground. The bit-
oriented data link protocol was designed to operate in a bit-oriented Network layer environment.
Specifically, ISO 8208 would typically be selected for the Subnetwork layer protocol for air/ground
subnetworks. There are, however, some applications where the bit-oriented file transfer protocol
will be used under other Network layer protocols.

5. Transport Layer. The Transport layer controls the transportation of data between a source end-system
to a destination end-system. It provides ‘‘network independent” data delivery between these process-
ing end-systems. It is the highest order of function involved in moving data between systems. It
relieves higher layers from any concern with the pure transportation of information between them.

2.6.2.1 Link Data Units (LDU)

A Link Data Unit (LDU) contains binary encoded octets. The octets may be set to any possible binary
value. The LDU may represent raw data, character data, bit-oriented messages, character-oriented mes-
sages, or any string of bits desired. The only restriction is that the bits be organized into full 8-bit octets.
The interpretation of those bits is not a part of this Link layer protocol. The LDUs are assembled to make
up a data file.

LDUs consist of a set of contiguous ARINC 429 32-bit data words, each containing the System Address
Label (see Section 2.6.2.3) of the sink. The initial data word of each LDU is a Start of Transmission
© 2001 by CRC Press LLC

(SOT). The data described above are contained within the data words which follow. The LDU is concluded
with an End of Transmission (EOT) data word. No data file should exceed 255 LDUs.

Within the context of this document, LDUs correspond to frames and files correspond to packets.

2.6.2.2 Link Data Unit (LDU) Size and Word Count

The Link Data Unit (LDU) may vary in size from 3 to 255 ARINC 429 words including the SOT and
EOT words. When a LDU is organized for transmission, the total number of ARINC 429 words to be
sent (word count) is calculated. The word count is the sum of the SOT word, the data words in the LDU,
and the EOT word.

In order to obtain maximum system efficiency, the data is typically encoded into the minimum number
of LDUs.

The word count field is 8 bits in length. Thus the maximum number of ARINC 429 words that can
be counted in this field is 255. The word count field appears in the RTS and CTS data words. The number
of LDUs needed to transfer a specific data file will depend upon the method used to encode the data words.

2.6.2.3 System Address Labels (SALs)

LDUs are sent point-to-point, even though other systems may be connected and listening to the output of
a transmitting system. In order to identify the intended recipient of a transmission, the Label field (bits 1–8)
is used to carry a System Address Label (SAL). Each on-board system is assigned a SAL. When a system sends
an LDU to another system, the sending system (the ‘‘source”) addresses each ARINC 429 word to the receiving
system (the ‘‘sink”) by setting the Label field to the SAL of the sink. When a system receives any data containing
its SAL that is not sent through the established conventions of this protocol, the data received are ignored.

In the data transparent protocol, data files are identified by content rather than by ARINC 429 label.
Thus, the label field loses the function of parameter identification available in broadcast communications.

2.6.2.4 Bit Rate and Word Timing

Data transfer may operate at either high speed or low speed. The source introduces a gap between the
end of each ARINC 429 word transmitted and the beginning of the next. The gap should be 4 bit times
(minimum). The sink should be capable of receiving the LDU with the minimum word gap of 4 bit
times between words. The source should not exceed a maximum average of 64 bit times between data
words of an LDU.

The maximum average word gap is intended to compel the source to transmit successive data words
of an LDU without excessive delay. This provision prevents a source that is transmitting a short message
from using the full available LDU transfer time. The primary value of this provision is realized when
assessing a maximum LDU transfer time for short fixed-length LDUs, such as for Automatic Dependence
Surveillance (ADS).

If a Williamsburg source device were to synchronously transmit long length or full LDUs over a
single ARINC 429 data bus to several sink devices, the source may not be able to transmit the data
words for a given LDU at a rate fast enough to satisfy this requirement because of other bus activity.
In aircraft operation, given the asynchronous burst mode nature of Williamsburg LDU transmissions,
it is extremely unlikely that a Williamsburg source would synchronously begin sending a long length
or full LDU to more than two Williamsburg sink devices. A failure to meet this requirement will either
result in a successful (but slower) LDU transfer, or an LDU retransmission due to an LDU transfer
time-out.

2.6.2.5 Word Type

The Word Type field occupies bit 31–29 in all bit-oriented LDU words. The Word Type field is used to
identify the function of each ARINC 429 data word used by the bit-oriented communication protocol.

2.6.2.6 Protocol Words

The protocol words are identified with a Word Type field of ‘‘100” and are used to control the file transfer
process.
© 2001 by CRC Press LLC

2.6.2.6.1 Protocol Identifier
The protocol identifier field occupies bits 28–25 of the protocol word and identifies the type of protocol
word being transmitted. Protocol words with an invalid protocol identifier field are ignored.

2.6.2.6.2 Destination Code
Some protocol words contain a Destination Code. The Destination Code field (bits 24–17) indicates the
final destination of the LDU. If the LDU is intended for the use of the system receiving the message, the
destination code may be set to null (hex 00). However, if the LDU is a message intended to be passed
on to another on-board system, the Destination Code will indicate the system to which the message is
to be passed. The Destination Codes are assigned according to the applications involved. The codes are
used in the Destination Code field to indicate the address of the final destination of the LDU.

In an OSI environment, the Link layer protocol is not responsible for validating the destination code.
It is the responsibility of the higher-level entities to detect invalid destination codes and to initiate error
logging and recovery.

Within the pre-OSI environment, the Destination Code provides Network layer information. In the
OSI environment, this field may contain the same information for routing purposes between OSI and
non-OSI systems.

2.6.2.6.3 Word Count
Some protocol words contain a Word Count field. The Word Count field (bits 16–9) reflects the number
of ARINC 429 words to be transmitted in the subsequent LDU. The maximum word count value is 255
ARINC 429 words and the minimum word count value is 3 ARINC 429 words. A LDU with the minimum
word count value of 3 ARINC 429 words would contain a SOT word, one data word, and an EOT word.
A LDU with the maximum word count value of 255 ARINC 429 words would contain a SOT word, 253
data words, and an EOT word.

2.7 Applications

2.7.1 Initial Implementation

ARINC 429 was first used in the early 1980s on the Airbus A-310 and Boeing B-757 and B-767 airplanes.
Virtually all data transfer on these airplanes was accommodated by approximately 150 separate buses
interconnecting computers, radios, displays, controls, and sensors. Most of these buses operate at the
lower speed. The few that operate at the higher speed of 100 kbps are typically connected to critical
navigation computers.

2.7.2 Evolution of Controls

The first applications of ARINC 429 for controlling devices were based on the federated avionics approach
used on airplanes which comprised mostly analog interfaces. Controllers for tuning communications
equipment used an approach defined as two-out-of-five tuning. Each digit of the desired radio frequency
was encoded on each set of five wires. Multiple digits dictated the need for multiple sets of wires for each
radio receiver.

The introduction of ARINC 429 proved to be a major step toward reduction of wires. A tuning unit
needed only one ARINC 429 bus to tune multiple radios of the same type. An entire set of radios and
navigation receivers could be tuned with a few control panels, using approximately the same number of
wires previously required to tune a single radio.

As cockpit space became more critical, the need to reduce the number of control panels became critical.
The industry recognized that a single control panel, properly configured, could replace most of the
existing control panels. The Multi-Purpose Control/Display Unit (MCDU) emanated from the industry
effort. The MCDU was derived essentially from the control and display approach used by the rather
© 2001 by CRC Press LLC

sophisticated controller for the Flight Management System. For all intents and purposes, the MCDU
became the cockpit controller.

A special protocol had to be developed for ARINC 429 to accommodate the capability of addressing
different units connected to a single ARINC 429 bus from the MCDU. The protocol employed two-way
communications using two pairs of wires between the controlling unit and the controlled device. An
addressing scheme provided for selective communications between the controlling unit and any one of
the controlled units. Only one output bus from the controller is required to communicate addresses and
commands to the receiving units. With the basic ARINC 429 design, up to 20 controlled units could be
connected to the output of the controller. Each of the controlled units is addressed by an assigned SAL.

2.7.3 Longevity of ARINC 429

New airplane designs in the 21st century continue to employ the ARINC 429 bus for data transmission.
The relative simplicity and integrity of the bus, as well as the ease of certification are characteristics that
contribute to the continued selection of the ARINC 429 bus when the required data bandwidth is not
critical. The ARINC 629 data bus developed as the replacement for ARINC 429 is used in applications
where a large amount of data must be transferred or where many sources and sinks are required on a
single bus.

2.8 ARINC 453

ARINC Project Paper 453 was developed by the Airlines Electronic Engineering Committee (AEEC) in
response to an anticipated requirement for data transfer rates higher than achievable with ARINC 429.
The original drafts of Project Paper 453 were based on techniques already employed at that time. The
electrical characteristics, including the physical medium, voltage thresholds, and modulation techniques
were based on Mil-Std 1553. The data protocols and formats were based on those used in ARINC
Specification 429.

During the preparation of the drafts of Project Paper 453, the Boeing Company petitioned AEEC to
consider the use of the Digital Autonomous Terminal Access Communications (DATAC) Bus developed
by the Boeing Company to accommodate higher data throughput. AEEC accepted Boeing’s recommen-
dation for the alternative. ARINC 629 was based on the original version of the Boeing DATAC Bus. The
work on Project 453 was then curtailed. The latest draft of Project Paper 453 is maintained by ARINC
for reference purposes only.
© 2001 by CRC Press LLC

Lee H. Harrison “Commercial Standard Digital Bus”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

3
Commercial Standard

Digital Bus

3.1 Introduction
3.2 Bus Architecture
3.3 Basic Bus Operation
3.4 CSDB Bus Capacity
3.5 CSDB Error Detection and Correction
3.6 Bus User Monitoring
3.7 Integration Considerations

Physical Integration • Logical Integration • Software
Integration • Functional Integration

3.8 Bus Integration Guidelines
3.9 Bus Testing
3.10 Aircraft Implementation
Defining Terms
References
Further Information

3.1 Introduction

The Commercial Standard Digital Bus (CSDB) is one of three digital serial integration data buses that
currently predominate in civilian aircraft. The CSBD finds its primary implementations in the smaller
business and private General Aviation (GA) aircraft, but has also been used in retrofits of some com-
mercial transport aircraft.

CSDB, a unidirectional data bus, was developed by the Collins General Aviation Division of Rockwell
International. The bus used in a particular aircraft is determined by which company the airframe manufac-
turer chooses to supply the avionics. Collins is one of only a handful of major contributors to avionics today.

CSDB is an asynchronous linear broadcast bus, specifying the use of a twisted, shielded pair cable for
device interconnection. Two bus speeds are defined in the CSDB specification. A low-speed bus operates
at 12,500 bits per second (bps) and a high-speed bus operates at 50,000 bps. The bus uses twisted,
unterminated, shielded pair cable and has been tested to lengths of 50 m.

The CSDB standard also defines other physical characteristics such as modulation technique, voltage
levels, load capacitance, and signal rise and fall times. Fault protection for short-circuits of the bus
conductors to both 28 VDC and 115 VAC is defined by the standard.

3.2 Bus Architecture

Only one transmitter can be attached to the bus, while it can accommodate up to ten receivers. Figure 3.1
illustrates the unidirectional bus architecture.

Lee H. Harrison
Galaxy Scientific Corp.
© 2001 by CRC Press LLC

Bidirectional transmission can take place between two bus users. If a receiving bus user is required to
send data to any other bus user, a separate bus must be used. Figure 3.2 shows how CSDB may implement
bidirectional transmissions between bus users. It can be seen that if each bus user is required to com-
municate with every other bus user, a significantly greater amount of cabling would be required. In
general, total interconnectivity has not been a requirement for CSDB-linked bus users.

It is possible to interface CSDB to other data buses. When this is done, a device known as a gateway
interfaces to CSDB and the other bus. If the other bus is ARINC 429 compliant, then messages directed
through the gateway from CSDB are converted to the ARINC 429 protocol (see Chapter 2), and vice
versa. The gateway would handle bus timing, error checking, testing, and other necessary functions. The
system designers would ensure that data latency introduced by the gateway would not cause a “stale data”
problem, resulting in a degradation of system performance. Data are stale when they do not arrive at the
destination line replaceable unit (LRU) when required, as specified in the design.

3.3 Basic Bus Operation

In Section 2.1.4 of the CSDB standard, three types of transmission are defined:

• Continuous repetition,

• Noncontinuous repetition, and

• “Burst” transmissions

Continuous repetition transmission refers to the periodic updates of certain bus messages. Some
messages on CSDB are transmitted at a greater repetition rate than others. The CSDB standard lists these

FIGURE 3.1 Unidirectional CSDB communication.

FIGURE 3.2 Bidirectional CSDB communication.

Transmitting
LRU

LRU
#1

LRU
#2

LRU
#10• • •

• • •

LRU
#1

LRU
#2

LRU
#3

LRU
#4
© 2001 by CRC Press LLC

update rates, along with the message address and message block description. Noncontinuous repetition
is used for parameters that are not always valid, or available, such as mode or test data. When noncon-
tinuous repetition transmission is in use, it operates the same as continuous repetition. Burst transmission
initiates an action (such as radio tuning), or may be used to announce a specific event. Operation in this
mode initiates 16 repetitions of the action in each of 16 successive frames, using an update rate of 20
per second.

For CSDB, bytes consist of 11 bits: a start bit, 8 data bits, a parity bit, and a stop bit. The least significant
bit (bit 0) follows the start bit. The CSDB standard defines the message block as “a single serial message
consisting of a fixed number of bytes transmitted in a fixed sequence.” Essentially, a message block consists
of a number of bytes concatenated together, with the first byte always being an address byte. A status byte
may or may not be included in the message block. When it is, it immediately follows the address byte. The
number of data bytes in a message block vary.

Data are sent as frames consisting of a synchronization block followed by a number of message blocks.
A particular frame is defined from the start of one synchronization block to the start of the next
synchronization block. A “sync” block consists of N bytes of the sync character, which is defined as the
hexadecimal character “A5.” The sync character is never used as an address. While the data may contain
a sync character, it may occur in the data a maximum of N � 1 times. Frames consist of message blocks,
preceded by a sync block. The start of one sync block to the start of the next sync block is one frame
time. Figure 3.3 shows what transpires during a typical frame time.

3.4 CSDB Bus Capacity

The CSDB is similar to the ARINC 429 data bus in that it is an asynchronous broadcast bus and operates using
character-oriented protocol. Data are sent as frames consisting of a synchronization block followed by a number
of message blocks. A particular frame is defined from the start of one synchronization block to the start of the
next synchronization block. A message block contains an address byte, a status byte, and a variable number
of data bytes. The typical byte consists of one start bit, eight data bits, a parity bit, and a stop bit.

The theoretical bus data rate for a data bus operating at 50,000 bps with an 11-bit data byte, is 4545
bytes per second. For CSDB, the update rate is reduced by the address byte and synchronization block
overhead required by the standard.

The CSDB Interblock and Interbyte times also reduce bus throughput. According to the specification,
there are no restrictions on these idle times for the data bus. These values, however, are restrained by the
defined update rate chosen by the designer. If the update rate needs to be faster, the Interblock time and
the Interbyte time can be reduced as required, until bus utilization reaches a maximum.

FIGURE 3.3 CSDB data frame structure.

INTER-
BLOCK

TIME

FRAME TIME

SYNC
BLOCK

MESSAGE
BLOCK #1

MESSAGE
BLOCK #2

MESSAGE
BLOCK N

INTER-
BLOCK

TIME

IDLE
TIME

t

INTER-
 BLOCK

TIME
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

3.5 CSDB Error Detection and Correction

Two methods of error detection are referenced in the standard. They are the use of parity and checksums.
A parity bit is appended after each byte of data in a CSDB transmission. The “burst” transmission makes
use of the checksum for error detection. As the General Aviation Manufacturers Association (GAMA)
specification states:

It is expected that the receiving unit will accept as a valid message the first message block which
contains a verifiable checksum. (GAMA CSDB 1986.)

3.6 Bus User Monitoring

Although many parameters are defined in the CSDB specification, there is no suggestion that they be
monitored by receivers. The bus frame, consisting of the synchronization block and message block, may
be checked for proper format and content. A typical byte, consisting of start, stop, data, and parity bits,
may be checked for proper format.

The bus hardware should include the functional capability to monitor these parameters. Parity, frame errors,
and buffer overrun errors are typically monitored in the byte format of character-oriented protocols. The
message format can be checked and verified by the processor if the hardware does not perform these checks.

3.7 Integration Considerations

The obvious use of a data bus is for integrating various LRUs that need to share data or other resources.
In the following sections, integration considerations for CSDB are examined at various levels. These
include physical, logical, software, and functional considerations.

3.7.1 Physical Integration

The physical integration of LRUs connected to the CSDB is addressed by the standardization of the bus
medium and connectors. These must conform to the Electronic Industries Association (EIA) Recom-
mended Standard (RS)-422-A (1978), “Electrical Characteristics of Balanced Voltage Digital Interface
Circuits.” The CSDB standard provides for the integration of up to 10 receivers on a single bus, which
can be up to 50 m in length. No further constraints or guidelines on the physical layout of the bus are given.

Each LRU connected to a CSDB must satisfy the electrical signals and bit timing that are specified in
the EIA RS-422-A. Physical characteristics of the CSDB are given in Table 3.1. The non-return to zero
(NRZ) data format used by CSDB LRUs is shown in Figure 3.4. NRZ codes remain constant throughout
a bit interval and either use absolute values of the signal elements or differential encoding where the
polarity of adjacent elements is compared to determine the bit value.

TABLE 3.1 CSDB Physical Characteristics

Modulation Technique Non-Return to Zero (NRZ)
Logic Sense for Logic “0” Line B Positive with Respect to Line A
Logic Sense for Logic “1” Line A Positive with Respect to Line B
Bus Receiver High Impedance, Differential Input
Bus Transmitter Differential Line Driver
Bus Signal Rates Low Speed: 12,500 bps

High Speed: 50,000 bps
Signal Rise-Time and Fall-Time Low Speed: 8 �s

High-Speed: 0.8–1.0 �s
Receiver Capacitance Loading Typical: 600 pF

Maximum: 1,200 pF
Transmitter Driver Capability Maximum: 12,000 pF

Source: Commercial Standard Digital Bus, 8th ed., Collins General Aviation Division,
Rockwell International Corporation, Cedar Rapids, IA, January 30, 1991.

© 2001 by CRC Press LLC

Typical circuit designs for transmitter and receiver interfaces are given in the CSDB standard. Protec-
tion against short-circuits is also specified for receivers and transmitters. Receiver designs should include
protection against bus conductor shorts to 28 VDC and to 115 VAC. Transmitter designs should afford
protection against faults propagating to other circuits of the LRU in which the transmitter is located.

To ensure successful integration of CSDB LRUs, and avoid potential future integration problems, the
electrical load specification must be applied to a fully integrated system, even if the initial design does
not include a full complement of receivers. As a result, additional receivers can be integrated at a later
time without violating the electrical characteristics of the bus.

3.7.2 Logical Integration

The logical integration of the hardware is controlled by the CSDB standard, which establishes the bit
patterns that initiate a message block, and the start bit, data bits, parity bit, and stop bit pattern that
comprises each byte of the message. The system designer, however, must control the number of bytes in
each message and ensure that all the messages on a particular bus are of the same length.

3.7.3 Software Integration

Many software integration tasks are left to the system designer for implementation. Hence, CSDB does
not fully specify software integration. The standard is very thorough in defining the authorized messages
and in constraining their signaling rate and update rate. The synchronization message that begins a new
frame of messages is also specified. However, the determination of which messages are sent within a
frame for a particular bus is unspecified. Also, there are no guidelines given for choosing the message
sequence or frame loading. The frame design is left to the system designer.

In general, the sequencing of the messages does not present an integration problem since receivers
recognize messages by the message address, not by the sequence. However, this standard does not disallow
an LRU from depending on the message sequence for some other purpose. The system designer must
be aware of whether any LRU is depending on the sequence for something other than message recognition
since once the sequence is chosen, it is fixed for every frame.

The bus frame loading is more crucial. There are three types of messages that can occur within a
frame: continuous repetition, noncontinuous repetition, and burst transmissions. The system designer
must specify which type of transmission to use for each message and ensure that the worst maximum
coincidence of the three types within one frame does not exhaust the frame time. The tables of data
needed to support this system design are provided, but the system designer must ensure that no parts
of the CSDB standard are violated.

FIGURE 3.4 Non-Return to Zero data example.

DATA BIT CELL

BINARY VALUE

NONRETURN
TO ZERO

1 2 3 4 5

0 1 0 0 1

0

+

3.7.4 Functional Integration

The CSDB standard provides much of the data needed for functional integration. The detailed message
block definitions give the interpretation of the address, status byte, and data words for each available
message. Given that a particular message is broadcast, the standard completely defines the proper inter-
pretation of the message. The standard even provides a system definition, consisting of a suite of
predefined buses which satisfy the integration needs of a typical avionics system.

If this predefined system is applicable, most of the system integration questions are already answered.
But if there is any variation from the standard, the designer of a subsystem in a CSDB integrated system
must inquire to find out which LRUs are generating the messages that the subsystem needs, on which
bus each message is transmitted, at what bus speed the messages are transmitted, and the type of
transmission. The designer must also ensure that the subsystem provides the messages required by other
LRUs. The system designer needs to coordinate this information accurately and comprehensively. The
system design must ensure that all the messages on a particular bus are of the same length. It must also
control the data latencies that may result as data are passed from bus to bus by various LRUs. All testing
is left to the system designer.

There are no additional guidelines published for the CSDB. Whatever problems are unaddressed by
the standard are addressed by Collins during system integration. Furthermore, Collins has not found the
need to formalize their integration and testing in internal documents since this work is done by CSDB-
experienced engineers.

3.8 Bus Integration Guidelines

The CSDB, like the ARINC 429 bus, has only one LRU that is capable of transmitting with (usually)
multiple LRUs receiving the transmission. Thus, the CSDB has few inherent subsystem integration prob-
lems. However, the standard does not address them. The preface to the CSDB standard clearly states its
position concerning systems integration:

This specification pertains only to the implementation of CSDB as used in an integrated system.
Overall systems design, integration, and certification remain the responsibility of the systems integra-
tor. (GAMA CSDB 1986.)

Although this appears to be a problem for the reliability of CSDB-integrated systems, the GA scenario
is quite different from the air transport market. The ARINC standards are written to allow any manu-
facturer to independently produce a compatible LRU. In contrast, the General Aviation Manufacturers
Association standard states the following in the preface:

This specification ... is intended to provide the reader with a basic understanding of the data bus and
its usage. (CSDB 1986.)

The systems integrator for all CSDB installations is the Collins General Aviation Division of Rockwell
International. That which is not published in the standard is still standardized and controlled because
the CSDB is a sole source item.

Deviations from the standard are allowed, however, for cases where there will be no further interfaces
to other subsystem elements. When variations are made, the change must first be approved in a formal
design review and the product specification is then updated accordingly. Integration standards and guide-
lines for CSDB include the CSDB standard and EIA RS-422-A by the Electronic Industries Association.

3.9 Bus Testing

The CSDB connects avionic LRUs point-to-point to provide an asynchronous broadcast method of
transmission. Before the bus was used in the avionic environment, it was put through validation tests
similar to those used on other commercial data buses. These included the environmental tests presented
© 2001 by CRC Press LLC

in RTCA DO-160 and failure analyses. Most environmental tests were done transparently on the bus
after it was installed in an aircraft.

As with other avionic data buses, Rockwell’s Collins Division had to develop external tests to show
that the bus satisfied specifications in the standard. Test procedures of this nature are not included in
the CSDB standard.

Internal bus tests that the CSDB standard describes include a checksum test and a parity check. Both
of these are used to ensure the integrity of the bus’s data. Care should be taken when using these tests
because their characteristics do not allow them to be used in systems of all criticality levels.

Simulation is used for development and testing of LRUs with a CSDB interface. Manufacturers make
black box testers that are used to simulate an LRU connection to the bus. They are made to generate and
evaluate messages according to the electrical and logical standards for the bus. They consist of a general
purpose computer connected to bus interface cards. The simplest ones may simulate a single LRU
transmitting or receiving. The more complex ones may be able to simulate multiple LRUs simultaneously.

These are not the only external and internal tests that the CSDB manufacturer can perform. Many
more characteristics which may require testing are presented in the CSDB specification. Again, it remains
the manufacturer’s responsibility to prove that exhaustive validation testing of the bus and its related
equipment has met all the requirements of the Federal Aviation Regulations.

3.10 Aircraft Implementations

This section gives a sampling of the aircraft in which the CSDB is installed. Table 3.2 lists some of the
commercial transport aircraft and regional airliners using CSDB. CSDB is used both in retrofit installa-
tions and as the main integration bus. Additionally, a number of rotorcraft use the CSDB to communicate
between the Collins-supplied LRUs.

Defining Terms

Asynchronous: Operating at a speed determined by the circuit functions rather than by timing signals.
Checksum: An error detection code produced by performing a binary addition, without carry, of all the

words in a message.
Frame: A formatted block of data words or bits used to construct messages.
Gateway: A bus user that is connected to more than one bus for the purpose of transferring bus messages

from one bus to another, where the buses do not follow the same protocol.
Linear Bus: A bus where users are connected to the bus medium, one on each end, with the rest connected

in-between.
Parity: An error detection method that adds a bit to a data word based on whether the number of “one”

bits is even or odd.
Synchronization Block: A special bus pattern, consisting of a certain number of concatenated “sync

byte” data words, used to signal the start of a new frame.

TABLE 3.2 Aircraft and Their Use of the CSDB

Boeing 727 Retrofit
Boeing 737 Retrofit
McDonnell-Douglas DC-8 Retrofit
Saab 340, Saab 2000 Primary Integration Bus
Embraer Primary Integration Bus
Short Brothers SD330 and SD360 Primary Integration Bus
ATR42 and ATR72 Primary Integration Bus
De Haviland Dash 8 Primary Integration Bus
Canadair Regional Primary Integration Bus

Source: Collins Division of Rockwell International, Cedar Rapids, IA.
© 2001 by CRC Press LLC

References

1. GAMA, Commercial Standard Digital Bus (CSDB), General Aviation Manufacturers Association,
Washington, D.C., June 10, 1986.

2. Eldredge, D. and E. F. Hitt, “Digital System Bus Integrity,” DOT/FAA/CT-86/44, Federal Aviation
Administration Technical Center, Atlantic City International Airport, NJ, March 1987.

3. Elwell, D., L. Harrison, J. Hensyl, and N. VanSuetendael, “Avionic Data Bus Integration Technology,”
DOT/FAA/CT-91-19, Federal Aviation Administration Technical Center, Atlantic City International
Airport, NJ, December 1991.

4. Collins, “Serial Digital Bus Specification,” Part No 523-0772774, Collins General Aviation Division/
Publications Dept, 1100 West Hibiscus Blvd., Melbourne, FL 32901.

Further Information

The most detailed information available for CSDB is the GAMA CSDB Standard, Part Number 523-
0772774. It is available from the Collins Division of Rockwell International, Cedar Rapids, IA.

Bibliography

ARINC Specification 600-7, “Air Transport Avionics Equipment Interfaces,” Aeronautical Radio, Inc.,
Annapolis, MD, January 1987.

ARINC Specification 607, “Design Guidance for Avionic Equipment,” Aeronautical Radio, Inc., Annap-
olis, MD, February 17, 1986.

ARINC Specification 607, “Design Guidance for Avionic Equipment,” Supplement 1, Aeronautical Radio,
Inc., Annapolis, MD, July 22, 1987.

ARINC Specification 617, “Guidance for Avionic Certification and Configuration Control,” Draft 4,
Aeronautical Radio, Inc., Annapolis, MD, December 12, 1990.

Card, M. Ace, “Evolution of the Digital Avionic Bus,” Proceedings of the IEEE/AIAA 5th Digital Avionics
Systems Conference, Institute of Electrical and Electronics Engineers, New York, NY, 1983.

Eldredge, Donald and Ellis F. Hitt, “Digital System Bus Integrity,” DOT/FAA/CT-86/44, U.S. Department
of Transportation, Federal Aviation Administration, March 1987.

Eldredge, Donald and Susan Mangold, “Digital Data Buses for Aviation Applications,” Digital Systems
Validation Handbook, Volume II, Chapter 6, DOT/FAA/CT-88/10, U.S. Department of Transpor-
tation, Federal Aviation Administration, February 1989.

GAMA, “Commercial Standard Digital Bus (CSDB),” General Aviation Manufacturers Association, Wash-
ington, DC, June 10, 1986.

Hubacek, Phil, “The Advanced Avionics Standard Communications Bus,” Business and Commuter Avi-
ation Systems Division, Honeywell, Inc., Phoenix, Arizona, July 10, 1990.

Jennings, Randle G., “Avionics Standard Communications Bus - Its Implementation And Usage,” Pro-
ceedings of the IEEE/AIAA 7th Digital Avionics Systems Conference, Institute of Electrical and
Electronics Engineers, New York, NY, 1986.

RS-422-A, “Electrical Characteristics of Balanced Voltage Digital Interface Circuits,” Electronic Industries
Association, Washington, DC, December 1978.

RTCA DO-160C, “Environmental Conditions and Test Procedures for Airborne Equipment,” Radio RTCA
DO Technical Commission for Aeronautics, Washington, DC, December 1989.

RTCA DO-178A, “Software Considerations in Airborne Systems and Equipment Certification,” Radio
RTCA DO Technical Commission for Aeronautics, Washington, DC, March 1985.

Runo, Steven C., “Gulfstream IV Flight Management System,” Proceedings of the 1990 AIAA/FAA Joint
Symposium on General Aviation Systems, DOT/FAA/CT-90/11, U.S. Department of Transportation,
Federal Aviation Administration, May 1990.
© 2001 by CRC Press LLC

Spitzer, Cary R., “Digital Avionics Architectures — Design and Assessment,” Tutorial of the IEEE/AIAA
7th Digital Avionics Systems Conference, Institute of Electrical and Electronics Engineers, New York,
NY, 1986.

Spitzer, Cary R., Digital Avionics Systems, Prentice Hall, Englewood Cliffs, NJ, 1987.
Thomas, Ronald E., “A Standardized Digital Bus For Business Aviation,” Proceedings of the IEEE/AIAA

5th Digital Avionics Systems Conference, Institute of Electrical and Electronics Engineers, New York,
NY, 1983.

“WD193X Synchronous Data Link Controller,” Western Digital Corporation, Irvine, CA, 1983.
“WD1931/WD1933 Compatibility Application Notes,” Western Digital Corporation, Irvine, CA, 1983.
“WD1993 ARINC 429 Receiver/Transmitter and Multi-Character Receiver/Transmiter,” Western Digital

Corporation, Irvine, CA, 1983.
© 2001 by CRC Press LLC

Robert B. Wood et al. “Head-Up Displays”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

4
Head-Up Displays

4.1 Introduction
4.2 HUD Fundamentals

Optical Configurations • Significant Optical Performance
Characteristics • HUD Mechanical Installation • HUD
System Hardware Components • Aspects of HUD
Certification

4.3 Applications and Examples
Symbology Sets and Modes • AIII Aproach Mode • Mode
Selection and Data Entry • HUD Guidance • Recent
Developments

Defining Terms
References

4.1 Introduction

During early military Head-Up Display (HUD) development, it was found that pilots using HUDs could
operate their aircraft with greater precision and accuracy than they could with conventional flight
instrument systems.1,2 This realization eventually led to the development of the first HUD systems
intended specifically to aid the pilot during commercial landing operations. This was first accomplished
by Sextant Avionique for the Dassault Mercure aircraft in 1975, and then by Sundstrand and Douglas
Aircraft Company for the MD80 series aircraft in the late 1970s (see Figure 4.1).

In the early 1980s, Flight Dynamics developed a holographic optical system to display an inertially derived
aircraft flight path along with precision guidance, thus providing the first wide field-of-view (FOV) head-
up guidance system. Subsequently, Alaska Airlines became the first airline to adopt this technology and
perform routine fleet-wide manually flown CAT IIIa operations on B-727-100/200 aircraft using the Flight
Dynamics system (see Figure 4.2). Once low-visibility operations were successfully demonstrated using a
HUD in lieu of a fail passive autoland system, regional airlines opted for this technology to help maintain
their schedules when the weather fell below CAT II minimums, and to help improve situational awareness.

By the end of the century, many airlines had installed head-up guidance systems, and thousands of
pilots were fully trained in their use. HUD-equipped aircraft had logged more than 6,000,000 flight hours
and completed over 30,000 low-visibility operations. HUDs are now well-established additions to aircraft
cockpits, providing both additional operational capabilities and enhanced situational awareness, resulting
in improved aircraft safety.

4.2 HUD Fundamentals

All head-up displays require an image source, generally a high-brightness cathode-ray tube, and an optical
system to project the image source information at optical infinity. The HUD image is viewed by the
pilot after reflecting from a semitransparent element referred to as the HUD combiner. The combiner is

Robert B. Wood
Rockwell Collins Flight Dynamics

Peter J. Howells
Rockwell Collins Flight Dynamics
© 2001 by CRC Press LLC

located between the pilot’s eyes and the aircraft windshield and is angled to reflect image-source light
rays to the pilot for viewing. Special coatings on the combiner simultaneously reflect the HUD informa-
tion, and transmit the real-world scene, enabling the pilot to view both the outside world and the
collimated display.

FIGURE 4.1 Early commercial HUD.3

FIGURE 4.2 Commercial manually flown CAT IIIa HUD installed in a B-737-800.
© 2001 by CRC Press LLC

Head-up display systems are comprised of two major subsystems: the pilot display unit (PDU), and the
HUD processor or HUD computer. The PDU interfaces electrically and mechanically with the aircraft struc-
ture and provides the optical interface to the pilot. The HUD processor interfaces electronically with aircraft
sensors and systems, runs a variety of algorithms related to data verification and formatting, and generates
the characters and symbols making up the display. Modern HUD processors are capable of generating high-
integrity guidance commands and cues for precision low-visibility take-off, approach, landing (flare), and
rollout. The interface between the HUD processor and the PDU can be either a serial digital display list or
analog X and Y deflection and Z-axis video bright-up signals for controlling the display luminance.

The PDU is located within the cockpit to allow a pilot positioned at the cockpit Design Eye Position
(DEP) to view HUD information which is precisely positioned with respect to the outside world. This
allows, for example, the computer-generated and displayed horizon line to overlay the real-world horizon
in all phases of flight.

The cockpit DEP is defined as the optimum cockpit location that meets the requirements of FAR 25.7734

and 25.777.5 From this location the pilot can easily view all relevant head-down instruments and the
outside world scene through the aircraft windshield, while being able to access all required cockpit controls.
The HUD “eyebox,” is always positioned with respect to the cockpit DEP, allowing pilots to fly the aircraft
using the HUD from the same physical location as a non-HUD-equipped aircraft would be flown.

4.2.1 Optical Configurations

The optics in head-up display systems are used to “collimate” the HUD image so that essential flight
parameters, navigational information, and guidance are superimposed on the outside world scene.

The four distinct FOV characteristics used to fully describe the characteristics of the angular region over
which the HUD image is visible to the pilot are illustrated in Figure 4.3, and summarized as follows:

Total FOV (TFOV) — The maximum angular extent over which symbology from the image source
can be viewed by the pilot with either eye allowing vertical and horizontal head movement within
the HUD eyebox.

Instantaneous FOV (IFOV) — The union of the two solid angles subtended at each eye by the clear
apertures of the HUD optics from a fixed head position within the HUD eyebox. Thus, the
instantaneous FOV is comprised of what the left eye sees plus what the right eye sees from a fixed
head position within the HUD eyebox.

Binocular overlapping FOV — The binocular overlapping FOV is the intersection of the two
solid angles subtended at each eye by the clear apertures of the HUD optics from a fixed head
position within the HUD eyebox. The binocular overlapping FOV thus defines the maximum
angular extent of the HUD display that is visible to both eyes simultaneously.

FIGURE 4.3 HUD fields-of-view defined.

Total FOV

Instantaneous FOV
Overlapping Binocular FOV

Monocular FOV
© 2001 by CRC Press LLC

Monocular FOV — The solid angle subtended at the eye by the clear apertures of the HUD optics
from a fixed eye position. Note that the monocular FOV size and shape may change as a function
of eye position within the HUD eyebox.

The FOV characteristics are designed and optimized for a specific cockpit geometric configuration
based on the intended function of the HUD. In some cases, the cockpit geometry may impact the
maximum available FOV.

One of the most significant advances in HUD optical design in the last 20 years is the change from
optical systems that collimate by refraction to systems that collimate by reflection or, in some cases,
by diffraction. The move towards more complex (and expensive) reflective collimation systems has
resulted in larger display fields-of-view which expand the usefulness of HUDs as full-time primary
flight references.

4.2.1.1 Refractive Optical Systems

Figure 4.4 illustrates the optical configuration of a refractive HUD system. This configuration is similar
to the basic HUD optical systems in use since the 1950s.6 In this optical configuration, the CRT image
is collimated by a combination of refractive lens elements designed to provide a highly accurate display
over a moderate display field of view. Note that an internal mirror is used to fold the optical system to
reduce the physical size of the packaging envelope of the HUD. Also shown in Figure 4.4 is the HUD
combiner glass, a flat semitransparent plate designed to reflect approximately 25% of the collimated light
from the CRT, and transmit approximately 70% of the real-world luminance.

Note that the vertical instantaneous FOV can be increased by adding a second flat combiner glass,
displaced vertically above and parallel with the first.

4.2.1.2 Reflective Optical Systems

In the late 1970s, HUD optical designers looked at ways to significantly increase the display total and
instantaneous FOVs.7,8 Figure 4.5 illustrates the first overhead-mounted reflective HUD optical system
(using a holographically manufactured combiner) designed specifically for a commercial transport cockpit.9

As in the classical refractive optical system, the displayed image is generated on a small CRT, about 3 in. in
diameter. The reflective optics can be thought of as two distinct optical subsystems. The first is a relay lens
assembly designed to re-image and pre-aberrate the CRT image source to an intermediate aerial image,
located at one focal length from the optically powered combiner/collimator element.

FIGURE 4.4 Refractive optical systems.

Combiner

Instantaneous FOV

Collimator Optics

Image Source - CRT

Head Motion Required
to See TFOV

Field of View cone angle formed
from collimator aperture
© 2001 by CRC Press LLC

The second optical subsystem is the combiner/collimator element that re-images and collimates the
intermediate aerial image for viewing by the pilot. As in the refractive systems, the pilot’s eyes focus at
optical infinity, looking through the combiner to see the virtual image. To prevent the pilot’s head from
blocking rays from the relay lens to the combiner, the combiner is tilted off-axis with respect to the axial
chief ray from the relay lens assembly. The combiner off-axis angle, although required for image viewing
reasons, significantly increases the optical aberrations within the system, which must be compensated in
the relay lens to have a well-correlated, accurate virtual display.

Figure 4.6 illustrates the optical raytrace of a typical reflective HUD system showing the complexity
of the relay lens assembly. (This is the optical system used on the first manually flown CAT IIIa HUD
system ever certified.)

FIGURE 4.5 Reflective optical systems (overhead mounted).

FIGURE 4.6 Reflective optical system raytrace.

Computer Generated
CRT lmage

lntermediate Arial
lmage of CRT

Combiner Focal
Length

Combiner Off-Axis
Angle

Combiner / Collimator

5"

3"

Pilot

Relay Lens
Assembly

CRT

2000

Reflective HUD FOV (Typical)

1600

1800

2200

2400
1900

12
1.50

180

140

120

154 19
60
40
20

16
o

16
o

13
o

13
o

CS
142

ILSI

VOR LDC CMOG/S
10 10

5 5

O VS

155

5 -5

15 16

10.512

6
9

15

24
21

S

Am

MDG 130

CPS 158

H

CMO

Combiner/
Collimator

CRT Faceplate

Relay Lens
Assembly

DEP

L

r

© 2001 by CRC Press LLC

The complexity of the relay lens, shown in Figure 4.6, provides a large instantaneous FOV over a fairly
large eyebox, while simultaneously providing low display parallax and high display accuracy.

The reflective optical system can provide an instantaneous and binocular overlapping FOV that is
equal to the total FOV, allowing the pilot to view all of the information displayed on the CRT with each
eye with no head movement. Table 4.1 summarizes typical field-of-view performance characteristics for
HUD systems.

All commercially certified HUD systems in airline operation today use reflective optical systems because
of the improved display FOV characteristics compared with refractive systems.

4.2.2 Significant Optical Performance Characteristics

This section summarizes other important optical characteristics associated with conformal HUD systems.
It is clear that the HUD FOV, luminance, and display line width characteristics must meet basic perfor-
mance requirements.10 However, optical system complexity and cost are driven by HUD eyebox size,
combiner off-axis angle, display accuracy requirements, and optical parallax errors. Without a well-
corrected optical system, conformal symbology will not properly overlay the outside world view and
symbology will not remain fixed with respect to the real-world view as the head is moved around within
the HUD eyebox.

4.2.2.1 Display Luminance and Contrast Ratio

The HUD should be capable of providing a usable display under all foreseeable ambient lighting
conditions, including a sun-lit cloud with a luminance of 10,000 foot-Lamberts (ft-L)(or 34,000 cd/m2),
and a night approach to a sparsely lit runway. HUD contrast ratio is a measure of the relative luminance
of the display with respect to the real-world background and is defined as follows:

The display luminance is the photopically weighted CRT light output that reaches the pilot’s eyes. Real-
world luminance is the luminance of the real world as seen through the HUD combiner. (By convention,
the transmission of the aircraft windshield is left out of the real-world luminance calculation.)

It is generally agreed that a contrast ratio (CR) of 1.2 is adequate for display viewing, but that a CR
of 1.3 is preferable. A HUD contrast ratio of 1.3 against a 10,000-ft-L cloud seen through a combiner
with an 80% photopic transmission requires a display luminance at the pilot’s eye of 2400 ft-L, a
luminance about 10 times higher than most head-down displays. (This luminance translates to a CRT
faceplate brightness of about 9000 ft-L, a luminance easily met with high-brightness monochrome CRTs.)

TABLE 4.1 Typical HUD Fields-of-View

Refractive HUD FOV Characteristicsa
Reflective HUD

Optics FOV
Single Combiner Dual Combiners Characteristics

Total Field Of View 20�–25� Diameter 25�–30� Diameter 22–28� V � 28–34� H
Instantaneous FOV 12� V � 17.8� H 16� V � 17.8� H 22–28� V � 28–34� H
Overlapping 11� V � 6� H 16� V � 6� H 22–26� V � 25–30� H
Monocular FOV 12� Diameter 16� V � 12� H 22–28� V � 30� H

a Calculations assume a collimator exit aperture diameter of 5.0 , and a distance of 24 between
the pilot and the HUD collimator exit aperture.

� �

HUD Contrast Ratio
Display Luminance Real World Luminance�

Real World Luminance
--�
© 2001 by CRC Press LLC

4.2.2.2 Head Motion Box

The HUD head motion box, or “eyebox,” is a three-dimensional region in space surrounding the cockpit
DEP in which the HUD can be viewed with at least one eye. The center of the eyebox can be displayed
forward or aft, or upward or downward, with respect to the cockpit DEP to better accommodate the
actual sitting position of the pilot. The positioning of the cockpit eye reference point11 or DEP is dependent
on a number of ergonomically related cockpit issues such as head-down display visibility, the over-the-
nose down-look angle, and the physical location of various controls such as the control yoke and the
landing gear handle.

The HUD eyebox should be as large as possible to allow maximum head motion without losing display
information. The relay lens exit aperture, the spacing between the relay lens and combiner and the
combiner to DEP, and the combiner focal length all impact the eyebox size. Modern HUD eyebox
dimensions are typically 5.2 in lateral, 3.0 in vertical, and 6.0 in longitudinal.

In all HUDs, the monocular instantaneous FOV is reduced (or vignettes) with lateral or vertical eye
displacement, particularly near the edge of the eyebox. Establishing a minimum monocular FOV from
the edge of the eyebox thus ensures that even when the pilot’s head is de-centered so that one eye is at
the edge of the eyebox, useful display FOV is still available. A 10� horizontal by 10� vertical monocular
FOV generally can be used to define the eyebox limits. In reflective HUDs, relatively small head move-
ments (�1.5 in laterally) will cause one eye to be outside of the eyebox and see no display. Under these
conditions, the other eye will see the total FOV, so no information is lost to the pilot.

4.2.2.3 HUD Display Accuracy

Display accuracy is a measure of how precisely the projected HUD image overlays the real-world view
seen through the combiner and windshield from any eye position within the eyebox. Display accuracy is
a monocular measurement and, for a fixed display location, is numerically equal to the angular difference
between a HUD-projected symbol element and the corresponding real-world feature as seen through the
combiner and windshield. The total HUD system display accuracy error budget includes optical errors,
electronic gain and offset errors, errors associated with the CRT and yoke, Overhead to Combiner mis-
alignment errors, windshield variations, environmental conditions (including temperature), assembly
tolerances, and installation errors. Optical errors are both head-position and field-angle dependent.

The following display accuracy values are achievable in commercial HUDs when all the error sources
are accounted for:

The boresight direction is used as the calibration direction for zeroing all electronic errors. Boresight
errors include the mechanical installation of the HUD hardpoints to the airframe, electronic drift due
to thermal variations, and manufacturing tolerances for positioning the combiner element. Refractive
HUDs with integrated combiners (i.e., F-16) are capable of achieving display accuracies of about half of
the errors above.

4.2.2.4 HUD Parallax Errors

Within the binocular overlapping portion of the FOV, the left and right eyes view the same location on
the CRT faceplate. These slight angular errors between what the two eyes see are binocular parallax errors
or collimation errors. The binocular parallax error for a fixed field point within the total FOV is the
angular difference in rays entering two eyes separated horizontally by the interpupillary distance, assumed
to be 2.5 in. If the projected virtual display image were perfectly collimated at infinity from all eyebox
positions, the two ray directions would be identical, and the parallax errors would be zero. Parallax errors
consist of both horizontal and vertical components.

Boresight �/� 3.0 milliradians (mrad)

Total Display Accuracy �/� 7.0 milliradians (mrad)
© 2001 by CRC Press LLC

Parallax errors in refractive HUDs are generally less than about 1.0 mrad due to the rotational
symmetry of the optics, and because of the relatively small overlapping binocular FOV.

4.2.2.5 Display Line Width

The HUD line width is the angular dimension of displayed symbology elements. Acceptable HUD line
widths are between 0.7 and 1.2 mrad when measured at the 50% intensity points. The displayed line
width is dependent on the effective focal length of the optical system and the physical line width on
the CRT faceplate. A typical wide FOV reflective HUD optical system with a focal length of 5 in. will
provide a display line width of about 1 mrad given a CRT line width of 0.005 in. The display line width
should be met over the full luminance range of the HUD, often requiring a high-voltage power supply
with dynamic focus over the total useful screen area of the CRT.

HUD optical system aberrations will adversely affect apparent display line width. These aberrations
include uncorrected chromatic aberrations (lateral color) and residual uncompensated coma and astig-
matism. Minimizing these optical errors during the optimization of the HUD relay lens design will also
help meet the parallax error requirements. Table 4.2 summarizes the optical performance characteristics
of a commercial wide-angle reflective HUD optical system.

4.2.3 HUD Mechanical Installation

The intent of the HUD is to display symbolic information which overlays the real world as seen by the
pilot. To accomplish this, the HUD pilot display unit must be very accurately aligned with respect to the
pitch, roll, and heading axis of the aircraft. For this reason, the angular relationship of the HUD PDU
with respect to the cockpit coordinates is crucial. The process of installing and aligning the HUD

TABLE 4.2 HUD Optical System Summary (Typical Reflective HUD)

1. Combiner Design Wide Field-of-view Wavelength Selective
Stowable
Inertial Break-away (-Complaint)

2. DEP to Combiner Distance 9.5 to 13.5 in. (Cockpit geometry dependent)
3. Display Fields-of-View

Total Display FOV
Instantaneous FOV
Overlapping Binocular FOV

24–28� Vertical � 30–34� Horizontal
24–28� Vertical � 30–34� Horizontal
22–24� Vertical � 24–32� Horizontal

4. Head Motion Box or Eyebox

Horizontal
Vertical
Depth (fore/aft)

Typical Dimensions (Configuration
dependent)

4.7 to 5.4 in.
2.5 to 3.0 in.
4.0 to 7.0 in.

5. Head Motion Needed to View TFOV None
6. Display Parallax Errors (Typical)

Convergence
Divergence
Dipvergence

95% of data points 	2.5 mrad
95% of data points 	1.0 mrad
93% of data points 	1.5 mrad

7. Display Accuracy (2 sigma)
Boresight
Total Field-of-view

	2.5–4.0 mrad
	5.0–9.0 mrad

8. Combiner Transmission and
Coloration

78–82% photopic (day-adapted eye)
84% Scotopic (night-adapted eye)
	0.03 Color shift u’v’ coordinates

9. Display Luminance and Contrast
Ratio
Stroke Only
Raster

 Display Contrast Ratio

1,600–2,400 foot-Lambert (ft-L)
600–1,000 ft-L
1.2 to 1.3:1 (10,000 ft-L ambient background)

10. Display Line Width 0.7–1.2 mrads
11. Secondary Display Image Intensity 	0.5% of the primary image from eyebox

Head Injury Criteria

HIC�

�

© 2001 by CRC Press LLC

attachment bushings or hardpoints into the aircraft is referred to as “boresighting” and occurs when the
aircraft is first built. (Although the alignment of the HUD hardpoints may be checked occasionally, once
installed, the hardpoints are permanent and rarely need adjustment.)

Some reflective HUDs utilize mating bushings for the PDU hardware which are installed directly to
the aircraft structure. Once the bushings are aligned and boresighted to the aircraft axis, they are
permanently fixed in place using a structural epoxy. Figure 4.7 illustrates this installation method for
HUD boresighting. In this case, the longitudinal axis of the aircraft is used as the boresight reference
direction. Using special tooling, the Overhead Unit and Combiner bushings are aligned with a precisely
positioned target board located near the aft end of the fuselage. This boresighting method does not
require the aircraft to be jacked and leveled.

Other HUD designs utilize a tray that attaches to the aircraft structure and provides an interface to
the HUD LRUs. The PDU tray must still be installed and boresighted to the aircraft axis.

4.2.4 HUD System Hardware Components

A typical commercial HUD system includes four principal line replaceable units (LRUs). (HUD LRUs
can be interchanged on the flight deck without requiring any alignment or recalibration.) The cockpit-
mounted LRUs include the Overhead Unit and Combiner (the Pilot Display Unit) and the HUD Control
Panel. The HUD computer is located in the electronics bay or other convenient location. A HUD
interconnect diagram is shown in Figure 4.8.

4.2.4.1 HUD Overhead Unit

The Overhead Unit (OHU), positioned directly above the pilot’s head, interfaces with the HUD computer
receiving either analog X and Y deflection and Z-video data or a serial digital display list, as well as
control data via a serial interface. The OHU electronics converts the deflection and video data to an
image on a high-brightness cathode ray tube (CRT). The CRT is optically coupled to the relay lens
assembly which re-images the CRT object to an intermediate aerial image one focal length away from
the combiner LRU, as illustrated in the optical schematic in Figure 4.5. The combiner re-images the
intermediate image at optical infinity for viewing by the pilot. The OHU includes all of the electronics
necessary to drive the CRT and monitor the built-in-test (BIT) status of the LRU. The OHU also provides
the electronic interfaces to the Combiner LRU.

FIGURE 4.7 Boresighting the HUD hardpoints.

SUPPORT STAND

TARGET BOARD

 00-172-1
8/15/00

AIRCRAFT MOUNT ALIGNMENT TOOL
(AMAT) & TELESCOPE
© 2001 by CRC Press LLC

A typical Overhead Unit is illustrated in Figure 4.9. This LRU contains all electronic circuitry required to
drive the high-brightness CRT, and all BIT-related functions. The following are the major OHU subsystems:

• Relay Lens Assembly

• Desiccant Assembly (prevents condensation within the relay lens)

• Cathode Ray Tube Assembly

• High-voltage power supplies

• Low-voltage power supplies and energy storage

• Deflection amplifiers (X and Y)

• Video amplifier

• Built-In-Test (BIT) and monitoring circuits

• Motherboard Assembly

• OHU Chassis

In some HUD systems, the PDU may provide deflection data back to the HUD computer as part of
the “wraparound” critical symbol monitor feature.12 Real-time monitoring of certain critical symbol
elements (i.e., horizon line) provides the high integrity levels required for certifying a HUD as a primary
flight display. Other monitored critical data on the HUD may include ILS data, airspeed, flight path
vector, and low-visibility guidance symbology.

4.2.4.2 HUD Combiner

The combiner is an optical-mechanical LRU consisting of a precision support structure for the wave-
length-selective combiner element, and a mechanism allowing the combiner to be stowed and to break-
away. The combiner LRU interfaces with a precision pre-aligned mating interface permanently mounted
to the aircraft structure. The combiner glass support structure positions the combiner with respect to
the cockpit DEP and the Overhead Unit. The combiner mechanism allows the glass to be stowed upward
when not in use, and to break away during a rapid aircraft deceleration, thus meeting the newly defined
cockpit “head injury criteria” or HIC.13 The combiner locks into both the stowed and breakaway positions
and requires positive actions by the pilot to return it to the deployed position. Many HUD combiner

FIGURE 4.8 HUD interconnect diagram (RCFD HGS-4000).

AIRCRAFT
POWER

28 VDC

28 VDC

28 VDC
HGS
ANNUNCIATOR

HGS CONTROL
PANEL (HCP)

FROM AIRCRAFT
SENSORS AND
OTHER SUBSYSTEMS

OVERHEAD UNIT
(OHU)

COCKPIT AREA

E / E BAY

COMBINER

HGS COMPUTER
94-0 16-3

88
8

8

© 2001 by CRC Press LLC

assemblies include a built-in alignment detector that monitors the glass position in real time. Figure 4.10
shows a commercial HUD PDU and a wavelength-selective combiner. The combiner usually includes the
HUD optical controls (brightness and contrast).

4.2.4.3 HUD Computer

The HUD computer interfaces with the aircraft sensors and systems, performs data conversions,
validates data, computes command guidance (if applicable), positions and formats symbols, generates
the display list, and converts the display list into X, Y, and Z waveforms for display by the PDU. In
some commercial HUD systems, the HUD computer performs all computations associated with low-
visibility take-off, approach, landing, and rollout guidance, and all safety-related performance and
failure monitoring. Because of the critical functions performed by these systems, the displayed data
must meet the highest integrity requirements. The HUD computer architecture is designed specifically
to meet these requirements.

One of the key safety requirements for a full flight regime HUD is that the display of unannunciated,
hazardously misleading attitude on the HUD must be improbable, and that the display of unannunciated
hazardously misleading low-visibility guidance must be extremely improbable. An analysis of these
requirements leads to the system architecture shown in Figure 4.11.

In this architecture, primary data are brought into the HUD computer via dual independent input/
output (I/O) subsystems from the primary sensors and systems on the aircraft. (The avionics interface

FIGURE 4.9 HUD overhead unit chassis (WFOV reflective optics).
© 2001 by CRC Press LLC

for a specific HUD computer depends on the avionics suite, and can include a combination of any of
the following interfaces: ARINC 429, ARINC 629, ASCB-A, B, C, or D, or MIL STD 1553B.) Older aircraft
will often include analog inputs as well as some synchro data. The I/O subsystem also includes the
interfaces required for the Overhead Unit and Combiner and will often include outputs to the flight data
recorder and central maintenance computer.

FIGURE 4.10 HUD PDU.

FIGURE 4.11 High integrity HUD computer architecture.
© 2001 by CRC Press LLC

Figure 4.12 is a photograph of a typical commercial HUD symbology set. The aircraft sensor data
needed to generate this display are in Table 4.3. In general two sources of the critical data are required
to meet the safety and integrity requirements.

The Display Processor converts all input into engineering units, verifies the validity of the data,
compares like data from the dual sensors, runs the control law algorithms, computes the display element
locations, and generates a display list. The Video Display Processor (VDP) converts the display list into
X, Y, and Z signals that are output to the OHU.

The System Monitor processor (SM) verifies the display path by monitoring the displayed position of
critical symbols using an inverse function algorithm,12 independently computes the guidance algorithms
using off-side data for comparison to the guidance solution from the Display Processor, and monitors
the approach parameters to ensure a safe touchdown. The critical symbol monitor is a wraparound
monitor that computes the state of the aircraft based on the actual display information on the CRT. The
displayed state is compared to the actual aircraft state based on the latest I/O data. A difference between
the actual state and the computed state causes the System Monitor to blank the display through two
independent channels, since any difference in states could indicate a display processor fault. All software
in the HUD computer is generally developed to DO-178B Level A requirements due to the critical
functions performed.

Also shown in Figure 4.11 is the Raster Processor subassembly, used in HUD Systems that interface
with Enhanced Vision sensors. This subsystem converts standard raster sensor video formats (RS-170 or
RS-343) into a display format that is optimized for display on the HUD. In most raster-capable HUDs
there is a trade-off between how much time is available for writing stroke information, and how much
time is available for writing the raster image (the frame rate is fixed at 60 Hz, corresponding to 16.67
msec per frame). Some HUD systems “borrow” video lines from the raster image to provide adequate
time to draw the stroke display (a technique called “line stealing”). The alternative is to limit the amount
of stroke information that can be written on top of the raster image. Neither approach is optimal for a
primary flight reference HUD required to display both stroke and raster images.

One solution is to convert the standard raster image format to a display format that is more optimized
for HUD display. Specifically, the video input is digitized and scan-converted into a bi-directional display
format, thus saving time from each horizontal line (line overscan, and flyback). This technique increases
the time available for writing stroke information in the stroke-raster mode from about 1.6 msec to about
4.5 msec, adequate enough to write the entire worst-case stroke display. The bi-directional raster scan
technique is illustrated in Figure 4.13, along with a photograph of a full-field raster image.

Figure 4.14 is a photograph of a HUD computer capable of computing take-off guidance, manual CAT
IIIa landing guidance, rollout guidance, and raster image processing.

FIGURE 4.12 Commercial HUD symbology.
© 2001 by CRC Press LLC

4.2.4.4 HUD Control Panel

Commercial HUD systems used for low-visibility operations often require some pilot-selectable data not
available on any aircraft system bus as well as a means for the pilot to control the display mode. Some
HUD operators prefer to use an existing flight deck control panel, e.g., an MCDU, for HUD data entry

TABLE 4.3 Sensor Data Required for Full Flight Regime Operation

Input Data Data Source

Attitude Pitch and Roll Angles — 2 independent sources
Airspeed Calibrated Airspeed

Low Speed Awareness Speed(s) (e.g., Vstall)
High Speed Awareness Speed(s) (e.g., Vmo)

Altitude Barometric Altitude (pressure altitude corrected with altimeter setting)
Radio Altitude

Vertical Speed Vertical Speed (inertial if available, otherwise raw air data)
Slip/Skid Lateral Acceleration
Heading Magnetic Heading

True Heading or other heading (if selectable)
Heading Source Selection (if other than Magnetic selectable)

Navigation Selected Course
VOR Bearing/Deviation
DME Distance
Localizer Deviation
Glideslope Deviation
Marker Beacons
Bearings/Deviations/Distances for any other desired nav signals

(e.g., ADF, TACAN, RNAV/FMS)
Reference

Information
Selected Airspeed
Selected Altitude
Selected Heading
Other Reference Speed Information (e.g., V1, VR, Vapch)
Other Reference Altitude Information (e.g., landing minimums

[DH/MDA], altimeter setting)
Flight Path Pitch Angle

Roll Angle
Heading (Magnetic or True, same as Track)
Ground Speed (inertial or equivalent)
Track Angle (Magnetic or True, same as Heading)
Vertical Speed (inertial or equivalent)
Pitch Rate, Yaw Rate

Flight Path
Acceleration

Longitudinal Acceleration
Lateral Acceleration
Normal Acceleration
Pitch Angle
Roll Angle
Heading (Magnetic or True, same as Track)
Ground Speed (inertial or equivalent)
Track Angle (Magnetic or True, same as Heading)
Vertical Speed (inertial or equivalent)

Automatic Flight
Control System

Flight Director Guidance Commands
Autopilot/Flight Director Modes
Autothrottle Modes

Miscellaneous Wind Speed
Wind Direction (and appropriate heading reference)
Mach
Windshear Warning(s)
Ground Proximity Warning(s)
TCAS Resolution Advisory Information
© 2001 by CRC Press LLC

and control. Other operators prefer a standalone control panel, dedicated to the HUD function. Figure 4.15
illustrates a standalone HUD control panel certified for use in CAT IIIa HUD systems.

4.2.5 Aspects of HUD Certification

Certification requirements for a HUD system depend on the functions performed. As the role of HUDs
have expanded from CAT IIIa landing devices to full flight regime primary flight references including
take-off and rollout guidance, the certification requirements have become more complex. It is beyond
the scope of this chapter to describe all the certification issues and requirements for a primary flight
display HUD, however, the basic requirements are not significantly different from PFD head-down display
certification requirements.

The FAA has documented the requirements for systems providing guidance in low-visibility conditions
in Advisory Circular AC 120-28, “Criteria for Approval of Category III Weather Minima for Takeoff,
Landing, and Rollout.” The certification of the landing guidance aspects of the HUD are fundamentally
different from automatic landing systems because the human pilot is in the active control loop during

FIGURE 4.13 Bi-directional scan-converted raster image.

FIGURE 4.14 High integrity HUD computer.
© 2001 by CRC Press LLC

the beam tracking and flare. The following summarizes the unique aspects of the certification process
for a manual Category III system.

1. Control Law Development — The guidance control laws are developed and optimized based on the
pilot’s ability to react and respond. The control laws must be “pilot centered” and tailored for a
pilot of average ability. The monitors must be designed and tuned to detect approaches that will
be outside the footprint requirement, yet they cannot cause a go-around rate greater than about 4%.

2. Motion-Based Simulator Campaign — Historically, approximately 1400 manned approaches in an
approved motion-based simulator, with at least 12 certification authority pilots, are required for
performance verification for a FAA/JAA certification. The Monte Carlo test case ensemble is designed
to verify the system performance throughout the envelope expected in field operation. Specifically,
the full environment must be sampled (head winds, cross winds, tail winds, turbulence, etc.) along
with variations in the airfield conditions (sloping runways, ILS beam offsets, beam bends, etc.).
Finally, the sensor data used by the HUD must be varied according to the manufacturer’s specified
performance tolerances. Failure cases must also be simulated. Time history data for each approach,
landing, and rollout is required to perform the required data reduction analysis. A detailed statistical
analysis is required to demonstrate, among other characteristics, the longitudinal, lateral, and vertical
touchdown footprint. Finally, the analysis must project out the landing footprint to a one-in-a-
million (10�6) probability.

3. Aircraft Flight Test — Following a successful simulator performance verification campaign, the
HUD must be demonstrated in actual flight trials on a fully equipped aircraft. As in the simulator
case, representative head winds, cross winds, and tail winds must be sampled for certification.
Failure conditions are also run to demonstrate system performance and functionality.

This methodology has been used to certify head up display systems providing manual guidance for
take-off, landing, and rollout on a variety of different aircraft types.

4.3 Applications and Examples

This section describes how the HUD is used on a typical aircraft. This includes the typical symbology sets that
are displayed to a pilot in specific phases of flight. The symbology examples used in this section are taken from
a Rockwell Collins Flight Dynamics Head-Up Guidance System (HGS®) installed on an in-service aircraft.

FIGURE 4.15 HUD control and data entry panel.
© 2001 by CRC Press LLC

In addition to symbology, this section also discusses the pilot-in-the-loop optimized guidance
algorithms that are provided as part of a HGS. Another feature of some HUDs is the display of video
images on the HUD and the uses of this feature—where the HUD is only a display device—are
discussed.

4.3.1 Symbology Sets and Modes

To optimize the presentation of information, the HUD has different symbology sets that present only
the information needed by the pilot in that phase of flight. For example, the aircraft pitch information
is not important when the aircraft is on the ground. These symbology sets are either selected as modes
by the pilot or are displayed automatically when a certain condition is detected.

4.3.1.1 Primary Mode

The HGS Primary (PRI) mode can be used during all phases of flight from take-off to landing. This
mode supports low-visibility take-off operations, all en route operations, and approaches to CAT I or II
minimums using FGS Flight Director guidance.

The HGS Primary mode display is very similar to the Primary Flight Display (PFD) to enhance the
pilot’s transition from head down instruments to headup symbology. Figure 4.16 shows a typical in-
flight Primary mode display that includes the following symbolic information:

• Aircraft Reference (boresight) symbol

• Pitch — scale and horizon relative to boresight

• Roll — scale and horizon relative to boresight

• Heading — horizon, HIS, and digital readouts

FIGURE 4.16 HGS primary mode symbology: in-flight.

.792 M

275 GS
250 CRS
FMS2

260

280

320

30

294

29
6
5
4

82. 4 NM
HDG
235

ADF1
VOR2 15

S

21
24 w

30
33

-10 -10250

-5 -5

24 25

5 5

LNAV VS
AP YD

DVS

N
F

LT
 E

14
5

18
-F

E
B

-2
00

0
R

E
V

 F

220

22000

20
00
80

22500

21500

21
© 2001 by CRC Press LLC

• Speeds — CAS (tape), vertical speed, ground speed, speed error tape

• Altitudes — barometric altitude (tape), digital radio altitude

• Flight Path (inertial)

• Flight Path acceleration

• Slip/Skid Indicators

• FGS Flight Director (F/D) guidance cue and modes

• Flight Director armed and capture modes

• Navigation data — ILS, VOR, DME, FMS, marker beacons

• Wind — speed and direction

• Selected parameters — course, heading, airspeed, and altitude

• Attitude

• Altitude

• Airspeed

• Navigation Data

• Warning and Advisory

When the aircraft is on the ground, several symbols are removed or replaced as described in the
following sections. After take-off rotation, the full, in-flight set of symbols is restored.

The Primary mode is selectable at the HCP or by pressing the throttle go-around switch during any
mode of operation.

4.3.1.1.1 Primary Mode: Low-Visibility Take-off (HGS Guidance)
The Primary mode includes special symbology used for a low-visibility take-off as shown in Figure 4.17.
The HGS guidance information supplements visual runway centerline tracking and enhances situational
awareness.

For take-off operation, the HSI scale is removed from the Primary display until the aircraft is airborne.
Additional symbols presented during low-visibility take-off operation are

• Ground Roll Reference Symbol (fixed position)

• Ground Localizer Scale and Index

• Ground Roll Guidance Cue (HGS-derived steering command)

• TOGA Reference Line

The Ground Localizer Scale and Index provide raw localizer information any time the aircraft is on the
ground. For a low-visibility take-off, the general operating procedure is to taxi the aircraft into take-off
position over the runway centerline. The selected course is adjusted as necessary to overlay the Selected
Course symbol on the actual runway centerline at the furthest point of visibility. Take-off roll is started
and the captain uses rudder control to center the Ground Roll Guidance Cue in the Ground Roll
Reference symbol (concentric circles). If the cue is to the right of the Ground Roll Reference symbol
then the pilot would need to apply right rudder to again center the two symbols. (At rotation, the
Ground Roll Reference and Guidance Cue symbols are replaced by the Flight Path symbol and the
Flight Director Guidance Cue.)

4.3.1.1.2 Primary Mode: Climb
At rotation, a number of changes take place on the display (see Figure 4.16). Flight Path Acceleration,
now positioned relative to Flight Path controlling the aircraft, is particularly useful in determining a
positive climb gradient and in optimizing climb performance. With the appropriate airspeed achieved,
to null Flight Path Acceleration will maintain airspeed. Alternately, the Flight Director commands can
be followed.
© 2001 by CRC Press LLC

4.3.1.1.3 Primary Mode: Cruise
Figure 4.16 shows a typical HGS display for an aircraft in straight and level flight at 22,000 ft, 295 kn,
and Mach .792. Ground Speed is reduced to 275 kn as a result of a 21-kn, right-quartering headwind
indicated by the wind arrow.

The aircraft is being flown by the autopilot with LNAV and VS modes selected. Holding the center of
the Flight Path symbol level on the horizon, and the Flight Path Acceleration symbol (�) on the Flight
Path wing will maintain level flight.

4.3.2 AIII Approach Mode

The HGS AIII mode is designed for precision, manual ILS approach, and landing operations to CAT III
minimums. Additionally, the AIII mode can be used for CAT II approaches at Type I airfields if operational
authorization has been obtained (see Figure 4.18). The display has been de-cluttered to maximize visibility by
removing the altitude and airspeed tape displays and replacing them with digital values. The HSI is also removed,
with ILS raw data (localizer and glideslope deviation) now being displayed near the center of the display. (In
the AIII mode, guidance information is shown as a circular cue whose position is calculated by the HGS.)

Tracking the HGS Guidance Cue, and ultimately the ILS, is achieved by centering and maintaining
the Flight Path symbol over the cue. Monitoring localizer and glideslope lines relative to their null
positions helps to minimize deviations and to anticipate corrections. Airspeed control is accomplished
by nulling the Speed Error Tape (left wing of Flight Path symbol) using the Flight Path Acceleration caret
to lead the airspeed correction. Any deviations in ILS tracking or airspeed error are easily identified by
these symbolic relationships.

Following touchdown, the display changes to remove unnecessary symbology to assist with the landing
rollout. The centerline is tracked while the aircraft is decelerated to exit the runway.

FIGURE 4.17 HGS primary mode: low-visibility take-off.

106 60
40
20

500

6000

T
G

R
_E

14
5

18
-F

E
B

-2
00

0
R

E
V

C

65
280 CRS
ILS1

 GS

2.1 NM
HDG
330

154 27 28

100

80

40

6
5
4

TO

H280
© 2001 by CRC Press LLC

4.3.2.1 AIII Mode System Monitoring

The HGS computer contains an independent processor, the system monitor, which verifies that HGS
symbology is positioned accurately and that the approach is flown within defined limits. If the System
Monitor detects a failure within the HGS or in any required input, it disables the AIII status, and an
Approach Warning is annunciated to both crew members.

4.3.2.2 Unusual Attitude

The HGS Unusual Attitude (UA) display is designed to aid the pilot in recognition of and recovery from
unusual attitude situations. When activated, the UA display replaces the currently selected operational
mode symbology, and the HCP continues to display the currently selected operational mode that will be
reactivated once the aircraft achieves a normal attitude.

The UA symbology is automatically activated whenever the aircraft exceeds operational roll or pitch
limits, and deactivated once the aircraft is restored to controlled flight, or if either pitch or roll data
becomes invalid. When the UA symbology is deactivated, the HGS returns to displaying the symbology
for the currently selected operational mode.

The UA symbology includes a large circle (UA Attitude Display Outline) centered on the combiner
(see Figure 4.19). The circle is intended to display the UA attitude symbology in a manner similar to an
Attitude Direction Indicator (ADI). The UA Horizon Line represents zero degrees pitch attitude and is
parallel to the actual horizon. The UA Horizon Line always remains within the outline to provide a
sufficient sky/ground indication, and always shows the closest direction to and the roll orientation of the
actual horizon. The Aircraft Reference symbol is displayed on top of a portion of the UA Horizon Line
and UA Ground Lines whenever the symbols coincide.

The three UA Ground Lines show the ground side of the UA Horizon Line corresponding to the brown
side on an ADI ball or EFIS attitude display. The Ground Lines move with the Horizon Line and are
angled to simulate a perspective view.

FIGURE 4.18 HGS AIII approach display.

5 5

15

SPO
130

A I I I
H158

16 17

12

135 1800
300

B

600VS

-3.00-3.00

123 GS
158 CRS
ILS1

5.8 NM
HOG
158

A
3A

P
 E

14
5

R
E

V
 C

16
-F

E
B

-2
00

0

© 2001 by CRC Press LLC

The UA Pitch Scale range is from �90� through �90� with a zenith symbol displayed at the �90�

point, and a nadir symbol displayed at the �90� point.
The UA Roll Scale is positioned along the UA Attitude Display Outline, with enhanced tic marks at

90�. The UA Roll Scale Pointer rotates about the UA Aircraft Reference symbol to always point straight
up in the Earth frame.

4.3.3 Mode Selection and Data Entry

The data entry needs of the HUD are limited to mode selection and runway information for the guidance
algorithms to work effectively. Data entry can be via a dedicated control panel or a Multipurpose Control
Display Unit (MCDU), such as that defined by ARINC 739.

4.3.3.1 Mode Selection

On most aircraft the pilot has a number of ways to configure the HUD for an approach and landing
based on the visibility conditions expected at the airport. In good weather, where the cloud “ceiling” is
high and the runway visual range (RVR) is long, the pilot may leave the HUD in the Primary mode or
select a landing mode such as VMC, which removes some symbol groups, but has no guidance informa-
tion. As the ceiling and/or RVR decreases the pilot may select the IMC mode to display FGS guidance
(usually from the Flight Management System). If the visibility is at or near the Category III limit the
pilot will select AIII mode, which requires an Instrument Landing System and special approach guidance.
To reduce workload, the HUD can be configured to automatically select the appropriate landing mode
when certain conditions are met, such as the landing system deviations become active.

Another mode that is available for selection, but only on the ground, is the test mode where the pilot, or more
usually a maintenance person, can verify the health of the HUD and the sensors that are connected to the system.

FIGURE 4.19 Unusual Attitude display.

ZENITH

SYMBOL

NADIR

SYMBOL

UA GROUND LINES

UA ROLL SCALE

UA OUTLINE

290

320

280

30

260

29
6
5
4

198

15 0 00

60
40
20

19500

20000

-1
0

-1
0

10

10

-2
0

-2
0

-3
0

-3
0

U
A

T
I E

 1
10

-A
U

G
-2

00
0

R
E

V
B

© 2001 by CRC Press LLC

4.3.3.2 Data Entry

To make use of the HUD-based guidance the pilot must enter the following information:

• Runway Elevation — the altitude of the runway threshold

• Runway Length — official length of the runway in feet or meters

• Reference Glideslope — the published descent angle to the runway, e.g., 3�

On some aircraft, these data may be sent from the FMS and confirmed by the pilot.

4.3.4 HUD Guidance

On some aircraft the HUD can provide a pilot-in-the-loop low-visibility landing capability that is more
cost-effective than that provided by an autoland system.

Huds that compute guidance to touchdown use deviations from the ILS to direct the pilot back to the
center of the optimum landing path. The method for guiding the pilot is the display of a guidance cue
that is driven horizontally and vertically by the guidance algorithms. The goal of the pilot is to control
the aircraft so that the Flight Path symbol overlays the guidance cue. The movement of the guidance cue
is optimized for pilot-in-the-loop flying. This optimization includes:

• Limiting the movement of the cue to rates that are achievable by a normal pilot

• Anticipating the natural delay between the movement of the cue and reaction of the pilot/aircraft

• Filtering out short-term cue movements that may be seen in turbulent air

In addition to approach guidance where the goal is to keep the aircraft in the center of the ILS beam,
guidance is also provided for other phases of the approach. During the flare phase — a pitch-up maneuver
prior to touchdown — the guidance cue must emulate the normal rate and magnitude of pull-back that
the pilot would use during a visual approach. During the rollout phase — where the goal is to guide the
aircraft down the centerline of the runway — the pilot is given smooth horizontal commands that are
easy to follow.

All these algorithms have to work for all normal wind and turbulence conditions. As following the
guidance is critical to the safety of the aircraft, the algorithms include monitors to ensure that the infor-
mation is not misleading and monitors to ensure that the pilot is following the commands. If the system
detects the pilot is significantly deviating from the path or speed target the system will display an Approach
Warning message that requires the pilot to abort the landing.

4.3.4.1 Annunciations

An important element of any system is the annunciations that inform or alert the pilots to problems
that require their action. In a well-managed flight deck the role of each of the pilots is designed to
be complementary. The pilot flying (PF) is responsible for control of the aircraft. The pilot not flying
(PNF) is responsible for navigation and communication as well as monitoring the performance of
the PF.

All the status information needed to safely fly the aircraft is displayed on the HUD for the pilot
including:

• Mode Status — modes of the HGS guidance or the guidance source.

• Cautions — approaching operating limitations or loss of a sensor.

• Warnings — loss of a critical sensor requiring immediate action.

• System Failure — HUD has failed and the pilot should not use the system.

Because of the technology used in the HUD, the PNF can not directly monitor these annunciations.
To support PNF monitoring the HUD outputs some or all of these annunciations to either a flight deck
central warning system or to a dedicated annunciator panel in front of the other pilot.
© 2001 by CRC Press LLC

4.3.5 Recent Developments

4.3.5.1 Color HUD

Due to the complexity of wide field-of-view reflective HUD optical systems, the optical designer must
use all means available to meet display accuracy and parallax error requirements. All certified reflective
HUDs today are monochromatic, generally using a narrow-band green emitting phosphor. The addition
of a second color to the HUD is a desirable natural progression in HUD technology, however, one of the
technical challenges associated with adding a second (or third) display color is maintaining the perfor-
mance standards available in monochrome displays. One method for solving this problem uses a colli-
mator with two independent embedded curvatures, one optimized for green symbology, the other
optimized for red symbology, each with a wavelength-selective coating.14

One fundamental issue associated with color symbology on HUDs is the effects of the real-world
background color “adding” to the display color (green), resulting in an unintended perceived display
color. Figure 4.20 illustrates the effects of additive color. Clearly, warnings and annunciations on the
color HUD must be carefully designed to preclude a misinterpretation due to ambient background color.

4.3.5.2 Display of Enhanced Vision Sensor Images

Many modern HUD systems are capable of simultaneously displaying a real-time external video image
and stroke symbology and guidance overlay. Given a sensor technology capable of imaging the real
world through darkness, haze, or fog, the Enhanced Vision System (EVS) provides an image of the real
world to the pilot while continuing to provide standard HUD symbology. This capability could provide
benefit to the operator during taxi operations, low-visibility take-off, rollout, and perhaps during low-
visibility approaches.

The interface between the EVS sensor and the HUD can be a standard video format (i.e., RS-170 or
RS-343) or can be customized (i.e., serial digital). Sensor technologies that are candidates for EVS include:

• Forward-looking infrared, either cooled (InSb) or uncooled (InGaAs or microbolometer)

• MMW radar (mechanical or electronic scan)

FIGURE 4.20 Effects of background color on perceived display color.
© 2001 by CRC Press LLC

• MMW radiometers (passive camera)

• UV sensors

Although the concept of interfacing a sensor with a HUD to achieve additional operational credit is
straightforward, there are a number of technical and certification issues which must be overcome includ-
ing pilot workload, combiner see-through with a raster image, sensor boresighting, integrity of the sensor,
and potential failure modes. In addition, the location of the sensor on the aircraft can affect both parallax
between the sensor image and the real world, and the aircraft aerodynamic characteristics.

Synthetic vision is an alternative approach to improving the pilot’s situational awareness. In this
concept, an onboard system generates a “real-world-like view” of the outside scene based on a terrain
database using GPS position, track, and altitude. Some HUD systems today generate “artificial runway
outlines” to improve the pilot’s awareness of ground closure during low-visibility approach modes, a
simple application of synthetic vision.

Defining Terms

Boresight: The aircraft longitudinal axis, used to position the HGS during installation and as a reference
for symbol positioning. The process of aligning the HUD precisely with respect to the aircraft
reference frame.

Collimation: The optical process of producing parallel rays of light, providing an image at infinity.
Eyebox: The HUD eyebox is a three-dimensional area around the flight deck eye reference point (ERP)

where all of the data shown on the combiner can be seen.

References

1. Naish, J. Michael, Applications of the Head-Up Display (HUD) to a Commercial Jet Transport, J.
Aircraft, August 1972, Vol. 9, No. 8, pp 530–536.

2. Naish, J. Michael, Combination of Information in Superimposed Visual Fields, Nature, May 16,
1964, Vol. 202, No. 4933, pp 641–46.

3. Sundstrand Data Control, Inc. (1979), Head Up Display System.
4. Part 25 — Airworthiness Standards: Transport Category Airplanes, Special Federal Aviation

Regulation No. 13, Subpart A — General, Sec. 25.773 Pilot Compartment View.
5. Part 25 — Airworthiness Standards: Transport Category Airplanes, Special Federal Aviation

Regulation No. 13, Subpart A — General, Sec. 25.775 Windshield and Windows.
6. Vallance, C.H. (1983). The approach to optical system design for aircraft head up display, Proc.

SPIE, 399:15–25.
7. Hughes, U.S. Patent 3,940,204 (1976), Optical Display Systems Utilizing Holographic Lenses.
8. Marconi, U.S. Patent 4,261,647 (1981), Head Up Displays.
9. Wood, R. B. (1988), Holographic and classical head up display technology for commercial and

fighter aircraft, Proc. SPIE, 883:36–52.
10. SAE (1998), AS8055 Minimum Performance Standard for Airborne Head Up Display (HUD).
11. Stone, G. (1987), The design eye reference point, SAE 6th Aerospace Behavioral Eng. Technol. Conf.

Proc., Human/Computer Technology: Who’s in Charge?, pp. 51–57.
12. Desmond, J., U.S. Patent 4,698,785 (1997), Method And Apparatus For Detecting Control System

Data Processing Errors.
13. Part 25 — Airworthiness Standards: Transport Category Airplanes, Special Federal Aviation Reg-

ulation No. 13, Subpart A — General, Sec. 25.562 Emergency Landing Dynamic Conditions.
14. Gohman et al., U. S. Patent 5,710,668 (1988), Multi-Color Head-Up Display System.
© 2001 by CRC Press LLC

James E. Melzer “Head-Mounted Displays”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

5
Head-Mounted Displays

5.1 Introduction
5.2 What Is an HMD?

Image Sources for HMDs • Optical Design • Head Mounting

5.3 The HMD as Part of the Visually Coupled System
5.4 HMD System Considerations and Trade-Offs

Ocularity • Field of View and Resolution • Luminance and
Contrast in High Ambient Luminance Environments

5.5 Summary
Recommended Reading
References

5.1 Introduction

Head-Mounted Displays (HMD)* are personal information-viewing devices that can provide information
in a way that no other display can. While they can be used as hands-off information sources, the displayed
video can also be made reactive to head and body movements, replicating the way we view, navigate
through, and explore the world. This unique capability lends itself to applications such as Virtual Reality
for creating artificial environments,1 to medical visualization as an aid in surgical procedures, 2,3 to military
vehicles for viewing sensor imagery,4 to airborne workstation applications reducing size, weight, and
power over conventional displays,5 to aircraft simulation and training,6–8 and (central to this chapter) for
fixed and rotary wing avionics display applications.9,10

In some applications, such as the medical and soldier’s displays in Figure 5.1, the HMD is used solely
as a hands-off information source. To truly reap the benefits of the HMD as part of an avionics application,
however, it must be part of a Visually Coupled System (or VCS) that includes the HMD, a head position
tracker, and a graphics engine or video source.11,12 As the pilot turns his/her head, the tracker relays the
orientation data to the mission computer, which updates the displayed information accordingly. This
gives the pilot a myriad of real-time data that is linked to head orientation. In a fixed-wing fighter, a
missile’s sensor can be slaved to the pilot’s head line-of-sight, allowing the pilot to designate targets away
from the forward line-of-sight of the aircraft. In a helicopter, the pilot can point sensors such as forward-
looking infrared (FLIR)** and fly at night.

The U.S. military introduced HMDs into fixed-wing aircraft in the early 1970s for targeting air-to-air
missiles. Several hundred of the Visual Targeting Acquisition Systems (VTAS) were fielded on F-4 Phantom
fighter jets between 1973 and 1979.10,13 This program was eventually abandoned because the HMD

*The term Head-Mounted Display is used in this chapter as a more generic term than Helmet-Mounted Display
which more often refers to military-oriented hardware. Helmet-Mounted Sight (HMS) is another term often used
referring to an HMD that provides only a simple targeting reticle.

**Forward-Looking Infrared (FLIR) is a sensor technology that creates shades-of-grey imagery of objects from
slight differences in black-body thermal emissions.

James E. Melzer
Kaiser Electro-Optics Inc.
© 2001 by CRC Press LLC

capabilities were not matched by missile technology of the day.* HMDs were given new life when a Soviet
MiG-29 was photographed in 1985 showing a simple helmet-mounted sight for off-axis targeting of the
Vympel R-73 missile — also called the AA-11 Archer. With this revelation, the Israelis initiated a fast-
paced program that deployed the Elbit DASH HMD for off-axis targeting of the Rafael Python 4 missile
in 1993-94.14

Two doestic studies — Vista Sabre15 and Vista Sabre II16 — demonstrated the clear advantages for a
pilot equipped with an HMD for missile targeting over one using only his HUD. Encouraged by these
and by a post-Berlin Wall examination of the close-combat capabilities of the HMD-equipped MiG-29,17

the U.S. military initiated their own off-boresight missile targeting program. The result is the Joint Helmet
Mounted Cueing System (JHMCS, built by Vision Systems International) scheduled to deploy on the
U.S. Navy F/A-18, the U.S. Air Force F-15 and F-22, and on both domestic and international versions of
the F-16 early in the 21st century. The JHMCS will give pilots off-axis targeting symbology for the AIM-
9X missile, aircraft status,18 and provide them with improved situational awareness of the airspace
surrounding the aircraft.

The U.S. Army has taken a more aggressive approach with HMD technology, putting it on rotary wing
aircraft starting with the AH-1S Cobra helicopter gunship in the 1970s. A turreted machine gun is slaved
to the pilot’s head orientation via a mechanical linkage attached to his helmet. The pilot aims the weapon
by superimposing a small helmet-mounted reticle on the target.19

In the 1980s, the Army adopted the Integrated Helmet and Sighting System (IHADSS) for the AH-64
Apache helicopter. This monocular helmet-mounted display gives the pilot the ability — similar to the
Cobra gunship — to target head-slaved weapons. The IHADSS has the added ability to display head-
tracked FLIR imagery for nighttime flying. Over 5000 of these CRT-based, monochrome systems have
been delivered by Honeywell on this very successful program for the Army.10

Using an HMD as a key interface to the aircraft has proven so effective that the Army’s newest helicopter,
the RAH-66 Comanche will field the binocular Helmet Integrated Display Sighting System (HIDSS) when
it is deployed early in the 21st century.

In addition to these domestic applications, HMD-based pilotage systems are being adopted throughout
the international aviation community on platforms such as Eurocopter’s Tiger helicopter scheduled for
deployment early in the 21st century. The U.S. Army also has extensive experience using helmet-mounted
Night Vision Goggles (NVGs) in aviation environments. These devices have their own unique set of
performance, interface, and visual issues 20–23 and are discussed in more detail elsewhere in this book.

FIGURE 5.1 Three different applications for HMDs: the CardioView® for minimally invasive cardiac surgery (photo
courtesy of Vista Medical Technologies, Inc.), a prototype of the U.S. Army Land Warrior HMD (photo courtesy of
Program Manager, Soldier, U.S. Army), and the SIM EYE XL100 for aviation training (photo courtesy of Kaiser
Electro-Optics).

*There was also a Memorandum of Understanding signed in 1980 that relegated the development of short-range
missile technology (and therefore HMDs) to the Europeans.
© 2001 by CRC Press LLC

5.2 What Is an HMD?

In its simplest incarnation, an HMD consists of one or more image sources, collimating optics, and a
means to mount the assembly on the head. In the IHADSS HMD shown in Figure 5.3, the image source
is a single, high-brightness cathode ray tube (CRT). The monocular optics create and relay a virtual
image of the CRT surface, projecting the imagery onto the see-through combiner to the pilot’s eye. This
display module is attached to the right side of the aviator’s protective helmet with adjustments that let
the pilot position the display to see the entire image.

The early VTAS and Cobra helicopter HMDs used a simple targeting reticle to point weapons similar
to the one shown on the left in Figure 5.5. The JHMCS HMD has a more sophisticated targeting capability
including ‘‘look-to” and shoot cues (similar to the one shown on the right side of the same figure), as
well as altitude, airspeed, compass heading, and artificial horizon data. With the IHADSS, the AH-64
Apache helicopter pilot sees a similar symbology set augmented with head-tracked FLIR data.

FIGURE 5.2 The U.S. Air Force and Navy’s Joint Hel-
met Mounted Cueing System helmet-mounted display
that will go into service early in the 21st century. (Photo
courtesy of Vision Systems International, used with per-
mission.)

FIGURE 5.3 The Honeywell IHADSS is a monocular, monochrome, CRT-based, head-tracked, see-through
helmet-mounted display used on the U.S. Army AH-64 Apache helicopter. (Photo courtesy of Honeywell Elec-
tronics, used with permission.)
© 2001 by CRC Press LLC

This collection of components, though deceptively simple, has at its core a complex interaction of
system and hardware issues as well as visual, anthropometric, physical, and display issues. These in turn
are viewed by an equally complex human perceptual system.24 The design task is complicated further in
the aircraft environment, because the HMD — now a helmet-mounted display — provides both display
and life support for the pilot. Issues of luminance, contrast, alignment, and focus must be addressed while
not impacting pilotage or crash safety. For all these reasons, HMD design requires a careful balancing —
a suboptimization — of both display and physical requirements.

The next sections will examine the important components or features in an HMD.

FIGURE 5.4 A prototype of the Kaiser Electronics’ HIDSS for the RAH-66 Comanche helicopter. (Photo courtesy
of Kaiser Electronics, used with permission.)

FIGURE 5.5 Comparison of early HMD reticle imagery (left) with a more capable symbology set (right) to be used
with the HMDs such as the JHMCS.
© 2001 by CRC Press LLC

5.2.1 Image Sources for HMDs

As of the year 2000, almost all of the HMDs deployed use CRTs as image sources, primarily because the
technology is the most mature. It can provide the required high luminance and the HMDs can be
ruggedized to withstand the harsh military environment.25 Over the last decade, however, small, flat-
panel image sources have improved to where they are being considered as alternatives to CRTs because
of their reduced size, weight, and power requirements. 26,27

There are two major categories of image sources, emissive and nonemissive (see Table 5.1). The non-
emissive image sources modulate a separate illumination on a pixel-by-pixel basis to create the desired
imagery. Examples are

• Transmissive Liquid Crystal Displays (LCD) — The pixel matrix is illuminated from the rear. A
modulated electric field controls the transmission of the backlight through the individual liquid
crystal-filled cells. Quality transmissive LCDs are manufactured in large quantity in Japan, though
in limited quantity domestically.

• Reflective Liquid Crystal on Silicon Displays (LCOS) — This is the same as the transmissive device
except that the image source is illuminated from the front. The light transmits through the cell
and reflects off a mirror-like surface when the pixel is transmitting and is scattered when the pixel
is turned off. This is a fast-growing area of development in the U.S. because the manufacturing
technology is similar to silicon wafer fabrication.

• Scanning Display — A point source (such as a laser) or line of point sources (such as LEDs) is
modulated in one or more directions using resonance scanners or opto-acoustic modulators to
produce imagery. One example is the Retinal Scanning Display (RSD).28,29

Emissive devices represent a large category of image sources in which the image plane of the device
emits light without the need for supplemental illumination. Such devices include:

• Active Matrix Electroluminescent (AMEL) — A thin-film layer of luminescent phosphor is sand-
wiched between two electrodes, one transparent, in a pixilated array. The pixels are digitally
addressed using high-frequency pulses to achieve grayscale. Recent improvements use a quasi-
analog addressing to achieve greater grayscale range and improved luminance. These are
compact and very rugged devices.30

• Cathode Ray Tube (CRT) — This is a vacuum tube with an electron gun at one end and a phosphor
screen at the other. A beam from the electron gun is modulated by deflection grids and directed
onto the screen. The incident electrons excite the phosphor, emitting visible light.25 CRTs can be
very bright and very rugged for the aviation environment, though they are larger than flat-panel
displays and require high voltage.

• Vacuum Fluorescent Display (VFD) — Most commonly seen in alphanumeric displays, the VFD
uses a vacuum package containing phosphors that are excited by a series of filaments. These
capabilities are being expanded as imaging devices. Though currently available only in low-
resolution devices, VFDs may in time become more prevalent.31

• Organic Light Emitting Diodes (OLED) — A low-voltage drive across a thin layer of organic material
causes it to emit visible light when the charge carriers recombine within the material. A very
promising technology, though as of this writing it is still in the developmental stages.

The choice of an image source for an HMD is not easy. Depending on the application, it may be
preferable to have a backlit (i.e., transmissive) LCD over a reflective one for size, power, or packaging
reasons. Or, it may be preferable to have a self-emissive device such as an AMEL with its minimum
package size. Another consideration is that liquid crystal-based image sources have a finite area over
which the image is observable. Collimating optics with a very short focal length may lose part of the
image. When considering which image source to use, designers must be concerned with numerous
© 2001 by CRC Press LLC

©
 2001 by C

R
C

 Press L
L

C

Scanning

ay

ixels

rom

Image source (LED or laser) scans across
the image plane.

Drive electronics are remote from image
source surface.

cent

e

Retinal Scanning Display (RSD)
Scanning Light-Emitting Diode

nder

EL)

High luminance
Saturated colors
Potential for image plane distortion

(RSD)

n
Limited availability (RSD)
Limited resolution (LED)
Packaging limitations
TABLE 5.1 Categories of Miniature Image Sources Suitable for HMDs

Technology

Transmissive

Reflective

Self-emissive

Description Light source illuminates the
display from the rear.

Pixels are turned on/off or
partially on for gray scale.

Transistors along the sides of the
pixels.

Light source illuminates the front
of the display with a reflective
surface under each pixel.

Pixels are turned on off or
partially on for gray scale,
blanking out the incident light.

Transistors underneath the pixels.

Individual pixels are turned
on/off or partially on for gr
scale.

Transistors underneath the p
(AMELs, OLEDs).

Drive electronics are remote f
the image source (CRTs).

Examples Active Matrix Liquid Crystal
Display (AMLCD)

Reflective Liquid Crystal on
Silicon (LCOS)

Digital Micromirror Display
(DMD)

Active Matrix Electrolumines
(AMEL)

Cathode Ray Tube (CRT)
Vacuum Fluorescent Display

(VFD)
Organic Light Emitting Diod

(OLED)

Advantages Very simple illumination design
High quality imagery
Available commercially in

quantity

High luminous efficiency
High fill factor (transistors under

the pixel)

Smallest package
Lightest weight
High fill factor (transistors u

the pixel)
Wide temperature range (AM

Disadvantages Less efficient fill factor
Transmission loss through LCD
Requires spatial or temporal

integration for color (Post)
Limited temperature range (LCD)
Slower response time (LCD)

Front illumination is more
difficult to package

Scattered light management is
very important

Temporal integration for color

Limited luminance
Color by temporal integratio

issues such as:

• Size — What is the size of the image source itself ? If a supplemental illumination source is required,
how large is it? How large is the active area of the display? What is the size of the required drive
electronics?

• Weight — What is the weight of the image source and any required supplemental illumination?
If electronic components must be within close proximity to the image source (i.e., head-mounted),
how much do they weigh? Can they be taken off the head or moved to a more favorable location
on the head? (See Section 5.2.3).

• Power — Some image source technologies such as CRTs and AMELs require a high voltage drive.
Image sources such as some LCDs have low transmission, requiring a brighter backlight to meet
the display luminance requirements.

• Resolution — How many pixels can be displayed? Is the image generator or sensor video compatible
with this resolution? Is the response time of the image source fast enough to meet pilotage
performance requirements?32 If not, can measures be taken to improve the response time? 33,34

• Addressability — CRTs are considered infinitely addressable because the imagery is drawn in calligraphic
fashion. Pixilated devices such as LCDs, AMELs, and OLEDs are considered finite addressable displays
because the pixel location is fixed. This limits their ability to compensate for image plane distortion.

• Aspect ratio — Most miniature CRTs have a circular format, while most of the solid-state pixilated
devices such as LCDs and AMELs have a rectangular format. Flat-panel devices with VGA, SVGA,
or XGA resolution have a 4:3 horizontal-to-vertical aspect ratio. SXGA resolution devices have a
5:4 aspect ratio.* This is an important consideration when choosing an image source because it
determines the field of view of the display.

• Luminance and contrast — It is important that the image source be capable of providing a display
luminance that is compatible with viewing against bright ambient backgrounds typically found
in aviation environment. (See Section 5.4.3)

• Color — Is the image source capable of producing color imagery?35 Because of the advantage that
data color-coding provides to the pilot,36 color is becoming more prevalent in head-down displays.
Though not in widespread use in head-up and head-mounted displays, it may become more
important because there are some preliminary indications that high g-forces can alter color
perception in the cockpit.37

As of this writing, most cockpit displays — head-up, head-down, and helmet-mounted — are still
CRT-based, though there is movement towards backlit LCDs and some new projection approaches. The
Microvision RSD is showing promise because of its potential for a very high luminance output, though
still a bit bulky and with limited availability for some HMD applications. It is likely that the first deployed
use of a flat-panel image source in an HMD will be for the Comanche HIDSS, using a small, high
resolution AMLCD from Kopin.34

5.2.2 Optical Design

The purpose of the optics in an HMD is threefold:

• Collimate the image source — creating a virtual image, which appears to be farther away than just
a few inches from the face.

• Magnify the image source — making the imagery appear larger than the actual size of the image source.

• Relay the image source — creating the virtual image away from the image source, away from the
front of the face.

* VGA is 640 horizontal pixels by 480 vertical rows. SVGA is 800 horizontal pixels by 600 vertical rows. XGA is
1024 horizontal pixels by 768 vertical rows. SXGA is 1280 horizontal pixels by 1024 vertical rows.
© 2001 by CRC Press LLC

There are two optical design approaches common in HMDs. The first is the non-pupil-forming design —
a simple magnifying lens — hence the term simple magnifier.38,39 It is the easiest to design, the least
expensive to fabricate, the lightest and the smallest, though it does suffer from a short throw distance
between the image source and the virtual image, putting the whole assembly on the front of the head,
close to the eyes. This approach is typically used for simple viewing applications such as the medical
HMD (Figure 5.1a) and the Land Warrior display (Figure 5.1b).

The second optical approach is a bit more complex, the pupil-forming design. This is more like the
compound microscope, or a submarine periscope in which a first set of lenses creates an intermediate
image of the image source. This intermediate image is relayed by another set of lenses to where it creates
a pupil, or a hard image of the intermediate image.

The advantage is that the pupil-forming design provides more path length from the image plane to
the eye. This gives the designer more freedom to insert mirrors as required to fold the optical train away
from the face to a more advantageous weight and center of gravity location. The disadvantages are that
the additional lenses increase the weight and cost of the HMD and that outside the exit pupil—the image
of the stop — there is no imagery. This approach is typically used when the image source is large (such
as a CRT) or where it is desirable to move the weight away from the front of the face such as in Figure
5.1c and Figure 5.3.

In each case, the optical design must be capable of collimating, magnifying, and relaying the image
with sufficiently small amounts of residual aberrations,39 with manual focus (if required), and with proper
alignment (if a binocular system). In addition, the optical design must provide a sufficiently large exit

FIGURE 5.6 Diagram of a simple magnifier, or non-pupil-forming lens.

FIGURE 5.7 A pupil-forming optical design is similar to a compound microscope, binoculars, or a periscope.
© 2001 by CRC Press LLC

pupil* so the user doesn’t lose the image if the HMD shifts on the head, as well as providing at least 25
mm of eye relief** to allow the user to wear eyeglasses

5.2.3 Head Mounting

It is difficult to put a precise metric on the fit or comfort of an HMD, though it is always immediately
evident to the wearer. Even if the HMD image quality is excellent, the user will reject it if it doesn’t fit
well. Fitting and sizing are especially critical in the case of a helmet-mounted display where, in addition
to being comfortable, it must provide a precision fit for the display relative to the pilot’s eyes.

We can list the most important issues for achieving a good fit with an HMD:

• The user must be able to adjust the display to see the imagery.

• The HMD must be comfortable for long duration wear without causing ‘‘hot spots.”

• The HMD must not slip with sweating or under g-loading, vibration, or buffeting.

• The HMD must be retained during crash or ejection.

• The weight of the head-borne equipment must be minimized.

• The mass-moment-of-inertia must be minimized.

• The mass of the head-borne components should be distributed to keep the center of gravity close
to that of the head alone.

The human head weighs approximately 9 to 10 lb and sits atop the spinal column. The Occipital Condyles
on the base of the skull mate to the Superior Articular Facets of the first cervical vertebra, the Atlas.40 These
two small, oblong mating surfaces on either side of the spinal column are the pivot points for the head.

The center of gravity (CG) of the head is located at or about the tragion notch, the small cartilaginous
flap in front of the ear. Because this is up and forward of the head/vertebra pivot point, there is a tendency
for the head to tip downwards, were it not for the strong counter force exerted by the muscles running
down the back of the neck — hence, when people fall asleep they ‘‘nod off.” Adding mass to the head in the
form of an HMD can move the CG (now HMD � head) away from this ideal location. High vibration or
buffeting, ejection, parachute opening, or crash will greatly exacerbate the effect of this extra weight and

TABLE 5.2 Some of the Advantages and Disadvantages of Pupil-Forming and Non-Pupil-Forming Optical
Designs for HMDs

Non-pupil-forming (simple magnifier) Pupil-forming (relayed lens design)

Advantages Simplest optical design
Fewer lenses and lighter weight
Doesn’t ‘‘wipe” imagery outside of eye box
Less eyebox fit problems
Mechanically the simplest and least expensive

Longer path length means more packaging freedom.
Can move away from front of face.

More lenses provide better optical correction

Disadvantages Short path-length puts the entire display near
the eyes/face

Short path-length means less packaging
design freedom

More complicated optical design
More lenses mean heavier design
Loss of imagery outside of pupil
Needs precision fitting, more and finer adjustments

*The exit pupil is found only in pupil-forming designs such as the SIM EYE (Figure 5.1c), the IHADSS (Figure 5.3),
and the HIDSS (Figure 5.4). In non-pupil-forming designs of Figures 5.1a and 5.1b, it is more nearly correct to refer
to a viewing eyebox, because there is a finite unvignetted viewing area.

**There are some differences in terminology usually relating to the writing of specifications. In the classical optical
design, the eye relief is the distance along the optical axis from the last optical surface to the exit pupil. In an HMD
with angled combiners, eye relief should be measured from the eye to the closest point of the combiner, whether it
is on the optical axis or not.
© 2001 by CRC Press LLC

displaced CG, with effects that can range from fatigue and neck strain to serious or mortal injury.41 Designers
can mitigate the impact of the added head-borne hardware by first minimizing the mass of the HMD, followed
by an optimization of the location of the mass to restore the head � HMD CG location to that of the head alone.

This is supported by the extensive biomechanics research at the U.S. Army’s Aeromedical Research Labs.
Figure 5.9 gives a weight vs. CG curve in the vertical direction, where the area under the curve is considered
crash safe for a helicopter environment. The second graph (Figure 5.10) defines the weight/CG combina-
tion that will minimize fatigue.12 Similar work in fixed-wing biomechanics at the Air Force’s Wright-
Patterson Labs has concluded that the weight of the HMD and oxygen mask cannot exceed 4 lb, and that
the resulting center of gravity must also be within a specified region centered about tragion notch.40

Anthropometry — ‘‘the measure of Man” — is a compilation of data that define such things as the
range of height for males and females, the size of our heads, and how far our eyes are apart. Used
judiciously, these data can help the HMD designer achieve a proper fit, though an overreliance can be
equally problematical. One of the most common mistakes made by designers is to assume a correlation
between various anthropometric measurements, because almost all sizing data are univariate — that is, they
are completely uncorrelated with other data. For example, a person who has a 95th percentile head circum-
ference will not necessarily have a 95th percentile interpupillary distance.42 One bivariate study did correlate
head length and head breadth for male and female aviators, resulting in a rather large spread of data.43

There are examples where helmet and HMD developments have been less than successful as a result
of an overemphasis on anthropometric data and an underemphasis on fitting, resulting in HMDs that
don’t fit properly (INIGHTS) or in extraneous helmet sizes (the HGU-53/P).42

5.3 The HMD as Part of the Visually Coupled System

In an avionics application, the HMD — be it a Helmet-Mounted Display or Helmet-Mounted Sight — is
part of a Visually Coupled System (VCS) consisting of the HMD, a head tracker, and mission computer.
As the pilot turns his head, the new orientation is communicated to the mission computer that updates
the imagery as required. The information is always with the pilot, always ready for viewing.

FIGURE 5.8 The human head and neck with the center of gravity located near the tragion notch and the pivot
point located at the Occipital Condyles.
© 2001 by CRC Press LLC

FIGURE 5.9 The USAARL weight and vertical center of gravity curve. The area under the curve is considered
crash safe in helicopter environments. (Data curve courtesy of U.S. Army Aeromedical Research Labs, used with
permission.)

FIGURE 5.10 The USAARL weight and horizontal center of gravity curve with the area under the curve considered
acceptable for fatigue in helicopter environments. (Data curve courtesy of U.S. Army Aeromedical Research Labs,
used with permission.)
© 2001 by CRC Press LLC

Early cockpit-mounted displays — Head-Down Displays — gave the pilot information on aircraft
status, but required him to return his attention continuously to the interior of the cockpit. This reduced
the time he could spend looking outside the aircraft. As jets got faster and the allowable reaction time
for pilots got shorter, Head-Up Displays (HUD) provided the next improvement by creating a collimated,
virtual image that is projected onto a combining glass located on top of the cockpit panel, in the pilot’s forward
line of sight.* This means the pilot does not have to redirect his attention away from the critical forward
airspace or refocus his eyes to see the image. Because the imagery is collimated — it appears as though from
some distant point — it can be superimposed on a distant object. This gives the pilot access to real-time geo-
or aircraft-stabilized information such as compass headings, artificial horizons, or sensor imagery.

The HMD expands on this capability by placing the information in front of the pilot’s eyes at all
times and by linking the information to the pilot’s line of sight. While the HUD provides information
about only the relatively small forward-looking area of the aircraft, the HMD with head tracker can
provide information over the pilot’s entire field of regard, all around the aircraft with eyes- and head-
out viewing. This ability to link the displayed information with the pilot’s line of sight increases the
area of regard over which the critical aircraft information is available. This new capability can:

• Cue the pilot’s attention by providing a pointing reticle to where a sensor has located an object
of interest.

• Allow the pilot to slew sensors such as FLIR for flying at night or in adverse conditions.

• Allow the pilot to aim weapons at targets that are off-boresight from the line of sight of the aircraft.

• Allow the pilot to hand-off or receive target information (or location) from a remote platform,
wingman, or other crew member.

• Provide the pilot with aircraft- or geo-stabilized information.

And, in general, provide situational awareness to the pilot by giving him information about the entire
space surrounding the aircraft.

One excellent example is the U.S. Army AH-64 Apache helicopter equipped with Honeywell’s Inte-
grated Helmet And Display Sighting System (IHADSS) HMD and head tracker. As the pilot moves his
head in azimuth or elevation, the tracker communicates the head orientation to the servo system con-
trolling the Pilot Night Vision System (PNVS) FLIR. The sensor follows his head movements, providing
the pilot with a viewpoint as though his head were located on the nose of the aircraft. This gives the pilot
the ability to ‘‘see” at night or in low light in a very intuitive and hands-off manner, similar to the way
he would fly during daytime with the overlay of key flight data such as heading, altitude, and airspeed.

Studies are being conducted to find ways to squeeze even more out of the HMD in high-performance
aircraft. A recent simulator study at the Naval Weapons Center used the HMD to provide ‘‘pathway in
the sky” imagery to help pilots avoid threats and adverse weather.45 Another experimental feature com-
pensated for the loss of color and peripheral vision that accompanies g-induced loss of consciousness

TABLE 5.3 The Univariate (Uncorrelated) Anthropometric Data for Key
Head Features. Note the Range of Sizes for the 5th Percentile Female up to
the 95th Percentile Male.44

Critical Head Dimensions (cm) 5% Female 95% Male

Interpupillary distance (IPD) 5.66 7.10
Head length a 17.63 20.85
Head width 13.66 16.08
Head circumference 52.25 59.35
Head height (ectocanthus to top of head)a 10.21 12.77

a These data are head orientation-dependent.

*Head-Up Displays are discussed in Chapter 4.
© 2001 by CRC Press LLC

(g-loc). As the pilot began to ‘‘gray-out” the symbol set was reduced down to just a few critical items,
positioned closer to the pilot’s central area of vision. Another study provided helicopter pilots with earth-
referenced navigation waypoints overlayed on terrain and battlefield engagement areas.46 The results
showed significant improvements in navigation, landing, the ability to maintain fire sectors, and an
overall reduction in pilot workload.

5.4 HMD System Considerations and Trade-Offs

As mentioned in the Introduction, good HMD design relies on a suboptimization of requirements,
trading off various performance parameters and requirements. The following sections will address some
of these issues.

5.4.1 Ocularity

One of the first issues to consider in an HMD is whether it should be monocular, biocular, or binocular,:

Monocular — a single video channel viewed by a single eye. This is the lightest, least expensive, and
simplest of all three approaches. Because of these advantages, most of the current HMD systems
are monocular, such as the Elbit DASH, the Vision Systems International JHMCS (Figure 5.2), and
the Honeywell IHADSS (Figure 5.3). Some of the drawbacks are the potential for a laterally
asymmetric center of gravity and issues associated with focus, eye dominance, binocular
rivalry, and ocular-motor instability.47,48

Biocular — a single video channel viewed by both eyes. The biocular approach is more complex than
the monocular design, though it stimulates both eyes, eliminating the ocular-motor instability
issues associated with monocular displays. Viewing imagery with two eyes vs one has been shown
to yield improvements in detection as well as providing a more comfortable viewing experi-
ence.49,50 However, since it is now a two-eyed viewing system, the designer is subject to a much
more stringent set of alignment, focus, and adjustment requirements. 51 The primary disadvantage
of the biocular design is that the image source is usually located in the forehead region, making
it more difficult to package. In addition, since the luminance from the single image source is split
to both eyes, the brightness is cut in half.

Binocular — each eye views an independent video channel. This is the most complex, most expensive,
and heaviest of all three options, but one which has all the advantages of a two-eyed system with
the added benefit of providing partial binocular overlap (to enlarge the horizontal field of view),

FIGURE 5.11 The linkage between the IHADSS helmet-mounted display and the Pilot’s Night Vision System in
the AH-64 Apache helicopter. The PNVS is slaved to the pilot’s head line of sight. As he turns his head, the PNVS
turns to point in the same direction.
© 2001 by CRC Press LLC

stereoscopic imagery, and more packaging design freedom. Examples are the Kaiser Electronics
HIDSS (Figure 5.4) and the Kaiser Electro-Optics SIM EYE (Figure 5.1c). A binocular HMD is
subject to the same alignment, focus, and adjustment requirements as the biocular design, but
the designer can move both the optics and the image sources symmetrically away from the face.

5.4.2 Field of View and Resolution

When asked about HMD requirements, users will typically want more of both field-of-view (FOV) and
resolution. This is not surprising since the human visual system has a total field of view of 200° horizontal
by 130° vertical52 with a grating acuity of 2 min of arc53 in the central foveal region, something that HMD
designers have yet to replicate. For daytime air-to-air applications in a fixed-wing aircraft, a large FOV
is probably not necessary to display the symbology shown in Figure 5.5. If it is a simple sighting reticle,
the FOV can be approximately 6°. For an HMD such as the JHMCS system where the pilot will receive
aircraft and weapons status information, a 20° FOV is more effective. If the HMD is intended to display
sensor imagery for nighttime pilotage such as with the IHADSS (a rectangular 30° by 40° FOV), the pilot
will ‘‘paint” the sky with the HMD, creating a mental map of his surroundings. The larger FOV is
advantageous, because it provides peripheral cues that contribute to the pilot’s sense of self-stabilization,
and it lowers pilot workload by reducing the range of head movements needed to fill in the mental
map.54–56 Most night vision goggles such as the ANVIS-6 have a field of view of 40° circular, though most
pilots would prefer more. The Comanche HIDSS will have a rectangular field of view of 35° by 52°.

While display resolution contributes to overall image quality, there is also a direct relationship with
performance. If we examine the Johnson criteria for image recognition, we can see that the amount of
resolution required is (like most HMD-related issues) task-dependent. For an object such as a tank,
increased resolution will allow the pilot to Detect (‘‘something is there”), Recognize (‘‘it’s a tank”), or
Identify (‘‘it’s a T-72 tank”)57 at a particular distance.

While more of each is desirable, FOV and resolution in an HMD are linked by the relationship:

H � F � Tan �

where F is the focal length of the collimating lens. If :

• H is the size of the image source, then � is the field of view, or the apparent size of the virtual
image in space.

• H is the pixel size, then � is the resolution or apparent size of the pixel in image space.

Thus, the focal length of the collimating lens simultaneously governs the field of view (which you want
large) and the resolution (which you want small). For a display with a single image source, the result is
either wide field of view, or high resolution, but not both at the same time.

TABLE 5.4 Advantages and Disadvantages of Monocular, Biocular, and Binocular HMDs
Configuration Advantages Disadvantages
Monocular (1 image
source viewed by 1
eye)

Lightest weight
Simplest to align
Least expensive

Potential for asymmetric center
of gravity
Potential for ocular-motor
instability, eye dominance, and
focus issues

Biocular (1 image
source viewed by both
eyes)

Simple electrical interface
Lightweight
Inexpensive

More complex alignment than
monocular
Difficult to package
Difficult for see-through

Binocular (2 image
sources viewed by
both eyes)

Stereo imagery
Partial binocular overlap
Symmetrical center of
gravity

Most difficult to align
Heaviest
Most expensive
© 2001 by CRC Press LLC

Given this F � Tan� invariant, there are at least four ways to increase the field of view of a display
and still maintain resolution. These are (1) high-resolution area of interest, (2) partial binocular overlap,
(3) optical tiling, and (4) dichoptic area of interest.58,59 Of these, partial binocular overlap is preferable
for binocular flight applications, though optical tiling is under investigation to expand the field of view
of night vision goggles.60

Partial binocular overlap results when the two HMD optical channels are canted either inward (con-
vergent overlap) or outward (divergent overlap). This enlarges the horizontal field of view, while main-
taining the same resolution as the individual monocular channels. Partial overlap requires that two image
sources and two video channels are available and that the optics and imagery are properly configured to
compensate for any residual optical aberrations. Concerns have been voiced about the required minimum
binocular overlap as well as the possibility that perceptual artifacts such as binocular rivalry — referred
to as ‘‘luning” — may have an adverse impact on pilot performance. Although the studies found image
fragmentation did place some workload on the pilot/test subjects,61,62 all were conducted using static
imagery. Several techniques have been effective in reducing the rivalry effects and their associated per-
ceptual artifacts.63

It should be kept in mind that the resolution of the VCS is a product of the resolution of the HMD
and of the imaging sensor. While an HMD with very high resolution may provide a high-quality
image, pilotage performance may still be limited by the resolution of the imaging sensor such as the
FLIR or camera. In most cases, it is preferable to match the field of view of the HMD with that of

FIGURE 5.12 The focal length of the collimating lens determines the relationship between H, the size of the image
source (or pixel size) and �, the field of view (or the resolution).

FIGURE 5.13 Proview™ 100 HMD mounted on SPH-4B helicopter helmet for a simulator application. This is an
example of an optically tiled see-through HMD with 100° by 30° field of view. (Photo courtesy of Kaiser Electro-
Optics, used with permission.)
© 2001 by CRC Press LLC

the sensor to achieve a 1:1 correspondence between sensor and display to ensure an optimum flying
configuration.

5.4.3 Luminance and Contrast in High Ambient
Luminance Environments

In the high ambient luminance environment of an aircraft cockpit, daylight readability of displays is a
critical issue. The combining element in an HMD is similar to the combiner of a HUD, reflecting the
projected imagery into the pilot’s eyes. The pilot looks through the combining glass and sees the imagery
superimposed on the outside world, so it cannot be 100% reflective — pilots always prefer to have as
much see-through as possible. To view the HMD imagery against a bright background such as sun-lit
clouds or snow, this less-than-perfect reflection efficiency means that the image source must be that
much brighter. The challenge is to provide a combiner with good see-through transmission and still
provide a high-luminance image. There are limitations, though, because all image sources have a
luminance maximum governed by the physics of the device as well as size, weight, and power of any
ancillary illumination. In addition, other factors such as the transmission of the aircraft canopy and
pilot’s visor must be considered when determining the required image source luminance, as shown in
Figure 5.15.

The image source luminance (BI) is attenuated before entering the eye by the transmission of the
collimating optics (TO) and the reflectance of the combiner (RC). The pilot views the distant object
through the combiner (TC or 1 � RC), the protective visor (TV), and the aircraft transparency (TA) against
the bright background (BA). We can calculate the image source luminance for a desired contrast ratio
(CR) of 1.3 using the expression:11

FIGURE 5.14 Comparison of a full binocular overlap and divergent partial binocular overlap. Note the increase in
viewable imagery in the horizontal direction with the divergent overlap.
© 2001 by CRC Press LLC

where we know that the display luminance to the eye is given by:

BDisplay � BI � TO � RC

and, as observed by the pilot, the background is given by:

BO � TC � TV � TA � BA

Rewriting, we can see that:

We can substitute some nominal values for the various contributions as given in the following table:

FIGURE 5.15 Contributions for determining image source luminance requirements for an HMD in an aircraft
cockpit.

TABLE 5.5 Contributions for the Display Luminance Calculations for Four Different HMD Configurations

Case 1 — Clear
Visor, 50%
Combiner

Transmission

Case 2 — dark
Visor, 50%
Combiner

Transmission

Case 3 — Clear
Visor, 80%
Combiner

Transmission

Case 4 — Dark
Visor, 80%
Combiner

Transmission

Optics transmission TO 85% 85% 85% 85%
Combiner reflectance RC 50% 50% 20% 20%
Combiner transmission TC 50% 50% 80% 80%
Visor transmission TV 87% 12% 87% 12%
Aircraft canopy transmission TC 80% 80% 80% 80%
Ambient background

luminance
BC 10,000 fL 10,000 fL 10,000 fL 10,000 fL

 Required image source
 luminance

BI 2,456 fL 339 fL 9,826 fL 1,355 fL

CR
BA BDisplay�

BA

-----------------------------�

CR
1 B1� TO� RC�

TC�TV� TA�BA

---------------------------------------�
© 2001 by CRC Press LLC

The first two cases compare the difference when the pilot is wearing a Class 1 (clear) vs. a Class 2
(dark) visor.64 The dark visor reduces the ambient background luminance, improving HMD image
contrast against the bright clouds or snow. These first two cases are relatively simple because they
assume a combiner with 50% transmission and 50% reflectance (ignoring other losses). Since pilots
need more see-through, this means a reduced reflectance. Cases 3 and 4 assume this more realistic
combiner configuration with both clear and dark visors, resulting in a requirement for a much brighter
image source.

One of the ways to improve both see-through transmission and reflectance is to take advantage of
high-reflectance holographic notch filters and V-coats. The problem is that while these special coatings
reflect more of a specific display color, they transmit less of that same color, which can alter perceptions
of cockpit display color as well as external coloration.

5.5 Summary

Head-mounted displays can provide a distinctly unique and personal viewing experience no other display
technology can match. By providing the pilot with display information that is linked to head orientation,
the pilot is freed from having to return his attention to the cockpit interior and is able to navigate and
fly the aircraft in a more intuitive and natural manner. This is an effective means of providing a pilot
with aircraft status as well as information about the surrounding airspace.

But these capabilities are not without a price. HMDs require careful attention to the complex inter-
actions between hardware and human perceptual issues, made only more complex by the need for the
HMD to provide life support in an aviation environment. Only when all factors are considered and the
requirements successfully suboptimized with an understanding of the aviator’s tasks and environment,
will this be accomplished.

Recommended Reading

Barfield, W. and Furness, T. A., Virtual Environments and Advanced Interface Design, New York, Oxford
University Press, 1995.

Boff, K. R. and Lincoln, J. E., Engineering Data Compendium, Human Perception and Performance,
Human Engineering Division, Harry G. Armstrong Aerospace Medical Research Laboratory,
Wright-Patterson Air Force Base, OH, 1988.

Kalawsky, R. A., The Science of Virtual Reality and Virtual Environments, New York, Addison-Wesley, 1993.
Karim, M. A., Ed., Electro-Optical Displays, New York, Marcel Dekker, 1992.
Lewandowski, R. J., Helmet- and Head-Mounted Displays, Selected SPIE papers on CD-ROM, SPIE Press,

11, 2000.
Melzer, J. E. and Moffitt, K. W., Eds., Head-Mounted Displays: Designing for the User, McGraw-Hill, New

York, 1997.
Rash, C. E., Ed., Helmet-Mounted Displays: Design Issues for Rotary-Wing Aircraft, U.S. Government

Printing Office, Washington, D.C., 1999.
Velger, M., Helmet-Mounted Displays and Sights, Norwood, MA, Artech House, 1998.

References

1. Kalawsky R. S., The Science of Virtual Reality and Virtual Environments: A Technical, Scientific and
Engineering Reference on Virtual Environments, Addison-Wesley: Wokingham, England (1996).

2. Schmidt, G. W. and Osborn, D. B., Head-mounted display system for surgical visualization, Proc.
SPIE, Biomed. Optoelectron. Instrum., 2396, 345, 1995.

3. Pankratov, M. M., New surgical three-dimensional visualization system, Proc. SPIE, Lasers in
Surgery Adv. Characterization Ther. Syst., 2395, 143, 1995.
© 2001 by CRC Press LLC

4. Casey, C. J., Helmet-mounted displays on the modern battlefield, Proc. SPIE, Helmet- and Head-
Mounted Displays IV, 3689, 270, 1999.

5. Browne, M. P., Head-mounted workstation displays for airborne reconnaissance applications, Proc.
SPIE, Cockpit Displays V: Displays for Defense Applications, 3363, 348, 1998.

6. Lacroix, M., Melzer, J., Helmet-mounted displays for flight simulators, Proc. IMAGE VII Conf.,
Tucson Az, 12–17 June, (1994).

7. Casey, C. J. and Melzer, J. E., Part-task training with a helmet integrated display simulator system,
Proc. SPIE, Large-Screen Projection, Avionic and Helmet-Mounted Displays, 1456, 175, 1991.

8. Thomas, M. and Geltmacher, H., Combat simulator display development, Inf. Display, 4&5, 23,
1993.

9. Foote, B., Design guidelines for advanced air-to-air helmet-mounted display systems, Proc. SPIE,
Helmet- and Head-Mounted Displays, III, 3362, 94, 1998.

10. Belt, R. A., Kelley, K., and Lewandowski, R., Evolution of helmet-mounted display requirements
and Honeywell HMD/HMS systems, Proc. SPIE, Helmet- and Head-Mounted Displays III, 3362,
373, 1998.

11. Kocian, D. F., Design considerations for virtual panoramic display (VPD) helmet systems, AGARD
Conf. Proc. No. 425, 22-1, 1987.

12. Rash, C. E. (Ed.), Helmet-Mounted Displays: Design Issues for Rotary-Wing Aircraft, U.S. Govern-
ment Printing Office, Washington, D.C., 1999.

13. Dornheim, M., VTAS sight fielded, shelved in 1970s, Aviat. Week Space Technol., October 23, 51, 1995.
14. Dornheim, M. A. and Hughes, D., U.S. intensifies efforts to meet missile threats, Aviat. Week Space

Technol., October 16, 36, 1995.
15. Arbak, C., Utility evaluation of a helmet-mounted display and sight, Proc. SPIE, Helmet-Mounted

Displays, 1116, 138, 1989.
16. Merryman, R. F. K., Vista Sabre II: integration of helmet-mounted tracker/display and high off-

boresight missile seeker into F-15 aircraft, Proc. SPIE, Helmet- and Head-Mounted Displays and
Symbology Design Requirements, 2218, 173, 1994.

17. Lake, J., NATO’s best fighter is made in Russia, The Daily Telegraph, August, 26, 1991, p. 22.
18. Goodman, G. W., Jr., First look, first kill, Armed Forces J. Int., July 2000, p. 32.
19. Braybrook, R., Looks can kill, Armada Int., 4, 44, 1998.
20. Sheehy, J. B. and Wilkinson, M., Depth perception after prolonged usage of night vision goggles,

Aviat., Space Environ. Med., 60, 573, 1989.
21. Donohue-Perry, M. M., Task, H. L., and Dixon, S. A., Visual acuity versus field of view and light

level for night vision goggles (NVGs), Proc. SPIE, Helmet- and Head-Mounted Displays and Sym-
bology Design Requirements, 2218, 71, 1994.

22. Crowley, J. S., Rash, C. E., and Stephens, R. L., Visual illusions and other effects with night vision
devices, Proc. SPIE, Helmet-Mounted Displays III, 1695, 166, 1992.

23. DeVilbiss, C. A., Ercoline, W. R., and Antonio, J. C., Visual performance with night vision goggles
(NVGs) measured in U.S. Air Force aircrew members, Proc. SPIE, Helmet- and Head-Mounted
Displays and Symbology Design Requirements, 2218, 64, 1994.

24. Gibson, J. J., The Ecological Approach to Visual Perception, Lawrence Erlbaum Associates, Hillsdale,
NJ. 1986.

25. Sauerborn, J. P., Advances in miniature projection CRTs for helmet displays, Proc. SPIE, Helmet-
Mounted Displays III, 1695, 102, 1992.

26. Ferrin, F. J., Selecting new miniature display technologies for head mounted applications, Proc.
SPIE, Head-Mounted Displays II, 3058, 115, 1997.

27. Belt, R. A., Knowles, G. R., Lange, E. H., Pilney, B. J., and Girolomo, H. J., Miniature flat panels
in rotary wing head mounted displays, Proc. SPIE, Head-Mounted Displays II, 3058, 125, 1997.

28. Urey, H., Nestorovic, N., Ng, B., and Gross, A. A., Optics designs and systems MTF for laser
scanning displays, Proc. SPIE, Helmet- and Head-Mounted Displays, IV, 3689, 238, 1999.
© 2001 by CRC Press LLC

29. Urey, H., Optical advantages in retinal scanning displays, Proc. SPIE, Head- and Helmet-Mounted
Displays, 4021, 20, 2000.

30. Arbuthnot, L., Aitchison, B., Carlsen, C., King, C. N., Larsson, T., and Nguyen, T., High-luminance
active matrix electroluminescent (AMEL) display for see-through symbology applications, Proc.
SPIE, Helmet- and Head-Mounted Displays, IV, 3689, 260, 1999.

31. Semenza, P. D., The technology is pushing — but will the market pull? Inf. Display, 16(7), 14, 2000.
32. Rabin, J. and Wiley, R., Dynamic visual performance: comparison between helmet-mounted CRTs

and LCDs, J. SID, 3/3, 97, 1995.
33. Gale, R., Herrmann, F., Lo, J., Metras, M., Tsaur, B., Richard, A., Ellertson, D., Tsai, K., Woodard, O.,

Zavaracky, M., and Presz, M., Miniature 1280 by 1024 active matrix liquid crystal displays, Proc.
SPIE, Helmet- and Head-Mounted Displays IV, 3689, 231, 1999.

34. Woodard, O. C., Gale, R. P., Ong, H. L., and Presz, M. L., Developing the 1280 by 1024 AMLCD
for the RAH-66 Comanche, Proc. SPIE, Head- and Helmet-Mounted Displays, 4021, 203, 2000.

35. Post, D. L., Miniature color display for airborne HMDs, Proc. SPIE, Helmet- and Head-Mounted
Displays and Symbology Design Requirements, 2218, 2, 1994.

36. Melzer, J. E. and Moffitt, K. W., Color helmet display for the tactical environment: the pilot’s
chromatic perspective, Proc. SPIE, Helmet-Mounted Displays III, 1695, 47, 1992.

37. MacGillis, A., Flying at high G’s alters pilot’s perception of colors, Natl. Defense, 16, September 1999.
38. Task, H. L., HMD image sources, optics and visual interface, in Head-Mounted Displays: Designing

for the User, Melzer, J. E. and Moffitt, K. W., Eds., McGraw-Hill, New York, 1997, chap. 3.
39. Fischer, R. E., Fundamentals of HMD Optics, in Head-Mounted Displays: Designing for the User,

Melzer, J. E. and Moffitt, K. W., Eds., McGraw-Hill, New York, 1997, chap. 4.
40. Perry, C. E. and Buhrman, J. R., Biomechanics in HMDs, in Head-Mounted Displays: Designing

for the User, Melzer, J. E. and Moffitt, K. W., Eds., McGraw-Hill, New York, 1997, chap. 6.
41. Guill, F. C. and Herd, G. R., An evaluation of proposed causal mechanisms for ‘‘ejection associated”

neck injuries, Aviat. Space Environ. Med., A26, July, 1989.
42. Whitestone, J. J. and Robinette, K. M., Fitting to maximize performance of HMD systems, in Head-

Mounted Displays: Designing for the User, Melzer, J. E. and Moffitt, K. W., Eds., McGraw-Hill, New York,
1997, chap. 7.

43. Barnaba, J. M., Human factors issues in the development of helmet mounted displays for tactical,
fixed-wing aircraft, Proc. SPIE, Head-Mounted Displays II, 3058, 2, 1997.

44. Gordon, C. C., Churchill, T., Clauser, C. E., Bradtmiller, B., McConville, J. T., Tebbetts, I., and
Walker, R. A., 1988 Anthropometric Survey of U.S. Army Personnel: Summary Statistics Interim
Report. U.S. Army Natick Tech. Rep. TR-89/027, Natick, MA, 1989.

45. Procter, P., Helmet displays boost safety and lethality, Aviat. Week Space Technol., February 1, 1999,
pg. 81.

46. Rogers, S. P., Asbury, C. N. and Haworth, L. A., Evaluation of earth-fixed HMD symbols using the
PRISMS helicopter flight simulator, Proc. SPIE, Helmet- and Head-Mounted Displays III, 3389, 54,
1999.

47. Rash, C. E. and Verona, R. W., The human factor considerations of image intensification and
thermal imaging systems, in Electro-Optical Displays, Karim, M. A., Ed., New York, Marcel Dekker,
1992, chap. 16.

48. Moffitt, K. W., Ocular responses to monocular and binocular helmet-mounted display configura-
tions, Proc. SPIE, Helmet-Mounted Displays, 1116, 142, 1989.

49. Boff, K. R. and Lincoln, J. E., Engineering Data Compendium, Human Perception and Perfor-
mance, Human Engineering Division, Harry G. Armstrong Aerospace Medical Research Labora-
tory, Wright-Patterson Air Force Base, OH, 1988.

50. Moffitt, K. W., Designing HMDs for viewing comfort, in Head-Mounted Displays: Designing for
the User, Melzer, J. E. and Moffitt, K. W., Eds., McGraw-Hill, New York, 1997, chap. 5.
© 2001 by CRC Press LLC

51. Self, H. C., Critical Tolerances for Alignment and Image Differences for Binocular Helmet-Mounted
Displays, Tech. Rep. AAMRL-TR-86-019, Armstrong Aerospace Medical Research Laboratory,
Wright-Patterson AFB OH, 1986.

52. U.S. Department of Defense, ‘‘MIL-HDBK-141 Optical Design,” 1962.
53. Smith, G. and Atchison, D. A., The Eye and Visual Optical Instruments, New York, Cambridge

University Press, 1997.
54. Wells, M. J., Venturino, M., and Osgood, R. K., Effect of field of view size on performance at a

simple simulated air-to-air mission, Proc. SPIE, Helmet-Mounted Displays, 1116, 126, 1989.
55. Kasper, E. F., Haworth, L. A., Szoboszlay, Z. P., King, R. D., and Halmos, Z. L., Effects of in-flight

field-of-view restriction on rotorcraft pilot head movement, Proc. SPIE, Head-Mounted Displays
II, 3058, 34, 1997.

56. Szoboszlay, Z. P., Haworth, L. A., Reynolds, T. L., Lee, A. G., and Halmos, Z. L., Effect of field-of-
view restriction on rotocraft pilot workload and performance: preliminary results, Proc. SPIE,
Helmet- and Head-Mounted Displays and Symbology Design Requirements II, 2465, 142, 1995.

57. Lloyd, J. M., Thermal Imaging Systems, Plenum Press, New York, 1975.
58. Melzer, J. E., Overcoming the field of view: resolution invariant in head-mounted displays, Proc.

SPIE, Helmet- and Head-Mounted Displays III, 3362, 284–293, 1998.
59. Hoppe, M. J. and Melzer, J. E., Optical tiling for wide-field-of-view head-mounted displays, Proc.

SPIE, Current Developments in Optical Design and Optical Engineering VIII, 3779, 146, 1999.
60. Jackson, T. W. and Craig, J. L., Design, development, fabrication, and safety-of-flight testing of a

panoramic night vision goggle, Proc. SPIE, Head- and Helmet-Mounted Displays IV, 3689, 98, 1999.
61. Klymenko, V., Verona, R. W., Beasley, H. H., and Martin, J. S., Convergent and divergent viewing

affect luning, visual thresholds, and field-of-view fragmentation in partial binocular overlap
helmet-mounted displays, Proc. SPIE, Helmet- and Head-Mounted Displays and Symbology Design
Requirements, 2218, 2, 1994.

62. Klymenko, V., Harding, T. H., Beasley, H. H., Martin, J. S., and Rash, C. E., Investigation of helmet-
mounted display configuration influences on target acquisition, Proc. SPIE, Head- and Helmet-
Mounted Displays, 4021, 316, 2000.

63. Melzer, J. E. and Moffitt, K., An ecological approach to partial binocular-overlap, Proc. SPIE, Large
Screen, Projection and Helmet-Mounted Displays, 1456, 124, 1991.

64. U.S. Department of Defense, MIL-V-85374, Military specification, visors, shatter resistant, 1979.
© 2001 by CRC Press LLC

Thomas M. Lippert “Display Devices: RSD™ (Retinal Scanning Display)”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

6
Display Devices: RSD™

(Retinal Scanning
Display)

6.1 Introduction
6.2 An Example Avionic HMD Challenge
6.3 CRTs and MFPs
6.4 Laser Advantages, Eye Safety
6.5 Light Source Availability and Power Requirements
6.6 Microvision’s Laser Scanning Concept

Government Testing of the RSD HMD Concept • Improving
RSD Image Quality

6.7 Next Step
Defining Terms
Acknowledgments
References
Further Information

6.1 Introduction

This chapter relates performance, safety, and utility attributes of the Retinal Scanning Display as employed
in a Helmet-Mounted Pilot-Vehicle Interface, and by association, in panel-mounted HUD and HDD
applications. Because RSD component technologies are advancing so rapidly, quantitative analyses and
design aspects are referenced to permit a more complete description here of the first high-performance
RSD System developed for helicopters.

Visual displays differ markedly in how they package light to form an image. The Retinal Scanning
Display, or RSD depicted in Figure 6.1, is a relatively new optomechatronic device based initially on red,
green, and blue diffraction-limited laser light sources. The laser beams are intensity modulated with
video information, optically combined into a single, full-color pixel beam, then scanned into a raster
pattern by a ROSE comprised of miniature oscillating mirrors, much as the deflection yoke of a cathode-
ray tube (CRT) writes an electron beam onto a phosphor screen. RSDs are unlike CRTs in that conversion
of electrons to photons occurs prior to beam scanning, thus eliminating the phosphor screen altogether
along with its re-radiation, halation, saturation, and other brightness- and contrast-limiting factors. This
means that the RSD is fundamentally different from other existing display technologies in that there is
no planar emission or reflection surface — the ROSE creates an optical pupil directly. Like the CRT, an
RSD may scan out spatially continuous (nonmatrix-addressed) information along each horizontal scan
line, while the scan lines form discrete information samples in the vertical image dimension.

Thomas M. Lippert
Microvision Inc.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

6.2 An Example Avionic HMD Challenge

Consider the display engineering problem posed by Figure 6.1. An aircraft flying the contour of the earth
will transit valleys as well as man-made artifacts: towers, power lines, buildings, and other aircraft. On
this flight the pilot is faced with a serious visual obscurant in the form of ground fog, rendered highly
opaque by glare from the sun.

The pilot’s situational awareness and navigation performance are best when flying “eyes-out” the wind-
shield, in turn requiring “eyes-out” electronic display of his own aircraft attitude and status information.
Particularly under degraded visual conditions, additional imagery of obstacles (towers, the Earth, etc.)
synthesized from terrain data bases and mapped into the pilot’s ever-changing direction of gaze via Global
Positioning System data, reduce the hazards of flight. The question has been, which technology can
provide a display of adequate brightness, color, and resolution to adequately support pilotage as viewed
against the harsh real-world conditions described.

For over 30 years, researchers and designers have improved the safety and effectiveness of HMDs so
that mission-critical information would always be available “eyes-out” where the action is, unlike “eyes-
in” traditional HDDs.1 U.S. Army AH-64 Apache Helicopter pilots are equipped with such an HMD,
enabling nap-of-the-earth navigation and combat at night with video from a visually coupled infrared
imager and data computer. This particular pilot-vehicle interface has proven its reliability and effective-
ness in over 1 million hours of flight and was employed with great success in the Desert Storm Campaign.
Still, it lacks the luminance required for optimal grayscale display during typical daylight missions, much
less the degraded conditions illustrated above.

The low luminance and contrast required for nighttime readability is relatively easy to achieve, but it
is far more difficult to develop an HMD bright enough and of sufficient contrast for daylight use. The
information must be displayed as a dynamic luminous transparency overlaying the real-world’s complex

FIGURE 6.1 Functional component diagram of the RSD HMD.

features, colors, and motion. In order to display an image against a typical real-world daytime scene
luminance of 3000 fL, the virtual display peak luminance must be about 1500 fL at the pilot’s eye. And
depending on the efficiency of the specific optics employed, the luminance at the display light source
may need to be many times greater. The display technology that provides the best HMD solution might
also provide the optimal HUD and HDD approaches.

6.3 CRTs and MFPs

Army Aviation is the U.S. military leader in deployed operational HMD systems. The Apache helicopter’s
monochrome green CRT Helmet Display Unit (HDU) presents pilotage FLIR (forward-looking infrared)
imagery overlaid with flight symbology in a 40°(H) � 30°(V) monocular field of view (FOV). The Apache
HDU was developed in the late 1970s and early 1980s using the most advanced display technology then
available. The new RAH-66 Comanche Helicopter Program has expanded the display’s performance
requirements to include night and day operability of a monochrome green display with a binocular
52° H � 30° V FOV and at least 30° of left/right image overlap.

The Comanche’s Early Operational Capability Helmet Integrated Display Sighting System (EOC
HIDSS) prototype employed dual miniature CRTs. The addition of a second CRT pushed the total head-
supported weight for the system above the Army’s recommended safety limit. Weight could not be
removed from the helmet itself without compromising safety, so even though the image quality of the
dual-CRT system was good, the resulting reduction in safety margins was unacceptable.

The U.S. Army Aircrew Integrated Systems (ACIS) office initiated a program to explore alternate display
technologies for use with the proven Aircrew Integrated Helmet System Program (AIHS, also known as
the HGU-56/P helmet) that would meet both the Comanche’s display requirements and the Army’s safety
requirements.

Active-matrix liquid-crystal displays (AMLCD), active-matrix electroluminescent (AMEL) displays,
field-emission displays (FEDs), and organic light-emitting diodes (OLEDs) are some of the alternative
technologies that have shown progress. These postage-stamp size miniature flat-panel (MFP) displays
weigh only a fraction as much as the miniature CRTs they seek to replace.

AMLCD is the heir apparent to the CRT, given its improved luminance performance. Future luminance
requirements will likely be even higher, and there are growing needs for greater displayable pixel counts
to increase effective range resolution or FOV, and for color to improve legibility and enhance information
encoding. It is not clear that AMLCD technology can keep pace with these demands.

6.4 Laser Advantages, Eye Safety

The RSD offers distinct advantages over other display technologies because image quality and color gamut
are maintained at high luminances limited only by eye-safety considerations.2,3 The light-concentrating
aspect of the diffraction-limited laser beam can routinely produce source luminances that exceed that of
the solar disc. Strict engineering controls, reliable safeguards, and careful certification are mandatory to
minimize the risk of damage to the operator’s vision.4 Of course, these safety concerns are not limited
to laser displays; any system capable of displaying extremely high luminances should be controlled,
safeguarded, and certified.

Microvision’s products are routinely tested and classified according to the recognized eye safety
standard — the maximum permissible exposure (MPE) — for the specific display in the country of
delivery. In the U.S. the applicable agency is the Center for Devices and Radiological Health (CDRH)
Division of the Food and Drug Administration (FDA). The American National Standards Institute’s
Z136.1 reference, “The Safe Use of Lasers,” provides MPE standards and the required computational
procedures to assess compliance. In most of Europe the IEC 60825-1 provides the standards.

Compliance is assessed across a range of retinal exposures to the display, including single-pixel, single
scan line, single video frame, 10-second, and extended-duration continuous retinal exposures. For most
scanned laser displays, the worst-case exposure leading to the most conservative operational usage is found
© 2001 by CRC Press LLC

to be the extended-duration continuous display MPE. Thus, the MPE helps define laser power and scan-
mirror operation-monitoring techniques implemented to ensure safe operation. Examples include shutting
down the laser(s) if the active feedback signal from either scanner is interrupted and automatically atten-
uating the premodulated laser beam for luminance control independent of displayed contrast or grayscale.

6.5 Light Source Availability and Power Requirements

Another challenge to manufacturers of laser HMD products centers on access to efficient, low-cost lasers
or diodes of appropriate collectible power (1–100 mW), suitable wavelengths (430–470, 532–580, and
607–660 nm), low video-frequency noise content (�3%), and long operating life (10,000 hr). Diodes
present the most cost-effective means because they may be directly modulated up from black, while lasers
are externally modulated down from maximum beam power.

Except for red, diodes still face significant development hurdles, as do blue lasers. Operational military-
aviation HMDs presently require only a monochrome green, G, display which can be obtained by using a
532-nm diode-pumped solid-state (DPSS) laser with an acoustic-optic modulator (AOM). Given available
AOM and optical fiber coupling efficiencies, the 1500-fL G RSD requires about 50 mW of laser beam power.
Future requirements will likely include red � green, RG, and full color, RGB, display capability.

6.6 Microvision’s Laser Scanning Concept

Microvision has developed a flexible component architecture for display systems (Figure 6.1). RGB video
drives AOMs to impress information on Gaussian laser beams, which are combined to form full-color pixels
with luminance and chromaticity determined by traditional color-management techniques. The aircraft-
mounted photonics module is connected by single-mode optical fiber to the helmet, where the beam is air
propagated to a lens, deflected by a pair of oscillating scanning mirrors (one horizontal and one vertical),
and brought to focus as a raster format intermediate image. Finally, the image is optically collimated and
combined with the viewer’s visual field to achieve a spatially stabilized virtual image presentation.

The AIHS Program requires a production display system to be installed and maintained as a helicopter
subsystem — designated Aircraft Retained Unit (ARU) — plus each pilot’s individually fitted protective
helmet, or Pilot Retained Unit (PRU). Microvision’s initial concept-demonstration HMD components
meet these requirements (Figure 6.2).

Microvision’s displays currently employ one horizontal line-rate scanner — the Mechanical Resonant
Scanner (MRS) — and a vertical refresh galvanometer. Approaches using a bi-axial microelectro-mechan-
ical system (MEMS) scanner are under development. Also, as miniature green laser diodes become
available, Microvision expects to further reduce ARU size, weight, and power consumption by transi-
tioning to a small diode module (Figure 6.1, lower-right) embedded in the head-worn scanning engine,
which would also eliminate the cost and inefficiency of the fiber optic link.

For the ACIS project, a four-beam concurrent writing architecture was incorporated to multiply by 4
the effective line rate achievable with the 16-kHz MRS employed in unidirectional horizontal writing
mode. The vertical refresh scanner was of the 60-Hz saw-tooth-driven servo type for progressive line
scanning. The f/40 writing beams, forming a narrow optical exit pupil (Figure 6.3), are diffraction-
multiplied to form a 15-mm circular matrix of exit pupils.

The displayed resolution of a scanned-light-beam display5 is limited by three parameters: (1) spot size
and distribution as determined by cascaded scan-mirror apertures (D), (2) total scan-mirror deflection
angles in the horizontal or vertical raster domains (Theta), and (3) dynamic scan-mirror flatness under
normal operating conditions. Microvision typically designs to the full-width/half-maximum Gaussian
spot overlap criterion, thus determining the spot count per raster line. Horizontal and vertical displayable
spatial resolutions, limited by (D)*(Theta), must be supported by adequate scan-mirror dynamic flatness
for the projection engine to perform at its diffraction limit. Beyond these parameters, image quality is
affected by all the components common to any video projection display. Electronics, photonics, optics,
and packaging tolerances are the most significant.
© 2001 by CRC Press LLC

FIGURE 6.2 Microvision’s RSD components meet the requirements of the AIHS HIDSS program for an HMD.

FIGURE 6.3 The far-field beamlet structure of a spot-multiplied (expanded) RSD OEP. The unexpanded 1-mm
exit pupil is represented by a single central spot.
© 2001 by CRC Press LLC

6.6.1 Government Testing of the RSD HMD Concept

Under the ACIS program, the concept version of the Microvision RSD HMD was delivered to the U.S.
Army Aeromedical Research Laboratory (USAARL) for testing and evaluation in February 1999.6

As expected, the performance of the concept-phase system had some deficiencies when compared to
the RAH-66 Comanche requirements. However, these deficiencies were few in number and the overall
performance was surprisingly good for this initial development phase. Measured performance for exit
pupil, eye relief, alignment, aberrations, luminance transmittance, and field-of-view met the requirements
completely. The luminance output of the left and right channels — although high, with peak values of
808 and 1111 fL, respectively — did not provide the contrast values required by Comanche in all
combinations of ambient luminance and protective visor. Of greatest concern was the modulation transfer
function (MTF) — and the analogous Contrast Transfer Function (CTF) — exhibiting excessive rolloff
at high spatial frequencies, and indicating a “soft” displayed image.

6.6.2 Improving RSD Image Quality

At the time of this writing, the second AIHS program phase is concentrating on imprving image quality.
Microvision identified the sources of the luminance, contrast, and MTF/CTF deficiencies found by
USAARL. A few relatively straightforward fixes such as better fiber coupling, stray light baffling, and
scan-mirror edge treatment are expected to provide the luminance and low-spatial-frequency contrast
improvements required to meet specification, but MTF/CTF performance at high spatial frequencies
have presented a more complex set of issues.

Each image-signal-handling component in the system contributes to the overall system MTF. Although
the video electronics and AOM-controller frequency responses were inadequate, they were easily remedied
through redesign and component selection. Inappropriate mounting of fixed fold mirrors in the projection
path led to the accumulation of several wavelengths of wave-front error and resultant image blurring. This
problem, too, is readily solved.

The second class of problems pertains to the figure of the scan mirrors. Interferometer analyses of the flying
spot under dynamic horizontal scanning conditions indicated excessive mirror surface deformation (�2 peak-
to-peak mechanical), resulting in irregular spot growth and reduced MTF/CTF performance (Figure 6.4).

FIGURE 6.4 The effect of improved mirror design is visible in these spot (pixel) images, normalized for size but
not for intensity, for scanned spots at ��/4 P-P mechanical mirror deformation (left image), and �2� P-P mechanical
mirror deformation (right image).
© 2001 by CRC Press LLC

Three fast-prototyping iterations brought the mirror surface under control (��/4) to achieve accept-
able spot profiles at the raster edge. Thus, the component improvements described above are expected
to result in MTF/CTF performance meeting U.S. Army specification.

6.7 Next Step

The next step in the evolution of the helicopter pilot’s laser HMD is the introduction of daylight-readable
color. Microvision first demonstrated a color VGA format RSD HMD in 1996, followed by SVGA in
1998. Development of a 1280 � 1024-color-pixel (SXGA) binocular HMD project is being made possible
by ACIS’s Virtual Cockpit Optimization Program (VCOP), which begins with software-reconfigurable
virtual flight simulations in 2000 and proceeds to in-flight virtual cockpit demonstrations in 2001. For
these demonstrations, the aircraft’s traditional control-panel instrumentation is expected to serve only
an emergency backup function. Figure 6.1, with which this chapter began, represents the VCOP RGB
application concept.

One configuration of the VCOP simulation/operation HMD acknowledges the limited ability of the
blue component to generate effective contrast against white clouds or blue sky. Because the helmet tracker
used in any visually-coupled system will “know” when the pilot is “eyes out” or “head down”, the HMD
may employ graphics and imaging sensor formats in daylight readable greenscale, combined with red,
for “eyes out” information display across established green/yellow/red caution advisory color codes,
switching to full color formats at lower luminances for “head down” displays of maps, etc.

The fundamental capabilities of the human visual system, along with ever increasing imaging sensor
and digital image generation bandwidths, require HMD spatial resolutions greater than SXGA. For this
reason, the US Air Force Research Laboratory has contracted Microvision Inc. to build the first known
HDTV HMD (1920 � 1080 pixels in a noninterlaced 60 Hz frame refresh digital video format). The
initial system will be a monocular 100-fL monochrome green fighter pilot training HMD with growth-
to-daylight readable binocular color operation.

An effort of 30 years has only scratched the surface of the HMD’s pilot vehicle interfacing potential.
It is expected that the RSD will open new avenues of pilot-in-the-loop research and enable safer, more
effective air and ground operations.

Defining Terms

Optomechatronic: Application of integrated optical, mechanical, and electronic elements for imaging
and display.

Helmet-Mounted Display (HMD): Head-Up Display (HUD); Head-Down Display (HDD).
ROSE: Raster Optical Scanning Engine.
Virtual Image Projection (VIP): An optical display image comprised of parallel or convergent light

bundles.
Image Viewing Zone (IVZ): The range of locations from which an entire virtual image is visible while

fixating any of the image’s boundaries.
Optical Exit Pupil (OEP): The aerial image formed by all compound magnifiers, which defines the IVZ.
Retinal Scanning Display (RSD): A virtual image projection display which scans a beam of light to form

a visible pattern on the retina. The typical 15-mm OEP of a helmet-mounted RSD OEP permits
normal helmet shifting in operational helicopter environments without loss of image. Higher-g
environments may require larger OEPs.

Virtual Retinal Display (VRD): A subcategory of RSD specifically characterized by an optical exit pupil
less than 2 mm, for Low Vision Aiding (LVA), vision testing, narrow field of view, or “agile” eye-
following OEP display systems. This is the most light-efficient form of RSD.
© 2001 by CRC Press LLC

Acknowledgments

This work was partially funded by U.S. Army Contract No. DAAH23-99-C-0072, Program Manager,
Aircrew Integrated Systems, Redstone Arsenal, AL. The author wishes to express appreciation for the
outstanding efforts of the Microvision Inc. design and development team, and for the guidance and
support provided by the U.S. Army Aviation community, whose vision and determination have made
these advances in high-performance pilotage HMD systems possible.

References

1. Rash, C. E., Ed., Helmet-Mounted Displays: Design Issues for Rotary-Wing Aircraft, U.S. Army
Medical Research and Materiel Command, Fort Detrick, MD, 1999.

2. Kollin, J., A retinal display for virtual environment applications, SID Int. Symp., Digest of Technical
Papers, pp. 827–828, May 1993.

3. de Wit, G. C., A Virtual Retinal Display for Virtual Reality, Doctoral Dissertation, Ponsen & Looijen
BV, Wageningen, Netherlands, 1997.

4. Gross, A., Lorenson, C., and Golich, D., Eye-safety analysis of scanning-beam displays, SID Int.
Symp. Digest of Technical Papers, pp. 343–345, May 1999.

5. Urey, H., Nestorovic, N., Ng, B., and Gross, A., Optics designs and system MTF for laser scanning
displays, Helmet and Head Mounted Displays IV, Proc. SPIE, 3689, 238–248, 1999.

6. Rash, C. E., Harding, T. H., Martin, J. S., and Beasley, H. H., Concept phase evaluation of the
Microvision Inc., Aircrew Integrated Helmet System, HGU-56/P, virtual retinal display. Fort
Rucker, AL: U.S. Army Aeromedical Research Laboratory, USAARL Report No. 99-18, 1999.

Further Information

Microvision Inc. Website: www.mvis.com.
© 2001 by CRC Press LLC

Dennis L. Schmickley “Night Vision Goggles”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

7
Night Vision Goggles

7.1 Introduction
NVG as Part of the Avionics Suite • What Are NVG? • History
of NVG in Aviation

7.2 Fundamentals
Theory of Operation • Amplification of the Night Scene •
NVG Does Not Work without Compatible Lighting! •
Integration into Aircraft

7.3 Applications and Examples
Gen III and AN/AVS-6 ANVIS • Gen II and
AN/PVS-5 NVG • Cat’s Eyes • NVG HUD • ANVIS
HUD • Panoramic NVG • Low Profile NVG • Integrated

 Systems • Testing and Maintaining
the NVG • Lighting Design Considerations • Types
of Filters/Lighting Sources • Evaluating Aircraft
Lighting • Measurement Equipment • Nighttime
Illumination — Moon phases • NVG in Civil Aviation

References
Further Information

7.1 Introduction

7.1.1 NVG as Part of the Avionics Suite
Visual reference to the aviator’s outside world is essential for safe and effective flight. During the daylight
hours and in visual meteorological conditions (VMC), the pilot relies heavily on the out-the-windshield
view of the airspace and terrain for situational awareness. In addition, the pilot’s visual system is aug-
mented by the avionics which provide communication, navigation, flight control, mission, and aircraft
systems information. During nighttime VMC, the pilot can improve the out-the-windshield view with
the use of night vision goggles (NVG). NVG lets the pilot see in the dark during VMC conditions!

This chapter deals with NVG for aviation applications. There are many various nonaviation applica-
tions of NVG that are not addressed herein: NVG for personnel on the ground or underwater, and for
ground vehicles and sea vehicles.

7.1.2 What Are NVG?

NVG are light image intensification () devices that amplify the night-ambient-illuminated scenes by a
factor of 104. For this application “light” includes visual light and near infrared. The development of the
microchannel plate (MCP) allowed miniature packaging of image intensifiers into a small, lightweight,
helmet-mounted pair of goggles. With the NVG, the pilot views the outside scene as a green phosphor
image displayed in the eyepieces.

I2

I2

I2

I2

Dennis L. Schmickley
Boeing Helicopter Co.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Various terms are associated with NVG type equipment:

NVG — general term of any device, usually head-worn and binocular
 — Image Intensifier type of sensor device used in NVG

ANVIS — Aviator’s Night Vision Imaging System; a type of NVG designed for aviators
NVIS — Night Vision Imaging System; a general class of NVG including ANVIS
Gen II—Second-generation intensifier technology utilizing MCP and multi-alkali photocathode which

enabled construction of AN/PVS-5 NVG
Gen III—Third-generation intensifier technology utilizing improved MCP and galium arsenide pho-

tocathode which enabled construction of AN/AVS-6 ANVIS
NVG HUD — Night Vision Goggle with a Head-Up Display attached
HMD — Helmet-Mounted Display; in this chapter it includes NVG HUD
PNVG — Panoramic Night Vision Goggle; usually about 100� FOV
LPNVG — Low-Profile Night Vision Goggle; usually conforms to face
AGC — Automatic gain control

7.1.3 History of NVG in Aviation

7.1.3.1 1950s

In the 1950s there was considerable and diverse research on night image intensification as reported at
the Image Intensifier Symposium.4 The applications included devices for military sensing and for astron-
omy and scientific research, but were not directed specifically to head-mounted pilotage devices. The
U.S. Army first experimented with T-6A infrared driving binocular in helicopters in the late 1950s,
according to Jenkins and Efkeman.2 The binocular device was a near infrared (IR) converter which
required an IR filtered landing light for the radiant energy, and was not satisfactory for aviation. In the
late 1950s, the first continuous-channel electron multiplier research was being conducted at the Bendix
Research Laboratories by George Goodrich, James Ignatowski, and William Wiley. The invention of the
continuous-channel multiplier was the key step in the development of the microchannel plate (Lampton1).

7.1.3.2 1960s

In the early 1960s first-generation tubes were developed. The tubes allowed operation as a passive system,
but the size of the three-stage tubes was too large for head-mounted applications. Passive refers to needing
no active projected illumination; the system can operate using the ambient starlight illumination, thus the
name “starlight scope” from the Vietnam era foot soldier’s sniper scope. In the late 1960s, the production of
the microchannel plates, used in the second-generation wafer technology tubes, allowed night vision devices
to be packaged small enough and light enough for head-mounted applications. Thus, in the late 1960s and
early 1970s the U.S. Army Night Vision and Electro-Optics Laboratory (NV&EOL) used Gen II tubes to
develop NVGs for foot soldiers, and some of these NVGs were tried by aviators for night flight operations.

7.1.3.3 1970s

In 1971 the USAF began limited use of the SU-50 Electronic Binoculars. In 1973 the Army adopted the
Gen II AN/PVS-5 as an “interim” NVG solution for aviators, although there were known deficiencies in
low-light-level performance, weight, visual facemask obstruction, and refocusing (due to incompatibility
with cockpit lighting systems). The aviator’s night vision imaging system (ANVIS) was the first NVG
developed specifically to meet the visual needs of the aviator. The NV&EOL started ANVIS development
in 1976 utilizing third-generation image intensifier technology and requiring high-performance, light-
weight, and improved reliability and maintainability.

7.1.3.4 1980s

Two versions of the ANVIS were introduced into military aviation:

• AN/AVS-6(V)1 for most helicopters; fits onto the helmet with a centerline mount.

• AN/AVS-6(V)2 for AH-1 Cobra only; fits onto the helmet with an offset mount.

I2

I2

I2

I2

I2

I2

© 2001 by CRC Press LLC

ANVIS operation would not have been feasible or safe in the aircraft if the cockpit lighting had remained
the traditional red-lighted or white-lighted incandescent illumination. In 1981 the U.S. Army released an
Aeronautical Design Standard, ADS-23,5 to establish baseline requirements for development of cockpit lighting
to be compatible with ANVIS. In 1986 the Joint Aeronautical Commanders Group (JACG) released a Tri-Service
specification, MIL-L-85762,7 which defined standards for designing and measuring ANVIS-compatible lighting.
GEC-Marconi introduced a Gen III projected view NVG, called the “Cat’s Eye” for use in the AV-8 Harrier.

An updated MIL-L-85762A8 was released in 1988 in which it defined NVIS as a general term (replacing
the specific ANVIS term) and expanded the lighting requirements to accommodate various type NVIS.
The controversial utilization of the AN/PVS-5 continued in aviation pending full fielding of ANVIS. Based
upon a series of nighttime accidents often involving NVGs, a Congressional Hearing was convened (1989)
to review the safety and appropriateness of NVGs in military helicopters. ANVIS was deemed necessary.

7.1.3.5 1990s

Head-up flight information symbology was desired, along with the out-the-window view, within the
NVG. Integrating the symbology and imagery resulted in a new type of helmet-mounted display (HMD)
referred to as the “NVG HUD”. Two types of NVG HUDs were placed in service:

• AN/AVS-7 NVG HUD was installed on CH-47D and HH-60 aircraft.

• Optical Display Assembly (ODA) NVG HUD was installed on OH-58D.

NVG-compatible cockpit lighting was incorporated in high-speed fixed-wing aircraft, but an additional
requirement evolved for NVG to be safe during pilot ejection. The AN/AVS-9 (model F4949) was developed
for the USAF for ejection capability. In an effort to provide a greater field of view (FOV) than the normal 40�

for NVG, the USAF developed a Panoramic Night Vision Goggle (PNVG) to provide about 100� FOV. Several
other development programs attempted to reduce the size of the large protrusive goggle optics. Versions of
the Low Profile Night Vision Goggle (LPNVG) folded the optics to fit conformally around face. Several
integrated helmet development programs incorporated integral devices and electronic projected display
systems. In the early 1990s, several civilian helicopter operators expressed interest in utilizing NVG. Ongoing
investigations into the use of NVG in civil aviation delved into applications, safety, and FAA certification.

7.2 Fundamentals

7.2.1 Theory of Operation

An image intensifier is an electronic device that amplifies light energy. Light energy, photons, enter into
the device through the objective lens and are focused onto a photocathode detector that is receptive
to both visible and near-infrared radiation. Generation III devices use gallium arsenide as the detector.
Due to the photoelectric effect, the photons striking the photocathode emit a current of electrons. Because

FIGURE 7.1 Electron amplification in a microchannel.1

I2

I2

the emitted electrons scatter in random directions, a myriad of parallel tubes (channels) is required to
provide separation and direction of the electron current to assure that the final image will have sharp
resolution. Each channel amplifier is microscopic — about 15 �m in diameter. A million or so micro-
channels are bundled in a wafer-shaped array about the diameter of a quarter. The wafer is called a
microchannel plate (MCP). The thickness of the MCP, which is the length of the channels, is about 0.25
in. Each channel is an electric amplifier. A bias potential of about 1000 V is established along the tube,

FIGURE 7.2 Double glass draw for MCP manufacture1.
© 2001 by CRC Press LLC

and each electron produced by the photoelectric effect accelerates through the tube toward the anode.
When an electron strikes other electrons in the coated channel, they are knocked free and continue down
the tube hitting other electrons in a cascade effect. The result of this multiplication of electrons is a greatly
amplified signal. The amplified stream of electrons finally hits a phosphor-type fluorescent screen which,
in turn, emits a large number of photons creating an image.

The microchannel plate is a solid-state light amplifier. The intensity of the image is a product of the
original signal strength (i.e., the number of photons in the night scene) and the amplification gain within
the channel. The fine resolution of the total image is a product of the pixel size from the MCP array and
the focusing optics.

The manufacture of MCPs requires complex processes which are dependent on a two-draw glass
reduction technique. A concentric tube of an outer feed glass and an inner core glass is drawn into a
fine fiber about 1 mm in diameter. Then a bundle of thousands of the fibers is draw to form a multiple
fiber about 50 mm in diameter. The core glass is etched out leaving a matrix of hollow glass tubes.
Wafer sections are sliced, and the wafers are plated with the metallic coatings necessary for the signal
amplification.

The finished product is an NVG which contains an MCP packaged inside an optical housing. The
housing will contain objective lens and eyepieces appropriate for the NVG’s utilization. For aviators using
the NVG for pilotage, a one-to-one magnification is required. The pilot’s perceived NVG image of the
outside world must be equal to the actual size of the unaided-eye image of the outside real world to
provide natural motion and depth perception. The image is displayed to the observer on an energized
viewing screen at about 1 footLambert (fL). Screens may be the P20 or P25 phosphors. The light
amplification may be 2000 or more, and to prevent phosphor damage, an automatic gain control (AGC)
circuit limits the gain in high ambient conditions.

7.2.2 Amplification of the Night Scene

Second-generation image intensifiers utilize multi-alkali photocathodes that are sensitive in the visible
and near-IR bandwidth of 400–900 nm. Gen II utilization is generally limited to a minimum of quarter-
moon or clear sky illumination (10�3 to 10�4 fc).

Third-generation image intensifiers utilize galium arsenide (GaAs) photocathodes which are more
sensitive than Gen II and have a bandwidth of 600–900 nm. Gen III NVIS can be used in starlight and
overcast conditions (10�4 to 10�5 fc).

FIGURE 7.3 Typical NVIS image intensifier tube and optics.

I
2

© 2001 by CRC Press LLC

7.2.3 NVG Does Not Work without Compatible Lighting!

NVG lighting compatibility is required for effective NVG use by pilots. If the cockpit lighting is not
compatible and it emits energy with spectral wavelengths within the sensitivity range of the night vision
goggles, the lighting will be amplified by the NVG and will overpower the amplification of the lower

FIGURE 7.4 Photocathode sensitivity.

FIGURE 7.5 Illumination from the night sky.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

illumination in the outside visual scene.

Compatibility can be defined as a lighting system that does not render the NVG useless or hamper the
crew’s visual tasks (with or without NVG).

NVIS compatibility permits a crew member to observe outside scenes through vision goggles while
maintaining necessary lighted information in the crew station. The Gen III NVIS are insensitive to blue/green
light, so the cockpit lighting can be modified with blue cutoff filtering to reduce emitted energy in the red
and near-IR regions to achieve compatibility. The complementary minus-blue coatings on the NVIS objec-
tive lens provide a sharp cutoff filter to block any red or near-IR light. Blue-green lighting allows external
viewing through the ANVIS and internal viewing of the instruments by using the “look-around” technique.
The ANVIS look-around design allows the pilot visual access (with unaided eyes) into the blue-green lighted
cockpit without head movement. NVIS compatibility requirements are defined by MIL-L-85762.

MIL-L-85762 lighting requirements, and by default the various NVIS, have been categorized into Types
and Classes to match the appropriate cockpit lighting system depending on the type of NVIS being used
in the aircraft. The original issue of MIL-L-85762 was based on recommendations for ANVIS compatibility
(Schmickley7) and addressed lighting only for ANVIS (Type I, Class A). MIL-L-86762A added Type II and
Class B NVIS. The USAF is in the process of defining a Class C NVIS. A rationale was published to aid
manufacturers and evaluators on interpreting the requirements (Reetz9).

Type I: Type I lighting components are those lighting components that are compatible with Direct
View Image NVIS. Direct View Image NVIS is defined as any NVIS using Generation III
image intensifier tubes which displays the intensified image on a phosphor screen in the
user’s direct line of sight — such as the ANVIS.

Type II: Type II lighting components are those lighting components that are compatible with Pro-
jected Image NVIS. Projected Image NVIS is defined as any NVIS using Generation III
image intensifier tubes which projects the intensified image on a see-through medium that
reflects the image into the user’s direct line of sight — such as the Cat’s Eyes.

Class A: Class A lighting components are those lighting components that are compatible with NVIS
using a 625-nm minus-blue objective lens filter which results in an NVIS sensitivity lens as
shown in the figure below. (The standard AN/AVS-6 ANVIS are equipped with 625-nm
minus-blue filters.)

Class B: Class B lighting components are those lighting components that are compatible with NVIS
using a 665-nm minus-blue objective lens as shown in the figure below. Class B lighting
allows red and yellow colors in cockpit displays, but the consequence is a reduced Gen III
NVIS sensitivity to the outside visual scene. The 665-nm minus-blue filter reduces the NVIS
sensitivity by 8 to 10% of the Class A NVIS in moonless conditions.

FIGURE 7.6 Type I (direct view). ANVIS with “look-around” vision into the cockpit.

FIGURE 7.7 Type II (projected image). Cat’s Eye with “look-through” outside viewing and “look-around” vision
into the cockpit.

FIGURE 7.8 Typical Class A blue-green lighting and 625-nm minus-blue coating on NVIS.

FIGURE 7.9 Typical Class B lighting allows blue-green, yellow, and red with 665-nm minus-blue coating on NVIS.
© 2001 by CRC Press LLC

7.2.4 Integration into Aircraft

The integration of NVIS into an aircraft crew station usually requires very little modification with respect
to the crew compartment space (volume). The primary aircraft requirements are

1. Adequate helmet and NVIS motion envelope;
2. Acceptable visual fields of view (FOV) and windshield transparency in the NVIS range;
3. Compatible cockpit lighting and displays;
4. Compatible interior (cabin) and exterior lighting.

The alerting quality of warning/caution/advisory color coding can be diminished with NVIS compatible
(Class A) cockpit lighting. Audio or voice warning messages may be considered to augment the alerting
characteristics.

The NVIS is normally a self-contained standalone sensor that is powered by small batteries. The cost of
a typical NVIS unit is $10,000, whereas the cost of an aircraft-mounted IR sensor system is 10 to 20 times
that amount. The integration of an NVG HUD requires more modification to the aircraft than the NVIS.

Incorporation of NVIS produces some advantages and some disadvantages for the aircraft and mis-
sions. NVIS advantages usually outweigh disadvantages. The advantages are

• NVIS allows 24-hour VFR operations (pilots say: “I’d rather fly with them.”)

• Enhanced situation awareness; pilots can see the terrain.

The disadvantages are

• Limited instantaneous FOV which requires deliberate head movement;

• Neck strain and fatigue (due to increased helmet weight & increased head movement);

• Cost of equipment (NVIS � compatible lighting);

• Pilot training; currency; proficiency;

• Not useful in IMC weather or fog;

• Safety — if there is inadequate training or overexpectations of system capability.

There are known limitations of the NVIS imposed by the limited FOV. Training is required to emphasize
the required head motion scanning to compensate for the FOV. Depth perception is sometimes reported
as a major deficiency, although it is most likely that inadequate motion perception cues due to limited
peripheral vision are a contributor to this perception.

Military training programs have been implemented to exploit the capabilities of the NVIS sensor for
various types of covert missions, and to improve safety and situation awareness. Curricula have been
developed “…to assure that there is an appropriate balance of training realism and flight safety.” Training
programs include visual aids, laboratory, and simulation to cover:

• Theory of operation;

• FOV, FOR, adjustment;

• Moon, weather, ambient conditions;

• Different visual scans, head motion.

7.3 Applications and Examples

7.3.1 Gen III and AN/AVS-6 ANVIS

To aid night flying, in the 1980s the Army developed the Aviator’s Night Vision Imaging System (ANVIS)
which is a third-generation (Gen III) NVG. The ANVIS is designated as AN/AVS-6. ANVIS is lightweight
(a little over 1 lb) and mounts on the pilot’s helmet. The 25-mm eye relief allows the pilot to see around
the eyepieces for viewing the instruments in the cockpit. The Gen III response characteristics are more
sensitive than Gen II and the spectral range covers 600 to 900 nm. This spectral range takes advantage

I2

I2
© 2001 by CRC Press LLC

of the night sky illumination in the red and IR. Luminance gain is 2000 or greater. The FOV is 40° circular
and the resolution is about 1 cy/mr. The total weight is 1.2 to 1.3 lb.

There are several adjustment features on the ANVIS to accommodate each pilot’s needs:

• Inter-ocular adjustment

• Tilt adjustment

• Vertical adjustment

• Eye relief (horizontal) adjustment

• Focus adjustment

• Diopter adjustment

The pilot can also flip up the ANVIS to a “helmet stow” position. The mount has a break-away feature
in case of a high g load or crash.

Early production models of ANVIS units produced system luminance gains of 2000 fL/fL. With
improvements in manufacturing techniques and yields, and with increased photocathode sensitivities,
newer units have system gains of over 5000. The Army procured large lot quantities of AN/AVS-6
through “omnibus” purchase orders. Omni IV and Omni V AN/AVS-6 have system luminance gains of
5500. The luminance gains of the intensifiers may be 10,000 to 70,000, depending on the ambient
illumination being amplified, but with optics and system throughput losses, the overall system gains
are 5000�. Presently, the two major suppliers in the U.S. for AN/AVS-6 are ITT and Litton, and the
Army splits the procurement of the Omni lots. Adaptations and improved versions of the AN/AVS-6
include the AN/AVS-8 with a 45� FOV, and the AN/AVS-9 which has a front-mounted battery to allow
use in ejection seats. The AN/AVS-9 also has a “leaky green” sensitivity to allow viewing of the HUD
symbology.

7.3.2 Gen II and AN/PVS-5 NVG

The generation II AN/PVS-5 is outdated and is not now recommended for aviators. The AN/PVS-5 is
discussed here because it was the most common device allowing night flying with NVG aided vision. The
AN/PVS-5A provided Army ground forces with enhanced night vision capability. Later, pilots used the
NVG to fly helicopters. Tests indicated that pilots using NVG could fly lower and faster than pilots without
NVG, and concluded that NVG provided considerable improvement over unaided, night-adapted vision.

FIGURE 7.10 ANVIS adjustments.17
© 2001 by CRC Press LLC

The AN/PVS-5A weighs 2 lbs and has a full face mask. Wearing these NVG requires the pilot to make
all visual observations via the NVG, including cockpit instrument scanning. The pilot must move his
head and refocus the lens to read the instruments. Annoyance, discomfort, and fatigue result from these
restrictions.

The spectral range of the Gen II NVG is from 350 to 900 nm which includes the entire visual spectrum
(380–760) plus some near-IR coverage. Most 1970s cockpits had red incandescent lamp lighting which
had large red and IR emissions. The NVG’s automatic gain control (AGC) shuts down the NVG in the
presence of large amounts of radiant energy in the goggles’ range. Therefore, the use of Gen II NVG
requires that all visible lighting must be reduced below the pilot’s visual threshold in order that the
lighting does not degrade the NVG operation. Commonly, this is accomplished by extinguishing the
lights or using a “superdim” setting. Under these conditions, crew members without NVG cannot read
the cockpit instruments. Crew members with NVG must refocus from outside viewing to read the
instruments. Research in the U.S. and U.K. on shared-aperatures and shared-lens attempted to provide
viewing of the cockpit instruments with the NVG. Modifications to the face mask to provide peripheral
and in-cockpit vision produced the “cut-away” mask.

The utilization of AN/PVS-5 NVG in aviation was controversial. The incorporation of NVG into
aviation somewhat repeated the development of aviation itself, with a period of trial and error incor-
poration, sometimes with inadequate or inappropriate equipment, producing some pioneering break-
throughs and some accidents. In the 1980s there were nighttime accidents often involving NVGs. The
Orange County Register published a lengthy investigative article because several of the helicopter crashes
took place within the county.14 A congressional hearing was convened to review the safety and appro-
priateness of NVGs in military helicopters.15 The necessity of NVGs for night flight operations was
confirmed along with an emphasis on better equipment and training. A review of AN/PVS-5 and
AN/AVS-6 testing concluded both were acceptable.16 Since that time, AN/AVS-6 ANVIS has become the
preferred device for aviators.

7.3.3 Cat’s Eyes

The “Cat’s Eye” is a Type II (projected image) Gen III NVIS made by GEC-Marconi, and is standard
in the AV-8 series of Harrier aircraft. The weight is slightly over 1 lb. The two optical combiner lenses
have the image displayed for out-of-the-cockpit viewing. The combiner has see-through capability
to view the aircraft’s HUD. When the pilot is looking at the HUD, the imagery is automatically
turned off to allow visibility of the HUD symbology. The combiner glass see-through transmission is
�30%. The Cat’s Eye has a 25-mm eye relief to allow look-under for cockpit instrument viewing.

FIGURE 7.11 AN/PVS-5A NVG with full face mask.

I2

I2
© 2001 by CRC Press LLC

7.3.4 NVG HUD

Systems termed “NVG HUD” have been produced that add head-up display (HUD) symbology onto the
displayed night vision imagery provided by the NVG. Usually the HUD portion is a CRT image projected
onto a combiner glass mounted in front of one of the NVG objective lens. The symbology displayed is
aircraft information (attitude, altitude, airspeed, navigation data, etc.) that is generated in a processor
box integrated to the aircraft systems.

7.3.5 ANVIS HUD

Honeywell produces the Optical Display Assembly (ODA). The OH-58D that integrates the ODAS also
is one of the few aircraft that provides aircraft power for the NVG (instead of self-contained battery
power). Elbit produces the AN/AVS-7 NVG HUD. Note: The AN/AVS-7 (NVG HUD) should not be
confused with AN/PVS-7 single-tube NVG for ground troops.

7.3.6 Panoramic NVG

Panoramic NVG (PNVG) have been developed for the USAF to provide an increased instantaneous FOV
of the image. Night Vision Corporation developed the PNVG using four AN/PVS-7 image tubes. The
four tubes produce a combined overlapping FOV of 100�.

7.3.7 Low Profile NVG

Low Profile NVG (LPNVG) have been developed for several reasons: to improve the head-borne c.g., to
allow visors, and to reduce possible injury caused by the protrusion of the longer tubes. The depth
is 2 to 3 in. compared to 5 to 6 in. for other NVIS. ITT developed the Modular, Ejection-Rated, Low

FIGURE 7.12 Aircraft symbologgy.

Weight on NVG I2 FOV Application

AN/AVS-7 0.25 lb 33� H � 24� V CH-47, HH-60
ODA ? lb 40� OH-58D

Weight I
2
 FOV Type

PNVG 1.25 lb 100° H � 40° V Direct view optics

I2
© 2001 by CRC Press LLC

profile, Imaging for Night (MERLIN) Aviator Goggle for use by pilots in high-performance fixed-wing
aircraft. Litton produces the AN/AVS-502 LPNVG for multi-role missions (parachute operations, weap-
ons firing). Canadian Air Forces approved the AN/AVS-502 for flight engineers in the cabin where head
clearance and winds are issues. Systems Research Laboratories (SRL) developed the Eagle Eye™ for fixed-
wing and multi-role.

7.3.8 Integrated Systems

 sensors can be incorporated in avionics suites in several ways besides standalone NVG on a crew
member’s helmet. One method is to incorporate an sensor on-board an IR sensor pod to provide
video imagery of either or IR to the crew.

Several integrated helmet designs and future helmet concepts are integrating devices along with
CRT, LCD, and LED helmet-mounted displays.

7.3.9 Testing and Maintaining the NVG

NVIS manufacturers also supply testing and servicing equipment. Examples are the ANV-126 NVG Test
Set, TS-6 Night Vision Device Test Set Kit, TS-4348/UV Night Vision Device Assessor, and the TS-10
Night Vision Leak Test and Purge Kit.

7.3.10 Lighting Design Considerations

NVIS-compatible aircraft interior lighting is essential to allow night flying with NVIS. Interior lighting
consists of primary lighting (instrument and control panels), secondary lighting (task lights, area lights,
floodlights), signals (warning, caution, advisory), and electronic displays.

The key specification that defines NVIS-compatible lighting is MIL-L-85762A. This specification is
unique in that it specifies two independent characteristics for the lighting system:

1. Luminance and chromaticity requirements for visual (unaided eye) viewing in a dark cockpit, and
2. Radiance requirements for limiting any NVIS interference.

Weight I
2
 FOV Type

MERLIN 1.8 lb 35� See-through optics
AN/AVS-502 1.5 lb 40� See-through optics
Eagle EyeTM 1.2 lb 40� See-through optics

FIGURE 7.13 Integrated helmet.

I2

I2

I2

I2

I2
© 2001 by CRC Press LLC

The luminance levels remain approximately the same as traditional red and white lighting systems in
all previous aircraft. The chromaticity requirements generally produce a blue-green lighted cockpit. Four
lighting colors for aviation have been defined in MIL-L-85762A (where and are 1976 UCS chro-
maticity coordinates of the defined color):

NVIS Green A — The color for primary, secondary, and advisory lighting. The chromaticity limits
are within a circle of radius .037 with the center at

NVIS Green B — The color for special lighting components needing saturated color (monochromatic)
for contrast. The chromaticity limits are within a circle of radius .057 with the center at �
.131, � .623.

NVIS Yellow — The color for master caution and warning signals in Class A cockpits. The chromaticity
limits are within a circle of radius .083 with the center at � .274, � .622.

NVIS Red — The color for warning signals in Class B cockpits. The chromaticity limits are within a
circle of radius .060 with the center at � .450, � .550.

Chromaticity and luminance requirements for various types of cockpit lighting and displays and cabin
lighting are listed in Table VIII of MIL-L-85762A.

NVG compatibility is not assured with proper chromaticity coordinates alone. Lights with different
spectral compositions can appear visually as the same color. Similar visual colors are called metamers.
But all colored lights used in the NVG cockpit must have filtering to block almost all the energy in the
600- to 900-nm range. The “NVIS-visible” portion of the lighting emission is to be limited per the NVIS
radiance definition: NVIS radiance (NR) is the integral of the curve generated by multiplying the spectral
radiance of the light source by the relative spectral response of the NVIS.

"Formula 14a” of MIL-L-85762A is used to calculate the NVIS radiance of Class A lighting equipment,
and “Formula 14b” is for the NVIS radiance of Class B equipment.

(Formula 14a)

(Formula 14b)

where:

GA() � relative NVIS response of Class A equipment
GB() � relative NVIS response of Class B equipment
G()max � 1 ma/w
N() � spectral radiance of lighting component (w/cm2 sr nm)
S � scaling factor
dl � 5 nm

For example, to be compatible, a Class A lighting system requirement is to have the blue-green primary
lighting not exceed 1.7 � 10�10 NRA when the lighting produces 0.1 fL luminance. If the lighting
component is actually greater than 0.1 fL when it is measured, the scaling factor S scales the NR to 0.1 fL.

For cockpits where red or multicolor displays are desired, a similar equation for NRB applies to assure
Class B compatibility. Note that “Class B” NVIS must be utilized with a Class B cockpit.

NR requirements for various types of cockpit lighting and displays and cabin lighting are listed in
Table IX of MIL-L-85762A.

All other aircraft lighting, not just the cockpit lighting, must be made compatible with NVG. This
includes stray light from the aircraft’s interior cabin, the aircraft’s exterior lighting system, and any

u
 v

u
 .131, v
 .623.� �

u

v

u
 v

u
 v

NVIS radiance NRA() G 	()max GA 	()SN 	()d	
450

930

��

NVIS radiance NRB() G 	()max GB 	()SN 	()d	
450

930

��
© 2001 by CRC Press LLC

©
 2001 by C

R
C

 Press L
L

C

Chro

TYPE II

Class B

Cd/

(fL)
NVIS
Color r

Cd/
(fL)

NVIS
Color

Pri 0.343
(0.1)

Green A

Same

as

Class A

Sec 0.343
(0.1)

Green A

Illu 0.343
(0.1)

Green A

Co 0.343
(0.1)

Green A

Uti
an

0.343
(0.1)

Green A

Cau
sig

0.343
(0.1)

Green A

Jum 17.2
(5.0)
51.5
(15.0)

Green A

Yellow

Spe
c
i
e
s
c
n
a
l
c
w

0.1 Green B

Wa 51.5
(15.0)

Yellow .274

.450

.622

.550

.083

.060

51.5
(15.0)
51.5

(15.)

Yellow

Red

Ma 51.5
(15.0)

Yellow Same as Class A

N circular area on the 1976 UCS chromaticity diagram for the
spec

m2

u
1 v
1
m2
maticity Requirements (from Table VIII, MIL-L-85762A)

TYPE 1

Class A Class B Class A

Lighting
Component(s) r

Cd/
(fL)

NVIS
Color r

Cd/
(fL)

NVIS
Color r

mary .088 .543 .037 0.343
(0.1)

Green A

Same

as

Class A

.088 .543 .037

ondary .088 .543 .037 0.343
(0.1)

Green A .088 .543 .037

minated Controls .088 .543 .037 0.343
(0.1)

Green A .088 .543 .037

mpartment lighting .088 .543 .037 0.343
(0.1)

Green A .088 .543 .037

lity, work,
d inspection

.088 .543 .037 0.343
(0.1)

Green A .088 .543 .037

tion and advisory
nals

.088 .543 .037 0.343
(0.1)

Green A .088 .543 .037

p lights .088

.274

.543

.622

.037

.083

17.2
(5.0)
51.5
(15.0)

Green A

Yellow

.088

.274

.543

.622

.037

.083

cial lighting
omponents where
ncreased display
mphasis by highly
aturared (mono-
hromatic) color is
ecessary, or
dequate display
ight readability
annot be achieved
ith “GREEN A”

.131 .623 .057 0.343
(0.1)

Green B .131 .623 .057

rning signal .274 .622 .083 51.5
(15.0)

Yellow .274

.450

.622

.550

.083

.060

51.5
(15.0)
51.5
(15.0)

Yellow

Red

.274 .622 .083

ster Caution signal .274 .622 .083 51.5
(15.0)

Yellow Same as Class A .274 .622 .083

ote: and � 1976 UCS chromaticity coordinates of the center point of the specified color area; r � radius of the allowable
ified color; fL � footLamberts; Cd/ � candela/(meter)2.

u
1 v
1
m2

u
1 v
1
m2

u
1 v
1

u
1 v
1
m2

©
 2001 by C

R
C

 Press L
L

C

NV

TYPE II

Class A Class B

Ligh
t Less
: (NRA)

 Not Greater
than: (NRA) fL

 Not Less
than: (NRB)

 Not Greater
than: (NRB) fL

 Pri — 1.7 � 10�10 0.1 Same as
Class A

(see Note) Sec — 1.7 � 10�10 0.1

 Illu — 1.7 � 10�10 0.1

 Com — 1.7 � 10�10 0.1

 Util
lig

— 1.7 � 10�10 0.1

 Cau
lig

— 1.7 � 10�10 0.1

Jum — 5.0 � 10�8 5.0 — 4.7 � 10�8 5.0

Wa — 1.5 � 10�7 15.0 — 1.4 � 10�7 15.0

Ma — 1.5 � 10�7 15.0 — 1.4 � 10�7 15.0

Em — 1.5 � 10�7 15.0 — 1.4 � 10�7 15.0
IS Radiance Requirements (from Table IX, MIL-L-85762-A)

TYPE 1

Class A Class B

ting Components
Not Less

than (NRA)
Not Greater
than: (NRA) fL

Not less
than: (NRB)

Not Greater
than: (NRB) fL

No
than

mary — 1.7 � 10�10 0.1 Same as
Class A

(see Note)ondary — 1.7 � 10�10 0.1

minated Controls — 1.7 � 10�10 0.1

partment — 1.7 � 10�10 0.1

ity, work and inspection
hts

— 1.7 � 10�10 0.1

tion and advisory
hts

— 1.7 � 10�10 0.1

p lights 1.7 � 10�8 5.0 � 10�8 5.0 1.6 � 10�8 4.7 � 10�8 5.0

rning signal 5.0 � 10�8 1.5 � 10�7 15.0 4.7 � 10�8 1.4 � 10�7 15.0

ster Caution Signal 5.0 � 10�8 1.5 � 10�7 15.0 4.7 � 10�8 1.4 � 10�7 15.0

ergency Exit Lighting 5.0 � 10�8 1.5 � 10�7 15.0 4.7 � 10�8 1.4 � 10�7 15.0

©
 2001 by C

R
C

 Press L
L

C

Elec
e
d
(

1.7 � 10�10 0.5 — 1.6 � 10�10 0.5

Elec
e
d
m

2.3 � 10�9 0.5 — 2.2 � 10�9 0.5

1.2 � 10�8 0.5 — 1.1 � 10�8 0.5

HU 1.7 � 10�9 5.0 — 1.6 � 10�9 5.0

N
N
fL

ents, Class B equipment shall meet all Class A requirements of this
response data for Class A equipment, GA(), shall be substituted for
e.
tronic and
lectro-optical
isplays
monochromatic)

— 1.7 � 10�10 0.5 — 1.6 � 10�10 0.5 —

tronic and White
lectro-optical
isplays
ulticolor

— 2.3 � 10�9 0.5 — 2.2 � 10�9 0.5 —

 MAX — 1.2 � 10�8 0.5 — 1.1 � 10�8 0.5 —

D systems 1.7 � 10�9 5.1 � 10�9 5.0 1.6 � 10�9 4.7 � 10�9 0.5 —

RA = NVIS radiance requirements for Class A equipment.
RB = NVIS radiance requirements for Class B equipment.
 = footLamberts.

Note: For these lighting compon
specification. The relative NVIS
GB() to calculate NVIS radianc

external lights such as runway or shipboard lights. Often, exterior lights on military aircraft are extin-
guished to provide covertness. If exterior lights are required during NVG operations, they usually are in
one of two categories:

• Visible and NVG compatible — such as electroluminescent formation lights which are green
visible strips and are not degrading to pilots who are using NVG.

• Invisible and NVG usable — covert IR lights that provide illumination for the pilot using NVG
or allow signaling or alerting to the pilot operating with NVG.

The cabin and cargo compartment interior lighting must be made NVG compatible if the aft crew uses
NVG or if the cabin lighting is seen from the crew station. The cabin compartment in the HH-60Q
“Medevac” helicopter requires white lighting for the medical personnel to attend to patients. The cabin
has blackout curtains to protect the NVG compatibility of the crew station and to block any visual signature
to the outside world.

7.3.11 Types of Filters/Lighting Sources

Aircraft lighting systems use various types of illuminating sources and lamps: incandescent, electrolumi-
nescent, fluorescent, light-emitting diode (LED), liquid crystal display (LCD), and cathode ray tube (CRT).
Cockpit lighting can usually be modified by adding blue or blue-green glass filters. Glass filter companies
and suppliers such as Schott, Corning, Wamco, Hoffman Engineering, and Kopp have produced usable
filters. Usually, plastic filtering has not worked with incandescent sources since IR is transmitted freely,
but Korry has developed a moldable plastic composition for NVG-compatible products. Manufacturers
of filters, measurement equipment, exterior lighting (Grimes, Oxley, Luminescent Systems Inc., et al.) and
interior lighting (Control Products Corp., Korry, Oppenheimer, IDD, Eaton, et al.) can be found through
organizations involved in aircraft lighting such as ALI and SAE.

7.3.12 Evaluating Aircraft Lighting

A qualitative method of evaluating the NVG compatibility of the overall cockpit is available. The method is
a field evaluation that should be conducted on a clear, moonless night with the aircraft parked in a secluded
area away from disturbing light sources. A standard tri-bar resolution target board (e.g., USAF 1951), with
patterns consisting of three horizontal and three vertical bar pairs arranged in decreasing size, is mounted
in front of the aircraft. The resolution pattern is illuminated by the ambient starlight environment. The pilot
(or observer) wears the NVG and views the resolution pattern while looking through the windshield. With
all the aircraft/cockpit lighting extinguished, the pilot first determines the smallest resolvable line pair that
is observed. Then, as each lighting zone or display is turned on, the pilot continues to report the smallest
resolvable line pair. Lighting zones and displays are activated individually and then simultaneously. If the
lighting and displays have no effect on the minimum resolvable pattern observed, then the cockpit is con-
sidered to be compatible with the NVG because there is no impact on goggle performance. Visually observed
reflections from the lighting in the canopy or windshield can also be evaluated for NVG compatibility.
Compatibility usually is demonstrated if the reflections are not apparent when viewed through the NVG.

7.3.13 Measurement Equipment

Laboratory measurements of the aircraft lighting components are obtained to quantify the following
photometric and radiometric characteristics of the light output:

Luminance
Chromaticity
NVIS Radiance

Laboratory measurements use the guidelines of MIL-L-85762A to provide quantitative data to verify
that the lighting components are NVG compatible. Units of radiometric measures are consistent with
© 2001 by CRC Press LLC

terms in other electromagnetic radiant energy applications. The measurements based upon the visual
eye response of the average human observer are termed photometric measurements. Luminance of lighted
cockpit control panel and display presentation is frequently called “brightness.” The color of the light is
also necessary in defining the visual characteristic of the lighted presentations, and spectroradiometric
measurements determine the chromaticity to quantitatively define the color. The typical chromaticity
coordinates used are from the 1976 CIE UCS system.

Radiant energy for the NVIS-weighted response is measured by a radiometer with very low energy
sensitivity. The data is used to calculate the “NVIS Radiance” (as defined in MIL-L-85762) to determine
the compatibility with the pilot’s NVIS device. Some companies that manufacture photometric, radiometric,
and spectroradiometric measurement equipment that can determine visual and NVIS characteristics are:

• Optronic Laboratories, Orlando, FL (http://www.olinet.com/)

• Photo Research, Chatsworth, CA (http://www.photoresearch.com/)

• Instrument Systems, Ottawa, Ontario (http://www.instrumentsystems.com/)

• Gamma Scientific, San Diego, CA (http://www.gamma-sci.com/)

7.3.14 Nighttime Illumination — Moon Phases

Flight planning requires knowledge of current weather conditions and the geography and topography
along the route of the flight plan. For night flights when using NVG, night sky illumination, including
the moon’s phase and position at various times, is very important in planning the NVG flight. Astro-
nomical data is available to determine times of sunrise, sunset, moonrise, moonset, and twilights. Data
is also found for positions of the sun and moon, and on moon phase and illumination. The US Naval

FIGURE 7.14 USAF 1951 Resolution Target.

Radiometric Term Unit Photometric Term SI Unit English Unit

Radiant flux Watt Luminous flux Lumen Lumen
Radiant Watt/steradian Luminous Candela Candela
Intensity Watt/steradian/ Intensity Cd/ FootLambert
Radiance Watt/ Luminance Lux Footcandle
Irradiance Illuminance

m2 m2

m2
© 2001 by CRC Press LLC

Observatory offers a web version of the Multi-year Interactive Computer Almanac (MICA) on the
Observatory’s Astronomical Applications web site, http://aa.usno.navy.mil/AA/. A DOS or Mac version
of the MICA Interactive Astronomical Almanac can also be ordered: NTIS Order No. PB93-500163, 5285
Port Royal Rd., Springfield, VA 22161.

7.3.15 NVG in Civil Aviation

NVG have application to civil aviation. The NVG enhances night VFR situation awareness and obstacle
avoidance by allowing direct vision of the horizon, terrain, shadows, and other aircraft. The use of NVG
does not require the operation to be covert. While NVG were primarily developed for military applica-
tions, NVG are being used in a variety of civilian situations requiring increased night viewing and safe
night flying conditions. The forestry service uses NVG, not only to increase the safety in night fire-fighting
operations, but also to find hot spots not readily seen by the unaided eye. Emergency Medical Services
(EMS) helicopters utilize NVG for navigating into remote rescue sites. Civilian and commercial use of
NVG in aircraft, land vehicles, and ships is growing.

The SAE G-10 Aerospace Behavioral Engineering Technology Committee, Vertical Flight Subcommit-
tee, has been assessing human factors issues associated with NVG for application to civil aviation.

The SAE A-20 Aircraft Lighting Committee has prepared the following Aerospace Recommended
Practices (ARP) documents to allow general aviation design guidance similar to military specifications
and standards which defined NVG-compatible lighting:

ARP4168 — This SAE ARP recommends considerations for light sources for designing NVG-com-
patible lighting.

ARP4169 — This SAE ARP describes the functions and characteristics of NVG filters used in NVG
compatible lighting.

ARP4967 — This SAE ARP covers design considerations for NVIS-compatible panels (also known as
“integrally illuminated information panels” or “lightplates’’). Panels may utilize incan-
descent, electroluminescent (EL), or light-emitting diode (LED) sources that are filtered
to meet requirements specified in MIL-L-85762.

ARP4392 — This SAE ARP describes the recommended performance levels for NVIS-compatible
aircraft exterior lighting equipment. Category I lights are compatible to be viewed by
NVIS. Category II lights are illuminators to allow NVIS viewing of the surroundings.
The “lights” may not be in the visible spectrum.

The FAA has conducted several studies and requested recommendations for civil application of NVG
(Green19–22). The primary emerging philosophy for the incorporation of NVG into civil aviation is that
“NVG do not enable flight’’. The use of NVG will not enable any mode of flight which cannot be flown
visually within the framework of the existing regulatory authority.

Because civil aviation does not have the regimented control of pilots and aircraft as in the military,
there is a danger to the public if untrained operators fly in ill-equipped, unregulated, and noncompatible
aircraft. Therefore, minimum civil regulations and standards must be imposed. The future integration
of NVG use in civil aviation will depend on the following key issues:

1. Limiting the device to Gen III;
2. Modification of cockpit lighting;
3. Modification of interior lighting;
4. Modification of exterior lighting;
5. Establishing training programs;
6. Updating FARs 61, 91, 135, et al.

Civil aviation should limit the Night Vision Device to Generation III ANVIS. The military experience
has demonstrated that an NVG made for aviators is necessary. The third-generation sensor is preferred
for starlight sensitivity. Gen II NVG with 625-nm minus-blue filters will work with MIL-L-85762A

I2
© 2001 by CRC Press LLC

compatible lighting, but the filters reduce Gen II effectiveness. Without MIL-L-85762A lighting, the NVG
Automatic Gain Control (AGC) can give a false sense of compatibility.

Cockpit lighting for civil aviation will have to be NVG compatible. All nighttime lighting requires
NVG-compatible filtering. That normally includes control panel lightplates, numeric display read-outs,
Warning/Caution/Advisory (W/C/A) legends, floodlights, flashlights, and electronic displays (CRTs,
LCDs, LEDs). The MIL-L-85762A approach yields best compatibility results. An integral approach yields
better lighting, although existing equipment can be modified with add-on bezels or filters. These add-
ons can block viewing or reduce daylight readability.

Color coding of W/C/A legends (if red warning lights are utilized) and use of multicolor electronic
displays (e.g., weather radar) must be limited to the use of Class B NVG with a 665-nm minus-blue filter.

Cabin and interior lighting for civil aviation will have to be NVG compatible. The cabin and cargo
compartment interior lighting must be made NVG compatible, or else the compartment and lighting
must be shielded from the cockpit. If the compartment is not isolated from the cockpit, then the
passengers and crew must not operate carry-on lighting sources that are not NVG compatible. The carry-
on equipment may include radios, television, computers, recorders, CD players, cellular phones, and
flashlights. Also, smoking should be prohibited because smoking produces a noncompatible glow.

Exterior lighting for civil aviation will have to be NVG compatible. At present, NVG exterior lighting,
including the ARP4392 exterior lighting, is not compliant with the Federal Aviation Regulations (FAR)
for “see and be seen” navigation and anticollision lights necessary for civil aviation VFR flight. Invisible
(covert) lighting will not be allowed as the only lighting for civil aviation. It will be necessary to develop
and approve standards for exterior lighting which will be

• Visible (blue-green) to other aircraft VFR pilots not using NVG;

• Visible and NVG compatible (not degrading) to other aircraft VFR pilots who are using NVG; and

• NVG compatible (not degrading) to allow the pilot of the aircraft to operate with NVG.

New training systems will have to be established to support NVG use in civil aviation. Civilian pilots
utilizing NVG will have to have minimum ground and flight training similar to that developed within
the military. The basic ground training will include the theory of device, NVG limitations, NVG
adjustments, nighttime moon and starlight illumination, FOV, and different visual scan and head motion
techniques.

The FAA will have to establish certification and standards of NVG use in civil aviation. In order to
allow NVG utilization in civil aviation, the FAA will have to modify regulations for pilot certification and
ratings (FAR 61), equipment and flight rules (FAR 91), operating limitations (FAR 135), and airworthiness
standards for various aircraft types (FAR 27, 29, etc.). Authority to operate with NVG may be documented
through FAR, Special Federal Aviation Regulation (SFAR), Advisory Circular (AC), Type Certificate (TC),
Supplemental Type Certificate (STC), Technical Standards Orders (TSO), Kinds of Operations List (KOL),
and Proposed Master Minimum Equipment List (PMMEL).

References

1. “The Microchannel Image Intensifier,” Michael Lampton, Scientific American, Vol. 245, No. 5,
November 1981, pp 62–71.

2. “Development of an Aviator’s Night Vision Imaging System (ANVIS),” Albert Efkeman and Donald
Jenkins, presented at SPIE Int. Tech. Symp. Exhibit, July 28–August 1, 1980, San Diego, CA.

3. TC 1-204 Night Flight Techniques and Procedures, U.S. Army.
4. Image Intensifier Symposium (Proceedings), U.S. Army Engineer Research and Development Lab-

oratories, October 1958.
5. “Aircrew Station Lighting for Compatibility with Night Vision Goggle Use,” ADS-23, Aeronautical

Design Standard, U.S. Army Aviation Research and Development Command, May 1981.
6. “Aircraft Lighting Requirements for Aviator’s Night Vision Imaging System (ANVIS) Compatibil-

ity,” Dennis L. Schmickley, Rep. No. NADC-83032-60, Naval Air Development Center, April 1983.

I2
© 2001 by CRC Press LLC

7. “Lighting, Aircraft, Interior, Aviator’s Night Vision Imaging System (ANVIS) Compatible,” MIL-
L-85762, Military Specification, January 1986.

8. “Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible’’, MIL-L-85762A,
Military Specification, August 1988.

9. “Rationale Behind the Requirements Contained in Military Specifications MIL-L-85762 and MIL-
L-85762A,” Ferdinand Reetz, III, Rep. No. NADC-87060-20, Naval Air Development Center,
September 1987.

10. “Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible,” ASC/ENFC 96-
01, Interface Document, March 1996.

11. “Rationale Behind the Requirements Contained in ASC/ENFC 96-01 Lighting, Aircraft, Interior,
Night Vision Imaging System (NVIS) Compatible and Military Specification MIL-L-85762,” James
C. Byrd, Wright Patterson AFB, April 1996.

12. “Night Lighting and Night Vision Goggle Compatibility,” Alan R. Pinkus, AGARD Lecture Series
No. 156, Advisory Group for Aerospace Research and Development, North Atlantic Treaty Orga-
nization, April 1988.

13. “Aviator’s Night Vision Imaging System AN/AVS-6(V)1, AN/AVS-6(V)2,” MIL-A-49425(CR), Mil-
itary Specification, November 1989.

14. “Death in the Dark,” Edward Humes, The Orange County Register, CA, December 4, 1988.
15. “Night Vision Goggles,” Hearing before the Investigations Subcommittee of the Committee on

Armed Services, House of Representatives, held March 21, 1989, U.S. Government Printing Office,
Washington, D.C.

16. “Review of Testing Performed on AN/PVS-5 and AN/AVS-6 Aviation Night Vision Goggles,” Office
of the Director, Operational Test and Evaluation, June 1989.

17. “Helicopter Flights with Night Vision Goggle — Human Factors Aspects,” Michael S. Brickner,
NASA Technical Memorandum 101039, March 1989.

18. “Review of the use of NVG in Flight Training,” rep. for the Deputy Secretary of Defense, July 1989.
19. “Rotorcraft Night Vision Goggle Evaluation,” David L. Green, Rep. DOT/FAA/RD-19/11.
20. “Civil Use of Night Vision Devices — Evaluation Pilot’s Guide Part I,” David L. Green, Rep.

FAA/RD-94/18, July 1994.
21. “Civil Use of Night Vision Devices — Evaluation Pilot’s Guide Part II,” David L. Green, Rep.

FAA/RD-94/19, July 1994.
22. “Assessment of Night Vision Goggle Workload — Flight Test Engineer’s Guide,” David L. Green,

Rep. FAA/RD-94/20, July 1994.
23. “Night Vision Goggle (NVG) Filters,” SAE Aerospace Recommended Practice ARP4169, February 1989.
24. “Night Vision Goggle (NVG) Compatible Light Sources,” SAE Aerospace Recommended Practice

ARP4168, February 1989.
25. “Lighting, Aircraft Exterior, Night Vision Imaging System (NVIS) Compatible,” SAE Aerospace

Recommended Practice ARP4392, June 1993.
26. “Night Vision Imaging Systems (NVIS) Integrally Illuminated Information Panels,” SAE Aerospace

Recommended Practice ARP4967, March 1995.

Further Information

• ‘‘IESNA Lighting Handbook,” published by The Illuminating Engineering Society of North
America, 120 Wall Street, NYC, NY 10005. (http://www.iesna.org/)

• US Army Night Vision & Electronics Directorate (NVESD), Ft. Belvoir, VA

• Aerospace Lighting Institute, Clearwater, FL (http://www.aligodfrey.com/)

• Commission Internationale de l’Eclairage (International Commission on Illumination).
(http://www.ping.at/cie/)

• Society of Automotive Engineers [A-20 and G-10 committees]. (http://www.sae.org/)
© 2001 by CRC Press LLC

Douglas W. Beeks “Speech Recognition and Synthesis”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

8
Speech Recognition

and Synthesis

8.1 Introduction.
8.2 How Speech Recognition Works:

A Simplistic View
Types of Speech Recognizers • Vocabularies • Modes of
Operation for Speech Recognizers • Methods of Error
Reduction

8.3 Recent Applications
8.4 Flight Deck Applications

Navigation Functions • Communication
Functions • Checklist

Defining Terms
References
Bibliography
Further Information

8.1 Introduction

The application of speech recognition (SR) in aviation is rapidly evolving and moving toward more
common use on future flightdecks. The concept of using SR in aviation is not new. The use of speech
recognition and voice control (VC) has been researched for more than 20 years, and many of the proposed
benefits have been demonstrated in varied applications. Continuing advances in computer hardware and
software are making the use of voice control applications on the flightdeck more practical, flexible, and
reliable. There is little argument that the easiest and most natural and ideal way for a human to interact
with a computer is by direct voice input (DVI).

While speech recognition has improved over the past several years, speech recognition has not reached
the level of capability and reliability of one person talking to another. Using SR and DVI in a flightdeck
atmosphere likely brings to mind thoughts of the computer on board the starship Enterprise from the
science fiction classic Star Trek, or possibly of the HAL9000 computer from the movie 2001: A Space
Odyssey. The expectation of a voice control system like the computer on the Enterprise and the HAL9000
computer, is that it be highly reliable, work in adverse and stressful conditions, be transparent to the
user, and understand its users accurately without having to tailor their individual speech and vocabulary
to suit the system. Current speech recognition and voice control systems are not able to achieve this level
of performance expectations, although the ability and flexibility of speech recognition and its application
to voice control has increased over the past few years. Whether or not a speech recognition system will
ever be able to function to the level of one person speaking to another remains to be seen.

Douglas W. Beeks
Rockwell Collins
© 2001 by CRC Press LLC

The current accuracy rate of speech recognition is in the lower to mid 90% range. Some speaker-
dependent systems, and generally those with small vocabularies, have shown accuracy rates into the upper
90% range. While at first glance that might sound good, consider that with a 90% accuracy rate, 1 in 10
words will be incorrectly recognized. Also consider that this 90% and greater accuracy may be under
ideal conditions; many times this high accuracy rate is achieved in a controlled and sterile lab environment.
Under actual operating conditions, including cockpit noise, random noises, bumps and thumps, multiple
people talking at once, etc. the accuracy rate of speech recognition systems can erode significantly.

Currently, several military applications are planning on using SR to provide additional methods to
support the Man-Machine Interface (MMI) to reduce the workload on the pilot in advanced aircraft.
Boeing is incorporating SR into the new Joint Strike Fighter, and the Eurofighter Typhoon is also adding
SR capabilities to its aircraft. Numerous aviation companies worldwide are conducting research and studies
into how the available SR technology can be incorporated into current equipment designs and designs of
the future for both the civilian and military marketplace. Speech recognition technology will likely be first
used in military applications, with the technology working its way into civil aviation by the year 2005.

8.2 How Speech Recognition Works: A Simplistic View

Speech recognition is based on statistical pattern matching. One of the more common methods of speech
recognition based on pattern matching uses Hidden Markov Modeling (HMM) comprising two types of
pattern models, the acoustical model and the language model. Which of the two models will be used,
and in some cases both will be required, depends on the complexity of the application. Complex speech
recognition applications, such as those supporting continuous or connected speech recognition, will use
a combination of the acoustical and language models.

In a simple application using only the acoustical model, the application will process the uttered word
into phonemes, which are the fundamental part of speech. These phonemes are converted to a digital
format. This digital format, or pattern, is then matched against stored patterns by the speech processor
in search of a match from a stored database of word patterns. From the match, the phoneme, and word
can be identified.

In a more complex method, the speech processor will convert the utterance to a digital signal by
sampling the voice input at some rate, commonly 16 kHz. The required acoustical signal processing can
be accomplished using several techniques. Some commonly used techniques are Linear Predictive Coding
(LPC) cochlea modeling, Mel Frequency Cepstral Coefficients (MFCC), and others. For this example,
the sampled data is converted to the frequency domain using a fast-Fourier transformation. The trans-
formation will analyze the stored data at 1/30th to 1/100th of a second (3.3 ms to 100 ms) intervals, and
convert the value into the frequency domain. The resulting graph from the converted digital input will
be compared against a database of known sounds. From these comparisons, a value known as a feature
number will be determined.

The feature numbers will be used to reference a phoneme found using that feature number. This,
ideally, would be all that is required to identify a particular phoneme, however, this will not work for a
number of reasons. Background noises, the user not pronouncing a word the same way every time, and
the sound of a phoneme will vary, depending on the surrounding phonemes that may add variance to
the sound being processed. To overcome problems of variability of the different phonemes, the phonemes
are assigned to more than one feature number. Since the speech input was analyzed at an interval of
1/30th to 1/100th of a second and a phoneme or sound may last from 500 ms to 2 s, many feature numbers
may be assigned to a particular sound. By using statistical analysis of these feature numbers and the
probability that any one sound may contain those feature numbers, the probability of that sound being
a particular phoneme can be determined.

To be able to recognize words and complete utterances, the speech recognizer must also be able to determine
the beginning and the end of a phoneme. The most common method to determine the beginning and
endpoint is by using the Hidden Markov Models (HMM) technique. The HMM is a state transition
model and will use probabilities of feature numbers to determine the likelihood of transitioning from
© 2001 by CRC Press LLC

one state to another. Each phoneme is represented by a HMM. The English language is made up of 45 to
50 phonemes. A sequence of HMM will represent a word. This would be repeated for each word in the
vocabulary. While the system can now recognize phonemes, phonemes do not always sound the same,
depending on the phoneme preceding and following it. To address this problem, phonemes are placed in
groups of three, called tri-phones, and as an aid in searching, similar sounding tri-phones are grouped together.

From the information obtained from the HMM state transitions, the recognizer is able to hypothesize
and determine which phoneme likely was spoken, and then by referring this to a lexicon, the recognizer
is able to determine the word that likely was spoken.

This is an overly simplified definition of the speech recognition process. There are numerous adapta-
tions of the HMM technique and other modeling techniques. Some of these techniques are neural
networks (NNs), dynamic time warping (DTW), and combinations of techniques.

8.2.1 Types of Speech Recognizers

There are two types of speech recognizers, speaker-dependent and speaker-independent.

8.2.1.1 Speaker-Dependent Systems

Speaker-dependent recognition is exactly that, speaker dependent. The system is designed to be used by
one person. To operate accurately, the system will need to be ‘‘trained” to the user’s individual speech
patterns. This is sometimes referred to as “enrollment” of the speaker with the system. The speech patterns
for the user will be recorded and patterned from which a template will be created for use by the speech
recognizer. Because of the required training and storage of specific speech templates, the performance
and accuracy of the speaker-dependent speech recognition engine will be tied to the voice patterns of a
specific registered user. Speaker-dependent recognition, while being the most restrictive, is the most
accurate, with accuracy rates in the mid to upper 90% range. For this reason, past research and applica-
tions for cockpit applications have opted to use speaker-dependent recognition.

The major drawback of this system is that it is dedicated to a single user, and that it must be trained
prior to its use. Many applications will allow the speech template to be created elsewhere prior to use on
the hosting system. This can be done at separate training stations prior to using the target system by
transferring the created user voice template to the target system. If more than one user is anticipated, or
if the training of the system is not desirable, a speaker-independent system might be an option.

8.2.1.2 Speaker-Independent Recognizers

Speaker-independent recognition systems are independent of the user. This type of system is intended
to allow multiple users to access a system using voice input. Examples of speaker-independent systems
are directory assist programs and an airline reservation system with a voice input driven menu system.
Major drawbacks with a speaker-independent system, in addition to increased complexity and difficult
implementation, are its lower overall accuracy rate, higher system overhead, and slower response time.
The impact of these drawbacks continues to lessen with increased processor speeds, faster hardware, and
increased data storage capabilities.

A variation of the speaker-independent system is the speaker-adaptive system. The speaker-adaptive
system will adapt to the speech pattern, vocabulary, and style of the user. Over time, as the system adapts
to the users’ speech characteristics, the error rate of the system will improve, exceeding that of the
independent recognizer.

8.2.2 Vocabularies

A vocabulary is a list of words that are valid for the recognizer. The size of a vocabulary for a given speech
recognition system affects the complexity, processing requirements, and the accuracy of that system. There
are no established definitions for how large a vocabulary should be, but systems using smaller vocabularies
can result in better recognizer accuracy. As a general rule, a small vocabulary may contain up to 100 words,
a medium vocabulary may contain up to 1000 words, a large vocabulary may contain up to 10,000 words,
© 2001 by CRC Press LLC

and a very large vocabulary may contain up to 64,000 words, and above that the vocabulary is considered
unlimited. Again, this is a general rule and may not be true in all cases.

The size of a vocabulary will be dependent upon the purpose and intended function of the application.
A very specific application may require only a few words and make use of a small vocabulary, while an
application that would allow dictation or setting up airline reservations would require a very large vocabulary.

How can the size and contents of a vocabulary be determined? The words used by pilots are generally
specific enough to require a small to medium vocabulary. Words that can or should be in the vocabulary
could be determined in a number of ways. Drawing from the knowledge of how pilots would engage a
desired function or task is one way. This could be done using a questionnaire or some similar survey method.

Another way to gather words for the vocabulary is to set up a lab situation and use the ‘‘Wizard of
Oz’’ technique. This technique would have a test evaluator behind the scenes acting upon the commands
given by a test subject. The test subject would have various tasks and scenarios to complete. While the
test subject runs through the tasks, the words and phrases used by the subject are collected for evaluation.
After running this process numerous times, the recorded spoken words and phrases will be used to
construct a vocabulary list and command syntax, commonly referred to as a grammar. The vocabulary
could be refined in further tests by only allowing those contained words and phrases to be valid, and
have test subjects again run through a suite of tasks. Observations would be made as to how well the test
subjects were able to complete the tasks using the defined vocabulary and syntax. Based on these tests,
and the evaluation results, the vocabulary is modified as required.

A paper version of the evaluation process could be administered by giving the pilot a list of tasks, and
then asking them to write out what commands they would use to perform the task. Following this data
collection step, a second test could be generated having the pilot choose from a selected list of words and
commands what he would likely say to complete the task. As a rule, pilots will tend to operate in a
predictable manner, and this lends itself to a reduced vocabulary size and structured grammar.

8.2.3 Modes of Operation for Speech Recognizers

There are two modes of operation for a speech recognizer: continuous recognition, and discrete or isolated
word recognition.

8.2.3.1 Continuous Recognition

Continuous speech recognition systems are able to operate on a continuous spoken stream of input in
which the words are connected together. This type of recognition is more difficult to implement due to
several inherent problems such as determining start and stop points in the stream and the rate of the
spoken input.

The system must be able to determine the start and endpoint of a spoken stream of continuous speech.
Words will have varied starting and ending phonemes depending on the surrounding phonemes. This
is called “co-articulation.” The rate of the spoken speech has a significant impact on the accuracy of the
recognition system. The accuracy will degrade with rapid speech.

8.2.3.2 Discrete Word Recognition

Discrete or isolated word recognition systems operate on single words at a time. The system requires a
pause between saying each word. The pause length will vary, and on some systems the pause length can
be set to determined lengths. This type of recognition system is the simplest to perform because the
endpoints are easier for the system to locate, and the pronunciation of a word is less likely to affect the
pronunciation of other words (co-articulation effects are reduced). A user of this type of system will speak
in a broken fashion. This system is the type most people think of in terms of a voice recognition system.

8.2.4 Methods of Error Reduction

There are no real standards by which error rates of various speech recognizers are measured and defined.
Many systems claim accuracy rates in the high 90% range, but under actual usage with surrounding noise
conditions, the real accuracy level may be much less. Many factors can impact the accuracy of SR systems.
© 2001 by CRC Press LLC

Some of these factors include the individual speech characteristics of the user, the operating environment,
and the design of the SR system itself.

There are four general error types impacting the performance of a SR system; these are substitution
errors, insertion errors, rejection errors, and operator errors,

• Substitution errors occur when the SR system incorrectly identifies a word from the vocabulary.
An example might be the pilot calling out “Tune COM one to one two four point seven” and the
SR system incorrectly recognizes that the pilot spoke “Tune NAV one to one two four point seven.”
The SR system substituted NAV in place of COM. Both words may be defined and valid in the
vocabulary, but the system selected the wrong word.

• Insertion errors may occur when some source of sound other than a spoken word is interpreted
by the system as valid speech. Random cockpit noise might at some time be identified as a valid
word to the SR system. The use of noise-canceling microphones and PTT can help to reduce this
type of error.

• Rejection errors occur when the SR system fails to respond to the user’s speech, even if the word
or phrase was valid.

• Operator errors occur when the user is attempting to use words or phrases that are not identifiable
to the SR system. A simple example might be calling out “change the radio frequency to one one
eight point six” instead of “Tune COM one to one one point eight six,” which is recognized by
the vocabulary.

When designing a speech recognition application, several design goals and objective should be kept in mind:

• Limitations of the hardware and the software — Keep in mind the limitations of the hardware
and the software being used for the application. Will the system need to have continuous recog-
nition and discrete word recognition? Will the system need to be speaker independent, or will the
reduced accuracy in using a speaker-independent recognizer be acceptable. Will the system be able
to handle the required processing in an acceptable period of time? Will the system operate accept-
ably in the target environment?

• Safety — Will using SR to interface with a piece of equipment compromise safety? Will an error
in recognition have a serious impact on the safety of flight? If the SR system should fail, is there
an alternate method of control for that application?

• Train the system in the environment in which it is intended to be used — As discussed earlier,
a SR system that has a 99% accuracy in the lab, may be frustrating and unusable in actual cockpit
conditions. The speech templates or the training of the SR system needs to be done in the actual
environment, or in as similar an environment as possible.

• Don’t try to use SR for tasks that don’t really fit — The problem with a new tool, like a new
hammer, is that everything becomes a nail to try out that new hammer. Some tasks are natural
candidates for using SR, many are not. Do not force SR onto a task if it is not appropriate for use
of SR. Doing so will add significant risk and liability. Good target applications for SR include radio
tuning functions, navigation functions, FMS functions, and display mode changes. Bad target appli-
cations for SR would be things that can affect the safety of flight, in short, anything that will kill you.

• Incorporate error correction mechanisms — Have the system repeat, using either voice synthesis
or through a visual display, what it interprets, and allow the pilot to accept or reject this recognition.
Allow the system to be able to recognize invalid recognition. If the recognizer interprets that it
heard the pilot call out an invalid frequency, it should recognize it as invalid and possibly query
the pilot to repeat, or prompt the pilot by saying or displaying that the frequency is invalid.

• Provide feedback of the SR system’s activities — Allow the user to interact with the SR system.
Have the system speak, using voice synthesis, or display what it is doing. This will allow the user
to either accept or reject the recognizer interpretation. This may also serve as a way to prompt a
user for more data that may have been left out of the utterance. “Tune COM 1 to….” After a delay,
© 2001 by CRC Press LLC

the system might query the user for a frequency: ‘‘Please select frequency for COM1.’’ If the user
selects some repeated command, the system may repeat back the command as it is executed:
‘‘Tuning COM 1 to ….”

8.2.4.1 Reduced Vocabulary

One way to dramatically increase the accuracy of a SR system is to reduce the number of words in a
vocabulary. In addition to the reduction in words, the words should be carefully chosen to weed out
words that sound similar.

Use a trigger phrase to gain the attention of the recognizer. The trigger phrase might be as simple as
‘‘computer ” followed by some command. In this example, ‘‘computer” is the trigger phrase and alerts
the recognizer that a command is likely to follow. This can be used with a system that is always on-line
and listening.

Speech recognition errors can be reduced using a noise-canceling microphone. The flightdeck is not the
quiet, sterile place a lab or a desktop might be. There are any number of noises and chatter that could interfere
with the operation of speech recognition. Like humans, a recognizer can have increased difficulty in under-
standing commands in a noisy environment. In addition to the use of noise-canceling microphones, the use
of high-quality omnidirectional microphones will offer further reduction in recognition errors. Using push-
to-talk (PTT) microphones will help to reduce the occurrence of insertion errors as well as recognition errors.

8.2.4.2 Grammar

Grammar definition plays an important role in how accurate a SR application may be. It is used to not only
define which words are valid to the system, but what the command syntax will be. A grammar notation
frequently used in speech recognition is Context Free Grammar (CFG). A sample of a valid command in CFG is

This definition would allow valid commands of ‘‘tune COM radio,’’ and ‘‘tune NAV radio.’’ Word order
is required, and words cannot be omitted. However, the grammar can be defined to allow for word order
and omitted words.

8.3 Recent Applications

Though speech recognition has been applied to various flightdeck applications over the past 20 years,
limitations in both hardware and software capability have kept the use of speech recognition from serious
contention as a flightdeck tool. Even though there have been several notable applications of speech
recognition in the recent past, and there are several current applications of speech recognition in the
cockpit of military aircraft, it will likely be several more years before the civilian market will see such
applications reach the level of reliability and pilot acceptance to see them commonly available.

In the mid 1990s, NASA performed experiments using speech recognition and voice control on
an OV-10A aircraft. The experiment involved 12 pilots. The speech recognizer used for this study
was an ITT VRS-1290 speaker-dependent system. The vocabulary used in this study was small,
containing 54 words. The SR system was tested using the 12 pilots under three separate conditions:
on the ground, 1g conditions, and 3g conditions. There was no significant difference in SR system
performance found between the three conditions. The accuracy rates for the SR system under these
three test conditions was 97.27% in hangar conditions, 97.72 under 1g conditions, and 97.11% under
3g conditions.3

A recent installation that is now in production is a military fighter, the Eurofighter, Typhoon. This
aircraft will be the first production aircraft with voice interaction as a standard OEM configuration with
speech recognition modules (SRMs). The speech recognizer is speaker dependent, and sophisticated
enough to recognize continuous speech. The supplier of the voice recognition system for this aircraft is
Smiths Industries. In addition, the system has received general pilot acceptance. Since the system is speaker

…

start〈 〉 tune COM |NAV() radio�
© 2001 by CRC Press LLC

dependent, the pilot must train the speech recognizer to his unique voice patterns prior to its use. This is
done at ground-based, personal computer (PC) support stations. The PC is used to create a voice template
for a specific pilot. The created voice template is then transferred to the aircraft prior to flight, via a data
loader. Specifications for the recognizer include a 250-word vocabulary, a 200-ms response time, contin-
uous speech recognition, and an accuracy rate of 95–98%.2

Another recent application of speech recognition technology is in the Joint Strike Fighter (JSF) being
developed by Boeing and BAe Systems. Continuous speech recognition is being integrated into the
cockpit. The speech recognition system will provide selected cockpit controls sole operation by using
voice commands. The JSF speech recognition system will be used to allow the pilot to avoid the distraction
of selected manual tasks while remaining focused on more critical aspects of the mission. The supplier
of the speech recognition system for this aircraft is ITT Industries’ Voxware (formerly VERBEX) voice
recognition system. The Voxware system was chosen for this application due its recognized and previously
proven ability to perform in a noisy cockpit environment.1

8.4 Flightdeck Applications

The use of speech recognition, the enabling technology for voice control, should not be relied on as the
sole means of control or entering data and commands. Speech recognition is more correctly defined as
an assisted method of control; and should have reversionary controls in place if the operation and
performance of the SR system is no longer acceptable. It is not a question of whether voice control will
find its way into mainstream aviation cockpits, but a question of when and to what degree. As the
technology of SR continues to evolve, care must be exercised so that SR does not become a solution
looking for a problem to solve. Not all situations will be good choices for the application of SR. In a high
workload atmosphere, such as the flightdeck, the use of SR could be a logical choice for use in many
operations, leading to a reduction in workload and heads-down time.

Current speech recognition systems are best assigned to tasks that are not in themselves critical to the
safety of flight. In time, this will change as the technology evolves. The thought of allowing the speech
recognition system to gain the ability to directly impact flight safety brings to mind an example that
occurred at a speech recognition conference several years ago. While a speech recognition interface on a
PC was being discussed and demonstrated before an audience, a member of the audience spoke out
“format C: return,” or something to that effect. The result was the main drive on the computer was
formatted, erasing its contents. Normally an event such as this impacts no one’s safety, however, if such
unrestricted control were allowed on an aircraft, there would be serious results.

Some likely applications for voice control on the flightdeck are navigation functions; communications
functions such as frequency selection, toggling of display modes, checklist functions, etc.

8.4.1 Navigation Functions

For navigation functions, SR could be used as a method of entering waypoints and inputting FMS data.
Generally, most tasks requiring the keyboard to be used to enter data into the FMS would make good
use of a SR system. This would allow time and labor savings in what is a repetitive and time consuming
task. Another advantage of using SR is that the system is able to reduce confusion and guide the user by
requesting required data. The use of SR with FMS systems is being evaluated and studied by both military
and civilian aviation.

8.4.2 Communication Functions

For communication functions, voice control could be used to tune radio frequencies by calling out that
frequency. For example, “Tune COM1 to one one eight point seven.” The SR system would interpret this
utterance, and would place the frequency into stand-by. The system may be designed to have the SR
system repeat the recognized frequency back through a voice synthesizer to the pilot for confirmation
© 2001 by CRC Press LLC

prior to the frequency being placed into standby. The pilot would then accept the frequency and make
it active or reject it. This would be done with a button press to activate the frequency. Another possible
method of making a frequency active would be to do this by voice alone. This does bring about some
added risk, as the pilot will no longer be physically making the selection. This could be done by a simple,
“COM one Accept” to accept the frequency, but leave it in pre-select. Reject the frequency by saying,
“COM one Reject,” and to activate the frequency by saying, “COM one activate.”

The use of SR would also allow a pilot to query systems, such as by requesting a current frequency
setting; ‘‘What is COM one?’’ The ASR system could then respond with the current active frequency and
possible the pre-select. This response could be by voice or by display. Other possible options would be
to have the SR respond to ATC commands by moving the command frequency change to the pre-select
automatically. Having done this, the pilot would only have to command ‘‘Accept,’’ ‘‘Activate,’’ or ‘‘Reject.’’
The radio would never on its own, place a frequency from standby to active mode.

With the use of a GPS position-referenced database, a pilot might only have to call out ‘‘Tune COM
one Phoenix Sky Harbor Approach.’’ By referencing the current aircraft location to a database, the SR
systems could look up the appropriate frequency and place it into pre-select. The system might respond
back with, ‘‘COM one Phoenix Sky Harbor Approach at one two oh point seven.” The pilot would then
be able to accept and activate the frequency without having to know the correct frequency numbers or
having to dial the frequency into the radio. Clearly a time-saving operation. Possible drawbacks are out-
of -date radio frequencies in the database or no frequency listing. This can be overcome by being able
to call out specific frequencies if required. ‘‘Tune COM one to one two oh point seven.”

8.4.3 Checklist

The use of speech recognition is almost a natural for checklist operations. The pilot may be able to
command the system with “configure for take-off.” This could lead to the system bringing up an appro-
priate checklist for take-off configuration. The speech system could call out the checklist items as they
occur and the pilot, having completed and verified the task, could press a button to accept and move on
to the next task. It may be possible to allow a pilot to verbally check-off a task, vs. a button selection;
however, that does bring about an opportunity for a recognition error.

Defining Terms

Accuracy: Generally, accuracy refers to the percentage of times that a speech recognizer will correctly
recognize a word. This accuracy value is determined by dividing the number of times that the
recognizer correctly identifies a word by the number of words input into the SR system.

Continuous speech recognition: The ability of the speech recognition system to accept a continuous,
unbroken stream of words and recognize it as a valid phrase.

Discrete word recognition: This refers to the ability of a speech recognizer to recognize a discrete word.
The words must be separated by a gap or pause between the previous word and successive words.
The pause will typically be 150 ms or longer. The use of such a system is characterized by “choppy”
speech to ensure the required break between words.

Grammar: This is a set of syntax rules determining valid commands and vocabulary for the SR system.
The grammar will define how words may be ordered and what commands are valid. The grammar
definition structure most commonly used is known as ‘‘context free grammar” or CFG.

Isolated word recognition: The ability of the SR system to recognize a specific word in a stream of words.
Isolated word recognition can be used as a ‘‘trigger” to place the SR system into an active standby
mode, ready to accept input.

Phonemes: Phonemes are the fundamental parts of speech. The English language is made up from 45
to 50 individual phonemes.

Speaker Dependent: This type of system is dependent upon the speaker for operation. The system will
be trained to recognize one person’s speech patterns and acoustical properties. This type of system
will have a higher accuracy rate than a speaker-independent system, but is limited to one user.
© 2001 by CRC Press LLC

Speaker Independent: A speaker-independent system will operate regardless of the speaker. This type of
system is the most desirable for a general use application, however the accuracy rate and response
rate will be lower than the speaker-dependent system.

Speech Synthesis: The use of an artificial means to create speech-like sounds.
Text to Speech: A mechanism or process in which text is transformed into digital audio form and output

as “spoken” text. Speech synthesis can be used to allow a system to respond to a user verbally.
Tri-Phones: These are groupings of three phonemes. The sound a phoneme makes can vary depending

on the phoneme ahead of it and after it. Speech recognizers use tri-phones to better determine
which phoneme has been spoken based upon the sounds preceding and following it.

Verbal Artifacts: These are words or phrases, spoken with the intended command that have no value
content to the command. This is sometimes referred to simply as garbage when defining a specific
grammar. Grammars may be written to allow for this by disregarding and ignoring these utterances,
for example, the pilot utterance, “uhhhhhmmmmmmm, select north up mode.” The “uhhhh-
hmmmmmmm” would be ignored as garbage.

Vocabulary: The vocabulary a speech recognition system is made up of the words or phrases that the
system is to recognize. Vocabulary size is generally broken into four sizes; small, with tens of words,
medium with a few hundred words, large with a few thousand words, very large with up to 64,000
words, and unlimited. When a vocabulary is defined, it will contain words that are relative, and
specific to the application.

References

1. Boeing JSF to feature voice-recognition technology, [On-Line]. Available: www.boeing.com/news/
releases/2000/news_release_000222o.htm.

2. The Eurofighter Typhoon Speech Recognition Module, [On-Line]. Available: www.smithsind-
aerospace.com/PRODS/CIS/Voice.htm

3. Williamson, David T., Barry, Timothy P., and Liggett, Kristen K., Flight test results of ITT VRS-
1290 in NASA OV10A. Pilot-Vehicle Interface Branch (WL/FIGP), WPAFB, OH.

Bibliography

Anderson, Timothy R., Applications of speech-based control, in Proc. Alternative Control Technologies:
Human Factors Issues, 14-15 Oct., 1998, Wright-Patterson AFB, OH, (ISBN 92-837-1003-7).

Anderson, Timothy R., The technology of speech-based control, in Proc. Alternative Control Technologies:
Human Factors Issues, 14-15 Oct., 1998, Wright-Patterson AFB, OH, (ISBN 92-837-1003-7).

Bekker, M. M., “A comparison of mouse and speech input control of a text-annotation system,” Faculty
of Industrial Design Engineering, Delft University of Technology, Jaffalaan 9, 2628 BX Delft, The
Netherlands.

Boeing, JSF to feature voice-recognition technology, [On-Line]. Available: www.boeing.com/news/
releases/2000/news_release_000222o.htm.

Eurofighter Typhoon Speech Recognition Module, Available: www.smithsind-aerospace.com/
PRODS/CIS/Voice.htm.

Hart, Sandra G., Helicopter human factors, in Human Factors in Aviation, Wiener, Earl L. and Nagel,
David C., Eds., Academic Press, San Diego, 1988, chap. 18.

Hopkin, V. David, Air traffic control, in Human Factors in Aviation, Wiener, Earl L. and Nagel, David C.,
Eds., Academic Press, San Diego, 1988, chap. 19.

Jones, Dylan M., Frankish, Clive R., and Hapeshi, K., Automatic Speech Recognition in Practice, Behav.
Inf. Technol., 2, 109–122, 1992.

Leger, Alain, Synthesis and expected benefits analysis, in Proc. Alternative Control Technologies: Human
Factors Issues, 14-15 Oct., 1998, Wright-Patterson AFB, OH, (ISBN 92-837-1003-7).

Rood, G. M., Operational rationale and related issues for alternative control technologies, in Proc.
Alternative Control Technologies: Human Factors Issues, 14-15 Oct., 1998, Wright-Patterson AFB,
OH, (ISBN 92-837-1003-7).
© 2001 by CRC Press LLC

Rudnicky, Alexander I. and Hauptmann, Alexander G., Models for evaluating interaction protocols in
speech recognition, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

Wickens, Christopher D. and Flach, John M., Information processing, in Human Factors in Aviation,
Wiener, Earl L. and Nagel, David C., Eds., Academic Press, San Diego, 1988, chap. 5.

Williamson, David T., Barry, Timothy P., and Liggett, Kristen K., Flight test results of ITT VRS-1290 in
NASA OV10A. Pilot-Vehicle Interface Branch (WL/FIGP), WPAFB, OH.

Williges, Robert C., Williges, Beverly H., and Fainter, Robert G., Software interfaces for aviation systems,
in Human Factors in Aviation, Wiener, Earl L. and Nagel, David C., Eds., Academic Press, San
Diego, 1988, chap. 14.

Further Information

There are numerous sources for additional information on speech recognition. A search of the Internet on
“speech recognition” will yield many links and information sources. The list will likely contain companies
and corporations that deal primarily in speech recognition products. Some of these companies include:

• Analog Devices (800) 262-5643 www.analog.com

• AT&T Adv Speech Products Group (800) 592-8766 www.att.com/aspg

• Brooktrout Technology (617) 449-4100 www.techspk.com

• Dialogic (201) 993-3000 www.dialogic.com

• Dragon Systems (800) 825-5897 www.dragonsys.com

• Entropic Cambridge Research Labs (202) 547-1420 www.entropic.com

• IBM Speech Products (800) 825-5263 www.software.ibm.com/is/voicetype

• Kurzweil Applied Intelligence (617) 883-5151 www.kurzweil.com

• Lernout & Hauspie (617) 238-0960 www.lhs.com

• Nuance Communications (415) 462-8200 www.nuance.com

• Oki Semiconductor (408) 720-1900 www.oki.com

• Philips Speech Processing (516) 921-9310 www.speech.be.philips.com

• PureSpeech (617) 441-0000 www.speech.com

• Sensory (408) 744-1299 www.SensoryInc.com

• Smith Industries (610) 296-5000 www.smithsind-aerospace.com/

• Speech Solutions (800) 773-3247 www.speechsolutions.com

• Texas Instruments (800) 477-8924 x 4500 www.ti.com
© 2001 by CRC Press LLC

Kathy H. Abbott “Human Factors Engineering and Flight Deck Design”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

9
Human Factors

Engineering and Flight
Deck Design

9.1 Introduction
9.2 Fundamentals

Human Factors Engineering • Flight Deck Design
• Evaluation

9.3 Additional Considerations
Standardization • Error Management • Integration
with Training/Qualifications and Procedures

References

9.1 Introduction

This chapter briefly describes Human Factors Engineering and considerations for civil aircraft flight deck
design. The motivation for providing the emphasis on the Human Factor is that the operation of future
aviation systems will continue to rely on humans in the system for effective, efficient, and safe operation.
Pilots, mechanics, air traffic service personnel, designers, dispatchers, and many others are the basis for
successful operations now and for the foreseeable future. There is ample evidence that failing to adequately
consider humans in the design and operations of these systems is at best inefficient and at worst unsafe.

This becomes especially important with the continuing advance of technology. Technology advances
have provided a basis for past improvements in operations and safety and will continue to do so in the
future. New alerting systems for terrain and traffic avoidance, data link communication systems to
augment voice-based radiotelephony, and new navigation systems based on Required Navigation Perfor-
mance are just a few of the new technologies being introduced into flight decks.

Often, such new technology is developed and introduced to address known problems or to provide
some operational benefit. While introduction of new technology may solve some problems, it often
introduces others. This has been true, for example, with the introduction of advanced automation.1,2

Thus, while new technology can be part of a solution, it is important to remember that it will bring
issues that may not have been anticipated and must be considered in the larger context (equipment
design, training, integration into existing flight deck systems, procedures, operations, etc.). These issues
are especially important to address with respect to the human operator.

The chapter is intended to help avoid vulnerabilities in the introduction of new technology and
concepts through the appropriate application of Human Factors Engineering in the design of flight decks.
The chapter first introduces the fundamentals of Human Factors Engineering, then discusses the flight
deck design process. Different aspects of the design process are presented, with an emphasis on the

Kathy H. Abbott
Federal Aviation Administration
© 2001 by CRC Press LLC

incorporation of Human Factors in flight deck design and evaluation. To conclude the chapter, some
additional considerations are raised.

9.2 Fundamentals

This section provides an overview of several topics that are fundamental to the application of Human
Factors Engineering (HFE) in the design of flight decks. It begins with a brief overview of Human Factors,
then discusses the design process. Following that discussion, several topics that are important to the
application of HFE are presented: the design philosophy, the interfaces and interaction between pilots
and flight decks, and the evaluation of the pilot/machine system.

9.2.1 Human Factors Engineering

It is not the purpose of this section to provide a complete tutorial on Human Factors. The area is quite
broad and the scientific and engineering knowledge about human behavior and human performance, and
the application of that knowledge to equipment design (among other areas), is much more extensive than
could possibly be cited here.3–8 Nonetheless, a brief discussion of certain aspects of Human Factors is
desirable to provide the context for this chapter.

For the purposes of this chapter, Human Factors and its engineering aspects involve the application
of knowledge about human capabilities and limitations to the design of technological systems.9 Human
Factors Engineering also applies to training, personnel selection, procedures, and other topics, but those
topics will not be expanded here.

Human capabilities and limitations can be categorized in many ways, with one example being the
SHEL model.6 This conceptual model describes the components Software, Hardware, Environment, and
Liveware. The SHEL model, as described in Reference 6, is summarized below.

The center of the model is the human, or Liveware. This is the hub of Human Factors. It is the most
valuable and most flexible component of the system. However, the human is subject to many limitations,
which are now predictable in general terms. The “edges” of this component are not simple or straight,
and it may be said that the other components must be carefully matched to them to avoid stress in the
system and suboptimal performance. To achieve this matching, it is important to understand the char-
acteristics of this component:

• Physical size and shape — In the design of most equipment, body measurements and movement
are important to consider at an early stage. There are significant differences among individuals,
and the population to be considered must be defined. Data to make design decisions in this area
can be found in anthropometry and biomechanics.

• Fuel requirements — The human needs fuel (e.g., food, water, and oxygen) to function properly.
Deficiencies can affect performance and well-being. This type of data is available from physiology
and biology.

• Input characteristics — The human has a variety of means for gathering input about the world
around him or her. Light, sound, smell, taste, heat, movement, and touch are different forms of
information perceived by the human operator; for effective communication between a system and
the human operator, this information must be understood to be adequately considered in design.
This knowledge is available from biology and physiology.

• Information processing — Understanding how the human operator processes the information
received is another key aspect of successful design. Poor human-machine interface or system design
that does not adequately consider the capabilities and limitations of the human information
processing system can strongly affect the effectiveness of the system. Short- and long-term memory
limitations are factors, as are the cognitive processing and decision-making processes used. Many
human errors can be traced to this area. Psychology, especially cognitive psychology, is a major
source of data for this area.
© 2001 by CRC Press LLC

• Output characteristics — Once information is sensed and processed, messages are sent to the
muscles and a feedback system helps to control their actions. Information about the kinds of forces
that can be applied and the acceptable direction of controls are important in design decisions. As
another example, speech characteristics are important in the design of voice communication
systems. Biomechanics and physiology provide this type of information.

• Environmental tolerances — People, like equipment, are designed to function effectively only
within a narrow range of environmental conditions such as temperature, pressure, noise, humidity,
time of day, light, and darkness. Variations in these conditions can all be reflected in performance.
A boring or stressful working environment can also affect performance. Physiology, biology, and
psychology all provide relevant information on these environmental effects.

It must be remembered that humans can vary significantly in these characteristics. Once the effects
of these differences are identified, some of them can be controlled in practice through selection, training,
and standardized procedures. Others may be beyond practical control and the overall system must be
designed to accommodate them safely. This Liveware is the hub of the conceptual model. For successful
and effective design, the remaining components must be adapted and matched to this central component.

The first of the components that requires matching to the characteristics of the human is Hardware.
This interface is the one most generally thought of when considering human-machine systems. An
example is designing seats to fit the sitting characteristics of the human. More complex is the design of
displays to match the human’s information processing characteristics. Controls, too, must be designed
to match the human’s characteristics, or problems can arise from, for example, inappropriate movement
or poor location. The user is often unaware of mismatches in this liveware-hardware interface. The natural
human characteristic of adapting to such mismatches masks but does not remove their existence. Thus
this mismatch represents a potential hazard to which designers should be alerted.

The second interface with which Human Factors Engineering is concerned is that between Liveware
and Software. This encompasses the nonphysical aspects of the systems such as procedures, manual and
checklist layout, symbology, and computer programs. The problems are often less tangible than in the
Liveware-Hardware interface and more difficult to resolve.

One of the earliest interfaces recognized in flying was between the human and the environment. Pilots
were fitted with helmets against the noise, goggles against the airstream, and oxygen masks against the
altitude. As aviation matured, the environment became more adapted to the human (e.g., through pres-
surized aircraft). Other aspects that have become more of an issue are disturbed biological rhythms and
related sleep disturbances because of the increased economic need to keep aircraft, and the humans that
operate them, flying 24 hours a day. The growth in air traffic and the resulting complexities in operations
are other aspects of the environment that are becoming increasingly significant now and in the future.

The last major interface described by the SHEL model is the human-human interface. Traditionally,
questions of performance in flight have focused on individual performance. Increasingly, attention is
being paid to the performance of the team or group. Pilots fly as a crew; flight attendants work as a team;
maintainers, dispatchers, and others operate as groups; therefore, group dynamics and influences are
important to consider in design.

The SHEL model is a useful conceptual model, but other perspectives are important in design as well.
The reader is referred to the references cited for in-depth discussion of basic human behavioral consid-
erations, but a few other topics are especially relevant to this chapter and are discussed here: usability,
workload, and situation awareness.

9.2.1.1 Usability

The usability of a system is very pertinent to its acceptability by users; therefore, it is a key element to
the success of a design. Nielsen10 defines usability as having multiple components:

• Learnability — the system should be easy to learn

• Efficiency — the system should be efficient to use

• Memorability — the system should be easy to remember
© 2001 by CRC Press LLC

• Error — the system should be designed so that users make few errors during use of the system,
and can easily recover from those they do make

• Satisfaction — the system should be pleasant to use, so users are subjectively satisfied when using it.

This last component is indicated by subjective opinion and preference by the user. This is important
for acceptability, but it is critical to understand that there is a difference between subjective preference
and performance of the human-machine system. In some cases, the design that was preferred by the user
was not the design that resulted in the best performance. This illustrates the importance of both subjective
input from representative end users and objective performance evaluation.

9.2.1.2 Workload

In the context of the commercial flight deck, workload is a multidimensional concept consisting of: (1)
the duties, amount of work, or number of tasks that a flight crew member must accomplish; (2) the
duties of the flight crew member with respect to a particular time interval during which those duties
must be accomplished; and/or (3) the subjective experience of the flight crew member while performing
those duties in a particular mission context. Workload may be either physical or mental.11

Both overload (high workload, potentially resulting in actions being skipped or executed incorrectly
or incompletely) and underload (low workload, leading to inattention and complacency) are worthy of
attention when considering the effect of design on human-machine performance.

9.2.1.3 Situation Awareness

This can be viewed as the perception on the part of a flight crew member of all the relevant pieces of
information in both the flight deck and the external environment, the comprehension of their effects on
the current mission status, and the projection of the values of these pieces of information (and their
effect on the mission) into the near future.11

Situation awareness has been cited as an issue in many incidents and accidents, and can be considered
as important as workload. As part of the design process, the pilot’s information requirements must be
identified, and the information display must be designed to ensure adequate situation awareness.
Although the information is available in the flight deck, it may not be in a form that is directly usable
by the pilot, and therefore of little value.

Another area that is being increasingly recognized as important is the topic of organizational processes,
policies and practices.12 It has become apparent that the influence of these organizational aspects is a
significant, if latent, contributor to potential vulnerabilities in design and operations.

9.2.2 Flight Deck Design

The process by which commercial flight decks are designed is complex, largely unwritten, variable, and
nonstandard.11 That said, Figure 9.1 is an attempt to describe this process in a generic manner. It
represents a composite flight deck design process based on various design process materials. The figure
is not intended to exactly represent the accepted design process within any particular organization or
program; however, it is meant to be descriptive of generally accepted design practice. (For more detailed
discussion of design processes for pilot-system integration and integration of new systems into existing
flight decks, see References 13 and 14.)

The figure is purposely oversimplified. For example, the box labeled “Final Integrated Design” encompasses
an enormous number of design and evaluation tasks, and can take years to accomplish. It could be expanded
into a figure of its own that includes not only the conceptual and actual integration of flight deck components,
but also analyses, simulations, flight tests, certification and integration based on these evaluations.

Flight deck design necessarily requires the application of several disciplines, and often requires trade-offs
among those disciplines. Human Factors Engineering is only one of the disciplines that should be part of
the process, but it is a key part of ensuring that the flight crew’s capabilities and limitations are considered.
Historically, this process tends to be very reliant on the knowledge and experiences of individuals involved
in each program.
© 2001 by CRC Press LLC

Human-centered or user-centered design has been cited as a desirable goal. That is, design should be
focused on supporting the human operator of the system, much as discussed above on the importance
of matching the hardware, software, and environment to the human component. A cornerstone of
human-centered design is the design philosophy.

9.2.2.1 Flight Deck Design Philosophy

The design philosophy, as embodied in the top-level philosophy statements, guiding principles, and
design guidelines, provides a core set of beliefs used to guide decisions concerning the interaction of the
flight crew with the aircraft systems. It typically deals with issues such as allocation of functions between
the flight crew and the automated systems, levels of automation, authority, responsibility, information
access and formatting, and feedback, in the context of human use of complex, automated systems.1,11

The way pilots operate airplanes has changed as the amount of automation and the automation’s capa-
bilities have increased. Automation has both provided alternate ways of accomplishing pilot tasks performed
on previous generations of airplanes and created new tasks. The increased use of and flight crew reliance
on flight deck automation makes it essential that the automation act predictably with actions that are well
understood by the flight crew. The pilot has become, in some circumstances, a supervisor or manager of
the automation.

Moreover, the automation must be designed to function in a manner that directly supports flight crews
in performing their tasks. If these human-centered design objectives are not met, the flight crew’s ability
to properly control or supervise system operation is limited, leading to confusion, automation surprises,
and unintended airplane responses.

Each airplane manufacturer has a different philosophy regarding the implementation and use of auto-
mation. Airbus and Boeing are probably the best-known for having different flight deck design philosophies.
However, there is general agreement that the flight crew is and will remain ultimately responsible for the
safety of the airplane they are operating.

Airbus has described its automation philosophy as:

• Automation must not reduce overall aircraft reliability, it should enhance aircraft and systems
safety, efficiency, and economy

• Automation must not lead the aircraft out of the safe flight envelope and it should maintain the
aircraft within the normal flight envelope

FIGURE 9.1 Simplified representation of the flight deck design process (from NASA TM 109171).

Test and
Evaluation

Aircraft
Functional

Requirements

Aircraft
System

Requirements

External
Requirements (Mission,
Customer, Flight Crew,

 Environmental,
Regulatory, Program)

Previous Design,
Production, and

Operational Experience,
 Technology Constraints

Flight Deck
Requirements

Other Systems
Requirements

Aircraft
Operational

Requirements

Flight Deck
Initial Design

Concepts

Other Systems
Initial Design

Concepts

Final
Integrated

Design
© 2001 by CRC Press LLC

• Automation should allow the operator to use the safe flight envelope to its full extent, should this
be necessary due to extraordinary circumstances

• Within the normal flight envelope, the automation must not work against operator inputs, except
when absolutely necessary for safety

Boeing has described its philosophy as follows:

• The pilot is the final authority for the operation of the airplane

• Both crew members are ultimately responsible for the safe conduct of the flight

• Flight crew tasks, in order of priority, are safety, passenger comfort, and efficiency

• Design for crew operations based on pilot’s past training and operational experience

• Design systems to be error tolerant

• The hierarchy of design alternatives is simplicity, redundancy, and automation

• Apply automation as a tool to aid, not replace, the pilot

• Address fundamental human strengths, limitations, and individual differences — for both normal
and nonnormal operations

• Use new technologies and functional capabilities only when:

• They result in clear and distinct operational or efficiency advantages, and

• There is no adverse effect to the human-machine interface

One of the significant differences between the design philosophies of the two manufacturers is in the
area of envelope protection. Airbus’ philosophy has led to the implementation of what has been described
as “hard” limits, where the pilot can provide whatever control inputs he or she desires, but the airplane
will not exceed the flight envelope. In contrast, Boeing has “soft” limits, where the pilot will meet
increasing resistance to control inputs that will take the airplane beyond the normal flight envelope, but
can do so if he or she chooses. In either case, it is important for the pilot to understand what the design
philosophy is for the airplane being flown.

Other manufacturers may have philosophies that differ from Boeing and Airbus. Different philosophies
can be effective if each is consistently applied in design, training, and operations, and if each supports
flight crew members in flying their aircraft safely. To ensure this effectiveness, it is critical that the design
philosophy be documented explicitly and provided to the pilots who will be operating the aircraft, the
trainers, and the procedure developers.

9.2.2.2 Pilot/Flight Deck Interfaces

The layout, controls, displays and amount of automation in flight decks have evolved tremendously in
commercial aviation.15,16 What is sometimes termed the “classic” flight deck, which includes the B-727, the
DC-10, and early series B-747, is typically characterized by dedicated displays, where one piece of data is
generally shown on a dedicated gage or dial as the form of display. These aircraft are relatively lacking in
automation. A representative “classic” flight deck is shown in Figure 9.2. All of these aircraft are further
characterized by the relative simplicity of their autopilot, which offers one or a few simple modes in each
axis. In general, a single instrument indicates the parameter of a single sensor. In a few cases, such as the
Horizontal Situation Indicator, a single instrument indicates the “raw” output of multiple sensors. Regardless,
the crew is generally responsible for monitoring the various instruments and realizing when a parameter is
out of range. A simple caution and warning system exists, but it covers only the most critical system failures.

The first generation of “glass cockpit” flight decks, which include the B-757/767, A-310, and MD-88,
receive their nickname due to their use of cathode ray tubes (CRTs). A representative first-generation “glass
cockpit” flight deck is shown in Figure 9.3. A mix of CRTs and instruments was used in this generation of
flight deck, with instruments used for primary flight information such as airspeed and altitude. A key
innovation in this flight deck was the “map display” and its coupling to the Flight Management System
(FMS). This enabled the crew to program their flight plan into a computer and see their planned track along
the ground, with associated waypoints, on the map display. Accompanying the introduction of the map
© 2001 by CRC Press LLC

FIGURE 9.2 Representative “classic” flight deck (DC-10).

FIGURE 9.3 Representative first-generation “glass cockpit” (B-757) flight deck.
© 2001 by CRC Press LLC

display and FMS were more complex autopilots (added modes from the FMS and other requirements). This
generation of aircraft also featured the introduction of an integrated Caution and Warning System, usually
displayed in a center CRT with engine information. A major feature of this Caution and Warning System
was that it prioritized alerts according a strict hierarchy of “warnings” (immediate crew action required),
“cautions” (immediate crew awareness and future action required), and “advisories” (crew awareness and
possible action required).17

The second generation of “glass cockpit” flight decks, which include the B-747-400, A-320/330/340, F-
70/100, MD-11, and B-777, are characterized by the prevalence of CRTs (or LCDs in the case of the B-777)
on the primary instrument panel. A representative second-generation “glass cockpit” flight deck is shown
in Figure 9.4. CRT/LCDs are used for all primary flight information, which is integrated on a few displays.
In this generation of flight deck, there is some integration of the FMS and autopilot — certain pilot
commands can be input into either the FMS or autopilot and automatically routed to the other.

There are varying levels of aircraft systems automation in this generation of flight deck. For example,
the MD-11 fuel system can suffer certain failures and take corrective action — the crew is only notified
if they must take some action or if the failure affects aircraft performance. The caution and warning
systems in this generation of flight decks are sometimes accompanied by synoptic displays that graphically
indicate problems. Some of these flight decks feature fly-by-wire control systems — in the case of the A-
320/330/340, this capability has allowed the manufacturer to tailor the control laws such that the flying
qualities of these various size aircraft appear similar to pilots. The latest addition to this generation of
flight deck, the B-777, has incorporated “cursor control” for certain displays, allowing the flight crew to
use a touchpad to interact with “soft buttons” programmed on these displays.

FIGURE 9.4 Representative second-generation “glass cockpit” (Airbus A320) flight deck.
© 2001 by CRC Press LLC

Of note is the way that this flight deck design evolution affects the manner in which pilots access and
manage information. Figure 9.2 illustrates the flight deck with dedicated gages and dials, with one display
per piece of information. In contrast, the flight deck shown in Figure 9.4 has even more information
available, and the pilot must access it in entirely different manner. Some of the information is integrated
in a form that the pilot can more readily interpret (e.g., moving map displays). Other information must
be accessed through pages of menus. The point is that there has been a fundamental change in information
management in the flight deck, not through intentional design but through introduction of technology,
often for other purposes.

An example is shown in Figure 9.5 from the business aircraft community illustrating that the advanced
technology discussed here is not restricted to large transport aircraft. In fact, new technology is quite
likely to be more quickly introduced into these smaller, sophisticated aircraft.

Major changes in the flight crew interface with future flight decks are expected. While it is not known
exactly what the flight decks of the future will contain or how they will function, some possible elements
may include:

• Sidestick control inceptors, interconnected and with tailorable force/feel, preferably “backdriven”
during autopilot engagement.

• Cursor control devices, which the military has used for many years, but the civil community is
just starting to use (e.g., in the Boeing 777).

• Multifunction displays.

• Management of subsystems through displays and control-display units.

• ‘‘Mode-less” flight path management functions.

• Large, high-resolution displays having multiple signal sources (computer-generated and video).

FIGURE 9.5 Gulfstream GV flight deck.
© 2001 by CRC Press LLC

• Graphical interfaces for managing certain flight deck systems.

• High-bandwidth, two-way datalink communication capability embedded in appropriate flight
deck systems

• Replacement of paper with “electronic flight bags.’’

• Voice interfaces for certain flight deck systems.

These changes will continue to modify the manner in which pilots manage information within the
flight deck, and the effect of such changes should be explicitly considered in the flight deck design process.

9.2.2.3 Pilot/Flight Deck Interaction

Although it is common to consider the pilot interfaces to be the only or primary consideration in human
factors in flight deck design, the interaction between the pilot(s) and the flight deck must also be
considered. Some of the most visible examples of the importance of this topic, and the consequences of
vulnerabilities in this area, are in the implementation of advanced automation.

Advanced automation (sophisticated autopilots, autothrust, flight management systems, and associated
displays and controls) has provided large improvements in safety (e.g., through reduced pilot workload in
critical or long-range phases of flight) and efficiency (improved precision of flying certain flight paths).
However, vulnerabilities have been identified in the interaction between the flight crews and modern systems.2

For example, on April 26, 1994, an Airbus A300–600 operated by China Airlines crashed at Nagoya,
Japan killing 264 passengers and flight crew members. Contributing to the accident were conflicting
actions taken by the flight crew and the airplane’s autopilot. During complex circumstance, the flight
crew attempted to stay on glide slope by commanding nose-down elevator. The autopilot was then
engaged, and because it was still in go-around mode, commanded nose-up trim. A combination of an
out-of-trim condition, high engine thrust, and retracting the flaps too far led to a stall. The crash provided
a stark example of how a breakdown in the flight crew/automation interaction can affect flight safety.
Although this particular accident involved an A300–600, other accidents, incidents, and safety indicators
demonstrate that this problem is not confined to any one airplane type, airplane manufacturer, operator,
or geographical region.

A lesson to be learned here is that design of the interaction between the pilot and the systems must
consider human capabilities and limitations. A good human-machine interface is necessary but may not
be sufficient to ensure that the system is usable and effective. The interaction between the pilot and the
system, as well as the function of the system itself, must be carefully “human engineered.’’

9.2.3 Evaluation

Figure 9.1 showed test and evaluation (or just evaluation, for the remainder of the discussion) as an
integral part of the design process. Because evaluation is (or should be) such an important part of design,
some clarifying discussion is appropriate here. (See Reference 18 for a more detailed discussion of the
evaluation issues that are summarized below.)

Evaluation often is divided into verification (the process of demonstrating that the system works as
designed) and validation (the process of assessing the degree to which the design achieves the system
objectives of interest). Thus, validation goes beyond asking whether the system was built according to
the plan or specifications; it determines whether the plan or specifications were correct for achieving the
system objectives.

One common use of the term “evaluation” is as a synonym of “demonstration.” That is, evaluation
involves turning on the system and seeing if it basically resembles what the designer intended. This does
not, however, provide definitive information on safety, economy, reliability, maintainability, or other
concerns that are generally the motivation for evaluation.

It is not unusual for evaluation to be confused with demonstration, but they are not the same. In
addition, there are several different types and levels of evaluation that are useful to understand. For
example, formative evaluation is performed during the design process. It tends to be informal and
© 2001 by CRC Press LLC

subjective, and its results should be viewed as hypotheses, not definitive results. It is often used to
evaluate requirements. In contrast, formal evaluation is planned during the design but performed with
a prototype to assess the performance of the human/machine system. Both types of evaluations are
required, but the rest of this discussion focuses on formal evaluation.

Another distinction of interest in understanding types of evaluation is the difference between absolute
vs. comparative evaluations. Absolute evaluation is used when assessing against a standard of some kind.
An example would be evaluating whether the pilot’s response time using a particular system is less than
some prespecified number. Comparative evaluation compares one design to another, typically an old
design to a new one. Evaluating whether the workload for particular tasks in a new flight deck is equal
to or less than in an older model is an example comparative evaluation. This type of evaluation is often
used in the airworthiness certification of a new flight deck, to show its acceptability relative to an older,
already certified flight deck. It may be advantageous for developers to expand an absolute evaluation into
a comparative evaluation (through options within the new system) to assess system sensitivities.

Yet another important distinction is between objective vs. subjective evaluation. Objective evaluation
measures the degree to which the objective criteria (based on system objectives) have been met. Subjective
evaluation focuses on users’ opinions and preferences. Subjective data are important but should be used
to support the objective results, not replace them.

Planning for the evaluation should proceed in parallel with design rather than after the design is
substantially completed. Evaluation should lead to design modification, and this is most effectively done
in an iterative fashion.

Three basic issues, or levels of evaluation, are worth considering. The first is compatibility. That is,
the physical presentation of the system must be compatible with human input and output characteristics.
The pilot has to be able to read the displays, reach the controls, etc. Otherwise, it doesn’t matter how
good the system design is; it will not be usable.

Compatibility is important but not sufficient. A second issue is understandability. That is, just because
the system is compatible with human input-output capabilities and limitations does not necessarily mean
that it is understandable. The structure, format, and content of the pilot-machine dialogue must result
in meaningful communication. The pilot must be able to interpret the information provided, and be
able to “express” to the system what he or she wishes to communicate. For example, if the pilot can read
the menu, but the options available are meaningless, that design is not satisfactory.

A designer must ensure that the design is both compatible and understandable. Only then should the
third level of evaluation be addressed: that of effectiveness. A system is effective to the extent that it
supports a pilot or crew in a manner that leads to improved performance, results in a difficult task being
made less difficult, or enables accomplishing a task that otherwise could not have been accomplished.
Assessing effectiveness depends on defining measures of performance based on the design objectives.
Regardless of these measures, there is no use in attempting to evaluate effectiveness until compatibility
and understandability are ensured.

Several different methods of evaluation can be used, ranging from static paper-based evaluations to
in-service experience. The usefulness and efficiency of a particular method of evaluation naturally
depends on what is being evaluated. Table 9.1 shows the usefulness and efficiency of several methods for
each of the levels of evaluation.

As can be seen from this discussion, evaluation is an important and integral part of successful design.

9.3 Additional Considerations

9.3.1 Standardization

Generally, across manufacturers, there is a great deal of variation in existing flight deck systems design,
training, and operation. Because pilots often operate different aircraft types, or similar aircraft with
different equipage, at different points in time, another way to avoid or reduce errors is standardization
of equipment, actions, and other areas.19
© 2001 by CRC Press LLC

It is not realistic (or even desirable) to think that complete standardization of existing aircraft will
occur. However, for the sake of the flight crews who fly these aircraft, appropriate standardization of new
systems/technology/operational concepts should be pursued, as discussed below.

Appropriate standardization of procedures/actions, system layout, displays, color philosophy, etc. is
generally desirable, because it has several potential advantages, including:

• Reducing potential for crew error/confusion due to negative transfer of learning from one aircraft
to another;

• Reducing training costs, because you only need to train once; and

• Reducing equipment costs because of reduced part numbers, inventory, etc.

A clear example of standardization in design and operation is the Airbus A320/330/340 commonality
of flight deck and handling qualities. This has advantages of reduced training and enabling pilots to
easily fly more than one airplane type.

If standardization is so desirable, why is standardization not more prevalent? There are concerns that
inappropriate standardization, rigidly applied, can be a barrier to innovation, product improvement, and
product differentiation. In encouraging standardization, known issues should be recognized and addressed.

One potential pitfall of standardization that should be avoided is to standardize on the lowest common
denominator. Another question is to what level of design prescription should standardization be done,
and when does it take place? From a human performance perspective, consistency is a key factor. The
actions and equipment may not be exactly the same, but should be consistent. An example where this
has been successfully applied is in the standardization of alerting systems,16 brought about by the use of
industry-developed design guidelines. Several manufacturers have implemented those guidelines into
designs that are very different in some ways, but are generally consistent from the pilot’s perspective.

There are several other issues with standardization. One of them is related to the introduction of new
systems into existing flight decks. The concern here is that the new system should have a consistent
design/operating philosophy with the flight deck into which it is being installed. This point can be
illustrated by the recent introduction of a warning system into modern flight decks. In introducing this
new system, the question arose whether the display should automatically be brought up if an alert occurs
(replacing the current display selected by the pilot). One manufacturer’s philosophy is to bring the
display up automatically when an alert occurs; another manufacturer’s philosophy is to alert the pilot,
then have the pilot select the display when desired. This is consistent with the philosophy of that flight
deck of providing the pilot control over the management of displays. The trade-off between standard-
ization across aircraft types (and manufacturers) and internal consistency with flight deck philosophy is
very important to consider and should probably be done on a case-by-case basis.

TABLE 9.1 Methods of Evaluation18

Levels of Evaluation

Method Compatibility Understandability Effectiveness

Paper Evaluation: Static Useful and Efficient Somewhat Useful but
Inefficient

Not Useful

Paper Evaluation: Dynamic Useful and Efficient Somewhat Useful but
Inefficient

Not Usefula

Part-Task Simulator: “Canned”
Scenarios

Useful but Inefficient Useful and Efficient Marginally Useful but
Efficienta

Part-Task Simulator: Model
Driven

Useful but Inefficient Useful and Efficient Somewhat Useful and
Efficient

Full-Task Simulator Useful but Very Inefficient Useful but Inefficient Useful but Somewhat
Inefficient

In-Service Evaluation Useful but Extremely
Inefficient

Useful but Very Inefficient Useful but Inefficient

a Can be effective for formative evaluation.
© 2001 by CRC Press LLC

The timing of standardization, especially with respect to introduction of new technology, is also
critical.4 It is desirable to deploy new technology early, because some problems are only found in the
actual operating environment. However, if we standardize too early, then there is a risk of standardizing
on a design that has not accounted for that critical early in-service experience. We may even uninten-
tionally standardize a design that is error inducing. However, attempt to standardize too late and there
may already be so many variations that no standard can be agreed upon. It is clear that standardization
must be done carefully and wisely.

9.3.2 Error Management

Human error, especially flight crew error, is a recurring theme and continues to be cited as a primary
factor in a majority of aviation accidents.2,20 It is becoming increasingly recognized that this issue must
be taken on in a systematic way, or it may prove difficult to make advances in operations and safety
improvements. However, it is also important to recognize that human error is also a normal by-product
of human behavior, and most errors in aviation do not have safety consequences. Therefore, it is
important for the aviation community to recognize that error cannot be completely prevented and that
the focus should be on error management.

In many accidents where human error is cited, the human operator is blamed for making the error;
in some countries the human operator is assigned criminal responsibility, and even some U.S. prosecutors
seem willing to take similar views. While the issue of personal responsibility for the consequences of
one’s actions is important and relevant, it also is important to understand why the individual or crew
made the error(s). In aviation, with very rare exceptions, flight crews (and other humans in the system)
do not intend to make errors, especially errors with safety consequences. To improve safety through
understanding of human error, it may be more useful to address errors as symptoms rather than causes
of accidents. The next section discusses understanding of error and its management, then suggests some
actions that might be constructive.

Human error can be distinguished into two basic categories: (a) those which presume the intention
is correct, but the action is incorrect, (including slips and lapses), and (b) those in which the intention
is wrong (including mistakes and violations).21–23

Slips are where one or more incorrect actions are performed, such as in a substitution or insertion of
an inappropriate action into a sequence that was otherwise good. An example would be setting
the wrong altitude into the mode selector panel, even when the pilot knew the correct altitude
and intended to enter it.

Lapses are the omission of one or more steps of a sequence. For example, missing one or more items
in a checklist that has been interrupted by a radio call.

Mistakes are errors where the human did what he or she intended, but the planned action was incorrect.
Usually mistakes are the result of an incorrect diagnosis of a problem or a failure to understand
the exact nature of the current situation. The plan of action thus derived may contain very
inappropriate behaviors and may also totally fail to rectify a problem. For example, a mistake
would be shutting down the wrong engine as a result of an incorrect diagnosis of a set of symptoms.

Violations are the failure to follow established procedures or performance of actions that are generally
forbidden. Violations are generally deliberate (and often well-meaning), though an argument can
be made that some violation cases can be inadvertent. An example of a violation is continuing
on with a landing even when weather minima have not been met before final approach. It should
be mentioned that a “violation” error may not necessarily be in violation of a regulation or other
legal requirement.

Understanding differences in the types of errors is valuable because management of different types
may require different strategies. For example, training is often proposed as a strategy for preventing
errors. However, errors are a normal by-product of human behavior. While training can help reduce
some types of errors, they cannot be completely trained out. For that reason, errors should also be
© 2001 by CRC Press LLC

addressed by other means, and considering other factors, such as the consequences of the error or whether
the effect of the error can be reversed. As an example of using design to address known potential errors,
certain switches in the flight deck have guards on them to prevent inadvertent activation.

Error management can be viewed as involving the tasks of error avoidance, error detection, and error
recovery.23 Error avoidance is important, because it is certainly desirable to prevent as many errors as
possible. Error detection and recovery are important, and in fact it is the safety consequences of errors
that are most critical.

It seems clear that experienced pilots have developed skills for performing error management tasks.
Therefore, it is possible that design, training, and procedures can directly support these tasks, if we get
a better understanding of those skills and tasks. However, the understanding of those skills and tasks is
far from complete.

There are a number of actions that should be taken with respect to dealing with error, some of them
in the design process:

Stop the blame that inhibits in-depth addressing of human error, while appropriately acknowledg-
ing the need for individual and organizational responsibility for safety consequences. The issue
of blaming the pilot for errors has many consequences, and provides a disincentive to report
errors.

Evaluate errors in accident and incident analyses. In many accident analyses, the reason an error is made
is not addressed. This typically happens because the data are not available. However, to the extent
possible with the data available, the types of errors and reasons for them should be addressed as part
of the accident investigation.

Develop a better understanding of error management tasks and skills that can support better
performance of those tasks. This includes:

• Preventing as many errors as possible through design, training, procedures, proficiency, and
any other intervention mechanism;

• Recognizing that it is impossible to prevent all errors, although it is certainly important to
prevent as many as possible; and

• Addressing the need for error management, with a goal of error tolerance in design, training,
and procedures.

System design and associated flight crew interfaces can and should support the tasks of error avoid-
ance, detection, and recovery. There are a number of ways of accomplishing this, some of which are
mentioned here. One of these ways is through user-centered design processes that ensure that the
design supports the human performing the desired task. An example commonly cited is the navigation
display in modern flight decks, which integrates information into a display that provides information
in a manner directly usable by the flight crew. This is also an example of a system that helps make
certain errors more detectable, such as entering an incorrect waypoint. Another way of contributing
to error resistance is designing systems that cannot be used or operated in an unintended way. An
example of this is designing connectors between a cable and a computer such that the only place the
cable connector fits is the correct place for it on the computer; it will not fit into any other connector
on the computer.

9.3.3 Integration with Training/Qualification and Procedures

To conclude, it is important to point out that flight deck design should not occur in isolation. It is
common to discuss the flight deck design separately from the flight crew qualification (training and
recency of experience), considerations, and procedures. And yet, flight deck designs make many
assumptions about the knowledge and skills of the pilots who are the intended operators of the vehicles.
These assumptions should be explicitly identified as part of the design process, as should the assump-
tions about the procedures that will be used to operate the designed systems. Design should be
© 2001 by CRC Press LLC

conducted as part of an integrated, overall systems approach to ensuring safe, efficient, and effective
operations.

References

1. Billings, Charles E., Aviation Automation: The Search for a Human-Centered Approach, Lawrence
Erlbaum Associates, 1997.

2. Federal Aviation Administration, The Human Factors Team Report on: The Interfaces Between
Flightcrews and Modern Flight Deck Systems, July 1996.

3. Sanders, M. S. and McCormick, E. J., Human Factors in Engineering and Design, 7th ed., New York:
McGraw-Hill, 1993.

4. Norman, Donald A., The Psychology of Everyday Things, also published as The Design of Everyday
Things, Doubleday, 1988.

5. Wickens, C. D., Engineering Psychology and Human Performance, 2nd ed., New York: Harper Collins
College, 1991.

6. Hawkins, F., Human Factors in Flight, 2nd ed., Avebury Aviation, 1987.
7. Bailey, R. W., Human Performance Engineering: A Guide for System Designers, Englewood Cliffs,

NJ: Prentice-Hall,1982.
8. Chapanis, A., Human Factors in Systems Engineering, New York: John Wiley & Sons, 1996.
9. Cardosi, K. and Murphy, E. Eds., Human Factors in the Design and Evaluation of Air Traffic Control

Systems, DOT/FAA/RD-95/3, 1995.
10. Nielsen, Jakob, Usability Engineering, New York: Academic Press, 1993.
11. Palmer, M. T., Roger, W. H., Press, H. N., Latorella, K. A., and Abbott, T. S., NASA Tech. Memo.,

109171, January 1995.
12. Reason, J., Managing the Risks of Organizational Accidents, Ashgate Publishing, 1997.
13. Society of Automotive Engineers, Pilot-System Integration, Aerospace Recommended Practice

(ARP) 4033, 1995.
14. Society of Automotive Engineers, Integration Procedures for the Introduction of New Systems to the

Cockpit, ARP 4927, 1995
15. Sexton, G., Cockpit: Crew Systems Design and Integration, in Wiener, E. and Nagel, D., Eds.,

Human Factors in Aviation, San Diego, CA: Academic Press, 1988.
16. Arbuckle, P. D., Abbott, K. H., Abbott, T. S., and Schutte, P. C., Future Flight Decks, 21st Congr.

Int. Council Aeronautical Sci., Paper Number 98-6.9.3, September, 1998.
17. Federal Aviation Administration, Aircraft Alerting Systems Standardization Study, Volume II:

Aircraft Alerting Systems Design Guidelines, FAA Rep. No. DOT/FAA/RD/81–38, II, 1981.
18. Electric Power Research Institute, Rep. NP-3701: Computer-Generated Display System Guidelines,

Vol. 2: Developing an Evaluation Plan, September 1984.
19. Abbott, K., Human Error and Aviation Safety Management, Proc. Flight Saf. Found. 52nd Int. Air

Saf. Semin., November 8–11, 1999.
20. Boeing Commercial Airplane Group, Statistical Summary of Commercial Jet Aircraft Accidents, World

Wide Operations 1959–1995, April 1996.
21. Reason, J. T., Human Error, New York: Cambridge University Press, 1990.
22. Hudson, P.T.W., van der Graaf, G.C., and Verschuur, W.L.G., Perceptions of Procedures by Oper-

ators and Supervisors, Paper SPE 46760, HSE Conf. Soc. Pet. Eng., Caracas, 1998.
23. Hudson, P.T.W., Bending the Rules. II. Why do people break rules or fail to follow procedures?

and, What can you do about it?
24. Wiener, Earl L., Intervention Strategies for the Management of Human Error, Flight Safety Digest,

February 1995.
© 2001 by CRC Press LLC

David G. Vutetakis “Batteries”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

10
Batteries

10.1 Introduction
10.2 General Principles

Battery Fundamentals

10.3 Lead-Acid Batteries
Theory of Operation • Cell Construction • Battery Construction
• Discharge Performance • Charge Methods • Temperature
Effects and Limitations • Service Life • Storage Characteristics
• Maintenance Requirements • Failure Modes
and Fault Detection • Disposal

10.4 Nickel-Cadmium Batteries
Theory of Operation • Cell Construction • Battery Construction
• Discharge Performance • Charge Methods • Temperature
Effects and Limitations • Service Life • Storage Characteristics
• Maintenance requirements • Failure Modes and Fault
Detection • Disposal

10.5 Applications
Commercial Aircraft • Military Aircraft

Defining Terms
References
Further Information

10.1 Introduction

The battery is an essential component of almost all aircraft electrical systems. Batteries are used to start
engines and auxiliary power units, to provide emergency backup power for essential avionics equipment,
to assure no-break power for navigation units and fly-by-wire computers, and to provide ground power
capability for maintenance and preflight checkouts. Many of these functions are mission critical, so the
performance and reliability of an aircraft battery is of considerable importance. Other important require-
ments include environmental ruggedness, a wide operating temperature range, ease of maintenance, rapid
recharge capability, and tolerance to abuse.

Historically, only a few types of batteries have been found to be suitable for aircraft applications. Until
the 1950s, vented lead-acid (VLA) batteries were used exclusively [Earwicker, 1956]. In the late 1950s,
military aircraft began converting to vented nickel-cadmium (VNC) batteries, primarily because of their
superior performance at low temperature. The VNC battery subsequently found widespread use in both
military and commercial aircraft [Fleischer, 1956; Falk and Salkind, 1969]. The only other type of battery
used during this era was the vented silver-zinc battery, which provided an energy density about three
times higher than VLA and VNC batteries [Miller and Schiffer, 1971]. This battery type was applied to
several types of U.S. Air Force fighters (F-84, F-105, and F-106) and U.S. Navy helicopters (H-2, H-13,
and H-43) in the 1950s and 1960s. Although silver-zinc aircraft batteries were attractive for reducing
weight and size, their use has been discontinued due to poor reliability and high cost of ownership.

David G. Vutetakis
Douglas Battery Co.
© 2001 by CRC Press LLC

In the late 1960s and early 1970s, an extensive development program was conducted by the U.S. Air
Force and Gulton Industries to qualify sealed nickel-cadmium (SNC) aircraft batteries for military and
commercial applications [McWhorter and Bishop, 1972]. This battery technology was successfully dem-
onstrated on a Boeing KC-135, a Boeing 727, and a UH-1F helicopter. Before the technology could be
transitioned into production, however, Gulton Industries was taken over by SAFT and a decision was
made to terminate the program.

In the late 1970s and early 1980s, the U.S. Navy pioneered the development of sealed lead-acid (SLA)
batteries for aircraft applications [Senderak and Goodman, 1981]. SLA batteries were initially applied to
the AV-8B and F/A-18, resulting in a significant reliability and maintainability (R&M) improvement
compared with VLA and VNC batteries. The Navy subsequently converted the C-130, H-46, and P-3 to
SLA batteries. The U.S. Air Force followed the Navy’s lead, converting numerous aircraft to SLA batteries,
including the A-7, B-1B, C-130, C-141, KC-135, F-4, and F-117 [Vutetakis, 1994]. The term “High
Reliability, Maintenance-Free Battery,”or HRMFB, was coined to emphasize the improved R&M capability
of sealed-cell aircraft batteries. The use of HRMFBs soon spun off into the commercial sector, and
numerous commercial and general aviation aircraft today have been retrofitted with SLA batteries.

In the mid-1980s, spurred by increasing demands for HRMFB technology, a renewed interest in SNC
batteries took place. A program to develop advanced SNC batteries was initiated by the U.S. Air Force,
and Eagle-Picher Industries was contracted for this effort [Flake, 1988; Johnson et al., 1994]. The B-52
bomber was the first aircraft to retrofit this technology. SNC batteries also have been developed by ACME
for several aircraft applications, including the F-16 fighter, Apache AH-64 helicopter, MD-90, and Boeing
777 [Anderman, 1994].

A recent development in aircraft batteries is the “low maintenance”or “ultra-low maintenance”nickel-
cadmium battery [Scardaville and Newman, 1993]. This battery is intended to be a direct replacement
of conventional VNC batteries, avoiding the need to replace or modify the charging system. Although
the battery still requires scheduled maintenance for electrolyte filling, the maintenance frequency can be
decreased significantly. This type of battery has been under development by SAFT and more recently by
Marathon. Limited flight tests have been performed by the U.S. Navy on the H-1 helicopter. Application
of this technology to commercial aircraft is also being pursued.

Determining the most suitable battery type and size for a given aircraft type requires detailed knowledge
of the application requirements (load profile, duty cycle, environmental factors, and physical constraints)
and the characteristics of available batteries (performance capabilities, charging requirements, life expect-
ancy, and cost of ownership). With the various battery types available today, considerable expertise is
required to size, select, and prepare technical specifications. The information contained in this chapter
will provide general guidance for original equipment design and for upgrading existing aircraft batteries.
More detailed information can be found in the sources listed at the end of the chapter.

10.2 General Principles

10.2.1 Battery Fundamentals

Batteries operate by converting chemical energy into electrical energy through electrochemical discharge
reactions. Batteries are composed of one or more cells, each containing a positive electrode, negative
electrode, separator, and electrolyte. Cells can be divided into two major classes: primary and secondary.
Primary cells are not rechargeable and must be replaced once the reactants are depleted. Secondary cells
are rechargeable and require a DC charging source to restore reactants to their fully charged state.
Examples of primary cells include carbon-zinc (Leclanche or dry cell), alkaline-manganese, mercury-
zinc, silver-zinc, and lithium cells (e.g., lithium-manganese dioxide, lithium-sulfur dioxide, and lithium-
thionyl chloride). Examples of secondary cells include lead-lead dioxide (lead-acid), nickel-cadmium,
nickel-iron, nickel-hydrogen, nickel-metal hydride, silver-zinc, silver-cadmium, and lithium-ion. For
aircraft applications, secondary cells are the most prominent, but primary cells are sometimes used for
powering critical avionics equipment (e.g., flight data recorders).
© 2001 by CRC Press LLC

Batteries are rated in terms of their nominal voltage and ampere-hour capacity. The voltage rating
is based on the number of cells connected in series and the nominal voltage of each cell (2.0 V for lead-
acid and 1.2 V for nickel-cadmium). The most common voltage rating for aircraft batteries is 24 V. A
24-V lead-acid battery contains 12 cells, while a 24-V nickel-cadmium battery contains either 19 or 20 cells
(the U.S. military rates 19-cell batteries at 24 V). Voltage ratings of 22.8, 25.2, and 26.4 V are also common
with nickel-cadmium batteries, consisting of 19, 20, or 22 cells, respectively. Twelve-volt lead-acid bat-
teries, consisting of six cells in series, are also used in many general aviation aircraft.

The ampere-hour (Ah) capacity available from a fully charged battery depends on its temperature,
rate of discharge, and age. Normally, aircraft batteries are rated at room temperature (25°C), the C-rate
(1-hour rate), and beginning of life. Military batteries, however, often are rated in terms of the end-of-
life capacity, i.e., the minimum capacity before the battery is considered unserviceable. Capacity ratings
of aircraft batteries vary widely, generally ranging from 3 to 65 Ah.

The maximum power available from a battery depends on its internal construction. High rate cells,
for example, are designed specifically to have very low internal impedance as required for starting turbine
engines and auxiliary power units (APUs). Unfortunately, no universally accepted standard exists for
defining the peak power capability of an aircraft battery. For lead-acid batteries, the peak power typically
is defined in terms of the cold-cranking amperes, or CCA rating. For nickel-cadmium batteries, the peak
power rating typically is defined in terms of the current at maximum power, or Imp rating. These ratings
are based on different temperatures (�18°C for CCA, 23°C for Imp), making it difficult to compare
different battery types. Furthermore, neither rating adequately characterizes the battery’s initial peak
current capability, which is especially important for engine start applications. More rigorous peak power
specifications have been included in some military standards. For example, MIL-B-8565/15 specifies the
initial peak current, the current after 15 s, and the capacity after 60 s, during a 14-V constant voltage
discharge at two different temperatures (24 and �26°C).

The state-of-charge of a battery is the percentage of its capacity available relative to the capacity when
it is fully charged. By this definition, a fully charged battery has a state-of-charge of 100% and a battery
with 20% of its capacity removed has a state-of-charge of 80%. The state-of-health of a battery is the
percentage of its capacity available when fully charged relative to its rated capacity. For example, a battery
rated at 30 Ah, but only capable of delivering 24 Ah when fully charged, will have a state-of-health of
24/30 � 100 � 80%. Thus, the state-of-health takes into account the loss of capacity as the battery ages.

10.3 Lead-Acid Batteries

10.3.1 Theory of Operation

The chemical reactions that occur in a lead-acid battery are represented by the following equations:

(1)

(2)

(3)

As the cell is charged, the sulfuric acid (H2SO4) concentration increases and becomes highest when the
cell is fully charged. Likewise, when the cell is discharged, the acid concentration decreases and becomes
most dilute when the cell is fully discharged. The acid concentration generally is expressed in terms of
specific gravity, which is weight of the electrolyte compared to the weight of an equal volume of pure water.

Positive electrode: PbO2 H2SO4 2H� 2e� discharge

 charge
---------------------- PbsO4 2H2O� � � �

Negative electrode: Pb H2SO4
discharge

 charge
---------------------- PbSO4 2H� 2e�

� � �

Overall cell reaction: PbO2 pb 2H2SO4
discharge

 charge
---------------------- 2PbSO4 2H2O� � �
© 2001 by CRC Press LLC

The cell’s specific gravity can be estimated from its open circuit voltage using the following equation:

Specific Gravity (SG) � Open Circuit Voltage (OCV) � 0.84 (4)

There are two basic cell types: vented and recombinant. Vented cells have a flooded electrolyte, and
the hydrogen and oxygen gases generated during charging are vented from the cell container. Recombinant
cells have a starved or gelled electrolyte, and the oxygen generated from the positive electrode during
charging diffuses to the negative electrode where it recombines to form water by the following reaction:

(5)

The recombination reaction suppresses hydrogen evolution at the negative electrode, thereby allowing
the cell to be sealed. In practice, the recombination efficiency is not 100% and a resealable valve regulates
the internal pressure at a relatively low value, generally below 10 psig. For this reason, sealed lead-acid
cells are often called “valve-regulated lead-acid” (VRLA) cells.

10.3.2 Cell Construction
Lead-acid cells are composed of alternating positive and negative plates, interleaved with single or multiple
layers of separator material. Plates are made by pasting active material onto a grid structure made of lead
or lead alloy. The electrolyte is a mixture of sulfuric acid and water. In flooded cells, the separator material
is porous rubber, cellulose fiber, or microporous plastic. In recombinant cells with starved electrolyte
technology, a glass fiber mat separator is used, sometimes with an added layer of microporous polypro-
pylene. Gell cells, the other type of recombinant cell, are made by absorbing the electrolyte with silica
gel that is layered between the electrodes and separators.

10.3.3 Battery Construction
Lead-acid aircraft batteries are constructed using injection-molded, plastic monoblocs that contain a
group of cells connected in series. Monoblocs typically are made of polypropylene, but ABS is used by
at least one manufacturer. Normally, the monobloc serves as the battery case, similar to a conventional
automotive battery. For more robust designs, monoblocs are assembled into a separate outer container
made of steel, aluminum, or fiberglass-reinforced epoxy. Cases usually incorporate an electrical receptacle
for connecting to the external circuit with a quick connect/disconnect plug. Two generic styles of receptacles
are common: the “Elcon style” and the “Cannon style.” The Elcon style is equivalent to military type
MS3509. The Cannon style has no military equivalent, but is produced by Cannon and other connector
manufacturers. Batteries sometimes incorporate thermostatically controlled heaters to improve low
temperature performance. The heater is powered by the aircraft’s AC or DC bus. Figure 10.1 shows an
assembly drawing of a typical lead-acid aircraft battery; this particular example does not incorporate a heater.

10.3.4 Discharge Performance
Battery performance characteristics usually are described by plotting voltage, current, or power vs.
discharge time, starting from a fully charged condition. Typical discharge performance data for SLA
aircraft batteries are illustrated in Figures 10.2 and 10.3. Figure 10.4 shows the effect of temperature on
the capacity when discharged at the C-rate. Manufacturers’ data should be obtained for current infor-
mation on specific batteries of interest.

10.3.5 Charge Methods
Constant voltage charging at 2.3 to 2.4V per cell is the preferred method of charging lead-acid aircraft
batteries. For a 12-cell battery, this equates to 27.6 to 28.8 V which generally is compatible with the voltage
available from the aircraft’s 28-V DC bus. Thus, lead-acid aircraft batteries normally can be charged by
direct connection to the DC bus, avoiding the need for a dedicated battery charger. If the voltage regulation
on the DC bus is not controlled sufficiently, however, the battery will be overcharged or undercharged
causing premature failure. In this case, a regulated voltage source may be necessary to achieve acceptable
battery life. Some aircraft use voltage regulators that compensate, either manually or automatically, for
the battery temperature by increasing the voltage when cold and decreasing the voltage when hot.

Pb H2SO4 1�2O2� � PbSO4 H2O�→
© 2001 by CRC Press LLC

Adjusting the charging voltage in this manner has the beneficial effect of prolonging the battery’s service
life at high temperature and achieving faster recharge at low temperatures.

10.3.6 Temperature Effects and Limitations
Lead-acid batteries generally are rated at 25°C (77°F) and operate best around this temperature. Exposure
to low ambient temperatures results in performance decline, whereas exposure to high ambient temper-
atures results in shortened life.

FIGURE 10.1 Assembly drawing of a lead-acid aircraft battery.
© 2001 by CRC Press LLC

The lower temperature limit is dictated by the freezing point of the electrolyte. The electrolyte freezing
point varies with acid concentration, as shown in Table 10.1. The minimum freezing point is a chilly 70°C
(�95°F) at a specific gravity (SG) of 1.30. Since fully charged batteries have SGs in the range of 1.28 to
1.33, they are not generally susceptible to freezing even under extreme cold conditions. However, when
the battery is discharged, the SG drops and the freezing point rises. At low SG, the electrolyte first will
turn to slush as the temperature drops. This is because the water content freezes first, gradually raising
the SG of the remaining liquid so that it remains unfrozen. Solid freezing of the electrolyte in a discharged
battery requires temperatures well below the slush point; a practical lower limit of �30°C is often specified.
Solid freezing can damage the battery permanently (i.e., by cracking cell containers), so precautions should
be taken to keep the battery charged or heated when exposed to temperatures below �30°C.

The upper temperature limit is generally in the range of 60 to 70°C. Capacity loss is accelerated greatly
when charged above this temperature range due to vigorous gassing and/or rapid grid corrosion. The
capacity loss generally is irreversible when the battery is cooled.

10.3.7 Service Life

The service life of a lead-acid aircraft battery depends on the type of use it experiences (e.g., rate,
frequency, and depth of discharge), environmental conditions (e.g., temperature and vibration), charging
method, and the care with which it is maintained. Service lives can range from 1 to 5 years, depending
on the application. Table 10.2 shows representative life cycle data as a function of the depth of discharge.
Manufacturers’ data should be consulted for specific batteries of interest.

FIGURE 10.2 Discharge curves at 25°C for a 24 V/37 Ah SLA aircraft battary.
© 2001 by CRC Press LLC

10.3.8 Storage Characteristics

Lead-acid batteries always should be stored in the charged state. If allowed to remain in the discharged
state for a prolonged time period, the battery becomes damaged by “sulfation.” Sulfation occurs when
lead sulfate forms into large, hard crystals, blocking the pores in the active material. The sulfation creates

FIGURE 10.3 Maximum power curves (12 V Discharge) for a 24 V/37 Ah SLA battery.

FIGURE 10.4 Capacity vs. temperature for aircraft batteries at the C-rate.
© 2001 by CRC Press LLC

a high impedance condition that makes it difficult for the battery to accept recharge. The sulfation may
or may not be reversible, depending on the discharge conditions and specific cell design. The ability to
recovery from deep discharge has been improved in recent years by electrolyte additives, such as sodium
sulfate.

VLA batteries normally are supplied in a dry, charged state (i.e., without electrolyte), which allows them
to be stored almost indefinitely (i.e., 5 years or more). Once activated with electrolyte, periodic charging
is required to overcome the effect of self-discharge and to prevent sulfation. The necessary charging fre-
quency depends on the storage temperature. At room temperature (25°C), charging every 30 days is
typically recommended. More frequent charging is necessary at higher temperatures (e.g., every 15 days
at 35°C), and less frequent charging is necessary at low temperatures (e.g., every 120 days at 10°C).

SLA batteries can be supplied only in the activated state (i.e., with electrolyte), so storage provisions
are more demanding compared with dry charged batteries. As in the case of activated VLA batteries,
periodic charging is necessary to overcome the effects of self-discharge and to prevent sulfation. The rate
of self-discharge of SLA batteries varies widely from manufacturer to manufacturer, so the necessary
charging frequency also varies widely. For example, recommended charging frequencies can range from
3 to 24 months.

10.3.9 Maintenance Requirements

Routine maintenance of lead-acid aircraft batteries is required to assure airworthiness and to maximize
service life. For vented-cell batteries, electrolyte topping must be performed on a regular basis to replenish
the water loss that occurs during charging. Maintenance intervals are typically 2 to 4 months. A capacity
test or load test usually is included as part of the servicing procedure. For sealed-cell batteries, water
replenishment obviously is unnecessary, but periodic capacity measurements generally are recommended.
Capacity check intervals can be based either on calendar time (e.g., every 3 to 6 months after the first
year) or operating hours (e.g., every 100 hours after the first 600 hours). Refer to the manufacturer’s
maintenance instructions for specific batteries of interest.

TABLE 10.1 Freezing Points of Sulfuric Acid-Water Mixtures

Specific Gravity
at 15� C

Cell OCV
(Volts)

Battery OCV
(Volts)

Freezing Point

(�C) (�F)

1.000 1.84 22.08 0 �32
1.050 1.89 22.68 �3 �26
1.100 1.94 23.28 �8 �18
1.150 1.99 23.88 �15 �5
1.200 2.04 24.48 �27 �17
1.250 2.09 25.08 �52 �62
1.300 2.14 25.68 �70 �95
1.350 2.19 26.28 �49 �56
1.400 2.24 26.88 �36 �33

TABLE 10.2 Cycle Life Data for SLA Aircraft Batteries

Depth of Discharge
(% of Rated Capacity)

Number of Cycles
to End of Life

10 2000
30 670
50 400
80 250

100 200

Source: Hawker Energy Products.
© 2001 by CRC Press LLC

10.3.10 Failure Modes and Fault Detection
The predominant failure modes of lead-acid cells are summarized as follows:

• Shorts caused by growth on the positive grid, shedding or mossing of active material, or mechanical
defects protruding from the grid, manifested by inability of the battery to hold a charge (rapid
decline in open circuit voltage).

• Loss of electrode capacity due to active material shedding, excessive grid corrosion, sulfation, or
passivation, manifested by low capacity and/or inability to hold voltage under load.

• Water loss and resulting cell dry-out due to leaking seal, repeated cell reversals, or excessive
overcharge (this mode applies to sealed cells or to vented cells that are improperly maintained),
manifested by low capacity and/or inability to hold voltage under load.

Detection of these failure modes is straightforward if the battery can be removed from the aircraft.
The battery capacity and load capability can be measured directly and the ability to hold a charge can
be inferred by checking the open circuit voltage over time. However, detection of these failure modes
while the battery is in service is more difficult. The more critical the battery is to the safety of the aircraft,
the more important it becomes to detect battery faults accurately. A number of on-board detection
schemes have been developed for critical applications, mainly for military aircraft [Vutetakis and
Viswanathan, 1995].

10.3.11 Disposal
Lead, the major constituent of the lead-acid battery, is a toxic (poisonous) chemical. As long as the lead
remains inside the battery container, no health hazard exists. Improper disposal of spent batteries can
result in exposure to lead, however. Environmental regulations in the U.S. and abroad prohibit the disposal
of lead-acid batteries in landfills or incinerators. Fortunately, an infrastructure exists for recycling the
lead from lead-acid batteries. The same processes used to recycle automotive batteries are used to recycle
aircraft batteries. Federal, state, and local regulations should be followed for proper disposal procedures.

10.4 Nickel-Cadmium Batteries

10.4.1 Theory of Operation

The chemical reactions that occur in a nickel-cadmium battery are represented by the following equations:

(6)

(7)

(8)

There are two basic cell types: vented and recombinant. Vented cells have a flooded electrolyte, and
the hydrogen and oxygen gases generated during charging are vented from the cell container. Recombinant
cells have a starved electrolyte, and the oxygen generated from the positive electrode during charging
diffuses to the negative electrode where it recombines to form cadmium hydroxide by the following
reaction:

(9)

Positive electrode: 2NiOOH 2H2O 2e�
discharge

charge
2Ni OH()2 2 OH()�

� � �

Negative electrode: Cd 2 OH()� discharge

charge
Cd OH()2 2e�

� �

Overall cell reaction: 2NiOOH Cd 2H2O
discharge

charge
2Ni OH()2 Cd OH()2� � �

Cd H2O 1�2O2� � Cd OH()2
© 2001 by CRC Press LLC

The recombination reaction suppresses hydrogen evolution at the negative electrode, thereby allowing
the cell to be sealed. Unlike valve-regulated lead-acid cells, recombinant nickel-cadmium cells are sealed
with a high-pressure vent that releases only during abusive conditions. Thus, these cells remain sealed
under normal charging conditions. However, provisions for gas escape must still be provided when
designing battery cases since abnormal conditions may be encountered periodically (e.g., in the event of
a charger failure that causes an overcurrent condition).

10.4.2 Cell Construction
The construction of nickel-cadmium cells varies significantly, depending on the manufacturer. In general,
cells feature alternating positive and negative plates with separator layers interleaved between them, a
potassium hydroxide (KOH) electrolyte of approximately 31% concentration by weight (specific gravity
1.30), and a prismatic cell container with the cell terminals extending through the cover. The positive
plate is impregnated with nickel hydroxide and the negative plate is impregnated with cadmium hydrox-
ide. The plates differ according to manufacturer with respect to the type of the substrate, type of plaque,
impregnation process, formation process, and termination technique. The most common plate structure
is made of nickel powder sintered onto a substrate of perforated nickel foil or woven screens. At least
one manufacturer (ACME) uses nickel-coated polymeric fibers to form the plate structure. Cell containers
typically are made of nylon, polyamide, or steel. One main difference between vented cells and sealed
(recombinant) cells is the type of separator. Vented cells use a gas barrier layer to prevent gases from
diffusing between adjacent plates. Recombinant cells feature a porous separator system that permits gas
diffusion between plates.

10.4.3 Battery Construction
Nickel-cadmium aircraft batteries generally consist of a steel case containing identical, individual cells
connected in series. The number of cells depends on the particular application, but generally 19 or 20 cells
are used. The end cells of the series are connected to the battery receptacle located on the outside of the
case. The receptacle is usually a two-pin, quick disconnect type; both Cannon and Elcon styles commonly
are used. Cases are vented by means of vent tubes or louvers to allow escape of gases produced during
overcharge. Some battery designs have provisions for forced air cooling, particularly for engine start
applications. Thermostatically controlled heating pads sometimes are employed on the inside or outside
of the battery case to improve low-temperature performance. Power for energizing the heaters normally
is provided by the aircraft’s AC or DC bus. Temperature sensors often are included inside the case to
allow regulation of the charging voltage. In addition, many batteries are equipped with a thermal switch
that protects the battery from overheating if a fault develops or if battery is exposed to excessively high
temperatures. A typical aircraft battery assembly is shown in Figure 10.5.

10.4.4 Discharge Performance
Typical discharge performance data for VNC aircraft batteries are illustrated in Figures 10.6 and 10.7.
Discharge characteristics of SNC batteries are similar to VNC batteries. Figure 10.4 shows the effect of
temperature on discharge capacity at the C-rate. Compared with lead-acid batteries, nickel-cadmium
batteries tend to have more available capacity at low temperature, but less available capacity at high
temperature. Manufacturers’ data should be consulted for current information on specific batteries of
interest.

10.4.5 Charge Methods
A variety of methods are employed to charge nickel-cadmium aircraft batteries. The key requirement is
to strike an optimum balance between overcharging and undercharging, while achieving full charge in
the required time frame. Overcharging results in excessive water loss (vented cells) or heating (sealed
cells). Undercharging results in capacity fading. Some overcharge is necessary, however, to overcome
coulombic inefficiencies associated with the electrochemical reactions. In practice, recharge percentages
on the aircraft generally range between 105 and 120%.
© 2001 by CRC Press LLC

For vented-cell batteries, common methods of charging include constant potential, constant current, or
pulse current. Constant potential charging is the oldest method and normally is accomplished by floating
a 19-cell battery on a 28-V DC bus. The constant current method requires a dedicated charger and typically
uses a 0.5 to 1.5 C-rate charging current. Charge termination is accomplished using a temperature-
compensated voltage cutoff (VCO). The VCO temperature coefficient is typically (�) 4mV/°C. In some
cases, two constant current steps are used, the first step at a higher rate (e.g., C-rate), and the second
step at a lower rate (e.g., 1/3 to 1/5 of the C-rate). This method is more complicated, but results in less
gassing and electrolyte spewage during overcharge. Pulse current methods are similar to the constant
current methods, except the charging current is pulsed rather that constant.

For sealed-cell batteries, only constant current or pulse current methods should be used. Constant
potential charging can cause excessive heating, resulting in thermal runaway. Special attention must be
given to the charge termination technique in sealed-cell batteries, because the voltage profile is relatively
flat as the battery becomess fully charged. For example, it may be necessary to rely on the battery’s
temperature rise rather than voltage rise as the signal for charge termination.

FIGURE 10.5 Assembly drawing of a nickel-cadmium aircraft battery.
© 2001 by CRC Press LLC

10.4.6 Temperature Effects and Limitations
Nickel-cadmium batteries, like lead-acid batteries, normally are rated at room temperature (25°C) and
operate best around this temperature. Exposure to low ambient temperatures results in performance
decline, and exposure to high ambient temperatures results in shortened life.

The lower temperature limit is dictated by the freezing point of the electrolyte. Most cells are filled
with an electrolyte concentration of 31% KOH, which freezes at �66°C. Lower concentrations will freeze
at higher temperatures, as shown in Table 10.3. The KOH concentration may become diluted over time
as a result of spillage or carbonization (reacting with atmospheric carbon dioxide), so the freezing point
of a battery in service may not be as low as expected. As in the case of dilute acid electrolytes, slush ice
will form well before the electrolyte freezes solid. For practical purposes, a lower operating temperature
limit of �40°C often is quoted.

The upper temperature limit is generally in the range of 50 to 60°C; significant capacity loss occurs
when batteries are operated (i.e., repeated charge/discharge cycles) above this temperature range. The
battery capacity often is recoverable, however, when the battery is cooled to room temperature and
subjected to several deep discharge cycles.

10.4.7 Service Life
The service life of a nickel-cadmium aircraft battery depends on many factors, including the type of use
it experiences (e.g., rate, frequency, and depth of discharge), environmental conditions (e.g., temperature

FIGURE 10.6 Discharge curves at 25°C for a 24 V/37 Ah VNC aircraft battery.
© 2001 by CRC Press LLC

and vibration), charging method, and the care with which it is maintained and reconditioned. Thus, it
is difficult to generalize the service life that can be expected. All things being equal, the service life of a
nickel-cadmium battery is inherently longer than that of a lead-acid battery. Representative cycle life data
for an SNC battery are listed in Table 10.4.

FIGURE 10.7 Maximum power curves (12 V discharge) for a 24 V/37 Ah VNC aircraft battery.

TABLE 10.3 Freezing Points of KOH-Water Mixtures

Concentration
(Weight %)

Specific Gravity at
15�C

Freezing Point

(�C) (�F)

0 1.000 0 �32
5 1.045 �3 �27

10 1.092 �8 �18
15 1.140 �15 �5
20 1.118 �24 �11
25 1.239 �38 �36
30 1.290 �59 �74
31 1.300 �66 �87
35 1.344 �50 �58
© 2001 by CRC Press LLC

10.4.8 Storage Characteristics
Nickel-cadmium batteries can be stored in any state of charge and over a broad temperature range (i.e.,
�65 to 60°C). For maximum shelf life, however, it is best to store batteries between 0 and 30°C. Vented-
cell batteries normally are stored with the terminals shorted together. Shorting of sealed-cell batteries
during storage is not recommended, however, since it may cause cell venting and/or cell reversal.

When left on open circuit during periods of non-operation, nickel-cadmium batteries will self-discharge
at a relatively fast rate. As a rule of thumb, the self-discharge rate of sealed cells is approximately 1%/day
at 20°C (when averaged over 30 days), and the rate increases by 1%/day for every 10°C rise in temperature
(e.g., 2%/day at 30°C, 3%/day at 40°C, etc.). The self-discharge rate is somewhat less for vented cells.
The capacity lost by self-discharge usually is recoverable when charged in the normal fashion.

10.4.9 Maintenance Requirements
Routine maintenance of nickel-cadmium aircraft batteries is required to assure airworthiness and to
maximize service life. Maintenance intervals for vented-cell batteries in military aircraft are typically 60
to 120 days. Maintenance intervals for commercial aircraft can be as low as 100 and as high as 1000 flight
hours, depending on the operating conditions. Maintenance procedures include capacity checks, cell
equalization (deep discharge followed by shorting cell terminals for at least 8 h), isolating and replacing
faulty cells (only if permitted; this practice generally is not recommended), cleaning to remove corrosion
and carbonate build-up, and electrolyte adjustment.

For sealed-cell batteries, maintenance requirements are much less demanding. Electrolyte adjustment
is unnecessary, and the extent of corrosion is greatly reduced. However, some means of assuring airwor-
thiness is still necessary, such as periodic capacity measurement. Manufacturers’ recommendations should
be followed for specific batteries of interest.

10.4.10 Failure Modes and Fault Detection
The predominant failure modes of nickel-cadmium cells are summarized as follows:

• Shorts caused by cadmium migration through the separator, swelling of the positive electrode,
degradation of the separator, or mechanical defects protruding from the electrode. Manifested by
inability of the battery to hold a charge (soft shorts) or dead cells (hard shorts).

• Water loss and resulting cell dry-out due to leaking seal, repeated cell reversal, or excessive
overcharge (this mode applies to sealed cells or to vented cells that are improperly maintained).
Manifested by low capacity and/or inability to hold voltage under load.

• Loss of negative (cadmium) electrode capacity due to passivation or active material degradation.
Manifested by low capacity and/or inability to hold voltage under load. Usually reversible by deep
discharge followed by shorting cell terminals, or by “reflex”charging (pulse charging with momen-
tary discharge between pulses).

• Loss of positive (nickel) electrode capacity due to swelling or active material degradation. Mani-
fested by low capacity that is nonrestorable.

TABLE 10.4 Cycle Life Data for SNC Aircraft Batteries

Depth of Discharge
(% of Rated Capacity)

Number of Cycles
to End of Life

30 7500
50 4500
60 3000
80 1500

100 1000

Source: ACME Electric Corporation.
© 2001 by CRC Press LLC

As discussed under lead-acid batteries, detection of these failure modes is relatively straightforward if
the battery can be removed from the aircraft. For example, the battery capacity and load capability can
be directly measured and compared against pass/fail criteria. The occurrence of soft shorts (i.e., a high
impedance short between adjacent plates) is more difficult to detect, but often can be identified by
monitoring the end-of-charge voltage of individual cells.

Detection of these failure modes while the battery is in service is more difficult. As in the case of lead-
acid batteries, a number of on-board detection schemes have been developed for critical applications
[Vutetakis and Viswanathan, 1995]. The more critical the battery is to the safety of the aircraft, the more
important it becomes to detect battery faults accurately.

10.4.11 Disposal

Proper disposal of nickel-cadmium batteries is essential because cadmium is a toxic (carcinogenic) chemical.
In the U.S. and abroad, spent nickel-cadmium batteries are considered to be hazardous waste, and their
disposal is strictly regulated. Several metallurgical processes have been developed for reclaiming and recycling
the nickel and cadmium from nickel-cadmium batteries. These processes can be used for both vented and
sealed cells. Federal, state, and local regulations should be followed for proper disposal procedures.

10.5 Applications

Designing a battery for a new aircraft application or for retrofit requires a careful systems engineering
approach. To function well, the battery must be interfaced carefully with the aircraft’s electrical system.
The battery’s reliability and maintainability depends heavily on the type of charging system to which it
is connected; there is a fine line between undercharging and overcharging the battery. Many airframe
manufacturers have realized that it is better to prepare specifications for a “battery system” rather than
having separate specifications for the battery and the charger. This approach assures that the charging
profile is tuned correctly to the specific characteristics of the battery and to the aircraft’s operational
requirements.

10.5.1 Commercial Aircraft

A listing of commercial aircraft batteries available from various manufacturers is given in Table 10.5.
Sizes range from 12 V/6.5 Ah to 24 V/65 Ah. The table includes VLA, SLA, and VNC type batteries. SNC
batteries are not included, but are available on a limited basis from several manufacturers (ACME, SAFT,
and Eagle-Picher).

In general, the aircraft battery must be sized to provide sufficient emergency power to support flight
essential loads in the event of failure of the primary power system. FAA regulations impose a minimum
emergency power requirement of 30 min on all commercial airplanes. Some airlines impose a longer
emergency requirement, such as 40 or 60 min due to frequent bad weather on their routes or for other
reasons. The emergency requirement for Extended Twin Operation (ETOPS) imposed on two-engine
aircraft operating over water is a full 90 min, although 60 min is allowed with operating restrictions. The
specified emergency power requirement may be satisfied by batteries or other backup power sources,
such as a ram air turbine. If a ram air turbine is used, a battery still is required for transient fill-in.
Specific requirements pertaining to aircraft batteries can be found in the Federal Aviation Regulations
(FAR), Sections 25.1309, 25.1333, 25.1351, and 25.1353. FAA Advisory Circular No. 25.1333-1 describes
specific methods to achieve compliance with applicable FAR sections. For international applications,
Civil Aviation Authority (CAA) and Joint Airworthiness Authority (JAA) regulations should be consulted
for additional requirements.

When used for APU or engine starting, the battery must be sized to deliver short bursts of high power,
as opposed to the lower rates required for emergency loads. APU start requirements on large commercial
aircraft can be particularly demanding; for instance, the APU used on the Boeing 757 and 767 airplanes
has a peak current requirement of 1200 A [Gross, 1991]. The load on the battery starts out very high to
© 2001 by CRC Press LLC

©
 2001 by C

R
C

 Press L
L

C

ER SLA MARATHON VNC SAFT VNC

615
5

10.15
0

0
0

CA-138
SP-138

40153
40253

CA-13
CA-13-1
CA-130

40152

40353

CA-13
CA-125
MA-300H

19V03KHB

CA-51
CA-53
CA-54
MA-500H

605
19V07L
1201
12101

CA-7
CA-10N
CA-515A/B
CA-101
CA-103
CA-106
CA-154
TABLE 10.5 Commercial Aircraft Batteries

RATING(a) CONCORDE CONCORDE SLA TELEDYNE VLA TELEDYNE SLA HAWK

12V/6.5Ah
12V/10Ah SBS-1
12V/15Ah G-30s
12V/18Ah CB-25 RG-25 G-25

G-25M
SBS-3

12V/23Ah CB-35
CB-35M

RG-35 G-35
G-35M

G-35S

12V/25Ah SBS-4
12V/37Ah SBS-6
12V/65Ah CB12-88 G-88

13.2V/36Ah

13.2V/40Ah

13.2V/42Ah

22.8V/3Ah

22.8V/5.5Ah

22.8V/6.5Ah
22.8V/7Ah
22.8V/12Ah

22.8V/13Ah

©
 2001 by C

R
C

 Press L
L

C

1277
1277-1
12277

CA-20H
CA-21H

23175
19V023KHP
2353-1

CA-4
CA-9
MA-11
CA-24A/B
CA-27
CA-272-7
KCA-727
CA-737
CA-5
KA-5h
MA-5
CA-747
CA-88A/B
MA-2-1
MA-300 20V03KHB

0818

0817
0819
0824
082

CA-154-5

(continued)
22.8V/14Ah

22.8V/15Ah
22.8V/20Ah

22.8V/22Ah
22.8V/23Ah

22.8V/24Ah

22.8V/40Ah

22.8V/60Ah
22.8V/65Ah
24V/3Ah
24V/5Ah 9750B
24V/8Ah CB24-9

CB24-9M
G-240
G-241

24V/10Ah CB24-11
CB24-11M

RG-24-11M G-242
G-243
GE-54C
GE-54E

G-242S
G-243s

9750R
9750R
9750R
9750G

24V/14Ah RG-400E
24V/14Ah CB24-40E G-640C

G-640E

©
 2001 by C

R
C

 Press L
L

C

ER SLA MARATHON VNC SAFT VNC

2.10.15
1656
1656-1
16156
16256
16356
2.10.16.1
1600
1606
1666-1
16150

CA-170A
SP-170A
CA-176
SP-176
CA-1700
SP-1700
CA-1717
CA-1735
SP-1735
CA-1751
SP-1751
CA-1752
CA-1753
SP-1753

1658
1756

0730
0734
0738
0740
0741
0742
0744
0745

0746
0775
TABLE 10.5 Commercial Aircraft Batteries (Continued)

RATING(a) CONCORDE CONCORDE SLA TELEDYNE VLA TELEDYNE SLA HAWK

24V/15Ah

24V/16Ah

24V/17Ah

24V/18Ah G-244
G-245
G-641

9750D
9750D
9750D
9750D
9750D
9750D
9750D
9750D
9750S
9750S

©
 2001 by C

R
C

 Press L
L

C

CA-20H-20
CA-21H-20
KTCA-21H-20

2026
2376
2376-1
2376-2
2376-5
20126
23176
23186
23376
23476
23576
23676

2371
2371-1
2506
2506-1
23180
23390
23396
23491
25106
25106-2

CA-4-20
CA-9-20
CA-27-20
CA-91-20
TCA-94A
CA-727-9
CA-727-20

(continued)
24V/19Ah CB24-20 G-246
G-247

24V/20Ah

24V/22Ah CB24-3151
CB24-3151-1
CB24-3151E

GE-51C
GE-51E

24V/23Ah

24V/24Ah

©
 2001 by C

R
C

 Press L
L

C

ER SLA MARATHON VNC SAFT VNC

KCA-727-20
CA-900
SP-900
TSP-900AT
CA-910
SP-910
CA-930A
SP-930A

0639
0640
0647
0650
0658
0660
0662
0663
0667
0750
0751

2500
25201

2378
23178
2778
2778-2
2778-4

SP-280

2.10.35.A
0736
0754

CA-401
SP-401
CA-538
TCA-380
TSP-380

4006A
4006A-1
40100A
40206
40306
TABLE 10.5 Commercial Aircraft Batteries (Continued)

RATING(a) CONCORDE CONCORDE SLA TELEDYNE VLA TELEDYNE SLA HAWK

24V/25Ah CB24-39C
CB24-39E

G-639ES 9750T
9750E
9750E
9750E

24V/25Ah 9750E
9750E
9750Y
9750T
9750T
9750E
9750E

24V/26Ah RG-390E G-639C
G-639E

24V/27Ah

24V/28Ah
24V/31Ah CB24-3150

CB24-3150-1
CB24-3150E

GE-50C
GE-50E

24/35Ah G-6381ES
24V/36Ah 9752D

9752H

©
 2001 by C

R
C

 Press L
L

C

4076
4076-1
4076-2
4076-5
4076-9
40176
40176-4
40176-7
40376
40576
40676
40876

0530
0531
0532
0539
0540
0546

4079
A4079
40109-1
40209
A40209

CA-5-20
CA-5H-20
MA-5-20
CA-14
CA-16
CA-16L
CA-16L-2

400A1
4000A1-1
4579
40776
401076
401176
40100-1

CA-376
SP-376
CA-400
SP-400
TCA-406
CA-420
SP-420
SP-420L
CA-430
CA-440
SP-440
KTCA-747

4050A1
4050A1-1
4071
4071-1
4071-2
4080

(continued)
24V/37Ah G-638E
G-638C

9750F
9750F
9750F
9750F
9750F
9750V

24V/40Ah RG-380E/40A
RG-380E/40B

24V/40Ah

©
 2001 by C

R
C

 Press L
L

C

ER SLA MARATHON VNC SAFT VNC

4078
4078-4
4078-7
40208
40208-1
40208-2
40378

21931
21932

MA-2
22V07L

CA-121
5103

e one-hour rate.
TABLE 10.5 Commercial Aircraft Batteries (Continued)

RATING(a) CONCORDE CONCORDE SLA TELEDYNE VLA TELEDYNE SLA HAWK

24V/43Ah G-63381C
G-6381E

24V/44Ah RG-380E/40
24V/45Ah CB24-380C

CB24-380E
24V/48Ah CB24-382E
24V/50Ah

24V/65Ah
26.4V/7Ah
26.4V/13Ah
26.4V/50Ah

(a) Voltage rating is based on 1.2 V per cell for nickel-cadmium and 2.0 V per cell for lead-acid. Capacity rating is based on th

deliver the in-rush current to the motor, then falls rapidly as the motor develops back electromotive force
(EMF). Within 30 to 60 s, the load drops to zero as the APU ignites and the starter cutoff point is reached.
The worst-case condition is starting at altitude with a cold APU and a cold battery; normally, a lower
temperature limit of -18°C is used as a design point. A rigorous design methodology for optimizing
aircraft starter batteries was developed by Evjen and Miller [1971].

When nickel-cadmium batteries are used for APU or engine starting applications, FAA regulations
require the battery to be protected against overheating. Suitable means must be provided to sense the
battery temperature and to disconnect the battery from the charging source if the battery overheats.
This requirement originated in response to numerous instances of battery thermal runaway, which usually
occurred when 19-cell batteries were charged from the 28-volt DC bus. Most instances of thermal runaway
were caused by degradation of the cellophane gas barrier, thus allowing gas recombination and resultant
cell heating during charging. Modern separator materials (e.g., Celgard) have greatly reduced the occur-
rence of thermal runaway as a failure mode of nickel-cadmium batteries, but the possibility still exists if
the electrolyte level is not properly maintained.

10.5.2 Military Aircraft

A listing of commonly used military aircraft batteries is provided in Table 10.6. This listing includes only
those batteries that have been assigned a military part number based on an approved military specifica-
tion; nonstandard batteries are not included. Detailed characteristics and performance capabilities can
be found by referring to the applicable military specifications. A number of nonstandard battery designs
have been proliferated in the military due to the unique form, fit, and/or functional requirements of
certain aircraft. Specifications for these batteries normally are obtainable only from the aircraft manu-
facturer. Specific examples of battery systems used in present-day military aircraft were recently described
by Vutetakis [1994].

Defining Terms

Ampere-hour capacity: The quantity of stored electrical energy, measured in ampere-hours, that the
battery can deliver from its completely charged state to its discharged state. The dischargeable capacity
depends on the rate at which the battery is discharged; at higher discharge rates the available
capacity is reduced.

C-rate: The discharge rate, in amperes, at which a battery can deliver 1 h of capacity to a fixed voltage
endpoint (typically 18 or 20 V for a 24-V battery). Fractions or multiples of the C-rate also are
used. C/2 refers to the rate at which a battery will discharge its capacity in 2 h; 2C is twice the C-
rate or that rate at which the battery will discharge its capacity in 0.5 h. This rating system helps
to compare the performance of different sizes of cells.

CCA: The numerical value of the current, in amperes, that a fully charged lead-acid battery can deliver
at �18°C (0°F) for 30 s to a voltage of 1.2 V per cell (i.e., 14.4 V for a 24-V battery). In some cases,
60 s is used instead of 30 s. CCA stands for cold cranking amperes.

Electrolyte: An ionically conductive, liquid medium that allows ions to flow between the positive and
negative plates of a cell. In lead-acid cells, the electrolyte is a mixture of sulfuric acid (H2SO4) and
deionized water. In nickel-cadmium cells, the electrolyte is a mixture of potassium hydroxide
(KOH) dissolved in deionized water.

Imp: The numerical value of the current, in amperes, delivered after 15 s during a constant voltage
discharge of 0.6 V per cell (i.e., at 12 V for a 24-V battery). The Imp rating normally is based on
a battery temperature of 23°C (75°F), but manufacturers generally can supply Imp data at lower
temperatures as well.

Monobloc: A group of two or more cells connected in series and housed in a one-piece enclosure with
suitable dividing walls between cell compartments. Typical monoblocs come in 6-V, 12-V, or 24-v
configurations. Monoblocs are commonly used in lead-acid batteries, but rarely used in nickel-
cadmium aircraft batteries.
© 2001 by CRC Press LLC

©
 2001 by C

R
C

 Press L
L

C

Notes

Contains integral charger.
Superceded by M81757/12-1.
MS3509 connector.
MS27466T17B6S connector.

A/B/C, EP-
A, EC-

0F/H/R, MC-
B/C, EC-137D,

Equivalent to D8565/5-2, except uses
MS3509 connector.

ng connector) Equivalent to D8565/5-1, except uses
Cannon connector.

MS27466715B5S connector.
MS3509 connector.
Replacement for D8565/7-1 with

higher rate capability.
Cannon connector.
MS3509 connector.
Cannon connector.
MS3509 connector. Equipped with

temperature sensor.
Equivalent to D8565/11-2, except

uses MS3509 connector.
Equivalent to D8565/11-1, except

uses Cannon connector.
MS3509 connector.
ARINC 1/2 ATR case.
D38999/24YG11SN connector
MS3509 connector.

MS3106-12S-3P connector.
Obsolete.
TABLE 10.6 Military Aircraft Batteries

Military Part No Type
Ratinga

(Ah)
Max. Wt.

(lb) Applications

MIL-B-8565 Series

D8565/1-1 SNC 2.0 (26 V) 8.6 AV-8A/C, CH-53E, MH-53E
D8565/2-1 VNC 30 88.0 OV-10D
D8565/3-3 SLA 15 47.4 V-22(EMD)
D8565/4-1 SLA 7.5 26.0 F/A-18A/B/C/D, CH-46D/E, HH-46A, UH-46A/D, F-117A
D8565/5-1 30 80.2 C-1A, SP-2H, A-3B, KA-3B, RA-3B, ERA-3B, NRA-3B, UA-3B, P-3

3A/B/E, RP-3A, VP-3A, AC-130A/H/U, C-130A/B/E/F/H, DC-130
130EH/G/Q, HC-130H/N/P, KC-130F/R/T, LC-130F/H/R, LC-13
130E/H, NC-130A/B/H, WC-130E/H, C-18A/B, EC-18B/D, C-137
E-8A, TS-2A, US-2A/B, T-28B/C, QT-33A, MH-53J, MH-60G

D8565/5-2 SLA 30 80.2 Same as D8565/5-1 (for aircraft equipped with Cannon style mati

D8565/6-1 SLA 1.5 6.4 V-22A, CV-22A, CH-47E
D8565/7-1 SLA 24 63.9 AV-8B, TAV-8B, VH-60A, V-22A, CV-22A
D8565/7-2 SLA 24 63.9 Same as D8565/7-1

D8565/8-1 SLA 15 43.0 T-45A
D8565/9-1 SLA 24 63.0 T-34B/C, U-6A
D8565/9-2 SLA 24 63.0 None identified
D8565/10-1 VNC 35 85.0 AH-1W

D8565/11-1 SLA 10 34.8 F-4D/E/G, C-141B, MH-60E, NC-141A, YF-22A

D8565/11-2 SLA 10 34.8 None identified

D8565/12-1 SLA 35 90.0 None identified
D8565/13-1 SLA 10 31.0 Carousel IV, LTN-72 Inertial Navigation Systems (INS)
D8565/14-1 SLA 15 45.2 F-18E/F
D8565/15-1 SLA 35 90.0 C/KC-135 series

MIL-B-8565 Specials

MS3319-1 VNC 0.75 3.5 HH-2D, SH-2D/F
MS3337-2 SNC 0.40 4.0 F-4s

©
 2001 by C

R
C

 Press L
L

C

Obsolete.
Equivalent to BB-649A/A.
MS3106R14S-7P connector.

ng connector) Supercedes AN3150. Equivalent to
BB-638/U. Interchangeable with
D8565/5-2 (Cannon connector).

Supercedes AN3151. Equivalent to
BB-639/U. Interchangeable with
D8565/9-2 (Canon connector).

Supercedes AN3154. Equivalent to
BB-640/U. Interchangeable with
D8565/11-2 (Cannon connector).

Supercedes MS18045-41.
Interchangeable with D8565/9-1
(MS3509 connector).

Supercedes MS18045-42.
Interchangeable with D8565/5-1
(MS3509 connector).

ng connector) For ground use only. Equivalent to
M83769/1-1 when filler caps are
replaced with aerobatic vent plugs.
Equipped with Cannon connector.

Supercedes MS90379-1. Equipped
with threaded terminals.

Replaceable cells. Superceds
MS24496-1 and MS24496-2.

Nonreplaceable cells. Supercedes
MS18045-44, MS18045-48 and
MS90221-66W.

Replaceable cells. Supercedes
MS24497-3, MS24497-5, and
M81757/8-2.

(continued)
MS3346-1 VNC 2.5 10.0 A-7D/E, TA-7C
MS3487-1 VNC 18 50.0 AH-1G
MS17334-2 SNC 0.33 3.5 E-1B, EA-6B, US-2D

MIL-B-83769 Series

M83769/1-1 VLA 31 80.0 Same as D8565/5-1 (for aircraft equipped with Cannon style mati

M83769/2-1 VLA 18 56.0 AC-130H/U, NU-1B, U-6A

M83769/3-1 VLA 8.4 34.0 C-141B, NC-141A

M83769/4-1 VLA 18 55.0 T34B/C

M83769/5-1 VLA 31 80.0 Same as D8565/5-1

M83769/6-1 VLA 31 80.0 Same as D8565/5-1 (for aircraft equipped with Cannon style mati

M83769/7-1 VLA 54(12V) 80.0 C-117D, C-118B, VC-118, C-131F, NC-131H, T-33B

MIL-B-81757 Series (Tri-Service)

M81757/7-2 VNC 10 34.0 CH-46A/D/E/F, HH-46A, UH-46A/D, U-8D/F

M81757/7-3 VNC 10 34.0 Same as M81757/7-2

M81757/8-4 VNC 20 55.0 C-2A, T-2C, T-39A/B/D, OV-10A

©
 2001 by C

R
C

 Press L
L

C

Notes

Nonreplaceable cells. Supercedes
MS90365-1, MS90365-2, MS90321-
68W, MS90321-77, MS90321-78W,
MS18045-45, MS18048-49, and
M81757/8-3.

-1J/T, LC- Replaceable cells. Supercedes
MS24498-1 and MS24498-2.

Nonreplaceable cells. Supercedes
MS18045-46, MS18045-50,
MS90321-75W, MS90321-69W.

Nonreplaceable cells. Supercedes
MS90447-2 and MS90321-84W.

Nonreplaceable cells. Supercedes
MS90377-1, MS90321-79W and
M81757/11-1.

Nonreplaceable cells with temperatur
sensor. Supercedes MS90377-1,
MS90321-79W and M81757/11-2.

Nonreplaceable cells, air-cooled.
Supercedes D8565/2-1.

nonreplaceable cells, air-cooled, with
temperature sensor.

Non replaceable cells. Supercedes
MS18045-75.

Superceded by M81757/7-2.
Superceded by M81757/7-2.
Superceded by M81757/8-2.
Contains integral heater.

5, TC-135, WC- Superceded by M81757/8-2.
TABLE 10.6 Military Aircraft Batteries (Continued)

Military Part No Type
Ratinga

(Ah)
Max. Wt.

(lb) Applications

M81757/8-5 VNC 20 55.0 Same as M81757/8-4

M81757/9-2 VNC 30 80.0 CT-39A/E/G, NT-39A, TC-4C, HH-1K, TH-1L, UH-1E/H/L/N, AH
130F/R, OV-1B/C/D

N81757/9-3 VNC 30 80.0 Same as M81757/9-2

M81757/10-1 VNC 6(23V) 24.0 A-6E, EA-6A, KA-6D

M81757/11-3 VNC 20 55.0 HH-2D, SH-2D/F/G, HH-3A/E, SH-3D/G/H, UH-3A, VH-3A

M81757/11-4 VNC 20 55.0 None identified

M81757/12-1 VNC 30 88.0 OV-10D

M81757/12-2 VNC 30 88.0 C-2A (REPRO), OV-10D

M81757/13-1 VNC 30 80.0 EA-3B, ERA-3B, UA-3B

MIL-B-26220 Series (U.S. Air Force)

MS24496-1 VNC 11(C/2) 34.0 F-111A/D/E/F/G, EF-111A, FB-111A
MS24496-2 VNC 11(C/2) 34.0 F-4D/E/G, NF-4C/D/E, NRF-4C, RF-4C, YF-4E
MS24497-3 VNC 22(C/2) 55.0 None identified
MS24497-4 VNC 22(C/2) 60.0 B-52H
MS24497-5 VNC 22(C/2) 55.0 B-52G, C-135, EC-135, KC-135, NC-135, NKC-135, RC-135, TC-13

135, E-4B CH-3E, NA-37B, OA-37B, OV-10A

©
 2001 by C

R
C

 Press L
L

C

, HH-1H, UH- Superceded by M81757/8-2.

Superceded by M81757/9-2.
Superceded by Marathon P/N 30030.

Equivalent to M81757/7-2.
Equivalent to BB-432A/A, except

includes a temperature sensor.
Equivalent to M81757/9-2.
Equivalent to M81757/8-4.

Superceded by BB-664/A.
Equivalent to M83769/1-1.
Equivalent to M83769/6-1
Equivalent to M83769/2-1.
Equivalent to M83769/3-1.
Equivalent to MS3487-1.
MS24498-1 VNC 34(C/2) 80.0 A-10A, C-20A, C-137A/B, EC-137D, OA-10A, T-37B, T-41A/B/C/D
1N, CH-53A, MH-53J, NH-53A, TH-53A

MS24498-2 VNC 34(C/2) 80.0 None identified
MS27546 VNC 5 16.0 T-38A

BB-Series (U.S. Army)

BB-432A/A VNC 10 34.0 CH-47A/B/C, U-8F
BB-432B/A VNC 10 34.0 CH-47D

BB-433A/A VNC 30 80.0 C-12C/D/F/L, OV-1D, EH-1H/X, UH-1H/V, RU-21A/B/C/H
BB-434/A VNC 20 55.0 CH-54
BB-476/A VNC 13 27.6 OH-58A/B/C
BB-558/A VNC 17 38.5 OH-58D
BB-564/A VNC 13 25.0 AH-64A
BB-638/U VLA 31 80.0 None identified
BB-638A/U VLA 31 80.0 None identified
BB-639/U VLA 18 56.0 None identified
BB-640/U VLA 8.4 34.0 None identified
BB-649A/A VNC 18 50.0 AH-1E/F/P/S
BB-664/A VNC 13 27.0 A-64A
BB-678A/A VNC 13 24.8 OH-6A
BB-693A/U VNC 30 83.0 Vulcan
BB-708/U VNC 5.5 15.0 OV-1D (Mission Gear Equipment)
BB-716/A VNC 5.5 17.5 EH-60A, HH-60H/J, SH-60B/F, UH-60A

aCapacity rating is based on the one-hour rate unless otherwise noted. Voltage rating is 24 V unless otherwise noted.

Negative electrode: The electrode from which electrons flow when the battery is discharging into an
external circuit. Reactants are electrochemically oxidized at the negative electrode. In the lead-acid
cell, the negative electrode contains spongy lead and lead sulfate (PbSO4) as the active materials.
In the nickel-cadmium cell, the negative electrode contains cadmium and cadmium hydroxide
(Cd(OH)2) as the active materials.

Nominal voltage: The characteristic operating voltage of a cell or battery. The nominal voltage is 2.0 V
for lead-acid cells and 1.2 V for nickel-cadmium cells. These voltage levels represent the approxi-
mate cell voltage during discharge at the C-rate under room-temperature conditions. The actual
discharge voltage depends on the state-of-charge, state-of-health, discharge time, rate, and tem-
perature.

Positive electrode: The electrode to which electrons flow when the battery is discharging into an external
circuit. Reactants are electrochemically reduced at the positive electrode. In the lead-acid cell, the
positive electrode contains lead dioxide (PbO2) and lead sulfate (PbSO4) as the active materials.
In the nickel-cadmium cell, the positive electrode contains nickel oxyhydroxide (NiOOH) and
nickel hydroxide (Ni(OH)2) as the active materials.

Separator: An electrically insulating material that is used to prevent metallic contact between the positive
and negative plates in a cell, but permits the flow of ions between the plates. In flooded cells, the
separator includes a gas barrier to prevent gas diffusion and recombination of oxygen. In sealed
cells, the separator is intended to allow gas diffusion to promote high recombination efficiency.

State-of-charge: The available capacity of a battery divided by the capacity available when fully charged,
normally expressed on a percentage basis. Sometimes referred to as “true state-of-charge.’’

State-of-health: The available capacity of a fully charged battery divided by the rated capacity of the
battery, normally expressed on a percentage basis. Sometimes referred to as “apparent state-of-
charge.” Can also be used in a more qualitative sense to indicate the general condition of the battery.

References

Anderman, M., 1994. “Ni-Cd Battery for Aircraft; Battery Design and Charging Options’’. Proc. 9th Annu.
Battery Conf. Appl. Adv., California State University, Long Beach, pp. 12–19.

Earwicker, G. A. 1956. “Aircraft Batteries and their Behavior on Constant-Potential Charge,” in Aircraft
Electrical Engineering, G. G. Wakefield, Ed., pp.196–224. Royal Aeronautical Society, U.K.

Evjen, J. M. and Miller, L. D., Jr., 1971. “Optimizing the Design of the Battery-Starter/Generator System,”
SAE Paper 710392.

Flake, R. A., 1988. “Overview on the Evolution of Aircraft Battery Systems Used in Air Force Aircraft,”
SAE Paper 881411.

Fleischer, A., 1956. “Nickel-Cadmium Batteries,” Proc. 10th Annu. Battery Res. Dev. Conf., pp. 37–41.
Falk, S. U. and Salkind, A. J., 1969. Alkaline Storage Batteries, pp. 466–472, John Wiley & Sons, New York,

NY.
Gross, S. 1991. “Requirements for Rechargeable Airplane Batteries.” Proc. 6th Annu. Battery Conf. Appl.

Adv., California State University, Long Beach.
Johnson, Z., Roberts, J., and Scoles, D., 1994. “Electrical Characterization of the Negative Electrode of

the USAF 20-Year-Life Maintenance-Free Sealed Nickel-Cadmium Aircraft Battery over the Tem-
perature Range �40°C to +70°C,” Proc. 36th Power Sources Conf., Cherry Hill, NJ, pp. 292–295.

McWhorter, T. A. and Bishop, W. S., 1972. “Sealed Aircraft Battery with Integral Power Conditioner,”
Proc. 25th Power Sources Symp., Cherry Hill, NJ, pp. 89–91.

Miller, G. H. and Schiffer, S. F., 1971. “Aircraft Zinc-Silver Oxide Batteries,” in Zinc-Silver Oxide Batteries,
A. Fleischer, Ed., pp. 375–391, John Wiley & Sons, New York, NY.

Scardaville, P. A. and Newman, B. C., 1993. “High Power Vented Nickel-Cadmium Cells Designed for Ultra
Low Maintenance,” Proc. 8th Annu. Battery Conf. Appl. Adv., California State University, Long Beach.

Senderak, K. L. and Goodman, A. W., 1981. “Sealed Lead-Acid Batteries for Aircraft Applications,”Proc.
16th IECEC, pp. 117–122.
© 2001 by CRC Press LLC

Vutetakis, D. G., 1994. “Current Status of Aircraft Batteries in the U.S. Air Force,” Proc. 9th Annu. Battery
Conf. Appl. Adv., California State University, Long Beach, pp. 1–6.

Vutetakis, D. G. and Viswanathan, V. V., 1995. “Determining the State-of-Health of Maintenance-Free
Aircraft Batteries,” Proc. 10th Annu. Battery Conf. Appl. Adv., California State University, Long
Beach, pp. 13–18.

Further Information

The Handbook of Batteries and Fuel Cells by David Linden contains extensive technical data on all battery
types, and several chapters are devoted to lead-acid and nickel-cadmium batteries. The second edition
of this handbook was published recently (McGraw-Hill, 1995). Engineering handbooks for nickel-
cadmium batteries have been published by several battery manufacturers, including General Electric,
Gates Energy (now Hawker Energy), and SAFT. An SAE specification for vented nickel-cadmium aircraft
batteries, Aerospace Standard AS-8033, was published in 1981 and reaffirmed in 1988.

The following technical manuals are published by the Department of Defense and provide detailed
operation and servicing instructions for aircraft batteries:

• NAVAIR 17-15BAD-1, Naval Aircraft and Naval Aircraft Support Equipment Storage Batteries.
Request for this document should be referred to Commanding Officer, Naval Air Technical Services
Facility, 700 Robbins Avenue, Philadelphia, PA 19111.

• T.O. 8D2-3-1, Aircraft Nickel-Cadmium Storage Batteries. Request for this document should be
referred to Sacramento ALC/TILBE, McClellan AFB, CA 95652-5990.

• T.O. 8D2-1-31, Aircraft Storage Batteries (Lead-Acid Batteries). Request for this document should
be referred to Sacramento ALC/TILBE, McClellan AFB, CA 95652-5990.

• T.M. 11-6140-203-23, Maintenance Manual for Aircraft Nickel-Cadmium Batteries. Requests for
this document should be referred to CECOM, ATTN: AMSEL-LC-LM-LT, Fort Monmouth, NJ
07703.

The following companies manufacture aircraft batteries and may be contacted for technical assistance
and pricing information:

Nickel-Cadmium Batteries Lead-Acid Batteries

ACME Electric Corporation Concorde Battery Corporation
Aerospace Division 2009 San Bernardino Road
528 W. 21st Street West Covina, California 91790
Tempe, Arizona 85282 Phone (818) 813-1234
Phone (602) 894-6864

Hawker Energy Products Ltd
Eagle-Picher Industries, Inc. Stephenson Street
3820 South Hancock Expressway Newport, Gwent NP9OXJ
Colorado Springs, Colorado 80931 United Kingdom
Phone (303) 392-4266 Phone (011) 441-633-277673

Marathon Power Technologies Company Teledyne Battery Products
8301 Imperial Drive 840 West Brockton Avenue
Waco, Texas 76712 Redlands, California 92374
Phone (817) 776-0650 Phone (909) 793-3131

SAFT America Inc.
711 Industrial Boulevard
Valdosta, Georgia 31601
Phone (912) 247-2331
© 2001 by CRC Press LLC

Gregg F. Bartley “Boeing B-777: Fly-By- Wire Flight Controls”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

II

Functions

J. P. Potocki de Montalk

Airbus Industrie

11 Boeing B-777: Fly-By-Wire Flight Controls

Gregg F. Bartley

Introduction • System Overview • Design Philosophy • System Architecture •
Control Surface Actuation • Fault Tolerance • System Operating Modes • Control Laws
and System Functionality • Primar y Flight Controls System Displays and
Annunciations • System Maintenance • Summary

12 Electrical Flight Controls, From Airbus A320/330/340
to Future Military Transport Aircraft: A Family of Fault-Tolerant
Systems

Dominique Briere, Christian Favre, Pascal Traverse

Introduction • Fly-by-Wire Principles • Main System Features • Failure Detection and
Reconfiguration • A340 Particularities • Design, Development, and Validation
Procedures • Future Trends

13 Navigation Systems

Myron Kayton

Introduction • Coordinate Frames • Categories of Navigation • Dead Reckoning • Radio
Navigation • Celestial Navigation • Map-Matching Navigation • Navigation
Software • Design Trade-Offs

14 Navigation and Tracking

James L. Farrell

Introduction • Fundamentals • Applications • Conclusion

15 Flight Management Systems

Randy Walter

Introduction • Fundamentals • Summary

16 Synthetic Vision

Russell V. Parish, Daniel G. Baize, M. Lewis

Introduction • Background • Application • Concepts • Challenges • Conclusion

17 Enhanced Situation Awareness

Barry C. Breen

Enhanced Ground Proximity Warning System • Fundamentals of Terrain Avoidance
Warning • Operating Modes • EGPWS Standards

18 TCAS II

Steve Henely

Introduction • Components • Surveillance • Protected Airspace • Collision Avoidance
Logic • Cockpit Presentation

The functions implemented in an avionic installation are there to augment the operational effectiveness
of the aircraft. In many cases operation of the aircraft would not be viable without these functions, either
because the aircraft would become so inefficient that it would become unprofitable or because the aircraft
would be too vulnerable in its intended operational environment.

Perhaps the most important function avionics can perform in aiding the aircraft in its flight is that of
flight controls. Two chapters in this section describe how avionics, rather than moving parts, control

the hydraulic and electric power that moves the aircraft’s flying control surfaces. This enables improved
handling, reliability, and repairability of the aircraft and helps the crew to better protect the aircraft
against out-of-normal flight conditions.

Another important function of avionics is navigation and flight management. Several chapters in this
section describe how navigation systems enable the crew to determine the aircraft’s altitude, attitude,
heading, position, speed, and direction of travel when visual references are no longer available, to navigate
toward and along the desired efficient flight path, and to construct this desired path, in a sky that contains
many other aircraft and obstacles to safe and efficient flight.

Knowing the environment in which the aircraft is operating is essential. Two chapters describe
functions that have their reason for existence in the desire to operate even more safely in the presence
of poor visibility and with ever-increasing numbers of other aircraft in proximity. The option to generate
a synthetic image of the environment also offers many benefits.

Together, these and other functions help aviators achieve better and better levels of safety and opera-
tional effectiveness, enabling improved value for the travel and defense budgets.

11
Boeing B-777: Fly-By-
Wire Flight Controls

11.1 Introduction
11.2 System Overview
11.3 Design Philosophy
11.4 System Architecture

Flight Deck Controls • System Electronics • ARINC 629
Data Bus • Interface to Other Airplane
Systems • Electrical Power

11.5 Control Surface Actuation
Fly-by-Wire Actuation • Mechanical Control

11.6 Fault Tolerance
11.7 System Operating Modes
11.8 Control Laws and System Functionality

Pitch Control • Yaw Control • Roll Control • 757 Test
Bed • Actuator Force-Flight Elimination

11.9 Primary Flight Controls System Displays
and Annunciations

11.10 System Maintenance
Central Maintenance Computer • Line Replaceable
Units • Component Adjustment

11.11 Summary
Defining Terms

11.1 Introduction

Fly-By-Wire (FBW) Primary Flight Controls have been been used in military applications such as
fighter airplanes for a number of years. It has been a rather recent development to employ them in a
commercial transport application. The 777 is the first commercial transport manufactured by Boeing
which employees a FBW Primary Flight Control System. This chapter will examine a FBW Primary
Flight Control System using the specific system on the 777 as an example. It must be kept in mind
while reading this chapter that this is only a single example of what is currently in service in the airline
industry. There are several other airplanes in commercial service made by other manufacturers that
employ a different architecture for their FBW flight control system than described here.

A FBW flight control system has several advantages over a mechanical system. These include:

• Overall reduction in airframe weight.

• Integration of several federated systems into a single system.

• Superior airplane handling characteristics.

• Ease of maintenance.

Gregg F. Bartley
Boeing
© 2001 by CRC Press LLC

• Ease of manufacture.

• Greater flexibility for including new functionality or changes after initial design and production.

11.2 System Overview

Conventional primary flight controls systems employ hydraulic actuators and control valves controlled
by cables that are driven by the pilot controls. These cables run the length of the airframe from the
cockpit area to the surfaces to be controlled. This type of system, while providing full airplane control
over the entire flight regime, does have some distinct drawbacks. The cable-controlled system comes with
a weight penalty due to the long cable runs, pulleys, brackets, and supports needed. The system requires
periodic maintenance, such as lubrication and adjustments due to cable stretch over time. In addition,
systems such as the yaw damper that provide enhanced control of the flight control surfaces require
dedicated actuation, wiring, and electronic controllers. This adds to the overall system weight and
increases the number of components in the system.

In a FBW flight control system, the cable control of the primary flight control surfaces has been
removed. Rather, the actuators are controlled electrically. At the heart of the FBW system are electronic
computers. These computers convert electrical signals sent from position transducers attached to the
pilot controls into commands that are transmitted to the actuators. Because of these changes to the
system, the following design features have been made possible:

• Full-time surface control utilizing advanced control laws. The aerodynamic surfaces of the 777
have been sized to afford the required airplane response during critical flight conditions. The
reaction time of the control laws is much faster than that of an alert pilot. Therefore, the size of
the flight control surfaces could be made smaller than those required for a conventionally con-
trolled airplane. This results in an overall reduction in the weight of the system.

• Retention of the desirable flight control characteristics of a conventionally controlled system and
the removal of the undesirable characteristics. This aspect is discussed further in the section on
control laws and system functionality.

• Integration of functions such as the yaw damper into the basic surface control. This allows the
separate components normally used for these functions to be removed.

• Improved system reliability and maintainability.

FIGURE 11.1 The Primary Flight Control System on the Boeing 777 is comprised of the outboard ailerons,
flaperons, elevator, rudder, horizontal stabilizer, and the spoiler/speedbrakes.
© 2001 by CRC Press LLC

11.3 Design Philosophy

The philosophy employed during the design of the 777 Primary Flight Control System maintains a
system operation that is consistent with a pilot’s past training and experience. What is meant by this
is that however different the actual system architecture is from previous Boeing airplanes, the presen-
tation to the pilot is that of a conventionally controlled mechanical system. The 777 retains the
conventional control column, wheel, and rudder pedals, whose operation are identical to the controls
employed on other Boeing transport aircraft. The flight deck controls of the 777 are very similar to
those of the Boeing 747-400, which employs a traditional mechanically controlled Primary Flight Control
System.

Because the system is controlled electronically, there is an opportunity to include system control
augmentation and envelope protection features that would have been difficult to provide in a conventional
mechanical system. The 777 Primary Flight Control System has made full use of the capabilities of this
architecture by including such features as:

• Bank angle protection

• Turn compensation

• Stall and overspeed protection

• Pitch control and stability augmentation

• Thrust asymmetry compensation

More will be said of these specific features later. What should be noted, however, is that none of these
features limit the action of the pilot. The 777 design utilizes envelope protection in all of its functionality
rather than envelope limiting. Envelope protection deters pilot inputs from exceeding certain predefined
limits but does not prohibit it. Envelope limiting prevents the pilot from commanding the airplane beyond
set limits. For example, the 777 bank angle protection feature will significantly increase the wheel force
a pilot encounters when attempting to roll the airplane past a predefined bank angle. This acts as a
prompt to the pilot that the airplane is approaching the bank angle limit. However, if deemed necessary,
the pilot may override this protection by exerting a greater force on the wheel than is being exerted by
the backdrive actuator. The intent is to inform the pilot that the command being given would put the
airplane outside of its normal operating envelope, but the ability to do so is not precluded. This concept
is central to the design philosophy of the 777 Primary Flight Control System.

11.4 System Architecture

11.4.1 Flight Deck Controls

As noted previously, the 777 flight deck utilizes standard flight deck controls; a control column, wheel,
and rudder pedals that are mechanically linked between the Captain’s and First Officer’s controls. This
precludes any conflicting input between the Captain and First Officer into the Primary Flight Control
System. Instead of the pilot controls driving quadrants and cables, as in a conventional system, they are
attached to electrical transducers that convert mechanical displacement into electrical signals.

A gradient control actuator is attached to the two control column feel units. These units provide the
tactile feel of the control column by proportionally increasing the amount of force the pilot experiences
during a maneuver with an increase in airspeed. This is consistent with a pilot’s experience in conventional
commercial jet transports.

Additionally, the flight deck controls are fitted with what are referred to as ‘‘backdrive actuators.” As
the name implies, these actuators backdrive the flight deck controls during autopilot operation. This
feature is also consistent with what a pilot is used to in conventionally controlled aircraft and allows the
pilot to monitor the operation of the autopilot via immediate visual feedback of the pilot controls that
is easily recognizable.
© 2001 by CRC Press LLC

11.4.2 System Electronics

There are two types of electronic computers used in the 777 Primary Flight Control System: the Actuator
Control Electronics (ACE), which is primarily an analog device, and the Primary Flight Computer (PFC),
which utilizes digital technology. There are four ACEs and three PFCs employed in the system. The
function of the ACE is to interface with the pilot control transducers and to control the Primary Flight
Control System actuation with analog servo loops. The role of the PFC is the calculation of control laws
by converting the pilot control position into actuation commands, which are then transmitted to the
ACE. The PFC also contains ancillary functions, such as system monitoring, crew annunciation, and all
the Primary Flight Control System onboard maintenance capabilities.

Four identical ACEs are used in the system, referred to as L1, L2, C, and R. These designations correspond
roughly to the left, center, and right hydraulic systems on the airplane. The flight control functions
are distributed among the four ACEs. The ACEs decode the signals received from the transducers used
on the flight deck controls and the primary surface actuation. The ACEs convert the transducer position
into a digital value and then transmit that value over the ARINC 629 data busses for use by the PFCs.
There are three PFCs in the system, referred to as L, C, and R. The PFCs use these pilot control and surface
positions to calculate the required surface commands. At this time, the command of the automatic
functions, such as the yaw damper rudder commands, are summed with the flight deck control com-
mands, and are then transmitted back to the ACEs via the same ARINC 629 data busses. The ACEs
then convert these commands into analog commands for each individual actuator.

11.4.3 ARINC 629 Data Bus

The ACEs and PFCs communicate with each other, as well as with all other systems on the airplane, via
triplex, bi-directional ARINC 629 Flight Controls data busses, referred to as L, C, and R. The connection
from these electronic units to each of the data busses is via a stub cable and an ARINC 629 coupler. Each
coupler may be removed and replaced without disturbing the integrity of the data bus itself.

11.4.4 Interface to Other Airplane Systems

The Primary Flight Control System transmits and receives data from other airplane systems by two
different pathways. The Air Data and Inertial Reference Unit (ADIRU), Standby Attitude and Air Data
Reference Unit (SAARU), and the Autopilot Flight Director Computers (AFDC) transmit and receive
data on the ARINC 629 flight controls data busses, which is a direct interface to the Primary Flight
Computers. Other systems, such as the Flap Slat Electronics Unit (FSEU), Proximity Switch Electronics
Unit (PSEU), and Engine Data Interface Unit (EDIU) transmit and receive their data on the ARINC 629
systems data busses. The PFCs receive data from these systems through the Airplane Information Man-
agement System (AIMS) Data Conversion Gateway (DCG) function. The DCG supplies data from the
systems data busses onto the flight controls data busses. This gateway between the two main sets of
ARINC 629 busses maintains separation between the critical flight controls busses and the essential
systems busses but still allows data to be passed back and forth.

11.4.5 Electrical Power

There are three individual power systems dedicated to the Primary Flight Control System, which are
collectively referred to as the Flight Controls Direct Current (FCDC) power system. An FCDC Power
Supply Assembly (PSA) powers each of the three power systems. Two dedicated Permanent Magnet
Generators (PMG) on each engine generate AC power for the FCDC power system. Each PSA converts
the PMG alternating current into 28 V DC for use by the electronic modules in the Primary Flight Control
System. Alternative power sources for the PSAs include the airplane Ram Air Turbine (RAT), the 28-V
DC main airplane busses, the airplane hot battery buss, and dedicated 5 Ah FCDC batteries. During
flight, the PSAs draw power from the PMGs. For on-ground engines-off operation or for in-flight failures
of the PMGs, the PSAs draw power from any available source.
© 2001 by CRC Press LLC

11.5 Control Surface Actuation

11.5.1 Fly-by-Wire Actuation

The control surfaces on the wing and tail of the 777 are controlled by hydraulically powered,
electrically signaled actuators. The elevators, ailerons, and flaperons are controlled by two actuators
per surface, the rudder is controlled by three. Each spoiler panel is powered by a single actuator.
The horizontal stabilizer is positioned by two parallel hydraulic motors driving the stabilizer jack-
screw.

The actuation powering the elevators, ailerons, flaperons, and rudder have several operational modes.
These modes, and the surfaces that each are applicable to, are defined below.

FIGURE 11.2 Block diagram of the electronic components of the 777 Primary Flight Control System, as well as
the interfaces to other airplane systems.
© 2001 by CRC Press LLC

Active—Normally, all the actuators on the elevators, ailerons, flaperons, and rudder receive commands
from their respective ACEs and position the surfaces accordingly. The actuators will remain in the
active mode until commanded into another mode by the ACEs.

Bypassed—In this mode, the actuator does not respond to commands from its ACE. The actuator is
allowed to move freely, so that the redundant actuator(s) on a given surface may position the
surface without any loss of authority, i.e., the actuator in the active mode does not have to
overpower the bypassed actuator. This mode is present on the aileron, flaperon, and rudder
actuators.

Damped—In this mode, the actuator does not respond to the commands from the ACE. The actuator
is allowed to move, but at a restricted rate which provides flutter damping for that surface. This
mode allows the other actuator(s) on the surface to continue to operate the surface at a rate
sufficient for airplane control. This mode is present on elevator and rudder actuators.

Blocked—In this mode, the actuator does not respond to commands from the ACE, and it is not
allowed to move. When both actuators on a surface (which is controlled by two actuators) have
failed, they both enter the ‘‘Blocked” mode. This provides a hydraulic lock on the surface. This
mode is present on the elevator and aileron actuators.

An example using the elevator surface illustrates how these modes are used. If the inboard actuator
on an elevator surface fails, the ACE controlling that actuator will place the actuator in the “Damped”
mode. This allows the surface to move at a limited rate under the control of the remaining operative

FIGURE 11.3 Block diagram of the 777 Fly-By-Wire Power Distribution System.
© 2001 by CRC Press LLC

outboard actuator. Concurrent with this action, the ACE also arms the “Blocking” mode on the outboard
actuator on the same surface. If a subsequent failure occurs that will cause the outboard actuator to be
placed in the ‘‘Damped” mode by its ACE, both actuators will then be in the ‘‘Damped” mode and have
their ‘‘Blocking” modes armed. An elevator actuator in this configuration enters the ‘‘Blocking” mode,
which hydraulically locks the surface in place for flutter protection.

11.5.2 Mechanical Control

Spoiler panel 4 and 11 and the alternate stabilizer pitch trim system are controlled mechanically rather
than electrically. Spoilers 4 and 11 are driven directly from control wheel deflections via a control cable.
The alternate horizontal stabilizer control is accomplished by using the pitch trim levers on the flight deck
aisle stand. Electrical switches actuated by the alternate trim levers allow the PFCs to determine when
alternate trim is being commanded so that appropriate commands can be given to the pitch control laws.

Spoiler panels 4 and 11 are also used as speedbrakes, both in the air and on the ground. The speedbrake
function for this spoiler pair only has two positions: stowed and fully extended. The speedbrake commands
for spoilers 4 and 11 are electrical in nature, with an ACE giving an extend or retract command to a solenoid-
operated valve in each of the actuators. Once that spoiler pair has been deployed by a speedbrake command,
there is no control wheel speedbrake command mixing, as there is on all the other fly-by-wire spoiler surfaces.

11.6 Fault Tolerance

‘‘Fault Tolerance” is a term that is used to define the ability of any system to withstand single or multiple
failures which results in either no loss of functionality or a known loss of functionality or reduced level
of redundancy while maintaining the required level of safety. It does not, however, define any particular
method that is used for this purpose. There are two major classes of faults that any system design must

FIGURE 11.4 Schematic representation of the Boeing 777 Primary Flight Control System hydraulic power and
electronic control functional distribution.
© 2001 by CRC Press LLC

deal with. These are

• A failure which results in some particular component becoming totally inoperative. An example
of this would be a loss of power to some electronic component, such that it no longer performs
its intended function.

• A failure which results in some particular component remaining active, but the functionality it
provides is in error. An example of this failure would be a Low Range Radio Altimeter whose
output is indicating the airplane is at an altitude 500 ft above the ground when the airplane is
actually 200 ft above the ground.

One method that is used to address the first class of faults is the use of redundant elements. For example,
there are three PFCs in the 777 Primary Flight Control System, each with three identical computing ‘‘lanes”
within each PFC. This results in nine identical computing channels. Any of the three PFCs themselves can
fail totally due to loss of power or some other failure which affects all three computing lanes, but the
Primary Flight Control System loses no functionality. All four ACEs will continue to receive all their surface
position commands from the remaining PFCs. All that is affected is the level of available redundancy.
Likewise, any single computing lane within a PFC can fail, and that PFC itself will continue to operate
with no loss of functionality. The only thing that is affected is the amount of redundancy of the system.
The 777 is certified to be dispatched on a revenue flight, per the Minimum Equipment List (MEL), with
two computing lanes out of the nine total (as long as they are not within the same PFC channel) for 10
days and for a single day with one total PFC channel inoperative.

Likewise, there is fault tolerance in the ACE architecture. The flight control functions are distributed
among the four ACEs such that a total failure of a single ACE will leave the major functionality of the
system intact. A single actuator on several of the primary control surfaces may become inoperative due
to this failure, and a certain number of spoiler symmetrical panel pairs will be lost. However, the pilot
flying the airplane will notice little or no difference in handling characteristics with this failure. A total
ACE failure of this nature will have much the same impact to the Primary Flight Control System as that
of a hydraulic system failure.

The second class of faults is one that results in erroneous operation of a specific component of the system.
The normal design practice to account for failures of this type is to have multiple elements doing the same
task and their outputs voted or compared in some manner. This is sometimes referred to as a “voting plane.’’
All critical interfaces into the 777 FBW Primary Flight Control System use multiple inputs which are
compared by a voting plane. For interfaces that are required to remain operable after a first failure, at least
three inputs must be used. For example, there are three individual Low Range Radio Altimeter (LRRA)
inputs used by the PFCs. The PFCs compare all three inputs and calculates a mid-value select on the three
values; i.e., the middle value LRRA input is used in all calculations which require radio altitude. In this
manner, any single failure of an LRRA that results in an erroneous value will be discarded. If a subsequent
failure occurs which causes the remaining two LRRA signals to disagree by a preset amount, the PFCs will
throw out both values and take appropriate action in those functions which use these data.

Additionally, a voting plane scheme is used by the PFCs on themselves. Normally, a single computing
lane within a PFC channel is declared as the ‘‘master” lane, and that lane is responsible for transmitting
all data onto the data busses for use by the ACEs and other airplane systems. However, all three lanes
are simultaneously computing the same control laws. The outputs of all three computing lanes within a
single PFC channel are compared against each other. Any failure of a lane that will cause an erroneous
output from that lane will cause that lane to be condemned as ‘‘failed” by the other two lanes.

Likewise, the outputs from all three PFC channels themselves are compared. Each PFC looks at its
own calculated command output for any particular actuator, and compares it with the same command
that was calculated by the other two PFC channels. Each PFC channel then does a mid-value select on
the three commands, and that value (whether it was the one calculated by itself or by one of the other
PFC channels) is then output to the ACEs for the individual actuator commands. In this manner, it is
assured that each ACE receives identical commands from each of the PFC channels.
© 2001 by CRC Press LLC

By employing methods such as those described above, it is assured that the 777 Primary Flight Control
System is able to withstand single or multiple failures and be able to contain those failures in such a
manner that the system remains safe and does not take inappropriate action due to those failures.

11.7 System Operating Modes

The 777 FBW Primary Flight Control System has three operating modes: Normal, Secondary, and Direct.
These modes are defined below:

Normal—In the ‘‘Normal” mode, the PFCs supply actuator position commands to the ACEs, which
convert them into an analog servo command. Full functionality is provided, including all enhanced
performance, envelope protection, and ride quality features.

Secondary—In the ‘‘Secondary” mode, the PFCs supply actuator position commands to the ACEs,
just as in the ‘‘Normal” mode. However, functionality of the system is reduced. For example, the
envelope protection functions are not active in the “Secondary” mode. The PFCs enter this mode
automatically from the ‘‘Normal” mode when there are sufficient failures in the system or inter-
facing systems such that the ‘‘Normal” mode is no longer supported. An example of a set of failures
that will automatically drop the system into the ‘‘Secondary” mode is total loss of airplane air data
from the ADIRU and SAARU. The airplane is quite capable of being flown for a long period of
time in the ‘‘Secondary” mode. It cannot, however, be dispatched in this condition.

Direct—In the ‘‘Direct” mode, the ACEs do not process commands from the PFCs. Instead, each ACE
decodes pilot commands directly from the pilot controller transducers and uses them for the
closed loop servo control of the actuators. This mode will automatically be entered due to total
failure of all three PFCs, failures internal to the ACEs, loss of the flight controls ARINC 629 data
busses, or some combination of these failures. It may also be selected manually via the PFC
disconnect switch on the overhead panel in the flight deck. The airplane handling characteristics
in the “Direct” mode closely match those of the ‘‘Secondary” mode.

11.8 Control Laws and System Functionality

The design philosophy employed in the development of the 777 Primary Flight Control System control
laws stresses aircraft operation consistent with a pilot’s past training and experience. The combination
of electronic control of the system and this philosophy provides for the feel of a conventional airplane,
but with improved handling characteristics and reduced pilot workload.

11.8.1 Pitch Control

Pitch control is accomplished through what is known as a maneuver demand control law, which also
referred to as a C*U control law. C* (pronounced ‘‘C-Star”) is a term that is used to describe the blending
of the airplane pitch rate and the load factor (the amount of acceleration felt by an occupant of the
airplane during a maneuver). At low airspeeds, the pitch rate is the controlling factor. That is, a specific
push or pull of the column by the pilot will result in some given pitch rate of the airplane. The harder
the pilot pushes or pulls on the column, the faster the airplane will pitch nose up or nose down. At high
airspeeds, the load factor dominates. This means that, at high airspeeds, a specific push or pull of the
column by the pilot will result in some given load factor.

The ‘‘U” term in C*U refers to the feature in the control law which will, for any change in the airspeed
away from a referenced trim speed, cause a pitch change to return to that referenced airspeed. For an
increase in airspeed, the control law will command the airplane nose up, which tends to slow the airplane
down. For a decrease in airspeed, the control law causes a corresponding speed increase by commanding
© 2001 by CRC Press LLC

the airplane nose down. This introduces an element of speed stability into the airplane pitch control.
However, airplane configuration changes, such as a change in the trailing edge flap setting or lowering
the landing gear, will NOT result in airplane pitch changes, which would require the pilot to re-trim the
airplane to the new configuration. Thus, the major advantage of this type of control law is that the
nuisance-handling characteristics found in a conventional, mechanically controlled flight control system
which increase the pilot workload are minimized or eliminated, while the desirable characteristics are
maintained.

While in flight, the pitch trim switches on the Captain’s and First Officer’s control wheels do not
directly control the horizontal stabilizer as they normally do on conventionally controlled airplanes.
When the trim switches are used in flight, the pilot is actually requesting a new referenced trim speed.
The airplane will pitch nose up or nose down, using the elevator surfaces, in response to that reference
airspeed change to achieve that new airspeed. The stabilizer will automatically trim, when necessary,
to offload the elevator surface and allow it to return to its neutral surface when the airplane is in a
trimmed condition. When the airplane is on the ground, the pitch trim switches do trim the horizontal
stabilizer directly. While the alternate trim levers (described previously) move the stabilizer directly,
even in flight, the act of doing so will also change the C*U referenced trim speed such that the net
effect is the same as would have been achieved if the pitch trim switches on the control wheels had
been used. As on a conventional airplane, trimming is required to reduce any column forces that are
being held by the pilot.

The pitch control law incorporates several additional features. One is called landing flare compensation.
This function provides handling characteristics during the flare and landing maneuvers consistent with
that of a conventional airplane, which would have otherwise been significantly altered by the C*U control
law. The pitch control law also incorporates Stall and Overspeed Protection. These functions will not
allow the referenced trim speed to be set below a predefined minimum value or above the maximum
operating speed of the airplane. They also significantly increase the column force that the pilot must
hold in order to fly above or below those speeds. An additional feature incorporated into the pitch control
law is turn compensation, which enables the pilot to maintain a constant altitude with minimal column
input during a banked turn.

The unique 777 implementation of maneuver demand and speed stability in the pitch control laws
means that:

• An established flight path remains unchanged unless the pilot changes it through a control column
input, or if the airspeed changes and the speed stability function takes effect.

• Trimming is required only for airspeed changes and not for airplane configuration changes.

11.8.2 Yaw Control

The yaw control law contains the usual functionality employed on other Boeing jetliners, such as the yaw
damper and rudder ratio changer (which compensates a rudder command as a function of airspeed).
However, the 777 FBW rudder control system has no separate actuators, linkages, and wiring for these
functions, as have been used in previous airplane models. Rather, the command for these functions are
calculated in the PFCs and included as part of the normal rudder command to the main rudder actuators.
This reduces weight, complexity, maintenance, and spares required to be stocked.

The yaw control law also incorporates several addition features. The gust suppression system reduces
airplane tag wag by sensing wind gusts via pressure transducers mounted on the vertical tail fin and
applying a rudder command to oppose the movement that would have otherwise been generated by the
gust. Another feature is the wheel-rudder crosstie function, which reduces sideslip by using small amounts
of rudder during banked turns.

One important feature in the yaw control is Thrust Asymmetry Compensation, or TAC. This function
automatically applies a rudder input for any thrust asymmetry between the two engines which exceed
© 2001 by CRC Press LLC

approximately 10% of the rated thrust. This is intended to cancel the yawing moment associated with
an engine failure. TAC operates at all airspeeds above 80 kn even on the ground during the take-off roll.
It will not operate when the engine thrust reversers are deployed.

11.8.3 Roll Control

The roll control law utilized by the 777 Primary Flight Control System is fairly conventional. The outboard
ailerons and spoiler panels 5 and 10 are locked out in the faired position when the airspeed exceeds a
value that is dependent upon airspeed and altitude. It roughly corresponds to the airplane ‘‘flaps up”
maneuvering speed. As with the yaw damper function described previously, this function does not have
a separate actuator, but is part of the normal aileron and spoiler commands. The bank angle protection
feature in the roll control law has been discussed previously.

11.8.4 757 Test Bed

The control laws and features discussed here were incorporated into a modified 757 and flown in the
summer of 1992, prior to full-scale design and development of the 777 Primary Flight Control System.
The Captain’s controls remained connected to the normal mechanical system utilized on the 757. The
777 control laws were flown through the First Officer’s controls. This flying testbed was used to validate
the flight characteristics of the 777 fly-by-wire system, as was flown by Boeing, customer, and regulatory
agency pilots. When the 777 entered into its flight test program, its handling characteristics were extremely
close to those that had been demonstrated with the 757 flying testbed.

11.8.5 Actuator Force-Fight Elimination

One unique aspect of the FBW flight control system used on the 777 is that the actuators on any given
surface are all fully powered at all times. There are two full-time actuators driving each of the elevator,
aileron, and flaperon surfaces, just as there are three full-time actuators on the rudder. The benefit of
this particular implementation is that each individual actuator was able to be sized smaller than it would
have had to have been if each surface was going to be powered by a single actuator through the entire
flight regime. In addition, there is not a need for any redundancy management of an active/standby
actuation system. However, this does cause a concern in another area. This is a possible actuator force-
fight condition between the multiple actuators on a single flight control surface.

Actuator force-fight is caused by the fact that no two actuators, position transducers, or set of con-
trolling servo loop electronics are identical. In addition, there always will be some rigging differences of
the multiple actuators as they are installed on the airplane. These differences will result in one actuator
attempting to position a flight control surface in a slightly different position than its neighboring actuator.
Unless addressed, this would result in a twisting moment upon the surface as the two actuators fight
each other to place the surface in different positions. In order to remove this unnecessary stress on the
flight control surfaces, the Primary Flight Computer control laws include a feature which ‘‘nulls out”
these forces on the surfaces.

Each actuator on the 777 Primary Flight Control System includes what is referred to as a Delta Pressure,
or Delta P, pressure transducer. These transducer readings are transmitted via the ACEs to the PFCs,
which are used in the individual surface control laws to remove the force-fight condition on each surface.
The PFCs add an additional positive or negative component to each of the individual elevator actuator
commands, which results in the difference between the two Delta P transducers being zero. In this way,
the possibility of any force-fight condition between multiple actuators on a single surface is removed.
The surface itself, therefore, does not need to be designed to withstand these stresses, which would have
added a significant amount of weight to the airplane.
© 2001 by CRC Press LLC

11.9 Primary Flight Controls System Displays
and Annunciations

The primary displays for the Primary Flight Control System on the 777 are the Engine Indication and
Crew Alerting System (EICAS) display and the Multi-Function Display (MFD) in the flight deck. Any
failures that require flight crew knowledge or action are displayed on these displays in the form of an
English language message. These messages have several different levels associated with them, depending
upon the level of severity of the failure.

Warning (Red with accompanying aural alert): A nonnormal operational or airplane system con-
dition that requires immediate crew awareness and immediate pilot corrective compensatory
action.

Caution (Amber with accompanying aural alert): A nonnormal or airplane system condition that
requires immediate crew awareness. Compensatory or corrective action may be required.

Advisory (Amber with no accompanying aural alert): A nonnormal operational or airplane system
condition which requires crew awareness. Compensatory or corrective action may be required.

Status (White): No Dispatch or Minimum Equipment List (MEL) related items requiring crew aware-
ness prior to dispatch.

Also available on the MFD, but not normally displayed in flight, is the flight control synoptic page,
which shows the position of all the flight control surfaces.

11.10 System Maintenance

The 777 Primary Flight Control System has been designed to keep line maintenance to a minimum, but
when tasks do need to be accomplished, they are straightforward and easy to understand.

11.10.1 Central Maintenance Computer

The main interface to the Primary Flight Control System for the line mechanic is the Central Maintenance
Computer (CMC) function of AIMS. The CMC uses the Maintenance Access Terminal (MAT) as its
primary display and control. The role of the CMC in the maintenance of the Primary Flight Control
System is to identify failures present in the system and to assist in their repair. The two features utilized
by the CMC that accomplish these tasks are maintenance messages and ground maintenance tests.
Maintenance messages describe to the mechanic, in simplified English, what failures are present in the
system and the components possibly at fault. The ground maintenance tests exercise the system, test for
active and latent failures, and confirm any repair action taken. They are also used to unlatch any EICAS
and Maintenance Messages that may have become latched due to failures.

The PFCs are able to be loaded with new software through the Data Loader function on the MAT. This
allows the PFCs to be updated to a new software configuration without having to take them out of service.

11.10.2 Line Replaceable Units

All the major components of the system are Line Replaceable Units (LRU). This includes all electronics
modules, ARINC 629 data bus couplers, hydraulic and electrical actuators, and all position, force, and
pressure transducers. The installation of each LRU has been designed such that a mechanic has ample
space for component removal and replacement, as well as space for the manipulation of any required
tools.

Each LRU, when replaced, must be tested to assure that the installation was accomplished correctly.
The major LRUs of the system (transducers, actuators, and electronics modules) have LRU Replacement
Tests that are able to be selected via a MAT pull-down menu and are run by the PFCs. These tests are
© 2001 by CRC Press LLC

user-friendly and take a minimum amount of time to accomplish. Any failures found in an LRU replace-
ment test will result in a maintenance message, which details the failures that are present.

11.10.3 Component Adjustment

The primary surface actuators on the 777 are replaced in the same manner as on conventional airplanes. The
difference is how they are adjusted. Each elevator, aileron, flaperon, and rudder actuator has what is referred
to as a null adjust transducer, which is rotated by the mechanic until the actuator is positioned correctly. For
example, when a rudder actuator is replaced, all hydraulic systems are depressurized except for the one
that supplies power to the actuator that has just been replaced. The Null Adjust Transducer is then
adjusted until the rudder surface aligns itself with a mark on the empennage, showing that the actuator
has centered the rudder correctly.

The transducers used on the pilot controls are, for the most part, individual LRUs. However, there are
some packages, such as the speedbrake lever position transducers and the column force transducers,
which have multiple transducers in a single package. When a transducer is replaced, the Primary Flight
Controls EICAS Maintenance Pages are used to adjust the transducer to a certain value at the system rig
point. There are CMC-initiated LRU replacement tests which check that the component has been installed
correctly and that all electrical connections have been properly mated.

11.11 Summary

The Boeing 777 fly-by-wire Primary Flight Control System utilizes new technology to provide significant
benefits over that of a conventional system. These benefits include a reduction in the overall weight of
the airplane, superior handling characteristics, and improved maintainability of the system. At the same
time, the control of the airplane is accomplished using traditional flight deck controls, thereby allowing the
pilot to fly the airplane without any specialized training when transferring from a more conventional
commercial jet aircraft. The technology utilized by the 777 Primary Flight Control System has earned its
way onto the airplane, and is not just technology for technology’s sake.

Defining Terms

ACE: Actuator Control Electronics
ADIRU: Air Data Inertial Reference Unit
ADM: Air Data Module (Static and Total Pressure)
AFDC: Autopilot Flight Director Computer
AIMS: Airplane Information Management System
ARINC: Aeronautical Radio Inc. (Industry Standard)
C: Center
C*U: Pitch Control Law utilized in the Primary Flight Computer
CMC: Central Maintenance Computer Function in AIMS
DCGF: Data Conversion Gateway Function of AIMS
EDIU: Engine Data Interface Unit
EICAS: Engine Indication and Crew Alerting System
ELMS: Electrical Load Management System
FBW: Fly-By-Wire
FCDC: Flight Controls Direct Current (power system)
FSEU: Flap Slat Electronic Unit
L: Left
L1: Left 1
L2: Left 2
© 2001 by CRC Press LLC

LRRA: Low Range Radio Altimeter
LRU: Line Replaceable Unit
MAT: Maintenance Access Terminal
MEL: Minimum Equipment List
MFD: Multi-Function Display
MOV: Motor-Operated Valve
PCU: Power Control Unit (hydraulic actuator)
PFC: Primary Flight Computer
PMG: Permanent Magnet Generator
PSA: Power Supply Assembly
R: Right
RAT: Ram Air Turbine
SAARU: Standby Attitude and Air Data Unit
TAC: Thrust Asymmetry Compensation
WEU: Warning Electronics Unit
© 2001 by CRC Press LLC

ansport

Dominique Briere et al. “Electrical Flight Controls, From Airbus A320/330/340 to Future Military Tr
Aircraft: A Family of Fault-Tolerant Systems”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

12
Electrical Flight

Controls, From Airbus
A320/330/340 to Future

Military Transport
Aircraft: A Family of

Fault-Tolerant Systems

12.1 Introduction
12.2 Fly-by-Wire Principles
12.3 Main System Features

Computer Arrangement

12.4 Failure Detection and Reconfiguration
Flight Control Laws • Actuator Control and
Monitor • Comparison and Robustness • Latent
Failure • Reconfiguration • System Safety
Assessment • Warning and Caution

12.5 A340 Particularities
System • Control laws

12.6 Design, Development, and Validation Procedures
Fly-by-Wire System Certification Background • The A320
Experience • The A340 Experience

12.7 Future Trends

12.1 Introduction

The first electrical flight control system for a civil aircraft was designed by Aerospatiale and installed on
the Concorde. This is an analog, full-authority system for all control surfaces. The commanded control
surface positions are directly proportional to the stick inputs. A mechanical back-up system is provided
on the three axes.

The first generation of electrical flight control systems with digital technology appeared on several
civil aircraft at the start of the 1980s with the Airbus A310 program. These systems control the slats,
flaps, and spoilers. These systems were designed with very stringent safety requirements (control surface
runaway must be extremely improbable). As the loss of these functions results in a supportable increase
in the crew’s workload, it is possible to lose the system in some circumstances.

Dominique Briere
Aerospatiale

Christian Favre
Aerospatiale

Pascal Traverse
Aerospatiale
© 2001 by CRC Press LLC

The Airbus A320 (certified in early 1988) is the first example of a second generation of civil electrical
flight control aircraft, rapidly followed by the A340 aircraft (certified at the end of 1992). These aircraft
benefit from the significant experience gained by Aérospatiale in the technologies used for a fly-by-wire
system (see Table 12.1). The distinctive feature of these aircraft is that all control surfaces are electrically
controlled and that the system is designed to be available under all circumstances.

This system was built to very stringent dependability requirements both in terms of safety (the system
may generate no erroneous signals) and availability (the complete loss of the system is extremely
improbable).

The overall dependability of the aircraft fly-by-wire system relies in particular on the computer
arrangement (the so-called control/monitor architecture), the system tolerance to both hardware and
software failures, the servo-control and power supply arrangement, the failure monitoring, and the
system protection against external aggressions. It does this without forgetting the flight control laws
which minimize the crew workload, the flight envelope protections which allow fast reactions while
keeping the aircraft in the safe part of the flight envelope, and finally the system design and validation
methods.

The aircraft safety is demonstrated by using both qualitative and quantitative assessments; this approach is
consistent with the airworthiness regulation. Qualitative assessment is used to deal with design faults, inter-
action (maintenance, crew) faults, and external environmental hazard. For physical (“hardware”) faults, both
qualitative and quantitative assessments are used. The quantitative assessment covers the FAR/JAR 25.1309
requirement, and links the failure condition classification (minor to catastrophic) to its probability target.

The aim of this chapter is to describe the Airbus fly-by-wire systems from a fault-tolerant standpoint.
The fly-by-wire basic principles are presented first, followed by the description of the main system features
common to A320 and A340 aircraft, the failure detection and reconfiguration procedures, the A340
particularities, and the design, development, and validation procedures. Future trends in terms of fly-
by-wire fault-tolerance conclude this overview.

12.2 Fly-by-Wire Principles

On aircraft of the A300 and A310 type, the pilot orders are transmitted to the servo-controls by an
arrangement of mechanical components (rods, cables, pulleys, etc.). In addition, specific computers and
actuators driving the mechanical linkages restore the pilot feels on the controls and transmit the autopilot
commands (see Figure 12.1).

TABLE 12.1 Incremental Introduction of New Technologies

First Flight In: 1955 1969 1972 1978–1983 1983 1987

Servo-Controls, and Artificial x x x x x --> x
Feel

Electro-Hydraulic Actuators x x x x --> x
Command and Monitoring x x x x --> x

Computers
Digital Computers x x --> x
Trim, Yaw Damper, Protection x x x x x --> x
Electrical Flight Controls x x x -->x
Side-Stick, Control Laws x --> x
Servoed Aircraft (Auto-pilot) x x x x x --> x
Formal System Safety x x x x --> x

Assessment
System Integration Testing x x x x x --> x

Carevelle Concorde A300 Flight test
Concorde

A300

A310,
A300–600

A320
© 2001 by CRC Press LLC

The term fly-by-wire has been adopted to describe the use of electrical rather than mechanical signalling
of the pilot’s commands to the flying control actuators. One can imagine a basic form of fly-by-wire in
which an airplane retained conventional pilot’s control columns and wheels, hydraulic actuators (but
electrically controlled), and artificial feel as experienced in the 1970s with the Concorde program. The
fly-by-wire system would simply provide electrical signals to the control actuators that were directly
proportional to the angular displacement of the pilot’s controls, without any form of enhancement.

In fact, the design of the A320, A321, A330, and A340 flight control systems takes advantage of the
potential of fly-by-wire for the incorporation of control laws that provide extensive stability augmentation
and flight envelope limiting [Favre, 1993]. The positioning of the control surfaces is no longer a simple
reflection of the pilot’s control inputs and conversely, the natural aerodynamic characteristics of the
aircraft are not fed back directly to the pilot (see Figure 12.2).

FIGURE 12.1 Mechanical and electrical flight control.

FIGURE 12.2 Flight control laws.

MECHANICAL FLIGHT CONTROLS

ELECTRICAL FLIGHT CONTROLS (FLY BY WIRE)

DYNAMOMETRIC
ROD

TENSION
REGULATOR

SPRING ROD

UNCOUPLING UNIT

AFT DETENT BELLCRANK

SERVO CONTROL ACTUATOR

A/P
COMPUTERS A/P COMPUTED

COMMAND

COMPUTERS

COMPUTED ORDER

FEEDBACK

PILOTS COMMAND
AIRCRAFT
RESPONSE

A/P

A/P

FEEL

Objectives

Fly-by-wire system

Control
surface

commands

Actuator
control

Control
surface Aircraft

Sensors
(ADC, IRS...)

estimators
© 2001 by CRC Press LLC

The sidesticks, now part of a modern cockpit design with a large visual access to instrument panels,
can be considered as the natural issue of fly-by-wire, since the mechanical transmissions with pulleys,
cables, and linkages can be suppressed with their associated backlash and friction.

The induced roll characteristics of the rudder provide sufficient roll maneuverability of design a
mechanical back-up on the rudder alone for lateral control. This permitted the retention of the advan-
tages of the sidestick design, now rid of the higher efforts required to drive mechanical linkages to the
roll surfaces.

Looking for minimum drag leads us to minimize the negative lift of the horizontal tail plane and
consequently diminishes the aircraft longitudinal stability. It was estimated for the Airbus family that
no significant gain could be expected with rear center-of-gravity positions beyond a certain limit.
This allowed us to design a system with a mechanical back-up requiring no additional artificial
stabilization.

These choices were obviously fundamental to establish the now-classical architecture of the Airbus fly-
by-wire systems (Figures 12.3 and 12.4), namely a set of five full-authority digital computers controlling
the three pitch, yaw, and roll axes and completed by a mechanical back-up on the trimmable horizontal
stabilizer and on the rudder. (Two additional computers as part of the auto pilot system are in charge of
rudder control in the case of A320 and A321 aircraft.)

Of course, a fly-by-wire system relies on the power systems energizing the actuators to move the control
surfaces and on the computer system to transmit the pilot controls. The energy used to pressurize the
servo-controls is provided by a set of three hydraulic circuits, one of which is sufficient to control the
aircraft. One of the three circuits can be pressurized by a Ram air turbine, which automatically extends
in case of an all-engine flame-out.

The electrical power is normally supplied by two segregated networks, each driven by one or two
generators, depending on the number of engines. In case of loss of the normal electrical generation, an
emergency generator supplies power to a limited number of fly-by-wire computers (among others).
These computers can also be powered by the two batteries.

FIGURE 12.3 A320/A321 flight control system architecture.

2 ELEVATOR AILERON COMPUTERS 3 SPOILER ELEVATOR COMPUTERS 2 FLIGHT AUGMENTATION COMPUTERS

GND-SPL

ELAC
SEC

ELAC
SEC

ELAC
SEC

1 12 2
2 21 11 13 3 3 3

B

B

1 1
1 1

M

2 2
2

ELAC
SEC

FAC 1

FAC 2

1
1

2
22

BG

G

G

G

G

Y

B

G

G GGY YYB GYB
5 54 43 32 21 1

L . A I L

L . ELEV

R . A I L

ELAC 1 2 SEC 1 2 3 FAC 1 2

HYDRAULIC

B Blue system
G Green system
Y Yellow system

Y
Y M

Y

B

R . ELEV

THS ACTUATOR

YAW DAMPER
ACTUATOR

+

+

© 2001 by CRC Press LLC

12.3 Main System Features

12.3.1 Computer Arrangement

12.3.1.1 Redundancy

The five fly-by-wire computers are simultaneously active. They are in charge of control law computation
as a function of the pilot inputs as well as individual actuator control, thus avoiding specific actuator
control electronics. The system incorporates sufficient redundancies to provide the nominal performance
and safety levels with one failed computer, while it is still possible to fly the aircraft safely with one single
computer active.

As a control surface runaway may affect the aircraft safety (elevators in particular), each computer is
divided into two physically separated channels (Figure 12.5). The first one, the control channel, is perma-
nently monitored by the second one, the monitor channel. In case of disagreement between control and
monitor, the computer affected by the failure is passivated, while the computer with the next highest priority
takes control. The repartition of computers, servo-controls, hydraulic circuit, and electrical bus bars and
priorities between the computers are dictated by the safety analysis including the engine burst analysis.

12.3.1.2 Dissimilarity

Despite the nonrecurring costs induced by dissimilarity, it is fundamental that the five computers all be
of different natures to avoid common mode failures. These failures could lead to the total loss of the
electrical flight control system.

Consequently, two types of computers may be distinguished:

2 ELAC (elevator and aileron computers) and 3 SEC (spoiler and elevator computers) on A320/A321
and,

FIGURE 12.4 A330/A340 flight control system architecture.

ROLL CONTROL SURFACES ROLL CONTROL SURFACES
GROUND LIFT DUMPER, SPEEDBRAKES

MLA

Y

Y

G G B

G Y B B G

(6 1) SPOILERS

P3P3

P3

S2

S2
S2

P2

P2

P1

P1

S1

S1
S1S1

AILERONS
OUTBOARD INBOARD

P3

P1

S2

YAW DAMPER
SERVO-ACTUATION

S1

S2
S1

TLU RUDDER

B

G

Y

M

G

Y TRIM

P
S

: Flight controls primary computer
: Flight controls secondary computer

B, G, Y : Blue, Green, Yellow hydraulic circuits

MLA

Y GBG

P3 P3

P3

P3

S2

S2
S2

P2

P2P1

M
YB

P2

P1

P1

1

S1

S1

AILERONS

INBOARD OUTBOARD

S1
P1P2

S2 S1
P1 P2

S2

G Y YB B G

(1 6) SPOILERS

2 3

B YG G
ELEVATOR ELEVATOR
© 2001 by CRC Press LLC

3 FCPC (flight control primary computers) and 2 FCSC (flight control secondary computers) on
A330/A340.

Taking the 320 as an example, the ELACs are produced by Thomson-CSF around 68010 microprocessors
and the SECs are produced in cooperation by SFENA/Aerospatiale with a hardware based on the 80186
microprocessor. We therefore have two different design and manufacturing teams with different micro-
processors (and associated circuits), different computer architectures, and different functional specifica-
tions. At the software level, the architecture of the system leads to the use of four software packages
(ELAC control channel, ELAC monitor channel, SEC control channel, and SEC monitor channel) when,
functionally, one would suffice.

12.3.1.3 Serve-Control Arrangement

Ailerons and elevators can be positioned by two servo-controls in parallel. As it is possible to lose control
of one surface, a damping mode was integrated into each servo-control to prevent flutter in this failure
case. Generally, one servo-control is active and the other one is damped. In case of loss of electrical
control, the elevator actuators are centered by a mechanical feedback to increase the horizontal stabilizer
efficiency.

Rudder and horizontal stabilizer controls are designed to receive both mechanical and electrical inputs.
One servo-control per spoiler surface is sufficient. The spoiler servo-controls are pressurized in the
retracted position in case of loss of electrical control.

12.3.1.4 Flight Control Laws

The general objective of the flight control laws integrated in a fly-by-wire system is to improve
the natural flying qualities of the aircraft, in particular in the fields of stability, control, and flight
domain protections. In a fly-by-wire system, the computers can easily process the anemometric
and inertial information as well as any information describing the aircraft state. Consequently,
control laws corresponding to simple control objectives could be designed. The stick inputs are trans-
formed by the computers into pilot control objectives which are compared to the aircraft actual state

FIGURE 12.5 Command and monitoring computer architecture.

Power
Supply

Power
Supply

MONITOR

Processor

Processor

RAM
ROM

RAM
ROM

Watchdog

Watchdog

Bulkhead

Input /
Output

Input /
Output

28 VDC

COMMAND

ActuatorsProtections : lightning...
© 2001 by CRC Press LLC

measured by the inertial and anemometric sensors. Thus, as far as longitudinal control is concerned,
the sidestick position is translated into vertical load factor demands, while lateral control is achieved
through roll rate, sideslip, and bank angle objectives.

The stability augmentation provided by the flight control laws improves the aircraft flying qualities and
contributes to aircraft safety. As a matter of fact, the aircraft remains stable in case of perturbations such
as gusts or engine failure due to a very strong spin stability, unlike conventional aircraft. Aircraft control
through objectives significantly reduces the crew workload; the fly-by-wire system acts as the inner loop
of an autopilot system, while the pilot represents the outer loop in charge of objective management.

Finally, protections forbidding potentially dangerous excursions out of the normal flight domain can
be integrated in the system (Figure 12.6). The main advantage of such protections is to allow the pilot
to react rapidly without hesitation, since he knows that this action will not result in a critical situation.

12.3.1.5 Computer Architecture

Each computer can be considered as being two different and independent computers placed side by side
(see Figure 12.5). These two (sub)computers have different functions and are placed adjacent to each
other to make aircraft maintenance easier. Both command and monitoring channels of the computer are
simultaneously active or simultaneously passive, ready to take control.

Each channel includes one or more processors, their associated memories, input/output circuits, a
power supply unit, and specific software. When the results of these two channels diverge significantly,
the links between the computer and the exterior world are cut by the channel or channels which detected
the failure. The system is designed so that the computer outputs are then in a dependable state (signal
interrupt via relays). Failure detection is mainly achieved by comparing the difference between the control
and monitoring commands with a predetermined threshold. As a result, all consequences of a single
computer fault are detected and passivated, which prevents the resulting error from propagating outside
of the computer. This detection method is completed by permanently monitoring the program sequencing
and the program correct execution.

Flight control computers must be robust. In particular, they must be especially protected against
overvoltages and undervoltages, electromagnetic aggressions, and indirect effects of lightning. They are
cooled by a ventilation system but must operate correctly even if ventilation is lost.

FIGURE 12.6 A320 flight envelope protections.

+ 2.5 g Angle of
attack

Load
Factor

- 1.0 g

Pitch attitude - 15

Pitch attitude 30

Excessive speed
(Vmo + 6 Kt)

Bank
angle 65
© 2001 by CRC Press LLC

12.3.1.6 Installation

The electrical installation, in particular the many electrical connections, also comprises a common-point
risk. This is avoided by extensive segregation. In normal operation, two electrical generation systems
exist without a single common point. The links between computers are limited, the links used for
monitoring are not routed with those used for control. The destruction of a part of the aircraft is also
taken into account; the computers are placed at three different locations, certain links to the actuators
run under the floor, others overhead, and others in the cargo compartment.

12.4 Failure Detection and Reconfiguration

12.4.1 Flight Control Laws

The control laws implemented in the flight control system computers have full authority and must be elabo-
rated as a function of consolidated information provided by at least two independent sources in agreement.

Consequently, the availability of control laws using aircraft feedback (the so-called normal laws) is
closely related to the availability of the sensors. The Airbus aircraft fly-by-wire systems use the informa-
tion of three air data and inertial reference units (ADIRUs), as well as specific accelerometers and rate
gyros. Moreover, in the case of the longitudinal normal law, analytical redundancy is used to validate
the pitch rate information when provided by a single inertial reference unit. The load factor is estimated
through the pitch rate information and compared to the available accelerometric measurements in order
to validate the IRS data.

After double or triple failures, when it becomes impossible to compare the data of independent sources,
the normal control laws are reconfigured into laws of the direct type where the control surface deflection
is proportional to the stick input. To enhance the dissimilarity, the more sophisticated control laws with
aircraft feedback (the normal laws) are integrated in one type of computer, while the other type of
computer incorporates the direct laws only.

12.4.2 Actuator Control and Monitor

The general idea is to compare the actual surface position to the theoretical surface position computed
by the monitoring channel. When needed, the control and monitor channels use dedicated sensors to
perform these comparisons. Specific sensors are installed on the servovalve spools to provide an early
detection capability for the elevators. Both channels can make the actuator passive. A detected runaway
will result in the servo-control deactivation or computer passivation, depending on the failure source.

12.4.3 Comparison and Robustness

Specific variables are permanently compared in the two channels. The difference between the results
of the control and monitoring channels are compared with a threshold. This must be confirmed before
the computer is disconnected. The confirmation consists of checking that the detected failure lasts for
a sufficiently long period of time. The detection parameters (threshold, temporization) must be
sufficiently “wide” to avoid unwanted disconnections and sufficiently “tight” so that undetected failures
are tolerated by the computer’s environment (the aircraft). More precisely, all systems tolerance (most
notably sensor inaccuracy, rigging tolerances, computer asynchronism) are taken into account to
prevent undue failure detection, and errors which are not detectable (within the signal and timing
thresholds) are assessed in respect to their handling quality and structural loads effect.

12.4.4 Latent Failures

Certain failures may remain masked a long time after their occurrence. A typical case is a monitoring
channel affected by a failure resulting in a passive state and detected only when the monitored channel
itself fails. Tests are conducted periodically so that the probability of the occurrence of an undesirable
© 2001 by CRC Press LLC

event remains sufficiently low (i.e., to fulfill [FAR/JAR 25] § 25.1309 quantitative requirement). Typically,
a computer runs its self-test and tests its peripherals during the energization of the aircraft, and therefore
at least once a day.

12.4.5 Reconfiguration

As soon as the active computer interrupts its operation relative to any function (control law or actuator
control), one of the standby computers almost instantly changes to active mode with no or limited jerk
on the control surfaces. Typically, duplex computers are designed so that they permanently transmit
healthy signals which are interrupted as soon as the “functional” outputs (to an actuator, for example)
are lost.

12.4.6 System Safety Assessment

The aircraft safety is demonstrated using qualitative and quantitative assessments. Qualitative assessment
is used to deal with design faults, interaction (maintenance, crew) faults, and external environmental
hazard. For physical (“hardware”) faults, both a qualitative and a quantitative assessments are done. In
particular, this quantitative assessment covers the link between failure condition classification (Minor to
Catastrophic) and probability target.

12.4.7 Warning and Caution

It is deemed useful for a limited number of failure cases to advise the crew of the situation, and possibly
that the crew act as a consequence of the failure. Nevertheless, attention has to be paid to keep the level
of crew workload acceptable. The basic rule is to get the crews attention only when an action is necessary
to cope with a failure or to cope with a possible future failure. On the other hand, maintenance personnel
must get all the failure information.

The warnings and cautions for the pilots are in one of the following three categories:

• Red warning with continuous sound when an immediate action is necessary (for example, to
reduce airplane speed).

• Amber caution with a simple sound, such that the pilot be informed although no immediate
action is needed (for example, in case of loss of flight envelope protections an airplane speed
should not be exceeded).

• Simple caution (no sound), such that no action is needed (for example, a loss of redundancy).

Priority rules among these warnings and cautions are defined to present the most important message
first (see also [Traverse, 1994]).

12.5 A340 Particularities

The general design objective relative to the A340 fly-by-wire system was to reproduce the architecture
and principles chosen for the A320 as much as possible for the sake of commonality and efficiency, taking
account of the A340 particularities (long-range four-engine aircraft).

12.5.1 System

As is now common for each new program, the computer functional density was increased between the
A320 and A330/A340 programs: The number of computers was reduced to perform more functions and
control an increased number of control surfaces (Figure 12.3).
© 2001 by CRC Press LLC

12.5.2 Control Laws

The general concept of the A320 flight control laws was maintained, adapted to the aircraft character-
istics, and used to optimize the aircraft performance, as follows:

• The angle of attack protection was reinforced to better cope with the aerodynamic characteristics
of the aircraft.

• The dutch roll damping system was designed to survive against rudder command blocking,
thanks to an additional damping term through the ailerons, and to survive against an extremely
improbable complete electrical failure thanks to an additional autonomous damper. The outcome
of this was that the existing A300 fin could be used on the A330 and A340 aircraft with the
associated industrial benefits.

• The take-off performance could be optimized by designing a specific law that controls the aircraft
pitch attitude during the rotation.

• The flexibility of fly-by-wire was used to optimize the minimum control speed on the ground
(VMCG). In fact, the rudder efficiency was increased on the ground by fully and asymmetrically
deploying the inner and outer ailerons on the side of the pedal action as a function of the rudder
travel: the inner aileron is commanded downwards, and the outer aileron (complemented by one
spoiler) is commanded upwards.

• A first step in the direction of structural mode control through fly-by-wire was made on the A340
program through the so-called “turbulence damping function” destined to improve passenger
comfort by damping the structural modes excited by turbulence.

12.6 Design, Development, and Validation Procedures

12.6.1 Fly-by-Wire System Certification Background

An airline can fly an airplane only if this airplane has a type certificate issued by the aviation authorities
of the airline country. For a given country, this type certificate is granted when the demonstration has
been made and accepted by the appropriate organization (Federal Aviation Administration in the U.S,
Joint Aviation Authorities in several European countries, etc.) that the airplane meets the country’s
aviation rules and consequently a high level of safety. Each country has its own set of regulatory materials
although the common core is very large. They are basically composed of two parts: the requirements on
one part, and a set of interpretations and acceptable means of compliance in a second part. An example
of requirement is “The aeroplane systems must be designed so that the occurrence of any failure condition
which would prevent the continued safe flight and landing of the aeroplane is extremely improbable”
(in Federal and Joint Aviation Requirements 25.1309, [FAR/JAR 25]). An associated part of the regulation
(Advisary Circular from FAA, Advisory Material — Joint from JAA 25.1309) gives the meaning and
discuss such terms as “failure condition,” and “extremely improbable.” In addition, guidance is given on
how to demonstrate compliance.

The aviation regulatory materials are evolving to be able to cover new technologies (such as the use
of fly-by-wire systems). This is done through special conditions targeting specific issue of a given airplane,
and later on by modifying the general regulatory materials. With respect to A320/A330/A340 fly-by-wire
airplane, the following innovative topics were addressed for certification (note: some of these topics were
also addressing other airplane systems):

• Flight envelope protections

• Side-stick controller

• Static stability

• Interaction of systems and structure

• System safety assessment
© 2001 by CRC Press LLC

• Lightning indirect effect and electromagnetic interference

• Integrity of control signal transmission

• Electrical power

• Software verification and documentation, automatic code generation

• System validation

• Application-specific integrated circuit

It is noteworthy that an integration of regulatory materials is underway which is resulting in a set of
four documents:

• A document on system design, verification and validation, configuration management, quality assur-
ance [ARP 4754, 1994]

• A document on software design, verification, configuration management, quality assurance
[DO178B, 1992]

• A document on hardware design, verification, configuration management, quality assurance
[DO254, 2000]

• A document on the system safety assessment process [ARP 4761, 1994]

12.6.2 The A320 Experience

12.6.2.1 Design

The basic element developed on the occasion of the A320 program is the so-called SAO specification
(Spécification Assistée par Ordinateur), the Aerospatiale graphic language defined to clearly specify
control laws and system logics. One of the benefits of this method is that each symbol used has a formal
definition with strict rules governing its interconnections. The specification is under the control of a
configuration management tool and its syntax is partially checked automatically.

12.6.2.2 Software

The software is produced with the essential constraint that it must be verified and validated. Also, it must
meet the world’s most severe civil aviation standards (level 1 software to [D0178A, 1985]–see also [Barbaste,
1988]). The functional specification acts as the interface between the aircraft manufacturer’s world and
the software designer’s world. The major part of the A320 flight control software specification is a copy
of the functional specification. This avoids creating errors when translating the functional specification
into the software specification. For this “functional” part of the software, validation is not required as it
is covered by the work carried out on the functional specification. The only part of the software specification
to be validated concerns the interface between the hardware and the software (task sequencer, management
of self-test software inputs/outputs). This part is only slightly modified during aircraft development.

To make software validation easier, the various tasks are sequenced in a predetermined order with
periodic scanning of the inputs. Only the clock can generate interrupts used to control task sequencing.
This sequencing is deterministic. A part of the task sequencer validation consists in methodically evalu-
ating the margin between the maximum execution time for each task (worst case) and the time allocated
to this task. An important task is to check the conformity of the software with its specification. This is
performed by means of tests and inspections. The result of each step in the development process is
checked against its specification. For example, a code module is tested according to its specification. This
test is, first of all, functional (black box), then structural (white box).

Adequate coverage must be obtained for the internal structure and input range. The term “adequate”
does not mean that the tests are assumed as being exhaustive. For example, for the structural test of a
module, the equivalence classes are defined for each input. The tests must cover the module input range
taking these equivalence classes and all module branches (among other things) as a basis. These equiv-
alence classes and a possible additional test effort have the approval of the various parties involved (aircraft
manufacturer, equipment manufacturer, airworthiness authorities, designer, and quality control).
© 2001 by CRC Press LLC

The software of the control channel is different from that of the monitoring channel. Likewise, the
software of the ELAC computer is different from that of the SEC computer (the same applies to the FCPC
and FCSC on the A340). The aim of this is to minimize the risk of a common error which could cause
control surface runaway (control/monitoring dissimilarity) or complete shutdown of all computers
(ELAC/SEC dissimilarity).

The basic rule to be retained is that the software is made in the best possible way. This has been
recognized by several experts in the software field both from industry and from the airworthiness
authorities. Dissimilarity is an additional precaution which is not used to reduce the required software
quality effort.

12.6.2.3 System Validation

Simulation codes, full-scale simulators and flight tests were extensively used in a complementary way to
design, develop, and validate the A320 flight control system (see also [Chatrenet, 1989]), in addition to
analysis and peer review.

A “batch” type simulation code called OSMA (Outil de Simulation des Mouvements Avion) was used
to initially design the flight control laws and protections, including the nonlinear domains and for general
handling quality studies.

A development simulator was then used to test the control laws with a pilot in the loop as soon as
possible in the development process. This simulator is fitted with a fixed-base faithful replica of the A320
cockpit and controls and a visual system; it was in service in 1984, as soon as a set of provisional A320
aero data, based on wind tunnel tests, was made available. The development simulator was used to
develop and initially tune all flight control laws in a closed-loop cooperation process with flight test pilots.

Three “integration” simulators were put into service in 1986. They include the fixed replica of the
A320 cockpit, a visual system for two of them, and actual aircraft equipment including computers,
displays, control panels, and warning and maintenance equipment. One simulator can be coupled to the
“iron bird” which is a full-scale replica of the hydraulic and electrical supplies and generation, and is
fitted with all the actual flight control system components including servojacks. The main purpose of
these simulators is to test the operation, integration, and compatibility of all the elements of the system
in an environment closely akin to that of an actual aircraft.

Finally, flight testing remains the ultimate and indispensable way of validating a flight control system.
Even with the current state of the art in simulation, simulators cannot yet fully take the place of flight
testing for handling quality assessment. On this occasion a specific system called SPATIALL (Système
Pour Acquisition et Traitement d’Informations Analogiques ARINC et Logiques) was developed to
facilitate the flight test. This system allows the flight engineer to:

• Record any computer internal parameter

• Select several preprogrammed configurations to be tested (gains, limits, thresholds, etc.)

• Inject calibrated solicitations to the controls, control surfaces, or any intermediate point.

The integration phase complemented by flight testing can be considered as the final step of the validation
side of the now-classical V-shaped development/validation process of the system.

12.6.3 The A340 Experience

12.6.3.1 Design

The definition of the system requires that a certain number of actuators be allocated to each control
surface and a power source and computers assigned to each actuator. Such an arrangement implies
checking that the system safety objectives are met. A high number of failure combinations must
therefore be envisaged. A study has been conducted with the aim of automating this process.
© 2001 by CRC Press LLC

It was seen that a tool which could evaluate a high number of failure cases, allowing the use of
capacity functions, would be useful and that the possibility of modeling the static dependencies was
not absolutely necessary even though this may sometimes lead to a pessimistic result. This study gave
rise to a data processing tool which accepts as input an arrangement of computers, actuators, hydraulic
and electrical power sources, and also specific events such as simultaneous shutdown of all engines and,
therefore, a high number of power sources. The availability of a control surface depends on the
availability of a certain number of these resources. This description was made using a fault tree-type
support as input to the tool.

The capacity function used allows the aircraft roll controllability to be defined with regard to the
degraded state of the flight control system. This controllability can be approached by a function which
measures the roll rate available by a linear function of the roll rate of the available control surfaces. It is
then possible to divide the degraded states of the system into success or failure states and thus calculate
the probability of failure of the system with regards to the target roll controllability.

The tool automatically creates failure combinations and evaluates the availability of the control surfaces
and, therefore, a roll controllability function. It compares the results to the targets. These targets are, on
the one hand, the controllability (availability of the pitch control surfaces, available roll rate, etc.) and,
on the other hand, the reliability (a controllability target must be met for all failure combinations where
probability is greater than a given reliability target). The tool gives the list of failure combinations which
do not meet the targets (if any) and gives, for each target controllability, the probability of nonsatisfac-
tion. The tool also takes into account a dispatch with one computer failed.

12.6.3.2 Automatic programming

The use of automatic programming tools is becoming widespread. This tendency appeared on the
A320 and is being confirmed on the A340 (in particular, the FCPC is, in part, programmed automat-
ically). Such a tool has SAO sheets as inputs, and uses a library of software packages, one package
being allocated to each symbol. The automatic programming tool links together the symbol’s packages.

The use of such tools has a positive impact on safety. An automatic tool ensures that a modification
to the specification will be coded without stress even if this modification is to be embodied rapidly
(situation encountered during the flight test phase for example). Also, automatic programming, through
the use of a formal specification language, allows onboard code from one aircraft program to be used
on another. Note that the functional specification validation tools (simulators) use an automatic pro-
gramming tool. This tool has parts in common with the automatic programming tool used to generate
codes for the flight control computers. This increases the validation power of the simulations. For
dissimilarity reasons, only the FCPC computer is coded automatically (the FCSC being coded manually).
The FCPC automatic coding tool has two different code translators, one for the control channel and one
for the monitoring channel.

12.6.3.3 System validation

The A320 experience showed the necessity of being capable of detecting errors as early as possible in
the design process, to minimize the debugging effort along the development phase. Consequently, it
was decided to develop tools that would enable the engineers to actually fly the aircraft in its environment
to check that the specification fulfils the performance and safety objectives before the computer code
exists.

The basic element of this project is the so-called SAO specification, the Aerospatiale graphic language
defined to clearly specify control laws and system logics and developed for A320 program needs. The
specification is then automatically coded for engineering simulation purposes in both control law and
system areas.

In the control law area, OCAS (Outil de Conception Assistée par Simulation) is a real-time simulation
tool that links the SAO definition of the control laws to the already-mentioned aircraft movement
simulation (OSMA). Pilot orders are entered through simplified controls including side-stick and engine
thrust levels. A simplified PFD (primary flight display) visualizes the outputs of the control law. The
© 2001 by CRC Press LLC

engineer is then in a position to physically judge by himself the quality of the control law that he has
just produced, in particular with respect to law transition and nonlinear effects. In the early development
phase, this very same simulation was used in the full-scale A340 development simulator with a pilot in
the loop.

In the system area, OSIME (Outil de SImulation Multi Equipement) is an expanded time simulation
that links the SAO definition of the whole system (control law and system logic) to the complete servo-
control modes and to the simulation of aircraft movement (OSMA). The objective was to simulate the
whole fly-by-wire system including the three primary computers (FCPC), the two secondary computers
(FCSC), and the servo-controls in an aircraft environment.

This tool contributed to the functional definition of the fly-by-wire system, to the system validation,
and to the failure analysis. In addition, the behavior of the system at the limit of validity of each
parameter, including time delays, could be checked to define robust monitoring algorithms. Non-
regression tests have been integrated very early into the design process to check the validity of each new
specification standard.

Once validated, both in the control law and system areas using the OCAS and OSIME tools, a new
specification standard is considered to be ready to be implemented in the real computers (automatic
coding) to be further validated on a test bench, simulator, and on the aircraft (Figure 12.7).

12.7 Future Trends

The fly-by-wire systems developed on the occasion of the A320, A321, A340, and A330 programs now
constitute an industrial standard for commercial applications and are well adapted to future military
transport aircraft, thanks to the robustness of the system and its reconfiguration capabilities. What are
the possible system evolutions? Among others, are the following:

1. New actuator concepts are arising. In particular, systems using both electrical and hydraulic energy
within a single actuator were developed and successfully tested on A320 aircraft. This is the so-
called electrical back-up hydraulic actuator or EBHA. This actuator can be used to design flight

FIGURE 12.7 Validation methodology.

Aircraft
requirements

System
specification

OCAS OSIME
Equipment
specification
+ SAO

Equipment
test bench

Pre-code

Hardware
+ code

Flight

Ground-based
simulators
including iron-bird
© 2001 by CRC Press LLC

control systems that survive the total loss of hydraulic power, which is a significant advantage for
a military transport aircraft particularly in the case of battle damage.

2. The hardware dissimilarity of the fly-by-wire computer system and the experience with A320 and
A340 airline operation will probably ease the suppression of the rudder and trimmable horizontal
stabilizer mechanical controls of future aircraft.

3. The integration of new functions, such as structural mode control, may lead to increased depend-
ability requirements, in particular if the loss of these functions is not allowed.

4. Finally, future flight control systems will be influenced by the standardization effort made through
the IMA concept (integrated modular avionics) and by the “smart” concept where the electronics
destined to control and monitor each actuator are located close to the actuator.

References

ARP 4754, 1994. System Integration Requirements. Society of Automotive Engineers (SAE) and European
Organization for Civil Aviation electronics (EUROCAE).

ARP 4761, 1994. Guidelines and tools for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment. Society of Automotive Engineers (SAE) and European Organization for Civil
Aviation Electronics (EUROCAE).

Barbaste, L. and Desmons, J. P., 1988. Assurance qualité du logiciel et la certification des aéronefs/
Expérience A320. ler séminaire EOQC sur la qualité des logiciels, April 1988, Brussels, pp. 135–146.

Chatrenet, D., 1989. Simulateurs A320 d’Aérospatiale: leur contribution à la conception, au
développement et à la certification. INFAUTOM 89, Toulouse.

DO178A. 1985. Software Considerations in Airborne Systems and Equipment Certification. Issue A. RTCA
and European Organization for Civil Aviation Electronics (EUROCAE).

DO178B, 1992. Software Considerations in Airborne Systems and Equipment Certification. Issue B. RTCA
and European Organization for Civil Aviation Electronics (EUROCAE).

DOXXX, 1995. Design Assurance Guidance for Complex Electronic Hardware Used in Airborne Systems.
RTCA and by European Organization for Civil Aviation Electronics (EUROCAE).

FAR/JAR 25. Airworthiness Standards: Transport Category Airplanes. Part 25 of “Code of Federal Regula-
tions, Title 14, Aeronautics and Space,” for the Federal Aviation Administration, and “Airworthiness
Joint Aviation Requirements — large aeroplane” for the Joint Aviation Authorities.

Favre, C., 1993. Fly-by-wire for commercial aircraft — the Airbus experience. Int. J. Control, special issue
on “Aircraft Flight Control”.

Traverse, P., Brière, D., and Frayssignes, J. J., 1994. Architecture des commande de vol électriques Airbus,
reconfiguration automatique et information équipage. INFAUTOM 94, Toulouse.
© 2001 by CRC Press LLC

Myron Kayton “Navigation Systems”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

13
Navigation Systems

13.1 Introduction
13.2 Coordinate Frames
13.3 Categories of Navigation
13.4 Dead Reckoning
13.5 Radio Navigation
13.6 Celestial Navigation
13.7 Map-Matching Navigation
13.8 Navigation Software
13.9 Design Trade-Offs

13.1 Introduction

Navigation is the determination of the position and velocity of the mass center of a moving vehicle. The
three components of position and the three components of velocity make up a six-component state vector
that fully describes the translational motion of the vehicle because the differential equations of motion
are of second order. Surveyors now use some of the same sensors as navigators but are achieving higher
accuracy as a result of longer periods of observation, a fixed location, and more complex, non-real-time
data reduction.

In the usual navigation system, the state vector is derived on-board, displayed to the crew, recorded
on-board, and often transmitted to the ground. Navigation information is usually sent to other on-board
subsystems; for example, to the waypoint steering, engine control, communication control, and weapon-
control computers. Some navigation systems, called position-location systems, measure a vehicle’s state
vector using sensors on the ground or in another vehicle (Section 13.5). These external sensors usually
track passive radar returns or a transponder. Position-location systems usually supply information to a
dispatch or control center.

The term guidance has two meanings, both of which differ from navigation:

1. Steering toward a destination of known position from the vehicle’s present position, as measured
by a navigation system. The steering equations are derived from a plane triangle for nearby
destinations and from a spherical triangle for distant destinations.

2. Steering toward a destination without calculating the state vector explicitly. A guided vehicle homes
on radio, infrared, or visual emissions. Guidance toward a moving target is usually of interest to
military tactical missiles in which a steering algorithm assures impact within the maneuver and
fuel constraints of the interceptor. Guidance toward a fixed target involves beam riding, as in the
Instrument Landing System, Section 13.5.

The term flight control refers to the deliberate rotation of an aircraft in three-dimensions around its mass
center.

Myron Kayton
Kayton Engineering Co.
© 2001 by CRC Press LLC

13.2 Coordinate Frames

Navigation is with respect to a coordinate frame of the designer’s choice. For navigation within a few
hundred kilometers (e.g., by helicopter), various map grids exist whose coordinates can be calculated
from latitude–longitude (Fig. 13.1). NATO helicopters and land vehicles use a Universal Transverse
Mercator grid. Long-range aircraft navigate relative to an earth-bound coordinate frame, the most
common of which are latitude–longitude–altitude and rectangular x, y, z (Figure 13.1). Latitude–longi-
tude–altitude coordinates are not suitable in polar regions because longitude is indeterminate. GPS does
its calculations in x, y, z and may convert to latitude–longitude–altitude for readout. The most accurate
world-wide reference ellipsoid is described in WGS-84, 1991. Spacecraft in orbit around the earth navigate
with respect to an earth-centered, inertially nonrotating coordinate frame whose z axis coincides with
the polar axis of the earth and whose x axis lies along the equator. Interplanetary spacecraft navigate
with respect to a sun-centered, inertially nonrotating coordinate frame whose z axis is perpendicular to
the ecliptic and whose x axis points to a convenient star (Battin, 1987).

13.3 Categories of Navigation

Navigation systems can be categorized as:

1. Absolute navigation systems that measure the state vector without regard to the path traveled by
the vehicle in the past. These are of two kinds:

• Radio systems (Section 13.5). They consist of a network of transmitters (sometimes also receiv-
ers) on the ground or in satellites. A vehicle detects the transmissions and computes its position
relative to the known positions of the stations in the navigation coordinate frame. The vehicle’s
velocity is measured from the Doppler shift of the transmissions or from a sequence of position
measurements.

FIGURE 13.1 Latitude–longitude–altitude and x,y,z, coordinate frames. � � geodetic latitude; is normal to the
ellipsoid at B; � � geodetic longitude; h � BP � altitude above the reference ellipsoid � altitude above mean sea level.

OP
© 2001 by CRC Press LLC

• Celestial systems (Section 13.6). They measure the elevation and azimuth of celestial bodies
relative to the local level and North. Electronic star sensors are used in special-purpose high-
altitude aircraft and in spacecraft. Manual celestial navigation was practiced at sea for millennia
(see Bowditch).

2. Dead-reckoning navigation systems that derive their state vector from a continuous series of mea-
surements beginning at a known initial position. There are two kinds: those that measure vehicle
heading and either speed or acceleration (Section 13.4) and those that measure emissions from
continuous-wave radio stations whose signals create ambiguous “lanes” (Section 13.5). Dead-
reckoning systems must be reinitialized as errors accumulate and if power is lost.

3. Mapping navigation systems that observe and recognize images of the ground, profiles of altitude,
sequences of turns, or external features (Section 13.7). They compare their observations to a stored
database, often on compact disc.

13.4 Dead Reckoning

The simplest dead-reckoning systems measure vehicle heading and speed, resolve speed into the navigation
coordinates, then integrate to obtain position (Figure 13.2). The oldest heading sensor is the magnetic
compass, a magnetized needle or electrically excited toroidal core (called a flux gate), as shown in Figure
13.3. It measures the direction of the earth’s magnetic field to an accuracy of 2° at a steady velocity below
60° magnetic latitude. The horizontal component of the magnetic field points toward magnetic north or
south. The angle from true to magnetic north is called magnetic variation and is stored in the computers
of modern vehicles as a function of position over the region of anticipated travel (Quinn, 1996). Magnetic
deviations caused by iron and motors in the vehicle can exceed 30° and must be compensated for in the
navigation computer, using tables that account for the power-on status of subsystems.

A more complex heading sensor is the gyrocompass, consisting of a spinning wheel whose axle is
constrained to the horizontal plane (often by a pendulum). The ship’s version points north, when properly

FIGURE 13.2 Geometry of dead reckoning.
© 2001 by CRC Press LLC

compensated for vehicle motion, and exhibits errors less than a degree. The aircraft version (more properly
called a directional gyroscope) holds any preset heading relative to earth and drifts at 50°/hr or more.
Inexpensive gyroscopes (some built on silicon chips as vibrating beams with on-chip signal conditioning)
are often coupled to magnetic compasses to reduce maneuver-induced errors and long-term drift.

The usual speed-sensor is a pitot tube that measures the dynamic pressure of the air stream from which
airspeed is derived in an air-data computer. To compute ground speed (Figure 13.2) the velocity of the
wind must be vectorially added to that of the vehicle. Hence, unpredicted wind or air current will
introduce an error into the dead-reckoning computation. Most sensors are insensitive to the component
of airspeed normal to their axis (drift). A Doppler radar measures the frequency shift in radar returns
from the ground or water below the aircraft, from which speed is measured directly. Multibeam Doppler
radars can measure all the components of the vehicle’s velocity. Doppler radars are widely used on military
helicopters.

The most precise dead-reckoning system is an inertial navigator in which accelerometers measure the
vehicle’s acceleration while gyroscopes measure the orientation of the accelerometers. An on-board
computer resolves the accelerations into navigation coordinates and integrates them to obtain velocity
and position. The gyroscopes and accelerometers are mounted in either of two ways:

1. Fastened directly to the airframe (“strap-down”), whereupon the sensors are exposed to the
maximum angular rates and accelerations of the vehicle. This is the usual inertial navigator in
2000 (Figure 13.4). Attitude is computed by a quaternion algorithm (Kayton and Fried, 1997, pp.
352–356) that integrates measured angular rates in three dimensions.

2. On a servo-stabilized platform in gimbals that angularly isolate them from rotations of the vehicle.
In 2000, gimballed navigators are used only on specialized, high-accuracy military aircraft. They
measure attitude directly from the gimbal angles. Their instruments are in a benign angular-
environment and held at a constant orientation relative to gravity.

Inertial-quality gyroscopes measure vehicle orientation within 0.1° for steering and pointing. Most
accelerometers consist of a gram-sized proof-mass mounted on flexure pivots. The newest accelerometers
have proof masses that are etched into silicon chips. Older gyroscopes contained metal wheels rotating
in ball bearings or gas bearings. More recent gyroscopes contain rotating, vibrating rings whose frequency
of oscillation measures angular rates. The newest gyroscopes are evacuated cavities or optical fibers in
which counter-rotating laser beams are compared in phase to measure the sensor’s angular velocity relative

FIGURE 13.3 Saturated core (“flux-gate’) magnetometer, mounted on a ‘‘compass engine” board. The two orthog-
onal sensing coils (visible) and the drive coil, wound on the toroidal core, measure two components of the magnetic
field in the plane of the toroid. (Courtesy of KVH Industries, Inc.)
© 2001 by CRC Press LLC

to inertial space about an axis normal to the plane of the beams. Vibrating hemispheres and rotating
vibrating tines are the basis of some navigation-quality gyroscopes (drift rates less than 0.1 deg/h).

Fault-tolerant configurations of cleverly oriented redundant gyroscopes and accelerometers (typically
four to six) detect and correct sensor failures. Inertial navigators are used aboard airliners, in most military
fixed-wing aircraft, in space boosters and entry vehicles, and in manned spacecraft.

13.5 Radio Navigation

Scores of radio navigation aids have been invented and many of them have been widely deployed, as
summarized in Table 13.1.

The most precise is the global positioning system (GPS), a network of 24 satellites and a half-dozen
ground stations for monitoring and control. A vehicle derives its three-dimensional position and velocity
from ranging signals at 1.575 GHz received from four or more satellites (U.S. military users also receive
1.227 GHz). The one-way ranging measurements depend on precise atomic clocks on the spacecraft (one
part in 10E13) and on precise clocks on the aircraft (one part in 10E8) that can be calibrated to behave
briefly as atomic clocks by taking redundant range measurements from satellites. The former Soviet
Union deployed a similar system, called GLONASS. GPS offers better than 30-m ranging errors to civil
users and 10-m ranging errors to military users. Simple receivers were available for less than $100 in
2000. GPS provides continuous worldwide navigation for the first time in history. It will make dead
reckoning unnecessary on many aircraft and will reduce the cost of most navigation systems. Figure 13.5
is an artist’s drawing of a GPS Block 2F spacecraft, scheduled for launch in the year 2005.

Differential GPS (DGPS) employs one or more ground stations at known locations, which receive GPS
signals and transmit measured errors on a radio link to nearby ships and aircraft. DGPS improves accuracy
(centimeters for fixed observers) and detects faults in GPS satellites. In the late 1990s, the United States
was conducting experiments with a nationwide DGPS system of 25 to 50 ground stations. This Wide
Area Augmentation System (WAAS) could eventually replace VORTAC (below) and Category I ILS. A
denser network of DGPS stations and GPS-emulating pseudolites, whose stations are located at airports,

FIGURE 13.4 Inertial reference unit. Two laser gyroscopes (flat discs), an accelerometer, an electrical connector,
and four shock mounts are visible. This unit is used in Airbuses and many military aircraft such as the F-18 and
Comanche helicopter. (Courtesy of Litton Guidance and Control Systems.)
© 2001 by CRC Press LLC

might replace Category II and III ILS and MLS (below). In 2000, the cost, accuracy, and reliability of
such a Local Area Augmentation System (LAAS) were still being compared with existing landing aids.

Loran is used by general aviation aircraft for en-route navigation and for nonprecision approaches to
airports (in which the cloud bottoms are more than 200 feet above the runway; see Table 13.1). The 100-kHz
signals are usable within 1000 nautical miles of a “chain” consisting of three or four stations. Chains cover
the United States, parts of western Europe, Japan, Saudi Arabia, and a few other areas. The former Soviet
Union has a compatible system called Chaika. The vehicle-borne receiver measures the difference in time of

TABLE 13.1 Worldwide Radio Navigation Aids for Aviation

Frequency Number of
Stations

Number of
Aeronautical Users System Hz Band

Loran-C/Chaika 100 kHz LF 50 120,000
Beacon� 200–1600 kHz MF 4000 130,000
Instrument Landing 108–112 MHz VHF 1500 150,000

System (ILS)� {329–335 MHz UHF
VOR� 108–118 MHz VHF 1500 180,000
SARSAT/COSPAS 121.5 MHz VHF 5 satellites 200,000{243,406 MHz UHF
JTIDS 960–1213 MHz L None 500
DME� 962–1213 MHz L 1500 90,000
Tacan� 962–1213 MHz L 850 15,000
Secondary Surveillance 1030, 1090 MHz L 800 250,000

Radar (SSR)�

GPS-GLONASS 1227, 1575 MHz L 24 � 24 satellites 120,000
Radar Altimeter 4200 MHz C None 20,000
MLS� 5031–5091 MHz C 50 100
Weather/map radar 10 GHz X None 10,000
Airborne Doppler radar 13–16 GHz Ku None 20,000
SPN-41 carrier-landing monitor 15 GHz Ku 25 1600
SPN-42/46 carrier-landing radar 33 GHz Ka 25 1600

�Standardized by International Civil Aviation Organization.

FIGURE 13.5 Global positioning satellite, Block 2F. L-band phased array and S-band control antennas are visible
Steerable solar panels power the Spacecraft. Orbit altitude is 10,900 nmi at a 12-hour period. (Courtesy of Rockwell.)
© 2001 by CRC Press LLC

arrival of pulses emitted by two stations, thus locating the vehicle on one branch of a hyperbola (Kayton
and Fried, 1997, Chapter 4.5.1). Two or more station pairs give a two-dimensional position fix at the
intersection of the hyperbolas, whose typical accuracy is 0.25 nmi, limited by propagation uncertainties over
the terrain between the transmitting station and the user. The measurement of 100-microsecond time
differences is possible with low quality clocks (one part in 10,000) in the vehicles. Loran stations are being
upgraded in 2000 so service is assured for the first decade of the third millennium. Loran will be a coarse
monitor of GPS and a stand-alone navigation aid whenever GPS is deliberately taken out of service by
the U.S. military. These functions may, alternatively, be provided by European or Russian navigation satellites
or by private nav-com satellites. These satellite-based supplements to GPS are more accurate than Loran but
are subject to the same outages as GPS: solar flares and jammers, for example.

The most widely used aircraft radio aid is VORTAC, whose stations offer three services:

1. Analog bearing measurements at 108 to 118 MHz (called VOR). The vehicle compares the phases
of a rotating cardioid pattern and an omnidirectional sinusoid emitted by the ground station.

2. Pulse distance measurements (DME) at 1 GHz. The time delay for an aircraft to interrogate a
VORTAC station and receive a reply is measured.

3. Tacan bearing information conveyed in the amplitude modulation of the DME replies from the
VORTAC stations.

On short over-ocean flights, the inertially derived state vector drifts 1 to 2 nmi per hour. When an
aircraft approaches shore, the VORTAC network updates the inertial state vector and navigation continues
to the destination using VORTAC. On long over-ocean flights (e.g., trans-Pacific or polar), GPS can be
used alone but is usually used with one or more inertial navigators to protect against failures.

Landing guidance throughout the western world, and increasingly in China, India, and the former
Soviet Union, is with the Instrument Landing System (ILS). Transmitters adjacent to the runway create a
horizontal guidance signal near 110 MHz and a vertical guidance signal near 330 MHz. Both signals are
modulated such that the nulls intersect along a line in space 2.7° above the horizontal, that leads an aircraft
from a distance of about 15 nmi to 50 ft above the runway. ILS gives no information about where the
aircraft is located along the beam except at two or three vertical marker beacons. Most ILS installations
are certified to the International Civil Aviation Organization’s (ICAO) Category I, where the pilot must
abort the landing if the runway is not visible at an altitude of 200 ft. Fewer than two hundred ILSs (in
2000) were certified to Category II, which allows the aircraft to descend to 100 ft before aborting for lack
of visibility. Category III allows an aircraft to land at still lower weather ceilings. Category III landing aids
are of special interest in western Europe, which has the worst flying weather in the developed world.
Category III ILS detects its own failures and switches to a redundant channel within one second to protect
aircraft that have failure while flaring-out (within 50 ft of the runway) and can no longer execute a missed
approach. Once above the runway, the aircraft’s bottom-mounted radar altimeter measures altitude and
either the electronics or the pilot guides the flare maneuver. Landing aids are described by Kayton and
Fried (1997).

Throughout the western world, civil aircraft use VOR/DME whereas military aircraft use Tacan/DME
for en-route navigation. In the 1990s, China and the Commonwealth of Independent States (CIS) were
installing ICAO-standard navigation aids (VOR, DME, ILS) at their international airports and along the
corridors that lead to them from the borders. Overflying western aircraft navigate inertially or with GPS.
Domestic flights within the CIS depended on radar tracking, nondirectional beacons, and an L-band
range-angle system called RSBN.

It is likely that LAAS will replace or supplement ILS, which has been guaranteed to remain in service
at least until the year 2010 (Federal Radionavigation Plan). The U.S. Air Force and NATO may use MLS
or LAAS as a portable landing aid for tactical airstrips.

Position-location systems monitor the state vectors of many vehicles and usually display the data in a
control room or dispatch center. The aeronautical bureaucracy calls them Automatic Dependent Surveil-
lance (ADS) systems. Some vechicles broadcast on-board-derived position. Others derive their state vector
© 2001 by CRC Press LLC

from the ranging modulations. Table 13.1 lists Secondary Surveillance Radars that receive coded replies
from aircraft so they can be identified by human controllers and by collision-avoidance algorithms.

A worldwide network of SARSAT-COSPAS stations monitors signals from satellite-based transponders
listening on 121.5, 243, and 406 MHz, the three international distress frequencies. Software at the listening
stations calculates the position of Emergency Location Transmitters carried by ships and aircraft to an
accuracy of 5 to 15 km at 406 MHz or 15 to 35 km at 21.5 and 243 MHz, based on the observed Doppler-
shift history. Thousands of lives have been saved world-wide, from arctic bush-pilots to tropical fishermen.

13.6 Celestial Navigation

Human navigators use sextants to measure the elevation angle of celestial bodies above the visible horizon.
The peak elevation angle occurs at local noon or midnight:

elev angle (degrees) � 90 � latitude � declination

Thus at local noon or midnight, latitude can be calculated by simple arithmetic. When time became
measurable at sea, with a chronometer in the 19th century and by radio in the 20th century, off-meridian
observations of the elevation of two or more celestial bodies were possible at any known time of night
(cloud cover permitting). These fixes were hand-calculated using logarithms, then plotted on charts. In
the 1930s, hand-held sextants were built that measured the elevation of celestial bodies from an aircraft
using a bubble-level reference instead of the horizon. The accuracy of celestial fixes was 3–20 miles at
sea and 5–50 miles in the air, limited by the uncertainty in the horizon and the inability to make precise
angular measurements on a pitching, rolling vehicle. Kayton (1990) reviews the history of celestial
navigation at sea and in the air.

The first automatic star trackers were built in the late 1950s. They measured the azimuth and elevation
of stars relative to a gyroscopically stabilized platform. Approximate position estimates by dead reckoning
allowed the telescope to point within a fraction of a degree of the desired star. Thus, a narrow field-of-
view was possible, permitting the telescope and photodetector to track stars in the daytime. An on-board
computer stored the right ascension and declination of 20 to 100 stars and computed the vehicle’s position.
Automatic star trackers are used in long-range military aircraft and on space shuttles in conjunction with
inertial navigators. Clever design of the optics and of stellar-inertial signal-processing filters achieves
accuracies better than 500 ft (Kayton and Fried, 1997).

13.7 Map-Matching Navigation

As computer power grows, map-matching navigation is becoming more important. On aircraft, mapping
radars and optical sensors present a visual image of the terrain to the crew. Since the 1960s, automatic
map-matchers have been built that correlate the observed image to stored images, choosing the closest
match to update the dead-reckoned state vector. Aircraft and cruise missiles measure the vertical profile
of the terrain below the vehicle and match it to a stored profile. Matching profiles over distinctive patches
of terrain, perhaps hourly, reduces the long-term drift of their inertial navigators. The profile of the
terrain is measured by subtracting the readings of a baro-inertial altimeter (calibrated for altitude above
sea level) and a radar altimeter (measuring terrain clearance). An on-board computer calculates the
autocorrelation function between the measured profile and each of many stored profiles on possible
parallel paths of the vehicle. The on-board inertial navigator usually contains a digital filter that corrects
the drift of the azimuth gyroscope as a sequence of fixes is obtained. Hence the direction of flight through
the stored map is known, saving the considerable computation time that would be needed to correlate
for an unknown azimuth of the flight path.

The most complex mapping systems observe their surroundings, by radar or digitized video, and create
their own map of the surrounding terrain. Guidance software then steers the vehicle. Optical map-
matchers may be used for landings at fields that are not equipped with electronic aids.
© 2001 by CRC Press LLC

13.8 Navigation Software

Navigation software is sometimes embedded in a central processor with other avionic-system software,
sometimes confined to one or more navigation computers. The navigation software contains algorithms
and data that process the measurements made by each sensor (e.g., inertial or air data). It contains calibration
constants, initialization sequences, self-test algorithms, reasonability tests, and alternative algorithms for
periods when sensors have failed or are not receiving information. In the simplest systems, a state vector is
calculated independently from each sensor while the navigation software calculates the best estimate. Prior
to 1970, the best estimate was calculated from a least squares algorithm with constant weighting functions
or from a frequency-domain filter with constant coefficients. Now, a Kalman filter calculates the best estimate
from mathematical models of the dynamics of each sensor (Kayton and Fried, 1997, Chapter 3).

Digital maps, often stored on compact disc, are carried on some aircraft and land vehicles. Terrain is
displayed to the crew. Military aircraft add cultural features, hostile radar and missile functions, then
superimpose their navigated position. This allows the aircraft to penetrate and escape from enemy
territory. Civil operators had not significantly invested in digital databases as of 2000. Algorithms for
waypoint steering and for control of the vehicle’s attitude are contained in the software of the flight
management and flight control subsystems.

13.9 Design Trade-Offs

The designers of a navigation system conduct trade-offs for each vehicle to determine which navigation
systems to use. Tradeoffs consider the following attributes:

• Cost, including the construction and maintenance of transmitter stations and the purchase of on-
board electronics and software. Users are concerned only with the costs of on-board hardware
and software.

• Accuracy of position and velocity, which is specified as a circular error probable (CEP, in meters
or nautical miles). The maximum allowable CEP is often based on the calculated risk of collision
on a typical mission.

• Autonomy, the extent to which the vehicle determines its own position and velocity without
external aids. Autonomy is important to certain military vehicles and to civil vehicles operating
in areas of inadequate radio-navigation coverage. Classes of autonomy are described in Kayton
and Fried (1997, p. 10).

• Time delay in calculating position and velocity, caused by computational and sensor delays.

• Geographic coverage. Radio systems operating below 100 kHz can be received beyond line of sight
on earth; those operating above 100 MHz are confined to line of sight. On other planets, new
navigation aids—perhaps navigation satellites or ground stations—will be installed,

• Automation. The vehicle’s operator (on-board crew or ground controller) receives a direct reading
of position, velocity, and equipment status, usually without human intervention. The navigator’s
crew station disappeared in aircraft in the 1970s. Human navigators were becoming scarce, even
on ships, in the 1990s, because electronic equipment automatically selects stations, calculates
waypoint steering, and accommodates failures.

References

R.H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, Washington: AIAA Press,
1987, 796 pp.

N. Bowditch, The American Practical Navigator, Washington, D.C.: U.S. Government Printing Office, 1995,
873 pp.

M. Kayton, Navigation: Land, Sea, Air, and Space, New York: IEEE Press, 1990, 461 pp.
M. Kayton and W.R. Fried, Avionics Navigation Systems, 2nd ed., New York: Wiley, 1997, 773 pp.
© 2001 by CRC Press LLC

R.A. Minzner, The U.S. Standard Atmosphere 1976, NOAA Report 76-1562, NASA SP-390, 1976 or latest
edition, 227 pp.

B.W. Parkinson and J.J. Spilker, Eds., Global Positioning System, Theory and Applications, American
Institute of Aeronautics and Astronautics, 1996, 1300 pp., 2 vols.

J. Quinn, “1995 revision of joint U.S./U.K. geomagnetic field models,” J. Geomagnetism and Geo-Electricity,
1996.

U.S. Air Force, NAVSTAR-GPS Interface Control Document, Annapolis, Md.: ARINC Research, 1991, 115 pp.
U.S. Government, Federal Radionavigation Plan, Department of Transportation, 1999, 196 pp., issued

biennially.
WGS-84, U.S. Defense Mapping Agency, World Geodetic System 1984, Washington, D.C.: 1991.
Y. Zhao, Vehicle Location and Navigation Systems, Massachusetts: Artech House, 1997, 345 pp.

Further Information

AIAA Journal of Guidance and Control, bimonthly.
Commercial aeronautical standards produced by International Civil Aviation Organization (ICAO, Mon-

treal), Aeronautical Radio, Inc. (ARINC, Annapolis, Md.), RTCA, Inc., Washington and European
Organization for Civil Aviation Equipment (EUROCAE, Paris).

IEEE Transactions on Aerospace and Electronic Systems, quarterly.
Journal of Navigation, Royal Institute of Navigation (UK), quarterly.
Navigation, journal of the U.S. Institute of Navigation, quarterly.
Proceedings of the IEEE Position Location and Navigation Symposium (PLANS), biennially.
© 2001 by CRC Press LLC

James L. Farrell “Navigation and Tracking”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

14
Navigation and

Tracking

14.1 Introduction
14.2 Fundamentals
14.3 Applications

Position and Velocity along a Line • Position and Velocity in
Three-Dimensional Space • Position, Velocity, and Acceleration
of a Tracked Object • Position, Velocity, and Attitude in Three-
Dimensional Space (INS Aiding) • Individual GPS
Measurements as Observables

14.4 Conclusion
References
Further Information

14.1 Introduction

The task of navigation (“Nav”) interacts with multiple avionics functions. To clarify the focus here, this
chapter will not discuss tight formations, guidance, steering, minimization of fuel/noise/pollution, or
managing time of arrival. The accent instead is on determining position and velocity (plus, where
applicable, other variables such as acceleration, verticality, heading) with maximum accuracy reachable
from whatever combination of sensor outputs are available at any time. Position can be expressed as a
vector displacement from a designated point or in terms of latitude/longitude/altitude above mean sea
level, above the geoid—or both. Velocity can be expressed in a locally level coordinate frame with various
choices for an azimuth reference (e.g., geodetic North, Universal Transverse Mercator [UTM] grid North,
runway centerline, wander azimuth with or without Earth sidereal rate torquing). In principle any set of
axes could be used — such as an Earth Centered Earth Fixed (ECEF) frame for defining position by a
Cartesian vector; or velocity in Cartesian coordinates or in terms of groundspeed, flight path angle, and
ground track angle — in either case it is advisable to use accepted conventions.

Realization of near-optimal accuracy with any configuration under changing conditions is now rou-
tinely achievable. The method uses a means of dead-reckoning — preferably an Inertial Navigation System
(INS) — which can provide essentially continuous position, velocity, and attitude in three dimensions
by performing a running accumulation from derivative data. Whenever a full or partial fix is available
from a nav sensor, a discrete update is performed on the entire set of variables representing the state of
the nav system; the amount of reset for each state variable is determined by a weighting computation
based on modern estimation. In this way, “initial” conditions applicable to the dead-reckoning device in
effect are reinitialized as the “zero” time is advanced (and thus kept current) with each update. Computer-
directed operations easily accommodate conditions that may arise in practice (incomplete fixes, incon-
sistent data rates, intermittent availability, changing measurement geometry, varying accuracies) while
providing complete flexibility for backup with graceful degradation. The approach inherently combines

James L. Farrell
VIGIL, Inc.
© 2001 by CRC Press LLC

short-term accuracy of the dead-reckoning data with the navaids’ long-term accuracy. A commonly cited
example of synergy offered by the scheme is a tightly coupled GPS/INS wherein the inertial information
provides short-term aiding that vastly improves responsiveness of narrowband code and/or carrier
tracking, while GPS information counteracts the long-term accumulation of INS error.

The goal of navigation has progressed far beyond mere determination of geographic location. Efforts
to obtain double and triple “mileage” from inertial instruments, by integrating nav with sensor stabilization
and flight control, are over a decade old. Older yet are additional tasks such as target designation, precision
pointing, tracking, antenna stabilization, imaging sensor stabilization (and therefore transfer alignment).
Digital beamforming (DBF) for array antennas (including graceful degradation to recover when some
elements fail), needs repetitive data for instantaneous relative position of those elements; on deformable
structures this can require multiple low-cost transfer-aligned Inertial Measuring Units (IMUs) and/or the
fitting of spatial data to an aeroelastic model. The multiplicity of demands underlines the importance of
integrating the operations; the rest of this chapter describes how integration should be done.

14.2 Fundamentals

To accomplish the goals just described, the best available balance is obtained between old and new
information — avoiding the both extremes of undue clinging to old data and jumping to conclusions at
each latest input. What provides this balance is a modern estimation algorithm that accepts each data
fragment as it appears from a nav sensor, immediately weighing it in accordance with its ability to shed
light on every variable to be estimated. That ability is determined by accounting for all factors that
influence how much or how little the data can reveal about each of those variables: Those factors include

• Instantaneous geometry (e.g., distance along a skewed line carries implications about more than
one coordinate direction),

• Timing of each measurement (e.g., distance measurements separated by known time intervals
carry implications about velocity as well as position), and

• Data accuracy, compared with the accuracy of estimates existing before measurement.

Only when all these factors are taken into account are accuracy and flexibility as well as versatility
maximized. To approach the ramifications gradually, consider a helicopter hovering at constant
altitude, which is to be determined on the basis of repeated altimeter observations. After setting the
initial a posteriori estimate to the first measurement , an a priori estimate is predicted for the
second measurement and that estimate is refined by a second observation,

(14.1)

and a third observation,

(14.2)

and then a fourth observation,

(14.3)

which now clarifies the general expression for the mth observation,

(14.4)

Ŷ1 x̂2
�()

x̂2
�()

x̂1
�()

; x̂2
�()

x̂2
�() 1

2
--z2, z2 �

�
 Ŷ2 x̂2

�()
��� �

x̂3
�()

x̂2
�()

; x̂3
�()

x̂3
�() 1

3
--z3, z3 �

�
 Ŷ3 x̂3

�()
��� �

x̂4
�()

x̂3
�()

; x̂4
�()

x̂4
�() 1

4
--z4, z4 �

�
 Ŷ4 x̂4

�()
��� �

x̂m
�()

x̂m�1
�()

; x̂m
�()

x̂m
�() 1

m
----zm, zm �

�
 Ŷm x̂m

�()
��� �
© 2001 by CRC Press LLC

which can be rewritten as

(14.5)

Substitution of m � 1 into this equation produces the previously mentioned condition that the first a
posteriori estimate is equal to the first measurement; substitution of m � 2, combined with that condition,
yields a second a posteriori estimate equal to the average of the first two measurements. Continuation
with m � 3, 4, ... yields the general result that, after m measurements, estimated altitude is simply the
average of all measurements.

This establishes an equivalence between the recursive estimation formulation expressed in (14.1)–(14.5)
and the block estimate that would have resulted from averaging all data together in one step. Since that
average is widely known to be optimum when all observations are statistically equally accurate, the
recursion shown here must then be optimum under that condition. For measurement errors that are
sequentially independent random samples with zero mean and variance R, it is well known that the mean
squared estimation error after averaging m measurements is just R/m. That is the variance of the a
posteriori estimate (just after inclusion of the last observation); for the a priori estimate the variance
is . It is instructive to express the last equation above as a blended sum of old and new data,
weighted by factors

(14.6)

and

(14.7)

respectively; weights depend on variances, giving primary influence to information having lower mean
squared error. This concept, signified by the left-hand sides of the last two equations, is extendable to
more general conditions than the restrictive (uniform variance) case considered thus far. We are now
prepared to address more challenging tasks.

As a first extension, let the sequence of altimeter measurements provide repetitive refinements of
estimates for both altitude x1 and vertical velocity x2. The general expression for the mth observation now
takes a more inclusive form

(14.8)

The method accommodates estimation of multiple unknowns, wherein the status of a system is expressed
in terms of a state vector (“state”) x, in this case a 2 � 1 vector containing two state variables (“states”);
superscripts and subscripts continue to have the same meaning as in the introductory example, but for
these states the conventions m,1 and m,2 are used for altitude and vertical velocity, respectively, at time
tm. For this dynamic case the a priori estimate at time tm is not simply the previous a posteriori estimate;
that previous state must be premultiplied by the transition matrix,

(14.9)

x̂m
�() m 1�

m
---------------x̂m

�() 1
m
----Ŷm, m 0���

Pm
+()

Pm
�()

R� m�1()

R

Pm
�() R�

R�Pm

�()

1 R�Pm
�()

�
--------------------------�

m 1�
m

---------------�

Pm
�()

Pm
�() R�

--------------------- 1
m
----�

x̂m
�()

�mx̂m�1
�()

; x̂m
�()

x̂m
�()

Wmzm, zm �
�

 Ŷm x̂1,m
�()

, xm �
�

xm , 1

xm , 2

��� �

�m
1 tm tm�1�

0 1
�

© 2001 by CRC Press LLC

which performs a time extrapolation. Unlike the static situation, elapsed time now matters since imper-
fectly perceived velocity enlarges altitude uncertainty between observations — and position measure-
ments separated by known time intervals carry implicit velocity information (thus enabling vector
estimates to be obtained from scalar data in this case). Weighting applied to each measurement is
influenced by three factors:

• A sensitivity matrix Hm whose (i, j) element is the partial derivative of the ith component of the
mth measured data vector to the jth state variable. In this scalar measurement case Hm is a 1 � 2
matrix [1 0] for all values of m.

• A covariance matrix Pm of error in state estimate at time tm [the ith diagonal element � mean
squared error in estimating the ith state variable and, off the diagonal, Pij � Pji � �

(correlation coefficient between ith and jth state variable uncertainty)].

• A covariance matrix Rm of measurement errors at time tm (in this scalar measurement case Rm is
a 1 � 1 “matrix,” i.e., a scalar variance Rm).

Although formation of Hm and Rm follows directly from their definitions, Pm changes with time (e.g.,
recall the effect of velocity error on position error) and with measurement events (because estimation
errors fall when information is added). In this “continuous-discrete” approach, uncertainty is decre-
mented at the discrete measurement events

(14.10)

and, between events, dynamic behavior follows a continuous model of the form

(14.11)

where E acts as a forcing function to maintain positive definiteness of P (thereby providing stability
and effectively controlling the remembrance duration—the “data window” denoted herein by T— for
the estimator) while A defines dynamic behavior of the state to be estimated (� Ax and � A).
In the example at hand,

(14.12)

Given Hm, Rm, and the optimal (Kalman) weighting matrix is

(14.13)

which for a scalar measurement produces a vector Wm as the above inversion simplifies to division by a
scalar (which becomes the variance Rm added to P11 in this example):

(14.14)

The preceding (hovering helicopter) example is now recognized as a special case of this vertical nav
formulation. To progress further, horizontal navigation addresses another matter, i.e., location uncer-
tainty in more than one direction—with measurements affected by more than one of the unknowns (e.g.,
lines of position [LOPs] skewed off a cardinal direction such as North or East; Figure 14.1). In the classic
“compass-and-dividers” approach, dead reckoning would be used to plot a running accumulation of
position increments until the advent of a fix from two intersecting straight or curved LOPs. The position

PiiPjj

Pm
�() Pm

�() WmHmPm
�()

��

Ṗ AP PAT E� ��

ẋ �̇ 	

A 0 1

0 0
; ẋ1

ẋ2

A x1

x2

��

Pm
�()

Wm Pm
�()Hm

T HmPm
�()Hm

T Rm�() 1�
�

Wm Pm
�()Hm

T
� HmPm

�()Hm
T Rm�()�
© 2001 by CRC Press LLC

would then be reinitialized at that fixed position, from whence dead reckoning would continue until the
next fix. For integrated nav we fundamentally alter that procedure as follows:

• In the reintialization, data imperfections are taken into account. As already discussed, Kalman
weighting (Equations 14.13 and 14.14) is based on accuracy of the dead-reckoning extrapolation
as well as the variance of each measurement and its sensitivity to each state variable. An optimal
balance is provided between old and new information, and the optimality inherently applies to
updating of every state variable (e.g., to velocity estimates as well as position, even when only
position is observed directly).

• Fixes can be incomplete. In this example, one of the intersecting LOPs may be lost. An optimal
update is still provided by the partial fix data, weighted by Wm of (14.14).

Implications of these two alterations can be exemplified by Figure 14.1, depicting a pair of LOPs
representing partial fixes, not necessarily synchronous. Each scalar measurement allows the entire state
vector to be optimally updated with weighting from (14.14) in the relation,

(14.15)

where zm is the predicted residual formed by subtracting the predicted measurement from the value
observed at time tm and acceptance-tested to edit out wild data points;

(14.16)

The measurement function Y(x) is typically a simple analytical expression (such as that for distance from
a designated point, the difference between distances from two specified station locations, GPS pseudo-
range or carrier phase difference, etc.). Its partial derivative with respect to each position state is obtained
by simple calculus; other components of Hm(e.g., sensitivity to velocity states) are zero, in which case
updating of those states occurs due to dynamics from off-diagonal elements of P in the product

. Rm — whether constant or varying (e.g., with signal strength) — is treated as a known
quantity; if not accurately known, a conservative upper bound can be used. The same is true for the
covariance matrix P0 of error in state estimate at the time of initiating the estimation process — after
which the changes are tracked by (14.10) at each measurement event, and by (14.11) between measurements
— thus P is always available for Equations 14.13 and 14.14.

FIGURE 14.1 Nonorthogonal LOPs.

Shifted
Intersection

Point

Original
Intersection

Point

N

x̂m
�()

x̂m
�()

Wmzm��

zm ym
� Ym ŶM
�()

�
� Ŷm Ŷm
�()

; Ŷm
�()

� Y x̂m
�()

()� � � �

Pm
�()Hm

T

© 2001 by CRC Press LLC

It is crucial to note that the updates are not obtained in the form of newly measured coordinates, as
they would have been for the classical “compass-and-dividers” approach. Just as old navigators knew how
to use partial information, a properly implemented modern estimator would not forfeit that capability.
The example just shown provides the best updates, even with no dependably precise way of obtaining a
point of intersection when motion occurs between measurements. Furthermore, even with a valid
intersection from synchronized observations, the North coordinate of the intersection in Figure 14.1
would be more credible than the East. To show this, consider the consequence of a measurement error
effectively raising the dashed LOP to the solid curve as shown; the North coordinate of the new inter-
section point “�” exceeds that of point “O” — but by less than the East-West coordinate shift.

Unequal sensitivity to different directions is automatically taken into account via Hm —just as the dynamics
of P will automatically provide velocity updating without explicitly forming velocity in terms of sequential changes
in measurements — and just as individual values of Rm inherently account for measurement accuracy variations.

Theoretically then, usage of Kalman weighting unburdens the designer while ensuring optimum perfor-
mance; no other weighing could provide lower mean squared error in the estimated value of any state. Practically,
the fulfillment of this promise is realized by observing additional guidelines, some of which apply “across the
board” (e.g., usage of algorithms that preserve numerical stability) while others are application dependent.

Now that a highly versatile foundation has been defined for general usage, the way is prepared for
describing some specific applications. The versatility just mentioned is exhibited in the examples that
follow. Attention is purposely drawn to the standard process cycle; models of dynamics and measurements
are sufficient to define the operation.

14.3 Applications

Various operations will now be described, using the unified form to represent the state dynamics* with
repetitive instantaneous refresh via discrete or discretized observations (fixes, whether full or partial). Finite
space necessitates some limitations in scope here. First, all updates will be from position-dependent measure-
ments (e.g., Doppler can be used as a source of continuous dead-reckoning data but is not considered herein
for the discrete fixes). In addition, all nav reference coordinate frames under consideration will be locally level.
In addition to the familiar North-East-Down (NED) and East-North-Up (ENU) frames, this includes any
Wander Azimuth frame (which deviates from the geographic by only an azimuth rotation about the local
vertical). Although these reference frames are not inertial (thus the velocity vector is not exactly the time
integral of total acceleration as expressed in a nav frame), known kinematical adjustments will not be described
in any depth here. This necessitates restricting the aforementioned data window T to intervals no greater than
a tenth of the 84-minute Schuler period. The limitation is not very severe when considering the amount of
measured data used by most modern avionics applications within a few minutes duration.

Farrell1 is cited here for expansion of conditions addressed, INS characterization, broader error mod-
eling, increased analytical development, the physical basis for that analysis, and myriad practical “do s
and don’t s” for applying estimation in each individual operation.

14.3.1 Position and Velocity along a Line

The vertical nav case shown earlier can be extended to the case of time-varying velocity; with accurately
(not necessarily exactly) known vertical acceleration ZV,

(14.17)

*A word of explanation is in order: For classical physics the term dynamics is reserved for the relation between forces and
translational acceleration, or torques and rotational acceleration — while kinematics describes the relation between acceleration,
velocity, and position. In the estimation field, all continuous time-variation of the state is lumped together in the term dynamics.

ẋ1

ẋ2

0 1

0 0

x1

x2

0

ZV

��
© 2001 by CRC Press LLC

which allows interpretation in various ways. With a positive upward convention (as in the ENU reference,
for example), x1 can represent altitude above any datum while x2 is upward velocity; a positive downward
convention (NED reference) is also accommodated by simple reinterpretation. In any case, the above
equation correctly characterizes actual vertical position and velocity (with true values for ZV and all xs),
and likewise characterizes estimated vertical position and velocity (denoted by circumflexes over ZV and
all xs). Therefore, by subtraction, it also characterizes uncertainty in vertical position and velocity (i.e.,
error in the estimate, with each circumflex replaced by a tilde ~). That explains the role of this expression
in two separate operations:

• Extrapolation of the a posteriori estimate (just after inclusion of the last observation) to the time
of the next measurement, to obtain an a priori estimate of the state vector — which is used to
predict the measurement’s value. If a transition matrix can readily be formed (e.g., Equation 14.9
in the example at hand), it is sometimes, but not always, used for that extrapolation.

• Propagation of the covariance matrix from time tm-1 to tm via (14.11) initialized at the a posterori
value and ending with the a priori value . Again, an alternate form using (14.9) is an
option.

After these two steps, the cycle at time tm is completed by forming gain from (14.14), predicted
residual from (14.16), update via(14.15), and decrement by (14.10).

The operation just described can be visualized in a generic pictorial representation. Velocity data in a
dead-reckoning (DR) accumulation of position increments predicts the value of each measurement. The
difference z between the prediction and the observed fix (symbolically shown as a discrete event depicted
by the momentary closing of a switch) is weighted by position gain Wpos and velocity gain Wvel for the
update. Corrected values, used for operation thereafter, constitute the basis for further subsequent
corrections.

For determination of altitude and vertical velocity, the measurement prediction block in Figure 14.2
is replaced by a direct connection; altimeter fixes are compared vs. the repeatedly reinitialized accumu-
lation of products (time increment) � (vertical velocity). In a proper implementation of Figure 14.2
time history of a posteriori position tracks the truth; RMS position error remains near At the first
measurement, arbitrarily large initial uncertainty falls toward sensor tolerance — and promptly begins
rising at a rate dictated by A second measurement produces another descent followed by another
climb, but now at gentler slope, due to implicit velocity information gained from repeated position
observations within a known time interval. With enough fix data the process approaches a quasi-static
condition with maintained at levels near RMS sensor error.

FIGURE 14.2 Position and velocity estimation.

Pm 1�
+() Pm

�()

P11.

P22.

P11

+

+
a priori position

a priori velocity

adjusted position

adjusted velocity

Vel Data

DR Accum
Meas

Predic.

Fix
Data W vel

W pos

z-

a posteriori

a posteriori

position

velocity
© 2001 by CRC Press LLC

Extensive caveats, ramifications, etc. could be raised at this point; some of the more obvious ones will
be mentioned here.

• In analogy with the static example, the left side of (14.7), with substituted for implies
high initial weighting followed by lighter weights as measurements accumulate. If fixes are from
sensors with varying tolerance, the entire approach remains applicable; only parameter values
change. The effect in Figure 14.3 would be a smaller step decrement, and less reduction in slope,
when RMS fix error is larger.

• Vertical velocity can be an accumulation of products, involving instantaneous vertical acceleration
which comes from data containing an accelerometer offset driven by a randomly varying error,
e.g., having spectral density in conformance to E of (14.11). With this offset represented as a third
state, another branch would be added to Figure 14.2 and an augmented form of (14.17) could
define dynamics in instantaneous altitude, vertical velocity, and vertical acceleration (instead of a
constant bias component, extension to exponential correlation is another common alternative);

(14.18)

Rather than ramping between fixes, position uncertainty then curves upward faster than the linear rate
in Figure 14.3; curvature starts to decrease after the third fix. It takes longer to reach quasi-static condition,
and closeness of “steady-state” to RMS sensor error depends on measurement scheduling density
within a data window.

• (14.12) and Figure 14.2 can also represent position and velocity estimation along another direction,
e.g., North or East — or both, as developed in the next section.

14.3.2 Position and Velocity in Three-Dimensional Space

For brevity, only a succinct description is given here. First consider excursion over a meridian with
position x1 expressed as a product [latitude (Lat) increment] � [total radius of curvature (RM � altitude)],

(14.19)

so that, for usage of A in (14.12), x2 is associated with North component VN of velocity. North position
fixes could be obtained by observing the altitude angle of Polaris (appropriately corrected for slight

FIGURE 14.3 Time history of accuracy.

T I M E

R
M

S
 E

rr
o

r

Pm11
�() Pm

�(),

ẋ1

ẋ2

ẋ3

0 1 0

0 0 1

0 0 0

x1

x2

x3

0

0

e

��

P11

RM

aE 1 eE
2

�()

1 eE
2 sin2 Lat()�[]3�2

--- ; aE 6378137m.; eE
2 2 f �()f, f

1
298.25722
------------------------� � � �
© 2001 by CRC Press LLC

deviation off the North Pole). To use the formulation for travel in the East direction, the curvature radius
is (RP � h),

(14.20)

and, while the latitude rate is , the longitude rate is VE sec (Lat)/(RP � h).
Even for limited distance excursions within a data window, these spheroidal expressions would be used

in kinematic state extrapolation, while our short-term ground rule allows a simplified (“flat-Earth”
Cartesian) model to be used as the basis for matrix extrapolation in (14.11). The reason lies with very
different sensitivities in Equations 14.15 and 14.16. The former is significantly less critical; a change �W
would modify the a posteriori estimate by only the second-order product By way of contrast,
small variations in an anticipated measurement (from seemingly minor model approximations) can
produce an unduly large deviation in the residual — a small difference of large quantities.

Thus, for accuracy of additive state vector adjustments (such as velocity � �time products in dynamic
propagation), Equations 14.19 and 14.20 properly account for path curvature and for changes in direction
of the nav axes as the path progresses. At the poles, the well-known singularity in {sec(Lat)} of course
necessitates a modified expression (e.g., Earth-centered vector).

In applying (14.12) to all three directions, a basic decision must be made at the outset. Where practical,
it is desirable for axes to remain separated, which produces three uncoupled two-state estimators. An
example of this form is radar tracking at long range — long enough so that, within a data window
duration, the line-of-sight (LOS) direction remains substantially fixed (i.e., nonrotating). If all three axes
are monitored at similar data rates and accuracies, experience has shown that even a fully coupled six-state
estimator has position error ellipsoid axes aligned near the sensor’s range�azimuth/elevation directions. In
that case, little is lost by ignoring coupling across sensor reference axes — hence the triad of uncoupled
two-state estimators, all in conformance to (14.12). To resolve vectors along cardinal directions at any
time, all that is needed is the direction cosine matrix transformation between nav and sensor axes, which
is always available.

When the conditions mentioned above do not hold, the reasoning needs to be revisited. If LOS direction
rotates (which happens at short range), or if all three axes are not monitored at similar data rates,
decoupling may or may not be acceptable; in any case it is suboptimal. If one axis (or a pair of axes) is
unmonitored a fully coupled six-state estimator can dramatically outperform the uncoupled triad. In
that case, although (14.12) represents uncoupled dynamics for each axis, coupling comes from multiple
changing projections in measurement sensitivity H as the sensor sight-line direction rotates.

Even the coupled formulation has a simple dynamic model in partitioned form; for a relative position
vector R and velocity V driven by perturbing acceleration e,

(14.21)

where I and 0 are null and identity partitions. The next section extends these concepts.

14.3.3 Position, Velocity, and Acceleration of a Tracked Object

In this chapter it has been repeatedly observed that velocity can be inferred from position-dependent
measurements separated by known time intervals. In fact, a velocity history can be inferred. As a further
generalization of methods just shown, the position reference need not be stationary. In the example now
to be described, the origin will move with a supersonic jet carrying a radar and INS. Furthermore, the
object whose state is being estimated can be external, with motions that are independent of the platform
carrying the sensors that provide all the measurements.

Rp aE� 1 eE
2 sin2 Lat()� h; altitude� �

VN � RM h�()

zm� Wm.

Ṙ

V̇

0 I

0 0

R

V

0

e
��
© 2001 by CRC Press LLC

For tracking, first consider the uncoupled case already described, wherein each of three separate
estimator channels corresponds to a sensor reference axis direction and each channel has three kinemat-
ically related states, representing that directional component of relative (sensor-to-tracked-object) posi-
tion, relative velocity, and total (not relative) acceleration of the tracked object.* The expression used to
propagate state estimates between measurements in a channel conforms to standard kinematics, i.e.,

(14.22)

where qm denotes the component, along the sensor channel direction, of the change in INS velocity during
(tm � tm�1). In each channel, E of (14.11) has only one nonzero value, a spectral density related to data
window and measurement error variance by

(14.23)

To change this to a fully coupled 9-state formulation, partition the 9 � 1 state vector into three 3 � 1
vectors R for relative position, Vr for relative velocity, and ZT for the tracked object’s total acceleration
— all expressed in the INS reference coordinate frame. The partitioned state transition matrix is then
constructed by replacing each diagonal element in (14.22) by a 3 � 3 identity matrix I33, each zero by a
3 � 3 null matrix, and multiplying each above-diagonal element by I33. Consider this transition matrix
to propagate covariances as expressed in sensor reference axes, so that parameters applicable to a sensing
channel are used in (14.23) for each measurement.

Usage of different coordinate frames for states (e.g., geographic in the example used here) and P
(sensor axes) must of course be taken into account in characterizing the estimation process. An orthogonal
triad IbJbKb conforms to directions of sensor sight-line Ib, its elevation axis Jb in the normal plane, and
the aximuth axis Ib � Jb normal to both. The instantaneous direction cosine matrix Tb/A will be known
(from the sensor pointing control subsystem) at each measurement time. By combination with the
transformation TA/G from geographic to airframe coordinates (obtained from INS data), the transformation
from geographic to sensor coordinates is

(14.24)

which is used to resolve position states along IbJbKb:

(14.25)

where pA and pE — small fractions of a radian — are departures above and to the right, respectively, of
the a priori estimated position from the sensor sight-line (which due to imperfect control does not look
exactly where the tracked object is anticipated at tm).

*Usage of relative acceleration states would have sacrificed detailed knowledge of INS velocity history, character-
izing ownship acceleration instead with the random model used for the tracked object. To avoid that unnecessary
performance degradation the dynamic model used here, in contrast to (14.18), has a forcing function with nonzero
mean.

x̂m1
�()

x̂m2
�()

x̂m3
�()

1 tm tm�1�
1
2
-- tm tm�1�()

2

0 1 tm tm�1�

0 0 1

x̂m�1,1
�()

x̂m�1,2
�()

x̂m�1,3
�()

1
2
-- tm tm�1�()qm

qm

0

��

�
2

E33 20�
2
�T5()�g2 g�sec()2

�Hz�

Tb�G Tb�ATA�G�

1
R
------ Tb�GR

1

pA

pE�

�

© 2001 by CRC Press LLC

For application of (14.16), pA and pE are recognized in the role of a priori estimated measurements —
adjusting the “dot-off-the-crosshairs” azimuth (“AZ”) and elevation (“EL”) observations so that a full
three-dimensional fix (range, AZ, EL) in this operation would be

(14.26)

Since R contains the first three states, its matrix coefficient in (14.26) provides the three nonzero elements
of H; e.g., for scalar position observables, these are comprised of

• The top row of Tb/G for range measurements,

• The middle row of Tb/G divided by scalar range for azimuth measurements,

• The bottom row of Tb/G divided by scalar range � (�1), for elevation measurements.

By treating scalar range coefficients as well as the direction cosines as known quantities in this approach,
both the dynamics and the observables are essentially linear in the state. This has produced success in
nearly all applications within the experience of this writer. The sole need for extension arose when
distances and accuracies of range data were extreme (the cosine of the angle between the sensor sight-
line and range vector could not be set at unity). Other than that case, the top row of Tb/G suffices for
relative position states, and also for relative velocity states when credible Doppler measurements are
available.

A more thorough discourse would include a host of additional material, including radar and optical sensing
considerations, sensor stabilization — with its imperfections isolated from tracking, error budgets, kinematical
correction for gradual rotation of the acceleration vector, extension to multiple track files, sensor fusion, myriad
disadvantages of alternative tracking estimator formulations, etc. The ramifications are too vast for inclusion here.

14.3.4 Position, Velocity, and Attitude in Three-Dimensional
Space (INS Aiding)

In the preceding section, involving determination of velocity history from position measurement
sequences, dynamic velocity variations were expressed in terms of an acceleration vector. For nav (as
opposed to tracking of an external object) with high dynamics, the history of velocity is often tied to the
angular orientation of an INS. In straight-and-level Northbound flight, for example, an unknown tilt
N

about the North axis would produce a fictitious ramping in the indicated East velocity VE; in the short-
term this effect will be indistinguishable from a bias naE in the indicated lateral component (here, East)
of accelerometer output. More generally, velocity vector error will have a rate

(14.27)

where bold symbols (v, n) contain the geographic components equal to corresponding scalars denoted
by italicized quantities (v,n) and A represents the vector, also expressed in geographic coordinates, of the
total nongravitational acceleration experienced by the IMU. Combined with the intrinsic kinematical
relation between v and a position vector error r, in a naw frame rotating at rad/sec, the 9-state dynamics
with a time-invariant misorientation
 can be expressed via 3 � 3 matrix partitions,

yR

yAZ

yEL

1 0 0

0
1
R
------ 0

0 0
1
R
-------�

Tb�GR
0

pA

pE�

��

v̇
 A na�� A
 na���� �

�̃

© 2001 by CRC Press LLC

(14.28)

which lends itself to numerous straighforward interpretations. For brevity, these will simply be listed here:

• For strapdown systems, it is appropriate to replace vectors such as A and na by vectors initially
expressed in vehicle coordinates and transformed into geographic coordinates, so that parameters
and coefficients will appear in the form received.

• Although both na and e appear as forcing functions, the latter drives the highest-order state and
thus exercises dominant control over the data window.

• If na and e contain both bias and time-varying random (noisy) components, (14.28) is easily
reexpressible in augmented form, wherein the biases can be estimated along with the corrections
for estimated position, velocity, and orientation. Especially for accelerometer bias elements, how-
ever, observability is often limited; therefore the usage of augmented formulations should be
adopted judiciously. In fact, the number of states should in many cases be reduced, as in the next
two examples:

• In the absence of appreciable sustained horizontal acceleration, the azimuth element of mis-
orientation is significantly less observable than the tilt components. In some operations this
suggests replacing (14.28) with an eight-state version obtained by omitting the ninth state and
deleting the last row and column of the matrix.

• When the last three states are omitted — while the last three rows and columns of the matrix are
deleted — the result is the fully coupled three-dimensional position and velocity estimator (14.21).

The options just described can be regarded as different modes of the standard cyclic process already
described, with operations defined by dynamics and measurement models. Any discrete observation
could be used with (14.28) or an alternate form just named, constituting a mode subject to restrictions
that were adopted here for brevity (position-dependent observables only, with distances much smaller
than Earth radius).

At this point, expressions could be given for measurements as functions of the states and their
sensitivities to those state variables: (14.26) provides this for range and angle data; it is now appropriate
to discuss GPS information in an integrated nav context.

14.3.5 Individual GPS Measurements as Observables

The explosive growth of navigation applications within the past decade has been largely attributed to GPS.
Never before has there been nav data source of such high accuracy, reachable from any location on the Earth’s
surface at any time. Elsewhere in this book the reader has been shown how GPS data can be used to

• Solve for 3D position and user clock offset with pseudo-range observations received simultaneously
from each of four space vehicles (SVs),

• Use local differential GPS corrections that combine, for each individual SV, compensation for
propagation delays plus SV clock and ephemeris error,

• Compensate via wide-area augmentation which, though not as accurate as local, is valid for much
greater separation distances between the user and reference station,

• Use differencing techniques with multiple SVs as well as multiple receivers to counteract the effects
of the errors mentioned and of user clock offsets,

• Apply these methods to carrier phase as well as to pseudo-range so that, once the cycle count
ambiguities are resolved, results can be accurate to within a fraction of the L-band wavelength.

ṙ

v̇

̇

��̃� I 0

0 0 A��()
0 0 0

r

v

0

na

e

��
© 2001 by CRC Press LLC

Immediately we make a definite departure from custom here; each scalar GPS observable will call for
direct application of (14.15). To emphasize this, results will first be described for instances of sparse
measurement scheduling. Initial runs were made with real SV data, taken before the first activation of
selective availability (SA) degradations, collected from a receiver at a known stationary location but spanning
intervals of several hours. Even with that duration consumed for the minimum required measurements,
accuracies of 1 or 2 m were obtained: not surprising for GPS with good geometery and no SA.

The results just mentioned, while not considered remarkable, affirm the point that full fixes are not
at all necessary with GPS. They also open the door for drawing dependable conclusions when the same
algorithms are driven by simulated data containing errors from random number generators. A high-speed
aircraft simulation was run under various conditions, always with no more than one pseudo-range obser-
vation every 6 sec. (and furthermore with some gaps even in that slow data rate). Since the results are
again unremarkable, only a brief synopsis suffices here:

• Estimates converged as soon as the measurements accumulated were sufficient to produce a nav
solution (e.g., two asynchronous measurements from each of three noncoplanar SVs for a vehicle
moving in three dimensions, with known clock state, or four SVs with all states initially unknown).

• Initial errors tended to wash out; accuracies of the estimates just mentioned were determined by
measurement error levels amplified by geometry.

• Velocity errors tended toward levels proportional to a ratio (RMS measurement error)/(T), where
T here represents time elapsed since the first measurement on a course leg, or the data window
— whichever is smaller. The former definition of the denominator produced a transient at the
onset and when speed or direction changed.

• Doppler data reduced the transient, and INS velocity aiding minimized or removed it.

• Extreme initial errors interfered with these behavioral patterns somewhat — readily traceable to
usage of imprecise direction cosines — but the effects could be countered by reintialization of
estimates with a posteriori values and recycling the measurements.

These results mirror familiar real-world experience (including actual measurement processing by this
author); they are used here to emphasize adequacy of partial fixes at low rates, which many operational
systems fail to exploit.

Although the approach just described is well known (i.e., in complete conformance to the usual Kalman
filter updating cycle) and the performance unsurprising, the last comment is significant. There are numerous
applications wherein SV sight-lines are often obscured by terrain, foliage, buildings, or structure of the vehicle
carrying the GPS receiver. In addition, there can be SV outages (whether from planned maintenance or
unexpected failures), intermittently strong interference or weak signals, unfavorable multipath geometry in
certain SV sight-line directions, etc., and these problems can arise in critical situations.

At the time of this writing there are widespread opportunities, prompted by genuine need, to replace loose
(cascaded) configurations by tightly coupled (integrated) configurations. Accentuating the benefit is the bilat-
eral nature of tight integration. As the tracking loops (code loop and, where activated, carrier phase track)
contribute to the estimator, the updated state enhances ability to maintain stable loop operation. For a properly
integrated GPS/INS, this enhancement occurs even with narrow bandwidth in the presence of rapid change.
Loop response need not follow the dynamics, only the error in perceived dynamics.

It is also noted that the results just described are achievable under various conditions and can be scaled
over a wide accuracy range. Sensitivity H of an individual SV observation contains the SV-to-receiver
unit vector; when satellite observations are differenced, the sensitivity H contains the difference of two
SV-to-receiver unit vectors. Measurements may be pseudo-ranges with SA (� � 30 m), pseudo-ranges
without SA (� � 10 m, typically), differentially corrected pseudo-ranges (� � 1 or 2 m), or carrier phase
(with ambiguities resolved, � at 1 cm or less). In all cases, attainable performance is determined by �
and the span of H for each course leg. An analogous situation holds for other navaids when used with
the standard updating procedure presented herein.
© 2001 by CRC Press LLC

14.4 Conclusion

Principles of nav system integration have been described, within the limits of space. Inevitably, some
restrictions in scope were adopted; those wishing to pursue the topic in greater depth may consult the
sources which follow.

References

1. Farrell, J. L., Integrated Aircraft Navigation, Academic Press, New York, 1976. (Now available in
paperback only; 800/628-0885 or 410/647-6165.)

2. Bierman, Factorized Methods for Discrete Sequential Estimation, Academic Press, New York, 1977.
3. Institute of Navigation Redbooks (reprints of selected GPS papers); Alexandria, VA, 703/683-7101.
4. Brown and Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley &

Sons, New York, 1996.
5. Kayton and Fried (Eds.), Avionics Navigation Systems, John Wiley & Sons, New York, 1997.

Further Information

1. Journal and Conference Proceedings from the Institute of Navigation, Alexandria, VA.
2. Tutorials from Conferences sponsored by the Institute of Navigation (Alexandria, VA) and the

Position Location And Navigation Symposium (PLANS) of the Institute of Electrical and Elecronic
Engineers (IEEE).

3. Transactions of the Institute of Electrical and Electronic Engineers (IEEE) Aerospace and Electronic
Systems Society (AES).
© 2001 by CRC Press LLC

Randy Walter “Flight Management Systems’’
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

15
Flight Management

Systems

15.1 Introduction
15.2 Fundamentals

Navigation • Flight Planning • Trajectory Predictions • Performance
Computations • Guidance • Auto Flight Phase Transitions

15.3 Summary

15.1 Introduction

The flight management system typically consists of two units, a computer unit and a control display unit.
The computer unit can be a standalone unit providing both the computing platform and various interfaces
to other avionics or it can be integrated as a function on a hardware platform such as an Integrated
Modular Avionics cabinet (IMA). The Control Display Unit (CDU or MCDU) provides the primary
human/machine interface for data entry and information display. Since hardware and interface imple-
mentations of flight management systems can vary substantially, this discussion will focus on the functional
aspects of the flight management system.

The flight management system provides the primary navigation, flight planning, and optimized route
determination and en route guidance for the aircraft and is typically comprised of the following interrelated
functions: navigation, flight planning, trajectory prediction, performance computations, and guidance.

To accomplish these functions the flight management system must interface with several other avionics
systems. As mentioned above, the implementations of these interfaces can vary widely depending upon
the vintage of equipment on the aircraft but generally will fall into the following generic categories.

• Navigation sensors and radios

• Inertial/attitude reference systems

• Navigation radios

• Air data systems

• Displays

• Primary flight and navigation

• Multifunction

• Engine

• Flight control system

• Engine and fuel system

• Data link system

• Surveillance systems

Figure 15.1 depicts a typical interface block diagram.

Randy Walter
Smiths Industries
© 2001 by CRC Press LLC

Today, flight management systems can vary significantly in levels of capability because of the various
aviation markets they are intended to serve. These range from simple point to point lateral navigators
to the more sophisticated multisensor navigation, optimized four-dimensional flight planning/guidance
systems. The flight management system in its simplest form will slowly diminish as reduced separation
airspace standards place more demands on the aircraft’s ability to manage its trajectory more accurately,
even though lateral-only navigators will continue to have a place in recreational general aviation.

With its current role in the aircraft, the flight management system becomes a primary player in the
current and future CNS/ATM environment. Navigation within RNP airspace, data-linked clearances and
weather, aircraft trajectory-based traffic management, time navigation for aircraft flow control, and seam-
less low-visibility approach guidance all are enabled through advanced flight management functionality.

15.2 Fundamentals

At the center of the FMS functionality is the flight plan construction and subsequent construction of the
four-dimensional aircraft trajectory defined by the specified flight plan legs and constraints and the aircraft
performance. Flight plan and trajectory prediction work together to produce the four-dimensional tra-
jectory and consolidate all the relevant trajectory information into a flight plan/profile buffer. The
navigation function provides the dynamic current aircraft state to the other functions. The vertical, lateral
steering, and performance advisory functions use the current aircraft state from navigation and the
information in the flight plan/profile buffer to provide guidance, reference, and advisory information
relative to the defined trajectory and aircraft state.

• The navigation function — responsible for determining the best estimate of the current state of
the aircraft.

• The flight planning function — allows the crew to establish a specific routing for the aircraft.

FIGURE 15.1 Typical interface block diagram.

Flight Management

Altitude, speeds,
temperatures

Initial position Tuning cmds

Freq, range, bearing, LOC
deviation, GPS position,
GPS ground speed, time

Navigation
Receivers

Data Link

MCDU

Aircraft
Displays

Flight
Controls

Surveillance
Systems

Engine and
Fuel

Systems

Air Data

Position, velocities,Ł
vert spd, pitch, roll,

heading, accels

Init data,
flt plans,

clearance,
weather

Entered data

Display data

Map scale,
display selections

Flt plan & path,
nav data, route
data, HSI data

Tactical cmds,
modes

Roll axis cmds,
pitch axis cmds,
thrust axis cmds

Trajectory
conflicts

Flight ID,
Aircraft state,

trajectory

Fuel weight,
eng thrust

Thrust limits

Inertial
Reference
© 2001 by CRC Press LLC

• The trajectory prediction function — responsible for computing the predicted aircraft profile
along the entire specified routing.

• The performance function — provides the crew with aircraft unique performance information
such as takeoff speeds, altitude capability, and profile optimization advisories.

• The guidance functions — responsible for producing commands to guide the aircraft along both
the lateral and vertical computed profiles.

Depending on the particular implementation, the ancillary I/O, BITE, and control display functions
may be included as well. Since the ancillary functions can vary significantly, this discussion will focus on
the core flight management functions.

There are typically two loadable databases that support the core flight management functions. These are
the navigation database which must be updated on a monthly cycle and the performance database that only
gets updated if there’s been a change in the aircraft performance characteristics (i.e., engine variants or
structural variants affecting the drag of the aircraft).

The navigation database contains published data relating to airports, navaids, named waypoints, airways
and terminal area procedures along with RNP values specified for the associated airspace. The purpose of
the navigation data base is twofold. It provides the navigation function location, frequency, elevation, and
class information for the various ground-based radio navigation systems. This information is necessary
to select, auto-tune, and process the data from the navigation radios (distance, bearing, or path deviation)
into an aircraft position. It also provides the flight plan function with airport, airport-specific arrival,
departure, and approach procedures (predefined strings of terminal area waypoints), airways (predefined
enroute waypoint strings), and named waypoint information that allows for rapid route construction. A
detailed description of the actual data content and format can be found in ARINC 424.

The performance database contains aircraft/engine model data consisting of drag, thrust, fuel flow,
speed/altitude envelope, thrust limits, and a variety of optimized and tactical speed schedules that are unique
to the aircraft. Figure 15.2 shows the interrelationships between the core functions and the databases.

15.2.1 Navigation

The navigation function within the FMS computes the aircraft current state (generally WGS-84 geodetic
coordinates) based on a statistical blending of multisensor position and velocity data. The aircraft current

FIGURE 15.2 Flight management functional block diagram.

Navigation
(acft current state)

Navigation
Data Base

Flight
Planning

Performance
Computations

Lateral
Guidance Perf Data

Base

Trajectory
Prediction

Lateral &
Vertical
Profile

Flight
Plan

Buffer

Vertical
Guidance

Data Link

Data Entry

(performance advisories)

(lateral cmds)

(vertical cmds)

(intended flt path)

(route & constraints)
© 2001 by CRC Press LLC

state data usually consists of:

• Three-dimensional position (latitude, longitude, altitude)

• Velocity vector

• Altitude rate

• Track angle, heading, and drift angle

• Wind vector

• Estimated Position Uncertainty (EPU)

• Time

The navigation function is designed to operate with various combinations of autonomous sensors and
navigation receivers. The position update information from the navigation receivers is used to calibrate
the position and velocity data from the autonomous sensors, in effect providing an error model for the
autonomous sensors. This error model allows for navigation coasting based on the autonomous sensors
while maintaining a very slow growth in the EPU. If the updating from navigation aids such as DME, VOR,
or GPS is temporarily interrupted, navigation accuracy is reasonably maintained, resulting in seamless
operations. This capability becomes very important for operational uses such as RNAV approach guidance
where the coasting capability allows completion of the approach even if a primary updating source such as
GPS is lost once the approach is commenced. A typical navigation sensor complement consist of:

• Autonomous sensors

• Inertial reference

• Air data

• Navigation receivers

• DME receivers

• VOR/LOC receivers

• GPS receivers

The use of several navigation data sources also allows cross-checks of raw navigation data to be
performed to ensure the integrity of the FMS position solution.

15.2.1.1 Navigation Performance

The navigation function, to be RNP airspace compliant per DO-236, must compute an Estimated Position
Uncertainty (EPU) that represents the 95% accuracy performance of the navigation solution. The EPU
is computed based on the error characteristics of the particular sensors being used and the variance of
the individual sensors position with respect to other sensors. The RNP for the airspace is defined as the
minimum navigation performance required for operation within that airspace. It is specified by default
values based on the flight phase retrieved from the navigation data base for selected flight legs or crew-
entered in response to ATC-determined airspace usage. A warning is issued to the crew if the EPU grows
larger than the RNP required for operation within the airspace. The table below shows the current default
RNP values for the various airspace categories.

A pictorial depiction of the EPU computation is shown below for a VOR/VOR position solution. A similar
representation could be drawn for other sensors.

Airspace Definition Default RNP

Oceanic — no VHF navaids within
200 nm

12.0 nm

Enroute — above 15,000 ft 2.0 nm
Terminal 1.0 nm
Approach 0.5 nm
© 2001 by CRC Press LLC

As can be seen from the diagram, the estimated position uncertainty (EPU) is dependent on the error
characteristics of the particular navigation system being used as well as the geometric positioning of the
navaids themselves. Other navigation sensors such as an inertial reference system have error characteristics
that are time-dependent. More information pertaining to EPU and various navigation navaid system
error characteristics can be found in RTCA DO-236.

15.2.1.2 Navigation Receiver Management

The various navigation receivers require different levels of FMS management to obtain a position update
solution.

GPS — The GPS receiver is self-managing in that the FMS receives position, velocity, and time
information without any particular FMS commands or processing. Typically, the FMS will provide an
initial position interface to reduce the satellite acquire time of the receiver and some FMSs may provide
an estimated time of arrival associated with a final approach fix waypoint to support the Predictive
Receiver Autonomus Integrity Monitor (PRAIM) function in the GPS. More information on the GPS
interface and function can be found in ARINC 743.

VHF navaids (DME/VOR/ILS) — The DME/VOR/ILS receivers must be tuned to an appropriate station
to receive data. The crew may manually tune these receivers but the FMS navigation function will also
auto-tune the receivers by selecting an appropriate set of stations from its stored navigation database and
sending tuning commands to the receiver(s). The selection criteria for which stations to tune are

• Navaids specified within a selected flight plan procedure, while the procedure is active.

• The closest DME navaids to the current aircraft position of the proper altitude class that are within
range (typically 200 nm).

• Collocated DME/VORs within reasonable range (typically 25 nm).

• ILS facilities if an ILS or LOC approach has been selected into the flight plan and is active.

Since DMEs receive ranging data and VORs receive bearing data from the fixed station location, the
stations must be paired to determine a position solution as shown below:

VOR Station VOR Station
Received
bearings

Estimated position

VOR bearing error
characteristic

Range from
station 1

Range from
station 2

Range from
station

Bearing from
station

Bearing from
station 1

Bearing from
station 2

DME/DME
pair

DME/VOR
pair (collocated)

VOR/VOR
pair
© 2001 by CRC Press LLC

The pairing of navaids to obtain a position fix is based on the best geometry to minimize the position
uncertainty (minimize the portion of EPU caused by geometric dilution of precision, GDOP). As can be
seen from the figure above, the FMS navigation must process range data from DMEs and bearing data from
VORs to compute an estimated aircraft position. Further, since the DME receives slant range data from
ground station to aircraft, the FMS must first correct the slant range data for station elevation and aircraft
altitude to compute the actual ground-projected range used to determine position. The station position,
elevation, declination, and class are all stored as part of the FMS navigation data base. There are variations
in the station-tuning capabilities of DME receivers. A standard DME can only accept one tuning command
at a time, an agility-capable DME can accept two tuning commands at a time, and a scanning DME can
accept up to five tuning commands at a time. VOR receivers can only accept one tuning command at a time.

An ILS or LOC receiver works somewhat differently in that it receives cross-track deviation information
referenced to a known path into a ground station position. These facilities are utilized as landing aids
and therefore are located near runways. The FMS navigation function processes the cross-track infor-
mation to update the cross-track component of its estimated position. More information about
DME/VOR/ILS can be found in ARINC 709, 711, and 710, respectively.

15.2.2 Flight Planning

The basis of the FMC flight profile is the route that the aircraft is to fly from the departure airport to the
destination airport. The FMS flight planning function provides for the assembly, modification, and activa-
tion of this route data known as a flight plan. Route data are typically extracted from the FMC navigation
data base and typically consists of a departure airport and runway, a standard instrument departure (SID)
procedure, enroute waypoints and airways, a standard arrival (STAR) procedure, and an approach procedure
with a specific destination runway. Often the destination arrival (or approach transition) and approach
procedure are not selected until the destination terminal area control is contacted. Once the routing, along
with any route constraints and performance selections, are established by the crew, the flight plan is
assembled into a “buffer” that is utilized predominantly by the trajectory predictions in computing the
lateral and vertical profile the aircraft is intended to fly from the departure airport to the destination airport.

The selection of flight planning data is done by the crew through menu selections either on the MCDU
or navigation display or by data link from the airline’s operational control. Facilities are also provided
for the crew to define additional navigation/route data by means of a supplemental navigation data base.
Some of the methods for the crew to create new fixes (waypoints) are listed below.

PBD Waypoints — Specified as bearing/distance off existing named waypoints, navaids, or airports.
PB/PB Waypoints — Specified as the intersections of bearings from two defined waypoints.
ATO Waypoints — Specified by an along-track offset (ATO) from an existing flight plan waypoint.

The waypoint that is created is located at the distance entered and along the current flight plan
path from the waypoint used as the fix. A positive distance results in a waypoint after the fix point
in the flight plan while a negative distance results in a waypoint before the fix point.

Lat/Lon Waypoints — Specified by entering in the latitude/longitude coordinates of the desired way-
point.

Lat/Lon Crossing Waypoints — Created by specifying a latitude or longitude. A waypoint will be created
where the active flight plan crosses that latitude or longitude. Latitude or longitude increments
can also be specified, in which case several waypoints are created where the flight plan crosses the
specified increments of latitude or longitude.

Intersection of Airways — Created by specifying two airways. A waypoint will be created at the first
point where the airways cross.

Fix Waypoints — Created by specifying a “fix” reference. Reference information includes creation of
abeam waypoints and creation of waypoints where the intersections of a specified radial or distance
from the “fix” intersects the current flight plan.

Runway Extension Waypoints — Created by specifying a distance from a given runway. The new
waypoint will be located that distance from the runway threshold along the runway heading.
© 2001 by CRC Press LLC

Abeam Waypoints — If a direct-to is performed, selection of abeam points results in waypoints being
created at their abeam position on the direct-to path. Any waypoint information associated with
the original waypoint is transferred to the newly created waypoints.

FIR/SUA Intersection Waypoints — Creates waypoints where the current flight plan crosses FIR bound-
aries and Special Use Areas (SUA) that are stored in the navigation data base.

The forward field of view display system shows a presentation of the selected segments of the flight plan
as the flight plan is being constructed and flown.

The crew can modify the flight plan at any time. The flight plan modification can come from crew
selections or via data link from the airline operational communications or air traffic control in response
to a tactical situation. An edit to the flight plan creates a modified (or temporary) version of the flight
plan that is a copy of the active flight plan plus any accrued changes made to it. Trajectory predictions
are performed on the modified flight plan with each edit and periodically updated, which allows the
crew to evaluate the impact of the flight plan changes prior to acceptance. When the desired changes
have been made to the crew’s satisfaction this modified flight plan is activated by the crew.

15.2.2.1 Flight Plan Construction

Flight plans are normally constructed by linking data stored in the navigation data base. The data may
include any combination of the following items:

• SID/STAR/approach procedures

• Airways

• Prestored company routes

• Fixes (en route waypoints, navaids, nondirectional beacons, terminal waypoints, airport reference
points, runway thresholds)

• Crew-defined fixes (as referenced above)

These selections may be strung together using clearance language, by menu selection from the navigation
data base, by specific edit actions, or data link.

Terminal area procedures (SIDs, STARs, and approaches) consist of a variety of special procedure legs
and waypoints. Procedure legs are generally defined by a leg heading, course or track, and a leg termination
type. The termination type can be specified in many ways such as an altitude, a distance, or intercept of
another leg. More detail on the path construction for these leg types and terminators will be discussed
in the trajectory predictions section. Refer to ARINC 424 specification for further detail about what data
and format are contained in the NDB to represent these leg types and terminations.

AF DME Arc to a Fix
CA Course to an Altitude
CD Course to a Distance
CF* Course to a Fix
CI Course to an Intercept
CR Course to Intercept a Radial
DF* Direct to a Fix
FA* Course from Fix to Altitude
FC Course from Fix to Distance
FD Course from Fix to DME Distance
FM Course from Fix to Manual Term
HA* Hold to an Altitude
HF* Hold, Terminate at Fix after 1 Circuit

*These leg types are recommended in DO-236 as the set that produces consistent ground tracks and the only
types that should be used within RNP airspace.
© 2001 by CRC Press LLC

HM* Hold, Manual Termination
IF* Initial Fix
PI Procedure Turn
RF* Constant Radius to a Fix
TF* Track to Fix
VA Heading to Altitude
VD Heading to Distance
VI Heading to Intercept next leg
VM Heading to Manual Termination
VR Heading to Intercept Radial

Many of these leg types and terminations have appeared because of the evolution of equipment and
instrumentation available on the aircraft and do not lend themselves to producing repeatable, deterministic
ground tracks. For example, the ground track for a heading to an altitude will not only be dependent on
the current wind conditions but also the climb performance of each individual aircraft. One can readily
see that to fly this sort of leg without an FMS, the crew would follow the specified heading using the
compass until the specified altitude is achieved, as determined by the aircraft’s altimeter. Unfortunately,
every aircraft will fly a different ground track and in some cases be unable to make a reasonable maneuver
to capture the following leg. For the FMS, the termination of the leg is “floating” in that the lat/lon associated
with the leg termination must be computed. These nondeterministic-type legs present problems for the
air traffic separation concept of RNP airspace and for this reason RTCA DO-236 does not recommend
the use of these legs in terminal area airspace, where they are frequently used today. These leg types also
present added complexity in the FMS path construction algorithms since the path computation becomes
a function of aircraft performance. With the advent of FMS and RNAV systems, in general, the need for
non-deterministic legs simply disappears along with the problems and complexities associated with them.

Waypoints may also be specified as either “flyover” or nonflyover”. A flyover waypoint is a waypoint
whose lat/lon position must be flown over before the turn onto the next leg can be initiated whereas a
nonflyover waypoint does not need to be overflown before beginning the turn onto the next leg.

15.2.2.2 Lateral Flight Planning

To meet the tactical and strategic flight planning requirements of today’s airspace, the flight planning
function provides various ways to modify the flight plan at the crew’s discretion.

Direct-to — The crew can perform a direct-to to any fix. If the selected fix is a downtrack fix in the
flight plan, then prior flight plan fixes are deleted from the flight plan. If the selected fix is not a downtrack
fix in the flight plan, then a discontinuity is inserted after the fix and existing flight plan data are preserved.

Direct/intercept — The direct/intercept facility allows the crew to select any fixed waypoint as the active
waypoint and to select the desired course into this waypoint. This function is equivalent to a direct-to
except the inbound course to the specified fix may be specified by the crew. The inbound course may be
specified by entering a course angle, or if the specified fix is a flight plan fix, the crew may also select the
prior flight plan-specified course to the fix.

Holding pattern — Holding patterns may be created at any fix or at current position. All parameters
for the holding pattern are editable including entry course, leg time/length, etc.

Fixes — Fixes may be inserted or deleted as desired. A duplicate waypoint page will automatically be
displayed if there is more than one occurrence of the fix identifier in the navigation database. Duplicate
fixes are arranged in order starting from the closest waypoint to the previous waypoint in the flight plan.

Procedures — Procedures (SIDs, STARs, and approaches including missed approach procedures) may
be inserted or replaced as desired. If a procedure is selected to replace a procedure that is in the flight
plan, the existing procedure is removed and replaced with the new selection.

Airway segments — Airway segments may be inserted as desired.
Missed approach procedures — The flight planning function also allows missed approach procedures

to be included in the flight plan. These missed approach procedures can either come from the navigation
database where the missed approach is part of a published procedure, in which case they will be automatically
© 2001 by CRC Press LLC

included in the flight plan, or they can be manually constructed by entry through the MCDU. In either
case, automatic guidance will be available upon activation of the missed approach.

Lateral offset — The crew can create a parallel flight plan by specifying a direction (left or right of
path) and distance (up to 99 nm) and optionally selecting a start and/or end waypoint for the offset
flight plan. The flight planning function constructs an offset flight plan, which may include transition
legs to and from the offset path.

15.2.2.3 Vertical Flight Planning

Waypoints can have associated speed, altitude, and time constraints. A waypoint speed constraint is
interpreted as a “cannot exceed” speed limit, which applies at the waypoint and all waypoints preceding
the waypoint if the waypoint is in the climb phase, or all waypoints after it if the waypoint is in the descent
phase. A waypoint altitude constraint can be of four types — “at,” “at or above,” “at or below,” or “between.”
A waypoint time constraint can be of three types — “at,” “after,” “before,” “after” and “before” types are
used for en route track-crossings and the “at” type is planned to be used for terminal area flow control.

Vertical flight planning consists of selection of speed, altitude, time constraints at waypoints (if required
or desired), cruise altitude selection, aircraft weight, forecast winds, temperatures, and destination baro-
metric pressure as well as altitude bands for planned use of aircraft anti-icing. A variety of optimized speed
schedules for the various flight phases are typically available. Several aircraft performance-related crew
selections may also be provided. All these selections affect the predicted aircraft trajectory and guidance.

15.2.2.4 Atmospheric Models

Part of the flight planning process is to specify forecast conditions for temperatures and winds that will
be encountered during the flight. These forecast conditions help the FMS to refine the trajectory predic-
tions to provide more accurate determination of ETAs, fuel burn, rates of climb/descent, and leg transition
construction.

The wind model for the climb segment is typically based on an entered wind magnitude and direction
at specified altitudes. The value at any altitude is interpolated between the specified altitudes to zero on
the ground and merged with the current sensed wind. Wind models for use in the cruise segment usually
allow for the entry of wind (magnitude and direction) for multiple altitudes at en route waypoints. Future
implementation of en route winds may be via a data link of a geographical current wind grid database
maintained on the ground. The method of computing winds between waypoints is accomplished by
interpolating between entries or by propagating an entry forward until the next waypoint entry is
encountered. Forecast winds are merged with current winds obtained from sensor data in a method
which gives a heavier weighting to sensed winds close to the aircraft and converges to sensed winds as
each waypoint-related forecast wind is sequenced. The wind model used for the descent segment is a set
of altitudes with associated wind vector entered for different altitudes. The value at any altitude is
interpolated from these values, and blended with the current sensed wind.

Forecast temperature used for extrapolating the temperature profile is based on the International
Standard Atmosphere (ISA) with an offset (ISA deviation) obtained from pilot entries and/or the actual
sensed temperature.

Forecast temperature � 15 � ISA dev� 0.00198 � altitude altitude � 36,089
Forecast temperature � �56.5 altitude � 36,089

Air pressure is also utilized in converting speed between calibrated airspeed, mach, and true airspeed.
� (Pressure ratio) � (1� 0.0000068753 � altitude)5.2561 altitude � 36,089
� (Pressure ratio) � 0.22336 � e(4.8063 � (36089�altitude)/100,000)

15.2.3 Trajectory Predictions

Given the flight plan, the trajectory prediction function computes the predicted four-dimensional flight
profile (both lateral and vertical) of the aircraft within the specified flight plan constraints and aircraft
performance limitations, based on entered atmospheric data and the crew-selected modes of operation.
© 2001 by CRC Press LLC

The lateral path and predicted fuel, time, distance, altitude, and speed are obtained for each point in the
flight plan (waypoints as well as inserted vertical breakpoints such as speed change, cross-over, level off,
T/C, T/D points). The flight profile is continuously updated to account for nonforecasted conditions and
tactical diversions from the specified flight plan.

To simplify this discussion, the flight path trajectory is broken into two parts — the lateral profile (the
flight profile as seen from overhead) and the vertical profile (the flight profile as seen from the side).
However, the lateral path and vertical path are interdependent in that they are coupled to each other
through the ground speed parameter. Since the speed schedules that are flown are typically constant
CAS/mach speeds for climb and descent phases, the TAS (or ground speed) increases with altitude for
the constant CAS portion and mildly decreases with altitude for the constant mach portion, as shown
in the following equations.

The significance of the change in airspeed with altitude will become apparent in the construction
of the lateral and vertical profile during ascending and descending flights as described in the next
section. Further, since the basic energy balance equations used to compute the vertical profile use TAS,
these speed conversion formulas are utilized to convert selected speed schedule values to true airspeed
values.

15.2.3.1 Lateral Profile

Fundamentally, the lateral flight profile is the specified route (composed of procedure legs, waypoints,
hold patterns, etc.), with all the turns and leg termination points computed by the FMS according to how
the aircraft should fly them. The entire lateral path is defined in terms of straight segments and turn
segments which begin and end at either fixed or floating geographical points. Computing these segments
can be difficult because the turn transition distance and certain leg termination points are a function of
predicted aircraft speed (as noted in the equations below), wind, and altitude, which, unfortunately, are
dependent on how much distance is available to climb and descend. For example, the turn transition at
a waypoint requires a different turn radius and therefore a different distance when computed with different
speeds. The altitude (and therefore speed of the aircraft) that can be obtained at a waypoint is dependent
upon how much distance is available to climb or desend. So, the interdependency between speed and leg
distance presents a special problem in formulating a deterministic set of algorithms for computing the
trajectory. This effect becomes significant for course changes greater than 45˚, with the largest effect for
legs such as procedure turns which require a 180˚ turn maneuver.

Lateral turn construction is based on the required course change and the aircraft's predicted ground
speed during the turn. If the maximum ground speed that the aircraft will acquire during the required
course change is known, a turn can be constructed as follows:

Mach sqrt (1	� 1 0.2 CAS/661.5()2
�[]3.5

1�{ } 1)�
0.286

1�[]�

TAS 661.5 mach sqrt
[]���

CAS calibrated airspeed in knots�

TAS true airspeed in knots�

� atmospheric pressure ratio actual temperature 	S.L. std. temperature()�

 atmospheric temperature ratio actual temperature 	S.L. std. temperature()�

Turn Radius (ft) GS2()	 g tan��()�

Turn Arclength (ft) � Course Turn Radius��

GS maximum aircraft ground speed during the turn�

g acceleration due to gravity�

� nominal aircraft bank angle used to compute a turn.�
© 2001 by CRC Press LLC

For legs such as constant radius to a fix (RF) where the turn radius is specified, a different form of
the equation is used to compute the nominal bank angle that must be used to perform the maneuver.

To determine the maximum aircraft ground speed during the turn the FMC must first compute the
altitude at which the turn will take place, and then the aircraft’s planned speed based on the selected
speed schedule and any applicable wind at that altitude. The desired bank angle required for a turn is
predetermined based on a trade-off between passenger comfort and airspace required to perform a
lateral maneuver.

The basis for the lateral profile construction is the leg and termination types mentioned in the flight
plan section. There are four general leg types:

• Heading (V) — aircraft heading

• Course (C) — fixed magnetic course

• Track (T) — computed great circle path (slowly changing course)

• Arc (A or R) — an arc defined by a center (fix) and a radius

There are six leg terminator types:

• Fix (F) — terminates at geographic location

• Altitude (A) — terminates at a specific altitude

• Intercept next leg (I) — terminates where leg intercepts the next leg

• Intercept radial (R) — terminates where leg intercepts a specific VOR radial

• Intercept distance (D or C) — terminates where leg intercepts a specific DME distance or distance
from a fix

• Manual (M) — leg terminates with crew action

Not all terminator types can be used with all leg types. For example, a track leg can only be terminated
by a fix since the definition of a track is the great circle path between two geographic locations (fixes).
Likewise, arc legs are only terminated by a fix. In a general sense, heading and course legs can be
graphically depicted in the same manner understanding that the difference in the computation is the
drift angle (or aircraft yaw).

Figure 15.3 depicts a graphical construction for the various leg and terminator types. The basic
construction is straightforward. The complexity arises from the possible leg combinations and formu-
lating proper curved transition paths between them. For example, if a TF leg, is followed by a CF leg
where the specified course to the fix does not pass through the terminating fix for the prior TF leg, then
a transition path must be constructed to complete a continuous path between the legs.

In summary, the lateral flight path computed by the FMC contains much more data than straight lines
connecting fixed waypoints. It is a complete prediction of the actual lateral path that the aircraft will fly
under FMS control. The constructed lateral path is critical because the FMC will actually control the
aircraft to it by monitoring cross-track error and track angle error, and issuing roll commands to the
autopilot as appropriate.

15.2.3.2 Vertical Profile

The fundamental basis for the trajectory predictor is the numerical integration of the aircraft energy
balance equations including variable weight, speed, and altitude. Several forms of the energy balance
equation are used to accommodate unrestricted climb/descent, fixed gradient climb/descent, speed
change, and level flight. The integration steps are constrained by flight plan-imposed altitude and speed
restrictions as well as aircraft performance limitations such as speed and buffet limits, maximum altitudes,

� arctan GS2
	 turn radius g�()[]�
© 2001 by CRC Press LLC

FIGURE 15.3 Basic lateral leg construction.

CF

TF

CF or DF - course or direct
to a fix

TF - great circle track
between fixes

DME

VI or CI - heading or course
to intercept the next leg

VD or CD or FD - heading or course
or course from a fix to a DME distance

VA or CA or FA - heading or course
or course from a fix to an altitude

VR or CR - heading or course
to a VOR radial

RF or AF - constant radius or
DME arc to a fix

VM or FM - heading or course
from a fix until manual termination

End of leg
based on manual

termination Turn center
or DME

Computed
position

based on specified
altitude

VOR
Computed

position

Computed
position

Computed
position
© 2001 by CRC Press LLC

and thrust limits. The data that drives the energy balance equations come from the airframe/engine-
dependent thrust, fuel flow, drag, and speed schedule models stored in the performance data base. Special
construction problems are encountered for certain leg types such as an altitude-terminated leg because
the terminator has a floating location. The location is dependent upon where the trajectory integration
computes the termination of the leg. This also determines the starting point for the next leg.

The trajectory is predicted based on profile integration steps — the smaller the integration step the
more accurate the computed trajectory. For each step the aircraft’s vertical speed, horizontal speed,
distance traveled, time used, altitude change, and fuel burned is determined based on the projected
aircraft target speed, wind, drag, and engine thrust for the required maneuver. The aircraft’s vertical state
is computed for the end of the step and the next step is initialized with those values. Termination of an
integration step can occur when a new maneuver type must be used due to encountering an altitude or
speed constraint, flight phase change, or special segments such as turn transitions where finer integration
steps may be prudent. The vertical profile is comprised of the following maneuver types: unrestricted
ascending and descending segments, restricted ascending and descending segments, level segments, and
speed change segments. Several forms of the energy balance equation are used depending on the maneuver
type for a given segment of the vertical profile. Assumptions for the thrust parameter are maneuver type
and flight phase dependent.

15.2.3.3 Maneuver Types

Unrestricted ascending and descending segments — The following form of the equation is typically
used to compute the average vertical speed for fixed altitude steps (dh is set integration step). Using fixed
altitude steps for this type of segment allows for deterministic step termination at altitude constraints.
For ascending flight the thrust is general assumed to be the take-off, go-around, or climb thrust limit.
For descending flight the thrust is generally assumed to be at or a little above flight idle.

where:

T � Avg. thrust (lb)

D � Avg. drag (lb)

GW � A/C gross wt (lb)

act � Ambient temp (K)

Tstd � Std. day temp (K)

Vave � Average true airspeed (ft/sec)

g � 32.174 ft/sec2

dVtrue � Delta Vtrue (ft/sec)

dh � Desired altitude step (ft)

The projected aircraft true airspeed is derived from the pilot-selected speed schedules and any appli-
cable airport or waypoint-related speed restrictions. Drag is computed as a function of aircraft configu-
ration, speed, and bank angle. Fuel flow and therefore weight change is a function of the engine thrust.

V	S

T D�()Vave

GW

Tact

Tstd

Vave

g

dVtrue

dh
-------------�

--�
© 2001 by CRC Press LLC

Once V/S is computed for the step the other prediction parameters can be computed for the step.

Restricted ascending and descending segments — The following form of the equation is typically
used to compute the average thrust for fixed altitude steps (dh and V/S are predetermined). Using fixed
altitude steps for this type of segment allows for deterministic step termination at altitude constraints.
The average V/S is either specified or computed based on a fixed flight path angle (FPA).

The fixed FPA can in turn be computed based on a point to point vertical flight path determined by
altitude constraints, which is known as a geometric path. With a specified V/S or FPA segment the thrust
required to fly this profile is computed.

The other predicted parameters are computed as stated for the unrestricted ascending and descending
segment.

Level segments — Constant-speed-level segments are a special case of the above equation. Since
and are by definition zero for level segments, the equation simplifies to T � D. Level segments
are typically integrated based on fixed time or distance steps so the other predicted parameters are
computed as follows:

dt � set integration step

and

ds � dt(Vtrue � average along track wind for segment) ds � delta distance for step

or

ds � set integration step

and

dt � ds	(Vtrue � average along track wind for segment) dt � delta time for step

dw � dt � fuel flow(T) dw � delta weight for step

Speed change segments — The following form of the equation is typically used for speed change
segments to compute the average time for a fixed dVtrue step. The used is predetermined based on
ascending, descending, or level flight along with the operational characteristics of the flight controls or as
for the case of geometric paths computed based on the required FPA. The thrust is assumed to be flight idle
for descending flight, take-off or climb thrust limit for ascending flight, or cruise thrust limit for level flight.

dt
dh
V	S
--------- where dt, delta time for step� �

ds dt Vtrue average along track wind for segment�() where ds, delta distance for step� �

dw dt fuel flow� T() where dw, delta weight for step� �

V	Save GSave FPA where GSave,tan segment ground speed (ft/sec).� �

T
W V	Save�

Vave

---------------------------- 1
Vave

g

dVtrue

dh
-------------� 

 � D��

dVtrue

V	Save

V	Save

dt dVtrue 	g
T D�()

GW

Tact

Tstd

V	Save

Vave

-------------- 
 �

 
 
 

�

dh V/Save dt��
© 2001 by CRC Press LLC

For all maneuver types the altitude rate, speed change, or thrust must be corrected for bank angle
effects if the maneuver is performed during a turn transition. The vertical flight profile that the FMC
computes along the lateral path is divided into three phases of flight: climb, cruise, and descent.

The climb phase — The climb phase vertical path, computed along the lateral path, is typically
composed of the segments shown in Figure 15.4.

In addition to these climb segments, there can also be altitude level-off segments created by altitude
restrictions at climb waypoints, and additional target speed acceleration segments created by speed
restrictions at climb waypoints.

The cruise phase — The cruise phase vertical path, computed along the lateral path, is very simple.
It’s typically composed of a climb speed to cruise speed acceleration or deceleration segment followed by
a segment going to the FMC-computed top of descent. The cruise phase typically is predicted level at
cruise altitude via several distance- or time-based integration steps. Unlike the climb and descent phase,
the optimal cruise speeds slowly change with the changing weight of the aircraft, caused by fuel burn. If
step climb or descents are required during the cruise phase, these are treated as unrestricted ascending
flight and fixed V/S or FPA descents. At each step the FMC computes the aircraft’s along-path speed, along-
path distance traveled, and fuel burned based on the projected aircraft target speed, wind, drag, and engine
thrust. The projected aircraft true airspeed is derived from the pilot-selected cruise speed schedule and
applicable airport-related speed restrictions. Drag is computed as a function of aircraft speed and bank
angle. For level flight, thrust must be equal to drag. Given the required thrust, the engine power setting
can be computed, which becomes the basis for computing fuel burn and throttle control guidance.

FIGURE 15.4 Typical climb profile.

FIGURE 15.5 Typical cruise profile.

Speed change to cruise mach

Unrestricted climb at climb mach

Unrestricted climb at climb speed

Speed change to climb speed

Unrestricted climb at arprt speed

Speed change to airport speed restriction

Unrestricted climb at waypoint speed restriction

Speed change to waypoint restricted speed, climb thrust

Speed change to clean config TO thrust

Unrestricted climb based on TO speed and thrust limit, flaps configuration

Level segment created by altitude restriction

Distance

Altitude

Alt/Speed

Thrust rev alt

Unrestricted ascending for step climb
Level flight at new cruise alt with changing cruise speed

Level flight at new cruise alt with changing cruise speed

Level flight at cruise alt with changing cruise speed

Speed change from climb to cruise speed

Fixed V/S or FPA step descentT/C
Altitude

Distance

T/D
© 2001 by CRC Press LLC

The descent phase — The descent phase vertical path, computed along the lateral path, can be
composed of several vertical leg types as shown in the following figure:

In addition to these descent segments, there can also be altitude level-off segments created by altitude
restrictions at descent waypoints and additional targets speed deceleration segments created by speed
restrictions at descent waypoints as well as eventual deceleration to the landing speed for the selected
flaps configuration.

15.2.3.4 NDB Vertical Angles

These leg types are generally used in the approach. The desired approach glide slope angle that assures
obstacle clearance is packed as part of the waypoint record for the approach in the Navigation Data Base
(NDB). The angle is used to compute the descent path between the waypoint associated with the angle
and the first of the following to be encountered (looking backwards)

1. Next lateral waypoint with an NDB vertical angle record
2. Next “at” constraint
3. First approach waypoint

A new NDB gradient can be specified on any waypoint. This allows the flexibility to specify multiple
FPAs for the approach if desired. The integration basis for this leg assumes a thrust level compatible with
maintaining the selected speed schedule at the descent rate specified by the NDB angle. Decelerations
that can occur along these legs because of various restrictions (both regulatory and airframe) assume
performing the speed change at idle thrust at the vertical speed specified by the NDB angle. If within
the region where flaps are anticipated, then the deceleration model is based on a flaps configuration
performance model.

Default approach vertical angle — Generally, this leg is used in lieu of a specified NDB angle to
construct a stabilized nominal glide slope between the glide slope intercept altitude (typically 1500 ft
above the runway) to the selected runway. The integration basis for this leg is the same as the NDB angle.

Direct to vertical angle — This leg type provides a vertical “Dir to” capability for use in tactical
situations. The path constructed is the angle defined by the current 3-D position of the aircraft and the
next appropriate reference point (usually the next altitude constraint). For a pending vertical “direct to”
the direct to angle is updated on a periodic basis to account for the movement of the aircraft. In
determining the direct to angle the aircraft 3-D position is extrapolated to account for the amount of
time required to compute the trajectory for VNAV guidance to avoid path overshoots when the trajectory
is available. The integration basis for this leg assumes a thrust level compatible with maintaining the
selected speed schedule at the descent rate specified by the direct to gradient. Decelerations that can

FIGURE 15.6 Typical descent profile.

Speed change to descent speed based on Idle thrust

Unrestricted descent based on idle thrust/fixed mach

Unrestricted descent based on idle thrust/fixed CAS

Speed change to airport restriction speed
Unrestricted descent based on airport speed/idle thrust

Restricted descent based on geometric point to point
Speed change to minimum clean speed

Restricted descent based on NDB specified vertical angle

Level flight to intercept glide slope with speed change to landing speed

Distance

Altitude
© 2001 by CRC Press LLC

occur along these descent legs because of various restrictions (both regulatory and aircraft) assume
performing the speed change at idle thrust for the anticipated flaps/landing gear configuration.

Computed vertical angle — This leg type provides constant angle vertical paths between constraints
that are part of the vertical flight plan. These geometric paths provide for repeatable, stabilized, partial
power descent paths at lower altitudes in the terminal area. The general rules for proper construction of
these paths are

• Vertical maneuvering should be minimized. This implies that a single angle to satisfy a string of
altitude constraints is preferred. This can occur when “At or above” and “At or below” altitude
constraints are contained in the flight plan.

• If a string of “At or above” and/or “At or below” constraints can be satisfied with an unrestricted,
idle power path, then that path is preferred.

• Computed gradient paths should be checked for flyability (steeper than idle). The computation
of the idle path (for the anticipated and idle with drag devices deployed) should account for a
minimum deceleration rate if one is contained within the computed gradient leg.

The integration basis for this leg assumes a thrust level compatible with maintaining the selected speed
schedule at the descent rate specified by the computed vertical angle. Decelerations that can occur along
these descent legs because of various restrictions (both regulatory and airframe) assume performing the
speed change at idle thrust limited for a maximum deceleration rate.

Constant V/S — This leg type provides a strategic, shallower-than-idle initial descent path if desired.
The construction of this path is dependent on a vertical speed and intercept altitude being requested.
The integration basis for this leg assumes a thrust level compatible with maintaining the selected speed
schedule at the descent rate specified by the commanded v/s. Decelerations that can occur along these
descent legs because of various restrictions (both regulatory and airframe) assume performing the speed
change at idle thrust limited for a maximum deceleration rate.

Unrestricted descent — The unrestricted descent uses performance data to construct an energy-
balanced idle descent path when not constrained by altitude constraints. The integration basis for this
leg assumes maintaining the selected speed schedule at idle thrust. This results in a changing vertical
speed profile. Decelerations that can occur along these descent legs because of various restrictions (both
regulatory and aircraft) assume performing the speed change at a minimum vertical speed rate and idle
thrust limited for a maximum deceleration rate. The minimum vertical speed can be based on energy
sharing or a precomputed model. An idle thrust factor allows the operator to create some margin
(shallower or steeper) in the idle path construction.

15.2.4 Performance Computations

The performance function provides the crew information to help optimize the flight or provide perfor-
mance information that would otherwise have to be ascertained from the aircraft performance manual.
FMSs implement a variety of these workload reduction features, only the most common functions are
discussed here.

15.2.4.1 Speed Schedule Computation

Part of the vertical flight planning process is the crew selection of performance modes for each flight phase
based on specific mission requirements. These performance modes provide flight profile optimization
through computation of flight phase-dependent, optimized speed schedules that are used as a basis for
both the trajectory prediction, generation of guidance speed targets, and other performance advisories.

The selection of a specific performance mode for each flight phase results in the computation of an
optimized speed schedule, which is a constant CAS, constant mach pair, which becomes the planned
speed profile for each flight phase. The altitude where the CAS and mach are equivalent is known as the
crossover altitude. Below the crossover altitude the CAS portion of the speed schedule is the controlling
speed parameter and above the crossover altitude the mach portion is the controlling speed. The per-
formance parameter that is optimized is different for each performance mode selection.
© 2001 by CRC Press LLC

Climb

• Economy (based on Cost Index) — speed that optimizes overall cost of operation (lowest cost).

• Maximum angle of climb — speed that produces maximum climb rate with respect to distance.

• Maximum rate of climb — speed that produces maximum climb rate with respect to time.

• Required time of arrival speed (RTA) — speed that optimizes overall cost of operation, while still
achieving a required time of arrival at a specific waypoint.

Cruise

• Economy (based on Cost Index) — speed that optimizes overall cost of operation (lowest cost).

• Maximum endurance — speed that produces lowest fuel burn rate, maximizing endurance time.

• Long range cruise — speed that produces best fuel mileage, maximizing range.

• Required time of arrival (RTA) — speed that optimizes overall cost of operation, while still
achieving a required time of arrival at a specific waypoint.

Descent

• Economy (based on Cost Index) — speed that optimizes overall cost of operation (lowest cost).

• Maximum descent rate — speed that produces maximum descent rate with respect to time.

• Required time of arrival (RTA) — speed that optimizes overall cost of operation, while still
achieving a required time of arrival at a specific waypoint.

All flight phases allow a manually entered CAS/mach pair as well.
It may be noted that one performance mode that is common to all flight phases is the “economy”

speed mode which minimizes the total cost of operating the airplane on a given flight. This performance
mode uses a Cost Index, which is the ratio of time-related costs (crew salaries, maintenance, etc.) to fuel
cost as one of the independent variables in the speed schedule computation.

Cost Index (CI) � flight time-related cost/fuel cost

The cost index allows airlines to weight time and fuel costs based on their daily operations.

15.2.4.2 Maximum and Optimum Altitudes

An important parameter for the flight crew is the optimum and maximum altitude for the aircraft/engine
type, weight, atmospheric conditions, bleed air settings, and the other vertical flight planning parameters.
The optimum altitude algorithm computes the most cost-effective operational altitude based solely on
aircraft performance and forecasted environmental conditions. Fundamentally, the algorithm searches
for the altitude that provides the best fuel mileage.

Altitude that maximizes the ratio: ground speed	fuel burn rate

The maximum altitude algorithm computes the highest attainable altitude based solely on aircraft
performance and forecasted environmental conditions, while allowing for a specified rate of climb margin.

Altitude that satisfies the equality: min climb rate � TAS � (thrust � drag)	weight

Optimum altitude is always limited by maximum altitude. The algorithms for these parameters account
for the weight reduction caused by the fuel burn in achieving the altitudes. The speeds assumed are the
selected performance modes.

Trip altitude — Another important computation that allows the crew to request an altitude clearance
to optimize the flight is the recommended cruise altitude for a specified route known as trip altitude.
This altitude may be different from the optimum altitude in that for short trips the optimum altitude
may not be achievable because of the trip distance. This algorithm searches for the altitude that satisfies
the climb and descent while preserving a minimum cruise time.
© 2001 by CRC Press LLC

Alternate destinations — To help reduce crew workload during flight diversion operations the FMS
typically provides alternate destination information. This computation provides the crew with distance,
fuel, and ETA for selected alternate destinations. The best trip cruise altitude may be computed as well.
The computations are based either on a direct route from the current position to the alternate or
continuing to the current destination, execution of a missed approach at the destination, and then direct
to the alternate. Also computed for these alternate destinations are available holding times at the present
position and current fuel state vs. fuel required to alternates. Usually included for the crew convenience
is the CDU/MCDU retrieval of suitable airports that are nearest the aircraft.

Step climb/descent — For longer-range flights often the achievable cruise altitude is initially lower than
the optimum because of the heavy weight of the aircraft. As fuel is burned off and the aircraft weight reduced,
it becomes advantageous to step climb to a higher altitude for more efficient operation. The FMS typically
provides a prediction of the optimum point(s) at which a step climb/descent maneuver may be initiated to
provide for more cost-effective operation. This algorithm considers all the vertical flight planning parameters,
particularly the downstream weight of the aircraft, as well as entered wind data. The time and distance to
the optimum step point for the specified step altitude is displayed to the crew, as well as the percent
savings/penalty for the step climb/descent vs. the current flight plan. For transoceanic aircraft it is typical
for the trajectory prediction function to assume that these steps will be performed as part of the vertical
profile, so that the fuel predictions are more aligned with what the aircraft will fly.

Thrust limit data — To prevent premature engine maintenance/failure and continued validation of engine
manufacturer’s warrantees, it becomes important not to overboost the aircraft engines. The engine manu-
facturers specify flight phase-dependent thrust limits that the engines are designed to operate reliably within.
These engine limits allow higher thrust levels when required (take-off, go-around, engine out) but lower limits
for non-emergency sustained operation (climb and cruise). The thrust limits for take-off, climb, cruise, go
around, and continuous modes of operation are computed based on the current temperature, altitude, speed,
and type of engine/aircraft and engine bleed settings. Thrust limit data are usually represented by “curve sets”
in terms of either engine RPM (N1) or engine pressure ratio (EPR), depending on the preferred engine
instrumentation package used to display the actual engine thrust. The “curve sets” typically have a tempera-
ture-dependent curve and an altitude-dependent curve along with several correction curves for various engine
bleed conditions. The algorithms used to compute the thrust limits vary among engine manufacturers.

Take-off reference data — The performance function provides for the computation, or entry, of V1,
VR and V2 take-off speeds for selected flap settings and runway, atmospheric, and weight/CG conditions.
These speeds are made available for crew selection for display on the flight instruments. In addition,
take-off configuration speeds are typically computed. The take-off speeds and configuration speeds are
stored as data sets or supporting data sets in the performance database.

Approach reference data — Landing configuration selection is usually provided for each configuration
appropriate for the operation of the specific aircraft. The crew can select the desired approach configu-
ration and the state of that selection is made available for other systems. Selection of an approach
configuration also results in the computation of a landing speed based on a manually entered wind
correction for the destination runway. In addition, approach configuration speeds are computed and
displayed for reference and selection for display on the flight instruments. The approach and landing
speeds are stored as data sets in the performance database.

Engine-out performance — The performance function usually provides engine-out performance
predictions for the loss of at least one engine. These predictions typically include:

• Climb at engine-out climb speed

• Cruise at engine-out cruise speed

• Driftdown to engine-out maximum altitude at driftdown speed

• Use of maximum continuous thrust

The engine out speed schedules are retrieved from the performance data base and the trajectory
predictions are computed based on the thrust available from the remaining engines and the increased
aircraft drag created by engine windmilling and aircraft yaw caused by asymmetrical thrust.
© 2001 by CRC Press LLC

15.2.5 Guidance

The FMS typically computes roll axis, pitch axis, and thrust axis commands to guide the aircraft to the
computed lateral and vertical profiles as discussed in the trajectory predictions section. These commands
may change forms depending on the particular flight controls equipment installed on a given aircraft. Other
guidance information is sent to the forward field of view displays in the form of lateral and vertical path
information, path deviations, target speeds, thrust limits and targets, and command mode information.

15.2.5.1 Lateral Guidance

The lateral guidance function typically computes dynamic guidance data based on the predicted lateral
profile described in the trajectory predictions section. The data are comprised of the classic horizontal
situation information:

• Distance to go to the active lateral waypoint (DTG)

• Desired track (DTRK)

• Track angle error (TRKERR)

• Cross-track error (XTRK)

• Drift angle (DA)

• Bearing to the go to waypoint (BRG)

• Lateral track change alert (LNAV alert)

A common mathematical method to compute the above data is to convert the lateral path lat/lon point
representation and aircraft current position to earth-centered unit vectors using the following relationships:

P � earth centered unit position vector with x, y, z components

X � COS (lat) COS (lon)

Y � COS (lat) SIN (lon)

Z � SIN (lat)
For the following vector expressions � is the vector cross product and � is the vector dot product. For any two
position vectors that define a lateral path segment:

N � Pst � Pgt N � unit vector normal to Pst and Pgt

Pap � N � (Ppos � N) Pgt � go to point unit position vector

Pst � start point unit position vector

DTGap � earth radius � arcCOS (Pgt � Pap) Pap � along path position unit vector

DTGpos � earth radius � arcCOS (Pgt � Ppos) Ppos � current position unit vector

XTRK � �earth radius � arcCOS (Pap � Ppos) (full expression)

XTRK � �earth radius � N � Ppos (good approximation)

Est � Z � P Est � East-pointing local level unit vector

Nth � P � Est Nth � North-pointing local level unit vector

| 0 |

Z � | 0 | Z axis unit vector

| 1 |
© 2001 by CRC Press LLC

DTRK � arcTAN [(�N � Nthap)	(�N � Estap)

BRG � arcTAN [(�N � Nthpos)	(�N � Estpos)

TRKERR � DTRK � Current Track

DA � Current Track � Current Heading

LNAV Alert is set when the DTG/ground speed � 10 sec from turn initiation

The above expressions can also be used to compute the distance and course information between
points that are displayed to the crew for the flight plan presentation. The course information is generally
displayed as magnetic courses, due to the fact that for many years a magnetic compass was the primary
heading sensor and therefore all navigation information was published as magnetic courses. This historical-
based standard requires the installation of a worldwide magnetic variation model in the FMS since most
of the internal computations are performed in a true course reference frame. Conversion to magnetic is
typically performed just prior to crew presentation.

The lateral function also supplies data for a graphical representation of the lateral path to the
navigation display, if the aircraft is so equipped, such that the entire lateral path can be displayed in an
aircraft-centered reference format or a selected waypoint center reference format. The data for this
display are typically formatted as lat/lon points with identifiers and lat/lon points with straight and
curved vector data connecting the points. Refer to ARINC 702A for format details. In the future the
FMS may construct a bit map image of the lateral path to transmit to the navigation display instead of
the above format.

Lateral leg switching and waypoint sequencing — As can be seen in the lateral profile section, the lateral
path is composed of several segments. Most lateral course changes are performed as “flyby” transitions.
Therefore anticipation of the activation of the next vertical leg is required, such that a smooth capture
of that segment is performed without path overshoot. The turn initiation criteria are based on the extent
of the course change, the planned bank angle for the turn maneuver, and the ground speed of the aircraft.

Turn Radius � Ground Speed 	[g � TAN (�nominal)]

Turn initiation Distance � Turn Radius	TAN (Course Change/2) � roll in distance

The roll in distance is selected based on how quickly the aircraft responds to a change in the aileron
position. Transitions that are flyby but require a large course change (�135�) typically are constructed
for a planned overshoot because of airspace considerations. Turn initiation and waypoint sequence follow
the same algorithms except the course change utilized in the above equations is reduced from the actual
course change to delay the leg transition and create the overshoot. The amount of course change reduction
is determined by a balance in the airspace utilized to perform the overall maneuver. For “flyover”
transitions, the activation of the next leg occurs at the time the “flyover” waypoint is sequenced.

The initiation of the turn transition and the actual sequence point for the waypoint are not the same for
“flyby” transitions. The waypoint is usually sequenced at the turn bisector point during the leg transition.

Roll control — Based on the aircraft current state provided by the navigation function and the stored
lateral profile provided by the trajectory prediction function, lateral guidance produces a roll steering
command that can be engaged by the flight controls. This command is both magnitude and rate limited
based on aircraft limitations, passenger comfort, and airspace considerations. The roll command is
computed to track the straight and curved path segments that comprise the lateral profile. The roll
control is typically a simple control law driven by the lateral cross-track error and track error as discussed
in the prior subsection as well as a nominal roll angle for the planned turn transitions. The nominal
roll angle is zero for straight segments but corresponds to the planned roll angle used to compute lateral
transition paths to follow the curved segments.

2

© 2001 by CRC Press LLC

Roll � xtrk gain � xtrk � trk gain � trk error � �nominal

where

�nominal � nominal planned roll angle.

The gain values used in this control loop are characteristic of the desired aircraft performance for a
given airframe and flight controls system.

Lateral capture path construction — At the time LNAV engagement with the flight controls occurs,
a capture path is typically constructed that guides the airplane to the active lateral leg. This capture path
is usually constructed based on the current position and track of the aircraft if it intersects the active
lateral leg. If the current aircraft track does not intersect the active lateral leg, then LNAV typically goes
into an armed state waiting for the crew to steer the aircraft into a capture geometry before fully engaging
to automatically steer the aircraft. Capture of the active guidance leg, is usually anticipated to prevent
overshoot of the lateral path.

15.2.5.2 Vertical guidance

The vertical guidance function provides commands of pitch, pitch rate, and thrust control to the param-
eters of target speeds, target thrusts, target altitudes, and target vertical speeds (some FMS provide only
the targets depending on the flight management/flight control architecture of the particular aircraft).
Much like the lateral guidance function, the vertical guidance function provides dynamic guidance
parameters for the active vertical leg to provide the crew with vertical situation awareness. Unlike the
lateral guidance parameters, the vertical guidance parameters are somewhat flight phase dependent.

Flight Phase Vertical Guidance Data

Takeoff Take-off speeds V1, V2, VR
Take-off thrust limit

Climb Target speed based on selected climb speed schedule,
flight plan speed restriction, and airframe limitations

Target altitude intercept
Alt constraint violation message
Distance to top of climb
Climb thrust limits

Cruise Target speed based on selected cruise speed schedule,
flight plan speed restriction, and airframe limitations

Maximum and optimum altitude
distance to step climb point

Distance to top of descent
Cruise thrust limit
Cruise thrust target

Descent Target speed based on selected descent speed schedule,
flight plan speed restriction, and airframe limitations

Target altitude intercept
Vertical deviation
Desired V/S
Energy bleed-off message

Approach Target speed based on dynamic flap configuration
Vertical deviation
Desired V/S

Missed
Approach

Target speed based on selected climb speed schedule,
flight plan speed restriction, and airframe limitations

Target altitude intercept
Alt constraint violation msg
Distance to top of climb
Go-around thrust limit
© 2001 by CRC Press LLC

Vertical guidance is based on the vertical profile computed by the trajectory prediction function as
described in a previous section as well as performance algorithms driven by data from the performance
data base.

The mathematical representation of the vertical profile is the point type identifier, distance between
points, which includes both lateral and vertical points, speed, altitude, and time at the point. Given this
information, data for any position along the computed vertical profile can be computed.

Path gradient � (altstart � altend)/distance between points

 Therefore the path reference altitude and desired V/S at any point is given by:

Path altitude � altend � path gradient � DTGap

Vertical deviation � current altitude � path altitude

Desired V/S � path gradient � current ground speed

In the same manner time and distance data to any point or altitude can be computed as well. The
target speed data are usually not interpolated from the predicted vertical profile since it is only valid for
on-path flight conditions. Instead, it is computed based on the current flight phase, aircraft altitude,
relative position with respect to flight plan speed restrictions, flaps configuration, and airframe speed
envelope limitations. This applies to thrust limit computations as well.

Auto flight phase transitions — The vertical guidance function controls switching of the flight phase
during flight based on specific criteria. The active flight phase becomes the basis for selecting the controlling
parameters to guide the aircraft along the vertical profile. The selected altitude is used as a limiter in that
the vertical guidance will not allow the aircraft to fly through that altitude (except during approach
operations where the selected altitude may be pre-set for a missed approach if required). When on the
ground with the flight plan and performance parameters initialized, the flight phase is set to take-off. After
liftoff, the phase will switch to climb when the thrust revision altitude is achieved. The switch from climb
to cruise (level flight) phase usually occurs when the aircraft is within an altitude acquire band of the
target altitude.

|Cruise altitude � current altitude| � capture gain � current vertical speed

The capture gain is selected for aircraft performance characteristics and passenger comfort. The switch
from cruise to descent can occur in various ways. If the crew has armed the descent phase by lowering
the preselected altitude below cruise altitude, then descent will automatically initiate at an appropriate
distance before the computed T/D to allow for sufficient time for the engine to spool down to descent
thrust levels so that the aircraft speed is coordinated with the initial pitch-over maneuvers. If the crew
has not armed the descent by setting the selected altitude to a lower level, then cruise is continued past
the computed T/D until the selected altitude is lowered to initiate the descent. Facilities are usually
provided for the crew to initiate a descent before the computed T/D in response to ATC instructions to
start descending.

Vertical leg switching — As can be seen in the vertical profile section, the vertical path is composed
of several segments. Just as in the lateral domain it is desirable to anticipate the activation of the next
vertical leg such that a smooth capture of that segment is performed without path overshoot. It
therefore becomes necessary to have an appropriate criteria for vertical leg activation. This criteria
is typically in the form of an inequality involving path altitude difference and path altitude rate
difference.
© 2001 by CRC Press LLC

|Path altitude (n) � path altitude (n � 1)| � capture gain � |desired V/S (n) � desired V/S (n � 1)|

The capture gain is determined based on airframe performance and passenger comfort.
Pitch axis and thrust axis control — The pitch command produced by vertical guidance is based on

tracking the speed target, FMS path, or acquiring and holding a target altitude depending on the flight
phase and situation. If VNAV is engaged to the flight controls an annunciation of the parameter con-
trolling pitch is usually displayed in the crew’s forward field of view.

Control strategy may vary with specific implementations of FMSs. Based on the logic in the above table,
the following outer loop control algorithms are typically used to compute the desired control parameters.

Pitch axis control — The control algorithms below are representative of control loop equations that could
be utilized and are by no means the only form that apply. Both simpler and more complex variations may be used.

Vspd

Capture
Delta pitch � speed rate gain � (airspeed rate � capture rate)
Track
Delta pitch � (airspeed gain � airspeed error � speed rate gain � airspeed rate)/Vtrue

Vpath

Capture
V/S error � fixed capture V/S � current V/S
Delta pitch � path capture gain � arcSIN (V/S error/Vtrue)
Track
Delta pitch � (VS gain � V/S error � alt error gain � alt error)/Vtrue

Valt

Capture
Capture V/S � alt capture gain � alt error
V/S error � capture V/S � current V/S
Delta pitch � V/S gain � � arcSIN (V/S error/Vtrue)
Track
Delta pitch � (VS gain � current V/S � alt error gain � alt error)/Vtrue

Flight Phase Pitch Axis Control Thrust Axis Control
Pitch/Thrust Mode

Annunciation

Take-off None until safely off ground
then same as climb

Take-off thrust limit Vspd/TO limit

Climb and cruise climb Capture and track speed target Climb thrust limit Vspd/CLB limit
Level flight Capture and maintain altitude Maintain speed target Valt/CRZ limit
Unrestricted descent Capture and track vertical path Set to flight idle Vpath/CRZ limit
Restricted descent and

approach
Capture and track vertical path Set to computed thrust

required, then maintain speed
Vpath/CRZ limit

Descent path capture
from below and cruise
descent

Capture and track fixed V/S
capture path

Set to computed thrust required,
then maintain speed

Vpath/CRZ limit

Descent path capture
from above

Capture and track upper speed
limit

Set to flight idle Vspd/CRZ limit

Missed approach Capture and track speed target Go-around thrust limit Vspd/GA limit
© 2001 by CRC Press LLC

Proper aircraft pitch rates and limits are typically applied before final formulation of the pitch
command. Once again, the various gain values are selected based on the aircraft performance and
passenger comfort.

Thrust axis control — The algorithms below are representative of those that could be utilized to
determine thrust settings. Quite often the thrust setting for maintaining a speed is only used for an initial
throttle setting. Thereafter the speed error is used to control the throttles.

Thrust Limit

Thrust limit � f (temp, alt, spd, engine bleed air): stored as data sets in the performance DB
Flight Idle

Idle thrust � f (temp, alt, spd, engine bleed air): stored as data sets in the performance DB

Thrust Required

RTA (required time of arrival) — The required time of arrival or time navigation is generally treated
as a dynamic phase-dependent speed schedule selection (refer to the performance section). From this
standpoint the only unique guidance requirements are the determination of when to recompute the
phase-dependent speed schedules based on time error at the specified point and perhaps the computation
of the earliest and latest times achievable at the specified point.

RNAV approach with VNAV guidance — The only unique guidance requirement is the increased scale
in the display of vertical deviation when the approach is initiated. The vertical profile for the approach
is constructed as part of the vertical path by trajectory predictions, complete with deceleration segments
to the selected landing speed (refer to the performance section).

15.3 Summary

This chapter is an introduction to the several functions that comprise a flight management system and
has focused on the basic functionality and relationships that are fundamental to understanding the flight
management system and its role in the operations of the aircraft. Clearly, there is a myriad of complexity
in implementing each function that is beyond the scope of this publication.

The future evolution of the flight management system is expected to focus not on the core functions
as described herein, but on the utilization within the aircraft and on the ground of the fundamental
information produced by the flight management system today. The use of the FMS aircraft state and
trajectory intent, within the aircraft and on the ground, to provide strategic conflict awareness is a
significant step toward better management of the airspace. Communication of the optimized user-
preferred trajectories will lead to more efficient aircraft operation. The full utilization of RNP-based
navigation will increase the capacity of the airspace. Innovative methods to communicate FMS informa-
tion and specify flight plan construction with the crew to make flight management easier to use are
expected as well. Clearly, the FMS is a key system in moving toward the concepts embodied in CNS
future airspace.

T
W V/Save�

Vave

---------------------------- 1
Vave

g
---------�

dVtrue

dh
-------------- 

  D��
© 2001 by CRC Press LLC

Russell V. Parish et al. “Synthetic Vision”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

16
Synthetic Vision

16.1 Introduction
16.2 Background
16.3 Application
16.4 Concepts
16.5 Challenges
16.6 Conclusion
Defining Terms
Further Information

16.1 Introduction

A large majority of the avionics systems introduced since the early days of flight (attitude indicators,
radio navigation, instrument landing systems, etc.) have sought to overcome the issues resulting from
limited visibility. Limited visibility is the single most critical factor affecting both the safety and capacity
of worldwide aviation operations. In commercial aviation, over 30% of all fatal accidents worldwide are
categorized as Controlled Flight Into Terrain (CFIT)—accidents in which a functioning aircraft impacts
terrain or obstacles that the flight crew could not see. In general aviation, the largest accident category
is Continued Flight into Instrument Meteorological Conditions, in which pilots with little experience
continue to fly into deteriorating weather and visibility conditions and either collide with unexpected
terrain or lose control of the vehicle because of the lack of familiar external cues. Finally, the single largest
factor causing airport flight delays is the limited runway capacity and increased air traffic separation
distances resulting when visibility conditions fall below visual flight rule operations. Now, synthetic vision
technology will allow this visibility problem to be solved with a visibility solution, making every flight
the equivalent of a clear daylight operation.

Initial attempts to solve the visibility problem with a visibility solution have used imaging sensors to
enhance the pilot’s view of the outside world. Such systems are termed “enhanced vision systems,” which
attempt to improve visual acquisition by enhancing significant components of the real-world scene.
Enhanced vision systems typically use advanced sensors to penetrate weather phenomena such as dark-
ness, fog, haze, rain, and/or snow, and the resulting enhanced scene is presented on a head up display
(HUD), through which the outside real world may be visible. The sensor technologies involved include
either active or passive radar or infrared systems of varying frequencies. These systems have been the
subject of experiments for over two decades, and the military has successfully deployed various imple-
mentations. However, no sensor-based application has seen commercial aircraft success for a variety of
reasons, including cost, complexity, and technical performance. Though technology advances are making
radar and infrared sensors more affordable, they still suffer from deficiencies for commercial applications.
High-frequency radars (e.g., 94 GHz) and infrared sensors have degraded range performance in heavy
rain and certain fog types. Low-frequency (e.g., 9.6 GHz) and mid-frequency (e.g., 35 GHz) radars have
improved range, but poor resolution displays. Active radar sensors also suffer from mutual interference

Russell V. Parish
NASA Langley Research Center

Daniel G. Baize
NASA Langley Research Center

Michael S. Lewis
NASA Langley Research Center
© 2001 by CRC Press LLC

issues with multiple users in close proximity. All such sensors yield only monochrome displays with
potentially misleading visual artifacts in certain temperature or radar reflective environments.

A “synthetic vision system” is a display system in which the view of the outside world is provided by
melding computer-generated airport scenes from on-board databases and flight display symbologies,
with information derived from a weather-penetrating sensor (e.g., information from runway edge detec-
tion or object detection algorithms) or with actual imagery from such a sensor. These systems are
characterized by their ability to represent, in an intuitive manner, the visual information and cues that a
flight crew would have in daylight — Visual Meteorological Conditions (VMC). The visual information and
cues are depicted based on precise positioning information relative to an onboard terrain database, and
possibly includes traffic information from surveillance sources (such as TCAS, ASDE, etc.) and other
hazard information (such as wind shear).

Synthetic vision displays are unlimited in range, unaffected by atmospheric conditions, and require
only precise ownship location and readily available display media, computer memory, and processing to
function. The rapid emergence of reliable GPS position information and precise digital terrain maps,
including data from the Space Shuttle Radar Topography Mission (SRTM), make this approach capable
of both true all-weather performance as well as extremely low cost, low maintenance operations. When
fully implemented, successful synthetic vision technologies will be a revolutionary improvement in
aviation safety and utility.

16.2 Background

Synthetic vision systems are intended to reduce accidents by improving a pilot’s situation and spatial
awareness during low-visibility conditions, including night and Instrument Meteorological Conditions
(IMC). Synthetic vision technologies are most likely to help reduce the following types of accidents: CFIT,
Loss of Control, and Runway Incursion (RI). CFIT is the number one cause of fatalities in revenue service
flights, and the majority of CFIT accidents, runway incursion accidents, and GA loss of control accidents
can be considered to be visibility-induced crew error, where better pilot vision would have been a
substantial mitigating factor. Better pilot vision is provided by synthetic/enhanced vision display systems.
These technologies will serve as a substantial mitigating factor for aircraft accidents of other types as
well. Such display systems will substantially reduce the following accident precursors:

• Loss of vertical and lateral spatial awareness.

• Loss of terrain and traffic awareness on approach.

• Unclear escape or go-around path even after recognition of problem.

• Loss of attitude awareness.

• Loss of situation awareness relating to the runway environment.

• Unclear path guidance on the surface.

 Many laboratory research efforts have investigated replacing the conventional attitude direction
indicator or primary flight display for transport airplanes with a pictorial display to increase situation
awareness as well as to increase operational capability for landing in low-visibility weather conditions.
These research efforts have consistently demonstrated the advantages of pictorial displays over conven-
tional display formats, and the technologies involved in implementing such concepts appear to become
available in the near term. Over the past 5 years, a number of organizations have demonstrated synthetic
vision-based flight, landings, and taxi operations in research aircraft. Digital data links and displays of
the positions and paths of airborne and ground traffic have also been demonstrated.

 The practical implementation tasks remaining are to define requirements for display configurations and
associated human performance criteria, and to resolve human performance and technology issues relating
to the development of synthetic vision concepts. These same tasks remain as well for the necessary enabling
technologies and the supporting infrastructure and certification strategies. Aggressive, active participation
by synthetic vision advocates with appropriate standards and regulatory groups is also required.
© 2001 by CRC Press LLC

16.3 Applications

All aircraft categories are expected to benefit from synthetic vision applications, including general aviation
aircraft, rotorcraft, business jets, and commercial transports (both cargo and passenger). The concepts
will emphasize the cost-effective use of synthetic/enhanced vision displays, worldwide navigation, terrain,
obstruction, and airport databases, and Global Positioning System (GPS)-derived navigation to eliminate
“visibility-induced” (lack of visibility) errors for all aircraft categories.

 The high-end general aviation aircraft (business jets) and commercial transports application of synthetic
vision will prevent CFIT and Runway Incursion (RI) accidents by improving the pilot’s situation awareness
of terrain, obstacle, and airport surface operations during all phases of flight, with particular emphasis on
the approach and landing phases, airport surface navigation, and missed approaches. Current accident data
indicate that the majority of CFIT accidents involving transports occur during non-precision approaches.
This application will require the examination of technology issues related to implementation of an infra-
structure for autonomous precision guidance systems. The standards committees (RTCA SC-193 and EURO-
CAE WG-44) that are developing requirements for terrain, obstacles, and airport surface databases and
maintaining coordination with the Federal Aviation Administration’s (FAA) Local Area Augmentation System
(LAAS) and Wide Area Augmentation System (WAAS) programs, are aware of synthetic vision applications.

 In the U.S., runway incursions have increased an average of 15% each year for the last 4 years.
Worldwide, the only airline fatalities from 1987 to 1996 due to runway incursions occurred in the U.S.
A runway incursion occurs any time a plane, vehicle, person or object on the ground creates a collision
hazard with an airplane that is taking off or landing at an airport under the supervision of air traffic
controllers. The FAA has established the Runway Incursion Reduction Program (RIRP) to develop surface
technology at major airports to help reduce runway incursions. Future activities are planned by NASA
with the FAA to integrate the RIRP surface infrastructure with the flight deck to enhance situation
awareness of the airport surface and further reduce the possibility of runway incursions. Runway incursion
reduction efforts will target surface surveillance, GPS-based navigation, and Cockpit Display of Traffic
Information (CDTI) to improve situational awareness on the surface. Also to be considered are surface
route clearance methodologies and onboard alerting strategies during surface operations (runway incur-
sion, route deviation, and hazard detection alerting).

 The application of synthetic vision to low-end general aviation (GA) aircraft will advance technologies
to prevent GA CFIT and loss-of-control accidents by improving the pilot’s situation awareness during
up and away flight. Current accident data indicate a leading cause for GA loss-of-control accidents are
due to pilot disorientation after inadvertent flight into low-visibility weather conditions. A low-cost
synthetic vision display system for the low-end general aviation aircraft, which often operate in marginal
VMC, will enable safe landing or transit to VMC in the event of the unplanned, inadvertent encounter
of IMC, including low-ceiling and low-visibility weather conditions. It will also address loss of spatial
situation awareness and unusual attitude issues. Successful synthetic vision concepts will also lower the
workload and increase the safety of the demanding single-pilot GA IFR operations.

 Synthetic vision applications to rotorcraft will be forced to supplement the database view of the outside
world with a heavier dependence on imaging sensors, because the rotorcraft environment has requirements
that exceed the current expectations for the content of available databases. For example, emergency medical
service vehicles operate to and from innumerable ball fields and hospitals, and at very low altitudes amongst
power and telephone wires. Hence rotorcraft applications will employ more of the features of enhanced
vision, although low-cost imaging sensors for civilian applications will present significant challenges.

16.4 Concepts

Synthetic vision systems are based on precise ownship positioning information relative to an onboard
terrain database, and traffic information from surveillance sources (such as TCAS, ADS-B, or TIS-B, air-
to-air modes of the weather radar, ASDE, AMASS, etc.). Enhanced vision systems are based on display
presentations of onboard weather-penetrating sensor data combined with some synthetic vision elements.
© 2001 by CRC Press LLC

Figure 16.1 illustrates a top-level view of a potential high-end synthetic vision system. The specific
architecture, and use of specific technology, is for illustration only. In this flight operations concept, the
traffic surveillance sources of information are represented, as are the other enabling technologies of
terrain/obstacle/airport databases (including curvilinear approach waypoint data), data link, and
DGPS/LAAS/WAAS. Surface operations sources of surveillance information could be ASDE/AMASS (via
TIS-B) or ADS-B. Controller Pilot Datalink Communications (CPDLC) may also be considered.

These system concepts address information conveyance for two separate functional levels:, tactical and
strategic. Tactical concepts generally provide alerting information and may include escape guidance meth-
odologies, while strategic concepts are more concerned with incident prevention/avoidance. These display
concepts allow for presentation of three-dimensional perspective scenes with necessary and sufficient
information and realism to be nearly equivalent to daylight VMC, thus increasing spatial awareness (terrain,
attitude, and traffic). Symbolic information can be overlaid on these scenes to enhance situational aware-
ness through, for example, presentation of an artificial horizon, heading, attitude indications, and pitch
and/or velocity vector references. Tactical guidance capability can also be provided by highway or pathway-
in-the-sky symbology for approach and landing, departure, and go-around, or other ATC-cleared routings.

16.5 Challenges

Of the technologies and issues involved in the cost-effective use of synthetic/enhanced vision displays,
worldwide navigation, terrain, obstacle, and airport databases, and GPS-derived navigation to eliminate
visibility-induced errors, challenges exist in the areas of human factors, avionics displays, DGPS, certi-
fication, and databases.

 As with any new avionics concept, the important principles of human-centered design and other
human factors considerations must be applied, as human error is a principal cause of aircraft accidents

FIGURE 16.1 Possible synthetic vision system.
© 2001 by CRC Press LLC

of any type. A majority of CFIT and approach, landing, takeoff, and runway incursion accidents have
been attributed to visibility-induced crew error. Pilot situation and spatial awareness should be dramat-
ically improved by synthetic vision display systems, and the maturity of the human factors discipline is
such that effective designs can be confidently expected.

 For avionics applications, the most significant display technology issues that have the potential for
limiting the implementation of synthetic vision are

• Limited cockpit space available for display media

• Limited display capability (graphics, size, field of view, brightness, color) of current commercial
aircraft

• Retrofit cost

 The tactical (PFD) and strategic (Nav Display) pictorial concepts may be presented on existing form
factor A, B, or D displays in a retrofit application. However, as larger displays may be more effective in
presenting these concepts, other form factors will be considered for new cockpits. Other display mech-
anisms, such as HUDs or head-mounted systems, are not illustrated in Figure 16.1 but will be investigated.
Expectations for display solutions are

• Panel-mounted for near-term applications in modern “glass” flight decks

• Head-up displays for retrofit to older “steam gauge” flight decks

• Head-mounted (and head-tracked for unlimited field-of-view) or direct in-window displays for
future applications

• All display types would have guidance and other flight symbology superimposed on the terrain
image

 Another important enabling technology for synthetic vision systems is the DGPS infrastructure. It is
anticipated that unaugmented civil-code GPS will be suitable for en route operations, and that the FAA’s
WAAS and/or LAAS is required for approach and landing (meter/submeter accuracy). The intent in this
arena for synthetic vision system enthusiasts is to support, supplement, and complement research and
modernization work currently underway by the FAA, NASA, and other governmental and private entities
around the world to implement LAAS/WAAS and other precision positioning systems.

 Implementation issues such as cost-effectiveness and certification, however, provide perhaps the
greatest challenges to full realization of commercially viable synthetic vision systems. The successful
development of a compelling business case to serve as an economic incentive over and above the safety
benefits of a synthetic vision system is a significant hurdle. The leading candidate for that business case
is increased operational capability in low-visibility conditions. Tactical use of synthetic vision as a
replacement for today’s PFD requires the certification of a flight-critical system. While certification to
that level is a lengthy and expensive process, that effort is beginning. Also needed are solid, certifiable
processes for database development assurance, quality assurance, and integrity assurance, and standards
for the database content sources and maintenance. Efforts are also underway in this area.

 Database implementation issues are equally challenging. However, the recent formulation of the joint
RTCA/EUROCAE committee to develop the industry requirements for terrain, obstacle, and airport
databases, indicates a desire by the world aeronautical community to solve the database issues. In line
with this activity is the FAA’s Notice of Proposed Rulemaking (NPRM) requiring all airplanes with turbine
engines and six or more passenger seats to carry a TAWS using a computer database for providing terrain
displays and warnings. To carry such technology beyond the terrain warning stage to applications of
strategic planning and tactical navigation and guidance, however, compounds the database implemen-
tation issues. The most significant are

• Cost and validation of accurate high-resolution worldwide terrain, obstacle, and airport databases
($50 million by some estimates)

• Liability, maintenance, and ownership of the data
© 2001 by CRC Press LLC

It seems clear the database implementation issues will require not only involvement of the appropriate
American government agencies (FAA, NASA, NOAA, NIMA), but also ICAO and member governments’
funding and sponsorship.

The capability of synthetic vision systems is limited only by the resolution and accuracy of the terrain
database. Two key potential concerns with a synthetic vision approach and their mitigation strategies are
as follows:

1. “How can you trust the database is correct?"

• The terrain database will be certified to necessary standards at the start. Aircraft operations
(cruise flight, approach, landing, taxi) will only be allowable to the certified fidelity of the
database.

• It will constantly improve over time. (Every clear daytime approach will be confirmation of the
basic presentation.)

• If necessary, processing of radar altimeter or existing weather radar signals may be used to
“confirm” the actual terrain surface with the displayed database in real time.

• Flight guidance cues used by the flight crew will come from the same GPS positioning as will
be certifiably acceptable for instrument-only (no synthetic vision) approaches.

2. “What about obstacles or traffic that are not in the database?”

• Airborne and ground traffic position information data-linked to the aircraft would be readily
displayed

• The proper flight path — always clear of buildings and towers — would be clearly displayed
and obvious to follow.

• The database would be updated on a regular cycle, much like today’s paper approach charts.

• Such obstacles and/or traffic are, of course, not able to be seen in today’s nonsynthetic vision,
low-visibility operations.

• If necessary, additional modes may be added to the onboard weather radar to detect obstacles
and traffic not in the database.

• If necessary, imaging sensors may be added to augment the synthetic scene.

The approximate requirements for the database, “nested” in four layers of resolution, for example, are
as follows:

The realization of such a database and its supporting infrastructure is somewhat dependent on the
following:

• The shuttle radar topography mapping mission is expected to provide more than adequate terrain
data for the enroute and approach/departure databases for approximately 80% of the earth’s
surface.

• The support of the National Imagery and Mapping Agency (NIMA) is considered critical for
developing and releasing the worldwide enroute and approach/departure level data. International
defense/security issues may limit the release of higher-resolution data.

Location from Airport Spacing (m)
Resolution

(m)
Accuracy

(m) Grid

30 miles—Enroute ~150 ~50 ~500
30 � 5 miles — Approach/Departure ~50 ~30 ~200
5 � 0.5 miles — Landing/Takeoff ~10 ~5 ~50
0 miles — Surface Ops ~0.5 ~1 NA
For comparison:

Shuttle SRTM 20 8–16 30
© 2001 by CRC Press LLC

• Local airport authorities and/or other providers (not the government) are expected to develop
the landing/takeoff and surface ops databases to specified certification standards for individual
airports. The safety and operational benefits to be gained by adding an airport to the evolving
database are expected to be a significant motivation.

16.6 Conclusion

Synthetic vision display concepts allow for presentation of three-dimensional perspective scenes with
necessary and sufficient information and realism to be equivalent to a bright, clear, sunny day, regardless
of the outside weather condition, for increased spatial awareness (terrain, attitude, and traffic). Symbolic
information can be overlaid on these scenes to enhance situational awareness and to provide tactical
guidance capability through, for example, presentation of pathway-in-the-sky symbology. In spite of the
numerous challenges and hurdles to be faced and overcome to prove synthetic vision applications
practical, not just as a research demonstration, but as a viable, implementable capability, the technologies
are available in the near term and the safety and operational benefits seem obvious. Solving a visibility
problem with a visibility solution just plain makes sense. There is little doubt that synthetic vision-based
flight will be the standard method for low-visibility operations in the near future.

Defining Terms

ADS-B Automated Dependent Surveillance-Broadcast
AMASS Airport Movement Area Safety System
ASDE Airport Surface Detection Equipment
ATC Air Traffic Control
CDTI Cockpit Display of Traffic Information
CFIT Controlled Flight into Terrain
CPDLC Controller Pilot Datalink Communications
DGPS Differential Global Positioning System
EuroCAE European Organisation for Civil Aviation Equipment
FAA Federal Aviation Administration
GA General Aviation
GHz Gigahertz
GPS Global Positioning System
HUD Head-Up Display
IFR Instrument Flight Rules
IMC Instrument Meteorological Conditions
LAAS Local Area Augmentation System
NASA National Aeronautics and Space Administration
Nav Navigation
NIMA National Imagery and Mapping Agency
NOAA National Oceanic and Atmospheric Administration
NPRM Notice of Proposed Rulemaking
PFD Primary Flight Display
RI Runway Incursion
RIRP Runway Incursion Reduction Program
RTCA Requirements and Technical Concepts for Aviation
SC Special Committee
SRTM Space Shuttle Radar Topography Mission
TAWS Terrain Awareness Warning Systems
TCAS Traffic Alert and Collision Avoidance System
TIS-B Traffic Information Services — Broadcast
© 2001 by CRC Press LLC

U.S. United States
VMC Visual Meteorological Conditions
WAAS Wide Area Augmentation System
WG Working Group

Further Information

NASA’s Aviation Safety Program, Synthetic Vision Project: http://avsp.larc.nasa.gov/
© 2001 by CRC Press LLC

Barry C. Breen “Enhanced Situation Awareness”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

 17
Enhanced Situation

Awareness

17.1 Enhanced Ground Proximity Warning System
17.2 Fundamentals of Terrain Avoidance Warning
17.3 Operating Modes

Mode 1 — Excessive Descent Rate • Mode 2 — Excessive
Closure Rate • Mode 3 — Accelerating Flight Path Back into
the Terrain After Take-Off • Mode 4 — Unsafe Terrain
Clearance Based on Aircraft Configuration • Mode 5 —
Significant Descent Below the ILS Landing Glide Path
Approach Aid • Mode 6 — Miscellaneous Callouts and
Advisories • Mode 7 — Flight into Windshear
Conditions • Envelope Modulation • “Enhanced Modes”

17.4 EGPWS Standards
Further Information

17.1 Enhanced Ground Proximity Warning System

The Enhanced Ground Proximity Warning System (EGPWS)* is one of the newest systems becoming
standard on all military and civilian aircraft. Its purpose is to help provide situational awareness to terrain
and to provide predictive alerts for flight into terrain. This system has a long history of development and
its various modes of operation and warning/advisory functionality reflect that history:

• Controlled Flight Into Terrain (CFIT) is the act of flying a perfectly operating aircraft into the
ground, water, or a man-made obstruction. Historically, CFIT is the most common type of fatal
accident in worldwide flying operations.

• Analysis of the conditions surrounding CFIT accidents, as evidenced by early flight recorder data,
Air Traffic Control (ATC) records, and experiences of pilots in Controlled Flight Towards Terrain
(CFTT) incidents, have identified common conditions which tend to precede this type of accident.

• Utilizing various onboard sensor determinations of the aircraft current state, and projecting that
state dynamically into the near future, the EGPWS makes comparisons to the hazardous conditions
known to precede a CFIT accident. If the conditions exceed the boundaries of safe operation, an
aural and/or visual warning/advisory is given to alert the flight crew to take corrective action.

*There are other synonymous terms used by various government/industry facets to describe basically the same equip-
ment. The military (historically at least) and at least one non-U.S. manufacturer refer to GPWS and EGPWS as Ground
Collision Avoidance Systems (GCAS), although the military is starting to use the term EGPWS more frequently. The FAA,
in its latest regulations concerning EGPWS functionality, have adopted the term Terrain Awareness Warning System (TAWS).

Barry C. Breen
Honeywell
© 2001 by CRC Press LLC

17.2 Fundamentals of Terrain Avoidance Warning

The current state of the aircraft is indicated by its position relative to the ground and surrounding terrain,
attitude, motion vector, accelerations vector, configuration, current navigation data, and phase of flight.
Depending upon operating modes (see next section) required or desired, and EGPWS model and com-
plexity, the input set can be as simple as GPS position and pressure altitude or fairly large including
altimeters, air data, flight management data, instrument navigation data, accelerometers, inertial references,
etc. (see Figure 17.1.)

The primary input to the “classic” GPWS (nonenhanced) is the Low Range Radio (or Radar) Altimeter
(LRRA), which calculates the height of the aircraft above the ground level (AGL) by measuring the time
it takes a radio or radar beam directed at the ground to be reflected back to the aircraft. Imminent danger
of ground collision is inferred by the relationship of other aircraft performance data relative to a safe
height above the ground. With this type of system, level flight toward terrain can only be implied by
detecting rising terrain under the aircraft; for flight towards steeply rising terrain, this may not allow
enough time for corrective action by the flight crew.

The EGPWS augments the classic GPWS modes by including in its computer memory a model of the
earth’s terrain and man-made objects, including airport locations and runway details. With this digital
terrain elevation and airports database, the computer can continuously compare the aircraft state vector
to a virtual three-dimensional map of the real world, thus predicting an evolving hazardous situation
much in advance of the LRRA-based GPWS algorithms.

The EGPWS usually features a colored or monochrome display of terrain safely below the aircraft
(shades of green for terrain and blue for water is standard). When a potentially hazardous situation exists,

FIGURE 17.1 Typical air transport EGPWS installation.

IRS/AHRS

EGPW C

ATTITUDE, HEADING,

POSITION, ALTITUDE,

VERTICAL SPEED

AIR DATA
ALTITUDE, SPEED,
ALTITUDE RATE, SAT

POSITION

GLIDESLOPE & LOCALIZER
DEVIATIONS, RUNWAY HDG

MLS
GLIDESLOPE & LOCALIZER

LRRA
RADIO ALTITUDE 8 AND 600 OHM

SYSTEM

MONITORS

EGP WS WARNING

EGP WS ALERTS

SELECTED

EGP WS MONITOR

SELF TEST INITIATE
DH TRANSITIONED
AUDIO INHIBIT
LANDING GEAR
LANDING FLAPS
GLIDESLOPE CANCEL
GLIDESLOPE INHIBIT
ILS/MLS SELECT

EFIS
SELECTED DH, RANGE

DISCRETE
INPUTS

DEVIATIONS, RUNWAY HDG
(OPTIONAL)

ILS

TCAS INHIBITAUDIO WARN
IN PROGRESS

MAINTENANCE
ARINC 429
MAINTENANCE

INFORMATION

MODE 6 ENABLE

MOMENTARY AUDIO
SUPPRESS

MODE 6 VOLUME

A
R

IN
C

 6
0

0
 C

H
A

S
S

IS
 C

O
N

N
E

C
T

O
R

A
R

IN
C

 6
0

0
 C

H
A

S
S

IS
 C

O
N

N
E

C
T

O
R

DISCRETE
OUTPUTS

GLIDESLOPE CANCEL

SYSTEM

FMS / GPS

ARINC 429 OUT

WARNING/ALERTS TO SYMBOL GENS

STATUS TO EICAS

ARINC 453 OUT
LEFT SIDE TERRAIN DISPLAY
RIGHT SIDE TERRAIN DISPLAY

TERRAIN DISP DISCRETES
FRONT
PANEL

TERRAIN DISPLAY DISCRETES

AUDIO JACK
RS232/RS422/ARINC429 TEST

INTERFACE

PCMCIA INTERFACE

AUDIO

OUTPUT

W/S MONITOR

VISUAL

WARNINGS W/S WARNING

W/S CAUTION

TERRAIN
DISPLAY

CONTROL

TEST SWITCH

SWC AND/OR

VANE AND

FLAP DISCRETES
AOA DATA
FLAP ANGLE

CONNECTOR

WARNING/ALERTS TO RECORDERS

ACCELERATIONS,
© 2001 by CRC Press LLC

the EGPWS alerts the flight crew with aural and/or visual warnings. Advisory (informative) situational
awareness information may consist simply of an aural statement, for example, “One Thousand,” as the
aircraft height AGL passes from above to below 1000 ft. Cautionary alerts combine an informative aural
warning, e.g., “Too Low Flaps” for flying too low and slow without yet deploying landing flaps, with a
yellow visual alert. The cautionary visual alert can be an individual lamp with a legend such as “GPWS”
or “TERRAIN;” it can be a yellow text message displayed on an Electronic Flight Instrument System
(EFIS) display; or, in the case of the enhanced alert with a display of surrounding terrain, the aural
“CAUTION TERRAIN” or “TERRAIN AHEAD,” accompanied by both a yellow lamp and a rendering
of the hazardous terrain on the display in bright yellow.

When collision with terrain is imminent and immediate drastic recovery action must be taken by the
flight crew to avert disaster, the standard aural alert is a loud, commanding “PULL UP” accompanied
by a red visual alert. Older aircraft with no terrain display utilize a single red “pull up” lamp; modern
EFIS-equipped aircraft put up the words PULL UP in bright red on the Primary Flight Display (PFD).
On the display of surrounding terrain, usually integrated on the EFIS Horizontal Situation Indicator, the
location of hazardous terrain turns bright red.*

17.3 Operating Modes

The various sets of hazardous conditions that the EGPWS monitors and provides alerts for are commonly
referred to as Modes.** These are described in detail in the following paragraphs.

Modes 1 through 4 are the original classic GPWS modes, first developed to alert the pilots to unsafe
trajectory with respect to the terrain. The original analogue computer model had a single red visual
lamp and a continuous siren tone as an aural alert for all modes. Aircraft manufacturer requirements
caused refinement to the original modes, and added the voice “Pull Up” for Modes 1 through 4 and a
new Mode 5 “Glideslope”. Mode 6 was added with the first digital computer models about the time of
Boeing 757/767 aircraft introduction; and Mode 7 was added when windshear detection became a
requirement in about 1985.***

The latest addition to the EGPWS are the Enhanced Modes: Terrain Proximity Display, Terrain Ahead
Detection, and Terrain Clearance Floor. For many years, pilot advocates of GPWS requested that Mode 2
be augmented with a display of approaching terrain. Advances in memory density, lower costs, increased
computing power, and the availability of high-resolution maps and Digital Terrain Elevation Databases
(DTED) enabled this advancement. Once displayable terrain elevation database became a technical and
economic reality, the obvious next step was to use the data to look ahead of the aircraft path and predict
terrain conflict well before it happened, rather than waiting for the downward-looking sensors.

Combining the DTED with a database of airport runway locations, heights, and headings allows the
final improvement — warnings for normal landing attempts where there is no runway.

*Note that all of the EGPWS visual indication examples in this overview discussion are consistent with the
requirements of FAR 25.1322.

**The EGPWS modes described here are the most common for commercial and military transport applications.
Not discussed here are more specialised warning algorithms, more closely related to terrain-following technology,
that have been developed for military high-speed low-altitude operations. These are more related to advanced
terrain database guidance, which is outside the scope of enhanced situation awareness function.

***Though not considered CFIT, analysis of windshear-related accidents has resulted in the development of reactive
windshear detection algorithms. At the request of Boeing, their specific reactive windshear detection algorithm was
hosted in the standard commercial GPWS, about the same time the 737-3/4/500 series aircraft was developed. By
convention this became Mode 7 in the GPWS. The most common commercially available EGPWS computer contains
a Mode 7 consisting of both Boeing and non-Boeing reactive windshear detection algorithms, although not all aircraft
installations will use Mode 7. There also exist “standalone” reactive windshear detection computers; and some aircraft
use only predictve wind shear detection, which is a function of weather radar.
© 2001 by CRC Press LLC

17.3.1 Mode 1 — Excessive Descent Rate

The first ground proximity mode warns of an excessive descending barometric altitude rate near the ground,
regardless of terrain profile. The original warning was a straight line at 4000 ft/min barometric sinkrate,
enabled at 2400 ft AGL, just below the altitude at which the standard commercial radio altimeters came into
track (2500 ft AGL). This has been refined over the years to a current standard for Mode 1 consisting of two
curves, an outer cautionary alert and a more stringent inner warning boundary. Exceeding the limits of the
outer curve results in the voice alert “Sinkrate;” exceeding the inner curve results in the voice alert “Pull Up.”

Figure 17.2 illustrates the various Mode 1 curves, including the current standard air transport
warnings, the DO-161A minimum warning requirement, the original curve and the Class B TSO C151

FIGURE 17.2 Mode 1 warning curves.

500

1000

1500

2000

2500

3000

3500

H
ei

gh
t A

bo
ve

 T
er

ra
in

 (
F

ee
t)

2000 4000 6000

TS
O

 C
15

1
C

la
ss

 B
 S

in
kr

at
e

TS
O

 C
15

1
C

la
ss

 B
 P

ul
lu

p

Descent Rate (FPM)

Ai
r T

ra
ns

po
rt

Si
nk

ra
te

Air T
ra

ns
po

rt
Pull

up

DO-161A M
inim

um

O
rig

na
l M

od
e

1

© 2001 by CRC Press LLC

curves for 6 to 9 passenger aircraft and general aviation. Note that the Class B curves, which use GPS
height above the terrain database instead of radio altitude are not limited to the standard commercial
radio altimeter range of 2500 ft AGL.

17.3.2 Mode 2 — Excessive Closure Rate

Rate-of-change of radio altitude is termed the closure rate, with the positive sense meaning that the
aircraft and the ground are coming closer together. When the closure rate initially exceeds the Mode 2
warning boundary, the alert “Terrain Terrain” is given. If the warning condition persists, the voice is
changed to a “Pull Up” alert.

Closure rate detection curves are the most difficult of the classic GPWS algorithms to design. Tall
buildings, towers, trees, and rock escarpments in the area of final approach can cause sharp spikes in the
computed closure rate. Modern Mode 2 algorithms employ complex filtering of the computed rate, with
varying dynamic response dependent upon phase of flight and aircraft configuration. The Mode 2
detection algorithm is also modified by specific problem areas by using latitude, longitude, heading, and
selected runway course — a technique in the EGPWS termed “Envelope Modulation.”

Landing configuration closure rate warnings are termed Mode 2B; cruise and approach configurations
are termed Mode 2A. Figure 17.3 illustrates some of the various Mode 2A curves, including the original
first Mode 2 curve, the current standard air transport Mode 2A “Terrain-Terrain-Pull-Up” warning
curve, and the DO-161A nominal Mode 2A warning requirement. Note that the Class B TSO C151
EGPWS does not use a Radio Altimeter and therefore has no Mode 2.

17.3.3 Mode 3 — Accelerating Flight Path Back
into the Terrain after Take-off

Mode 3 (Figure 17.4) is active from liftoff until a safe altitude is reached. This mode warns for failure to
continue to gain altitude. The original Mode 3, still specified in DO-161A as Mode 3A, produced warnings
for any negative sinkrate after take-off until 700 ft of ground clearance was reached. The mode has since
been redesigned (designated 3B in DO-161A) to allow short-term sink after take-off but detect a trend
to a lack of climb situation. The voice callout for Mode 3 is “Don’t Sink.” This take-off mode now remains
active until a time-integrated ground clearance value is exceeded; thus allowing for a longer protection
time with low-altitude noise abatement maneuvering before climb-out.

Altitude loss is computed by either sampling and differentiating altitude MSL or integrating altitude
rate during loss of altitude. Because a loss is being measured, the altitude can be a corrected or uncorrected
pressure altitude, or an inertial or GPS height. Typical Mode 3 curves are linear, with warnings for an
8-ft loss at 30 ft AGL, increasing to a 143-ft loss at 1500 ft AGL.

17.3.4 Mode 4 — Unsafe Terrain Clearance Based
on Aircraft Configuration

The earliest version of Mode 4 was a simple alert for descent below 500 ft with the landing gear up.
Second generations of Mode 4 added additional alerting at lower altitudes for flaps not in landing position.
The warning altitude for flaps was raised to the 500-ft level for higher descent rates. There are three of
these types of Mode 4 curves still specified as alternate minimum performance requirements in DO-161A
(see Figure 17.5).

Modern Mode 4 curves are airspeed-enhanced, rather than descent rate alone, and for high airspeeds
will give alerts at altitudes up to 1000 ft AGL.

Currently, EGPWS Mode 4 has three types of alerts based upon height AGL, mach/airspeed, and
aircraft configuration, termed Modes 4A, 4B, and 4C (Figure 17.6). Two of the curves (4A, 4B) are active
during cruise until full landing configuration is achieved with a descent “close to the ground” — typically
700 ft for a transport aircraft. Mode 4C is active on take-off in conjunction with the previously described
© 2001 by CRC Press LLC

Mode 3. All three alerts are designed with the intent to warn of flight “too close to the ground” for the
current speed/configuration combination. At higher speeds, the alert commences at higher AGL and
the voice alert is always “Too Low Terrain.” At lower speeds, Mode 4A warning is “Too Low Gear” and
the Mode 4B warning is “Too Low Flaps.”

Mode 4C compliments Mode 3, which warns on an absolute loss of altitude on climb-out, by requiring
a continuous gain in height above the terrain. If the aircraft is rising, but the terrain under is also rising,
Mode 4C will alert “Too Low Terrain” on take-off if sufficient terrain clearance is not achieved prior to
Mode 3 switching out.

17.3.5 Mode 5 — Significant Descent Below the ILS Landing Glide
Path Approach Aid

This Mode warns for failure to remain on an instrument glide path on approach. Typical warning curves
alert for 1.5 to 2.0 dots below the beam, with a wider divergence allowed at lower altitudes. The alerts
and warnings are only enabled when the crew is flying an ILS approach, as determined by radio frequency
selections and switch selection. Most installations also include separate enable switch and a warning
cancel for crew use when flying some combination of visual and or other landing aids and deviation
from the ILS glide path is intentional. Although the mode is typically active from 1000 ft AGL down to
about 30 ft, allowance in the design of the alerts must also be made for beam capture from below, and
level maneuvering between 500 and 1000 ft without nuisance alerting.

Figure 17.7 illustrates the Mode 5 warnings for a typical jet air transport. When the outer curve is
penetrated, the voice message “Glideslope” is repeated at a low volume. If the deviation below the beam
increases or altitude decreases, the repetition rate of the voice is increased. If the altitude/deviation
combination falls within the inner curve, the voice volume increases to the equivalent of a warning message
and the repetition rate is at maximum.

FIGURE 17.3 Mode 2 curves.

500

1000

1500

2000

2500

H
ei

gh
t A

bo
ve

 T
er

ra
in

 (
F

ee
t)

2000 4000 6000

No Mode 2 for TSO C151 Class B

Terrain Closure Rate (FPM)

Air Transport M
ode 2 Pullup

DO-161A Mode 2A Nominal

Orig
nal M

ode 2

1000 3000 5000 7000 8000 9000
© 2001 by CRC Press LLC

FIGURE 17.4 Mode 3 curves.

FIGURE 17. 5 Old GPWS Mode 4 curves.

500

1000

1500

2000

2500

H
ei

gh
t A

bo
ve

 T
er

ra
in

 (
F

ee
t)

40 80 120

Altitude Loss (Feet)

Air T
ransport M

ode 3

DO-161A Mode 3B Nominal

20 60 100 140 160

"Don't Sink"

500

H
ei

gh
t A

bo
ve

 T
er

ra
in

 (
F

ee
t)

1000

Descent Rate (FPM)

DO-161A FlapCurve 1

2000

Original Gear UpAlert

200

600 1450

150

1300 1900

130

DO-161A Flap Curve 2
DO-161A Flap Curve 3
© 2001 by CRC Press LLC

17.3.6 Mode 6 — Miscellaneous Callouts and Advisories

The first application of this Mode consisted of a voice alert added to the activation of the decision height
discrete on older analog radio altimeters. This voice alert is “Minimums” or “Decision Height,” which
adds an extra level of awareness during the landing decision point in the final approach procedure.
Traditionally, this callout would be made by the pilot not flying (PNF). Automating the callout frees
the PNF from one small task enabling him to more easily monitor other parameters during the final
approach.

This mode has since been expanded as a “catch all” of miscellaneous aural callouts requested by air
transport manufacturers and operators, many of which also were normally an operational duty of the PNF
(see Figure 17.8). In addition to the radio altitude decision height, callouts are now available at barometric
minimums, at an altitude approaching the decision height or barometric minimums, or at various

FIGURE 17.6 EGPWS Mode 4.

FIGURE 17.7 EGPWS Mode 5.

500

1000
H

ei
gh

t A
bo

ve
 T

er
ra

in
 (

F
ee

t)

Airspeed (knots/mach)

Gear Up Alert - Mode 4A

245

100 400300190/.306 250/.412159/.251

Flaps Up Alert - Mode 4B

"Too Low Gear"

"Too Low Flaps"

"Too Low Terrain"

500

1000

H
ei

gh
t A

bo
ve

 T
er

ra
in

 (
F

ee
t)

Glideslope Deviation (dots below beam)

Soft Alert Area

150

1 43.682 2.981.3

Loud Alert Area

"Glideslope"
© 2001 by CRC Press LLC

combinations of specific altitudes. There are also “smart callouts” available, that only call the altitude for
nonprecision approaches (ILS not tuned). The EGPWS model used on Boeing aircraft will also callout for
V1 on take-off and give aural “engine out” warnings. Finally, included in the set of Mode 6 callouts are
warnings of overbanking (excessive roll angle).

17.3.7 Mode 7 — Flight into Windshear Conditions

Windshear is a sudden change in wind direction and/or windspeed over a relatively short distance in the
atmosphere and can have a detrimental effect on the performance of an aircraft. The magnitude of a
windshear is defined precisely in engineering terms by the sum of the rate of change of horizontal wind,
and the vertical wind divided by the true airspeed of the aircraft:

FIGURE 17.8 Examples of EGPWS Mode 6 callouts.

FIGURE 17.9 EGPWS Mode 6 overbank (excessive roll) alert.

F
wwind

VA

----------- u̇wind

g
----------�

 
 
 

��
© 2001 by CRC Press LLC

where

F is expressed in units of g and is positive for increasing energy windshears
wwind � vertical wind velocity (fps), positive for downdrafts

� � rate of change of horizontal wind velocity
VA � true airspeed (fps)

g � gravitational acceleration, 32.178

There are various techniques for computing this windshear factor from onboard aircraft sensors (air
data, inertial accelerations, etc.). The EGPWS performs this computation and alerts the crew with the
aural “Windshear, Windshear, Windshear,” when the factor exceeds predefined limits as required by TSO
C117a.

17.3.8 Envelope Modulation

Early GPWS equipment was plagued by false and nuisance warnings, causing pilots to distrust the equip-
ment when actual hazardous conditions existed. Many approach profiles and radar vectoring situations
violated the best-selected warning curve designs. Even as GPWS algorithms were improved, there still
existed some approaches that required close proximity to terrain prior to landing.

Modern GPWS equipment adapts to this problem by storing a table of known problem locations and
providing specialized warning envelope changes when the aircraft is operating in these areas. This
technique is known as GPWS envelope modulation.

An example exists in the southerly directed approaches to Glasgow Scotland, Runway 23. The standard
approach procedures allow an aircraft flying level at 3000 ft barometric altitude to pass over mountain
peaks with heights above 1700 ft when approaching this runway. At nominal airspeeds the difference in
surrounding terrain height will generate closure rates well within the nominal curve of Figure 17.3. With
the envelope modulation feature the GPWS, using latitude, longitude, and heading, notes that the aircraft
is flying over this specific area and temporarily lowers the maximum warning altitude for Mode 2 from
2450 ft to the minimum 1250 ft AGL. This eliminates the nuisance warning while at the same time
providing the minimum required DO-161A protection for inadvertent flight closer to the mountain peaks
on the approach path.

17.3.9 “Enhanced Modes”

The enhanced modes provide terrain and obstacle awareness beyond the normal sensor-derived capabil-
ities of the standard GPWS. Standard GPWS warning curves are deficient in two areas, even with the
best designs. One area is immediately surrounding the airport; which is where a large majority of CFIT
accidents occur. The other is flight directly into precipitous terrain, for which little or no Mode 2 warning
time may occur.

The enhanced modes solve these problems by making use of a database of terrain and obstacle spot
heights and airport runway locations arranged in a grid addressed by latitude and longitude. This
combined terrain/airports/obstacle database — a virtual world within the computer — provides the
ability to track the aircraft position in the real world given accurate x-y-z position combined with the
aircraft velocity vector.

This database technique allows three improvements which overcome the standard GPWS modes
shortcomings: terrain proximity display, terrain ahead alerting, and terrain clearance floor.

17.3.9.1 Terrain Proximity Display

The terrain proximity display is a particular case of a horizontal (plan view) moving map designed to
enhance vertical and horizontal situational awareness. The basic display is based upon human factors
studies recommending a minimum of contours and minimum of coloring. The display is purposely
compatible with existing three-color weather radar displays, allowing economical upgrade of existing
equipment.

u̇wind
duwind

dt

fps2
© 2001 by CRC Press LLC

Terrain well below the flight path of the aircraft is depicted in shades of green, brighter green being
closer to the aircraft and sparse green-to-black for terrain far below the aircraft. Some displays addi-
tionally allow water areas to be shown in cyan (blue). Terrain in the proximity of the aircraft flight path,
but posing no immediate danger (it can be easily flown over or around) is depicted in shades of yellow.
Terrain well above the aircraft (nominally more than 2000 ft above flight level), toward which continued
safe flight is not possible, is shown in shades of red.

17.3.9.2 Terrain Ahead Alerting

Terrain (and/or obstruction) alerting algorithms continually compare the state of the aircraft flight to
the virtual world and provide visual and/or aural alerts if impact is possible or probable. Two levels of
alerting are provided, a cautionary alert and a hard warning. The alerting algorithm design is such that,
for a steady approach to hazardous terrain, the cautionary alert is given much in advance of the warning
alert. Typical design criteria may try to issue caution up to 60s in advance of a problem and a warning
within 30s.

Voice alerts for the cautionary alert are “Caution, Terrain” or “Terrain Ahead.” For the warnings on
turboprop and turbojet aircraft, the warning aural is “Terrain Terrain Pullup” or “Terrain Ahead Pullup,”
with the pullups being repeated continuously until the aircraft flight path is altered to avoid the terrain.

In conjunction with the aural alerts, yellow and red lamps may be illuminated, such as with the
standard GPWS alerts. The more compelling visual alerts are given by means of the Terrain Awareness
Display. Those areas that meet the criteria for the cautionary alert are illuminated in a bright yellow
on the display. If the pullup alert occurs, those areas of terrain where an immediate impact hazard exists
are illuminated in bright red. When the aircraft flight path is altered to avoid the terrain, the display
returns to the normal terrain proximity depictions as the aural alerts cease.

17.3.9.3 Terrain Clearance Floor

The standard Modes 2 and 4 are desensitized when the aircraft is put in landing configuration (flaps
down and/or gear lowered) and thus fail to alert for attempts at landing where there is no airport. Since
the EGPWS database contains the exact position of all allowable airport runways, it is possible to define
an additional alert, a terrain clearance floor, at all areas where there are no runways. When the aircraft
descends below this floor value, the voice alert “Too Low Terrain” is given. This enhanced mode alert is
also referred to as premature descent alert.

17.4 EGPWS Standards

ARINC 594 — Ground Proximity Warning System: This is the first ARINC characteristic for Ground
Proximity Warning Systems and defines the original analog interfaced system. It applies to the original
model (MkI and MkII) GPWS systems featuring Modes 1–5, manufactured by Sundstrand Data Control,
Bendix, Collins, Litton and others. It also applies to the AlliedSignal (Honeywell) MkVII digital GPWS,
which featured Modes 1–7 and a primarily analog interface for upgrading older models.

ARINC 743 — Ground Proximity Warning System: This characteristic applies to primarily digital (per
ARINC 429 DITS) interfaced Ground Proximity Warning Systems, such as the AlliedSignal/Honeywell
MkV series, which was standard on all newer Boeing aircraft from the 757/767 up through the introduction
of the 777.

ARINC 762 — Terrain Avoidance and Warning System: This characteristic, still in draft form at the
time of this writing, is an update of ARINC 743 applicable to the primarily digital interfaced (MkV)
Enhanced GPWS.

ARINC 562 — Terrain Avoidance and Warning System: This proposed ARINC characteristic will be
an update of ARINC 594, applicable to the primarily analog interfaced (MkVII) Enhanced GPWS.

RTCA DO-161A — Minimum Performance Standards, Airborne Ground Proximity Warning
System: This 1976 document still provides the minimum standards for the classic GPWS Modes 1–5. It
is required by both TSO C92c and the new TSO C151 for EGPWS (TAWS).
© 2001 by CRC Press LLC

TSO C92c — Ground Proximity Warning, Glideslope Deviation Alerting Equipment: This TSO
covers the classic Modes 1– 6 minimum performance standards. It basically references DO-161A and
customizes and adds features of the classic GPWS which were added subsequent to DO-161A, including
voice callouts signifying the reason for the alert/warnings, Mode 6 callouts, and bank angle alerting.

CAA Specification 14 (U.K.) — Ground Proximity Warning Systems: This is the United Kingdom
CAA standard for Modes 1–5 and also specifies some installation requirements. As with the U.S. TSOs,
Spec 14 references DO-161A and customizes and augments features of the classic GPWS which are still
required for U.K. approvals. Most notably, the U.K. version of Mode 5 is less stringent and requires a
visual indication of Mode 5 cancellation. Spec 14 also requires that a stall warning inhibit the GPWS
voice callouts, a feature which is found only on U.K.-certified installations.

TSO C117a — Airborne Windshear Warning and Escape Guidance Systems for Transport Airplanes:
This TSO defines the requirements for EGPWS Mode 7, reactive low level windshear detection.

TSO C151a — Terrain Awareness and Warning System (TAWS): This new TSO supersedes TSO C92c
for certain classes of aircraft being required to feature the enhanced modes. It also extends coverage down
to smaller aircraft, in anticipation of further rulemaking requiring GPWS type equipment. It describes
two classes of TAWS equipment, the standard EGPWS becomes Class A. For smaller aircraft with limited
equipment, a new Class B set of requirements are created that add a subset of the DO-161A modes that
can be accomplished soley with a source of three-dimensional position and an airports and terrain
database.

FAR 121.360 — This rule requires GPWS on most “for revenue” passenger aircraft, including air
transport, charters, and regional airlines.

TAWS NPRM — This proposed rulemaking would replace FAR 121.360 and also modify Parts 135
and 91 to require GPWS per TSO C92c or EGPWS per TSO C151 Class A or B on all turbine-powered
aircraft of 6 or 10 seats or more. The final form of the proposed rule is fluid at the time of this writing
but is expected to released in March of 2000.

Further Information

1. Controlled Flight Into Terrain, Education and Training Aid — This joint publication of ICAO, Flight
Safety Foundation, and DOT/FAA consists of two loose-leaf volumes and an accompanying video
tape. It is targeted toward the air transport industry, containing management, operations, and
crew training information, including GPWS. Copies may be obtained by contacting the Flight
Safety Foundation, Alexandria, Virginia.

2. DOT Volpe NTSC Reports on CFIT and GPWS — These may be obtained from the USDOT and
contain accident analyses, statistics, and studies of the effectivity of both the classic and enhanced
GPWS warning modes. There are a number of these reports which were developed in response to
NTSB requests. Of the two most recent reports, the second one pertains to the Enhanced GPWS
in particular:

• Spiller, David — Investigation of Controlled Flight Into Terrain (CFIT) Accidents Involving
Multi-engine Fixed-wing Aircraft Operating Under Part 135 and the Potential Application of a
Ground Proximity Warning System (Cambridge, MA: U.S. Department of Transportation, Volpe
National Transportation Systems Center) March 1989.

• Phillips, Robert O. — Investigation of Controlled Flight Into Terrain Aircraft Accidents Involving
Turbine Powered Aircraft with Six or More Passenger Seats Flying Under FAR Part 91 Flight
Rules and the Potential for Their Prevention by Ground Proximity Warning Systems (Cambridge,
MA: U.S. Department of Transportation, Volpe National Transportation Systems Center) March
1996.
© 2001 by CRC Press LLC

Steve Henely “TCAS II”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

18
TCAS II

18.1 Introduction
18.2 Components
18.3 Surveillance
18.4 Protected Airspace
18.5 Collision Avoidance Logic
18.6 Cockpit Presentation

18.1 Introduction

The Traffic Alert and Collision Avoidance System (TCAS) provides a solution to the problem of reducing
the risk of midair collisions between aircraft. TCAS is a family of airborne systems that function inde-
pendently of ground-based air traffic control (ATC) to provide collision avoidance protection. The TCAS
concept makes use of the radar beacon transponders carried by aircraft for ground ATC purposes and
provides no protection against aircraft that do not have an operating transponder.

TCAS I provides proximity warning only, to aid the pilot in the visual acquisition of potential threat
aircraft. TCAS II provides traffic advisories and resolution advisories (recommended evasive maneuvers)
in a vertical direction to avoid conflicting traffic. Development of TCAS III, which was to provide traffic
advisories and resolution advisories in the horizontal as well as the vertical direction, was discontinued
in favor of emerging systems such as the ADS-B system discussed elsewhere in this book. This chapter
will focus on TCAS II.

Based on a congressional mandate (Public Law 100-223), the Federal Aviation Administration (FAA)
issued a rule effective February 9, 1989 that required the equipage of TCAS II on airline aircraft with
more than 30 seats by December 30, 1991. Public Law 100-223 was later amended (Public Law 101-236)
to permit the FAA to extend the deadline for TCAS II fleetwide implementation to December 30, 1993.
In December of 1998 the FAA released a Technical Standard Order (TSO) that approved Change 7,
resulting in the DO-185A TCAS II requirement. Change 7 incorporates software enhancements to reduce
the number of false alerts. TCAS equipage on aircraft with 30 or more seats has been mandated in India,
Argentina, Germany, Australia, and Hong Kong by the year 2000.

18.2 Components

TCAS II consists of the Mode S/TCAS Control Panel, the Mode S transponder, the TCAS computer,
antennas, traffic and resolution advisory displays, and an aural annunciator. Figure 18.1 is a block diagram
of TCAS II. Control information from the Mode S/TCAS Control Panel is provided to the TCAS computer
via the Mode S Transponder. TCAS II uses a directional antenna, mounted on top of the aircraft. In
addition to receiving range and altitude data on targets above the aircraft, this directional antenna is
used to transmit interrogations at varying power levels in each of four 90� azimuth segments. An
omnidirectional transmitting and receiving antenna is mounted at the bottom of the aircraft to provide

Steve Henely
Rockwell Collins
© 2001 by CRC Press LLC

TCAS with range and altitude data from traffic that is below the aircraft. TCAS II transmits transponder
interrogations on 1030 MHz and receives transponder replies on 1090 MHz.

The Traffic Advisory (TA) display depicts the position of the traffic relative to the TCAS aircraft to
assist the pilot in visually acquiring threatening aircraft. The Resolution Advisory (RA) can be displayed
on a standard Vertical Speed Indicator (VSI), modified to indicate the vertical rate that must be achieved
to maintain safe separation from threatening aircraft. When an RA is generated, the TCAS II computer
lights up the appropriate display segments and RA compliance is accomplished by flying to keep the VSI
needle out of the red segments. On newer aircraft, the RA display function is integrated into the Primary
Flight Display (PFD). Displayed traffic and resolution advisories are supplemented by synthetic voice
advisories generated by the TCAS II computer.

18.3 Surveillance

TCAS listens for the broadcast transmission (squitters) which is generated once per second by the Mode S
transponder and contains the discrete Mode S address of the sending aircraft. Upon receipt of a valid squitter
message the transmitting aircraft identification is added to a list of aircraft the TCAS aircraft will interrogate.
Figure 18.2 shows the interrogation/reply communications between TCAS systems. TCAS sends an inter-
rogation to the Mode S transponder with the discrete Mode S address contained in the squitter message.
From the reply, TCAS can determine the range and the altitude of the interrogated aircraft.

There is no selective addressing capability with Mode A/C transponders, so TCAS uses the Mode C
only all-call message to interrogate these types of Mode A/C transponders at a nominal rate of once per

FIGURE 18.1 TCAS II block diagram.
© 2001 by CRC Press LLC

second. Mode C transponders reply with altitude data while Mode A transponders reply with no data in
the altitude field. All Mode A/C transponders that receive a Mode C all-call interrogation from TCAS
will reply. Since the length of the reply is 21 �s, Mode A/C-equipped aircraft within a range difference
of 1.7 nmi from the TCAS will generate replies that overlap each other, as shown in Figure 18.3. These
overlapping Mode A/C replies are known as synchronous garble.

Hardware degarblers can reliably decode up to three overlapping replies. The Whisper-Shout tech-
nique and directional transmissions can be used to reduce the number of transponders that reply to a
single interrogation. A low power level is used for the first interrogation step in a Whisper-Shout sequence.
In the second Whisper-Shout step, a suppression pulse is first transmitted at a slightly lower level than
the first interrogation, followed 2 �s later by an interrogation at a slightly higher power level than the
first interrogation. The Whisper-Shout procedure shown in Figure 18.4 reduces the possibility of garble

FIGURE 18.2 Interrogation/Reply between TCAS systems.

FIGURE 18.3 Synchronous garble area.
© 2001 by CRC Press LLC

by suppressing most of the transponders that had replied to the previous interrogation, but eliciting
replies from an additional group of transponders that did not reply to the previous interrogation.
Directional interrogation transmissions further reduce the number of potential overlapping replies.

18.4 Protected Airspace

One of the most important milestones in the quest for an effective collision avoidance system is the
development of the range/range rate (tau). This concept is based on time-to-go, rather than distance-
to-go, to the closest point of approach. Effective collision avoidance logic involves a trade-off between
providing the necessary protection with the detection of valid threats while at the same time avoiding
false alarms. This trade-off is accomplished by controlling the sensitivity level, which determines the tau,
and therefore the dimensions of the protected airspace around each TCAS-equipped aircraft.

The pilot can select three modes of TCAS operation: STANDBY, TA-ONLY, and AUTOMATIC. These
modes are used by the TCAS logic to determine the sensitivity level. When the STANDBY mode is selected,
the TCAS equipment does not transmit interrogations. Normally, the STANDBY mode is used when the
aircraft is on the ground. In TA-ONLY mode, the equipment performs all of the surveillance functions
and provides TAs but not RAs. The TA-ONLY mode is used to avoid unnecessary distractions while at
low altitudes and on final approach to an airport. When the pilot selects AUTOMATIC mode, the TCAS
logic selects the sensitivity level based on the current altitude of the aircraft. Table 18.1 shows the altitude

TABLE 18.1 Sensitivity Level Selection Based on Altitude

Altitude (in Feet) Sensitivity Level

Tau Values (in Seconds)

TA RA

0–1,000 AGL 2 20 N.A.
1,000–2,350 AGL 3 25 15
2,350–5,000 MSL 4 30 20
5,000–10,000 MSL 5 40 25
10,000–20,000 MSL 6 45 30
20,000–42,000 MSL 7 48 35
Greater than 42,000 MSL 7 48 35

FIGURE 18.4 Whisper-Shout interrogation.
© 2001 by CRC Press LLC

thresholds at which TCAS automatically changes its sensitivity level selection and the associated tau values
for altitude-reporting aircraft.

The boundary lines depicted in Figure 18.5 show the combinations of range and range rate that would
trigger a TA with a 40s tau and an RA with a 25s tau. These TA and RA values correspond to sensitivity
level 5 from Table 18.1. As shown in Figure 18.5, the boundary lines are modified at close range to provide
added protection against slow closure encounters.

18.5 Collision Avoidance Logic

The collision avoidance logic functions are shown in Figure 18.6. This description of the collision avoid-
ance logic is meant to provide a general overview. There are many special conditions relating to particular
geometry, thresholds, and equipment configurations that are not covered in this description. Using surveil-
lance reports, the collision avoidance logic tracks the slant range and closing speed of each target to determine
the time in seconds until the closest point of approach. If the target is equipped with an altitude-encoding
transponder, collision avoidance logic can project the altitude of the target at the closest point of approach.

A range test must be met and the vertical separation at the closest point of approach must be within
850 ft for an altitude-reporting target to be declared a potential threat and a traffic advisory to be generated.
The range test is based on the RA tau plus approximately 15 s. A non-altitude-reporting target is declared
a potential threat if the range test alone shows that the calculated tau is within the RA tau threshold
associated with the sensitivity level being used.

FIGURE 18.5 TA/RA Tau values for sensitivity level 5.
© 2001 by CRC Press LLC

A two-step process is used to determine the type of resolution advisory to be selected when a threat
is declared. The first step is to select the sense (upward or downward) of the resolution advisory. Based
on the range and altitude tracks of the potential threat, the collision avoidance logic models the potential
threat’s path to the closest point of approach and selects the resolution advisory sense that provides the
greater vertical separation. The second resolution advisory step is to select the strength of the resolution
advisory. The least disruptive vertical rate maneuver that will achieve safe separation is selected. Possible
resolution advisories are listed in Table 18.2.

In a TCAS/TCAS encounter, each aircraft transmits Mode S coordination interrogations to the other
to ensure the selection of complementary resolution advisories. Coordination interrogations contain
information about an aircraft’s intended vertical maneuver.

18.6 Cockpit Presentation

The traffic advisory display can either be a dedicated TCAS display or a joint-use weather radar and
traffic display (see Figure 18.10). In some aircraft, the traffic advisory display will be an electronic flight

FIGURE 18.6 CAS logic functions.
© 2001 by CRC Press LLC

instrument system (EFIS) or flat panel display that combines traffic and resolution advisory information
on the same display. Targets of interest on the traffic advisory display are depicted in various shapes and
colors as shown in Figure 18.7.

The pilot uses the resolution advisory display to determine whether an adjustment in aircraft vertical
rate is necessary to comply with the resolution advisory determined by TCAS. This determination is
based on the position of the vertical speed indicator needle with respect to the lighted segments. If the
needle is in the red segments, the pilot should change the aircraft vertical rate until the needle falls within
the green “fly-to” segment. This type of indication is called a corrective resolution advisory. A preventive
resolution advisory is when the needle is outside the red segments and the pilot should simply maintain
the current vertical rate. The green segment is lit only for corrective resolution advisories. Resolution
advisory display indications corresponding to typical encounters are shown in Figure 18.8.

TABLE 18.2 Resolution Advisories

Upward Sense Type Downward Sense

Increase Climb to 2500 fpm Positive Increase Descent to 2500 fpm
Reversal to Climb Positive Reversal to Descend
Maintain Climb Positive Maintain Descent
Crossover Climb Positive Crossover Descend
Climb Positive Descend

Don’t Descend Negative Don’t Climb
vsl

Don’t Descend �500 fpm Negative Don’t Climb �500 fpm
vsl

Don’t Descend �1000 fpm Negative Don’t Climb �1000 fpm
vsl

Don’t Descend �2000 fpm Negative Don’t Climb �2000 fpm
vsl

Note: Any combination of climb and descent restrictions may be given simulta-
neously (normally in multi-aircraft encounters); fpm � feet per minute; vsl � vertical
speed limit.

FIGURE 18.7 Standardized symbology for TA display.
© 2001 by CRC Press LLC

Figure 18.9 shows a combined traffic advisory/resolution advisory display indicating a traffic advisory
(potential threat 200 ft below), resolution advisory (threat 100 ft above) and nonthreatening traffic (1200
ft above). The airplane symbol on the lower middle section of the display indicates the location of the
aircraft relative to traffic. Figure 18.10 shows an example of a joint-use weather radar and traffic display.

FIGURE 18.8 Typical resolution advisory indications.

FIGURE 18.9 Combined traffic advisory/resolution advisory display.
© 2001 by CRC Press LLC

FIGURE 18.10 Joint use weather radar and traffic display.
© 2001 by CRC Press LLC

Cary R. Spitzer “Setting Requirements”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

III

Requirements, Design
Analysis, Validation,

and Certification

Ellis F. Hitt

Battelle

19 Setting Requirements

Cary R. Spitzer

Requirements-Setting for Avionics Systems

20 Digital Avionics Modeling and Simulation

Jack Strauss, Terry Venema, Grant Stumpf, John Satta

Introduction • Underlying Principles • Best Practices • Performance Modeling for System
Partitioning (A Case Study) • Research Issues and Summary

21 Formal Methods

Sally C. Johnson, Ricky W. Butler

Introduction • Fundamentals of Formal Methods • Example Application • Some
Additional Observations

22 Electronic Hardware Reliability

Arun Ramakrishnan, Toby Syrus, Michael Pecht

Introduction • Product Requirements and Constraints • The Product Life Cycle
Environment • Characterization of Materials, Parts, and Manufacturing Processes • Parts
Selection and Management • Failure Modes and Mechanisms • Design Guidelines and
Techniques • Qualification and Accelerated Testing • Manufacturing Issues • Summary

23 Certification of Civil Avionics

Frank McCormick

Introduction • Regulatory Basis of the Federal Aviation Administration • FAA Approvals
of Avionics Equipment • FAA Designees • System Requirements • Safety
Assessment • Environmental Qualification • Software Assurance • Manufacturing
Approvals • The Joint Aviation Authorities • Summary

24 Processes for Engineering a System

James N. Martin

Introduction • Structure of the Standard • Role of the EIA 632 Standard • Heritage of EIA
632 • The Processes • Project Context • Key Concepts

25 Electromagnetic Environment (EME)

Richard Hess

Introduction • EME Energy Susceptibility • Civil Airworthiness Authority
Concerns • Architecture Options for Fault Mitigation

The key to an avionics system or subsystem design, which provides dependable service at a low cost of
ownership, is the requirements definition. Requirements engineering [IEEE Software, 1994] is now a
recognized field considered by major professional societies such as the IEEE as one of the initial steps in
systems engineering as well as subsequent steps in the development process illustratese in Figure III.1.

This section presents key processes that result in a reliable and affordable avionics system. These
processes are setting requirements, reliability allocation, design analysis using simulation and modeling,
validation of the design using formal methods, and processes for certification. The important issue of
electromagnetic effects on the design and operation of avionics is also addressed.

FIGURE III.1

Requirements in system development.

19
Setting Requirements

19.1 Requirements-Setting for Avionics Systems
References

19.1 Requirements-Setting for Avionics Systems

Proper requirements are the sine qua non for building an acceptable avionics system. It is inescapable: No
avionics systems can perform as expected by the customer unless the customer requirements, along with
requirements from other stakeholders and relevant regulations and standards, are completely documented
and understood by the avionics manufacturer. Safety, mission, cost, and certification drive the requirements.

For all aircraft, safety of flight in all possible flight regimes is the prime requirement. All aircraft
without the possibility of ejection in case of an emergency typically have a probability of catastrophic
failure on the order per flight hour. If the crew has the potential to eject in case of an emergency
the probability of failure is somewhat less demanding, but still significant.

Second only to safety, the mission of the aircraft is the principal driver of requirements. Mission
requirements may be in terms of aircraft performance, ground turnaround times, or maintenance
practices. Virtually every mission requirement translates into an avionics requirement in some form.

Life cycle cost is of great importance in civil aircraft and is of increasing performance in military
aircraft, more specifically the emerging Joint Strike Fighter. For a typical commercial transport aircraft
the acquisition cost is approximately 20 to 25% of the total life cycle cost. In military aircraft, the
acquisition cost is probably a smaller fraction of the life cycle cost. It is interesting to note that for the
life cycle cost for civil avionics the acquisition cost rises to 60% of the total. Avionics life cycle cost, for
example, will drive, the need for built-in testing, fault tolerance, and the ratio of mean time between
unscheduled removals (MTBUR) and mean time between failure (MTBF.)

Finally, certification is a major factor in avionics design. As the complexity and criticality of avionics
increases so does the need for extensive certification activities. Certification issues begin with the initial
definition of requirements and last until the equipment is removed from the aircraft or the aircraft is retired.

It is important to note that the requirements definition, especially after the preliminary requirements
are set, is very much an iterative process between the customer and the vendor, often under the purview
of a Configuration Control Board. This configuration control process, which is sometimes viewed as an
intrusion on the real work, is necessary to ensure that everyone is cognizant of proposed changes to
requirements and can comment on them.

Aircraft functional requirements are at the top of the requirements hierarchy. The aircraft mission is
broken into phases including preflight checkout, taxi out, take-off, cruise, descent, landing, rollout, taxi
in, and postflight. Additional specialized mission phases such as weather diversions, cargo drop, electronic
warfare, etc. also drive the aircraft performance requirements.

Typical aircraft functional requirements include ground steering and braking, passenger comfort,
navigation, communication, and environmental conditioning. Figure 19.1 shows the breakdown (func-
tion decomposition) of requirements from the aircraft level to the avionics function level. Requirements

10 9�

Cary R. Spitzer
AvioniCon, Inc.
© 2001 by CRC Press LLC

must be traceable and justified. In some cases every “shall” is numbered and then accounted for in test
plans to demonstrate that it has been met.

An excellent example of military aircraft avionics top-level requirements is found in AFWAL-TR-1114
Architecture Specification for PAVE PILLAR Avionics. These requirements were postulated for a hypo-
thetical high-performance fighter and guided the definition of the requirements for the F-22 Raptor (see
Chapter 32). Typical PAVE PILLAR avionics requirements include:

• Two-level maintenance (flight line or depot)

• Combat turnaround time: �15 min

• Non-mission capable (for avionics): �1.2%

• Fault detection: 99% of all possible faults

• Fault isolation: 98% of all possible faults

Aerospace Recommended Practice (ARP) 4754 Certification Considerations for Highly-Integrated or
Complex Aircraft Systems offers guidance on an aircraft-level Function Hazard Assessment (FHA) that
addresses the effect on aircraft performance if a function is lost. The output of an FHA is function
criticality and safety requirements, e.g., a “critical” function that must have a probability of failure of less
than per flight hour. This output, in turn, becomes an input to the system design and system-level
FHAs. ARP 4761 System Safety Assessment, contains guidance on how to conduct the various analyses
required by ARP 4754, including the well-known fault tree analysis and failure modes and effects analysis.

As requirements become more detailed the definition process becomes more amenable to automation.
Computer-based processes enhance requirements traceability and validation, configuration control, and
document generation. Examples of computer-based techniques include modeling and simulation (see
Chapter 20), Systems Workshop, an Aerospatiale proprietary tool for use on Airbus Industrie products
(see Chapter 30), and formal methods based on rigorous mathematical concepts (see Chapter 21).

DOD-HDBK-763 Human Engineering Procedures Guide is a valuable source of example techniques
for determining requirements as they flow down and become more detailed. The emphasis in this

FIGURE 19.1 Function decomposition.

Mission

Mission
Segments

Segment
Requirements

Avionics
Requirements

- Air superiority
- Cargo
- Passenger
- Recon
- EW
- ASW
- Multimission
- etc.

- Preflight
- Taxi
- Takeoff
- Climbout
- Cruise - Roll rate

- Vert accel
- Mach hold
- Autoland
- TF/TA/OA
- etc.

- Heading accuracy
- Weight
- Sensor range
- etc.

- Descent
- Appr & Ldg
- Rollout/Taxi
- Postflight
- (Specialized)

10 9�
© 2001 by CRC Press LLC

handbook is, of course, on the human factors aspect, but there is a wealth of detailed general information
on defining requirements.

Derived requirements are lower-level requirements that could not (or should not) be defined at the
beginning of the avionics design process. Microprocessor selection is an example.

References

AFWAL-TR-87-1114, “Architecture Specification for PAVE PILLAR Avionics,” January, 1987.
“Certification Considerations for Highly-Integrated or Complex Aircraft Systems,” ARP 4754, SAE; 1996.
Palmer, Michael T., et al., “A Crew-Centered Flight Deck Design Philosophy for High Speed Civil Trans-

port (HSCT) Aircraft,” NASA Technical Memorandum 109171; January, 1995.
DOD-HDBK-763 Human Engineering Procedures Guide, 27 February, 1987.
“System Safety Assessment,” ARP 4761, SAE; 1996.
© 2001 by CRC Press LLC

Jack Strauss et al. “Digital Avionics Modeling and Simulation”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

20
Digital Avionics

Modeling and
Simulation

20.1 Introduction
20.2 Underlying Principles

Historic Perspective • Economic Perspective • Design
Perspective • Market Perspective • Requirements in the Trade
Space • Technical Underpinnings of the Practice • Summary
Comments

20.3 Best Practices
Requirements Engineering • Top-Down System Simulation •
TDSS Plan • TDSS Process • Software Modeling in TDSS

20.4 Performance Modeling for System Partitioning
(A Case Study)
System Description • Model Development • Modeling
Results • Summary

20.5 Research Issues and Summary
Defining Terms
References
Further Information

20.1 Introduction

In order to realize unprecedented but operationally essential levels of avionics system performance,
reliability, supportability, and affordability, commercial industry and the military will draw on advanced
technologies, methods, and development techniques in virtually every area of aircraft design, develop-
ment, and fabrication. Federated avionics architectures, integrated avionics architectures, hybrid systems
architectures, and special purpose systems such as flight control systems, engine control systems, navi-
gation systems, reconnaissance collection systems, electronic combat systems, weapons delivery systems,
and communications systems all share certain characteristics, which are germane to digital systems
modeling and simulation. All of these classes of avionics systems are increasing in complexity of function
and design, and are making increased use of digital computer resources. Given this, commercial and
military designers of new avionics systems and of upgrades to existing systems must understand, incor-
porate, and make use of state-of-the-art methods, disciplines, and practices of digital systems design.
This chapter presents fundamentals, best practices, and examples of digital avionics systems modeling
and simulation.

Jack Strauss
Zycad, Inc.

Terry Venema
Zycad, Inc.

Grant Stumpf
Zycad, Inc.

John Satta
Zycad, Inc.
© 2001 by CRC Press LLC

20.2 Underlying Principles

The fundamental principle of modeling and simulation is stated as follows. The results of most math-
ematical processes are either correct or incorrect. Modeling and simulation has a third possibility. The
process can yield results that are correct but irrelevant [Strauss 1994]. With this startling but true
realization of the possible results of modeling and simulation, it is important to understand the different
perspectives that give rise to the motivation for modeling and simulation, the trade space for the
development effort to include the users and systems requirements, and the technical underpinnings of
the practice.

20.2.1 Historic Perspective

The past 30 years of aviation has seen extraordinary innovation in all aspects of design and manufacturing
technology. Digital computing resources have been employed in all functional areas of avionics, including
communication, navigation, flight controls, propulsion control, and all areas of military weapon systems.
As analog, mechanical, and electrical systems have been replaced or enhanced with digital electronics,
there has been an increased demand for new digital computing techniques and for higher performance
digital computing resources.

Special purpose data, signal, and display processors were commonly implemented in the late 1960s
and early 1970s [Swangim et al., 1989]. Special purpose devices gave way to programmable data, signal,
and display processors in the early to mid 1980s. These devices were programmed at a low level—assembly
language programming was common. The late 1980s and early 1990s have seen commercial and military
avionics adopting the use of high-performance general-purpose computing devices programmed in high-
order languages. The USAF F-22 fighter, for example, incorporates general-purpose, commercially avail-
able, microprocessors programmed in Ada. The F-22 has an operational flight program consisting of
nearly one million lines of Ada code and onboard computing power on the order of 20 billion operations
per second of signal processing and 500 millon intstructions per second (MIPS) of data processing.
Additionally, there is increasing use of commercial off-the-shelf (COTS) products such as processor
boards, storage devices, graphics displays, and fiber optic communications networks for many military
and commercial avionics applications.

COTS product designers and avionics systems developers are making it a standard engineering practice
to model commercial computer products and digital avionics products and systems at all levels of design
abstraction. As the complexity of electronics design dramatically has increased, so too has modeling and
simulation technology in both functional complexity and implementation. Complex computer-aided
design (CAD) software can be several hundred thousand lines of code. These software products require
advanced engineering workstation computing resources with sophisticated file and storage structures
and data management schemes. Workstations capable of 50 MIPS with several-gigabyte disk drives,
connected with high-speed local area networks (LANs) are common. Additionally, special purpose
hardware environments, used to enhance and accelerate simulation and modeling, have increased in
performance and complexity to supercomputing levels. Hardware accelerators are now capable of eval-
uating over a million events per second and rapid prototype equipment can reach events per second.
At this point in history, the complexity and performance of modeling and simulation technology is equal
to the digital avionics products they are used to develop.

20.2.2 Economic Perspective

For commercial system designers, a critical product development factor that has significant impact on the
economic viability of any given product release is time-to-market. The first product to market generally
recoups all of the nonrecurring engineering and development costs and commonly captures as much as
half the total market. This is why technologies aimed at decreasing time-to-market are of increased
importance to all commercial developers. Analysis is available showing the amount of development time

1011
© 2001 by CRC Press LLC

saved as a result of digital system modeling and simulation [Donnelly, 1992]. At a lower level, cost-
sensitive design has two significant issues: learning curve and packaging.

The learning curve itself is best described as an increase in productivity over time. For device manu-
facturing this can be measured by change in yield, the percentage of manufactured devices that survive
testing. Whether it is a chip, a board, or a system, given sufficient volume, designs that have twice the
yield will generally have half the cost [Hennessy and Patterson, 1990]. The design reuse inherent in digital
modeling and simulation directly shortens the learning curve. Packaging at the device, board, or system
level has cost implications related to fundamental design correctness and system partitioning. A case
study of performance modeling for system partitioning is presented later in this text.

For military systems designers, many of the same issues affecting commercial systems designers apply,
especially, as more commercial technologies are being incorporated as implementation components.
Additionally, as will be shown below, mission objectives and operational requirements are the correct
point of entry for modern, top-down design paradigms. However, once a development effort has been
initiated, the relative cost of error discovery (shown notionally in Figure 20.1) is more expensive at each
successive level of system completeness. Thus, a low-price solution which does not fully meet system
requirements can turn into a high-cost problem later in the development cycle.

20.2.3 Design Perspective

Bell and Newell divided computer hardware into five levels of abstraction [Bell and Newell, 1973]. The
levels are processors-memory switches (system), instruction set (algorithm), register transfer, logic, and
circuit. Hardware systems at any level can also be described by their behavior, structure, and physical
implementation. Walker and Thomas combined these views and proposed a model of design represen-
tation and synthesis [Walker and Thomas, 1985]. The levels are defined as the architecture level (system
level), algorithmic level, functional block level (register transfer level), logic level, and circuit level. Each
of these levels is defined in terms of their behavioral domain, structural domain, and physical domain.
Behavioral design describes the behavior or function of the hardware using such notations as behavioral
languages, register transfer languages, and logic equations. Structural design specifies functional blocks
and components such as registers, gates, flip-flops, and their interconnections. Physical design describes
the implementation of a design idea in a hardware platform, such as the floor plan of a circuit board
and layout of transistors, standard cells, and macrocells in an integrated circuit (IC) chip.

FIGURE 20.1 Relative cost of defect discovery has been shown to increase as a factor of 10 at each successive level
of system completeness [Portelli et al., 1989].

Mission objective

System operational

System fielded

System integration

Subsystem integration

Module development

Chip development

System design

Sytem specificationLe
ve

l o
f s

ys
te

m
 c

om
pl

et
en

es
s

1 10 100 1,000 10,000 100,000 1,000,000

Cost to make changes

Relative costs
© 2001 by CRC Press LLC

Hierarchical design starts with high-level algorithmic or behavioral design. These high-level designs
are converted to circuits in the physical domain. Various CAD tools are available for design entry and
conversion. Digital modeling and simulation technologies and tools are directly incorporated into the
process to assure correctness and completion of the design at each level and to validate the accuracy of
the translation from one level to the next [Liu, 1992].

20.2.4 Market Perspective

It is generally assumed that there are two major market segments for avionics—the commercial avionics
market and the military avionics market. As stated earlier, there is great similarity in the technological
forces at work on both military and commercial systems. There are, however, several fundamental
differences in the product development cycle and business base that are important to consider because
they impact the interpretation of the cost performance analysis for modeling and simulation. These
differences are summarized in Table 20.1. Consider the impact of commercial versus military production
volumes on a capital investment decision for modeling and simulation technology. The relative priority
of this criterion is likely to differ for commercial products as compared to military systems.

20.2.5 Requirements in the Trade Space

Technology without application, tactical, or doctrinal context is merely engineering curiosity. The devel-
opment of an avionics suite, or the implementation of an upgrade to an existing set requires the careful
balance of many intricate constraints. More than any other type of development, avionics has the most
intricate interrelationships of constraints. The complex set of issues associated with volume, weight,
power, cooling, capability, growth, reliability, and cost create the most complex engineering trades of any
possible development outside the space program. The risks associated with the introduction of new
technologies and the development of enabling technologies create mitigation plans that look like parallel
developments. It is little wonder that avionics systems are becoming the most expensive portion of the
aircraft development.

To fully exploit the dollars available for avionics development, it is necessary to invest a significant
effort in an intimate understanding of the system requirements. Without a knowledge of what the pilot
needs to accomplish the mission, and how each portion of the system contributes to the satisfaction of
that need, it is impossible to generate appropriate trades and understand the impacts on the engineering
process. Indeed, often the mission needs are vague and performance requirements are not specified. This
critical feature of the development is further complicated by the fact that pilots often are unaware of
detailed technical features of the requirements set, and cannot specifically identify critical system infor-
mation or presentation requirements.

In the final analysis, the avionics suite is a tool used by the pilot to accomplish a task. The avionics
are an extension of his senses and his capabilities. They provide orientation, perception, and function
while he is attempting to complete an endlessly variable task. With this in mind, the first and most

TABLE 20.1 Market Factors Comparison for Commercial and Military Market
Segments. Each has a different relative priority for the given criterion

Criterion Commercial Military

Financial Basis Market Budget
Development Focus Product Capability
Production Volume Medium–High Low
System Complexity Medium High
System Design Cycle Short Medium–Long
System Life Cycle Short–Medium Long–Very Long
Contractual Concerns Warranty, Liability Reliability, Mortality
© 2001 by CRC Press LLC

important step in the design and development of an avionics package is the development of the
requirements.

20.2.6 Technical Underpinnings of the Practice

Allen defines the discipline for making predictions of system performance and capacity planning as
modeling [Allen, 1994]. He further categorizes techniques in terms of rules of thumb, back-of-the-
envelope calculations, statistical forecasting, analytical queuing theory modeling, simulation modeling,
and benchmarking. When applied intelligently, all methods have utility. Each has specific cost and
schedule impacts. For nontrivial modeling and simulation, the areas of analytical queuing theory mod-
eling, simulation modeling, and benchmarking have the greatest information content, while rules of
thumb often hold the most wisdom.

Analytical queuing theory seeks to represent the system algorithmically. The fundamental algorithm
set is the M/M/1 queuing system [Klienrock, 1975]. The M/M/1 queuing system is an open system
(implying an infinite stream of incoming customers or work) with one server (that which handles
customers or does the work) that provides exponentially distributed service. Mathematically, the prob-
ability that the provided service will require not more than t time units is given by:

where S is the average service time.
For the M/M/1 queuing system, the interarrival time, that is, the time between successive arrivals, also

has an exponential distribution. Mathematically, this implies that if � describes the interarrival time, then:

where � is the average arrival rate.
Therefore, with the two parameters, the average arrival rate � and the average service time S, we

completely define the M/M/1 model.
Simulation modeling is defined as driving the model of a system with suitable inputs and observing

the corresponding outputs [Bratley et al., 1987]. The basic steps include construction of the model,
development of the inputs to the model, measurement of the interactions within the model, formation
of the statistics of the measured transactions, analysis of the statistics, and validation of the model.
Simulation has the advantage of allowing more detailed modeling and analysis than analytical queuing
theory, but has the disadvantage of requiring more resources in terms of development effort and computer
resources to run.

Benchmarking is the process of running specialized test software on actual hardware. It has the
advantage of great fidelity in that the execution time associated with a specific benchmark is not an
approximation, but the actual execution time. This process is extremely useful for comparing the results
of running the same benchmark on several different machines. The primary disadvantages include
requiring actual hardware, which is difficult if the hardware is developmental, and unless your application
is the benchmark, it is not likely to represent accurately the workload of your specific system in operation.

20.2.7 Summary Comments

Historically there have been dramatic increases in the complexity and performance of digital avionics
systems. This increase in complexity has required many new tools and processes to be developed in
support of avionics product design, development, and manufacture.

The commercial and military avionics marketplaces differ in many ways. Decisions made quantitatively
must be interpreted in accordance with each marketplace. However, both commercial and military markets
have economic forces which have driven the need for shorter development cycles. A shorter development

P S t�[] 1 e t�s�
��

P � t�[] 1 e �t�
��
© 2001 by CRC Press LLC

cycle generally stresses the capabilities of design technology. Thus, both markets have similar digital system
design process challenges. In fact, current policies mandate increased use of COTS products instead of
ruggedized versions, and fewer military standards, generally replacing them with “best practices.” As this
trend continues, there exists potential for both markets to converge on common solutions for these
challenges.

The most general design cycle proceeds from a concept through a design phase to a prototype test
and integration phase, ending finally in release to production. The end date (be it a commercial product
introduction or a military system deployment) generally does not move to the right on the schedule.
Designs often take longer than scheduled due to complexity and coordination issues. The time between
prototype release to fabrication and release to production, which should be spent in test and debug, gets
squeezed. Ideally, lengthening the test and debug phase without compromising either design time or the
production release date is desirable. Modeling and simulation does this by allowing the testing of designs
before they are fabricated, when they are easier, faster, and cheaper to change.

The design process for any avionics development must begin with the development of the requirements.
A full understanding of the requirements set is necessary because of the inherent constraints it places on
the development and the clarity it provides as to the intended use of the system.

There are several techniques available for the analysis and prediction of a system’s performance. These
techniques include rules of thumb, back-of-the-envelope calculations, statistical forecasting, analytical
queuing theory modeling, simulation modeling, and benchmarking. Each technique has advantages and
disadvantages with respect to fidelity and cost of resources to perform. When taken together, and applied
appropriately, they form the rigor base for the best practices in digital avionics systems modeling and
simulation.

20.3 Best Practices

As the fundamental principle of modeling and simulation suggests, a correctly executed simulation of
any model may yield results that are correct but irrelevant. Therefore, it is imperative to understand the
customers, the systems, the allocation of requirements to system components, the performance of the
system components, and to be able to trace component performance to system performance to customer
requirements. To date, there exists no single development environment that encompasses this complete
set of issues. Several discrete development environments and tools do exist. They are maturing at a rapid,
although separate, rate, and tend to either complement or overlap each other. As these environments
and tools, as well as the design and economic forces, continue to advance, increased use and decreased
cost of entry for avionics systems designers will prevail. Presented below are summaries of best practices
in requirements engineering and top-down system simulation.

20.3.1 Requirements Engineering

The process of requirement development for an avionics suite begins with the definition of the mission(s)
and related requirements. Once the requirements are known, metrics can be assigned for mission utility
of the various systems and subsystems involved in the development. This is essential, because the results
of the requirements process are not always consistent with the engineering expectations. That is to say,
the modeling and simulation process often uncovers operations and relationships that generate unex-
pected results. The identification and quantification of these metrics is essential to successfully navigate
the complex trade space that is inherent in the development of avionics.

The effective generation of user requirements is the first step in the process. Ordinarily the user provides
an initial cut at an unconstrained requirements set. The initial set of requirements needs to be validated
through a simulation. Ideally, the user has correctly identified the set of unconstrained requirements that
will yield the most effective utilization of the systems. If the current set of requirements yields the
maximum capability, the task of the simulation process is to measure the decrease in effectiveness
associated with the relaxation of each of the requirements parameters. If the current set of requirements
© 2001 by CRC Press LLC

is not optimum, then perturbation of system parameters will yield increases in unconstrained perfor-
mance. In any event, the relationship between the system parameters and operational effectiveness needs
to be well established before beginning any system trade activities.

At the completion of the initial assessment of the requirements, further definition of the requirements
trade space requires the definition of mission scenarios for evaluation with relaxed requirement sets. The
evaluation of mission performance at this level is associated with changes of requirements in association
with each other. Changing the system performance parameters at various levels of requirements provides
insight into the best starting point for in-depth study of engineering trades. In many instances, this
evaluation is done on the basis of total avionics system costs.

Validating the requirements of avionics design by modeling and simulation depends on the validity
of the simulations used. In effect, the simulations need to be calibrated to enable a valid trade study.
There are several methods of validating the simulations. Many of the approved operational models are
accepted as valid requirements generators, but all models need volumes of approved scenarios, threats,
and concepts of operation to be valid.

The design of the avionics suite is intimately related to the design of the cockpit and the displays. In
earlier designs, the capabilities of the presentations were often limited by the system elements. The
integrating element was the pilot, who received most of the data generated by the avionics. Today,
presentation has a significant impact on the performance of the avionics suite. In fact, the presentation
requirements for the pilot can be viewed as the requirements for generation of information from the
avionics. Determination of presentation necessitates simulation of some kind. This is the integration
phase of the requirements with the operator.

Man-In-The-Loop (MITL) simulation is the most reliable means of determining presentation require-
ments. These can be part-task, or full-mission simulations that drive both presentation and capability
requirements. MITL simulation is very expensive, but depending on the implementation, can yield a
concise evaluation of the requirements set. There are many disciplines involved in the conduct of human
factors engineering, and those references should be consulted. The essential point is that MITL simulation
at some level of fidelity is required to fully validate the requirements set.

Sometimes the system requirements can be estimated with a Simulated-Man-In-The-Loop (SMITL)
simulation. Working models of human performance exist at several levels of fidelity. Many of these models
are adept at working with human-directed control applications, and should be evaluated if the design of
the system is attempting a control implementation. The existing models are currently less than satisfying
on the cognitive modeling of pilots in flight, however, several attempts are being made to develop cognitive
models that will allow a much broader application of SMITL simulation.

In summary, the definition of the requirements determines the effectivity of the avionics suite. Avionics
designers continue to shed the constraints imposed by technology over the years. The developments of
the year 2000 and beyond will be less constrained by the technology, and the effectiveness will be
determined by the application of the concepts for employment. A unique and especially potent display
is as effective as a new type of circuit that improves receiver sensitivity. Avionics designs of the 21st century
will be based on thorough analysis of requirements, not technological innovations.

20.3.2 Top-Down System Simulation

The Top-Down System Simulation (TDSS) is a proven risk reduction methodology that applies top-down
design techniques and currently available simulation technology during development to ensure that
complex systems perform correctly the first time. The benefits of applying this methodology range from
lower overall cost by eliminating avoidable refabrication of hardware, to on-time schedule performance
resulting from the increased visibility into hard-to-foresee integration problems. Together, these benefits
frequently outweigh the initial cost of instituting a program-wide TDSS process. Its other far-reaching
benefits include the resolution of specification ambiguities, validation of the hardware to specification,
and implementation of manufacturing, logistics, and reprocurement documentation that is technology
independent.
© 2001 by CRC Press LLC

Until recently, the typical design process began by generating specifications to describe the system,
subsystem, component, and interface requirements. Then the system design was partitioned into func-
tions and the functions partitioned into hardware and software. During development, the hardware and
software components were developed individually, and then brought together when the system was
integrated. In most cases, the final integration step, when discrepancies between concept and implemen-
tation were discovered, turned out to be the schedule driver. This was true because issues had to be
resolved that were unforeseen, and thus not planned for.

The TDSS methodology is designed to incorporate the best features of the typical development cycle
and to add additional visibility and risk reduction to the schedule-driving integration phase. This is
accomplished by using simulation techniques that allow a “virtual” integration of component models
to be performed while the design is still on the drawing board and easy to change. This virtual
integration eliminates the costly hardware refabrication that is frequently required when problems are
not discovered until the hardware is in the lab. It also drastically reduces the time spent in the lab
integrating the hardware and software, because many of the problems have already been discovered
and corrected during development. Examples of this methodology include the U.S. Air Force Advanced
Tactical Fighter (ATF) Demonstration and Validation (DEM-VAL) development effort. The interop-
erability of designs of five critical interfaces were tested through simulation. Over the five interfaces
involved, the testing revealed over 200 problems, both with the designs and with the specifications on
which they were based. These problems would have resulted in many iterations of hardware fabrication
during the integration phase, and several of them would probably not have been detected until the
system was fielded. The Air Force concluded that the application of a TDSS methodology to the DEM-
VAL program alone resulted in a cost avoidance of approximately $200 million, 25 times the cost of
the initiative itself.

20.3.3 TDSS Plan

A formal TDSS plan must be implemented at the very start of any development program with the
agreement of all design and development participants. This plan must define the goals of TDSS on the
program and the means by which these goals will be reached. For example, a specific goal may be to
reduce the risk of subsystem integration through the use of modeling and simulation. The plan will
define how this may be attained through the use of commercial logic simulators, off-the-shelf third-party
behavioral models, and contractor design databases to perform virtual integration before the costs for
hardware fabrication are incurred.

The TDSS plan will define the process, milestones, and data interchange mechanisms that will be
required to achieve all of the stated TDSS goals. It will define the tasks to be performed, which Integrated
Product Team (IPT) is to perform them, and to which IPT the results will be provided. In a hypothetical
example, the Computer Development IPT provides design data and simulation analysis results that prove
that all required functions are performed correctly and within the maximum allowable time. These results
are passed to the System IPT (at higher level than the Computer Development IPT), who will use these
results together with the results of other development IPTs to assess whether all components of the system,
when integrated, will meet the functional requirements.

Since modeling and simulation are integral to the development process, they must not be considered
as unusual or extra. Accordingly, the milestones defined in the plan are the typical development mile-
stones, such as the Preliminary Design Review (PDR) and the Critical Design Review (CDR) for each
component, board, subsystem, etc. This will ensure that the data made available by the TDSS process
are used in the most effective possible manner. This means that one development phase will not be
officially complete without first meeting all TDSS milestones for that phase. The intent is to prevent
taking shortcuts around the process in the “rush to fabrication.”

For example, the pre-CDR TDSS phase may require that the hardware be simulated at a predetermined
level of abstraction prior to fabrication. The hardware cannot be released for fabrication if the TDSS results
are not available or the results do not prove that the functional requirements are being met. If the plan has
© 2001 by CRC Press LLC

been agreed to up front by all concerned, then there should not be any surprises or additional effort that
might increase the schedule. Even if there is additional effort required, the program will save significant
refabrication and rework costs as well as integration costs.

Finally, the data formats to be exchanged between IPTs must be defined and agreed upon by repre-
sentatives of the customer, the prime contractor, and appropriate subcontractors. For example, the plan
might define the contents of the design database that will be supplied to the IPTs that are designing
related components. So when information passes between the Computer Development IPT and the Signal
Conditioning IPT, each group can effectively make use of the data. The intent is to meet the goals of the
TDSS process by eliminating ambiguity and/or extra translation steps wherever possible.

It is imperative to prevent inadvertent divergence from the intent of the design. As the design proceeds
from the abstract to the concrete, there are definite points at which the level of abstraction incrementally
transitions from a higher level to the next lower level. Before that transition is allowed, the design at each
stage of abstraction must be verified and validated.

20.3.4 TDSS Process

The digital electronic hardware development program should proceed hierarchically in the same fashion
as the system is arranged. First, the overall system must be defined, modeled, and simulated. Once the
system-level model is verified, it can be decomposed into subsystems (functions), each of which must
be defined, modeled, simulated, and verified. The subsystems are decomposed into circuit boards
containing components of various types (custom, common, standard, and COTS). Each element (sub-
system, board, component) at each level of hierarchy will have its own development flow, which will
resemble the development flow of the overall system. Figure 20.2 shows a typical development process.
At the start of the program the system architects draft the system specification and codify the require-
ments while the design management team develops the overall top-down development program in the
TDSS plan. At the System Requirements Review (SRR) milestone, the team agrees on what needs to be
designed to meet the needs of the program. After SRR, the team finalizes the system specification and
develops a series of models that describe the performance, behavior, and functions of the system. These
models will be the unambiguous reference point for the design since they represent the consensus of
the system architects as to what the system should do and how it should be partitioned. The models
are formally approved at the System Design Review (SDR) so they can also be used to evaluate the
technical soundness of architectures proposed by potential subcontractors in response to a Requests for
Proposal.

Once the system is partitioned into subsystems, detailed design work begins. Using the SDR approved
models, the team develops Machine Executable Specification (MES) versions. These MESs are distributed
to the members of the hardware design team, who use them to construct and verify architectural and
performance models of the major subsystems. The subsystem models will be integrated to create perfor-
mance and architectural models of the entire system. The system architects will review these models and
verify their correctness with respect to the requirements. The hardware designers will use the system and
subsystem models and the appropriate MESs to begin the preliminary design work. They will define the
system at further levels of hierarchical detail, including boards/LRUs, interfaces, modules, and compo-
nents. They will build gradually to fully functional behavioral models of the system. In order to pass
PDR successfully, they must verify that the behavioral models produce the same results as the system
performance and architectural models. Once this is accomplished, detailed design work can begin.

The process repeats at the structural level, where the hardware designers are building gate-level models
of new components and integrating them with behavioral or structural models of existing or COTS
equipment. Once again, the exit criteria for CDR is that these detailed models produce the results that
match those produced by the PDR models. Once that is verified, hardware can be fabricated with a high
degree of confidence. The hardware must be verified against the models. If there is a discrepancy, the
hardware must be made to match the model, not the other way around. The hardware is a technology-
specific implementation of the design and, as stated previously, the models are the design.
© 2001 by CRC Press LLC

If everything has been done properly, the lowest-level models (and the hardware) will produce results
that are traceable back through the design chain all the way to the system specification.

Experience on many programs has shown that the vast majority of system defects can be traced back
to misunderstandings due to ambiguity in the specifications. These misunderstandings arise because
different hardware designers interpret specifications in completely logical but, unfortunately different,
perhaps erroneous, ways. The errors are often not discovered until hardware is actually built and tested.
By this time, schedule and budgetary pressures usually preclude leisurely analysis and re-design. So a
“workaround” is sought that will overcome the problem, but always at a compromise to system performance.

FIGURE 20.2 TDSS hardware development flow.

Program Start

Draft System Specification (A)

Requirements Analysis

TDSS Program Plan

Final System Specification (B)

Hardware Development Plan --

Establish a Team Hardware Design Environment
Establish a Team Model Library

System Performance Models

System Behavioral Models

System Architectural Models

Identify Interfaces and Components

Machine-Executable Specifications
of Critical Interfaces

Behavioral Models of Components, Modules, LRUs

Test Plan, Acceptance Test (Simulate)

Gate-Level Models of Components, Modules, LRUs

Test Plan, Acceptance Test (Simulate)

Build Prototype System

Verify Hardware to Models

Maintain Models, Final Configuration Audit

SRR

SDR

PDR

CDR

FCA, PCA
© 2001 by CRC Press LLC

If a workaround cannot be found, then the program must suffer adverse budget or schedule impacts,
often both.

One novel aspect of TDSS eliminates the ambiguous specifications and their associated dangers right
from the start. Since a specification is meant to convey the behavior of something, the best way to do
that is to provide a readable description that can also be executed on a computer to provide a demonstrable
and verifiable example of the behavior being described. A simulation model (written correctly) can be
an unambiguous medium in which to embody a specification. A machine-executable specification (MES)
is unambiguous because its behavior can be observed under a variety of conditions. The hardware designer
does not have to interpret the specification because the behavior can be observed instead. So, if all
hardware developers use the same (unambiguous) executable model, they are likely to have the same
fundamental understanding of the specification.

20.3.5 Software Modeling in TDSS

A complete system depends on software as well as hardware, and system software design can make or
break any system—in performance, schedule, and cost. Good software can bring out the best in mediocre
hardware, but poor software can bring excellent hardware to its knees.

Hardware and software are the same at all but the lowest implementation level. Indeed, system speci-
fications and requirements are (theoretically) drawn up with no thought as to hardware/software parti-
tioning. Before software-programmable computers were invented, everything was done in hardware. As
software execution speeds increased, more time-critical functions could be handled in software, but from
a system standpoint, whether a function is performed by pure hardware or is embedded in code is
immaterial as long as the requirements are met and the missions can be achieved. Any complete system
design effort must take into account the adequacy or inadequacy of software performance. To verify the
adequacy of the “other half” of the system, software performance modeling and analysis should:

1. Account for processing delays on the system or subsystem architecture.
2. Assess the compatibility and portability of software to COTS platforms.
3. Assess the impact of Open Systems Architecture (OSA) requirements on software performance

and subsystem interoperability.

Software architecture and performance can be modeled just as hardware can. In both cases, the focus
is on input and output rates and amounts, latency (response time), senescence (data age), efficiency, and
correct results.

20.4 Performance Modeling for System Partitioning
(A Case Study)

The following case study describes a practical application of modeling and simulation used to both
articulate and answer system-level questions regarding data latency such that system functional parti-
tioning may be accomplished. Figure 20.3 represents a modern integrated avionics architecture. The
system is intended to be fabricated with COTS components and is generalized to include connectivity
to existing legacy subsystems.

20.4.1 System Description

This architecture includes the following functional components: Sensor Front Ends representing mul-
tiple sensors that receive signals and accomplish analog signal processing; Embedded Computing Assets
consisting of computing assets, closely coupled to the sensor front ends, that perform low-latency control
processing, digital signal processing, and prepare data for transmission; an ATM Dataflow Network
serving as the data transfer medium upon which data are transferred between Embedded Computing
Assets, Core Computing Assets, Operator Workstations, and the LAN Gateway; Core Computing Assets
© 2001 by CRC Press LLC

which include computing and memory devices used to perform application programs and services such
as database and maintenance functions; and Operator Workstations servings as the man-machine inter-
face. Additionally, there are recording and storage assets, maintenance, calibration, and control assets, as
well as platform-specific and time/navigation assets. Finally, there is the LAN Gateway which serves as
the interface to Legacy Systems and networks.

Given the above architecture, the system designer must determine where to allocate software processes
that operate on incoming sensor data. The designer must determine which processes are mission critical,
which are low-latency processes and which processes are non-low-latency processes that could be
allocated to application software. Can the designer allocate all processes to the Core Computing Assets
and use the core as a server? What processes, if any, should remain in computing assets local to the
incoming sensor data? Is there any incoming sensor data that have to be processed within a time
constraint for a successful mission? None of those questions can be answered until a fundamental
question is first addressed. Given that a data packet is stored in the RAM of the Embedded Computing
Assets, what is the latency associated with that packet’s transfer from Embedded Computing Asset RAM,
across the ATM Dataflow Network, to Core Computing Asset RAM, and back to Embedded Asset RAM
traversing the same path?

The example Embedded and Core Computing Assets each consist of a dual VME 64 backplane
configuration, real-time Concurrent Maxion board set (including four 200-MHz R4400 CPU cards
[XPU] with 128 MB of RAM per CPU, an I/O card [XIO] conforming to VME 64 standards, and a
crosspoint switching architecture capable of 1.2 GB/s peak), and two Fore Systems ATM to VME adapter
cards supporting OC-3 155 MB/s SONET fiber (one of these cards is used for redundant purposes
only). The Embedded Computing Assets also included MIL-STD-1553, IRIG B, and MXI cards. The
Core Assets also include MIL-STD-1553, IRIG B, and SCSI-compatible VME cards. The ATM Dataflow
Network (DFN) consists of a Fore Systems ASX-200BX 16-port switch capable of switching up to 1.2
GB/s data across a nonblocking switch fabric. This switch is used to connect the ATM adapter cards
using OC-3 155 MB/s SONET fiber. The system is decomposed into the component block diagram
shown in Figure 20.4. This is the component block diagram that was used as the basis for a performance
model.

FIGURE 20.3 A generalized integrated avionics architecture.

Maintenance/ Calibration/ Status/ Control

Time / Nav

Platform

LAN
Gateway

Recording and Storage
Post-

Mission
Analysis

Core
Computing

Assets

Applications
Databases

Maintenance

ATM
Dataflow Network Integrated Digital

Processing System
(IDPS)

Embedded
Computing

Assets

Low Latency
Processing IDPS Operator

Workstations

Sensor
Front
Ends

Data
Acquisition

Legacy
Assets

(Processing)

Legacy
Assets

(Sensors)
© 2001 by CRC Press LLC

20.4.2 Model Development

Modeling and simulation of the system was accomplished using a commercial computer-aided engineer-
ing (CAE) tool (the OPNET modeling tool from Mil-3). This tool is an event-driven simulation tool
particularly well suited for computer and network modeling. The tool utilizes hierarchical domains defined
as Network, Process, and State domains. A Network domain model for the system was built using the
Component Block Diagram shown in Figure 20.4. The Network domain of OPNET allows the specification
of nodes and selection and modeling of data transfer pipes (OC-3 SONET, Ethernet, etc.). The Process
domain allows the modeler to break down each network node into a configuration of queues, processors,
transmitters, receivers, and packet generators. The State domain of the tool allows each processor and
queue to be further decomposed into states, with definable transitions between states. Each state of a
particular process is defined using C-based programming and simulation kernel calls to simulate the
behavior of the process when it arrives at that state. To this end, any protocol behavior can be modeled
with the proper combination of states and state behavior definitions. The tool also allows the modeler to
probe the simulation at any point in the model to take measurements (throughput, queue capacities,
delays, etc.) and analyze the results of these probes while the simulation is running. The system was
broken down into modeled components as shown in Figure 20.5 below.

The model for the system was set up to transmit packets (1024 bytes) from RAM located in the
Embedded Computing Assets, across the ATM DFN, to the RAM located in the Core Computing Assets,
and then back to the RAM of the Embedded Computing Assets via the same path. During the simulation,
the computing assets and ATM DFN were loaded at various levels with other data (a known characteristic
of the real system was that other data with specific size and frequency rates would also be utilizing the
ATM DFN and computer resources at various points throughout the system).

Insertion of these data at various points throughout the model was achieved using the modeling tool’s
generator modules. This allowed the model to be data loaded at various points in a manner consistent
with how the real system would be data loaded during normal operation. For this system, the known
system characteristics and protocols explicitly modeled in this example include but are not limited to:
I/O read and write delays to/from the Core Computing Assets, CPU wait cycles due to caching operations,
crosspoint architecture arbitration, TCP/IP protocol overhead and buffering operations, VMEbus pro-
tocol including service interrupt and acknowledgment and delays associated with the various addressing
modes of VME operation, ATM segmentation and reassembly delays, ATM call setup delays, ATM fabric
switching, and output port buffer delays.

Also included in the model were known data sources that were used to simulate other traffic on the
ATM Dataflow Network. A file of System Loading Parameters was also developed made up of a collection
of all the modeling parameters available. These include, but were not strictly limited to VMEbus addressing
mode, TCP socket buffer thresholds, ATM switching delay parameters, SONET data transport overhead,

FIGURE 20.4 Component block diagram.

VMEbus
TRANSFER

VME/ATM
INTERFACE

VMEbus
TRANSFER

VME/ATM
INTERFACE

ATM SWITCH
& SONET

One Way

Round TripRound Trip

MAXION
RAM to
VMEbus

INTERFACE

MAXION
RAM to
VMEbus

INTERFACE

One Way One Way
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

proprietary communications layer overhead, and many others. The simulation was run 10 times with
the System Loading Parameters held constant. The average latency over the 10 simulation runs was plotted
as a function of those parameters. The parameters were changed, and another 10 simulations were run
at that particular level of system loading. System Loading Parameters were varied from 0.5 to 1.0 in
increments of 0.5.

FIGURE 20.5 Modeling decomposition process includes component to network to process to state diagram deveopment.

20.4.3 Modeling Results

The modeling simulation results are shown in Figure 20.6. Each point on the plot represents 10 simulation
runs. During each simulation run, the average round trip latency for the target data packets was measured.
In a lightly loaded system, according to the simulation results, the target data could be expected to traverse
the round trip path presented earlier in an average time of time of 0.001444 s. In a heavily loaded system,
again using the simulation results, the data packets experienced a latency of up to 0.150140 s. This was
the maximum result just prior to 1.0 loading.

These results were provided to the system designer as performance-based partitioning data and were
used to allocate system functions between the Embedded Computing Assets and the Core Computing
Assets.

20.4.4 Summary

The actual modeling and simulation effort that formed the basis for this case study was performed as
part of a functional allocation process for an airborne system. The results allowed for system partitioning
around a 150-ms boundary. By determining the latency early in the design phase, the design could be
optimized to make best use of the available processing assets and avoid costly reallocations later in the
system development.

This example further demonstrated several advantages to modeling and simulation of a system vs.
“vendor data sheet” calculations. First, vendors often times report “best case” or “burst mode” per-
formance characteristics. Modeling and simulation allows parameters of the system to be varied such
that “heavily loaded” or “degraded performance” modes of the system may be investigated. Another
distinct advantage is that the model is able to generate synchronous data, asynchronous data, and
data based on probability distributions. Data latencies in the model are based on modeled event-
triggered protocol disciplines rather than deriving answers on a calculator or spreadsheet. Not every
aspect of a real system can be modeled completely in every tool, but the known characteristics of the
system that relate to performance form a quality model for performance estimation in a tool as was
used here.

FIGURE 20.6 Case study simulation results.

System Load
Parameters

RAM to RAM
Latency

0.05 0.001444
0.10 0.010342
0.15 0.015953
0.20 0.027908
0.25 0.034309
0.30 0.039111
0.35 0.041234
0.40 0.043421
0.45 0.053901
0.50 0.059921
0.55 0.062344
0.60 0.063495
0.65 0.067401
0.70 0.075105
0.75 0.091120
0.80 0.099101
0.85 0.115230
0.90 0.136987
0.95 0.142335
1.00 0.150428

RAM to RAM Latency

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

0.160000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Compound System Loading

S
ec

o
n

d
s

© 2001 by CRC Press LLC

20.5 Research Issues and Summary

As mentioned above, not every aspect of a real system can be modeled completely in every tool, but the
known characteristics of the system that relate to performance form a quality model for performance
estimation. Clearly, market forces will continue to drive the quantity, quality, completeness, and rate of
change of system engineering environments. As a practical matter, better integration and traceability
between requirements automation systems and system/software engineering environments are called for.
A powerful result of this integration will be the improved traceability between proposed system concepts,
their driving requirements, the resultant technical configuration(s), and their cost and schedule impacts.

The requirement to integrate the trade space across technical, program, financial, and market boundaries
is likely to continue and remain incomplete. To paraphrase Brooks, there is more common ground than
the technical community will admit, and there are differences that most managers do not understand
[Brooks, 1995]. Automation alone will not reduce the complexities of this effort until there is a common,
multidisciplined, quantitative definition of cost vs. price in system performance trades. As to the automa-
tion issue, the size, content, and format issues of current and legacy technical, financial, programmatic
data bases will continue to grow and diverge until the stewards of college curricula produce graduates
that solve more problems than they create [Parnas, 1989]. These new practitioners will develop future
information systems and engineering environments which encompass the disciplines, language(s), and
methods critical to the practice.

Defining Terms

ATM: Asynchronous Transfer Mode
CAD: Computer Automated Design
CAE: Computer-Aided Engineering
CDR: Critical Design Review
COTS: Commercial-off-the-shelf (products)
FCA: Functional Configuration Audit
MES: Machine Executable Specifications
MIPS: Millions of instructions per second, or, misleading indicator of processor speed
MITL: Man-in-the-loop
OC“n”: Optical Carrier Level n (i.e., OC-3, a SONET specification)
OSA: Open Systems Architecture
PCA: Physical Configuration Audit
PDR: Preliminary Design Review
RAM: Random Access Memory
SDR: System Design Review
SMITL: Simulated-man-in-the-loop
SONET: Synchronous Optical Network
SRR: System Requirements Review
TDSS: Top Down System Simulation

References

Allen, Arnold O., 1994. Computer Performance Analysis with Mathematica. Academic Press, New York.
Bell, C. G. and Newell, A., 1973. Computer Structures: Readings and Examples. McGraw-Hill, New York.
Bratley, P., Fox, B., and Schrage, L., 1987. A Guide to Simulation, 2nd ed., Springer-Verlag, New York.
Brooks J.R. and Fredrick P., 1995. The Mythical Man Month. Addison-Wesley, Reading, MA.
Donnelly, C. F., 1992. Evaluating the IOBIDS Specification Using Gate-Level System Simulation, in Proc.

IEEE Natl. Aerosp. Electron. Conf., p. 748.
Hennessy, J. L. and Patterson, D. A., 1990. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, San Francisco, CA.
© 2001 by CRC Press LLC

Kleinrock, L., 1975. Theory, Queueing Systems, Vol. 1, John Wiley & Sons, New York.
Liu, Hsi-Ho, 1992. Software Issues in Hardware Development, in Computer Engineering Handbook.

McGraw-Hill, New York.
Parnas, D. L., 1989. Education for Computing Profressionals, in Tech. Rep. 89-247 ISSN-0836-0227.
Portelli, W., Oseth, T., and Strauss, J. L., 1989. Demonstration of Avionics Module Exchangeability via

Simulation (DAMES) Program Overview, in Proc. IEEE Natl. Aerosp. Electron. Conf., pp. 660.
Strauss, J. L., 1994. The Third Possibility, in Modeling and Simulation of Embedded Systems, Proc. Embed-

ded Computing Inst., pp. 160.
Swangim, J., Strauss, J. L., et al., 1989. Challenges of Tomorrow—The Future of Secure Avioncs, in Proc.

IEEE Natl. Aerosp. Electron. Conf., pp. 580.
Walker, R. A. and Thomas, D. E., 1985. A Model of Design Representation and Synthesis, in Proc. 22nd

Design Automation Conf., pp. 453–459.

Further Information

Arnold Allen’s 1994 text, Computer Performance Analysis with Mathematica, Academic Press, New York,
is an excellent introduction to computing systems performance modeling.

For Performance Modeling and Capacity Planning the following organizations provide information
through periodicals and specialized publications:

• The Computer Measurement Group (CMG); 414 Plaza Drive, Suite 209, Westmont, IL 60559,
(708) 655-1812

• Institute for Capacity Management; P.O. Box 82847, Phoenix, AZ 85071, (602) 997-7374

• ACM Sigmetrics; 11 West 42nd Street, New York, NY 10036, (212) 869-7440

For Computer-Aided Engineering the following list of World Wide Web sites provide information on
vendors of major tools and environments:

• www.zycad.com

• www.mil-3.com

• www.mentorgraphics.com

• www.synopsis.com

• www.rational.com
© 2001 by CRC Press LLC

Sally C. Johnson et al. “Formal Methods”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

21
Formal Methods

21.1 Introduction
21.2 Fundamentals of Formal Methods

Formal Specification • Formal Verification • Limitations

21.3 Example Application
English Specification of the Example System • Formally
Specifying the Example System • Formal Verification of the
Example System • Alternative Methods of Specifying
Requirements

21.4 Some Additional Observations
Defining Terms
References
Further Information

21.1 Introduction

With each new generation of aircraft, the requirements for digital avionics systems become increasingly
complex, and their development and validation consumes an ever-increasing percentage of the total
development cost of an aircraft. The introduction of life-critical avionics, where failure of the computer
hardware or software can lead to loss of life, brings new challenges to avionics validation. The FAA
recommends that catastrophic failures of the aircraft be “so unlikely that they are not anticipated to occur
during the entire operational life of all airplanes of one type” and suggests probabilities of failure on the
order of per flight hour [FAA, 1988].

There are two major reliability factors to be addressed in the design of ultrareliable avionics: hardware
component failures and design errors. Physical component failures can be handled by using redundancy
and voting. This chapter addresses the problem of design errors. Design errors are errors introduced in
the development phase rather than the operational phase. These may include errors in the specification
of the system, discrepancies between the specification and the design, and errors made in implementing
the design in hardware or software. The discussion in this chapter centers mainly around software design
errors; however, the increasing use of complex, custom-designed hardware instead of off-the-shelf com-
ponents that have stood the test of time makes this discussion equally relevant for hardware.

The problem with software is that the complexity exceeds our ability to have intellectual control over
it. Our intuition and experience is with continuous systems, but software exhibits discontinuous behav-
ior. We are forced to separately reason about or test millions of sequences of discrete state transitions.
Testing of software sufficient to assure ultrahigh reliability has been shown to be infeasible for systems
of realistic complexity [Butler and Finelli, 1993], and fault tolerance strategies cannot be relied upon
because of the demonstrated lack of independence between design errors in multiple versions of software
[Knight and Leveson, 1986]. Since the reliability of ultrareliable software cannot be quantified, life-
critical avionics software must be developed in a manner that concentrates on producing a correct
design and implementation rather than on quantifying reliability after a product is built. This chapter

10 9�

Sally C. Johnson
NASA Langley Research Center

Ricky W. Butler
NASA Langley Research Center
© 2001 by CRC Press LLC

describes how rigorous analysis employing formal methods can be applied to the software development
process. While not yet standard practice in industry,* formal methods is included as an alternate means
of compliance in the DO178B standard for avionics software development.

21.2 Fundamentals of Formal Methods

Formal methods is the use of formal mathematical reasoning or logic in the design and analysis of
computer hardware and software. Mathematical logic serves the computer system designer in the same
way that calculus serves the designer of continuous systems—as a notation for describing systems and
as an analytical tool for calculating and predicting the behavior of systems.

Formal logic provides rules for constructing arguments that are sound because of their form and inde-
pendent of their meaning, and consequently can be manipulated with a computer program. Formal logic
provides rules for manipulating formulas in such a manner that, given valid premises, only valid conclusions
are deducible. The manipulations are called a proof. If the premises are true statements about the world,
then the soundness theorems of logic guarantee that the conclusion is also a true statement about the world.
Furthermore, assumptions about the world are made explicit and are separated from the rules of deduction.

Formal methods can be roughly divided into two basic components: specification and verification.
Each of these is discussed below.

21.2.1 Formal Specification

Formal specification is the use of notations derived from formal logic to define (1) the requirements that
the system is to achieve, (2) a design to accomplish those requirements, and (3) the assumptions about the
world in which a system will operate. The requirements explicitly define the functionality required from
the system as well as enumerating any specific behaviors that the system must meet, such as safety properties.

A design specification is a description of the system itself. In practice, a set of hierarchical specifications
is often produced during the design process ranging from a high-level, abstract representation of the system
to a detailed implementation specification, as shown in Figure 21.1. The highest-level specification might

*However, Intel, Motorola, and AMD are using formal methods in the development of microchips.

FIGURE 21.1 Hierarchy of formal specifications.
© 2001 by CRC Press LLC

describe only the basic requirements or functionality of the system in a state-transition format. The lowest-
level specification would detail the algorithms used to implement the functionality. The hierarchical
specification process guides the design and analysis of a system in an orderly manner, facilitating better
understanding of the basic abstract functionality of the system as well as unambiguously clarifying the
implementation decisions. Additionally, the resulting specifications serve as useful system documentation
for later analysis and modification.

An avionics system can be thought of as a complex interface between the pilot and the aircraft. Thus,
the specification of the avionics system relies on a set of assumptions about the behaviors of the pilot
and the response of the aircraft. Likewise, the specification of a modular subsystem of an integrated
avionics system will rely on a set of assumptions about the behaviors and interfaces of the other sub-
systems. The unambiguous specification of interfaces between subsystems also prevents the problem of
developers of different subsystems interpreting the requirements differently and arriving at the system
integration phase of software development with incompatible subsystems.

21.2.2 Formal Verification

Formal verification is the use of proof methods from formal logic to (1) analyze a specification for certain forms
of consistency and completeness, (2) prove that the design will satisfy the requirements, given the assumptions,
and (3) prove that a more detailed design implements a more abstract one. The formal verifications may simply
be paper-and-pencil proofs of correctness; however, the use of a mechanical theorem prover to ensure that all
of the proofs are valid lends significantly more assurance and credibility to the process. The use of a mechanical
prover forces the development of an argument for an ultimate skeptic who must be shown every detail.

In principle, formal methods can accomplish the equivalent of exhaustive testing, if applied to the
complete specification hierarchy from requirements to implementation. However, such a complete ver-
ification is rarely done in practice because it is difficult and time-consuming. A more pragmatic strategy
is to concentrate the application of formal methods on the most critical portions of a system. Parts of
the system design that are particularly complex or difficult to comprehend can also be good candidates
for more rigorous analysis. Although a complete formal verification of a large, complex system is imprac-
tical at this time, a great increase in confidence in the system can be obtained by the use of formal
methods at key locations in the system.

There are several publicly available theorem-proving toolkits. These tools automate some of the tedious
steps associated with formal methods, such as typechecking of specifications and conducting the simplest
of proofs automatically. However, these tools must be used by persons skilled in mathematical logic to
perform rigorous proofs of complex systems.

21.2.3 Limitations

For many reasons, formal methods do not provide an absolute guarantee of perfection, even if checked by
an automated theorem prover. First, formal methods cannot guarantee that the top-level specification is what
was intended. Second, formal methods cannot guarantee that the mathematical model of the physical world,
such as aircraft control characteristics, is accurate. The mathematical model is merely a simplified repre-
sentation of the physical world. Third, the formal verification process often is only applied to part of the
system, usually the critical components. Finally, there may be errors in the formal verification tools them-
selves.* Nevertheless, formal methods provide a significant capability for discovering/removing errors in
large portions of the design space.

21.3 Example Application

The techniques of formal specification and verification of an avionics subsystem will be demonstrated
on a very simplified example of a mode-control panel. An informal, English-language specification of

*We do not believe this to be a significant source of undetected errors in formal specifications or verifications.
© 2001 by CRC Press LLC

the mode-control panel, representative of what software developers typically encounter in practice, will
be presented. The process of clarifying and formalizing the English specification into a formal specifica-
tion, often referred to as requirements capture, will then be illustrated.

21.3.1 English Specification of the Example System

This section presents the informal, English-language specification of the example system. The English
specification is annotated with section numbers to facilitate references back to the specification in later
sections.

1. The mode-control panel contains four buttons for selecting modes and three displays for dialing in or
displaying values, as shown in Figure 21.2. The system supports the following four modes:

attitude control wheel steering(att_cws),
flight-path angle selected(fpa_sel),
altitude engage(alt_eng), and
calibrated air speed(cas_eng).

Only one of the first three modes can be engaged at any time. However, the cas_eng mode can be
engaged at the same time as any of the other modes. The pilot engages a mode by pressing the corre-
sponding button on the panel. One of the three modes, att_cws,fpa_sel,or alt_eng, should

FIGURE 21.2 Mode-control panel.
© 2001 by CRC Press LLC

be engaged at all times. Engaging any of the first three modes will automatically cause the other two to
be disengaged since only one of these three modes can be engaged at a time.

2. There are three displays on the panel: air speed, flight-path angle, and altitude. The displays usually
show the current values for the air speed, flight-path angle, and altitude of the aircraft. However, the
pilot can enter a new value into a display by dialing in the value using the knob next to the display.
This is the target or “preselected” value that the pilot wishes the aircraft to attain. For example, if the
pilot wishes to climb to 25,000 feet, he will dial 250 into the altitude display window* and then press
the alt_eng button to engage the altitude mode. Once the target value is achieved or the mode is
disengaged, the display reverts to showing the “current” value.**

3. If the pilot dials in an altitude that is more than 1200 feet above the current altitude and then presses
the alt_eng button, the altitude mode will not directly engage. Instead, the altitude engage mode
will change to “armed” and the flight-path angle select mode is engaged. The pilot must then dial in
a flight-path angle for the flight-control system to follow until the aircraft attains the desired altitude.
The flight-path angle select mode will remain engaged until the aircraft is within 1200 feet of the
desired altitude, then the altitude engage mode is automatically engaged.

4. The calibrated air speed and the flight-path angle values need not be preselected before the corresponding
modes are engaged — the current values displayed will be used. The pilot can dial in a different value
after the mode is engaged. However, the altitude must be preselected before the altitude engage button
is pressed. Otherwise the command is ignored.

5. The calibrated air speed and flight-path angle buttons toggle on and off every time they are pressed.
For example, if the calibrated air speed button is pressed while the system is already in calibrated air
speed mode, that mode will be disengaged. However, if the attitude control wheel steering button is
pressed while the attitude control wheel steering mode is already engaged, the button is ignored.
Likewise, pressing the altitude engage button while the system is already in altitude engage mode has
no effect.

Because of space limitations, only the mode-control panel interface itself will be modeled in this example.
The specification will only include a simple set of commands the pilot can enter plus the functionality
needed to support mode switching and displays. The actual commands that would be transmitted to the
flight-control computer to maintain modes, etc. are not modeled.

21.3.2 Formally Specifying the Example System

In this section, we will describe the process of formally specifying the mode-control panel described in
English in the previous section. Quotes cited from the English specification will be annotated with the
corresponding section number in parentheses. The goal is to completely describe the system requirements
in a mathematical notation, yet not overly constrain the implementation.

This system collects inputs from the pilot and maintains the set of modes that are currently active.
Thus, it is appropriate to model the system as a state machine. The state of the machine will include the
set of modes that are active, and the pilot inputs will be modeled as events that transition the system
from the current state (Sc) to a new state (Sn):

The arrow represents a transition function, nextstate, which is a function of the current state and an
event, say ev:

Sn = nextstate(Sc, ev).

*Altitude is expressed in terms of “flight level,” which is measured in increments of 100 ft.
**In a real mode-control panel, the buttons would be lit with various colored lights to indicate which modes are

currently selected and whether “preselected” or “current” values are being displayed. Because of space limitations,
the display lights will not be included in the example specification.

Sc Sn
© 2001 by CRC Press LLC

The goal of the formal specification process is to provide an unambiguous elaboration of the nextstate
function. This definition must be complete; i.e., it must provide a next state for all possible events and
all possible states. Thus, the first step is to elaborate all possible events and the content of the state of
the machine. The system will be specified using the PVS specification language [Owre et al., 1993].

21.3.2.1 Events

The pilot interacts with the mode-control panel by pressing the mode buttons and by dialing preselected values
into the display. The pilot actions of pressing one of the four buttons will be named as follows:
press_att_cws, press_cas_eng, press_alt_eng, and press_fpa_sel. The actions of dialing
a value into a display will be named as follows: input_alt, input_fpa, and input_cas. The behavior
of the mode-control panel also depends upon the following inputs it receives from sensors: alt_reached,
fpa_reached, and alt_gets_near. In PVS, the set of events are specified as follows:

events: TYPE = {press_att_cws, press_cas_eng, press_fpa_sel,
press_alt_eng, input_alt, input_fpa, input_cas,

 alt_gets_near, alt_reached, fpa_reached}

21.3.2.2 State Description

The state of a system is a collection of attributes that represents the system’s operation. In the example system,
the set of active modes would certainly be a part of the system state. Also, the values in the displays that show
altitude, flight-path angle, and air speed, and the readings from the airplane sensors would be included in
the state. Formalization of the system state description entails determining which attributes are necessary to
fully describe the system’s operation, then choosing a suitable formalism for representing those attributes.

One possible approach to describing the system state for the example is to use a set to delineate which
modes are active. For example, {att_cws, cas_eng} would represent the state of the system where both
att_cws and cas_eng are engaged but alt_eng and fpa_sel are not engaged. Also, the alt_eng
mode has the additional capability of being armed. Thus, a better approach to describing the example
system state is to associate with each mode one of the following values: off,armed, or engaged. In
PVS, a type or domain can be defined with these values:

mode_status: TYPE = {off,armed,engaged}

The state descriptor is as follows:*

[# % RECORD
att_cws: mode_status,
cas_eng: mode_status,
fpa_sel: mode_status,
alt_eng: mode_status,
#] % END

For example, the record [att_cws=engaged, cas_eng=engaged, fpa_sel=off,
alt_eng=off] would indicate a system where both att_cws and cas_eng are engaged, fpa_sel is
off and alt_eng is off. However, there is still a problem with the state descriptor; in the example system
only alt_eng can be armed. Thus, more restrictive domains are needed for the modes other than
alt_eng. This can be accomplished by defining the following sub-types of mode_status:

off_eng:TYPE={mode: mode_status| mode = off OR

 mode = engaged}

*In the PVS language, a record definition begins with [# and ends with #]. The % denotes that the remainder of
the line contains a comment and is ignored.
© 2001 by CRC Press LLC

The type off_eng has two values: off and engaged. The state descriptor is thus corrected to become:

[# % RECORD
att_cws: off_eng,
cas_eng: off_eng,
fpa_sel: off_eng,
alt_eng: mode_status
#] % END

The mode panel also maintains the state of the displays. To simplify the example, the actual values in
the displays will not be represented. Instead, the state descriptor will only keep track of whether the value
is a preselected value or the actual value read from a sensor. Thus, the following type is added to the
formalism:

disp_status: TYPE = {pre_selected, current}

and three additional fields are added to the state descriptor:

alt_disp: disp_status,
fpa_disp: disp_status, and
cas_disp: disp_status.

The behavior of the mode-control panel does not depend upon the actual value of “altitude” but
rather on the relationship between the actual value and the preselected value in the display. The
following “values” of altitude are sufficient to model this behavior:

altitude_vals: TYPE = {away,near_pre_selected,
 at_pre_selected},

and the following is added to the state descriptor:

altitude: altitude_vals.

The final state descriptor is

states: TYPE =[# % RECORD
att_cws: off_eng,
cas_eng: off_eng,
fpa_sel: off_eng,
alt_eng: mode_status,
alt_disp: disp_status,
fpa_disp: disp_status,
cas_disp: disp_status,
altitude: altitude_vals
#] END

21.3.2.3 Formal Specification of Nextstate Function

Once the state descriptor is defined, the next step is to define a function to describe the system’s operation
in terms of state transitions. The nextstate function can be defined in terms of ten subfunctions, one
for each event, as follows:

event: VAR events
st: VAR states =
nextstate(st,event): states
© 2001 by CRC Press LLC

CASES event OF
press_att_cws: tran_att_cws(st),
press_cas_eng: tran_cas_eng(st),
press_fpa_sel: tran_fpa_sel(st),
press_alt_eng: tran_alt_eng(st),
input_alt : tran_input_alt(st),
input_fpa : tran_input_fpa(st),
input_cas : tran_input_cas(st),
alt_gets_near: tran_alt_gets_near(st),
alt_reached : tran_alt_reached(st),
fpa_reached : tran_fpa_reached(st)

ENDCASES

The CASES statement is equivalent to an IF-THEN-ELSIF-ELSE construct. For example, if the event
is press_fpa_sel then nextstate(st,event) = tran_fpa_sel(st). The step is to define
each of these subfunctions.

21.3.2.4 Specifying the att_cwsMode

The tran_att_cws function describes what happens to the system when the pilot presses the att_cws
button. This must be specified in a manner that covers all possible states of the system. According to the
English specification, the action of pressing this button attempts to engage this mode if it is off. Changing
the att_cws field to engaged is specified as follows:

st WITH [att_cws := engaged].

The WITH statement is used to alter a record in PVS. This expression produces a new record that is
identical to the original record st in every field except att_cws. Of course, this is not all that happens
in the system. The English specification also states that, “Only one of the [att_cws, fpa_sel, or
cas_eng] modes can be engaged at any time” (1). Thus, the other modes must become something
other than engaged. It is assumed that this means they are turned off. This would be indicated as:

st WITH [att_cws:= engaged, fpa_sel:= off, alt_eng:= off].

The English specification also states that when a mode is disengaged, “…the display reverts to showing
the “current value:” (2):

st WITH [att_cws := engaged, fpa_sel := off, alt_eng := off,
alt_disp := current, fpa_disp := current].

The English specification also says that, “…if the attitude control wheel steering button is pressed while the
attitude control wheel steering mode is already engaged, the button is ignored” (5). Thus, the full definition is

tran_att_cws(st): states =
IF att_cws(st)= off THEN

st WITH [att_cws := engaged, fpa_set := off,
alt_eng := off, alt_disp := current,
fpa_disp := current]

ELSE st %% IGNORE: state is not altered at all
ENDIF

The formal specification has elaborated exactly what the new state will be. The English specification
does not address what happens to a preselected alt_eng display or preselected fpa_sel display when
the att_cws button is pressed. However, the formal specification does explicitly indicate what will
happen: these modes are turned off. The process of developing a complete mathematical specification
© 2001 by CRC Press LLC

has uncovered this ambiguity in the English specification. If the displays should not be changed when
the corresponding mode is off, then the following specification would be appropriate:

tran_att_cws(st): states =
IF att_cws(st) = off THEN
st WITH [att_cws := engaged,

fpa_sel := off,
alt_eng := off,

alt_disp := IF alt_eng(st) = off THEN alt_disp(st)
ELSE current ENDIF,

fpa_disp := IF fpa_sel(st) = off THEN fpa_disp(st)
ELSE current ENDIF]

ELSE st %% IGNORE:state is not altered at all
ENDIF

We realize that this situation will arise in several other cases as well. In particular, whenever a mode
becomes engaged, should any other preselected displays be changed to current or should they remain
preselected? We decide to consult the system designers. They agree that the displays should be returned
to current and suggest that the following be added to the English specification:

6. Whenever a mode other than cas_eng is engaged, all other preselected displays should be returned
to current.

21.3.2.5 Specifying the cas_eng Mode

The tran_cas_eng function describes what happens to the system when the pilot presses the cas_eng
button. This is the easiest mode to specify because its behavior is completely independent of the other
modes. Pressing the cas_eng button merely toggles this mode on and off. The complete function is

tran_cas_eng(st): states =
IF cas_eng(st) = off THEN
st WITH [cas_eng := engaged]

ELSE st WITH [cas_eng := off, cas_disp := current]
ENDIF

This specification states that if the cas_eng mode is currently off, pressing the button will engage the
mode. If the mode is engaged, pressing the button will turn the mode off. Thus, the button acts like a switch.

21.3.2.6 Specifying the fpa_sel Mode

The tran_fpa_sel function describes the behavior of the system when the fpa_sel button is pressed.
The English specification states that this mode “need not be preselected” (4). Thus, whether the mode is
off or preselected, the outcome is the same:

IF fpa_sel(st) = off THEN
st WITH [fpa_sel := engaged, att_cws := off,

alt_eng := off, alt_disp := current]

Note that not only is the fpa_sel mode engaged, but att_cws and alt_eng are turned off as well.
This was included because the English specification states that, “Engaging any of the first three modes will
automatically cause the other two to be disengaged” (1). Also note that this specification indicates that
alt_disp is set to “current.” The English specification states that, ‘‘Once the target value is achieved or
the mode is disengaged, the display reverts to showing the ‘current’ value’’ (2). Thus, the altitude display
must be specified to return to “current” status. If the alt_eng mode was not currently active, the WITH
update does not actually change the value, but merely updates that attribute to the value it already holds.

Since PVS requires that functions be completely defined, we must also cover the case where fpa_sel
is already engaged. We consult the English specification and find, “The calibrated air speed and flight-
© 2001 by CRC Press LLC

path angle buttons toggle on and off every time they are pressed.” We interpret this to mean that if the
fpa_sel button is pressed while the mode is engaged, the mode will be turned off. This is specified as
follows:

st WITH [fpa_sel := off, fpa_disp := current]

Because the mode is disengaged, the corresponding display is returned to current. We realize that we
also must cover the situation where the alt_eng mode is armed and the fpa_sel is engaged. In
fact, Section (3) of the English specification indicates that this will occur when one presses the alt_eng
button and the airplane is far away from the preselected altitude. However, Section (3) does not tell us
whether the disengagement of fpa_sel will also disengage the armed alt_eng mode. We decide to
consult the system designers. They inform us that pressing the fpa_sel button should turn off both
the fpa_sel and alt_eng mode in this situation. Thus, we modify the state update statement as
follows:

st WITH [fpa_sel := off, alt_eng := off,
 fpa_disp := current, alt_disp := current]

The complete specification is thus:

tran_fpa_sel(st): states =
IF fpa_sel(st) = off THEN
st WITH [fpa_sel := engaged, att_cws := off,

alt_eng := off, alt_disp := current]
 ELSE st WITH [fpa_sel := off, alt_eng := off,

fpa_disp := current, alt_disp := current]
 ENDIF

The perspicacious reader may have noticed that there is a mistake in this formal specification. The
rest of us will discover it when a proof is attempted using a theorem prover in the later section entitled,
“Formal Verification of the Example System.”

21.3.2.7 Specifying the alt_eng Mode

The alt_eng mode is used to capture a specified altitude and hold it. This is clearly the most difficult
of the four to specify since it has a complicated interaction with the fpa_sel mode.

The English specification states that, “The altitude must be preselected before the altitude engage button
is pressed” (4). This is interpreted to mean that the command is simply ignored if it has not been
preselected. Consequently, the specification of tran_alt_eng begins:

tran_alt_eng(st): states =
IF alt_disp(st) = pre_selected THEN

…
ELSE st % IGNORE
ENDIF

This specifies that the system state will change as a result of pressing the alt_eng button only if the
alt_disp is preselected.

We must now proceed to specify the behavior when the IF expression is true. The English specification
indicates that if the aircraft is more than 1200 ft from the target altitude, this request will be put on hold
(the mode is said to be armed) and the fpa_sel mode will be engaged instead. The English specification
also says that, “The pilot must then dial in a flight-path angle at this point” (3). The question arises whether
the fpa_sel engagement should be delayed until this is done. Another part of the English specification
offers a clue, “The calibrated air speed and flight-path angle values need not be preselected before the
© 2001 by CRC Press LLC

corresponding modes are engaged” (4). Although this specifically addresses the case of pressing the fpa_sel
button and not the situation where the alt_eng button indirectly turns this mode on, we suspect that
the behavior is the same. Nevertheless, we decide to check with the system designers to make sure. The
system designers explain that this is the correct interpretation and that this is the reason the mode is
called “flight-path angle select” rather than “flight-path angle engage.”

The behavior must be specified for the two situations: when the airplane is near the target and when
it is not. There are several ways to specify this behavior. One way is for the state specification to contain
the current altitude in addition to the target altitude. This could be included in the state vector as two
numbers:

target_altitude: number
actual_altitude: number

The first number contains the value dialed in and the second the value last measured by a sensor. The
specification would then contain:

IF abs(target_altitude � actual_altitude) � 1200 THEN

where abs is the absolute value function. If the behavior of the mode-control panel were dependent
upon the target and actual altitudes in a multitude of ways, this would probably be the proper approach.
However, in the example system the behavior is only dependent upon the relation of the two values to
each other. Therefore, another way to specify this behavior is by abstracting away the details of the
particular values and only storing information about their relative values in the state descriptor record.
In particular, the altitude field of the state record can take on one of the following three values:

away the preselected value is � 1200 feet away
near_pre_selected the preselected value is �=1200 feet away
at_pre_selected the preselected value is � the actual altitude

The two different situations can then be distinguished as follows:

 IF altitude(st)= away THEN

When the value is not away, the alt_eng mode is immediately engaged. This is specified as follows:

st WITH [alt_eng := engaged, att_cws := off,
fpa_sel := off, fpa_disp := current

Note that not only is the alt_eng mode engaged, but this specification indicates that several other
modes are affected just as in the tran_fpa_sel subfunction.

Now the behavior of the system must be specified for the other case, when the aircraft is away from
the target altitude. In this case fpa_sel is engaged and alt_eng is armed:

ELSE
st WITH [fpa_sel := engaged, att_cws := off,

alt_eng := armed]

As before, the att_cws mode is also turned off.
So far we have not considered whether the behavior of the system should be different if the alt_eng

mode is already armed or engaged. The English specification states that, “Pressing the altitude engage button
while the system is already in altitude engage mode has no effect” (5). However, there is no information
about what will happen if the mode is armed. Once again, the system designers are consulted, and we are
told that the mode-control panel should ignore the request in this case as well. The complete specification
© 2001 by CRC Press LLC

of tran_alt_eng becomes:

tran_alt_eng(st): states =
IF alt_eng(st) = off AND alt_disp(st) = pre_selected THEN

IF altitude(st) /= away THEN %% ENGAGED
 st WITH [att_cws := off, fpa_sel := off,

alt_eng := engaged, fpa_disp := current]
ELSE st WITH [att_cws := off, fpa_sel := engaged,

alt_eng := armed] %% ARMED
ENDIF

ELSE st %% IGNORE request
ENDIF

Note that the last ELSE takes care of both the armed and engaged cases.

21.3.2.8 Input to Displays

The next three events that can occur in the system are input_alt, input_fpa, and input_cas.
These occur when the pilot dials a value into one of the displays. The input_alt event corresponds to
the subfunction of nextstate named tran_input_alt. The obvious thing to do is to set the appro-
priate field as follows:

st WITH [alt_disp := pre_selected]

This is certainly appropriate when alt_eng is off. However, we must carefully consider the two cases: (1)
when the alt_eng mode is armed, and (2) when it is engaged. In this case, the pilot is changing the target
value after the alt_eng button has been pressed. The English specification required that the alt_eng mode
be preselected before it could become engaged, but did not rule out the possibility that the pilot could change
the target value once it was armed or engaged. We consult the system designers once again. They inform us
that entering a new target altitude value should return the alt_eng mode to off and the pilot must press the
alt_eng button again to reengage the mode. We add the following to the English specification:

7. If the pilot dials in a new altitude while the alt_eng button is already engaged or armed, then the
alt_eng mode is disengaged and the att_cws mode is engaged.

The reason given by the system designers was that they didn’t want the altitude dial to be able to
automatically trigger a new active engagement altitude. They believed it was safer to force the pilot to
press the alt_eng button again to change the target altitude.

 Thus, the specification of tran_input_alt is

tran_input_alt(st): states =
IF alt_eng(st)= off THEN

st WITH [alt_disp := pre_selected]
ELSE % alt_eng(st) = armed OR alt_eng(st) = engaged THEN

st WITH [alt_eng := off, alt_disp := pre_selected,
att_cws := engaged,
fpa_sel := off, fpa_disp := current]

ELSE st
ENDIF

The other input event functions are similar:

tran_input_fpa(st): states =
IF fpa_sel(st) = off THEN st WITH [fpa_disp : = pre_selected]
ELSE st ENDIF
© 2001 by CRC Press LLC

tran_input_cas(st): states =
IF cas_eng(st) = off THEN st WITH [cas_disp := pre_selected]
ELSE st ENDIF

21.3.2.9 Other Actions

There are other events that are not initiated by the pilot but that still affect the mode-control panel; in
particular, changes in the sensor input values. As described previously, rather than including the specific
values of the altitude sensor, the state descriptor only records which of the following is true of the preselected
altitude value: away, near_pre_selected or at_pre_selected. Events must be defined that
correspond to significant changes in the altitude so as to affect the value of this field in the state. Three
such events affect the behavior of the panel:

alt_gets_near the altitude is now near the preselected value
alt_reached the altitude reaches the preselected value
alt_gets_away the altitude is no longer near the preselected value

The transition subfunction associated with the first event must consider the case where the alt_eng
mode is armed because the English specification states that, “The flight-path angle select mode will remain
engaged until the aircraft is within 1200 feet of the desired altitude, then the altitude engage mode is
automatically engaged” (3). Thus we have:

tran_alt_gets_near(st): states =
IF alt_eng(st) = armed THEN

st WITH [altitude := near_pre_selected,
alt_eng := engaged, fpa_sel := off]

ELSE st WITH [altitude := near_pre_selected]
ENDIF

The subfunction associated with the second event is similar because we cannot rule out the possibility
that the event alt_reached may occur without alt_gets_near occurring first:

tran_alt_reached(st): states =
IF alt_eng(st) = armed THEN

st WITH [altitude := at_pre_selected,
alt_disp := current, alt_eng := engaged,
fpa_sel := off]

ELSE st WITH [altitude := at_pre_selected,
alt_disp := current]

ENDIF

Note that in this case, the alt_disp field is returned to current because the English specification
states,“Once the target value is achieved or the mode is disengaged, the display reverts to showing the ‘current’
value’’ (2).

However, the third event is problematic in some situations. If the alt_eng mode is engaged, is it
even possible for this event to occur? The flight-control system is actively holding the altitude of the
airplane at the preselected value. Thus, unless there is some major external event such as a windshear
phenomenon, this should never occur. Of course, a real system should be able to accommodate such
unexpected events. However, to shorten this example, it will be assumed that such an event is impossible.
The situation where the alt_eng mode is not engaged or armed would not be difficult to model, but
also would not be particularly interesting to demonstrate.

There are three possible events corresponding to each of the other displays. These are all straightforward
and have no impact on the behavior of the panel other than changing the status of the corresponding
display. For example, the event of the airplane reaching the preselected flight-path angle is fpa_reached.
© 2001 by CRC Press LLC

The specification of the corresponding subfunction tran_fpa_reached is

tran_fpa_reached(st): states =
st WITH [fpa_disp := current]

21.3.2.10 Initial State

The formal specification must include a description of the state of the system when the mode-control
panel is first powered on. One way to do this would be to define a particular constant, say st0, that
represents the initial state:

st0: states = (# att_cws := engaged, cas_eng := off,
fpa_sel := off, alt_eng := off,
alt_disp := current, fpa_disp := current,
cas_disp := current, altitude := away #)

Alternatively, one could define a predicate (i.e., a function that returns true or false) that indicates
when a state is equivalent to the initial state:

is_initial(st) : bool =
att_cws(st) = engaged AND cas_eng(st) = off AND
fpa_sel(st) = off AND alt_eng(st) = off AND
alt_disp(st) = current AND fpa_disp(st) = current AND
cas_disp(st) = current

Note that this predicate does not specify that the altitude field must have the value “away.” Thus, this
predicate defines an equivalence class of states, not all identical, in which the system could be initially.
This is the more realistic way to specify the initial state since it does not designate any particular altitude
value.

21.3.3 Formal Verification of the Example System

The formal specification of the mode-control panel is complete. But how does the system developer know
that the specification is correct? Unlike the English specification, the formal specification is known to
be detailed and precise. But it could be unambiguously wrong. Since this is a requirements specification,
there is no higher-level specification against which to prove this one. Therefore, ultimately the developer
must rely on human inspection to insure that the formal specification is “what was intended.” Neverthe-
less, the specification can be analyzed in a formal way. In particular, the developer can postulate properties
that he believes should be true about the system and attempt to prove that the formal specification
satisfies these properties. This process serves to reinforce the belief that the specification is what was
intended. If the specification cannot be proven to meet the desired properties, the problem in the
specification must be found or the property must be modified until the proof can be completed. In
either case, the developer’s understanding of and confidence in the system is increased.

 In the English specification of the mode-control panel, there were several statements made that
characterize the overall behavior of the system. For example, “One of the three modes [att_cws,
fpa_sel, or alt_eng] should be engaged at all times” (1). This statement can be formalized, and it
can be proven that no matter what sequence of events occurs, this will remain true of the system.
Properties such as this are often called system invariants. This particular property is formalized as follows:

att_cws(st)= engaged
OR fpa_sel(st) = engaged
OR alt_eng(st)= engaged
© 2001 by CRC Press LLC

Another system invariant can be derived from the English specification: “Only one of the first three modes
[att_cws, fpa_sel, alt_eng] can be engaged at any time” (1). This can be specified in several ways.
One possible way is as follows:

(alt_eng(st)/= engaged OR fpa_sel(st)/= engaged) AND
(att_cws(st) = engaged IMPLIES

alt_eng(st)/= engaged AND fpa_sel(st)/= engaged)

Finally, it would be prudent to insure that whenever alt_eng is armed that fpa_sel is engaged:

(alt_eng(st) = armed IMPLIES fpa_sel(st)= engaged).

All three of these properties can be captured in one predicate (i.e., a function that is true or false) as follows:

valid_state(st): bool =
(att_cws(st)= engaged OR fpa_sel(st)= engaged

OR alt_eng(st)= engaged)
AND (alt_eng(st) /= engaged OR fpa_sel(st) /= engaged)
AND (att_cws(st) = engaged IMPLIES
alt_eng(st) /= engaged AND fpa_sel(st) /= engaged)
AND (alt_eng(st)= armed IMPLIES

fpa_sel(st)= engaged)

The next step is to prove that this is always true of the system. One way to do this is to prove that the
initial state of the system is valid and that if the system is in a valid state before an event then it is in a valid
state after an event, no matter what event occurs. In other words, we must prove the following two theorems:

initial_valid: THEOREM is_initial(st) IMPLIES valid_state(st)
nextstate_valid: THEOREM valid_state(st) IMPLIES

valid_state(nextstate(st,event))

These two theorems effectively prove by induction that the system can never enter a state that is not
valid.* Both of these theorems are proved by the single PVS command, GRIND. The PVS system replays
the proofs in 17.8 s on a 450 MHz PC (Linux) with 384 MB of memory.

As mentioned earlier, the specification of fpa_sel contains an error. On the attempt to prove the
nextstate_valid theorem on the erroneous version of fpa_sel described earlier, the prover stops with the
following sequent:

nextstate_valid :
[21] fpa_sel(st!1)= engaged
[22] press_fpa_sel?(event!1)
u-------

[1] att_cws(st!1)= engaged
[2] alt_eng(st!1)= engaged
[3] press_att_cws?(event!1)
[4] press_alt_eng?(event!1)

*In order for this strategy to work, the invariant property (i.e., valid_state) must be sufficiently strong for
the induction to go through. If it is too weak, the property may not be provable in this manner even though it is
true. This problem can be overcome by either strengthening the invariant (i.e., adding some other terms) or by
decomposing the problem using the concept of reachable states. Using the latter approach, one first establishes that
a predicate ‘‘reachable (st)” delineates all of the reachable states. Then one proves that all reachable states are
valid, i.e., reachable (st) ⇒ valid_state(st).
© 2001 by CRC Press LLC

The basic idea of a sequent is that one must prove that one of the statements after the �------- is provable
from the statements before it. In other words, one must prove:

[�1] AND [�2] ���� [1] OR [2] OR [3] OR [4]

We see that formulas [3] and [4] are impossible, because press_fpa_sel?(event!1) tells us that
event!1 � press_fpa_sel and not press_att_cws or press_alt_eng. Thus, we must
establish [1] or [2]. However, this is impossible. There is nothing in this sequent to require that
att_cws(st!1) =engaged or that alt_eng(st!1)=engaged. Thus, it is obvious at this point
that something is wrong with the specification or the proof. It is clear that the difficulty surrounds the case
when the event press_fpa_sel occurs, so we examine tran_fpa_sel more closely. We realize that
the specification should have set att_cws to engaged as well as turning off the fpa_sel mode and
alt_eng mode:

tran_fpa_sel(st): states =
IF fpa_sel(st)= off THEN

st WITH [fpa_sel := engaged, att_cws := off,
alt_eng := off, alt_disp := current]

ELSE st WITH [fpa_sel := off, alt_eng := off,
att_cws := engaged,
fpa_disp := current, alt_disp := current]

ENDIF

This modification is necessary because otherwise the system could end up in a state where no mode was
currently active. After making the correction, the proof succeeds.

Thus we see that formal verification can be used to establish global properties of a system and to detect
errors in the specifications.

21.3.4 Alternative Methods of Specifying Requirements

Many systems can be specified using the state-machine method illustrated in this chapter. However, as
the state-machine becomes complex, the specification of the state transition functions can become
exceedingly complex. Therefore, many different approaches have been developed to elaborate this
machine. Some of the more widely known are decision tables, decision trees, state-transition diagrams,
state-transition matrices, Statecharts, Superstate, and R-nets [Davis, 1988].

Although these methods effectively accomplish the same thing—the delineation of the state machine —they
vary greatly in their input format. Some use graphical notation, some use tables, and others use language
constructs. Aerospace industries have typically used the table-oriented methods because they are considered
the most readable when the specification requires large numbers of pages. Although there is insufficient space
to discuss any particular method in this chapter, expression of a part of the mode-control panel using a table-
oriented notation will be illustrated briefly.

Consider the following table describing the att_cws mode:

att_cws Event New Mode

off press_att_cws engaged
press_fpa_sel WHEN fpa_sel /� off engaged
input_alt WHEN alt_eng /� off engaged
all others off

engaged press_att_cws engaged
press_alt_eng WHEN alt_eng � off AND alt_disp � pre_selected off
press_fpa_sel WHEN fps_sel � off off
All others engaged
© 2001 by CRC Press LLC

The first column lists all possible states of att_cws prior to the occurrence of an event. The second
column lists all possible events, and the third column lists the new state of the att_cws mode after the
occurrence of the event. Note also that some events may include other conditions. This table could be
specified in PVS as follows:

att_cws_off: AXIOM att_cws(st)= off IMPLIES
att_cws(nextstate(event, st)) =
 IF (event= press_att_cws) OR
 (event= press_fpa_sel AND fpa_sel(st) /= off) OR
 (event= input_alt AND alt_eng(st) /= off) THEN engaged
 ELSE off
 ENDIF

att_cws_eng: AXIOM att_cws(st)= engaged IMPLIES
 att_cws(nextstate(event,st))=
 IF (event= press_alt_eng AND alt_eng(st)= off
 AND alt_disp(st) = pre_selected) OR
 (event= press_fpa_sel AND fps_sel(st) = off) THEN off
 ELSE engaged
 ENDIF

This approach requires that nextstate be defined in pieces (axiomatically) rather than definitionally.
If this approach is used, it is necessary to analyze the formal specification to make sure that nextstate is
completely defined. In particular, it must be shown that the function’s behavior is defined for all possible
values of its arguments and that there are no duplications. This must be performed manually if the tables
are not formalized. The formalization can be done using a general-purpose theorem prover such as PVS
or using a special-purpose analysis tool such as Tablewise* [Hoover and Chen, 1994].

When the specification can be elaborated in a finite-state machine, there are additional analysis
methods available that are quite powerful and fully automatic. These are usually referred to as model-
checking techniques. Some of the more widely known tools are SMV [Burch et al., 1992] and Murphi
[Burch and Dill, 1994]. These require that the state-space of the machine be finite. Our example speci-
fication has a finite state space. However, if the values of chosen and measured altitude had not been
abstracted away, the state-space would have been infinite.

21.4 Some Additional Observations

The preceding discussion illustrates the process that one goes through in translating an English specifi-
cation into a formal one. Although the example system was contrived to demonstrate this feature, the
process demonstrated is typical for realistic systems, and the English specification for the example is
actually more complete than most because the example system is small and simple.

The formal specification process forces one to clearly elaborate the behavior of a system in detail.
Whereas the English specification must be examined in multiple places and interpreted to make a
judgment about the desired system’s behavior, the formal specification completely defines the behavior.
Thus, the requirements capture process includes making choices about how to interpret the informal
specification. Traditional software development practices force the developer to make these interpretation
choices (consciously or unconsciously) during the process of creating the design or implementation.
Many of the choices are hidden implicitly in the implementation without being carefully thought out or
verified by the system designers, and the interpretations and clarifications are seldom faithfully recorded
in the requirements document. On the other hand, the formal methods process exposes these ambiguities
early in the design process and forces early and clear decisions, which are fully documented in the formal
specification.

*The Tablewise tool was previously named Tbell.
© 2001 by CRC Press LLC

A more detailed version of this paper:
R. W. Butler, An Introduction to Requirements Capture Using PVS: Specification of a Simple Autopilot,

NASA TM-110255, May 1996, pp. 33.
is available at http://techreports.larc.nasa.gov/ltrs/ltrs.html. Recent work has
looked at using formal methods to detect and eliminate mode confusion in flight guidance systems
[Miller and Potts, 1999; Butler et al., 1998].

Defining Terms

Invariant: A property of a system that always remains true throughout all operational modes.
Mode: A particular operational condition of a system. The mode-control panel controls switching

between operational conditions of the flight-control system.
Predicate: A function that returns true or false.
State: A particular operational condition of a system. A common method of representing the operational

functioning of a system is by enumerating all of the possible system states and transitions between
them. This is referred to as a state-transition diagram or finite-state machine representation.

Typechecking: Verification of consistency of data types in a specification. The detailed use of data types
to differentiate between various kinds of objects, when supported by automated typechecking, can
make a specification more readable, maintainable, and reliable.

References

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., and Hwang, L.J., 1992. Symbolic Model Checking:
States and Beyond, Inf. Comput. 98(2):142–170.

Burch, J.R. and Dill, David L., 1994. Automatic Verification of Pipelined Microprocessor Control, Computer-
Aided Verification, CAV’94, Stanford, CA, pp. 68–80, June.

Butler, R.W. and Finelli, G.B. 1993. The Infeasibility of Quantifying the Reliability of Life-Critical Real-
Time Software, IEEE Trans. Software Eng, 19(1):3–12.

Butler, R. W., Miller, S. P., Potts, J. N., and Carreno, V. A, A Formal Methods Approach to the Analysis
of Mode Confusion, 17th Digital Avionics Syst. Conf., Bellevue, WA, October 31–November 6, 1998.

Davis, A.M., 1988. A Comparison of Techniques for the Specification of External System Behavior.,
CACM, 31(9):1098–1115.

FAA, 1988. System Design and Analysis, Advisory Circular AC 25.1309-1A, U.S. Department of Trans-
portation, Washington, D.C., June.

Hoover, D.N. and Chen, Z., 1994. Tbell: A Mathematical Tool for Analyzing Decision Tables, NASA
Contractor Rep. 195027, November.

Knight, J.C. and Leveson, N.G., 1991. An Experimental Comparison of Software Fault-Tolerance and
Fault Elimination, IEEE Trans. Software Eng., SE-12(1):96–109.

Miller, S.P. and Potts, J. N., 1999. Detecting Mode Confusion Through Formal Modeling and Analysis,
NASA/CR-1999-208971, January.

Owre, S., Shankar, N., and Rushby, J.M., 1993. The PVS Specification Language (Beta Release), Computer
Science Laboratory, SRI International, Menlo Park, CA, 1993.

Further Information

A good introduction to the fundamentals of mathematical logic is presented in Mathematical Logic by
Joseph R. Schoenfield.

The application of formal methods to digital avionics systems is discussed in detail in Formal Methods
and Digital Systems Validation for Airborne Systems, NASA Contractor Report 4551, by John Rushby.
Rushby’s report was written for certifiers of avionics systems and gives useful insights into how formal
methods can be effectively applied to the development of ultra-reliable avionics systems.

1020
© 2001 by CRC Press LLC

Two NASA Guidebooks on formal methods: “Formal Methods Specification and Verification Guide-
book for Software and Computer Systems, Volume I: Planning and Technology Insertion” [NASA/TP-
98-208193], 1998, and “Formal Methods Specification and Analysis Guidebook for the Verification of
Software and Computer Systems, Volume II: A Practitioner’s Companion” [NASA-GB-001-97], 1997 are
available on the Web at http://eis.jpl.nasa.gov/quality/Formal_Methods/.

 The complete specification and proofs for the mode-control panel example described in this chapter
can be obtained at http://shemesh.larc.nasa.gov/fm/ftp/larc/mode-control-ex/.
Several other formal methods application examples and papers can also be obtained from that site.
© 2001 by CRC Press LLC

Arun Ramakrishnan et al. “Electronic Hardware Reliability”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

22
Electronic Hardware

Reliability

22.1 Introduction
22.2 Product Requirements and Constraints
22.3 The Product Life Cycle Environment
22.4 Characterization of Materials, Parts,

and Manufacturing Processes
22.5 Parts Selection and Management

Candidate Part and Part Manufacturer
Selection • Manufacturer, Part, and Distributor
Assessment • Performance Assessment • Reliability
Assessment • Assembly Issues • Assembly Compatibility •
Routing Compatibility • Test and Rework Acceptability • Life
Cycle Mismatch Assessment • Risk Management

22.6 Failure Modes and Mechanisms
22.7 Design Guidelines and Techniques

Protective Architectures • Stress Margins • Derating •
Redundancy

22.8 Qualification and Accelerated Testing
Virtual Qualification • Accelerated Testing

22.9 Manufacturing Issues
Process Qualification • Manufacturability • Process
Verification Testing

22.10 Summary
Defining Terms
References
Further Information

22.1 Introduction

Reliability is the ability of a product to perform as intended (i.e., without failure and within specified
performance limits) for a specified time, in its life cycle application environment. To achieve product
reliability over time demands an approach that consists of a set of tasks, each requiring total engineering
and management commitment and enforcement. These tasks impact electronic hardware reliability
through the selection of materials, structural geometries and design tolerances, manufacturing processes
and tolerances, assembly techniques, shipping and handling methods, operational conditions, and main-
tenance and maintainability guidelines.1 The tasks are as follows:

1. Define realistic product requirements and constraints determined by the life cycle application
profile, required operating and storage life, performance expectations, size, weight, and cost.

Arun Ramakrishnan
University of Maryland

Toby Syrus
University of Maryland

Michael Pecht
University of Maryland
© 2001 by CRC Press LLC

The manufacturer and the customer must jointly define the product requirements in the light of
both the customer’s needs and the manufacturer’s capability to meet those needs.

2. Define the product life cycle environment by specifying all relevant assembly storage, handling,
shipping, and operating conditions for the fielded product. This includes all stress and loading
conditions.

3. Characterize the materials and the manufacturing and assembly processes. Variabilities in material
properties and manufacturing processes can induce failures. A knowledge of the variability is
required to assess design margins and possible trade-offs with weight, size, and cost.

4. Select the parts required for the product, using a well-defined assessment procedure that ensures
that the parts selected have sufficient quality and integrity, are capable of delivering the expected
performance and reliability in the application, and will be available to sustain the product through-
out its life cycle.

5. Identify the potential failure sites and failure mechanisms by which the product can be expected
to fail. Critical parts, part details, and potential failure modes and mechanisms must be identified
early in the design, and appropriate measures must be implemented to assure design control.
Potential architectural and stress interactions must also be defined and assessed.

6. Design to the usage and process capability of the product (i.e., the quality level that can be controlled
in manufacturing and assembly), considering the potential failure sites and failure mechanisms.
The design stress spectra, the part test spectra, and the full-scale test spectra must be based on the
anticipated life cycle usage conditions. The proposed product must survive the life cycle environ-
ment, be optimized for manufacturability, quality, reliability, and cost-effectiveness, and be available
to the market in a timely manner.

7. Qualify the product manufacturing and assembly processes. Key process characteristics in all the
manufacturing and assembly processes required to make the part must be identified, measured,
and optimized. Tests should be conducted to verify the results for complex products. The goal of
this step is to provide a physics-of-failure basis for design decisions, with an assessment of all
possible failure mechanisms for the anticipated product. If all the processes are in control and the
design is valid, then product testing is not warranted and is therefore not cost-effective. This
represents a transition from product test, analysis, and screening to process test, analysis, and
screening.

8. Monitor and control the manufacturing and assembly processes addressed in the design, so that
process shifts do not arise. Each process may involve screens and tests to assess statistical process
control.

9. Manage the life cycle usage of the product using closed loop management procedures. This includes
realistic inspection and maintenance procedures.

22.2 Product Requirements and Constraints

A product’s requirements and constraints are defined in terms of customer demands and the company’s
core competencies, culture, and goals. If the product is for direct sale to end users, marketing usually
takes the lead in defining the product’s requirements and constraints through interaction with the
customer’s marketplace, examination of the current product sales figures, and analysis of the competition.
Alternatively, if the product is a subsystem that fits within a larger product, the requirements and
constraints are determined by the product into which the subsystem fits. The results of capturing product
requirements and constraints allow the design team to choose product parts that conform to product-
specific and company objectives.

The definition process begins with the identification of an initial set of requirements and constraints
defined by either the marketing activity (or in some cases by a specific customer), or by the product into
which the subsystem fits. The initial requirements are formulated into a requirements document, where
they are prioritized. The requirements document needs to be approved by several groups of people, ranging
© 2001 by CRC Press LLC

from engineers to management to customers (the specific people involved in the approval will vary with
the organization and the product). Once the requirements are approved, the engineering team prepares
a preliminary specification indicating the exact set of requirements that are practical to implement.
Disconnects between the requirements document and the preliminary specification become the topic of
trade-off analyses (usually cost/performance trade-offs), and if, after analyses and negotiation, all the
requirements cannot be implemented, the requirements document may be modified. When the require-
ments document and the preliminary specifications are agreed upon, a final specification is prepared and
the design begins.

22.3 The Product Life Cycle Environment

The product life cycle environment goes hand in hand with the product requirements. The life cycle
environment affects product design and development decisions, qualification and specification processes,
parts selection and management, quality assurance, product safety, warranty and support commitments,
and regulatory conformance.

The product life cycle environment describes the assembly, storage, handling, and scenario for the use
of the product, as well as the expected severity and duration of these environments, and thus contains
the necessary load input information for failure assessment and the development of design guidelines,
assembly guidelines, screens, and tests. Specific load conditions may include steady-state temperatures,
temperature ranges, temperature cycles, temperature gradients, humidity levels, pressure levels, pressure
gradients, vibrational or shock loads and transfer functions, chemically aggressive or inert environments,
acoustic levels, sand, dust, and electromagnetic radiation levels. In electrical systems, stresses caused by
power, current, and voltage should also be considered. These conditions may influence the reliability of
the product either individually or in combination with each other. Since the performance of a product
over time is often highly dependent on the magnitude of the stress cycle, the rate of change of the stress,
and the variation of the stress with time and space, the interaction between the application profile and
the internal conditions must be specified in the design.

The product life cycle environment can be divided into three parts: the application and life profile
conditions, the external conditions under which the product must operate, and the internal product-
generated stress conditions. The application and life profile conditions include the application length,
the number of applications in the expected life of the product, the product use or non-use profile (storage,
testing, transportation), the deployment operations, and the maintenance concept or plan. This infor-
mation is used to group usage platforms (whether the product will be installed in a car, boat, airplane,
satellite, or underground), to develop duty cycles (on-off cycles, storage cycles, transportation cycles, modes
of operation, and repair cycles), to determine design criteria, to develop screens and test guidelines, and
to develop support requirements to sustain attainment of reliability and maintainability objectives.

The external operational conditions include the anticipated environment(s) and the associated stresses
that the product will be required to survive. These conditions are usually determined through experimen-
tation and through the use of numerical simulation techniques. Experiments are performed by creating
environmental parameter monitoring systems consisting of sensors placed near and within the product
that are capable of monitoring the loads that the product experiences. A sensor’s function is to convert a
physical variable input into, in most cases, an electrical output that is directly related to the physical
variable. Signals can be transmitted to either local or remote output devices, enabling data to be collected
in a safe and secure manner. Numerical simulation techniques combine material properties, geometry,
and product architecture information with environmental data to determine the life cycle environment
based on external stresses. Whenever credible data are not available, the worst-case design load must be
estimated. A common cause of failure is the use of design factors related to average loads, without adequate
consideration being given to the extreme conditions that may occur during the product’s life cycle.2

The internal operational conditions are associated with product-generated stresses, such as power
consumption and dissipation, internal radiation, and release or outgassing of potential contaminants.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

If the product is connected to other products or subsystems in a system, the stresses associated with the
interfaces (i.e., external power consumption, voltage transients, voltage spikes, electronic noise, and heat
dissipation) must also be included.

Life cycle stresses can cause strength degradation in materials, for example, combined stresses can
accelerate damage and reduce the fatigue limit. In such cases, protective measures must be taken to
mitigate the life cycle environment by the use of packaging, provision of warning labels and instructions,
and protective treatment of surfaces. The measures to be taken must be identified as appropriate to
assembly, storage, transportation, handling, operation, and maintenance. Protection against extreme loads
may not always be possible, but should be considered whenever practicable. When overload protection is
provided, a reliability analysis should be performed on the basis of the maximum anticipated load, keeping
the tolerances of the protection system in mind.2 If complete protection is not possible, the design team
must specify appropriate maintenance procedures for inspection, cleaning, and replacement.

An example of the scenario for use of a product is a flight application, which can involve engine warm-
up, taxi, climb, cruising, maneuvers, rapid descent, and emergency landing. Each part of the application
will be associated with a set of load conditions, such as time, cycles, acceleration, velocity, vibration,
shocks, temperature, humidity, and electrical power cycles. Together, these loads comprise a load history
of the product.

22.4 Characterization of Materials, Parts, and Manufacturing
Processes

Design is intrinsically linked to the materials, parts, interfaces, and manufacturing processes used to
establish and maintain the functional and structural integrity of the product. It is unrealistic and poten-
tially dangerous to assume defect-free and perfect-tolerance materials, parts, and structures. Materials
often have naturally occurring defects, and manufacturing processes can introduce additional defects in
the materials, parts, and structures. The design team must also recognize that the production lots or vendor
sources for parts that comprise the design are subject to change, and variability in parts characteristics is
likely to occur during the fielded life of a product.

Design decisions involve the selection of parts, materials, and controllable process techniques using
processes appropriate to the scheduled production quantity. Any new parts, materials, and processes
must be assessed and tested before being put into practice, so that training for production personnel
can be planned, quality control safeguards can be set up, and alternative second sources can be located.
Often, the goal is to maximize part and configuration standardization, to increase package modularity
for ease in fabrication, assembly, and modification, to increase flexibility of design adaptation to
alternate uses, and to utilize common fabrication processes. Design decisions also involve choosing
the best material interfaces and the best geometric configurations, given the product requirements and
constraints.

22.5 Parts Selection and Management

Product differentiation, which determines market share gain and loss, often motivates a company to adopt
new technologies and insert them into their mainstream products. However, while technological advances
continue to fuel product development, two factors, management decisions regarding when and how a new
technology will be used, and accurately assessing risks associated with a technology, differentiate the
winners from the losers. Few companies have failed because the right technology was not available; far
more have failed when a technology was not effectively managed.

The methodology, shown in Figure 22.1, provides an “eyes-on, hands-off” approach to parts selection
and management, which enables organizations to:

• Employ risk assessment and mitigation techniques to address technology insertion;

• Organize and conduct fact-finding processes to select parts with improved quality, integrity,
application-specific reliability, and cost-effectiveness;

• Make an informed organization-wide decision about parts selection and management, based upon
organization resources, policies, culture, goals, and customer demands;

• Understand and evaluate the local environment the part sees within a product’s life cycle, and
thereby choose the most appropriate technique to fit the part to its intended environmental
requirements;

• Maximize product supportability by preparing for and meeting the challenge of parts becoming
obsolete during product life; and

• Improve supply-chain interactions and communications with regulatory agencies to minimize
time to profit.

22.5.1 Candidate Part and Part Manufacturer Selection

A candidate part is one that conforms to the functional, electrical, and mechanical requirements of the
product, considering product requirements, technology direction, and development. In addition, a can-
didate part must conform to availability and cost constraints. Availability of an electronic part is a measure
of the ease with which the part can be procured. Availability is assessed by determining the amount of
inventory at hand, the number of parts required for units in production and forecasted, the economic
order quantity for the part(s), the lead time(s) between placing an order for the part(s) and receiving
the part(s), production schedules and deadlines, and part discontinuation plans. The cost of the part is
assessed relative to the product’s budget during candidate part selection. In many cases, a part similar
to the required one will have already been designed and tested. This “preferred part” is typically mature,

FIGURE 22.1 Parts selection and management methodology.
© 2001 by CRC Press LLC

in the sense that the variabilities in manufacturing, assembly, and field operation that could cause
problems will have already been identified and corrected. Many design groups maintain a list of preferred
parts of proven performance, cost, availability, and reliability.

22.5.2 Manufacturer, Part, and Distributor Assessment

In the manufacturer assessment, the part manufacturer’s ability to produce parts with consistent quality
is evaluated, and in the part assessment, the candidate part’s quality and integrity is gauged. The distrib-
utor assessment evaluates the distributor’s ability to provide parts without affecting the initial quality
and integrity, and to provide certain specific services, such as part problem and change notifications.
The equipment supplier’s parts selection and management team defines the minimum acceptability
criteria for this assessment, based on the equipment supplier’s requirements. If the part satisfies the
minimum acceptability criteria, the candidate part then moves to “application-dependent assessments.”

If the part is found unacceptable due to nonconformance with the minimum acceptability criteria,
some form of equipment supplier intervention may be considered.3,4 If equipment supplier intervention
is not feasible due to economic or schedule considerations, the candidate part may be rejected. If, however,
equipment supplier intervention is considered necessary, then the intervention action items should be
identified, and their cost and schedule implications should be analyzed through the “risk management”
process step.

22.5.3 Performance Assessment

The goal of performance assessment is to evaluate the ability of the part to meet the functional, mechan-
ical, and electrical performance requirements. In order to increase performance, products often incor-
porate features that tend to make them less reliable than proven, lower-performance products. Increasing
the number of parts, although improving performance, also increases product complexity, and may lead
to lower reliability unless compensating measures are taken.5 In such situations, product reliability can
be maintained only if part reliability is increased or part redundancy is built into the product. Each of
these alternatives, in turn, must be assessed against the incurred cost. The trade-off between performance,
reliability, and cost is a subtle issue, involving loads, functionality, system complexity, and the use of new
materials and concepts.

In general, there are no distinct stress boundaries for parameters such as voltage, current, temperature,
and power dissipation, above which immediate failure will occur and below which a part will operate
indefinitely.6 However, there is often a minimum and a maximum stress limit beyond which the part will
not function properly, or at which the increased complexity required will not offer an advantage in cost-
effectiveness. Part manufacturers’ ratings or users’ procurement ratings are generally used to determine
these limiting values. Equipment manufacturers who integrate such parts into their products need to
adapt their design so that the parts do not experience conditions beyond their absolute maximum ratings,
even under the worst possible operating conditions (e.g., supply voltage variations, load variations, and
signal variations).7 It is the responsibility of the parts selection and management team to establish that
the electrical, mechanical, and functional performance of the part is suitable for the operating conditions
of the particular product. If a product must be operated outside the manufacturer-specified operating
conditions, then uprating* may have to be considered.

Part manufacturers need to assess the capability of a part over its entire intended life cycle environment,
based on the local environment that is determined. If the parametric and functional requirements of the
system cannot be met within the required local environment, then the local environment may have to
be modified, or a different part may have to be used.

*The term uprating was coined by Michael Pecht to distinguish it from upscreening, which is a term used to
describe the practice of attempting to create a part equivalent to a higher quality by additional screening of a part
(e.g., screening a JANTXV part to JANS requirements).
© 2001 by CRC Press LLC

22.5.4 Reliability Assessment

Reliability assessment results provide information about the ability of a part to meet the required
performance specifications in its life cycle application environment for a specified period of time. Reli-
ability assessment is conducted through the use of integrity test data, virtual qualification results, or
accelerated test results. The reliability assessment process is shown in Figure 22.2.

Integrity is a measure of the appropriateness of the tests conducted by the manufacturer and of the
part’s ability to survive those tests. Integrity monitoring tests are conducted by the part manufacturer to
monitor part/process changes and the ongoing material or process changes specific to the part. Integrity
test data (often available from the part manufacturer) is examined in light of the application life cycle
stresses and the applicable failure modes and mechanisms. If the magnitude and duration of the appli-
cation life cycle loads are less severe than those of the integrity tests, and if the test sample size and results
are acceptable, then the part reliability is acceptable. However, if the magnitude and duration of the
application life cycle loads are more severe than those encountered during the integrity tests, then integrity
test data cannot be used to validate part reliability in the application, and virtual qualification should be
considered.

Virtual qualification is a simulation-based methodology used to identify the dominant failure mech-
anisms associated with the part under the life cycle loads, to determine the acceleration factor for a given
set of accelerated test parameters, and to determine the time-to-failures corresponding to the identified
failure mechanisms. Virtual qualification allows the operator to optimize the part parameters (e.g.,
dimensions, materials) so that the minimum time-to-failure of any part is greater than the expected
product life.

If virtual qualification proves insufficient to validate part reliability, accelerated testing should be
performed. Once the appropriate test procedures, conditions, and sample sizes are determined, acceler-
ated testing can be conducted by either the part manufacturer, the equipment supplier, or third-party
test facilities. Accelerated testing results are used to predict the life of a product in its field application
by computing an acceleration factor that correlates the accelerated test conditions and the actual field
conditions. Whether integrity test data, virtual qualification results, accelerated test results, or a combi-
nation thereof are used, each applicable failure mechanism to which the part is susceptible must be
addressed.

FIGURE 22.2 Reliability assessment process.
© 2001 by CRC Press LLC

If part reliability is not ensured through the reliability assessment process, the equipment supplier
must consider an alternate part or product redesign. If redesign is not considered a viable option, the
part should be rejected, and an alternate part must be selected. If the part must be used in the application,
redesign options may include thermal management techniques, vibration damping, and modification of
assembly parameters. If product design changes are made, part reliability must be reassessed.

22.5.5 Assembly Issues

A part may be unacceptable from an assembly viewpoint if (1) it is incompatible with the assembly
equipment or process; (2) it is impossible or impractical to wire the part into the product (routing
compatibility), or (3) it cannot be acceptably tested or reworked. Assembly compatibility addresses
whether a product that contains the part can be manufactured (assembled). Routing compatibility assesses
if the candidate part can be routed within a specific application on the selected board. Test and rework
acceptability assess whether the candidate part can be adequately and economically tested and reworked
during assembly and maintenance.

22.5.5.1 Assembly Compatibility

Parts must conform to a range of constraints associated with their assembly into products. There are
three categories of assembly constraints that must be considered when designing a product:

• Assembly process compatibility — Assembly process compatibility involves comparing the part’s
size, shape, and mounting method to the process that will be used to assemble the boards con-
taining the part.

• Proximity to other structures — Proximity checking involves checking the location of the com-
ponent relative to other parts assembled on the board and the edge of the board. Proximity
checking includes evaluating the orientation (rotation) of the part.

• Artwork verification — Artwork verification involves checking the board layout for the correct
orientation and location of fiducials (alignment marks), alignment holes, and other structures
necessary to facilitate assembly.

There are three possible outcomes from assembly compatibility and proximity checking: cannot be
assembled, can be assembled with a corresponding cost and yield penalty, and can be assembled with no
cost or yield penalties. Artwork verification is decoupled from parts selection.

22.5.5.2 Routing Compatibility

Routing compatibility pertains to the layout and routing of an application. If the selection of a particular
part causes significant layout or routing problems within the board, the part may be rejected. Rejection
of a part is usually based on its use of routing resources within the board. Two routing issues must be
considered:

• How much board area is required to wire the part to the rest of the product?

• How many layers of the board are required to “escape route” the part?

Escape routing is only applicable if the part has an area array format connection to the board, for
example, a flip chip or ball grid array package. A component is virtually always “routable,” given a
sufficient number of board layers. If the rest of the parts on the board are known, routing estimation
techniques can be used to determine the effective routing limited footprint of a part under the constraints
posed by the board design rules (lines, spaces, via/hole capture pad diameter) and layer count. If a
candidate part exceeds the fraction of board wiring resources budgeted to it based on board growth and
cost constraints, it may be rejected.

A limiting requirement for some parts is escape routing. If a part’s I/Os are in an area array format
(as opposed to a peripheral format), the part cannot be wired into the product until all of its I/Os are
routed out from under the part. The process of liberating I/Os from an array is called escape routing.
© 2001 by CRC Press LLC

22.5.5.3 Test and Rework Acceptability

Test and rework costs are important criteria in determining whether a part is acceptable or not. The cost
of testing the part (to a specified quality level) prior to assembly and the cost of replacing the part if it
needs to be repaired after it is assembled must be considered.

The cost of testing a part is related to the level of testing performed by the part manufacturer, whether
the part is in a package or bare, the function that the part performs, the number of gates or bits in the
part, and the test equipment. If the part does not come from the manufacturer fully tested (e.g., a bare
die), then test costs may need to be assessed. Test costs include the cost of creating the test patterns (or
obtaining them from the manufacturer) and the cost of applying the test to the part. Predicting testing
costs is of little value unless the corresponding test coverage (fraction of defects detected by the test) is
also predicted.

Another key assembly-related cost is the cost of replacing a part that has been identified as defective
during the assembly process. The cost of removing a defective part is a function of how the part is
mounted to the board, the size of the part, and its proximity to other parts.

22.5.6 Life Cycle Mismatch Assessment

Lengthy design, qualification, and production processes inherent in electronic industries often cause parts
to become obsolete before the first product is produced.8 Furthermore, to cater to market demands and
remain competitive, part manufacturers often introduce new parts and discontinue older parts. In general,
electronic products go through six phases during their life cycle: design, manufacturing, growth, maturity,
decline, and discontinuance. A life cycle mismatch occurs between a product and its constituent parts if
the parts are not available to support the product throughout its life cycle. When factors such as lead time,
risk of part obsolescence, or estimation of the product market are ignored or improperly judged during
the design phase, the consequences can be costly. The obsolete part can inhibit the functioning of the
product, idle the assembly line, lead to dissatisfied customers, and cause a loss of reputation to the company.
The net outcome can be a financial loss for the company.

A successful life cycle mismatch assessment process is one that prevents, if possible, the selection of parts
that are already obsolete or soon to be discontinued. This strategy reduces the risk associated with a life
cycle mismatch between a product and its parts. The part selection depends on the degree of mismatch and
the flexibility to adopt an obsolescence management strategy (e.g., redesign, lifetime buy, buy from after-
market sources, part substitution). The strategy is intended to mitigate obsolescence risks associated with
using the part at some future point in the life cycle of the product. If the equipment supplier finds the life
cycle mismatch between part and product unacceptable, the part is unsuitable and should be rejected.

22.5.7 Risk Management

After a part is accepted, resources must be applied to managing the life cycle of the part, including supply
chain management, obsolescence assessment, manufacturing and assembly feedback, manufacturer war-
ranties management, and field failure and root-cause analysis. It is important to consider the process of
managing the part and all the risks associated with the long-term use of the part throughout its life cycle
during the part selection process. The risk management process is characterized using the risks identified
in the parts selection process to determine the resources needed to support a part throughout its
application life cycle, thus minimizing the probability of a failure. The key metric used to determine
whether risks should be managed or not is resources, which include time, data, opportunity, and money.

The risks associated with including a part in the product fall into two categories:

• Managed risks: risks that the product development team chooses to proactively manage by creating
a management plan and performing a prescribed regimen of monitoring the part’s field perfor-
mance, manufacturer, and manufacturability; and

• Unmanaged risks: risks that the product development team chooses not to proactively manage.
© 2001 by CRC Press LLC

If risk management is considered necessary, a plan should be prepared. The plan should contain details
about how the part is monitored (data collection), and how the results of the monitoring feed back into
various parts selection and management processes. The feasibility, effort, and cost involved in manage-
ment processes prior to the final decision to select the part must be considered.

Feedback regarding the part’s assembly performance, field performance, and sales history may be
essential to ascertain the validity of the predictions made during the part selection process. If the feedback
calls for changes in selection criteria, they should be incorporated into the part selection process.
Prospective parts should be judged based on the altered part selection criteria. Part monitoring data may
also be needed to make changes in parts that are already in use. For example, part monitoring field data
might indicate that a change in operating conditions is required for the part to perform satisfactorily.

22.6 Failure Modes and Mechanisms

Failure mechanisms are the physical processes by which stresses can damage the materials used to build
the product. Investigation of the possible failure modes and mechanisms of the product aids in developing
failure-free and reliable designs. The design team must be aware of all possible failure mechanisms if
they are to design hardware capable of withstanding loads without failing. Failure mechanisms and their
related models are also important for planning tests and screens to audit the nominal design and
manufacturing specifications, as well as the level of defects introduced by excessive variability in manu-
facturing and material parameters. Numerous studies focusing on material failure mechanisms and
physics-of-failure-based damage models and their role in obtaining reliable electronic products have been
illustrated in a series of tutorials comprising all relevant wearout and overstress failures.9-23

Catastrophic failures due to a single occurrence of a stress event when the intrinsic strength of the material
is exceeded are termed overstress failures. Failure mechanisms due to monotonic accumulation of incre-
mental damage beyond the endurance of the material are termed wearout mechanisms.24 When the damage
exceeds the endurance limit of the component, failure will occur. Unanticipated large stress events can either
cause an overstress (catastrophic) failure, or shorten life by causing the accumulation of wearout damage.
Examples of such stresses are accidental abuse and acts of God. On the other hand, in well-designed and
high-quality hardware, stresses should cause only uniform accumulation of wearout damage; the threshold
of damage required to cause eventual failure should not occur within the usage life of the product.

Electrical performance failures can be caused by individual components with improper electrical
parameters, such as resistance, impedance, capacitance, or dielectric properties, or by inadequate shielding
from electromagnetic interference (EMI) or particle radiation. Failure modes can manifest as reversible
drifts in transient and steady-state responses, such as delay time, rise time, attenuation, signal-to-noise
ratio, and crosstalk. Electrical failures common in electonic hardware include overstress mechanisms due
to electrical overstress (EOS) and electrostatic discharge (ESD), such as dielectric breakdown, junction
breakdown, hot electron injection, surface and bulk trapping, and surface breakdown, and wearout
mechanisms such as electromigration and stress-driven diffusive voiding.

Thermal performance failures can arise due to incorrect design of thermal paths in an electronic
assembly. This includes incorrect conductivity and surface emissivity of individual components, as well
as incorrect convective and conductive paths for heat transfer. Thermal overstress failures are a result of
heating a component beyond critical temperatures such as the glass-transition temperature, melting
point, fictile point, or flash point. Some examples of thermal wearout failures are aging due to depoly-
merization, intermetallic growth, and interdiffusion. Failures due to inadequate thermal design may be
manifested as components running too hot or too cold and causing operational parameters to drift
beyond specifications, although the degradation is often reversible upon cooling. Such failures can be
caused either by direct thermal loads or by electrical resistive loads, which in turn generate excessive
localized thermal stresses. Adequate design checks require proper analysis for thermal stress, and should
include conductive, convective, and radiative heat paths.

Mechanical performance failures include those that may compromise the product performance without
necessarily causing any irreversible material damage, such as abnormal elastic deformation in response
© 2001 by CRC Press LLC

to mechanical static loads, abnormal transient response (such as natural frequency or damping) to
dynamic loads, and abnormal time-dependent reversible (anelastic) response, as well as failures that
cause material damage, such as buckling, brittle and/or ductile fracture, interfacial separation, fatigue
crack initiation and propagation, creep, and creep rupture. To take one example, excessive elastic
deformations in slender structures in electronic packages can sometimes constitute functional failure
due to overstress loads such as excessive flexing of interconnection wires, package lids, or flex circuits
in electronic devices, causing shorting and/or excessive crosstalk. However, when the load is removed,
the deformations (and consequent functional abnormalities) disappear completely without any per-
manent damage.

Radiation failures are principally caused by uranium and thorium contaminants, and secondary cosmic
rays. Radiation can cause wearout, aging, embrittlement of materials, and overstress soft errors in
electronic hardware, such as logic chips. Chemical failures occur in adverse chemical environments that
result in corrosion, oxidation, or ionic surface dendritic growth. There may also be interactions between
different types of stresses. For example, metal migration may be accelerated in the presence of chemical
contaminants and composition gradients, and thermal loads can accelerate a failure mechanism due to
a thermal expansion mismatch.

Failure modes and effects analysis (FMEA) is an evaluation process for analyzing and assessing the
potential failures in a product. Its objectives are to:

1. Identify the causes and effects of each failure mode in every part in the product;
2. Ascertain the effects of each failure mode on product operation and personnel safety;
3. Assess each potential failure according to the effects on other portions of the systems; and
4. Provide a recommendation to eliminate the causes of the failure modes or compensate for their

effects.

Failure effects may be considered at subsystem and at overall system levels.
There are two approaches to FMEA: functional and hardware. The functional approach, which should

be used when the product definition has been identified, begins with the initial product indenture level,
and proceeds downwards through lower levels. The top level shows the gross operational requirements
of the product, while the lower levels represent progressive expansions of the individual functions of the
preceding level. This documentation is prepared down to the level necessary to establish the hardware,
software, facilities, and personnel and data requirements of the system.

The hardware approach to FMEA should be used when the design team has access to schematics,
drawings, and other engineering and design data normally available once the system has matured beyond
the functional design stage. This approach begins with obtaining all the information available on the
design, including specifications, requirements, constraints, intended applications, drawings, stress data,
test results, and so on, to the extent they are available at that time. The approach then proceeds in a part
level-up fashion.

Once the approach for the analysis is selected, the product is defined in terms of a functional block
diagram and a reliability block diagram. If the product operates in more than one mode in which different
functional relationships or part operating modes exist, then these must be considered in the design.
FMEA should involve an analysis of possible sneak circuits in the product, that is, an unexpected path
or logic flow that can initiate an undesired function or inhibit a desired function. Effects of redundancy
must also be considered by evaluating the effects of the failure modes assuming that the redundant system
or subsystem is or is not available. The FMEA is then performed using a worksheet, and working to the
part or subsystem level considered appropriate, keeping the design data available in mind. A fish-bone
diagram of the product, showing all the possible ways in which the product can be expected to fail, is
often used in the process. The analysis should take all the failure modes of every part into account,
especially when the effects of a failure are serious (e.g., high warranty costs, reliability reputation, safety).
FMEA should be started as soon as initial design information is available, and should be performed
iteratively as the design evolves, so that the analysis can be used to improve the design and to provide
documentation of the eventually completed design.
© 2001 by CRC Press LLC

22.7 Design Guidelines and Techniques

Generally, products are replaced with other products, and the replaced product can be used as a baseline
for comparisons with products to be introduced. Lessons learned from the baseline comparison product
can be used to establish new product parameters, to identify areas of focus in new product designs, and
to avoid the mistakes of the past.

Once the parts, materials, processes, and stress conditions are identified, the objective is to design a
product using parts and materials that have been sufficiently characterized in terms of how they perform
over time when subjected to the manufacturing and application profile conditions. Only through a
methodical design approach using physics-of-failure and root-cause analysis can a reliable and cost-
effective product be designed. A physics-of-failure-based reliability assessment tool must exhibit a diverse
array of capabilities:

1. It should be able to predict the reliability of components under a wide range of environmental
conditions;

2. It should be able to predict the time-to-failure for fundamental failure mechanisms; and
3. It should consider the effect of different manufacturing processes on reliability.

All of these can be accomplished by the use of tools such as virtual qualification and accelerated testing.
Design guidelines that are based on physics-of-failure models can also be used to develop tests, screens,
and derating factors. Tests based on physics-of-failure models can be designed to measure specific
quantities, to detect the presence of unexpected flaws, and to detect manufacturing or maintenance
problems. Screens can be designed to precipitate failures in the weak population while not cutting into
the design life of the normal population. Derating or safety factors can be determined to lower the stresses
for the dominant failure mechanisms.

In using design guidelines, there may not be a unique path to follow. Instead, there is a general flow
in the design process. Multiple branches may exist, depending on the input design constraints. The design
team should explore an adequate number of these branches to gain confidence that the final design is
the best for the prescribed input information. The design team should also assess the use of guidelines
for the complete design, and not those limited to specific aspects of an existing design. This does not
imply that guidelines cannot be used to address only a specific aspect of an existing design, but the design
team may have to trace through the implications that a given guideline suggests.

22.7.1 Protective Architectures

In designs where safety is an issue, it is generally desirable to design in some means for preventing a part,
structure, or interconnection from failing, or from causing further damage when it fails. Fuses and circuit
breakers are examples of elements used in electronic products to sense excessive current drain and to
disconnect power from the concerned part. Fuses within circuits safeguard parts against voltage transients
or excessive power dissipation, and protect power supplies from shorted parts. As another example,
thermostats can be used to sense critical temperature limiting conditions, and to shut down the product
or a part of the system until the temperature returns to normal. In some products, self-checking circuitry
can also be incorporated to sense abnormal conditions and make adjustments to restore normal condi-
tions, or to activate switching means to compensate for the malfunction.6

In some instances, it may be desirable to permit partial operation of the product after a part failure
in preference to total product failure. By the same reasoning, degraded performance of a product after
failure of a part is often preferable to complete stoppage. An example is the shutting down of a failed
circuit whose function is to provide precise trimming adjustment within a deadband* of another control

*When the input in a control system changes direction, an initial change in the input has no effect on the output.
This amount of side-to-side play in the system for which there is no change in the output is referred to as the
deadband. The deadband is centered about the output.
© 2001 by CRC Press LLC

product; acceptable performance may thus be achieved, perhaps under emergency conditions, with the
deadband control product alone.6

Sometimes, the physical removal of a part from a product can harm or cause failure in another part
by removing either load, drive, bias, or control. In such cases, the first part should be equipped with
some form of interlock mechanism to shut down or otherwise protect the second part. The ultimate
design, in addition to its ability to act after a failure, should be capable of sensing and adjusting for
parametric drifts to avert failures.

In the use of protective techniques, the basic procedure is to take some form of action, after an initial
failure or malfunction, to prevent additional or secondary failures. By reducing the number of failures,
techniques such as enhancing product reliability can be considered, although they also affect availability
and product effectiveness. Equally important considerations are the impacts of maintenance, repair, and
part replacement. For example, if a fuse protecting a circuit is replaced, the following questions need to
be answered: What is the impact when the product is re-energized? What protective architectures are
appropriate for postrepair operations? What maintenance guidance must be documented and followed
when fail-safe protective architectures have or have not been included?

22.7.2 Stress Margins

A properly designed product should be capable of operating satisfactorily with parts that drift or change
with variables such as time, temperature, humidity, pressure, altitude, etc. as long as the interconnects
and the other parameters of the parts are within their rated tolerances. To guard against out-of-tolerance
failures, the design team must consider the combined effects of tolerances on parts to be used in
manufacture, of subsequent changes due to the range of expected environmental conditions, of drifts
due to aging over the period of time specified in the reliability requirement, and of tolerances in parts
used in future repair or maintenance functions. Parts and structures should be designed to operate
satisfactorily at the extremes of the parameter ranges, and allowable ranges must be included in the
procurement or reprocurement specifications.

Statistical analysis and worst-case analysis are methods of dealing with part and structural parameter
variations. In statistical analysis, a functional relationship is established between the output characteristics
of the structure and the parameters of one or more of its parts. In worst-case analysis, the effect that a
part has on product output is evaluated on the basis of end-of-life performance values or out-of-
specification replacement parts.

22.7.3 Derating

Derating is a technique by which either the operational stresses acting on a device or structure are reduced
relative to the rated strength, or the strength is increased relative to the allocated operating stress levels.
Reducing the stress is achieved by specifying upper limits on the operating loads below the rated capacity
of the hardware. For example, manufacturers of electronic hardware often specify limits for supply voltage,
output current, power dissipation, junction temperature, and frequency. The equipment design team
may decide to select an alternative component or make a design change that ensures that the operational
condition for a particular parameter, such as temperature, is always below the rated level. The component
is then said to have been derated for thermal stress.

The derating factor, typically defined as the ratio of the rated level of a given stress parameter to its
actual operating level, is actually a margin of safety or margin of ignorance, determined by the criticality
of any possible failures and by the amount of uncertainty inherent in the reliability model and its inputs.
Ideally, this margin should be kept to a minimum to maintain the cost-effectiveness of the design. This
puts the responsibility on the reliability engineer to identify the rated strength, the relevant operating
stresses, and the reliability as unambiguously as possible.

To be effective, derating criteria must target the right stress parameter to address modeling of the
relevant failure mechanisms. Field measurements may also be necessary, in conjunction with modeling
© 2001 by CRC Press LLC

simulations, to identify the actual operating stresses at the failure site. Once the failure models have been
quantified, the impact of derating on the effective reliability of the component for a given load can be
determined. Quantitative correlations between derating and reliability enable design teams and users to
effectively tailor the margin of safety to the level of criticality of the component, leading to better and
more cost-effective use of the functional capacity of the component.

22.7.4 Redundancy

Redundancy permits a product to operate even though certain parts and interconnections have failed,
thus increasing its reliability and availability. Redundant configurations can be classified as either active
or standby. Elements in active redundancy operate simultaneously in performing the same function.
Elements in standby redundancy are designed so that an inactive one will, or can, be switched into service
when an active element fails. The reliability of the associated function increases with the number of
standby elements (optimistically assuming that the sensing and switching devices of the redundant
configuration are working perfectly, and that the failed redundant components are replaced before their
companion components fail).

A design team may often find that redundancy is

• The quickest way to improve product reliability if there is insufficient time to explore alternatives,
or if the part is already designed;

• The cheapest solution, if the cost of redundancy is economical in comparison with the cost of
redesign; and/or

• The only solution, if the reliability requirement is beyond the state of the art.

On the other hand, in weighing its disadvantages, the design team may find that redundancy will:

• Prove too expensive, if the parts, redundant sensors, and switching devices are costly;

• Exceed the limitations on size and weight;

• Exceed the power limitations, particularly in active redundancy;

• Attenuate the input signal, requiring additional amplifiers (which increase complexity); and/or

• Require sensing and switching circuitry so complex as to offset the reliability advantage of redundancy.

22.8 Qualification and Accelerated Testing

Qualification includes all activities that ensure that the nominal design and manufacturing specifications
will meet or exceed the desired reliability targets. Qualification validates the ability of the nominal design
and manufacturing specifications of the product to meet the customer’s expectations, and assesses the
probability of survival of the product over its complete life cycle. The purpose of qualification is to define
the acceptable range of variabilities for all critical product parameters affected by design and manufac-
turing, such as geometric dimensions, material properties, and operating environmental limits. Product
attributes that are outside the acceptable ranges are termed defects, since they have the potential to
compromise product reliability.25

Qualification tests should be performed only during initial product development, and immediately
after any design or manufacturing changes in an existing product. Once the product is qualified, routine
lot-to-lot requalification is redundant and an unnecessary cost item. A well-designed qualification
procedure provides economic savings and quick turnaround during development of new products or
mature products subject to manufacturing and process changes.

Investigating failure mechanisms and assessing the reliability of products where longevity is required
may be a challenge, since a very long test period under the actual operating conditions is necessary to
obtain sufficient data to determine actual failure characteristics. One approach to the problem of obtain-
ing meaningful qualification data for high-reliability devices in shorter time periods is using methods
such as virtual qualification and accelerated testing to achieve test-time compression. However, when
© 2001 by CRC Press LLC

qualifying the reliability of a product for overstress mechanisms, a single cycle of the expected overstress
load may be adequate, and acceleration of test parameters may not be necessary. This is sometimes called
proof-stress testing.

22.8.1 Virtual Qualification

Virtual qualification is a process that requires significantly less time and money than accelerated testing
to qualify a part for its life cycle environment. This simulation-based methodology is used to identify
and rank the dominant failure mechanisms associated with the part under life cycle loads, to determine
the acceleration factor for a given set of accelerated test parameters, and to determine the time-to-failure
corresponding to the identified failure mechanisms. Each failure model comprises a stress analysis model
and a damage assessment model. The output is a ranking of different failure mechanisms, based on the
time-to-failure. The stress model captures the product architecture, while the damage model depends
on a material’s response to the applied stress. This process is therefore applicable to existing as well as
new products. The objective of virtual qualification is to optimize the product design in such a way that
the minimum time-to-failure of any part of the product is greater than its desired life. Although the data
obtained from virtual qualification cannot fully replace those obtained from physical tests, it can increase
the efficiency of physical tests by indicating the potential failure modes and mechanisms that the operator
can expect to encounter.

Ideally, a virtual qualification process will involve identification of quality suppliers, computer-aided
physics-of-failure qualification, and a risk assessment and mitigation program. The process allows qual-
ification to be readily incorporated into the design phase of product development, since it allows design,
test, and redesign to be conducted promptly and cost-effectively. It also allows consumers to qualify off-
the-shelf components for use in specific environments without extensive physical tests. Since virtual
qualification reduces emphasis on examining a physical sample, it is imperative that the manufacturing
technology and quality assurance capability of the manufacturer be taken into account. The manufac-
turer’s design, production, test, and measurement procedures must be evaluated and certified. If the data
on which the virtual qualification is performed are inaccurate or unreliable, all results are suspect. In
addition, if a reduced quantity of physical tests is performed in the interest of simply verifying virtual
results, the operator needs to be confident that the group of parts selected is sufficient to represent the
product. Further, it should be remembered that the accuracy of the results using virtual qualification
depends on the accuracy of the inputs to the process, i.e., the accuracy of the life cycle loads, the choice
of the failure models used, the choice of the analysis domain (for example, 2D, pseudo-3D, full 3D), the
constants in the failure model, the material properties, and so on. Hence, to obtain a reliable prediction,
the variabilities in the inputs should be specified using distribution functions, and the validity of the
failure models should be tested by conducting accelerated tests.

22.8.2 Accelerated Testing

Accelerated testing involves measuring the performance of the test product at loads or stresses that are
more severe than would normally be encountered, to enhance the damage accumulation rate within a
reduced time period. The goal of such testing is to accelerate time-dependent failure mechanisms and
the damage accumulation rate to reduce the time to failure. The failure mechanisms and modes in the
accelerated environment must be the same as (or quantitatively correlated with) those observed under
actual usage conditions, and it must be possible to quantitatively extrapolate from the accelerated
environment to the usage environment with some reasonable degree of assurance.

Accelerated testing begins by identifying all the possible overstress and wearout failure mechanisms.
The load parameter that directly causes the time-dependent failure is selected as the acceleration param-
eter, and is commonly called the accelerated load. Common accelerated loads include thermal loads, such
as temperature, temperature cycling, and rates of temperature change; chemical loads, such as humidity,
corrosives, acid, and salt; electrical loads, such as voltage, or power; and mechanical loads, such as
vibration, mechanical load cycles, strain cycles, and shock/impulses. The accelerated environment may
© 2001 by CRC Press LLC

include a combination of these loads. Interpretation of results for combined loads requires a quantitative
understanding of their relative interactions and the contribution of each load to the overall damage.

Failure due to a particular mechanism can be induced by several acceleration parameters. For example,
corrosion can be accelerated by both temperature and humidity; and creep can be accelerated by both
mechanical stress and temperature. Furthermore, a single accelerated stress can induce failure by several
wearout mechanisms simultaneously. For example, temperature can accelerate wearout damage accumu-
lation not only by electromigration, but also by corrosion, creep, and so on. Failure mechanisms that
dominate under usual operating conditions may lose their dominance as the stress is elevated. Conversely,
failure mechanisms that are dormant under normal use conditions may contribute to device failure under
accelerated conditions. Thus, accelerated tests require careful planning if they are to represent the actual
usage environments and operating conditions without introducing extraneous failure mechanisms or
nonrepresentative physical or material behavior. The degree of stress acceleration is usually controlled
by an acceleration factor, defined as the ratio of the life of the product under normal use conditions to
that under the accelerated condition. The acceleration factor should be tailored to the hardware in
question, and can be estimated from an acceleration transform (that is, a functional relationship between
the accelerated stress and the life cycle stress), in terms of all the hardware parameters.

Once the failure mechanisms are identified, it is necessary to select the appropriate acceleration load;
to determine the test procedures and the stress levels; to determine the test method, such as constant
stress acceleration or step-stress acceleration; to perform the tests; and to interpret the test data, which
includes extrapolating the accelerated test results to normal operating conditions. The test results provide
failure information for improving the hardware through design and/or process changes. Accelerated
testing includes:

• Accelerated test planning and development: Accelerated test planning and development is used to
develop a test program that focuses on the potential failure mechanisms and modes that were
identified during virtual qualification as the weak links under life cycle loads. The various issues
addressed in this phase include designing the test matrix and test loads, analysis, design and
preparation of the test device, setting up the test facilities (e.g., test platforms, stress monitoring
schemes, failure monitoring and data acquisition schemes), fixture design, effective sensor place-
ment, and data collection and post-processing schemes.

• Test device characterization: Test device characterization is used to identify the contribution of
the environment on the test device in the accelerated life tests.

• Accelerated life testing: Accelerated life testing evaluates the vulnerability of the product to the
applied life cycle due to wearout failure mechanisms. This step yields a meaningful assessment of
life cycle durability only if it is preceded by the steps discussed above. Without these steps,
accelerated life testing can only provide comparisons between alternate designs if the same failure
mechanism is precipitated.

• Life assessment: Life assessment is used to provide a scientific and rational method to understand and
extrapolate accelerated life testing failure data to estimate the life of the product in the field environment.

Detailed failure analysis of failed samples is a crucial step in the qualification and validation program.
Without such analyses and feedback to the design team for corrective action, the purpose of the quali-
fication program is defeated. In other words, it is not adequate to simply collect failure data. The key is
to use the test results to provide insights into, and consequent control over, relevant failure mechanisms
and to prevent them, cost-effectively.

22.9 Manufacturing Issues

Manufacturing and assembly processes can significantly impact the quality and reliability of hardware.
Improper assembly and manufacturing techniques can introduce defects, flaws, and residual stresses that
act as potential failure sites or stress raisers later in the life of the product. If these defects and stresses
© 2001 by CRC Press LLC

can be identified, the design analyst can proactively account for them during the design and development
phase.

Auditing the merits of the manufacturing process involves two crucial steps. First, qualification pro-
cedures are required, as in design qualification, to ensure that manufacturing specifications do not
compromise the long-term reliability of the hardware. Second, lot-to-lot screening is required to ensure
that the variabilities of all manufacturing-related parameters are within specified tolerances.25,26 In other
words, screening ensures the quality of the product by precipitating latent defects before they reach the
field.

22.9.1 Process Qualification

Like design qualification, process qualification should be conducted at the prototype development phase.
The intent at this step is to ensure that the nominal manufacturing specifications and tolerances produce
acceptable reliability in the product. The process needs requalification when process parameters, mate-
rials, manufacturing specifications, or human factors change.

Process qualification tests can be the same set of accelerated wearout tests used in design qualification.
As in design qualification, overstress tests may be used to qualify a product for anticipated field overstress
loads. Overstress tests may also be exploited to ensure that manufacturing processes do not degrade the
intrinsic material strength of hardware beyond a specified limit. However, such tests should supplement,
not replace, the accelerated wearout test program, unless explicit physics-based correlations are available
between overstress test results and wearout field-failure data.

22.9.2 Manufacturability

The control and rectification of manufacturing defects has typically been the concern of production and
process-control engineers, but not of the design team. In the spirit and context of concurrent product
development, however, hardware design teams must understand material limits, available processes, and
manufacturing process capabilities to select materials and construct architectures that promote produc-
ibility and reduce the occurrence of defects, increasing yield and quality. Therefore, no specification is
complete without a clear discussion of manufacturing defects and acceptability limits. The reliability
engineer must have clear definitions of the threshold for acceptable quality, and of what constitutes
nonconformance. Nonconformance that compromises hardware performance and reliability is consid-
ered a defect. Failure mechanism models provide a convenient vehicle for developing such criteria. It is
important for the reliability analyst to understand which deviations from specifications can compromise
performance or reliability, and which deviations are benign and can be accepted.

A defect is any outcome of a process (manufacturing or assembly) that impairs or has the potential
to impair the functionality of the product at any time. The defect may arise during a single process or
may be the result of a sequence of processes. The yield of a process is the fraction of products that are
acceptable for use in a subsequent manufacturing sequence or product life cycle. The cumulative yield
of the process is approximately determined by multiplying the individual yields of each of the individual
process steps. The source of defects is not always apparent, because defects resulting from a process can
go undetected until the product reaches some downstream point in the process sequence, especially if
screening is not employed.

It is often possible to simplify the manufacturing and assembly processes to reduce the probability of
workmanship defects. As processes become more sophisticated, however, process monitoring and control
are necessary to ensure a defect-free product. The bounds that specify whether the process is within
tolerance limits, often referred to as the process window, are defined in terms of the independent variables
to be controlled within the process and the effects of the process on the product or the dependent product
variables. The goal is to understand the effect of each process variable on each product parameter to
formulate control limits for the process, that is, the points on the variable scale where the defect rate
begins to possess a potential for causing failure. In defining the process window, the upper and lower
© 2001 by CRC Press LLC

limits of each process variable beyond which it will produce defects must be determined. Manufacturing
processes must be contained in the process window by defect testing, analysis of the causes of defects,
and elimination of defects by process control, such as by closed-loop corrective action systems. The
establishment of an effective feedback path to report process-related defect data is critical. Once this is
done and the process window is determined, the process window itself becomes a feedback system for
the process operator.

Several process parameters may interact to produce a different defect than would have resulted from
an individual parameter acting independently. This complex case may require that the interaction of
various process parameters be evaluated in a matrix of experiments. In some cases, a defect cannot be
detected until late in the process sequence. Thus, a defect can cause rejection, rework, or failure of the
product after considerable value has been added to it. These cost items due to defects can return on
investments by adding to hidden factory costs. All critical processes require special attention for defect
elimination by process control.

22.9.3 Process Verification Testing

Process verification testing is often called screening. Screening involves 100% auditing of all manufactured
products to detect or precipitate defects. The aim of this step is to preempt potential quality problems
before they reach the field. In principle, screening should not be required for a well-controlled process.
When uncertainties are likely in process controls, however, screening is often used as a safety net.

Some products exhibit a multimodal probability density function for failures, with a secondary peak
during the early period of their service life due to the use of faulty materials, poorly controlled manu-
facturing and assembly technologies, or mishandling. This type of early-life failure is often called infant
mortality. Properly applied screening techniques can successfully detect or precipitate these failures,
eliminating or reducing their occurrence in field use. Screening should only be considered for use during
the early stages of production, if at all, and only when products are expected to exhibit infant mortality
field failures. Screening will be ineffective and costly if there is only one main peak in the failure probability
density function. Further, failures arising due to unanticipated events such as acts of God (lightning,
earthquakes) may be impossible to screen cost-effectively.

Since screening is done on a 100% basis, it is important to develop screens that do not harm good
components. The best screens, therefore, are nondestructive evaluation techniques, such as microscopic
visual exams, X-rays, acoustic scans, nuclear magnetic resonance (NMR), electronic paramagnetic reso-
nance (EPR), and so on. Stress screening involves the application of stresses, possibly above the rated
operational limits. If stress screens are unavoidable, overstress tests are preferred to accelerated wearout
tests, since the latter are more likely to consume some useful life of good components. If damage to good
components is unavoidable during stress screening, then quantitative estimates of the screening damage,
based on failure mechanism models must be developed to allow the design team to account for this loss
of usable life. The appropriate stress levels for screening must be tailored to the specific hardware. As in
qualification testing, quantitative models of failure mechanisms can aid in determining screen parameters.

A stress screen need not necessarily simulate the field environment, or even utilize the same failure
mechanism as the one likely to be triggered by this defect in field conditions. Instead, a screen should
exploit the most convenient and effective failure mechanism to stimulate the defects that can show up
in the field as infant mortality. Obviously, this requires an awareness of the possible defects that may
occur in the hardware and extensive familiarity with the associated failure mechanisms.

Unlike qualification testing, the effectiveness of screens is maximized when screens are conducted
immediately after the operation believed to be responsible for introducing the defect. Qualification testing
is preferably conducted on the finished product or as close to the final operation as possible; on the other
hand, screening only at the final stage, when all operations have been completed, is less effective, since
failure analysis, defect diagnostics, and troubleshooting are difficult and impair corrective actions. Fur-
ther, if a defect is introduced early in the manufacturing process, subsequent value added through new
materials and processes is wasted, which additionally burdens operating costs and reduces productivity.
© 2001 by CRC Press LLC

Admittedly, there are also several disadvantages to such an approach. The cost of screening at every
manufacturing station may be prohibitive, especially for small batch jobs. Further, components will
experience repeated screening loads as they pass through several manufacturing steps, which increases
the risk of accumulating wearout damage in good components due to screening stresses. To arrive at a
screening matrix that addresses as many defects and failure mechanisms as feasible with each screen test,
an optimum situation must be sought through analysis of cost-effectiveness, risk, and the criticality of
the defects. All defects must be traced back to the root cause of the variability.

Any commitment to stress screening must include the necessary funding and staff to determine the
root cause and appropriate corrective actions for all failed units. The type of stress screening chosen
should be derived from the design, manufacturing, and quality teams. Although a stress screen may be
necessary during the early stages of production, stress screening carries substantial penalties in capital,
operating expense, and cycle time, and its benefits diminish as a product approaches maturity. If almost
all of the products fail in a properly designed screen test, the design is probably incorrect. If many products
fail, a revision of the manufacturing process is required. If the number of failures in a screen is small,
the processes are likely to be within tolerances and the observed faults may be beyond the resources of
the design and production process.

22.10 Summary

Reliability is not a matter of chance or good fortune; rather, it is a rational consequence of conscious,
systematic, rigorous efforts at every stage of design, development, and manufacture. High product
reliability can only be assured through robust product designs, capable processes that are known to be
within tolerances, and qualified components and materials from vendors whose processes are also
capable and within tolerances. Quantitative understanding and modeling of all relevant failure mech-
anisms provide a convenient vehicle for formulating effective design, process, and test specifications
and tolerances.

The physics-of-failure approach is not only a tool to provide better and more effective designs, but it
also helps develop cost-effective approaches for improving the entire approach to building electronic
products. Proactive improvements can be implemented for defining more realistic performance require-
ments and environmental conditions, identifying and characterizing key material properties, developing
new product architectures and technologies, developing more realistic and effective accelerated stress
tests to audit reliability and quality, enhancing manufacturing-for-reliability through mechanistic process
modeling and characterization to allow pro-active process optimization, increasing first-pass yields, and
reducing hidden factory costs associated with inspection, rework, and scrap.

When utilized early in the concept stage of a product’s development, reliability serves as an aid to
determine feasibility and risk. In the design stage of product development, reliability analysis involves
methods to enhance performance over time through the selection of materials, design of structures,
choice of design tolerance, manufacturing processes and tolerances, assembly techniques, shipping and
handling methods, and maintenance and maintainability guidelines. Engineering concepts such as
strength, fatigue, fracture, creep, tolerances, corrosion, and aging play a role in these design analyses.
The use of physics-of-failure concepts coupled with mechanistic and probabilistic techniques are often
required to understand the potential problems and trade-offs, and to take corrective actions. The use of
factors of safety and worst-case studies as part of the analysis is useful in determining stress screening
and burn-in procedures, reliability growth, maintenance modifications, field testing procedures, and
various logistics requirements.

Defining Terms

Accelerated testing: Tests conducted at stress levels that are more severe than the normal operating levels,
in order to enhance the damage accumulation rate within a reduced time period.

Damage: The extent of a product’s degradation or deviation from a defect-free state.
© 2001 by CRC Press LLC

Derating: Practice of subjecting parts to lower electrical or mechanical stresses than they can withstand
to increase the life expectancy of the part.

Failure mechanism: A process (such as creep, fatigue, or wear) through which a defect nucleates and
grows as a function of stresses (such as thermal, mechanical, electromagnetic, or chemical loadings)
ultimately resulting in the degradation or failure of a product.

Failure mode: Any physically observable change caused by a failure mechanism.
Integrity: A measure of the appropriateness of the tests conducted by the manufacturer and the part’s

ability to survive those tests.
Overstress failures: Catastrophic sudden failures due to a single occurrence of a stress event that exceeds

the intrinsic strength of a material.
Product performance: The ability of a product to perform as required according to specifications.
Qualification: All activities that ensure that the nominal design and manufacturing specifications will

meet or exceed the reliability goals.
Quality: A measure of a part’s ability to meet the workmanship criteria of the manufacturer.
Reliability: The ability of a product to perform as intended (i.e., without failure and within specified

performance limits) for a specified time, in its life cycle application environment.
Wearout failures: Failures due to accumulation of incremental damage, occurring when the accumulated

damage exceeds the material endurance limit.

References

1. Pecht, M., Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines—A Focus
on Reliability, John Wiley & Sons, New York, 1994.

 2. O’Connor, P., Practical Reliability Engineering, John Wiley & Sons, New York, 1991.
3. Jackson, M., Mathur, A., Pecht, M., and Kendall, R., Part Manufacturer Assessment Process, Qual.

Reliab. Eng. Int., 15, 457, 1999.
4. Jackson, M., Sandborn, P., Pecht, M., Hemens-Davis, C., and Audette, P., A Risk-Informed Meth-

odology for Parts Selection and Management, Qual. and Reliab. Eng. Int., 15, 261, 1999.
5. Lewis, E.E., Introduction to Reliability Engineering, John Wiley & Sons, New York, 1996.
6. Sage, A.P. and Rouse, W.B., Handbook of Systems Engineering and Management, John Wiley & Sons,

New York, 1999.
7. IEC Standard 60134, Rating systems for electronic tubes and valves and analogous semiconductor

devices, (Last reviewed in July 1994 by the IEC Technical Committee 39 on Semiconductors), 1961.
8. Stogdill, R. C., Dealing with obsolete parts. IEEE Des. Test Comput., 16(2), 17, 1999.
9. Dasgupta, A. and Pecht, M., Failure mechanisms and damage models, IEEE Trans. Reliab., 40(5),

531, 1991.
10. Dasgupta, A. and Hu, J.M., Failure mechanism models for brittle fracture, IEEE Trans. Reliab.,

41(3), 328, 1992.
11. Dasgupta, A. and Hu, J.M., Failure mechanism models for ductile fracture, IEEE Trans. Reliab.,

41(4), 489, 1992.
12. Dasgupta, A. and Hu, J.M., Failure mechanism models for excessive elastic deformation, IEEE

Trans. Reliab., 41(1), 149, 1992.
13. Dasgupta, A. and Hu, J.M., Failure mechanism models for plastic deformation, IEEE Trans. Reliab.,

41(2), 168, 1992.
14. Dasgupta, A. and Haslach, H.W., Jr., Mechanical design failure models for buckling, IEEE Trans.

Reliab., 42(1), 9, 1993.
15. Engel, P.A., Failure models for mechanical wear modes and mechanisms, IEEE Trans. Reliab., 42(2),

262, 1993.
16. Li, J. and Dasgupta, A., Failure mechanism models for material aging due to interdiffusion, IEEE

Trans. Reliab., 43(1), 2, 1994.
© 2001 by CRC Press LLC

17. Li, J. and Dasgupta, A., Failure-mechanism models for creep and creep rupture, IEEE Trans. Reliab.,
42(3), 339, 1994.

18. Dasgupta, A., Failure mechanism models for cyclic fatigue, IEEE Trans. Reliab., 42(4), 548, 1993.
19. Young, D. and Christou, A., Failure mechanism models for electromigration, IEEE Trans. Reliab.,

43(2), 186, 1994.
20. Rudra, B. and Jennings, D., Failure mechanism models for conductive-filament formation, IEEE

Trans. Reliab., 43(3), 354, 1994.
21. Al-Sheikhly, M. and Christou, A., How radiation affects polymeric materials, IEEE Trans. Reliab.,

43(4), 551, 1994.
22. Diaz, C., Kang, S.M., and Duvvury, C., Electrical overstress and electrostatic discharge, IEEE Trans.

Reliab., 44(1), 2, 1995.
23. Tullmin, M. and Roberge, P.R., Corrosion of metallic materials, IEEE Trans. Reliab., 44(2), 271,

1995.
24. Upadhyayula, K. and Dasgupta, A., Guidelines for physics-of-failure based accelerated stress testing,

Annu. Reliab. Maintainability Symp. 1998 Proc., Int. Symp. Prod. Qual. Integrity, 345, 1998.
25. Pecht, M., Dasgupta, A., Evans, J. W., and Evans, J. Y., Quality Conformance and Qualification of

Microelectronic Packages and Interconnects, John Wiley & Sons, New York, 1994.
26. Kraus, A., Hannemann, R., Pecht, M., Semiconductor Packaging: A Multidisciplinary Approach, John

Wiley & Sons, New York, 1994.

Further Information

Microelectronics Reliability: http://www.elsevier.com/locate/microrel
IEEE Transactions on Reliability: http://www.ewh.ieee.org/soc/rs/transactions.htm
© 2001 by CRC Press LLC

Frank McCormick “Certification of Civil Avionics”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

23
Certification of Civil

Avionics

23.1 Introduction
23.2 Regulatory Basis of the Federal Aviation

Administration
23.3 FAA Approvals of Avionics Equipment

Technical Standard Order • Supplemental Type Certificate •
Type Certificate, Amended Type Certificate,
and Service Bulletin

23.4 FAA Designees
23.5 System Requirements
23.6 Safety Assessment
23.7 Environmental Qualification
23.8 Software Assurance
23.9 Manufacturing Approvals
23.10 The Joint Aviation Authorities
23.11 Summary
Defining Terms
Further Information

23.1 Introduction

Almost all aspects of the design, production, and operation of civil aircraft are subject to extensive
regulation by governments. This chapter describes the most significant regulatory involvement a devel-
oper is likely to encounter in the certification of avionics.

Certification is a critical element in the safety-conscious culture on which civil aviation is based. The
legal purpose of avionics certification is to document a regulatory judgment that a device meets all
applicable regulatory requirements and can be manufactured properly. At another level, beneath the
legal and administrative machinery of regulatory approval, certification can be regarded differently. It
can be thought of as an attempt to predict the future. New equipment proposed for certification has
no service history. Certification tries, in effect, to provide credible predictions of future service experi-
ence for new devices — their influences on flight crews, their safety consequences, their failure rates,
and their maintenance needs. Certification is not a perfect predictor, but historically it has been quite
a good one.

In this chapter, for the most part, certification activities appropriate to the U.S. Federal Aviation
Administration (FAA) are discussed. However, be aware that the practices of civil air authorities elsewhere,
while generally similar to those of the FAA, often differ in detail or scope. Toward the end of this chapter,

Frank McCormick
Certification Services, Inc.
© 2001 by CRC Press LLC

some differences between the FAA and the European Joint Aviation Authorities, or JAA, headquartered
in Hoofddorp, the Netherlands, will be illustrated.

Expensive misunderstandings can result from differences among regulators. Moreover, the rules and
expectations of every authority, the FAA included, change over time. For current guidance, authoritative
sources should be consulted.

This chapter discusses the following topics:

• The FAA regulatory basis

• The Technical Standard Order (TSO) system for equipment approval

• The Supplemental Type Certificate (STC) system for aircraft modification

• Use of FAA designees in lieu of FAA personnel

• System requirements definition

• Safety assessments

• Environmental qualification

• Software assurance

• Production approvals

• The Joint Aviation Authorities

Conceptually, the certification of avionics is straightforward, indeed almost trivial: the applicant simply
defines the product, establishes its regulatory requirements, and demonstrates that those requirements have
been met. The reality is, of course, more problematic.

It is a truism that for any proposed avionics system a suitable market must exist. As with any commercial
pursuit, adequate numbers of avionics units must be sold at margins sufficient to recover investments
made in the product. Development costs must be controlled if the project is to survive. Warranty and
support costs must be predicted and managed. The choices made in each of these areas will affect and
be affected by certification.

This chapter is an introduction to certification of avionics. It is not a complete treatment of the subject.
Some important topics are discussed only briefly. Many situations that come up in real-life certification
projects are not addressed.

Good engineering should not be confused with good certification. A new avionics device can be
brilliantly conceived and flawlessly designed, yet ineligible for certification. Good engineering is a pre-
requisite to good certification, but the two are not synonymous.

Certification has a strong legalistic element and is more craft than science. Almost every project raises
some odd regulatory-approval quirk during its development. Certification surprises are rarely pleasant,
but surprises can be minimized or eliminated by maintaining open and honest communication with the
cognizant regulators.

23.2 Regulatory Basis of the Federal Aviation Administration

The FAA, created in 1958, acts primarily through publication and enforcement of the Federal Aviation
Regulations, or FARs. FARs are organized by sections known as Parts. The FAR Parts covering most
avionics-related activity are listed below:

• Part 1 — Definitions and Abbreviations

• Part 21 — Certification Procedures for Products and Parts

• Part 23 — Airworthiness Standards: Normal, Utility, Acrobatic, and Commuter Category Airplanes

• Part 25 — Airworthiness Standards: Transport Category Airplanes

• Part 27 — Airworthiness Standards: Normal Category Rotorcraft

• Part 29 — Airworthiness Standards: Transport Category Rotorcraft

• Part 33 — Airworthiness Standards: Aircraft Engines
© 2001 by CRC Press LLC

• Part 34 — Fuel Venting and Exhaust Emission Requirements for Turbine Engine-Powered Airplanes

• Part 39 — Airworthiness Directives

• Part 91 — General Operating and Flight Rules

• Part 121 — Operating Requirements: Domestic, Flag, and Supplemental Operations

• Part 183 — Representatives of the Administrator

Only a subset of these regulations will apply to any given project. Much of the job of managing a
certification program well lies in identifying the complete but minimum set of regulations applicable
to a project.

23.3 FAA Approvals of Avionics Equipment

The FARs provide several different forms of approval for electronic devices installed aboard civil aircraft.
Of these, most readers will be concerned primarily with approvals under the Technical Standard Order
(TSO) system, approvals under a Supplemental Type Certificate (STC), or approvals as part of a Type
Certificate, Amended Type Certificate, or Service Bulletin.*

23.3.1 Technical Standard Order

An approval under the Technical Standard Order (TSO) system is common. TSOs are regulatory instruments
that recognize the broad use of certain classes of products, parts, and devices. TSOs apply to more than
avionics; they can apply to any product with the potential for wide use, from seat belts and fire extin-
guishers to tires and oxygen masks. Indeed, that is the guiding principle behind TSOs — they must be
widely useful. Considerable FAA effort goes into the sponsorship and adoption of a TSO. The agency
would have little interest in publishing a TSO for a device with limited application.

TSOs contain product specifications, required data submittals, marking requirements, and various
instructions and limitations. Many TSOs are associated with avionics: flight-deck instruments, commu-
nications radios, ILS receivers, navigation equipment, collision avoidance systems, and flight data record-
ers, to name just a few.

TSO-C113, “Airborne Multipurpose Electronic Displays,” is representative of avionics TSOs. Electronic
display systems are used for various purposes: display of attitude, airspeed, or altitude, en route navigation
display, guidance during precision approach, display of engine data or aircraft status, maintenance alerts,
passenger entertainment, and so on. The same physical display device could potentially be used for any
or all of these functions, and on many different aircraft types. Recognizing this broad applicability, the
FAA published TSO-C113 so that developers could more easily adapt a generic display device to a variety
of applications. TSO-C113 is typical, calling out requirements for the following data:

• Explanation of applicability

• Exceptions and updated wording

• References to related regulations, data, and publications

• Requirements for environmental testing

• Requirements for software design assurance

• Requirements for the marking of parts

• Operating instructions

• Equipment limitations

• Installation procedures and limitations

• Schematics and wiring diagrams

• Equipment specifications

*Newly developed equipment has sometimes been installed as part of a field approval under an FAA Form 337,
though this has become rarer and is disallowed in most cases.
© 2001 by CRC Press LLC

• Parts lists

• Drawing list

• Equipment calibration procedures

• Corrective maintenance procedures

When an avionics manufacturer applies for a TSO approval, and the manufacturer’s facilities and data
comply with the terms of the TSO, the manufacturer receives a TSO Authorization from the FAA. A TSO
Authorization represents approval of both design data and manufacturing rights. That is, the proposed
device is deemed to be acceptable in its design, and the applicant has demonstrated the ability to produce
identical units.

In TSO-based projects, the amount of data actually submitted to the FAA varies by system type, by
the FAA’s experience with particular applicants, and by FAA region. In one case, an applicant might be
required to submit a great deal of certification data; in another, a one-page letter from an applicant might
be adequate for issuance of a TSO Authorization. On any new project, it is unwise to presume that all
regulatory requirements are known. Consistency is a high priority for the FAA, but regional differences
among agency offices do exist. Early discussion with the appropriate regulators will ensure that the
expectations of agency and applicant are mutually understood and agreed on.

For more information on TSOs, see FAA Advisory Circular 20-110J, ‘‘Index of Aviation Technical
Standard Orders;’’ FAA Order 8110.31, ‘‘TSO Minimum Performance Standard;’’ and FAA Order 8150.1,
‘‘Technical Standard Order Procedures.’’

Note that a TSO does not grant approval for installation in an aircraft. Although data approved under
a TSO can be used to support an installation approval, the TSO Authorization itself applies only to the
equipment in question. Installation approvals must be pursued through other means (see next section)
and are not necessarily handled by an avionics equipment manufacturer.

23.3.2 Supplemental Type Certificate

A Supplemental Type Certificate (STC) is usually granted to someone other than the aircraft manufac-
turer, who wishes to modify the design of an existing aircraft. Retrofits and upgrades of avionics equip-
ment are common motivations for seeking STC approvals from the FAA.

In an STC, the applicant is responsible for all aspects of an aircraft modification. Those aspects typically
include the following:

• Formal application for a Supplemental Type Certificate (STC)

• Negotiation of the certification basis of the relevant aircraft with the FAA

• Identification of any items requiring unusual regulatory treatment

• Preparation of a certification plan

• Performance of all analyses specified in the certification plan

• Coordination with the FAA throughout the project

• Physical modification of aircraft configuration

• Performance of all conformity and compliance inspections

• Performance of all required lab, ground, and flight testing

• Preparation of flight manual supplements

• Preparation of instructions needed for continued airworthiness

• Preparation of a certification summary

• Support of all production approvals

An applicant for an STC must be ‘‘a U.S. entity,’’ although the exact meaning of this phrase is not
always clear. One common case is that of a nominally foreign firm with an office in the U.S. It is acceptable
to the FAA for that U.S.-based office to apply for and hold an STC.
© 2001 by CRC Press LLC

An applicant for an STC begins the process officially by completing and submitting FAA Form 8110-12,
‘‘Application for Type Certificate, Production Certificate, or Supplemental Type Certificate,’’ to the cognizant
FAA Aircraft Certification Office. Accompanying the application should be a description of the project
and the aircraft type(s) involved, the project schedule, a list of locations where design and installation
will be performed, a list of proposed Designees (discussed later in this chapter), and, if desired, a request
for an initial meeting with the FAA. The FAA will assign a project number, appoint a manager for the
project, schedule a meeting if one was requested, and send to the applicant an acknowledgment letter
with these details.

The applicant must determine the certification basis of the aircraft to be modified. The certification
basis is the sum of all applicable FAA regulations (at specified amendment levels) and any binding guidance
that apply to the aircraft and project in question. Regulations tend to become more stringent over time,
and complying with later rules may be more time-consuming and expensive than with earlier rules.

A certification basis is established by reference to the Type Certificate Data Sheet (TCDS) for each
affected aircraft and through negotiation with the FAA. For example, an applicant might propose that a
certification basis be those rules in effect at the time of original aircraft certification, whereas the FAA
may require the applicant to comply with regulations in effect at the time of STC application. The
differences between these two positions can be numerous and significant. Except in the simplest cases,
they are a crucial topic for early discussions with the FAA.

Complex avionics systems, extensive aircraft modifications, and novel system architectures all raise the
odds that something in a project will be unusual and will not fit neatly into the normal regulatory framework.
For such activities, an applicant might wish to propose compliance based on other regulatory mechanisms:
alternative means of compliance, findings of equivalent safety, exemptions, or special conditions. If so,
generic advice is largely useless. By their nature, these activities are unusual and require close coordination
with the FAA.

An STC applicant must prepare a certification plan. The plan should include the following:

• A brief description of the modification and how compliance is to be substantiated

• A summary of the Functional Hazard Assessment (see ‘‘Safety Assessment’’ later in this chapter)

• A list of proposed compliance documentation, including document numbers, titles, authors, and
approving or recommending Designees, if applicable (the role of Designees is described in more
detail later in this chapter)

• A compliance checklist, listing the applicable regulations from the certification basis, their amend-
ment number, subject, means of compliance, substantiating documents, and relevant Designees

• A definition of Minimum Dispatch Configuration

• If used, a list of the proposed FAA Designees, including name, Designee number, appointing FAA
office, classification, authorized areas, and authorized functions

• A project schedule, including dates for data submittals, test plan submittals, tests (with their
locations), conformity inspections, installation completion, ground and flight testing, and project
completion

Some FAA Aircraft Certification Offices require all Designated Engineering Representatives (see next
section) participating in a project to sign an FAA Form 8110-3, ‘‘Statement of Compliance with the
Federal Aviation Regulations,’’ recommending approval of a certification plan.

Extensive analysis and testing are generally required to demonstrate compliance. Results of these analyses
and tests must be preserved. Later in this chapter, three of the most important of these activities — safety
assessments, environmental qualification, and software assurance — will be discussed along with another
engineering topic, development and handling of system requirements.

The FAA’s involvement in an STC is a process, not an act. Most FAA specialists support multiple
projects concurrently, and matching the schedules of applicant and agency requires planning. This
planning is the applicant’s responsibility. Missed deadlines and last-minute surprises on the part of an
© 2001 by CRC Press LLC

applicant can result in substantial delays to a project, as key FAA personnel are forced to reschedule their
time, possibly weeks or months later than originally planned.

The STC process assumes modification of at least one prototype aircraft. It is in the aircraft modification
that all the engineering analysis — aircraft performance, structural and electrical loading, weight and
balance, human factors, and so on — comes together. Each component used in an aircraft modification
must either be manufactured under an approved production system or examined formally for conformance
to its specifications. This formal examination is known as ‘‘parts conformity inspection.’’ A completed aircraft
modification is then subject to an ‘‘installation conformity inspection.’’ In complex installations or even
complex parts, progressive conformity inspections may be required. Conformity inspections are conducted
by an FAA Inspector or a Designee authorized by the FAA — a Designated Manufacturing Inspection
Representative (DMIR) or Designated Airworthiness Representative (DAR) (see next section).

Compliance inspections, as distinct from conformity inspections, verify through physical inspection
that a modification complies with the applicable FARs. Typical of compliance inspections is an exami-
nation of modified wiring on an aircraft. A compliance inspection is conducted by an FAA engineer or
authorized Designated Engineering Representative (again, see next section).

For significant projects involving ground and flight testing, the FAA will issue a Type Inspection
Authorization (TIA). The TIA details all the inspections, ground tests, and flight tests necessary to
complete the certification program. Prior to issuing a TIA, the FAA should have received and reviewed
all of the descriptive and compliance data for the project. The FAA has recently added an item to its TIA
procedures: the flight test risk assessment. The risk assessment seeks to identify and mitigate any perceived
risks in flight tests that include FAA personnel, based on data supplied by the applicant.

New avionics equipment installed as part of an STC will usually impose new and different procedures
on flight crews. An applicant will, in most cases, document new procedures in a supplement to an approved
flight manual. In complex cases, it may also be necessary to provide a supplement to an operations manual.

An applicant must provide instructions for the continued airworthiness of a modified airplane. Penetra-
tions of the pressure vessel by, say, wiring or tubing may require periodic inspection. Actuators associated
with a new subsystem may need scheduled maintenance. Instructions for continued airworthiness are
usually a supplement to a maintenance manual but may also include supplements to an illustrated parts
catalog, a structural repair manual, structural inspection procedures, or component maintenance manuals.

Much of this discussion has been more applicable to transport aircraft than to smaller aircraft.
Regulatory requirements for the smaller (FAR Part 23) aircraft are, in some respects, less stringent than
for transport aircraft. Yet even for transports, not everything described above is required in every
circumstance. Early discussion between applicant and regulator is the quickest way to determine what
actually needs to be done.

Some avionics developers may find it desirable to pursue an STC through an organization called a
Designated Alteration Station (DAS). A DAS can, if properly authorized by the FAA, perform all the
work associated with a given aircraft modification and issue an STC. In this approach, the developer
might not deal with FAA personnel at all. Key issues are ownership of the STC rights and handling of
production approvals.

For more information on STCs, see FAA Advisory Circular 21-40, ‘‘Application Guide for Obtaining
a Supplemental Type Certificate.’’ For more information on DASs, see FAA Advisory Circular 21.431-1A,
‘‘Designated Alteration Station Authorization Procedures.’’

23.3.3 Type Certificate, Amended Type Certificate, and Service Bulletin

Approvals as part of a Type Certificate, Amended Type Certificate, or Service Bulletin are tied to the
certification activities of airframers or engine manufacturers. For development programs involving these
kinds of approvals, an avionics supplier’s obligations are roughly similar to those imposed by an STC
project, though detailed requirements can vary greatly. Avionics suppliers participating in an aircraft- or
engine-development program can and should expect to receive certification guidance from the manu-
facturer of the aircraft or engine. Hence, these cases will not be considered further here.
© 2001 by CRC Press LLC

23.4 FAA Designees

In the U.S., any applicant may deal directly with the FAA. Unlike many other civil air authorities, the
FAA does not collect fees for its services from applicants. However (and also unlike other agencies),
the FAA can at its discretion appoint individuals who meet certain qualifications to act on its behalf.
These appointees, called Designees, receive authorizations under FAR Part 183 and act in a variety of
roles. Some are physicians authorized to issue medical certificates to pilots. Others are examiners
authorized to issue licenses to new pilots. Still others are inspectors authorized to approve maintenance
work.

Avionics developers are most likely to encounter FAA Designated Engineering Representatives (DERs)
and either Designated Manufacturing Inspection Representatives (DMIRs) or Designated Airworthiness
Representatives (DARs).

All Designees must possess authorizations from the FAA appropriate to their activities. DERs can approve
engineering data just as the FAA would. Flight Test Pilot DERs can conduct and approve the results of flight
tests in new or modified aircraft. DMIRs and DARs can perform conformity inspections of products and
installations, and DARs can issue Airworthiness Certificates. When acting in an authorized capacity, a
Designee is legally a representative of the FAA; in most respects, he or she is the FAA for an applicant’s
purposes. Nevertheless, there are practical differences in conduct between the FAA and its Designees.

The most obvious difference is that an applicant actually hires and pays a Designee, and thus has more
flexibility in managing his or her time on the project. The resulting benefits in project scheduling can
more than offset the costs of the Designee. In addition, experienced Designees can be sources of valuable
guidance and recommendations. The FAA, by contrast, restricts itself to findings of compliance. That is,
the agency will simply tell an applicant whether or not submitted data complies with the regulations. If
data are judged noncompliant, the FAA will not, in most cases, tell an applicant how to bring it into
compliance. A Designee, however, can assist an applicant with recovery strategies or, better yet, steer an
applicant toward compliant approaches in the first place.

The FAA often encourages the use of Designees by applicants. An applicant must define and propose
the use of Designees, by name, to the FAA Aircraft Certification Office (ACO) for each project. If the
proposed Designees are acceptable to the ACO, the ACO will coordinate with its manufacturing coun-
terpart and delegate certain functions to the specified Designees. Those Designees are then obliged to
act as surrogates for the relevant FAA personnel on that project, providing oversight and ultimately
approving or recommending approval of compliant data.

Although an applicant’s use of Designees is discretionary, the realities of the FAA workload and
scheduling may make the use of Designees a pragmatic necessity. Whenever Designees are considered
for inclusion in a project, their costs and benefits should be evaluated with the same care devoted to any
other engineering resource. For more information, see FAA Order 8100.8, ‘‘Designee Management
Handbook;’’ FAA Order 8110.37C, ‘‘Designated Engineering Representatives (DER) Guidance Handbook;’’
and FAA Order 8130.28A, ‘‘Airworthiness Designee Management Program.’’

This chapter has so far dealt mainly with the definitions and practices of FAA regulation. There is, of
course, a great deal of engineering work to be done in any avionics development. Four engineering topics
of great interest to the FAA are the handling of system requirements, performance of a safety assessment,
environmental qualification, and software assurance.

23.5 System Requirements

Avionics developers must document the requirements of their proposed systems, ideally in ways that are
easily controlled and manipulated. Many experienced practitioners regard the skillful capture of require-
ments as the single most important technical activity on any project. A system specification is the basis
for descriptions of normal and abnormal operation, functional testing, training and maintenance pro-
cedures, and much else. A brief treatment of the topic here does not imply that it can be approached
© 2001 by CRC Press LLC

superficially. On the contrary, system specification is so important that a large body of literature exists
for it elsewhere (see Chapter 21 for a starting point). Requirements definition is supported by many
acceptable methods. Each company evolves its own practices in this area.

Over the years, many types of avionics systems have come to be described by de facto standardized
requirements, easing the burden of both engineering and certification. New systems, though, are free to
differ from tradition in arbitrary ways. Applicants should expect such differences to be scrutinized closely
by regulators and customers, who may demand additional justification and substantiation for the changes.

Proper requirements are the foundation for well-designed avionics. Whatever the sources of require-
ments, and whatever the methods used for their capture and refinement, an applicant must be able to
demonstrate that a new system’s requirements — performance, safety, maintenance, continued airwor-
thiness, and so on — have been addressed comprehensively. Some projects simply tabulate requirements
manually, along with the means of compliance for each requirement. Others implement large, sophisti-
cated databases to control requirements and compliance information. Compliance is generally shown
through analysis, test, inspection, demonstration, or some combination thereof.

23.6 Safety Assessment

Early in a project — the earlier the better — developers should consider the aircraft-level hazards associated
with their proposed equipment. This is the first of possibly several steps in a safety assessment of a new
system.

There is an explicit correlation between the severity of a system’s hazards and the scrutiny to which
that system is subjected. With a few notable exceptions,* systems that are inconsequential from a safety
standpoint receive little attention. Systems whose improper operation can result in aircraft damage or
loss of life receive a great deal of attention and require correspondingly greater engineering care and
substantiation.

Unsurprisingly, there is an inverse relationship between the severity of a system’s hazards and the
frequency with which those hazards can be tolerated. Minor annoyances might be tolerable every thou-
sand or so flight hours. Catastrophic hazards, by contrast, must occur less frequently than once in every
billion flight hours. In addition, the regulations for transport aircraft require that no single failure,
regardless of probability, result in a catastrophic hazard, implying that any such hazard must arise from
two or more independent failures occurring together.

Initial considerations of hazards should be formalized in a Functional Hazard Assessment (FHA) for
the proposed system. An FHA should address hazards only at levels associated directly with operation
of the system in question. For example, an autopilot FHA would consider the hazards of an uncommanded
hardover or oscillation of a control surface. A display-system FHA would consider the hazards of blank,
frozen, and active-but-misleading displays during various phases of flight.

In general, if an FHA concludes that misbehavior of a system has little or no effect on continued safe
flight and landing, no further work is needed for the safety assessment. On the other hand, if the FHA
confirms that a system can pose nontrivial risk to the aircraft or its occupants, then investigation and
analysis must continue. The additional work, if needed, will likely involve preparation of a Preliminary
System Safety Assessment, Fault Tree Analysis, Failure Modes and Effects Analysis, Common Cause Analysis,
and a final System Safety Assessment.

In the absence of a specific aircraft installation, assumptions must be made regarding avionics usage to
make progress on a safety assessment. This is true in TSO approvals, for example, if design assurance levels
are not specified in the TSO or if developers contemplate hazards or usage different from those assumed

*For example, failures of flight data recorders, cockpit voice recorders, and emergency locator transmitters have
no effect on continued safe flight and landing. Conventional safety-assessment reasoning would dismiss these devices
from failure-effect considerations. However, the systems obviously perform important functions, and the FAA defines
them as worthy of more attention than suggested by a safety assessment. For more discussion of this topic, refer to
Software Assurance in this chapter for a description of software levels assigned to flight data recorders.
© 2001 by CRC Press LLC

in the TSO. There are pitfalls* in unthinking acceptance and use of generic hazard classifications and
software levels (see Software Assurance later in this chapter and in Chapter 27), even for standard products.
Technologies can change quickly; regulations cannot. The gap between what is technically possible and
what can be approved sometimes leads to conflicting requirements, bewildering difficulties, and delays in
bringing to market devices that offer improvements to safety, operating economics, or both. The solution
is early agreement with the appropriate regulators concerning the requirements applicable to a new device.

The details of safety assessments are outside the scope of this chapter. For an introduction to safety-
related analysis, refer to the following:

• Chapters 21 and 22 of this book

• ARP4754 — Systems Integration Requirements Guidelines; Society of Automotive Engineers Inc.,
1994

• ARP4761** — Guidelines and Tools for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment; Society of Automotive Engineers Inc., 1994

• NUREG-0492 — Fault Tree Handbook; U.S. Nuclear Regulatory Commission, 1981

• FAA Advisory Circular 25.1309-1A — System Design Analysis, 1988

• FAA Advisory Circular 23.1309-1C*** — Equipment, Systems, and Installations in Part 23 Air-
planes, 1999

• Safeware: System Safety and Computers — Nancy G. Leveson, Addison-Wesley Publishing Com-
pany, 1995

• Systematic Safety: Safety Assessment of Aircraft Systems — Civil Aviation Authority (UK), 1982

Customers routinely demand that some failures, even those associated with minor hazards, be less
frequent than required by regulation — that is, the customer’s requirement is more stringent than the
FAA’s. Economic issues such as dispatch reliability and maintenance costs are the usual motivation, and
meeting the customer’s specification automatically satisfies the regulatory requirement.

Some TSOs refer to third-party guidance material, usually in the form of equipment-performance
specifications from organizations such as RTCA**** and the Society of Automotive Engineers. TSOs,
Advisory Circulars, and these third-party specifications can explicitly call out hazard levels and software
assurance levels. If such prescriptions apply to a given project, developers may simply adopt the prescrip-
tions given for use in their own safety assessments. Developers, of course, must still substantiate their
claims to the prescribed levels.

In addition to a safety assessment, an analysis of equipment reliability may be required to predict average
times between failures of the equipment. Although this analysis is often performed by safety analysts, the
focus is different. Whereas a safety assessment is concerned with the operational consequences and

*A given TSO might specify a software level (see Software Assurance section in this chapter), and a TSOA could
certainly be granted on that basis. However, actual installation of such a device on an aircraft might require a higher
software level. For example, an airspeed sensor containing Level C software could be approved under TSO-C2d, but
the sensor could not then be used to supply a transport aircraft with primary air data, because that function requires
Level A software.

**ARP 4754 and ARP 4761 are expected to be recognized by a new FAR/JAR advisory circular, AC/ACJ 25.1309-
1B. At this writing, the advisory circular has not been adopted.

***An applicant developing avionics exclusively for general aviation airplanes should pay special attention to
Advisory Circular 23.1309-1C. The Advisory Circular offers regulatory relief from many requirements that would
otherwise apply. In particular, for some functions on several classes of small airplanes it allows software assurance
at lower levels than would be the case for transport aircraft.

****RTCA Inc., formerly known as Radio Technical Corporation of America, is a nonprofit association of U.S.-
based aeronautical organisations from both government and industry. RTCA seeks sound technical solutions to
problems involving the application of electronics and telecommunications to aeronautical operations. RTCA tries to
resolve such problems by mutual agreement of its members (cf. EUROCAE).
© 2001 by CRC Press LLC

probabilities of system failures, a reliability analysis is concerned with the frequency of failures of
particular components in a system.

23.7 Environmental Qualification

Environmental qualification is invariably required of avionics. The standard in this area is RTCA/DO-
160D, ‘‘Environmental Conditions and Test Procedures for Airborne Equipment’’ (RTCA, 1997). DO-
160D specifies testing for temperature range, humidity, crashworthiness, vibration, susceptibility to
radiated and conducted radio frequencies, lightning tolerance, and other environmental factors.

It is the responsibility of applicants to identify environmental tests appropriate to their systems.
Whenever choices for environmental testing are unclear, guidance from FAA personnel or DERs is
in order.

To receive certification credit, environmental testing must be performed on test units whose configu-
rations are controlled and acceptable for the tests in question. Conformity inspection may be necessary
for test articles not manufactured in accordance with a production approval. An approved test plan, test
setup conformity inspection, and formal witnessing of tests by FAA specialists or Designees are often
required. In all cases, an applicant must document and retain evidence of equipment configurations, test
setups, test procedures, and test results.

For further information on environmental testing, see Chapter 25.

23.8 Software Assurance

Software has become increasingly important in avionics development and has assumed a correspondingly
higher profile in certification. It is frequently the dominant consideration in certification planning.

Regulatory compliance for software can be shown by conforming to the guidelines described in
RTCA/DO-178B, ‘‘Software Considerations in Airborne Systems and Equipment Certification’’ (RTCA,
1992). DO-178B was developed jointly by RTCA and the European Organisation for Civil Aviation
Equipment (EUROCAE).*

DO-178B is not a development standard for software. It is an assurance standard. DO-178B is neutral
with respect to development methods. Developers are free to choose their own methods, provided the
results satisfy the assurance criteria of DO-178B in the areas of planning, requirements definition, design
and coding, integration, verification, configuration management, and quality assurance.

DO-178B defines five software levels, A through E, corresponding to hazard classifications derived
from the safety assessment discussed earlier. At one extreme, Level A software is associated with functions
whose anomalous behavior could cause or contribute to a catastrophic failure condition for the aircraft.
Obvious examples of Level A software include fly-by-wire primary control systems and full-authority
digital engine controllers. At the other extreme, passenger entertainment software is almost all Level E,
because its failure has no safety-related effects.

A sliding scale of effort exists within DO-178B: the more critical the software, the more scrutiny that must
be applied to it. Level A software generates more certification data than does Level B software, Level B
generates more than does Level C, and so on.

Avionics customers sometimes insist on software assurance levels higher than those indicated by a
safety assessment. This is purely a contractual matter. Confusion can be avoided by separating a customer’s
contractual wishes from regulatory compliance data submitted to the FAA or to DERs. Certification
submittals should be based on the safety assessment rather than on the contract. If a safety assessment
concludes that a given collection of software should be Level C, but that software’s customer wants it to
be Level B, then the applicant should submit to the FAA plans and substantiating data for Level C software.

*RTCA/DO-178B is equivalent to EUROCAE/ED-12B, “Considerations sur le Logiciel en Vue de la Certification
des Systemes et Equipments de Bord.” (EUROCAE, 1992.)
© 2001 by CRC Press LLC

Any additional evidence needed to demonstrate contractual compliance to Level B should be an issue
between supplier and customer. That evidence is not required for certification and should become a
regulatory matter only in unusual circumstances.*

FAA guidance itself sometimes requires that software be assured to a level higher than indicated by
the safety assessment. This is not uncommon in equipment required for dispatch but whose failures do
not threaten continued safe flight and landing. For example, a flight data recorder must be installed and
operating in most scheduled-flight aircraft, but failure of a recorder during a flight would have no effect
on the ability of a crew to carry on normally. Thus, from a safety assessment viewpoint, a flight data
recorder has no safety-related failure conditions. Based on that, the recorder’s software would be classified
as Level E, implying that the software need not receive any FAA scrutiny. This, of course, violates common
sense — the FAA plainly has a regulatory interest in the proper operation of flight data recorders. To
resolve this mismatch, the FAA requires at least Level D compliance for any software associated with a
dispatch-required function.

Digital technology predates DO-178B. Many software-based products were developed and approved
before DO-178B became available. If an applicant is making minor modifications to equipment approved
under an older standard, it may be possible to preserve that older standard as the governing criteria for
the update. More frequently, the FAA will require new or changed software to meet the guidelines of
DO-178B, with unchanged software ‘‘grandfathered’’ in the new approval. When transport airplanes are
involved in such cases, an Issue Paper dealing with use of ‘‘legacy’’ software is likely to be included in the
certification basis of the airplane by the FAA’s Transport Airplane Directorate. In a few cases, the FAA
may require a wholesale rework of a product to meet current standards.

The question of how much software data to submit to the FAA arises routinely. It is impractical to
consider submitting all software data to the FAA. An applicant can realistically submit only a fraction of
the data produced during software development. Applicants should propose and negotiate that data
subset with the FAA. Whether submitted formally or not, an applicant should retain and preserve all
relevant data (see DO-178B, Section 9.4, as a starting point). The FAA can examine applicants’ facilities
and data at any time. It is the applicant’s responsibility to ensure that all relevant data are controlled,
archived, and retrievable.

For more information on software-assurance guidelines, see Chapter 27 of this book, the FAA software
home page on the World Wide Web at and the sup-
plemental information to DO-178B published by RTCA.

In recent years, the FAA has paid growing attention to programmable logic devices: application-specific
integrated circuits, field-programmable gate arrays, and so on. Findings of compliance for these devices
are often handled by FAA software specialists or delegated to DERs with software authorizations. The
agency’s increased scrutiny is intended to ensure that acceptable processes are being followed during
development of such devices. The FAA has a generic issue paper addressing compliance for the devices.
If proposed electronic equipment contains programmable logic devices, an applicant should expect the
FAA to tailor its generic issue paper to the project and to include the tailored issue paper in the certification
basis of that project.

Though little guidance is available officially at this writing, applicants should also note that FAA
concern has increased with respect to assurance of all avionics hardware design processes. A great deal
of effort in industry and government has been spent to specify acceptable practices in this area, primarily
through the joint efforts of RTCA Special Committee 180 and EUROCAE Working Group 46 (‘‘Design
Assurance Guidance for Airborne Electronic Hardware’’). See RTCA document DO-254 (2000) for further
information.

*It is usually prudent to avoid setting precedents of additional work beyond that required by regulations. Of course,
applicants are always free to do additional work — developers often do, for their own reasons — and if the regulations
seem inappropriate or inadequate, applicants should seek to improve the regulations. Precedents are powerful things, for
both good and ill, in any regulatory regime. New precedents often have unintended and surprising consequences.

www.faa.gov/avr/air/air100/sware/sware.htm〈 〉 ,
© 2001 by CRC Press LLC

23.9 Manufacturing Approvals

It is not enough to obtain design approval for avionics equipment. Approval to manufacture and mark
production units must be obtained as well. Parts manufactured in accordance with an approved produc-
tion system do not require parts conformity inspections.

With a TSO, as explained earlier, the approvals of design and manufacturing actually go together. In
order to receive a TSO Authorization, the applicant must demonstrate not just an acceptable prototype
but also an ability to manufacture the article.

An STC holder must demonstrate production capabilities separately. After obtaining an STC approval
the holder may apply for Parts Manufacturer Approval (PMA) authority to produce the parts necessary
to support the STC. PMA approvals are issued by the FAA Manufacturing Inspection District Office
responsible for the applicant. An STC applicant who will need subsequent PMA authority should plan
and prepare for PMA from the beginning of a project. Alternatively, an STC holder may assign production
rights to others, who would then hold PMA authority for the parts in question.

23.10 The Joint Aviation Authorities

The European Joint Aviation Authorities (JAA) is an influential aviation body internationally. The JAA
represents European states (32 at this writing) that have agreed to cooperate in developing and imple-
menting common safety standards and procedures for civil aviation. These standards and procedures are
codified in the Joint Aviation Requirements (JARs).

Although the JAA develops and adopts JARs in the areas of aircraft operations, aircraft maintenance,
and the licensing of aviation personnel, this chapter is mainly concerned with the JARs affecting aircraft
design and certification. These include rules for the certification of airplanes (JAR-23, JAR-25), sailplanes
and powered sailplanes (JAR-22), helicopters (JAR-27, JAR-29), engines (JAR-E), auxiliary power units
(JAR-APU), and equipment (JAR-TSO).

There is a great deal of similarity between the JARs and the FARs, as well as between the JAA’s and
FAA’s advisory material. Indeed, the JAA and the FAA made commitments in 1992 to harmonize ‘‘where
appropriate, to the maximum extent possible’’ the JARs and FARs. The harmonization effort for airwor-
thiness rules is expected to be completed in the year 2000. After that, the JAA and the FAA intend to
engage in joint rulemaking to encourage the uniformity of new regulatory material. On at least four new
aircraft programs, the JAA and the FAA have agreed to work together in a process dubbed ‘‘Cooperative
and Concurrent Certification.’’

Still, there are differences. The following list illustrates a few of the differences:

• The JAA is not a regulatory body. Whereas the FAA defines and enforces its rules under its own
authority, JAA actions are carried out through its member states and their national authorities.
For example, on a development program for a new aircraft or engine, the JAA member states will
assign specialists to a Joint Certification Team that acts on behalf of all the JAA members. At the
successful completion of the team’s evaluations, Type Certificates for the new aircraft or engine
are issued not by the JAA itself, but by the member state. Thus, each Type Certificate remains a
national artifact, subject to regulation by the national authority of the issuing state.

• Although JAA member countries have various forms of delegation to organizations, the JAA has
no individual delegation mechanism equivalent to the FAA Designee system. Certification work
is performed by JAA specialists directly or in concert with their counterparts at other non-JAA
civil air authorities.

• Fees are charged to each applicant for JAA certification work.

• On some certification programs, the JAA and FAA have disagreed over the intensity of disruptive
electromagnetic fields to which aircraft should be subjected during tests.

• The JAA requirements in some areas, such as operation with two engines failed on a three-engine
airplane, and operation at negative load factors, differ from those of the FAA.
© 2001 by CRC Press LLC

These examples are chosen largely at random. They serve only to illustrate that JAA/FAA harmonization
is not complete. Any U.S. applicant whose certification project has a European or, for that matter any
other international component, should investigate the implications thoroughly.

23.11 Summary

Certification can be straightforward, but like any other developmental activity, it must be managed. At the
beginning of a project, applicants should work with their regulators to define expectations on both sides.
During development, open communication should be maintained among suppliers, customers, and regu-
lators. In a well-run project, evidence of compliance with regulatory requirements will be produced with
little incremental effort, almost as a side-effect of good engineering during the normal course of work. The
cumulative result will, in the end, be a complete demonstration of compliance, soon followed by certification.

Regulatory officials, whether FAA employees or Designees, work best and are most effective when they
are regarded as part of an applicant’s development team.

An applicant is obliged to demonstrate compliance with the applicable regulations, nothing more.
However, partial information from an applicant can lead to misunderstandings and delays, and attempts
to resolve technical disagreements with regulators through nontechnical means rarely have the desired effect.

In the past, regrettably, large investments have been made in systems that could not be approved by
the FAA. In order to avoid such outcomes, applicants are well advised to hold early discussions with
appropriate FAA personnel or Designees.

Defining Terms

Certification: Legal recognition, through issuance of a certificate by a civil aviation authority, that a
product, service, organization, or person complies with that authority’s requirements.

Certification basis: The sum of all current regulations applicable to a given project at the time application
is made to a civil aviation authority to begin a certification process.

Designee: An individual authorized by the FAA under FAR Part 183 to act on behalf of the agency in
one or more specified areas.

Issue Paper: Instrument administered by an FAA Directorate to define and control a substantial under-
standing between an applicant and the FAA, such as formal definition of a certification basis or a
finding of equivalent safety, or to provide guidance on a specific topic, such as approval methods
for programmable logic devices.

PMA: Parts Manufacturer Approval, by which the FAA authorizes the production of parts for replacement
and modification, based on approved designs.

Special Condition: A modification to a certification basis, necessary if an applicant’s proposed design
features or circumstances are not addressed adequately by existing FAA rules; in effect, a new
regulation, administered by an FAA Directorate, following public notice and a public comment
period of the proposed new rule.

STC: Supplemental Type Certificate, by which the FAA approves the design of parts and procedures
developed to perform major modifications to the design of existing aircraft.

TSOA: Technical Standard Order Authorization, the mechanism by which the FAA approves design data
and manufacturing authority for products defined by a Technical Standard Order (see also

).

Further Information

Certification Services, Inc.: www.certification.com
European Organisation for Civil Aviation Equipment (EUROCAE): www.eurocae.org
Federal Aviation Administration (FAA): www.faa.gov
Joint Aviation Authorities (JAA): www.jaa.nl
RTCA: www.rtca.org
Society of Automotive Engineers (SAE): www.sae.org

http://www.faa.gov/avr/air/AIR100/tsohome.htm〈 〉
© 2001 by CRC Press LLC

James N. Martin “Processes for Engineering a System”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

24
Processes for

Engineering a System

24.1 Introduction.
24.2 Structure of the Standard
24.3 Role of the EIA 632 Standard
24.4 Heritage of EIA 632
24.5 The Processes

Process Hierarchy • Technical Management
Processes • Acquisition and Supply Processes • System
Design Processes • Product Realization Processes • Technical
Evaluation Processes

24.6 Project Context
24.7 Key Concepts

The System and Its Products • Building Block
Framework • Development of Enabling
Products • Relationship Between the Building Blocks and the
Processes • Hierarchy of Building
Blocks • Requirements • Functional, Performance, and
Interface Requirements • Verification and Validation

Defining Terms
References
Further Information

24.1 Introduction

In April 1995, the G47 Systems Engineering Committee of the Electronic Industries Alliance (EIA)
chartered a working group to convert the interim standard EIA/IS 632 into a full standard. This full
standard was developed and released in December 1998 as ANSI/EIA-632-1998.

The interim standard (IS), EIA/IS 632, was titled “Systems Engineering.” The full standard was
expanded in scope to include all the technical processes for engineering a system. It is intended to be a
higher-level abstraction of the activities and tasks found in the IS version plus those other technical
activities and tasks deemed to be essential to the engineering of a system.

This chapter describes the elements of these processes and related key concepts. The intended purpose
is to give the reader of the standard some background in its development and to help other standards
activities in developing their own standard. There is a paper that describes the evolution from an interim
standard to the full standard [Martin, 1998].

This standard is intended to be a “top tier” standard for the processes essential to engineering a system.
It is expected that there will be second- and third-tier standards that define specific practices related to

James N. Martin
The Aerospace Corporation
© 2001 by CRC Press LLC

certain disciplines (e.g., systems engineering, electrical engineering, software engineering) and industry
domains (e.g., aircraft, automotive, pharmaceutical, building, and highway construction).

It is important to understand several things that are not covered by this standard:

1. It does not define what “systems engineering” is;
2. It does not define what a “systems engineer” is supposed to do; and
3. It does not define what a “systems engineering organization” is supposed to do.

24.2 Structure of the Standard

The standard is organized as shown below:

Clause 1 Scope
Clause 2 Normative references
Clause 3 Definitions and acronyms
Clause 4 Requirements
Clause 5 Application context
Clause 6 Application key concepts
Annex A Glossary
Annex B Enterprise-based life cycle
Annex C Process task outcomes
Annex D Planning documents
Annex E System technical reviews
Annex F Unprecedented and precedented development
Annex G Requirement relationships

24.3 Role of the EIA 632 Standard

Implementation of the requirements of EIA 632 are intended to be through establishment of enterprise
policies and procedures that define the requirements for application and improvement of the adopted
processes from the standard. This is illustrated in Figure 24.1.

24.4 Heritage of EIA 632

Figure 24.2 shows the relationship between EIA 632 and other standards on systems engineering. Some
of the key software engineering standards are shown for comparison since there has been an intimate
relationship between the development of both types of standards. There has been much activity recently
in unifying the processes contained in each.

FIGURE 24.1 Role of the standard in relation to development projects. (Adapted from ANSI/EIA-632-1998. With
permission.)
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

24.5 The Processes

Figure 24.3 shows the processes described in EIA 632 and their relationship to one another. Each
enterprise will determine which of these processes are implemented by systems engineering personnel,
and how they are allocated to the organizational elements of the enterprise and its functional disciplines.

24.5.1 Process Hierarchy

The processes for engineering a system are grouped into the five categories as shown in Figure 24.4. This
grouping was made for ease of organizing the standard and is not a required structure for process
implementation. Traditional systems engineering is most often considered to include two of these pro-
cesses: Requirements Definition and Systems Analysis. Often, Planning and Assessment are included in
what is called systems engineering management.

24.5.2 Technical Management Processes

Technical Management provides oversight and control of the technical activities within a development
project. The processes necessary to accomplish this are shown in Figure 24.5.

24.5.3 Acquisition and Supply Processes

Acquisition and Supply provides the mechanism for a project to supply its own products to a customer
or higher-level project and to acquire the necessary products for its own product development activities.
The processes necessary to accomplish this are shown in Figure 24.6.

24.5.4 System Design Processes

System Design provides the activities for a project to define the relevant requirements for its product
development effort and to design solutions that meet these requirements. The processes necessary to
accomplish this are shown in Figure 24.7.

24.5.5 Product Realization Processes

Product Realization provides the activities for a project to implement the product designs and to transition
these products to their place of use. The processes necessary to accomplish this are shown in Figure 24.8.

FIGURE 24.2 Heritage of systems engineering standards.

24.5.6 Technical Evaluation Processes

Technical Evaluation provides activities for a project to analyze the effectiveness of its proposed designs,
validate the requirements and end products, and to verify that the system and its product meet the
specified requirements. The processes necessary to accomplish this are shown in Figure 24.9.

24.6 Project Context

These “technical” processes fit into a larger context of a project (see Figure 24.10), and the project resides
in some sort of enterprise, which in turn resides in an environment external to the enterprise. There are
processes in the project and within the enterprise (but outside the project) that significantly affect the
successful implementation of the technical processes.

FIGURE 24.3 Top-level view of the processes for engineering a system. (From ANSI/EIA-632-1998. With permission.)
© 2001 by CRC Press LLC

24.7 Key Concepts

To understand the processes as described in this standard, it is essential to understand the distinct use
of certain terms and the conceptual models that underlie each process. Some of the key terms are system,
product, verification, and validation. Some of the key concepts are building block, end products, asso-
ciated processes, and development layers.

24.7.1 The System and Its Products

What is a system? The term “system” is commonly used to mean the set of hardware and software
components that are developed and delivered to a customer. This standard uses this term in a broader
sense in two aspects.

First, the system that needs to be developed consists of not only the “operations product” (that which
is delivered to the customer and used by a user), but also the enabling products associated with that
operations product. The operations product consists of one or more end products (so-called since these
are the elements of the system that “end up” in the hands of the ultimate user). The associated processes
are performed using enabling products that “enable” the end products to be put into service, kept in
service, and retired from service.

Second, the end products that need to be developed often go beyond merely the hardware and software
involved. There are also people, facilities, data, materials, services, and techniques. This is illustrated in
Figure 24.12.

FIGURE 24.4 Hierarchical view of the processes for engineering a system. (From ANSI/EIA-632-1998. With per-
mission.)
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

This is not intended to be an exhaustive list of the “basic” product types since these will vary depending
on the particular business or technology domain. For example, in the television industry, “media” is
certainly one of the system elements that constitute the overall system that is developed. “CBS News”
might be considered the system, for example, with end products like:

Airwaves, worldwide web (media)
Cameras, monitors (hardware)
Schedule management tools, video compression algorithms (software)
Camera operators, news anchor (personnel)
Studio, broadcasting tower (facilities)
Script, program guide (data)
Pictures, stories (materials)
Airplane transportation, telephone (services)
Presentation method, editing procedures (techniques)

Note that any or all of these end products could be “off-the-shelf.” But some of them may need to be
conceived, designed, and implemented. Even if one of these items is truly off-the-shelf, it may still need

FIGURE 24.5 Technical Management Processes. (From ANSI/EIA-632-1998. With permission.)

FIGURE 24.6 Acquisition and Supply Processes. (From ANSI/EIA-632-1998. With permission.)

FIGURE 24.7 System Design Processes. (From ANSI/EIA-632-1998. With permission.)
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

some enabling product to allow effective use of that item. For example, even if you can use existing
editing procedures, you may need to develop a training program to train the editors.

24.7.2 Building Block Framework

As we can see from the description above of the “CBS News” system, the nonhardware/software items
may be crucial to successful realization of the whole system. You may also need to develop the associated
processes along with the relevant enabling products. If we tie all these elements together, we can illustrate
this using the so-called “building block” shown in Figure 24.13.

FIGURE 24.8 Product Realization Processes. (From ANSI/EIA-632-1998. With permission.)

© 2001 by CRC Press LLC

There are seven associated processes related to these sets of enabling products. These processes are
used at various points in the life of a product (sometimes called “system life cycle elements”). Hence, the
use of the building block concept is intended to help the developer in ensuring that the full life cycle of
the end product is properly considered.

Note that each end product can consist of subsystems. Each of these subsystems may need its own
development. The building block can be used at the various “development layers” of the total system.
These development layers are illustrated in Figure 24.14.

24.7.3 Development of Enabling Products

As mentioned above, the enabling products may need to be developed also. For each associated process,
there could be enabling products that either exist already or that need some degree of development.
Figure 24.15 shows how enabling products related to the deployment process have their own building
blocks.

24.7.4 Relationship Between the Building Blocks and the Processes

The building blocks relevant to a particular system development can be “stacked” into a System Break-
down Structure (SBS). The System Design Process and Verification and Validation Processes have a special
relationship to the SBS, as shown in Figure 24.16.

FIGURE 24.9 Technical Evaluation Processes. (From ANSI/EIA-632-1998. With permission.)

©
 2001 by C

R
C

 Press L
L

C

F

ermission.)
IGURE 24.10 The technical processes in the context of a project and an enterprise. (From ANSI/EIA-632-1998. With p

24.7.5 Hierarchy of Building Blocks

Typically, a project is developing a system of such a size that it will require more than one building block
to complete the development. Figure 24.17 shows an example of how several building blocks would be
related to each other within a project. Notice also how an “adjacent” Project A has building blocks that
might have interfaces to the systems under development by Project B. There also may be building blocks
above and below a project.

FIGURE 24.11 Constituents of the system. (From ANSI/EIA-632-1998. With permission.)

FIGURE 24.12 Different product types that make up a system.
© 2001 by CRC Press LLC

24.7.6 Requirements

Requirements are especially useful for engineering a system, especially when the system consists of several
building blocks. Requirements act as a kind of “decoupling mechanism” between the building blocks.
They are the “terms and conditions” between the layers of development. Requirements start out as vague,
usually nontechnical stakeholder requirements and evolve into more technically precise and verifiable
technical requirements. This is illustrated in Figure 24.18.

Lower-level requirements must be derived from higher-level requirements. This is usually accom-
plished through logical and physical analyses and design activities to determine the requirements that
apply to the design solution. This is illustrated in Figure 24.19 which shows the different types of
requirements dealt with by the processes described in EIA 632.

FIGURE 24.13 The building block concept. (From ANSI/EIA-632-1998. With permission.)

FIGURE 24.14 Development layers concept. (From ANSI/EIA-632-1998. With permission.)
© 2001 by CRC Press LLC

FIGURE 24.15 Development of enabling products. (Adapted from ANSI/EIA-632-1998. With permission.)

FIGURE 24.16 Development layers in a project context. (Adapted from ANSI/EIA-632-1998. With permission.)
© 2001 by CRC Press LLC

©
 2001 by C

R
C

 Press L
L

C

on.)
FIGURE 24.17 Building blocks in the context of a several projects. (From ANSI/EIA-632-1998. With permissi

Requirements generally do not come from a particular customer. And even when they do, as is often
the case in government-sponsored developments, they do not represent the full spectrum of the require-
ments that will eventually need to be defined for development of the products of a system.

User Requirements. User requirements are often nontechnical in nature and usually conflict with each
other. These need to be translated into “technical requirements” that are in the vernacular of the
engineers on a project and are specific to the domain of the technology to be used in the system.

FIGURE 24.18 Evolution of requirements. (Source: ANSI/EIA-632-1998. With permission.)

FIGURE 24.19 Types of requirements and their interrelationships. (From ANSI/EIA-632-1998. With permission.)
© 2001 by CRC Press LLC

Customer Requirements. Customers will often translate their perceived user requirements into a set
of requirements to be given to a development project. These also, like the user requirements, are
often not technical enough and usually conflict with each other. Moreover, a particular project
may have more than one customer for its products.

Stakeholder Requirements. In defining the technical requirements for the system, one must consider
that there are other stakeholders for that system. For example, the manufacturing organization
within your company may desire that you use their existing processes, tools, facilities, etc. There
are constraints associated with these “enabling products.” Hence, you must identify the stakeholder
requirements that drive the development.

Requirements Decomposition. Once the system technical requirements are defined, further require-
ments are often “derived” by analyzing both the logical and physical aspects of the system. Some
of these derived requirements, plus whatever system technical requirements are relevant, are
“specified” for the system, its end products, and possibly subsystems of those end products.

Given these specified requirements for an item, the process starts all over again for items needing
further development. In other words, another layer of building blocks may be required to develop an
item far enough along such that the bottommost item can be procured from a supplier. This is illustrated
in Figure 24.20.

24.7.7 Functional, Performance, and Interface Requirements

Another way to look at requirements is to categorize them as functional (what the product must accom-
plish), performance (how well the product must accomplish each function), and interface (under what
conditions must the functions be accomplished). This is illustrated in Figure 24.21.

FIGURE 24.20 Layers of requirements as they relate to the layers of development. (Adapted from ANSI/EIA-632-
1998. With permission.)
© 2001 by CRC Press LLC

24.7.8 Verification and Validation

Verification and validation are both very important in engineering a system. Verification is the act of
determining if a product meets its specified requirements. Validation is the act of determining if a product
satisfies its stakeholders. This is illustrated in Figure 24.22

Defining Terms

The following definitions are extracted from the standard.

Building block: A representation of the conceptual framework of a system that is used for organizing
the requirements, work, and other information associated with the engineering of a system. An
element in the structured decomposition of the system.

Enabling product: Item that provides the means for (a) getting an end product into service, (b) keeping
it in service, or (c) ending its service.

End product: The portion of a system that performs the operational functions and is delivered to an
acquirer.

Process: A set of interrelated tasks that, together, transform inputs into outputs.
Product: (1) An item that consists of one or more of the following: hardware, software, firmware,

facilities, data, materials, personnel, services, techniques, and processes; (2) a constituent part of
a system.

Requirement: Something that governs what, how well, and under what conditions a product will
achieve a given purpose.

Stakeholder: An enterprise, organization, or individual having an interest or a stake in the outcome
of the engineering of a system.

Subsystem: A grouping of items that perform a set of functions within a particular end product.
System: An aggregation of end products and enabling products to achieve a given purpose.
Validation: (1) Confirmation by examination and provision of objective evidence that the specific

intended use of an end product (developed or purchased), or an aggregation of end products, is

FIGURE 24.21 Types of requirements.
© 2001 by CRC Press LLC

accomplished in an intended usage environment; (2) confirmation by examination that require-
ments (individually and as a set) are well formulated and ar usable for intended use.

Verification: Confirmation by examination and provision of objective evidence that the specified
requirements to which an end product is built, coded, or assembled have been fulfilled.

References

ANSI/EIA 632, Processes for Engineering a System. 1998.
EIA/IS 632, Systems Engineering. 1994.
Martin, J. N., “Evolution of EIA 632 from an Interim Standard to a Full Standard.” Proc. INCOSE 1998

Int. Symp., 1998.

Further Information

The purpose of this chapter is to give a high-level overview of the processes for engineering a system
described in ANSI/EIA 632. Further details can be found in the full publication of the standard or by
contacting the EIA directly at 2500 Wilson Boulevard, Arlington, Virginia or at their Website
(www.eia.org).

FIGURE 24.22 Distinction between verification and validation.
© 2001 by CRC Press LLC

Richard Hess “Electromagnetic Environment (EME)”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

25
Electromagnetic

Environment (EME)

25.1 Introduction
25.2 EME Energy Susceptibility

Soft Faults • MTBUR/MTBF

25.3 Civil Airworthiness Authority Concerns
EME Compliance Demonstration for Electrical/Electronic
Systems • EME Energy Propagation

25.4 Architecture Options for Fault Mitigation
Electrical/Electronic System • Digital Computing Platform

Defining Terms
References

25.1 Introduction

The advent of digital electronic technology in electrical/electronic systems has enabled unprecedented
expansion of aircraft system functionality and evolution of aircraft function automation. As a result,
systems incorporating such technology are used more and more to implement aircraft functions, includ-
ing Level A systems that affect the safe operation of the aircraft; however, such capability does not come
free. The EME (electromagnetic environment) is a form of energy, which is the same type of energy
(electrical) that is used by electrical/electronic equipment to process and transfer information. As such,
this environment represents a fundamental threat to the proper operation of systems that depend on
such equipment. It is a common mode threat that can defeat fault-tolerant strategies reliant upon
redundant electrical/electronic systems.

Electrical/electronic systems, characterized as Level A, provide functions that can affect the safe oper-
ation of an aircraft and depend upon information (i.e., guidance, control, etc.) processed by electronic
equipment. Thus, the EME threat to such systems may translate to a threat to the airplane itself. The
computers associated with modern aircraft guidance and control systems are susceptible to upset from
lightning and sources that radiate RF at frequencies predominantly between 1 and 500 MHz and produce
aircraft internal field strengths of 5 to 200 V/m or greater. Internal field strengths greater than 200 V/m
are usually periodic pulses with pulsewidths less than 10 �s. Internal lightning-induced voltages and
currents can range from approximately 50 V and 20 A to over 3000 V and 5000 A.

 Electrical/electronic system susceptibility to such an environment has been suspect as the cause of
“nuisance disconnects,” “hardovers,” and “upsets.” Generally, this form of system upset occurs at signif-
icantly lower levels of EM field strength than that which could cause component failure, leaves no trace,
and is usually nonrepeatable.

Richard Hess
Honeywell
© 2001 by CRC Press LLC

25.2 EME Energy Susceptibility

It is clear that the sources of electromagnetic (EM) threats to the electrical/electronic system, either digital
or analog, are numerous. Although both respond to the same threats, there are factors that can make
the threat response to a momentary transient (especially intense transients like those that can be produced
by lightning) far more serious in digital processing systems than in analog systems. For example, the
information bandwidth and, therefore, the upper noise response cutoff frequency in analog devices is limited
to, at most, a few megahertz. In digital systems it is often in excess of 100 MHz and continues to increase.
This bandwidth difference, which is at least 10 times more severe in digital systems, allows substantially
more energy and types of energy to be coupled into the digital system. Moreover, the bandwidths of
analog circuits associated with autopilot and flight management systems are on the order of 50 Hz for
servo loops and much less for other control loops (less than 1 Hz for outer loops). Thus, if the disturbance
is short relative to significant system time constants, even though an analog circuit device possessing a
large gain and a broad bandwidth may be momentarily upset by an electromagnetic transient, the circuit
will recover to the proper state. It should be recognized that, to operate at high speeds, proper circuit card
layout control and application of high-density devices is a must. When appropriate design tools (signal
integrity, etc.) are applied, effective antenna loop areas of circuit card tracks become extremely small, and
the interfaces to a circuit card track (transmission line) are matched. Older (1970s–1980s) technology with
wirewrap backplanes and processors built with discrete logic devices spread over several circuit cards were
orders of magnitude more susceptible. Unlike analog circuits, digital circuits and corresponding compu-
tational units, once upset, may not recover to the proper state and may require external intervention to
resume normal operation. It should be recognized that (for a variety of reasons) large-gain bandwidth
devices are and have been used in the digital computing platforms of aircraft systems. A typical discrete
transistor can be upset with 10�5 J, 2000 V at 0.1 mA for 50 �s. A typical integrated circuit can be upset
with only 10�9 J, 20 V at 1 �A for 50 �s. As time goes on and processor semiconductor junction feature
sizes get smaller and smaller, this problem becomes worse.

It should be noted that in addition to upset, lightning-induced transients appearing at equipment
interfaces can, because of the energy they possess, produce hard faults (i.e., damage circuit components)
in interface circuits of either analog or digital equipment. Mechanical, electromechanical, electrohydrau-
lic, etc. elements associated with conventional (not electronic primary flight controls with associate
“smart” actuators) servo loops and control surface movement are either inherently immune or vastly
more robust to EME energy effects than the electronic components in an electrical/electronic system.

Immunity of electronic components to damage is a consideration that occurs as part of the circuit
design process. The circuit characteristic (immunity to damage) is influenced by a variety of factors:

1. Circuit impedances (resistance, inductance, capacitance), which may be distributed as well as lumped;
2. The impedances around system component interconnecting loops along with the characteristic

(surge) impedance of wiring interfacing with circuit components;
3. Properties of the materials used in the construction of a component (e.g., thick-film/thin-film resistors);
4. Threat level (open circuit voltage/short circuit current), resulting in a corresponding stress on

insulation, integrated circuit leads, PC board trace spacing, etc.; and
5. Semiconductor device nonlinearities (e.g., forward biased junctions, channel impedance, junc-

tion/gate breakdown).

Immunity to upset for analog processors is achieved through circuit design measures, and for digital
processors it is achieved through architectural as well as circuit design measures.

25.2.1 Soft Faults

Digital circuit upset, which has also been known by the digital computer/information processing com-
munity as a “soft fault,” is a condition known to occur even in relatively benign operating environments.
Soft faults occur despite the substantial design measures (timing margins, transmission line interconnects,
© 2001 by CRC Press LLC

ground and power planes, clock enablers of digital circuits) to achieve a relatively high degree of integrity
in digital processor operation.

In a normal operating environment, the occurrence of soft faults within digital processing systems is
relatively infrequent and random. Such occasional upset events should be treated as probabilistic in nature
and can be the result of:

• Coincidence of EME energy with clocked logic clock edges, etc.

• Occasional violation of a device’s operational margin (resulting margin from the design, process-
ing, and manufacturing elements of the production cycle).

From this perspective, the projected effect of a substantial increase in the severity of the electromagnetic
environment will be an increased probability of a soft fault occurrence. That is, in reality a soft fault may
or may not occur at any particular point in time but, on the average, soft faults will occur more frequently
with the new environmental level.

Once developed, software is “burned into nonvolatile” memory (becomes “firmware”); the result
will be a special purpose real-time digital electronic technology data processing machine with the
inherent potential for “soft faults.” Because it is a hardware characteristic, this potential exists even
when a substantial amount of attention is devoted to developing “error-free” operating system and
application programs(s) (software) for the general purpose digital machine (computing platform,
digital engine, etc.).

25.2.2 MTBUR/MTBF

In the past, service experience with digital systems installed on aircraft has indicated that the confirmed
failure rates equal or exceed predicted values that were significantly better than previous generation
analog equipment. However, the unscheduled removal rate remains about the same. In general, the
disparity in mean time between unscheduled removal (MTBUR) and the mean time between failure
(MTBF) continues to be significant. The impact of this disparity on airline direct operating costs is
illustrated in Figure 25.1.

To the extent that soft faults contribute to the MTBUR/MTBF disparity, any reduction in soft fault
occurrence and propagation could translate into reduction of this disparity.

FIGURE 25.1 MTBUR/MTBF ratio impact of operating costs.
© 2001 by CRC Press LLC

25.3 Civil Airworthiness Authority Concerns

The Federal Aviation Administration (FAA) and European Joint Aviation Authorities (more commonly
known as JAA) have identified the lightning and High Intensity Radiated Field (HIRF) elements of the
EME as a safety issue for aircraft functions provided by electrical/electronic systems.

The following factors, identified by the FAA and JAA, have led to this concern about lightning and
HIRF effects:

• Increased reliance on electrical and electronic systems to perform functions that may be necessary
for the continued safe flight and landing of the aircraft.

• Reduction of the operating power level of electronic devices that may be used in electrical and
electronic systems, which may cause circuits to be more reactive to induced lightning and RF
voltages and currents leading to malfunction or failure.

• Increased percentage of composite materials in aircraft construction. Because of their decreased
conductivity, composite materials may result in less inherent shielding by the aircraft structure.

• Since current flowing in the lightning channel will be forced (during lightning attachment) into
and through the aircraft structure without attenuation, decreased conductivity for aircraft struc-
ture materials can be particularly troubling for lightning.

The direct effects of lightning (dielectric puncture, blasting, melting, fuel ignition, etc.) have been
recognized as flight hazards for decades, and in 1972 the SAE formed the AE4 Special Task F (which later
became AE4L) to address this issue. In the early 1980s, the FAA began developing policy relative to the
effects of lightning on electrical/electronic systems (indirect effects) and AE4L supported the FAA and
JAA by providing the technical basis for international standards (rules/regulations) and guidance material
that, for aircraft type certification, would provide acceptable means for demonstrating compliance to
those rules/regulations. AE4L also supported RTCA Special Committee 135 (SC-135) to integrate light-
ning environment conditions and test procedures into airborne equipment standards (DO-160) and the
EUROCAE standards counterpart (ED-14). In 1987, EUROCAE formed Working Group 31 to be the
European counterpart of AE4L.

In 1986, the FAA and JAA identified High Energy Radio Frequency (HERF) electromagnetic fields as
an issue for aircraft electrical/electronic systems. Some time later the term HERF was changed to its
present designation, which is High Intensity Radiated Field (HIRF). Subsequent to the FAA identifying
HIRF as a safety issue, SAE and EUROCAE formed Committee AE4R and Working Group 33, respectively,
to support the FAA and JAA in much the same way as was the case with AE4L and lightning. In addition,
unlike the case for lightning, RTCA SC-135 formed a HIRF working group (the corresponding European
group was already part of EUROCAE/WG33) to integrate HIRF requirements into DO-160/ED-14.

In the interim between the absence and existence of a rule for lightning and HIRF, special conditions
have been or are issued to applicants for aircraft type certification (TC, STC, ATC). The rationale for the
special condition is given in words to the effect:

These series of aircraft will have novel or unusual design features associated with the installation of
new technology electrical and electronic systems, which perform critical or essential functions. The
applicable airworthiness regulation does not contain adequate or appropriate safety standards for
the protection of these systems from the effects of lightning and radio frequency (RF) energy. This
notice contains the additional safety standards that the Administrator considers necessary to ensure
that critical and essential functions the new technology electrical and electronic systems perform are
maintained when the airplane is exposed to lightning and RF energy.

Presently, the FAA’s Federal Aviation Regulations (FARs) have been updated to include the “indirect
effects” of lightning, but not HIRF. In the time period between the absence and existence of a rule for
HIRF, special conditions for HIRF are being issued to applicants for aircraft certification. However, the
FAA has established the Aviation Rule-Making Advisory Committee, which in turn established the
© 2001 by CRC Press LLC

Electromagnetic Effects Harmonization Working Group (EEHWG) to develop the rule-making package
for HIRF and for amendments to the lightning rules.

Portable electronic devices (PEDs) have not been identified for regulatory action, but in 1992 the FAA
requested the RTCA to study the EME produced by PEDs. In response to an FAA request relative to
PEDs, RTCA formed Special Committee 177 (SC-177) in 1992. In 1996, SC-177 issued a report titled
“Portable Electronic Devices Carried Onboard Aircraft” (DO-233). Currently, control of PEDs and their
associated electromagnetic (EM) emissions are handled by integrating some of the RTCA recommenda-
tions into airline policy regarding instructions (prohibition of personal cellular phone use, turn-off of
PEDs during taxi, take-off, and landing, etc.) given to passengers.

25.3.1 EME Compliance Demonstration for Electrical/Electronic Systems

FAA/JAA FAR(s)/JAR(s) require compliance demonstration either explicitly or implicitly for the follow-
ing EME elements:

• Lightning

• HIRF (FAA)

• HIRF (JAA)

• EMC

At the aircraft level, the emphasis should be on lightning and HIRF because most of the energy and
system hazards arise from these threats. Their interaction with aircraft systems is global and also the
most complex, requiring more effort to understand. Intrasystem electromagnetic emissions fall under
the broad discipline of EMC. PEDs are a source of EM emissions that fall outside of the categories of
equipment normally included in the EMC discipline. Like lightning and HIRF, the interaction of PED
emissions with aircraft electrical/electronic systems is complex and could be global.

The electrical and/or electronic systems that perform functions “critical” to flight must be identified
by the applicant with the concurrence of the cognizant FAA ACO. This may be accomplished by con-
ducting a functional hazard assessment and, if necessary, preliminary system safety assessments (see SAE
ARP 4761). The term “critical” means those functions whose failure would contribute to, or cause, a
catastrophic failure condition (loss of aircraft). Table 25.1 provides the relationship between function
failure effects and development assurance levels associated with those systems that implement functions
that can affect safe aircraft operation.

The terms “Level A,” etc. designate particular system development assurance levels. System develop-
ment assurance levels refer to the rigor and discipline of processes used during system development
(design, implementation, verification/certification, production, etc.). It was deemed necessary to focus
on the development processes for systems based upon “highly integrated” or “complex” (whose safety
cannot be shown solely by test and whose logic is difficult to comprehend without the aid of analytical
tools) elements, i.e., primarily digital electronic elements.

Development assurance activities are ingredients of the system development processes. As has been noted,
systems and appropriate associated components are assigned “development assurance levels” based on failure
condition classifications associated with aircraft-level functions implemented by systems and components.

TABLE 25.1 Nomenclature Cross Reference Between AC25.1309 and SAE-ARP 4754

Failure Condition Classification Development Assurance Level

Catastrophic Level A
Severe Major/Hazardous Level B
Major Level C
Minor Level D
No Effect Level E
© 2001 by CRC Press LLC

The rigor and discipline needed in performing the supporting processes will vary, depending on the
assigned development assurance level.

There is no development process for aircraft functions. Basically, they should be regarded as intrinsic
to the aircraft and are categorized by the role they play for the aircraft (control, navigation, communi-
cation, etc.). Relative to safety, they are also categorized (from FAA advisory material) by the effect of
their failures, i.e., catastrophic, severe major/hazardous, major, etc.

EMC has been included in FAA regulations since the introduction of radio and electrical/electronic
systems into aircraft. Electrical equipment, controls, and wiring must be installed so that operation of
any one unit, or system of units, will not adversely affect the simultaneous operation of any other electrical
unit or system essential to aircraft safe operation. Cables must be grouped, routed, and spaced so that
damage to essential circuits will be minimized if there are faults in heavy current-carrying cables. In
showing compliance with aircraft electrical/electronic system safety requirements with respect to radio
and electronic equipment and their installations, critical environmental conditions must be considered.
Radio and electronic equipment, controls, and wiring must be installed so that operation of any one
component or system of components will not adversely affect the simultaneous operation of any other
radio or electronic unit, or system of units, required by aircraft functions.

Relative to safety and electrical/electronic systems, the systems, installations, and equipment whose
functioning is required for safe aircraft operation must be designed to ensure that they perform their
intended functions under all foreseeable operating conditions. Aircraft systems and associated compo-
nents, considered separately and in relation to other systems, must be designed so that:

• The occurrence of any failure condition that would prevent the continued safe flight and landing
of the airplane is extremely improbable.

• The occurrence of any other failure condition that would reduce the capability of the airplane or
the ability of the crew to cope with adverse operating conditions is improbable.

25.3.2 EME Energy Propagation

As has been noted in the introductory paragraph and illustrated in Figure 25.2, lightning and HIRF are
threats to the overall aircraft. Since they are external EME elements, of the two, lightning produces the
most intense environment, particularly by direct attachment.

Both lightning and HIRF interactions produce internal fields. Lightning can also produce substantial
voltage drops across the aircraft structure. Such structural voltages provide another mechanism (in
addition to internal fields) for energy to propagate into electrical/electronic systems. Also, the poorer the
conductivity of structural materials, the greater the possibility that there are

• Voltage differences across the structure

• Significant lightning diffusion magnetic fields

• Propagation of external environment energy

Figure 25.3 gives the HIRF spectrum and associated aircraft/installations features of interest.
In general, the propagation of external EME energy into the aircraft interior and electrical/electronic

systems is a result of complex interactions of the EME with the aircraft exterior structures, interior
structures, and system installations (see Figures 25.3 through 25.7). Figure 25.8 gives representative
transfer functions, in the frequency domain, of energy propagation into electrical/electronic systems, and
Figure 25.9 provides time domain responses to a lightning pulse resulting from transfer functions having
the low-frequency characteristic Vo(f) = kf[Hi(f)] and a high frequency “moding” (resonant) character-
istic (e.g., open loop voltage of cabling excited by a magnetic field; see Figure 25.8).

Paths of electromagnetic wave entry from the exterior to the interior equipment regions are sometimes
referred to as points of entry. Examples of points of entry may be seams, cable entries, windows, etc.
As noted, points of entry are driven by the local environment, not the incident environment. The
internal field levels are dependent on both the details of the point of entry and the internal cavity.
© 2001 by CRC Press LLC

FIGURE 25.2 External EME (HIRF, lightning) interaction.

FIGURE 25.3 RF spectrum and associated installation dimensions of interest.
© 2001 by CRC Press LLC

Resulting internal fields can vary over a wide range of intensity, wave shape, and wave impedance. (Below
10 MHz within a metal aircraft, the magnetic fields due to lightning predominate because of the electric
field shielding properties of metal skins. For HIRF “high-frequency” bands in some internal regions,
internal field levels may exceed the incident field levels.)

The EME local to the equipment or system within the installation (the EME energy coupled to
installation wiring which appears at equipment interface circuits) and the degree of attenuation or
enhancement achieved for any region are the product of many factors such as external EME character-
istics, materials, bonding of structure, dimensions and geometric form of the region, and the location
and size of any apertures allowing penetration into the aircraft (G0 through G5 of Figure 25.4 which
could have any of the characteristics of Figure 25.8.)

In HIRF high-frequency bands (frequencies on the order of 100 MHz and higher) the internal field
resulting from such influences, as noted above, will in most cases produce a nonuniform field within
the region or location of the system or equipment. The field cannot be considered as uniform and
homogeneous. The field will not necessarily allow the adoption of single-point measurement techniques
for the accurate determination of the equivalent internal field for to be used as the test level for systems.
Several hot spots typically exist within any subsection of the aircraft. This is particularly true at cavity
resonant conditions. Intense local effects are experienced at all frequencies in the immediate vicinity of
any apertures for a few wavelengths away from the aperture itself. For apertures small with respect to
wavelength, measurements of the fields within the aperture would yield fields much larger than those

FIGURE 25.4 EME propagation process transfer function perspective.
© 2001 by CRC Press LLC

further inside the aircraft because the fields fall off inversely proportional to radius cubed. For apertures
on the order of a wavelength in size or larger, the fields may penetrate unattenuated.

The HIRF spectrum of RF energy that couples into aircraft wiring and electrical/electronic systems
can be summarized into three basic ranges:

• HIRF energy below 1 MHz — induced coupling at these frequencies is inefficient and thus will
be of lesser concern.

• HIRF energy between 1 and 400 MHz — induced coupling is of major concern since aircraft
wiring acts as a highly efficient antenna at these frequencies.

• HIRF energy above 400 MHz — coupling to aircraft wiring drops off at frequencies above 400
MHz. At these higher frequencies the EM energy tends to couple through equipment apertures
and seams and to the quarter wavelength of wire attached to the line replaceable unit (LRU). In
this frequency range, aspects of equipment enclosure construction become important.

The extension of electrical/electronic systems throughout the aircraft ranges from highly distributed
(e.g., flight controls) to relatively compact. Wiring associated with distributed systems penetrates several
aircraft regions. Some of these regions may be more open to the electromagnetic environment than
others, and wiring passing through the more open regions is exposed to a higher environment. Thus, at
frequencies below 400 MHz, the wiring of a highly distributed system could have a relatively wide range
of induced voltages and currents that would appear at equipment interface circuits.

The flight deck of the aircraft is an example of an open region. The windscreen “glass” presents
approximately zero attenuation to an incoming field at and above the frequency for which its perimeter
is one wavelength. Some enhancement above the incident field level generally exists in and around the
aperture at this resonance condition.

FIGURE 25.5 Aircraft internal EME energy electrical/electronic system.
© 2001 by CRC Press LLC

FIGURE 25.6 Electrical/electronic equipment internal EME interaction electrical/electronic circuitry.

FIGURE 25.7 Electrical/electronic device internal EME interaction electrical/electronic circuitry.
© 2001 by CRC Press LLC

Lightning is a transient electromagnetic event, as is the resulting internal environment. Relative to a
spectral representation, lightning energy would be concentrated in the zero to 50 MHz range (most
energy is below 3 MHz). However, since lightning is such an intense transient, significant energy can be
present up to and sometimes above 10 MHz.

Relative to the higher frequency range (above 100 MHz) strong resonances of aircraft interior volumes
(cavities) such as the flight deck, equipment bay, etc, could occur. At the very high frequencies the EME
can be in the form of both very intense and very short duration. From a cavity resonance issue, since
the time constant of a relatively good cavity resonator is on the order of 1 �s, the pulse can be gone
before significant field energy is developed within the cavity.

25.4 Architecture Options for Fault Mitigation

New system architecture measures have been evolving which could complement/augment traditional
schemes to provide protection against EME energy effects. Architecture options can be applied at the overall
system level or within the digital computing platform for the system. These options include the following:

• Distributed bus architecture

• Error Detection and Corrective (EDC) schemes

• Fiber optic data transfer

• Computation recovery

FIGURE 25.8 Frequency domain representation of EME energy attenuation/coupling transfer functions.
© 2001 by CRC Press LLC

25.4.1 Electrical/Electronic System

In the past, soft faults in digital avionics were physically corrected by manual intervention, recycle power,
etc. More recently, system-level measures for the automatic correction of soft faults have begun to be
developed. It is perceived that significant benefits can be gained through soft fault protection measures
designed into the basic system mechanization. System-level soft fault protection methodologies provide
the ability to tolerate disruption of either input/output data or internal computation. Accordingly, there
are two distinct classes of disruption:

• Disruption at the system equipment interface boundary causing corruption of data flowing to or
from the affected subsystem.

FIGURE 25.9 Responses for lightning EM pulse field interaction with objects of different “electrical lengths.”
© 2001 by CRC Press LLC

• Disruption that reaches within system equipment to corrupt internal data and computation. As
a worst case scenario, it must be presumed that any memory elements within the computational
machine (registers, memory, etc.) may be affected at the time of disruption.

The short-term disruption of input/output data at an equipment boundary can be managed via a
variety of existing methodologies. Data errors must be detected and the associated data suppressed until
the error status is cleared. The data processing algorithm should tolerate data loss without signaling a
hard fault. The length of time that can be tolerated between valid refreshes depends on the data item
and the associated time constants (response) of the system and corresponding function being imple-
mented.

The ability to tolerate disruption that reaches computation and memory elements internal to system
equipment without propagation of the associated fault effect is a more difficult problem. For systems
with redundant channels, this means tolerance of the disruption without loss of any of the redundant
channels. Fault clearing and computation recovery must be rapid enough to be “transparent” relative to
functional operation and flight deck effects.

Such computational recovery requires that the disruption be detected and then the state of the affected
system be restored. Safety-critical systems are almost always mechanized with redundant channels.
Outputs of channels are compared in real time, and an errant channel is blocked from propagating a
fault effect. One means available for safety-critical systems to detect disruption is the same cross-channel
monitor. If a miscompare between channels occurs, a recovery is attempted. For a hard fault, the
miscompare condition will not have been remedied by the recovery attempt.

A basic approach to “rapid” computational recovery would be to transmit function state variable data
from valid channels to the channel that has been determined faulted and for which a recovery is to be
attempted (Figure 25.10). However, the cross-channel mechanization is ineffective against a disruption
that has the potential to affect all channels.

25.4.2 Digital Computing Platform

The platform for the Airplane Information Management System (AIMS) used on Boeing 777 aircraft
and Versatile Integrated Avionics (VIA) technology is an example of an architectural philosophy in the
design of computing platforms. Essentially, VIA is a repackaged version of the AIMS technology. As
mentioned, first-generation digital avionics have been plagued with high MTBUR (no-fault-found) rates.

FIGURE 25.10 Redundant CPUs cross-lane recovery (can accomplish some degree of “rapid” recovery).
© 2001 by CRC Press LLC

One primary goal of the Boeing 777 program was to greatly improve operational readiness and associated
life-cycle cost performance for the airlines. The AIMS functionally redundant, self-checking pairs archi-
tecture was specifically selected to attack these problems. The high integration supported by AIMS
required a very comprehensive monitoring environment that is ideal for in-channel “graceful” recovery.

In AIMS, the more dramatic step of making hardware monitoring active on every CPU clock cycle
was taken. All computing and I/O management resources are lockstep compared on a processor cycle-
by-cycle basis. All feasible hardware soft or hard faults are detected. In this approach, if a soft or hard
fault event occurs, the processor module is immediately trapped to service handlers and no data can be
exported. In past systems, the latency between such an event and eventual detection (or washout) was
the real culprit. The corrupted data would propagate through computations and eventually affect some
output. To recover, drastic actions (reboots or rearms) were often necessary. In AIMS, critical functions
such as displays (because the flight crew could “see” hiccups) have a “shadowing” standby computational
resource. The shadow sees the same input set at the same time as the master self-checking pair. If the
master detects an event, within nanoseconds the faulty unit is blocked from generating outputs. The
Honeywell SAFEbus® system detects the loss of output by the master and immediately passes the shadow’s
correct data for display.

In the faulted processor module, the core system has two copies of processor “state data” fundamental
in the self-checking pair. Unlike past systems where the single thread processor may be so defective it
cannot record any data, at least one half of the AIMS self-checking pair should be successful. Thus,
the process of diagnosing hardware errors involves comparing what each half of the pair thought was
going on. Errors, down to processor address, control, or data bits can be easily isolated. If the event
was a soft fault, the core system allows a graceful recovery before the processor module is again allowed
to export data. On the surface it appears to be a more sensitive system. However, even with the
comprehensive monitoring (potentially a brittle operation), from the standpoint of a self-checking
(dual-lockstep) pairs processor data comparison, in these platforms the automatic recovery capabilities
should provide a compensating, more robust operation. In other words, from a macro time perspective,
system functions will continue to be performed even though, on a micro time basis, a soft fault
occurred.

In addition to the isolation of hardware faults (hard or soft), effective temporal and physical parti-
tioning for execution of application software programs involving a variety of software levels has been
achieved by the monitoring associated with the self-checking pairs processor and a SAFEbus® commu-
nication technology approach.

Defining Terms

DO-160: RTCA Document 160, Environmental Conditions and Test Procedures for Airborne Equipment,
produced by RTCA Special Committee 135. Harmonized with ED-14.

ED-14: EUROCAE Document 14, Counterpart to DO-160, produced by EUROCAE Working Groups
14, 31, and 33. Harmonized with DO-160.

EMC: Electromagnetic Compatibility is a broad discipline dealing with EM emissions from and suscep-
tibility to electrical/electronic systems and equipment.

EME: Electromagnetic Environment, which for commercial aircraft, consists of lightning, HIRF, and the
electrical/electronic system and equipment emissions (intra and inter) portion (susceptibility not
included) of EMC.

MTBF: Mean Time Between Failures (World Airlines Technical Operations Glossary).
MTBUR: Mean Time Between Unscheduled Removals (World Airlines Technical Operations Glossary).
EUROCAE: European Organization for Civil Aviation Equipment; for the European aerospace commu-

nity, serving a role comparable to that of the RTCA and SAE.
PED: Portable Electronic Device, an emerging source of EM emissions not included in the EMC

discipline.
© 2001 by CRC Press LLC

References

1. AC25.1309, “System Design and Analysis.”
2. SAE ARP-4761, “Guidelines and Tools for Conducting the Safety Assessment Process on Civil

Airborne Systems and Equipment,” issued December, 1996.
3. SAE ARP-4754, “Certification Consideration for Highly Integrated or Complex Aircraft Systems,”

issued November, 1996.
4. R.F. Hess, “Options for Aircraft Function Preservation in the Presence of Lightning,” Int. Conf.

Lightning Static Electr., Toulouse, France, June 1999.
5. Aviation Regulations

XX.581 Lightning Protection
XX.1316 System Lightning Protection

6. AC/AMJ 20-136, “Protection of Aircraft Electrical/Electronic Systems Against the Indirect Effects
of Lightning.”

7. N8110.67 (FAA Notice), “Guidance for the Certification of Aircraft Operating in High Intensity
Radiated Field (HIRF) Environments.”

8. SAE ARP5413, “Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of
Lightning,” issued August, 1999.

9. SAE AE4L Report: AE4L-87-3 (“Orange Book”), “Certification of Aircraft Electrical/Electronic
Systems for the Indirect Effects of Lightning,” September 1996 (original publication February
1987).

10. SAE ARP5412, “Aircraft Lightning Environment and Related Test Waveforms,” 1999.
11. SAE Report: AE4L-97-4, “Aircraft Lightning Environment and Related Test Waveforms Standard,”

July 1997.
12. EUROCAE ED-14D/RTCA DO-160D, “Environmental Conditions and Test Procedures for Air-

borne Equipment.”
13. MIL-STD-464, “Electromagnetic Environmental Effects Requirements for Systems.”
14. Clarke, Clifton A. and Larsen, William E., FAA Report DOT/FAA/CT 86/40, “Aircraft Electromag-

netic Compatibility,” June 1987.
15. Hess, R.F. “Implications Associated with the Operation of Digital Data Processing in the Relatively

Harsh EMP Environments Produced by Lightning,” Int. Aerosp. and Ground Conf. Lightning and
Static Elect., Paris, France, June 1985.
© 2001 by CRC Press LLC

John G. P. Barnes “Ada”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

IV

Software

Robert P. Lyons, Jr.

United States Air Force

26 Ada

J. G. P. Barnes

Introduction • Key Concepts • Abstraction • Programs and Libraries

27 RTCA DO-178B/EUROCAE ED-12B

Thomas K. Ferrell, Uma D. Ferrell

Introduction • Software Life-Cycle Process • Integral Process • Additional
Considerations • Additional Guidance • Synopsis

Digital avionics allow much greater integration of functions, unprecedented flexibility, enhanced reli-
ability, and ease of technology upgrade than can be achieved with more classical analog avionics. Indeed,
given the cost, volume, weight, prime power, cooling, complexity, and safety constraints of both civil
and military aircraft, there may really be no other option than to digitize, and even integrate, avionics
functions in ways analog avionics could never achieve. Clearly, advances in electron devices, particularly
digital integrated circuits of very large scale and high speed, give nearly unlimited possibilities to the
designer of modern avionics. But without concomitant attention to the development and verification of
highly complex software and its integration with the underlying hardware, the avionics implementation
will simply produce heat, but no useful, much less safe, avionics functions at all.

Although software is an abstract thing dealing with data flows, control flows, algorithms, logical expres-
sions, and the like, it is a building material of today’s and tomorrow’s aircraft as surely as are silicon,
aluminum, titanium, plastics, and composites. And just as all the system and hardware aspects of an aircraft
and its avionics require and are amenable to disciplined engineering analysis, synthesis, and verification, so
is software. Certainly, the abstract nature of software makes its engineering and implementation less obvious
than the fairly concrete methods available to the system and hardware engineering segments of the modern
avionics development job. Fortunately, the tools to engineer software do exist.

The two chapters in this section describe two very important aspects of the software engineering
applied to avionics. Chapter 26 discusses ISO/IEC 8652-95 Programming Language – Ada. Of all the
software languages available to implement very large and very critical avionics functions, Ada-95 and, to
a lesser extent, its predecessor Ada-83 have been shown to be the most supportive of software engineering
concepts most likely to produce error free, flexible, reliable, complex software programs. One can write
bad software in any language; it is just harder to do so with Ada than with other languages such as C
and C++. Chapter 26 gives an excellent introduction to the development of the Ada language, its features,
and the rudiments of its application.

Chapter 27 covers the important points of one of the most pervasive software standards applicable
especially to civil aircraft avionics, but which subsumes other standards usually seen in military avionics
developments. DO-178/ED-12 Software Considerations in Airborne Systems and Equipment Certification

is a well-coordinated consensus standard combining the best thinking of software experts as well as
aircraft certification authorities. Although this standard does not prescribe any particular software devel-
opment methodology, all elements of the software life cycle are covered under its aegis. DO-178B, the
current instantiation of the standard, does for the software part of the avionics sy

26
Ada

26.1 Introduction
Software Engineering • Abstraction and Freedom • From
Ada 83 to Ada 95

26.2 Key Concepts
Overall Structure • Errors and Exceptions • Scalar Type
Model • Arrays and Records • Access Types • Error
Detection

26.3 Abstraction
Objects and Inheritance • Classes and
Polymorphism • Genericity • Object Oriented
Terminology • Tasking

26.4 Programs and Libraries
Input-Output • Numeric Library • Running a Program

References
Further Information

26.1 Introduction

Ada 95 is a comprehensive high-level programming language especially suited for the professional devel-
opment of large or critical programs for which correctness and robustness are major considerations. This
chapter gives a brief account of the background to the development of Ada 95 (and its predecessor Ada
83), its place in the overall language scene, and then outlines some of the major features of the language.

Ada 95 is a direct descendant of, and highly compatible with, Ada 83, which was originally sponsored
by the U.S. Department of Defense for use in the embedded system application area. Ada 83 became an
ANSI standard in 1983 and an ISO standard in 1987.

Time and technology do not stand still and accordingly, after several years’ use, it was decided that
the Ada 83 language standard should be revised in the light of experience and changing requirements.
One major change was that Ada was now being used for many areas of application other than the
embedded systems for which it was originally designed. Much had also been learned about new pro-
gramming paradigms such as object oriented programming.

A set of requirements for the revision was published in 1990. An interesting aspect of the requirements
is that they cover a number of specialized application areas. It seemed likely that it would be too costly
to implement a language meeting all these requirements in their entirety on every architecture. On the
other hand, one of the strengths of Ada is its portability, and the last thing anyone wanted was the anarchy
of uncontrolled subsets. As a consequence, Ada 95 comprises a core language plus a small number of
specialized annexes. All compilers have to implement the core language and vendors can choose to
implement zero, one, or more annexes according to the needs of their markets.

Having established the requirements, the language design was contracted to Intermetrics Inc. under
the technical leadership of S. Tucker Taft with continued strong interaction with the user community.
The new ISO standard was published on February 15, 1995 and so the revised language is called Ada 95.

John G. P. Barnes
John Barnes Informatics
© 2001 by CRC Press LLC

26.1.1 Software Engineering

It should not be thought that Ada is just another programming language. Ada is about software engi-
neering, and by analogy with other branches of engineering it can be seen that there are two main
problems with the development of software: the need to reuse software components as much as possible
and the need to establish disciplined ways of working.

As a language, Ada (and hereafter by Ada we mean Ada 95) largely solves the problem of writing
reusable software components (or at least, because of its excellent ability to prescribe interfaces it provides
an enabling technology in which reusable software can be written).

Many years’ use of Ada 83 has shown that Ada is living up to its promise of providing a language
which can reduce the cost of both the initial development of software and its later maintenance. The
main advantage of Ada is simply that it is reliable. The strong typing and related features ensure that
programs contain few surprises; most errors are detected at compile time and of those that remain many
are detected by run-time constraints. This aspect of Ada considerably reduces the costs and risks of
program development compared, for example, with C and its derivatives such as C��. Moreover an
Ada compilation system includes the facilities found in separate tools such as lint and make for C. Even
if Ada is seen as just another programming language, it reaches parts of the software development process
that other languages do not reach.

The essence of Ada 95 is that it adds extra flexibility to the inherent reliability of Ada 83, thereby
producing an outstanding language suitable for the development needs of applications well into the new
millenium.

Two kinds of applications stand out where Ada is particularly relevant. The very large and the very
critical. Very large applications, which inevitably have a long lifetime, require the cooperative effort of
large teams. The information hiding properties of Ada, and especially the way in which integrity is
maintained across compilation unit boundaries, are invaluable in enabling such developments to progress
smoothly. Furthermore, if and when the requirements change and the program has to be modified, the
structure, and especially the readability of Ada, enables rapid understanding of the original program even
if it has been modified by a different team.

Very critical applications are those that just have to be correct otherwise people or the environment
may be damaged. Obvious examples occur in avionics, railway signaling, process control, and medical
applications. Such programs may not be large, but they have to be very well understood and often
mathematically proven to be correct. The full flexibility of Ada is not appropriate in this case, but the
intrinsic reliability of the strongly typed kernel of the language is exactly what is required. Indeed many
certification agencies dictate the properties of acceptable languages and while they do not always
explicitly demand a subset of Ada, nevertheless the same properties are not provided by any other
practically available language.

Ada is thus very appropriate for avionics applications which embrace both the large and the critical.

26.1.2 Abstraction and Freedom

The evolution of programming languages essentially concerns the use of abstraction to hide unnecessary
and harmful details of the program.

Thus “expression abstraction” in any language (such as Fortran or Pascal) hides the use of the machine
registers to evaluate expressions, and “control abstraction” in Algol and Pascal hides the goto’s and labels
which had to be explicitly used in early versions of languages such as Fortran. A more recent advance is
“data abstraction”. This means separating the details of the representation of data from the abstract
operations defined upon the data.

Older languages take a very simple view of data types. In all cases the data are directly described in
numerical terms. Thus if the data to be manipulated are not really numerical (they could be traffic light
colors) then some mapping of the abstract type must be made by the programmer into a numerical type
(usually integer). This mapping is purely in the mind of the programmer and does not appear in the
written program except perhaps as a comment.
© 2001 by CRC Press LLC

Pascal introduced a certain amount of data abstraction as instanced by the enumeration type. Enu-
meration types allow us to talk about the traffic light colors in their own terms without having to know
how they are represented in the computer.

Another form of data abstraction concerns visibility. It has long been recognized that the traditional
block structure of Algol and Pascal is not adequate. For example, it is not possible in Pascal to write two
procedures to operate on some common data and make the procedures accessible without also making
the data directly accessible. Many languages have provided control of visibility through separate compi-
lation; this technique is adequate for medium-sized systems, but since the separate compilation facility
usually depends upon some external system, total control of visibility is not gained. Ada 83 was probably
the first practical language to bring together these various forms of data abstraction.

Another language which made an important contribution to the development of data abstraction is
Simula 67 with its concept of class. This leads us into the paradigm now known as Object Oriented
Programming (OOP) which is currently in vogue. There seems to be no precise definition of OOP, but
its essence is a flexible form of data abstraction providing the ability to define new data abstractions in
terms of old ones and allowing dynamic selection of types.

All types in Ada 83 are static and thus Ada 83 is not classed as a truly Object Oriented language but
as an Object Based language. However, Ada 95 includes all the essential functionality associated with
OOP such as polymorphism and type extension.

We are probably too close to the current scene to achieve a proper perspective. It remains to be seen
just how useful “object abstraction” actually is. Indeed it might well be that inheritance and other aspects
of OOP turn out to be unsatisfactory by obscuring the details of types although not hiding them
completely; this could be argued to be an abstraction leak making the problems of program maintenance
harder if OOP is overused.

Another concept relevant to the design of languages is freedom. Freedom takes two forms. Freedom
to do whatever we want on the one hand, and freedom from dangers and difficulties on the other. In
general terms, modern society seems obsessed with freedom to do one’s own thing and is less concerned
with freedom from unpleasant consequences.

In terms of a programming language we need both freedoms at appropriate points. For large parts of
a program we need freedom from inadvertant errors; this is best provided by a controlled framework in
which the details of the machine and other parts of the system are hidden through various forms of
abstraction. However, there are areas where freedom to get down to the raw hardware is vital; this
especially applies to embedded applications where access to interrupt mechanisms and autonomous
transfer of data are vital for proper responses to external events.

The merit of Ada is that it provides both kinds of freedom: freedom from errors by the use of abstraction
and yet freedom to get at the underlying machine and other systems when necessary.

A brief survey of how Ada relates to other languages would not be complete without mention of C
and C��. These have a completely different evolutionary trail than the classic Algol-Pascal-Ada route.

The origin of C can be traced back to the CPL language devised in the early 1960s. From it emerged
the simple system programming language BCPL and from that B and then C. The essence of BCPL was
the array and pointer model which abandoned any hope of strong typing and (with hindsight) a proper
mathematical model of the mapping of the program onto a computing engine. Even the use of : � for
assignment was lost in this evolution which reverted to the confusing use of � as in Fortran. About the
only feature of the elegant CPL code remaining in C is the unfortunate braces {} and the associated
compound statement structure which has now been abandoned by all other languages in favor of the
more reliable bracketed form originally proposed by Algol 68.

C is an example of a language which almost has all the freedom to do things, but with little freedom
from difficulties. Of course there is a need for a low-level systems language with functionality like C. It
is, however, unfortunate that the interesting structural ideas in C�� have been grafted onto the fragile
C foundation. As a consequence, although C�� has many important capabilities for data abstraction,
including inheritance and polymorphism, it is all too easy to break these abstractions and create programs
that violently misbehave or are exceedingly hard to understand and maintain.
© 2001 by CRC Press LLC

The designers of Ada 95 have striven to incorporate the positive dynamic facilities of the kind found
in C�� onto the firm foundation provided by Ada 83. Ada 95 is thus an important advance along the
evolution of abstraction. It incorporates full object abstraction in a way that is highly reliable without
incurring excessive run-time costs.

26.1.3 From Ada 83 to Ada 95

In this section (and especially for the benefit of those familiar with Ada 83), we briefly survey the main changes
from Ada 83 to Ada 95. As we said above, one of the great strengths of Ada 83 is its reliability. The strong
typing ensures that most errors are detected at compile time while many of those remaining are detected by
various checks at run time. Moreover, the compile-time checking extends across compilation unit boundaries.
This reliability aspect of Ada considerably reduces the costs and risks of program development (especially for
large programs) compared with weaker languages which do not have such a rigorous model.

However, after a number of years’ experience it became clear that some improvements were necessary
to completely satisfy the present and the future needs of users from a whole variety of application areas.
Four main areas were perceived as needing attention.

• Object oriented programming. Recent experience with other languages has shown the benefits of
the object oriented paradigm. This provides much flexibility and, in particular, it enables a program
to be extended without editing or recompiling existing and tested parts of it.

• Program libraries. The library mechanism is one of Ada’s great strengths. Nevertheless the flat structure
in Ada 83 is a hindrance to fine visibility control and to program extension without recompilation.

• Interfacing. Although Ada 83 does have facilities to enable it to interface to external systems written
in other languages, these have not proved to be as flexible as they might. For example, it has been
particularly awkward to program call-back mechanisms which are very useful, especially when
using graphical user interfaces.

• Tasking. The Ada 83 rendezvous model provides an advanced description of many paradigms.
However, it has not turned out to be entirely appropriate for shared data situations where a static
monitor-like approach brings performance benefits. Furthermore, Ada 83 has a rather rigid
approach to priorities and it is not easy to take advantage of recent deeper understanding of
scheduling theory which has emerged since Ada was first designed.

The first three topics are really all about flexibility, and so a prime goal of the design of Ada 95 has
been to give the language a more open and extensible feel without losing its inherent integrity and
efficiency. In other words to get a better balance of the two forms of freedom.

The additions to Ada 95 which contribute to this more flexible feel are the extended or tagged types,
the hierarchical library, and the greater ability to manipulate pointers or references. The tagged types
and hierarchical library together provide very powerful tools for programming by extension.

In the case of the tasking model, the introduction of protected types allows a more efficient imple-
mentation of standard paradigms of shared data access. This brings with it the benefits of speed provided
by low-level primitives such as semaphores without the risks incurred by the use of such unstructured
primitives. Moreover, the clearly data oriented view brought by the protected types fits in naturally with
the general spirit of the object oriented paradigm. Other improvements to the tasking model allow a
more flexible response to interrupts and other changes of state.

The remainder of this chapter is a brief survey of most of the key features of Ada 95. Some will be
familiar to those who know Ada 83, but much will be new or appear in a new light.

26.2 Key Concepts

Ada is a large language since it addresses many important issues relevant to the programming of
practical systems in the real world. It is, for instance, much larger than Pascal which, unless it extended
in some way, is really only suitable for training purposes (for which it was designed) and for small
© 2001 by CRC Press LLC

personal programs. Similarly, Ada is much larger than C although perhaps about the same size as C��.
But a big difference is the stress which Ada places on integrity and readability. Some of the key issues
in Ada are

• Readability—it is recognized that professional programs are read much more often than they are
written. It is important therefore to avoid an overly terse notation which, although allowing a
program to be written down quickly, makes it almost impossible to be read except perhaps by the
original author soon after it was written.

• Strong typing—this ensures that each object has a clearly defined set of values and prevents
confusion between logically distinct concepts. As a consequence, many errors are detected by the
compiler which in other languages would have led to an executable but incorrect program.

• Programming in the large—mechanisms for encapsulation, separate compilation, and library
management are necessary for writing portable and maintainable programs of any size.

• Exception handling—it is a fact of life that programs of consequence are rarely perfect. It is necessary
to provide a means whereby a program can be constructed in a layered and partitioned way so
that the consequences of unanticipated events in one part can be contained.

• Data abstraction—as mentioned earlier, extra portability and maintainability can be obtained if
the details of the representation of data can be kept separate from the specifications of the logical
operations on the data.

• Object oriented programming—in order to promote the reuse of tested code, the type of flexibility
associated with OOP is important. Type extension (inheritance), polymorphism, and late binding
are all desirable especially if achieved without loss of type integrity.

• Tasking—for many applications it is important that the program be conceived as a series of parallel
activities rather than just as a single sequence of actions. Building appropriate facilities into a
language rather than adding them later via calls to an operating system gives better portability and
reliability.

• Generic units—in many cases the logic of part of a program is independent of the types of
the values being manipulated. A mechanism is therefore necessary for the creation of related pieces
of program from a single template. This is particularly useful for the creation of libraries.

• Interfacing—programs do not live in isolation and it is important to be able to communicate with
systems written in other languages.

An overall theme in designing Ada was concern for the programming process. Programming is a
human activity and a language should be designed to be helpful. An important aspect of this is enabling
errors to be detected early in the overall process. For example, care was taken that wherever possible a
single typographical error would result in a program that does not compile rather than in a program
that still compiles but does the wrong thing.

26.2.1 Overall Structure

One of the most important objectives of software engineering is to be able to reuse existing pieces of a
program so that the effort of writing new coding is kept to a minimum. The concept of a library of
program components naturally emerges, and an important aspect of a programming language is therefore
its ability to express how to use the items in a library.

Ada recognizes this situation and introduces the concept of library units. A complete Ada program is
assembled as a main subprogram (itself a library unit) which calls upon the services of other library units.

The main subprogram takes the form of a procedure of an appropriate name. The service library units
can be subprograms (procedures or functions) but they are more likely to be packages. A package is a
group of related items such as subprograms but may contain other entities as well.
© 2001 by CRC Press LLC

Suppose we wish to write a program to print out the square root of some number. We can expect
various library units to be available to provide us with a means of computing square roots and doing
input and output. Our job is merely to write a main subprogram to incorporate these services as we wish.
We will suppose that the square root can be obtained by calling a function in our library whose name
is Sqrt. We will also suppose that our library includes a package called Simple_IO containing various
simple input-output facilities. These facilities might include procedures for reading numbers, printing
numbers, printing strings of characters, and so on.

Our program might look like

with Sqrt, Simple_IO;
procedure Print_Root is
use Simple_IO;
X: Float;

begin
Get(X);
Put(Sqrt(X));

end Print_Root;

The program is written as a procedure called Print_Root preceded by a with clause giving the names
of the library units which it wishes to use. Between is and begin we can write declarations, and between
begin and end we write statements. Broadly speaking, declarations introduce the entities we wish to
manipulate and statements indicate the sequential actions to be performed.

We have introduced a variable X of type Float which is a predefined language type. Values of this
type are a set of certain floating point numbers and the declaration of X indicates that X can have values
only from this set. In our example a value is assigned to X by calling the procedure Get which is in our
package Simple_IO.

Writing

use Simple_IO ;

gives us immediate access to the facilities in the package Simple_IO. If we had omitted this use clause
we would have had to write

Simple_IO.Get(X);

in order to indicate where Get was to be found.
The procedure then contains the statement

Put(Sqrt(X));

which calls the procedure Put in the package Simple_IO with a parameter which in turn is the result
of calling the function Sqrt with the parameter X.

Some small-scale details should be noted. The various statements and declarations all terminate with
a semicolon; this is unlike some other languages such as Pascal where semicolons are separators rather
than terminators. The program contains various identifiers such as procedure, Put and X. These fall
into two categories. A few identifiers (69 in fact) such as procedure and is are used to indicate the
structure of the program; they are reserved and can be used for no other purpose. All others, such as
Put and X, can be used for whatever purpose we desire. Some of these, notably Float in our example,
have a predefined meaning but we can nevertheless reuse them if we so wish although it might be
confusing to do so. For clarity we write the reserved words in lower-case bold and capitalize the others.
This is purely a notational convenience; the language rules do not distinguish the two cases except when
we consider the manipulation of characters themselves. Note also how the underline character is used
to break up long identifiers into meaningful parts.
© 2001 by CRC Press LLC

Finally, observe that the name of the procedure, Print_Root, is repeated between the final end and
the terminating semicolon. This is optional but is recommended so as to clarify the overall structure,
although this is obvious in a small example such as this.

Our program is very simple; it might be more useful to enable it to cater for a whole series of numbers
and print out each answer on a separate line. We could stop the program somewhat arbitrarily by giving
it a value of zero.

with Sqrt, Simple_IO;
procedure Print_Roots is
use Simple_IO;
X: Float;

begin
Put("Roots of various numbers");
New_Line(2);
loop
Get(X);
exit when X = 0.0;
Put(" Root of ");
Put(X);
Put(" is ");
if X < 0.0 then
Put(" not calculable ");

else
Put(Sqrt(X));

end if;
New_Line;

end loop;
New_Line;
Put("Program finished");
New_Line;

end Print_Roots;

The output has been enhanced by the calls of further procedures New_Line and Put in the package
Simple_IO. A call of New_Line will output the number of new lines specified by the parameter (which
is of the predefined type Integer); the procedure New_Line has been written in such a way that if no
parameter is supplied then a default value of 1 is assumed. There are also calls of Put with a string as
argument. This is in fact a different procedure from the one that prints the number X. The compiler
knows which is which because of the different types of parameters. Having more than one procedure
with the same name is known as overloading. Note also the form of the string; this is a situation where
the case of the letters does matter.

Various new control structures are also introduced. The statements between loop and end loop are
repeated until the condition X � 0.0 in the exit statement is found to be true; when this is so the loop
is finished and we immediately carry on after end loop. We also check that X is not negative; if it is we
output the message “not calculable” rather than attempting to call Sqrt. This is done by the if statement;
if the condition between if and then is true, then the statements between then and else are executed,
otherwise those between else and end if are executed.

The general bracketing structure should be observed: loop is matched by end loop and if by end if.
All the control structures of Ada have this closed form, rather than the open form of Pascal and C that
can lead to poorly structured and incorrect programs.

We will now consider in outline the possible general form of the function Sqrt and the package
Simple_IO that we have been using. The function Sqrt will have a structure similar to that of our
© 2001 by CRC Press LLC

main subprogram; the major difference will be the existence of parameters.

function Sqrt(F: Float) return Float is
R: Float;

begin
-- compute value of Sqrt(F) in R
return R;

end Sqrt;

We see here the description of the formal parameters (in this case only one) and the type of the result.
The details of the calculation are represented by the comment which starts with a double hyphen. The
return statement is the means by which the result of the function is indicated. Note the distinction
between a function which returns a result and is called as part of an expression, and a procedure which
does not have a result and is called as a single statement.

The package Simple_IO will be in two parts: the specification which describes its interface to the
outside world, and the body which contains the details of how it is implemented. If it just contained the
procedures that we have used, its specification might be

package Simple_IO is
procedure Get(F: out Float);
procedure Put(F: in Float);
procedure Put(S: in String);
procedure New_Line(N: in Integer := 1);

end Simple_IO;

The parameter of Get is an out parameter because the effect of calling Get as in Get(X); is to transmit
a value out from the procedure to the actual parameter X. The other parameters are all in parameters
because the value goes in to the procedures.

Only a part of the procedures occurs in the package specification; this part is known as the procedure
specification and gives just enough information to enable the procedures to be called. We see also the
two overloaded specifications of Put, one with a parameter of type Float and the other with a parameter
of type String. Finally, note how the default value of 1 for the parameter of New_Line is indicated.

The package body for Simple_IO will contain the full procedure bodies plus any other supporting
material needed for their implementation and is naturally hidden from the outside user. In vague outline
it might look like

with Ada.Text_IO;
package body Simple_IO is

…
procedure Get(F: out Float) is
…

begin
…

end Get;
-- other procedures similarly

end Simple_IO;

The with clause shows that the implementation of the procedures in Simple_IO uses the more
general package Ada.Text_IO. The notation indicates that Text_IO is a child package of the
package Ada. It should also be noticed how the full body of Get repeats the procedure specification
which was given in the corresponding package specification. Note that the package Text_IO really
exists whereas Simple_IO is a figment of our imagination made up for the purpose of our example.
We will say more about Text_IO in a moment.
© 2001 by CRC Press LLC

The example in this section has briefly revealed some of the overall structure and control statements
of Ada. One purpose of this section has been to stress that the idea of packages is one of the most
important concepts in Ada. A program should be conceived as a number of components which provide
services to and receive services from each other.

Perhaps this is an appropriate point to mention the special package Standard which exists in every
implementation and contains the declarations of all the predefined identifiers such as Float and Inte-
ger. We can assume access to Standard automatically and do not have to give its name in a with clause.

26.2.2 Errors and Exceptions

We introduce this topic by considering what would have happened in the example in the previous section
if we had not tested for a negative value of X and consequently called Sqrt with a negative argument.
Assuming that Sqrt has itself been written in an appropriate manner, then it clearly cannot deliver a
value to be used as the parameter of Put. Instead an exception will be raised. The raising of an exception
indicates that something unusual has happened and the normal sequence of execution is broken. In our
case the exception might be Constraint_Error which is a predefined exception declared in the
package Standard. If we did nothing to cope with this possibility then our program would be termi-
nated and no doubt the Ada Run Time System will give us a message saying that our program has failed
and why. We can, however, look out for an exception and take remedial action if it occurs. In fact we
could replace the conditional statement

if X < 0.0 then
Put(“not calculable”);

else
Put(Sqrt(X));

end if;

by

begin
Put(Sqrt(X));

exception
when Constraint_Error =>
Put(“not calculable”);

end;

This fragment of a program is an example of a block. If an exception is raised by the sequence of
statements between begin and exception, then control immediately passes to the one or more statements
following the handler for that exception, and these are obeyed instead. If there were no handler for the
exception (it might be another exception such as Storage_Error) then control passes up the flow
hierarchy until we come to an appropriate handler or fall out of the main subprogram, which then
becomes terminated as we mentioned, with a message from the Run Time System.

The above example is not a good illustration of the use of exceptions since the event we are guarding
against can easily be tested for directly. Nevertheless it does show the general idea of how we can look
out for unexpected events and leads us into a brief consideration of errors in general.

From the linguistic viewpoint, an Ada program may be incorrect for various reasons. There are two
main error categories, according to how they are detected.

• Many errors are detected by the compiler—these include simple punctuation mistakes such as
leaving out a semicolon or attempting to violate the type rules such as mixing up colors and fish.
In these cases the program is said to be illegal and will not be executed.

• Other errors are detected when the program is executed. An attempt to find the square root of a
negative number or divide by zero are examples of such errors. In these cases an exception is raised
as we have just seen, and we have an opportunity to recover from the situation.
© 2001 by CRC Press LLC

One of the main goals in the design of Ada was to ensure that human errors fall into the first category
most of the time so that their detection and correction is a straightforward matter.

26.2.3 Scalar Type Model

We have said that one of the key benefits of Ada is its strong typing. This is well illustrated by the
enumeration type. Consider

declare
type Color is (Red, Amber, Green);
type Fish is (Cod, Hake, Plaice);
X, Y: Color;
A, B: Fish;

begin
X := Red; -- ok
A := Hake; -- ok
B := X; -- illegal
…

end;

Here we have a block which declares two enumeration types, Color and Fish, and two variables of
each type, and then performs various assignments. The declarations of the types gives the allowed values
of the types. Thus the variable X can only take one of the three values Red, Amber, or Green. The
fundamental rule of strong typing is that we cannot assign a value of one type to a variable of a different
type. So we cannot mix up colors and fish and thus our (presumably accidental) attempt to assign the
value of X to B is illegal and will be detected during compilation.

There are three enumeration types predefined in the package Standard. One is

type Boolean is (False, True);

which plays a fundamental role in control flow. Thus the predefined relational operators such as �

produce a result of this type and such a value follows if as we saw in the construction

if X < 0.0 then

in the example above. The other predefined enumeration types are Characterand Wide_Character.
The values of these types are the 8-bit ISO Latin-1 characters and the 16-bit ISO Basic Multilingual Plane
characters; these types naturally play an important role in input-output. The literal values of these types include
the printable characters and these are represented by placing them in single quotes thus 'X' or 'a' or indeed ' ' '.

The other fundamental types are the numeric types. One way or another, all other data types are built
out of enumeration types and numeric types. The two major classes of numeric types are the integer
types and floating point types (there are also fixed-point types which are rather obscure and deserve no
further mention in this brief overview). The integer types in fact are subdivided into signed integer types
(such as Integer) and unsigned or modular types. All implementations will have the types Integer
and Float. In addition, if the architecture is appropriate, an implementation may have other predefined
numeric types, Long_Integer, Long_Float, Short_Float, and so on. There will also be specific
integer types for an implementation depending upon the supported word lengths such as Integer_16
and corresponding unsigned types such as Unsigned_16.

One of the problems of numeric types is how to obtain both portability and efficiency in the face of
variations in machine architecture. In order to explain how this is done in Ada it is convenient to introduce
the concept of a derived type. (We will deal with derived types in more detail when we come to object
oriented programming).

The simplest form of derived type introduces a new type which is almost identical to an existing type
except that it is logically distinct. If we write

type Light is new Color;
© 2001 by CRC Press LLC

then Light will, like Color, be an enumeration type with literals Red, Amber and Green. However,
values of the two types cannot be arbitrarily mixed since they are logically distinct. Nevertheless, in
recognition of the close relationship, a value of one type can be converted to the other by explicitly using
the destination type name. So we can write

declare
type Light is new Color;
C: Color;
L: Light;

begin
L := Amber; -- the light amber, not the color
C := Color(L); -- explicit conversion
…

end;

whereas a direct assignment

C :� L; -- illegal

would violate the strong typing rule and this violation would be detected during compilation.
Returning now to our numeric types, if we write

type My_Float is new Float;

then My_Float will have all the operations (�, �, etc.) of Float and in general can be considered as
equivalent. Now suppose we transfer the program to a different computer on which the predefined type
Float is not so accurate and that Long_Float is necessary. Assuming that the program has been written
using My_Float rather than Float, then replacing the declaration of My_Float by

type My_Float is new Long_Float;

is the only change necessary. We can actually do better than this by directly stating the precision that we
require, thus

type My_Float is digits 7;

will cause My_Float to be based on the smallest predefined type with at least seven decimal digits of
accuracy.

A similar approach is possible with integer types so that rather than using the predefined types
Integer or Long_Integer, we can give the range of values required thusly:

type My_Integer is range 21000_000 … + 1000_000;

The point is that it is not good practice to use the predefined numeric types directly when writing
professional programs which may need to be portable.

26.2.4 Arrays and Records

Ada naturally enables the creation of composite array and record types. Arrays may actually be declared
without giving a name to the underlying type (the type is then said to be anonymous), but records always
have a type name.
© 2001 by CRC Press LLC

As an example of the use of arrays suppose we wish to compute the successive rows of Pascal’s triangle.
This is usually represented as shown in Figure 26.1. The reader will recall that the rows are the coefficients
in the expansion of and that a neat way of computing the values is to note that each one is
the sum of the two diagonal neighbors in the row above.

Suppose that we are interested in the first 10 rows. We could declare an array to hold such a row by

Pascal: array (0 .. 10) of Integer;

and now assuming that the current values of the array Pascal correspond to row n�1, with the
component Pascal(0) being 1, then the next row could be computed in a similar array Next by

Next(0) := 1;
for I in 1 .. N-1 loop
Next(I) := Pascal(I-1) + Pascal(I);

end loop;
Next(N) := 1;

and then the array Next could be copied into the array Pascal.
This illustrates another form of loop statement where a controlled variable I takes successive values

from a range; the variable is automatically declared to be of the type of the range which in this case is
Integer. Note that the intermediate array Next could be avoided by iterating backwards over the array;
we indicate this by writing reverse in front of the range, thus

Pascal(N) := 1;
for I in reverse 1 .. N-1 loop
Pascal(I) := Pascal(I-1) + Pascal(I);

end loop;

We can also declare arrays of several dimensions. So if we wanted to keep all the rows of the triangle
we might declare

Pascal2: array (0 .. 10, 0 .. 10) of Integer;

and then the loop for computing row n would be

Pascal2(N, 0) := 1;
for I in 1 .. N – 1 loop
Pascal2(N, I) := Pascal2(N�1, I�1) + Pascal2(N�1, I);

end loop;
Pascal2(N, N) := 1;

We have declared our arrays without giving a name to their type. We could alternatively have written

type Row is array (0 .. Size) of Integer;
Pascal, Next: Row;

FIGURE 26.1 Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 x�()n
© 2001 by CRC Press LLC

where we have given the name Row to the type and then declared the two arrays Pascal and Next.
There are advantages to this approach as we will see later. Incidentally, the bounds of an array do not
have to be constant, they could be any computed values such as the value of some variable Size.

We conclude this brief discussion of arrays by observing that the type String is in fact an array
whose components are of the enumeration type Character. Its declaration (in the package Standard)
is

type String is array (Positive range <>) of Character;

and this illustrates a form of type declaration which is said to be indefinite because it does not give the
bounds of the array; these have to be supplied when an object is declared:

Buffer: String(1 .. 80);

Incidentally, the identifier Positive in the declaration of the type String denotes what is known
as a subtype of Integer; values of the subtype Positive are the positive integers and so the bounds
of all arrays of type String must also be positive—the lower bound is of course typically 1, but need
not be.

A record is an object comprising a number of named components typically of different types. We
always have to give a name to a record type. If we were manipulating a number of buffers then it would
be convenient to declare a record type containing the buffer and an indication of the start and finish of
that part of the buffer actually containing useful data.

type Buffer is
record
Data: String(1 .. 80);
Start, Finish: Integer;

end record;

An individual buffer could then be declared by

My_Buffer: Buffer;

and the components of the buffer can then be manipulated using a dotted notation to select the individual
components

My_Buffer.Start := 1;
My_Buffer.Finish := 3;
My_Buffer.Data(1 .. 3) :== "XYZ";

Note that this assigns values to the first three components of the array using a so-called slice.
Whole array and record values can be created using aggregates, which are simply a set of values in

parentheses separated by commas. Thus we could assign appropriate values to Pascal and My_Buffer by

Pascal(0 .. 4) := (1, 4, 6, 4, 1);
My_Buffer := (('X', 'Y', 'Z', others => ' '), 1, 3);

where in the latter case we have in fact assigned all 80 values to the array Data and used others to
indicate that after the three useful characters the remainder of the array is padded with spaces. Note also
the nesting of parentheses.

This concludes our brief discussion on simple arrays and records. We will show how record types can
be extended in a moment.
© 2001 by CRC Press LLC

26.2.5 Access Types

The last section showed how the scalar types (numeric and enumeration types) may be composed into
arrays and records. The other vital means for creating structures is through the use of access types (the
Ada name for pointer types); access types allow list processing and are typically used with record types.

The explicit manipulation of pointers or references has been an important feature of most languages
since Algol 68. References rather dominated Algol 68 and caused problems, and the corresponding pointer
facility in Pascal is rather austere. The pointer facility in C, on the other hand, provides raw flexibility
which is open to abuse and quite insecure and thus the cause of many wrong programs.

Ada provides both a high degree of reliability and considerable flexibility through access types. Ada
access types must explicitly indicate the type of data to which they refer. The most general form of access
types can refer to any data of the type concerned but we will restrict ourselves in this overview to those
which just refer to data declared in a storage pool (the Ada term for a heap).

For example, suppose we wanted to declare various buffers of the type in the previous section. We
might write

type Buffer_Ptr is access Buffer;
Handle: Buffer_Ptr;
…
Handle := new Buffer;

This allocates a buffer in the storage pool and sets a reference to it into the variable Handle. We can
then refer to the various components of the buffer indirectly using the variable Handle

Handle.Start := 1;
Handle.Finish := 3;

and we can refer to the complete record as Handle.all. Note that Handle.Start is strictly an
abbreviation for Handle.all.Start.

Access types are of particular value for list processing where one record structure contains an access
value to another record structure. The classic example is typified by

type Cell;
type Cell_Ptr is access Cell;

type Cell is
record
Value: Data;
Next: Cell_Ptr;

end record;

The type Cell is a record containing a component of some type Data plus a component Next which
can refer to another similar record. Note the partial declaration of the type Cell. This is required in the
declaration of the type Cell_Ptr because of the inherent nature of the circularity of the declarations.

Access types can be used to refer to any type, although records are common. Access types may also
be used to refer to subprograms and this is particularly important when communicating with programs
in other languages.

26.2.6 Error Detection

We mentioned earlier that an overall theme in the design of Ada was concern for correctness and that
errors should be detected early in the programming process. As a simple example consider a fragment
of a program controlling the crossing gates on a railroad. First we have an enumeration type describing
the state of a signal:

type Signal is (Clear, Caution, Danger);
© 2001 by CRC Press LLC

and then perhaps

if The_Signal = Clear then
Open_Gates;
Start_Train;

end if;

It is instructive to consider how this might be written in C and then to consider the consequences of
various simple programming errors. C does not have enumeration types as such, so the signal values
have to be held as an integer (int) with code values such as 0, 1, and 2 representing the three states. This
already has potential for errors because there is nothing in the C language that can prevent us from
assigning a silly value such as 4 to a signal whereas it is not even possible to attempt such a thing when
using the Ada enumeration type.

The corresponding text in C is

if (The_Signal == 0)
{Open_Gates();
Start_Train();
}

It is interesting to consider what would happen in the two languages if we make various typographical
errors. Suppose first that we accidentally type an extra semicolon at the end of the first line. The Ada
program then fails to compile and the error is immediately drawn to our attention; the C program,
however, still compiles and the condition is ignored (since it then controls no statements). The C program
consequently always opens the gates and starts the train irrespective of the state of the signal!

Another possibility is that one of the � signs might be omitted in C. The equality then becomes an
assignment and also returns the result as the argument for the test. So the program still compiles, the
signal is always set clear no matter what its previous state, and of course the gates are then opened and
the train is started on its perilous journey. The corresponding error in Ada might be to write : � instead
of � and of course the program will then not compile.

However, many errors cannot be detected at compile time. For example using My_Buffer we might write

Index: Integer;
…
Index := 81;
…
My_Buffer.Data(Index) := 'x';

which attempts to write to the 81st component of the array, which does not exist. Such assignments are
checked in Ada at run time and Constraint_Error would be raised so that the integrity of the
program is not violated.

The corresponding instructions in C would undoubtedly overwrite an adjacent piece of storage and
probably corrupt the value in My_Buffer.Start.

It often happens that variables such as Index can only sensibly have a certain range of values; this
can be indicated by introducing a subtype

subtype Buffer_Index is Integer range 1 ..80;
Index: Buffer_Index;

or by indicating the constraint directly

Index: Integer range 1 .. 80;

This has the advantage that the attempt to assign 81 to Index is itself checked and prevented, so the
error is detected even earlier.
© 2001 by CRC Press LLC

The reader may feel that such checks will make the program slower. Studies have shown that
provided the ranges are appropriate then the overhead should be minimal. For example, having
ensured that Index cannot have a value out of range there is no need to apply checks to
My_Buffer.Data(Index) as well. In any event, if we are really confident that the program is
correct, the checks can be switched off for production use.

26.3 Abstraction

As mentioned earlier, abstraction in various forms seems to be the key to the development of program-
ming languages.

We saw above how we can declare a type for the manipulation of a buffer

type Buffer is
record
Data: String(1 .. 80);
Start: Integer;
Finish: Integer;

end record;

in which the component Data actually holds the characters in the buffer and Start and Finish
index the ends of the part of the buffer containing useful information. We also saw how the various
components might be updated and read using normal assignment.

However, such direct assignment is often unwise since the user could inadvertently set inconsistent
values into the components or read nonsense components of the array. A much better approach is to
create an Abstract Data Type (ADT) so that the user cannot see the internal details of the type but can
only access it through various subprogram calls which define an appropriate protocol.

This can be done using a package containing a private type. Let us suppose that the protocol allows
us to reload the buffer (possibly not completely full) and to read one character at a time. Consider the
following

package Buffer_System is -- visible part

type Buffer is private;

procedure Load(B: out Buffer; S: in String);
procedure Get(B: in out Buffer; C: out Character);

private -- private part
Max: constant Integer := 80;
type Buffer is
record

Data: String(1 .. Max);
Start: Integer := 1;
Finish: Integer := 0;

end record;

end Buffer_System;

package body Buffer_System is

procedure Load(B: out Buffer; S: in String) is
begin
B.Start := 1;
B.Finish := S’Length;
B.Data(B.Start .. B.Finish) := S;
© 2001 by CRC Press LLC

end Load;

procedure Get(B: in out Buffer; C: out Character) is
begin
C := B.Data(B.Start);
B.Start := B.Start + 1;
end Get;

end Buffer_System;

With this formulation the client can only access the information in the visible part of the specification
which is the bit before the word private. In this visible part the declaration of the type Buffer merely
says that it is private and the full declaration then occurs in the private part. There are thus two views
of the type Buffer; the external client just sees the partial view whereas within the package the code of
the server subprograms can see the full view. The specifications of the server subprograms are naturally
also declared in the visible part.

The net effect is that the user can declare and manipulate a buffer by simply writing

My_Buffer: Buffer;
…
Load(My_Buffer, Some_String);
…

Get(My_Buffer, A_Character);

but the internal structure is quite hidden. There are two advantages: one is that the user cannot inad-
vertently misuse the buffer and the second is that the internal structure of the private type could be
rearranged if necessary; provided that the protocol is maintained, the user program will not need to be
changed.

This hiding of information and consequent separation of concerns is very important and illustrates
the benefit of data abstraction. The design of appropriate interface protocols is the key to the development
and subsequent maintenance of large programs.

The astute reader will note that we have not bothered to ensure that the buffer is not loaded when
there is still unread data in it or the string is too long to fit, nor read from when it is empty. We could
rectify this by declaring our own exception called perhaps Error in the visible part of the specification
thus

Error: exception;

and then check within Load by for example

if S’Length > Max or B.Start <= B.Finish then
raise Error;

end if;

This causes our own exception to be raised if the buffer is overloaded.
As a minor point note the use of the constant Max so that the literal 80 only appears in one place.

Note also the attribute Length which applies to any array and gives the number of its components. The
upper and lower bounds of an array S are incidentally given by S’First and S’Last.

Another point is that the parameter Buffer of Get is marked as in out because the procedure both
reads the initial value of Buffer and updates it.

Finally, note that the components Start and Finish of the record have initial values in the decla-
ration of the record type; these ensure that when a buffer is declared these components are assigned
sensible values and thereby indicate that the buffer is empty. An alternative, of course, would be to provide
a procedure Reset but the user might forget to call it.
© 2001 by CRC Press LLC

26.3.1 Objects and Inheritance

As its name suggests, object oriented programming (OOP) concerns the idea of programming around
objects. A good example of an object in this sense is the variable My_Buffer of the type Buffer in the
previous section. We conceive of the object such as a buffer as a coordinated whole and not just as the sum
of its components. Indeed, the external user cannot see the components at all but can only manipulate the
buffer through the various subprograms associated with the type.

Certain operations upon a type are called the primitive operations of the type. In the case of the type
Buffer they are the subprograms declared in the package specification along with the type itself and
which have parameters or a result of the type. In the case of a type such as Integer, the primitive
operations are those such as � and � which are predefined for the type (and indeed they are declared
in Standard along with the type Integer itself and so fit the same model).

Other important ideas in OOP are

• The ability to define one type in terms of another and especially as an extension of another; this
is type extension,

• The ability for such a derived type to inherit the primitive operations of its parent and also to add
to and replace such operations; this is inheritance,

• The ability to distinguish the specific type of an object at run time from among several related
types and in particular to select an operation according to the specific type; this is (dynamic)
polymorphism.

In an earlier section we showed how the type Light was derived from Color and also showed how
numeric portability could be aided by deriving a numeric type such as My_Float from one of the
predefined types. These were very simple forms of inheritance; the new types inherited the primitive
operations of the parent; however, the types were not extended in any way and underneath were really
the same type. The main benefit of such derivation is simply to provide a different name and thereby to
distinguish the different uses of the same underlying type in order to prevent us from inadvertently using
a Light when we meant to use a Color.

The more general case is where we wish to extend a type in some way and also to distinguish objects
of different types at run time. The most natural form of type for the purposes of extension, of course,
is a record where we can consider extension as simply the addition of further components. The other
point is that if we need to distinguish the type at run time then the object must contain an indication
of its type. This is provided by a hidden component called the tag. Type extension in Ada is thus naturally
carried out using tagged record types.

As a simple example suppose we wish to manipulate various kinds of geometrical objects. We can
imagine that the kinds of objects form a hierarchy as shown in Figure 26.2.

FIGURE 26.2 A hierarchy of geometrical objects.

Point Polygon Circle Shape

Object

Quadrilateral Pentagon
© 2001 by CRC Press LLC

All objects will have a position given by their x- and y-coordinates. So we declare the root of the
hierarchy as

type Object is tagged
record
X_Coord: Float;
Y_Coord: Float;

end record;

Note carefully the introduction of the reserved word tagged. This indicates that values of the type carry
a tag at run time and that the type can be extended. The other types of geometrical objects will be derived
(directly or indirectly) from this type. For example we could have

type Circle is new Object with
record

Radius: Float;
end record;

and the type Circle then has the three components X_Coord, Y_Coord, and Radius. It inherits the
two coordinates from the type Object and the component Radius is added explicitly.

Sometimes it is convenient to derive a new type without adding any further components. For example:

type Point is new Object with null record;

In this last case we have derived Point from Object but naturally not added any new components.
However, since we are dealing with tagged types we have to explicitly add with null record; to indicate
that we did not want any new components. This has the advantage that it is always clear from a declaration
whether a type is tagged or not.

A private type can also be marked as tagged

type Shape is tagged private ;

and the full type declaration must then (ultimately) be a tagged record

type Shape is tagged
record …

or derived from a tagged record such as Object. On the other hand we might wish to make visible the
fact that the type Shape is derived from Object and yet keep the additional components hidden. In
this case we would write

package Hidden_Shape is
type Shape is new Object with private; -- client view
…

private
type Shape is new Object with -- server view
record
-- the private components

end record;
end Hidden_Shape;

In this last case it is not necessary for the full declaration of Shape to be derived directly from the
type Object. There might be a chain of intermediate derived types (it could be derived from Circle);
all that matters is that Shape is ultimately derived from Object.
© 2001 by CRC Press LLC

The primitive operations of a type are those declared in the same package specification as the type
and that have parameters or result of the type. On derivation these operations are inherited by the new
type. They can be overridden by new versions and new operations can be added and these then become
primitive operations of the new type and are themselves naturally inherited by any further derived type.

Thus we might have declared a function giving the distance from the origin

function Distance(O: in Object) return Float is
begin
return Sqrt(O.X_Coord � � 2 + O.Y_Coord� �2);

end Distance;

The type Circle would then sensibly inherit this function. If however, we were concerned with the
area of an object then we might start with

function Area(O: in Object) return Float is
begin
return 0.0;

end Area;

which returns zero since a raw object has no area. The abstract concept of an area applies also to a circle
and so it is appropriate that a function Area be defined for the type Circle. However, to inherit the
function from the type Object is clearly inappropriate and so we explicitly declare

function Area(C: in Circle) return Float is
begin
return Pi� C.Radius�� 2;

end Area;

which then overrides the inherited operation. We can perhaps summarize these ideas by saying that the
specification is always inherited whereas the implementation may be inherited but can be replaced.

It is possible to convert a value from the type Circle to Object and vice versa. From circle to object
is straightforward, we simply write

O: Object := (1.0, 0.5);
C: Circle := (0.0, 0.0, 34.7);
…

O :� Object(C);

which effectively ignores the third component. However, conversion in the other direction requires the
provision of a value for the extra component and this is done by an extension aggregate, thus:

C := (O with 41.2);

where the expression O is extended after with by the values of the extra components written just as in a
normal aggregate. In this case we only had to give a value for the radius.

It is important to remember that the primitive operations are those declared in the same package as
the type. Thus the type Object and the functions Distance and Area might be in a package Objects.
And then a package Shapes might contain the types Circle and Point and a type Triangle with
sides A, B, and C and appropriate functions returning the area. The overall structure would then be

package Objects is
type Object is tagged
record
X_Coord: Float;
Y_Coord: Float;

end record;
© 2001 by CRC Press LLC

function Distance(O: Object) return Float;
function Area(O: Object) return Float;

end Objects;

package body Objects is
function Distance(O: Object) return Float is
begin

return Sqrt(O.X_Coord � � 2 + O.Y_Coord � � 2);
end Distance;

function Area(O: Object) return Float is
begin
return 0.0;

end Area;
end Objects;

with Objects; use Objects;
package Shapes is
type Point is new Object with null record;

type Circle is new Object with
record
Radius: Float;

end record;

function Area(C: Circle) return Float;

type Triangle is new Object with
record
A, B, C: Float;

end record;

function Area(T: Triangle) return Float;
end Shapes;

package body Shapes is
function Area(C: Circle) return Float is
begin
return Pi � C.Radius � �2;

end Area;

function Area(T: Triangle) return Float is
S: constant Float:= 0.5 � (T.A + T.B + T.C);

begin
return Sqrt(S � (S - T.A) � (S - T.B) � (S - T.C));

end Area;
end Shapes;

Note that we can put the use clause for Objects immediately after the with clause.

26.3.2 Classes and Polymorphism

In the last section we showed how to declare a hierarchy of types derived from the type Object. We saw
how on derivation further components and operations could be added and that operations could be
replaced.
© 2001 by CRC Press LLC

However, it is very important to note that an operation cannot be taken away nor can a component
be removed. As a consequence we are guaranteed that all the types derived from a common ancestor will
have all the components and operations of that ancestor.

So in the case of the type Object, all types in the hierarchy derived from Object will have the
common components such as their coordinates and the common operations such as Distance and
Area. Since they have these common properties it is natural that we should be able to manipulate a
value of any type in the hierarchy without knowing exactly which type it is, provided that we only use
the common properties. Such general manipulation is done through the concept of a class.

Ada carefully distinguishes between the set of types such as Object plus all its derivatives on the one
hand, and an individual type such as Object itself on the other hand. A set of such types is known as
a class. Associated with each class is a type called the class-wide type which for the set rooted at Object
is denoted by Object’Class. The type Object is referred to as a specific type when we need to
distinguish it from a class-wide type.

We can of course have subclasses. For example, Polygon’Class represents the set of all types derived
from and including Polygon. This is a subset of the class Object’Class. All the properties of
Object’Class will also apply to Polygon’Class but not vice versa. For example, although we have
not shown it, the type Polygon will presumably contain a component giving the length of the sides.
Such a component will belong to all types of the class Polygon’Class but not to Object’Class.

As a simple example of the use of a class-wide type consider the following function

function Moment(OC: Object’Class) return Float is
begin
return OC.X_Coord � Area(OC);

end Moment;

Those who recall their school mechanics will remember that the moment of a force about a fulcrum is
the product of the weight multiplied by the distance from the fulcrum. So in our example, taking the x-
axis as being horizontal, the moment of a geometrical object about the origin is the x-coordinate
multiplied by the weight which we can take as being proportional to the area (and for simplicity we have
assumed is just the area).

This function has a formal parameter of the class-wide type Object’Class. This means it can be
called with an actual parameter whose type is any specific type in the class comprising the set of all types
derived from Object. Thus we could write

C: Circle …
M: Float;
…
M := Moment(C);

Within the function Moment we can naturally refer to the specific object as OC. Since we know that the
object must be of a specific type in the Object class, we are guaranteed that it will have a component
OC.X_Coord. Similarly we are guaranteed that the function Area will exist for the type of the object since
it is a primitive operation of the type Object and will have been inherited by (and possibly overridden
for) every type derived from Object. So the appropriate function Area is called and the result multiplied
by the x-coordinate and returned as the result of the function Moment.

Note carefully that the particular function Area to be called is not known until the program executes.
The choice depends upon the specific type of the parameter and this is determined by the tag of the object
passed as actual parameter; remember that the tag is a sort of hidden component of the tagged type. This
selection of the particular subprogram according to the tag is known as dispatching and is a vital aspect
of the dynamic behavior provided by polymorphism.

Dispatching only occurs when the actual parameter is of a class-wide type; if we call Area with an object
of a specific type such as C of type Circle, then the choice is made at compile time. Dispatching is often
called late binding because the call is only bound to the called subprogram late in the compile-link-execute
© 2001 by CRC Press LLC

process. The binding to a call of Area with the parameter C of type Circle is called static binding because
the subprogram to be called is determined at compile time.

Observe that the function Moment is not a primitive operation of any type; it is just an operation of
Object’Class and it happens that a value of any specific type derived from Object can be implicitly
converted to the class-wide type. Class wide types do not have primitive operations and so no inheritance
is involved.

It is interesting to consider what would have happened if we had written

function Moment(O: Object) return Float is
begin
return O.X_Coord � Area(O);

end Moment;

where the formal parameter is of the specific type Object. This always returns zero because the function
Area for an Object always returns zero. If this function Moment were declared in the same package as
Object then it would be a primitive operation of Object and thus inherited by the type Circle. However,
the internal call would still be to the function Area for the type Object and not to the type Circle
and so the answer would still be zero. This is because the binding is static and inheritance simply passes
on the same code. The code mechanically works on a Circle because it only uses the Object part of
the circle (we say it sees the Object view of the Circle); but unfortunately it is not what we want. Of
course, we could override the inherited operation by writing

function Moment(C: Circle) return Float is
begin
return C.X_Coord � Area(C);

end Moment;

but this is tedious and causes unnecessary duplication of similar code. The proper approach for such
general situations is to use the original class-wide version with its internal dispatching; this can be shared
by all types without duplication and always calls the appropriate function Area.

A major advantage of using a class-wide operation such as Moment is that a system using it can be
written, compiled, and tested without knowing all the specific types to which it is to be applied. Moreover,
we can then add further types to the system without recompilation of the existing tested system.

For example we could add a further type

type Pentagon is new Object with…
function Area(P: Pentagon) return Float;
…
Star: Pentagon := …
…
Put("Moment of star is");
Put(Moment(Star));

and then the old existing tried and tested Moment will call the new Area for the Pentagon without being
recompiled. (It will of course have to be relinked.)

This works because of the mechanism used for dynamic binding; the essence of the idea is that the
class-wide code has dynamic links into the new code and this is accessed via the tag of the type. This
creates a very flexible and extensible interface ideal for building up a system from reusable components.

One problem with class-wide types is that we cannot know how much space might be occupied by
an arbitrary object of the type because the type might be extended. So although we can declare an object
of a class-wide type it has to be initialized and thereafter that object can only be of the specific type of
that initial value. Note that a formal parameter of a class-wide type such as in Moment is allowed because
the space is provided by the actual parameter.
© 2001 by CRC Press LLC

Another similar restriction is that we cannot have an array of class-wide components (even if initialized)
because the components might be of different specific types of different sizes and thus impossible to index
efficiently.

One consequence of these necessary restrictions is that it is very natural to use access types with object
oriented programming since there is no problem with pointing to objects of different sizes at different
times. Thus, suppose we wanted to manipulate a series of geometrical objects; it is very natural to declare
these in free storage as required. They can then be chained together on a list for processing. Consider

type Pointer is access Object’Class;
type Cell;
type Cell_Ptr is access Cell;

type Cell is
record
Next: Cell_Ptr;
Element: Pointer;

end record;

which enables us to create cells which can be linked together; each cell has an element which is a pointer
to any geometrical object.

We can now imagine that a number of objects have been created and linked together to form a list as
in Figure 26.3. We assume that this chain is accessed through a variable called List of the type Cell_Ptr.

We can now easily process the objects on the list and might, for example, compute the total moment
of the set of objects by calling the following function

function Total_Moment(The_List: Cell_Ptr) return Float is
Local: Cell_Ptr := The_List;
Result: Float := 0.0;

begin
loop
if Local = null then -- end of list
return Result;

FIGURE 26.3 A chain of objects.

List :

X_ Coord

Y_ Coord

X_ Coord

Y_ Coord

X_ Coord

Y_ Coord

Radius A

B

C
a Circle

a Point

null

a Triangle
© 2001 by CRC Press LLC

end if;
Result := Result � Moment(Local.Element.all);
Local := Local.Next;

end loop;
end Total_Moment;

We conclude this brief survey of the OOP facilities in Ada by considering abstract types. It is sometimes
the case that we would like to declare a type as the foundation for a class of types with certain common
properties, but without allowing objects of the original type to be declared. For example, we probably
would not want to declare an object of the raw type Object. If we wanted an object without any area
then it would be appropriate to declare a Point. Moreover, the function Area for the type Object is
dubious since it usually has to be overridden anyway. But it is important to be able to ensure that all
types derived from Object do have an Area so that the dispatching in the function Moment always
works. We can achieve this by writing

package Objects is
type Object is abstract tagged
record
X_Coord: Float;
Y_Coord: Float;

end record;

function Distance(O: in Object) return Float;
function Area(O: in Object) return Float is abstract;

end Objects;

package body Objects is
function Distance(O: Object) return Float is
begin
return Sqrt(O.X_Coord � � 2 + O.Y_Coord � � 2);

end Distance;
end Objects;

In this formulation the type Object and the function Area are marked as abstract. It is illegal to
declare an object of an abstract type, and an abstract subprogram has no body and so cannot be called.
On deriving a concrete (that is, nonabstract) type from an abstract type any abstract inherited operations
must be overridden by concrete operations. Note that we have declared the function Distance as not
abstract; this is largely because we know that it will be appropriate anyway.

This approach has a number of advantages; we cannot declare a raw Object by mistake, we cannot
inherit the silly function Area, and we cannot make the mistake of declaring the function Moment for
the specific type Object (because it would then contain a call of the abstract function Area).

But despite the type being abstract, we can declare the function Moment for the class-wide type
Object’Class. This always works because of the rule that we cannot declare an object of an abstract
type; any actual object passed as parameter must be of a concrete type and will have an appropriate
function Area to which it can dispatch.

26.3.3 Genericity

We have seen how class-wide types provide us with dynamic polymorphism. This means that we can
manipulate several types with a single construction and that the specific type is determined dynamically,
that is at run time. In this section we introduce the complementary concept of static polymorphism,
where again we have a single construction for the manipulation of several types but in this case the choice
of type is made statically at compile time.
© 2001 by CRC Press LLC

An important objective of Software Engineering is to reuse existing software components. However,
the strong typing model of Ada (even with class-wide types) sometimes gets in the way unless we have
a method of writing software components which can be used for various different types. For example,
the program to do a sort is largely independent of what it is sorting — all it needs is a rule for comparing
the values to be sorted.

So we need a means of writing pieces of software which can be parameterized as required for different
types. In Ada this is done by the generic mechanism. We can make a package or subprogram generic
with respect to one or more parameters which can include types. Such a generic unit provides a template
from which we can create genuine packages and subprograms by so-called instantiation. The full details
of Ada generics are quite extensive but the following brief introduction will illustrate the ideas.

The standard package for the input and output of floating point values in text form is generic with
respect to the actual floating type. This is because we want a single package to cope with all the possible
floating types, such as the underlying machine types Float and Long_Float as well as the portable
type My_Float. Its specification is

generic
type Num is digits ��;

package Float_IO is
…
procedure Get(Item: out Num; …);
procedure Put(Item: in Num; …);
…

end Float_IO;

where we have omitted various details relating to the format. The one generic parameter is Num and the
notation digits �� indicates that it must be a floating point type and echoes the declaration of My_Float
using digits 7.

In order to create an actual package to manipulate values of the type My_Float, we write

package My_Float_IO is new Float_IO(My_Float);

which creates a package with the name My_Float_IO where the formal type Num has been replaced
throughout with our actual type My_Float. As a consequence, procedures Get and Put taking param-
eters of the type My_Float are created and we can then call these as required.

The kind of parameterization provided by genericity is similar but rather different to that provided
through class-wide types. In both cases the parameterization is over a related set of types with a set of
common properties. Such a related set of types is termed a class.

A common form of class is a derivation class where all the types are derived from a common ancestor
such as the type Object. Tagged derivation classes form the basis of dynamic polymorphism as we have
seen.

But there are also broader forms of class such as the set of all floating-point types which are allowed
as actual parameters for the generic package Float_IO. The parameters of generic units use these
broader classes. For example, a very broad class is the set of all types having assignment. Such a class
would be a suitable basis for writing a generic sort routine.

The two forms of polymorphism work together; a common form of generic package is one which
takes as a parameter a type from a tagged derivation class. This may be used to provide important
capabilities such as multiple inheritance.

26.3.4 Object Oriented Terminology

It is perhaps convenient at this point to compare the Ada terminology with that used by other object
oriented (OO) languages such as Smalltalk and C��.
© 2001 by CRC Press LLC

About the only term in common is inheritance. Ada 83 has always had inheritance although not
type extension, which only occurs with tagged record types. Untagged record types are called structs
in some languages. Ada actually uses the term object to denote variables and constants in general,
whereas in the OO sense an object is an instance of an Abstract Data Type (ADT).

Many languages use class to denote what Ada calls a specific tagged type (or more strictly, an ADT
consisting of a tagged type plus its primitive operations). The reason for this difference is that Ada uses
the word class exclusively to refer to a group of related types. Ada classes are not just those groups of types
related by derivation, but also groups with broader correspondence as used for generic parameter matching.

The Ada approach clarifies the distinction between the group of types and a single type and strengthens
that clarification by introducing class-wide types as such. Some languages use the term class for both
specific types and the group of types, with much resulting confusion in terms of description but also in
understanding the behavior of the program and keeping track of the real nature of an object.

Primitive operations of Ada tagged types are often called methods or virtual functions. The call of a
primitive operation in Ada is bound statically or dynamically according to whether the parameter is of
a specific type or class wide. The rules in C�� are more complex and depend upon whether the parameter
is a pointer and also whether the call is prefixed by its class name. In Ada, an operation with class-wide
formal parameters is always bound statically although it applies to all types of the class.

Dispatching is the Ada term for calling a primitive operation with dynamic binding, and indeed
subprogram calls through access types are also a form of dynamic binding.

Abstract types correspond to abstract class in many languages. Abstract subprograms are pure virtual
member functions in C��. Note that Eiffel uses the term deferred rather than abstract.

Ancestor or parent type and descendant or derived type become superclass and subclass. The Ada
concept of subtype (a type with a constrained set of values) has no correspondence in other languages
which do not have range checks, and has no relationship to subclass. A subtype can never have more
values than its base type, whereas a descendant type (subclass to other languages) can never have fewer
values than its parent type.

Generic units are templates; in Ada they carry type checking with them, whereas many languages treat
templates as raw macros.

Another important point is that many languages have no encapsulation mechanism other than so-
called classes, whereas Ada has the package largely unrelated to type extension and inheritance and the
private type. The effect of private and protected operations in C�� is provided in Ada by a combination
of private types and child packages; the latter are kinds of friends.

26.3.5 Tasking

No survey of abstraction in Ada would be complete without a brief mention of tasking. It is often necessary
to write a program as a set of parallel activities rather than just as one sequential program.

Most programming languages do not address this issue at all. Some argue that the underlying operating
system provides the necessary mechanisms and that they are therefore unnecessary in a programming
language. Such arguments do not stand up to careful examination for two main reasons:

• Built-in syntactic constructions provide a degree of reliability which cannot be obtained through
a series of individual operating system calls.

• General operating systems do not provide the degree of control and timing required by many
applications.

An Ada program can thus be written as a series of interacting tasks. There are two main ways in which
tasks can communicate: directly by sending messages to each other and indirectly by accessing shared
data. Direct communication between Ada tasks is achieved by one task calling an entry in another task.
The calling (client) task waits while the called (server) task executes an accept statement in response to
the call; the two tasks are closely coupled during this interaction, which is called a rendezvous. Controlled
access to shared data is vital in tasking applications if interference is to be avoided. For example, returning
© 2001 by CRC Press LLC

to the character buffer example, it would be a disaster if a task started to read the buffer while another
task was updating it with further information since the component B.Start could be changed and a
component of the Data array read by Get before the buffer had been correctly updated by Load. Ada
prevents such interference by a construction known as a protected object.

The general syntactic form of both tasks and protected objects is similar to that of a package. They
have a specification part prescribing the interface, a private part containing hidden details of the
interface, and a body stating what they actually do. The general client-server model can thus be expressed
as

task Server is
entry Some_Service(Formal: Data);

end;

task body Server is
begin
…
accept Some_Service(Formal: Data) do
-- statements providing the service

…
end;
…

end Server;

task Client;

task body Client is
begin
…
Server.Some_Service(Actual);
…

end Client;

A good example of the form of a protected object is given by the buffer example, which could be
rewritten as follows

protected type Buffer(Max: Integer) is -- visible part
procedure Load(S: in String);
procedure Get(C: out Character);

private -- private part
Data: String(1 .. Max);
Start: Integer := 1;
Finish: Integer := 0;

end Buffer;

protected body Buffer is

procedure Load(S: in String) is
begin
Start := 1;
Finish := S’Length;
Data(Start .. Finish) := S;

end Load;
© 2001 by CRC Press LLC

procedure Get(C: out Character) is
begin
C := Data(Start);
Start := Start + 1;

end Get;

end Buffer;

This construction uses a slightly different style to the package. It is a type in its own right whereas the
package exported the type. As a consequence, the calls of the procedures do not need to pass explicitly
the parameter referring to the buffer and, moreover, within their bodies the references to the private data
are naturally taken to refer to the current instance. Note also that the type is parameterized by the
discriminant Max and so we can supply the actual size of a particular buffer when it is declared. Statements
using the protected type might thus look like

B: Buffer(80);
…
B.Load(Some_String);
…
B.Get(A_Character);

Although this formulation prevents disastrous interference between several clients, nevertheless
it does not prevent a call of Load from overwriting unread data. As before we could insert tests
and raise an exception. But the proper approach is to cause the tasks to wait if circumstances are
not appropriate. This is done through the use of entries and barriers. The protected type might
then be

protected type Buffer(Max: Integer) is
entry Load(S: in String);
entry Get(C: out Character);

private
Data: String(1 .. Max);
Start: Integer := 1;
Finish: Integer := 0;

end Buffer;

protected body Buffer is

entry Load(S: in String) when Start > Finish is
begin
Start := 1;
Finish := S'Length;
Data(Start .. Finish) := S;

end Load;

entry Get(C: out Character) when Start <= Finish is
begin
C := Data(Start);
Start := Start + 1;

end Get;

end Buffer;
© 2001 by CRC Press LLC

In this formulation, the procedures are replaced by entries and each entry body has a barrier condition.
A task calling an entry is queued if the barrier is false and is only allowed to proceed when the barrier
becomes true. This construction is very efficient because task switching is minimized.

26.4 Programs and Libraries

A complete program is put together out of various separately compiled units. In developing a very large
program it is inevitable that it will be conceived as a number of subsystems, themselves each composed
from a number of separately compiled units.

We see at once the risk of name clashes between the various parts of the total. It would be all too easy
for the designers of different parts of the system to reuse popular package names such as Error_Messages
or Debug_Info, and so on. In order to overcome this and other related problems, Ada has a hierarchical
naming scheme at the library level. Thus, a package Parent may have a child package with the name
Parent.Child.

We immediately see that if our total system breaks down into a number of major parts such as acquisition,
analysis, and report, then name clashes will be avoided if it is mapped into three corresponding library
packages plus appropriate child units. There is then no risk of a clash between Analysis.Debug_Info
and Report.Debug_Info because the names are quite distinct.

The naming is hierarchical and can continue to any depth. A good example of the use of this
hierarchical naming scheme is found in the standard libraries which are provided by every implemen-
tation of Ada.

We have already mentioned the package Standard which is an intrinsic part of the language. All
library units can be considered to be children of Standard and it should never be necessary to explicitly
mention Standard at all.

In order to reduce the risk of clashes with the user’s own names, the predefined library comprises just
three packages, each of which has a number of children. The three packages are System, which is
concerned with the control of storage and similar implementation matters; Interfaces, which is
concerned with interfaces to other languages and the intrinsic hardware types; and finally Ada which
contains the bulk of the predefined library.

In this overview we will briefly survey the main package Ada. The package Ada itself is simply

package Ada is
pragma Pure(Ada);

end Ada;

and the various predefined units are children of Ada. The pragma indicates that Ada has no variable state
(this concept is important for sharing in distributed systems, a topic well outside the scope of this discussion).

Important child packages of Ada are

Numerics; this contains the mathematical library providing the various elementary functions, ran-
dom number generators, and facilities for complex numbers.

Characters; this contains various packages for classifying and manipulating characters as well as
the names of all the characters in the Latin-1 set.

Strings; this contains packages for the manipulation of strings of various kinds: fixed length,
bounded, and unbounded.

Text_IO, Sequential_IO, and Direct_IO; these and other packages provide a variety of
input-output facilities.

Those familiar with Ada 83 will note that the predefined library units of Ada 83 have now become
child units of Ada. Compatibility is achieved because of the predefined renamings of these child units
as library units such as

with Ada.Text_IO;
package Text_IO renames Ada.Text_IO;
© 2001 by CRC Press LLC

Most library units are packages and it is easy to think that all library units must be packages; indeed
only a package can have child units. Of course, the main subprogram is a library subprogram and any
library package can have child subprograms. A library unit can also be a generic package or subprogram
and even an instantiation of a generic package or subprogram; this latter fact is often overlooked.

We have introduced the hierarchical library as simply a naming mechanism. It also has important
information hiding and sharing properties. An example is that a child unit can access the information
in the private part of its parent; but of course other units cannot see into the private part of a package.
This and related facilities enable a group of units to share private information while keeping the infor-
mation hidden from external clients.

It should also be noted that a child package does not need to have a with clause or use clause for its
parent; this emphasizes the close relationship of the hierarchical structure and parallels the fact that we
never need a with clause for Standard because all units are children of Standard.

26.4.1 Input-Output

The Ada language is defined in such a way that all input and output is performed in terms of other
language features. There are no special intrinsic features just for input and output. In fact input-output
is just a service required by a program and so is provided by one or more Ada packages. This approach
runs the attendant risk that different implementations will provide different packages and program
portability will be compromised. In order to avoid this, the language defines certain standard packages
that will be available in all implementations. Other, more elaborate, packages may be appropriate to
special circumstances and the language does not prevent this. Indeed very simple packages such as our
purely illustrative Simple_IO may also be appropriate. We will now briefly describe how to use some
of the features for the input and output of simple text.

Text input-output is performed through the use of the standard package Ada.Text_IO. Unless we
specify otherwise, all communication will be through two standard files, — one for input and one for
output — and we will assume that (as is likely the case for most implementations) these are such that
input is from the keyboard and output is to the screen. The full details of Text_IO cannot be described
here but if we restrict ourselves to just a few useful facilities it looks a bit like

with Ada.IO_Exceptions;
package Ada.Text_IO is
type Count is … -- an integer type
…
procedure New_Line(Spacing: in Count :� 1);
…
procedure Get(Item: out Character);
procedure Put(Item: in Character);
procedure Put(Item: in String);
…
-- the package Float_IO outlined above
-- plus a similar package Integer_IO
…

end Ada.Text_IO;

Note first that this package commences with a with clause for the package Ada.IO_Exceptions.
This further package contains the declaration of a number of exceptions relating to a variety of things
which can go wrong with input-output. For most programs the most likely problem to arise is
probably Data_Error, which would occur, for example, if we tried to read in a number from the
keyboard but then accidentally typed in something which was not a number at all or was in the wrong
format.
© 2001 by CRC Press LLC

The next thing to note is the outline declaration of the type Count. This is an integer type having
similar properties to the type Integer and almost inevitably with the same implementation (just as the
type My_Integer might be based on Integer). The parameter of New_Line is of the type Count
rather than plain Integer, although since the parameter will typically be a literal such as 2 (or be omitted
so that the default of 1 applies) this will not be particularly evident.

A single character can be output by, for example:

Put('A');

and a string of characters by

Put("This Is a string of characters");

A value of the type My_Float can be output in various formats. But first we have to instantiate the
package Float_IO mentioned above, and which is declared inside Ada.Text_IO. Having done that,
we can call Put with a single parameter, the value of type My_Float to be output, in which case a
standard default format is used, or we can add further parameters controlling the format.

If we do not supply any format parameters then an exponent notation is used with 7 significant
digits — 1 before the point and 6 after (the 7 matches the precision given in the declaration of
My_Float). There is also a leading space or minus sign. The exponent consists of the letter E followed
by the exponent sign (� or �) and then a two digit decimal exponent.

We can override the default by providing three further parameters which give, respectively, the number
of characters before the point, the number of characters after the point, and the number of characters
after E. However, there is still only one digit before the point. If we do not want exponent notation then
we simply specify the last parameter as zero and then get normal decimal notation.

The effect is shown by the following statements with the output given as a comment. For clarity, the
output is surrounded by quotes and s designates a space; in reality there are no quotes and spaces are
spaces.

Put(12.34); -- "s1.234000E+01"
Put(12.34, 3, 4, 2); -- "ss1.2340E+1"
Put(12.34, 3, 4, 0); -- "s12.3400"

The output of values of integer types follows a similar pattern. In this case we similarly instantiate the
generic package Integer_IO inside Ada.Text_IO which applies to all integer types with the
particular type such as My_Integer.

We can then call Put with a single parameter, the value of type My_Integer, in which case a standard
default field is used, or we can add a further parameter specifying the field. The default field is the smallest
that will accommodate all values of the type My_Integer allowing for a leading minus sign. Thus, for
the range of My_Integer, the default field is 8. It should be noticed that if we specify a field which is
too small then it is expanded as necessary. So

Put(123); -- "sssss123"
Put(123, 4); -- "s123"
Put(123, 0); -- "123"

Simple text input is similarly performed by a call of Get with a parameter that must be a variable of the
appropriate type.

A call of Get with a floating or integer parameter will expect us to type in an appropriate number at
the keyboard; this must have a decimal point if the parameter is of a floating type. It should also be
noted that leading blanks (spaces) and newlines are skipped. A call of Get with a parameter of type
Character will read the very next character, and this can be neatly used for controlling the flow of an
© 2001 by CRC Press LLC

interactive program, thus

C: Character;
…
Put("Do you want to stop? Answer Y if so.");
Get(C);
if C = 'Y' then

…

For simple programs that do not have to be portable, the effort of doing the instantiations is not necesssary
if we just use the predefined types Integer and Float, since the predefined library contains nongeneric
versions with the names Ada.Integer_Text_IO and Ada.Float_Text_IO,respectively. So all we
need to write is

use Ada.Integer_Text_IO, Ada.Float_Text_IO;

and then we can call Put and Get without more ado.

26.4.2 Numeric Library

The numeric library comprises the package Ada.Numerics plus a number of child packages. The
package Ada.Numerics is as follows:

package Ada.Numerics is
pragma Pure(Numerics);
Argument_Error: exception;
Pi: constant := 3.14159_26535_ …;
e : constant := 2.71828_18284_ …;

end Ada.Numerics;

This contains the exception Argument_Error which is raised if something is wrong with the argu-
ment of a numeric function (such as attempting to take the square root of a negative number) and the
two useful constants Pi and e.

One child package of Ada.Numerics provides the familiar elementary functions such as Sqrt and
is another illustration of the use of the generic mechanism. Its specification is

generic
type Float_Type is digits ��;

package Ada.Numerics.Generic_Elementary_Functions is
function Sqrt(X: Float_Type’Base) return Float_Type’Base;
… -- and so on

end;

Again, there is a single generic parameter giving the floating type. In order to call the function Sqrt we
must first instantiate the generic package much as we did for Float_IO, thus (assuming appropriate with
and use clauses)

package My_Elementary_Functions is
new Generic_Elementary_Functions(My_Float);

use My_Elementary_Functions;

and we can then write a call of Sqrt directly.
It should be noted that there is a nongeneric version for the type Float with the name

Elementary_Functions for the convenience of those using the predefined type Float.
A little point to note is that the parameter and result of Sqrt is written as Float_Type’Base; the

reason for this is to avoid unnecessary range checks.
© 2001 by CRC Press LLC

We emphasize that the exception Ada.Numerics.Argument_Error is raised if the parameter of a
function such as Sqrt is unacceptable. This contrasts with our hypothetical function Sqrt introduced
earlier, which we assumed raised the predefined exception Constraint_Error when given a negative
parameter. It is generally better to declare and raise our own exceptions rather than use the predefined ones.

Two other important child packages are those for the generation of random numbers. One returns a
value of the type Float within the range 0 to 1 and the other returns a random value of a discrete type
(a discrete type is an integer type or an enumeration type). We will look superficially at the latter; its
specification is as follows

generic
type Result_Subtype is (<>);

package Ada.Numerics.Discrete_Random is
type Generator is limited private;
function Random(Gen: Generator) return Result_Subtype;
… -- plus other facilities

end Ada.Numerics.Discrete_Random;

This introduces a number of new points. The most important is the form of the generic formal
parameter which indicates that the actual type must be a discrete type. The pattern echoes that of an
enumeration type in much the same way as that for the floating generic parameter in
Generic_Elementary_Functions echoed the declaration of a floating type. Thus we see that
the discrete types are another example of a class of types.

A small point is that the type Generator is declared as limited. This simply means that assignment
is not available for the type (or at least not for the partial view as seen by the client).

The random number generator is used as in the following fragment which illustrates the simulation
of tosses of a coin

use Ada.Numerics;
type Coin is (Heads, Tails);
package Random_Coin is new Discrete_Random(Coin);
use Random_Coin;
G: Generator;
C: Coin;
loop
C := Random(G);
…

end loop;
…

Having declared the type Coin we then instantiate the generic package. We then declare a generator and
use it as the parameter of successive calls of Random. The generator technique enables us to declare
several generators and thus run several independent random sequences at the same time.

26.4.3 Running a Program

We are now in a position to put together a complete program using the proper input-output facilities.
As an example, we will rewrite the procedure Print_Roots and also use the standard mathematical
library. For simplicity we will first use the predefined type Float. The program becomes

with Ada.Text_IO;
with Ada.Float_Text_IO;
with Ada.Numerics.Elementary_Functions;
procedure Print_Roots is
use Ada.Text_IO;
© 2001 by CRC Press LLC

use Ada.Float_Text_IO;
use Ada.Numerics.Elementary_Functions;

X: Float;
begin
Put("Roots of various numbers");

… -- and so on as before

end Print_Roots;

Note that we can put the use clauses inside the procedure Print_Roots as shown or we can place them
immediately after the with clauses.

If we want to write a portable version, then the general approach would be

with Ada.Text_IO;
with Ada.Numerics.Generic_Elementary_Functions;
procedure Print_Roots is

type My_Float is digits 7;
package My_Float_IO is new Ada.Text_IO.Float_IO(My_Float);
use My_Float_IO;
package My_Elementary_Functions is

new Ada.Numerics.Generic_Elementary_Functions(My_Float);
use My_Elementary_Functions;

X: My_Float;
begin

Put("Roots of various numbers");

… -- and so on as before

end Print_Roots;

To have to write all that introductory stuff each time is rather a burden, so we will put it in a standard
package of our own and then compile it once so that it is permanently in our program library and can
then be accessed without more ado. We include the type My_Integer as well, and write

with Ada.Text_IO;
with Ada.Numerics.Generic_Elementary_Functions;
package Etc is
type My_Float is digits 7;
type My_Integer is range -1000_000 .. +1000_000;
package My_Float_IO is new Ada.Text_IO.Float_IO(My_Float);
package My_Integer_IO is new Ada.Text_IO.Integer_IO(My_Integer);

package My_Elementary_Functions is
new Ada.Numerics.Generic_Elementary_Functions(My_Float);

end Etc;

and having compiled Etc our typical program can look like

with Ada.Text_IO, Etc;
use Ada.Text_IO, Etc;
procedure Program is

use My_Float_IO, My_Integer_IO, My_Elementary_Functions;
…
…

end Program;
© 2001 by CRC Press LLC

An alternative approach, rather than declaring everything in the one package Etc, is to first compile
a tiny package just containing the types My_Float and My_Integer and then to compile the various
instantiations as individual library packages (remember that a library unit can be just an instantiation).

package My_Numerics is
type My_Float is digits 7;
type My_Integer is range -1000_000 .. +1000_000;

end My_Numerics;

with My_Numerics; use My_Numerics;
with Ada.Text_IO;
package My_Float_IO is new Ada.Text_IO.Float_IO(My_Float);

with My_Numerics; use My_Numerics;
with Ada.Text_IO;
package My_Integer_IO is new Ada.Text_IO.Integer_IO(My_Integer);

with My_Numerics; use My_Numerics;
with Ada.Numerics.Generic_Elementary_Functions;
package My_Elementary_Functions is
new Ada.Numerics.Generic_Elementary_Functions(My_Float);

With this approach we only need to include (via with clauses) the particular packages as required and
our program is thus likely to be smaller if we do not need them all. We could even arrange the packages
as an appropriate hierarchy, thus:

with Ada.Text_IO;
package My_Numerics.My_Float_IO is

new Ada.Text_IO.Float_IO(My_Float);

with Ada.Text_IO;
package My_Numerics.My_Integer_IO is

new Ada.Text_IO.Integer_IO(My_Integer);

with Ada.Numerics.Generic_Elementary_Functions;
package My_Numerics.My_Elementary_Functions is

new Ada.Numerics.Generic_Elementary_Functions(My_Float);

One important matter remains to be addressed, and that is how to build a complete program. A major
benefit of Ada is that consistency is maintained between separately compiled units so that the integrity
of strong typing is preserved across compilation unit boundaries. It is therefore illegal to build a program
out of inconsistent units. The exact means whereby this is achieved will depend upon the implementation.

A related issue is the order in which units are compiled. This is dictated by the idea of dependency.
There are three main causes of dependency:

• A body depends upon the corresponding specification

• A child depends upon the specification of its parent

• A unit depends upon the specifications of those it mentions in a with clause

The key rule is that a unit can only be compiled if all those units on which it depends are present in
the library environment. An important consequence is that although a specification and body can be
compiled separately, the specification must always be present before the body can be compiled. Similarly
if a unit is modified, then typically all those units that depend on it will also have to be recompiled in
order to preserve consistency of the total program.

This brings us to the end of our brief survey of the main features of Ada. We have in fact encountered
most of the main concepts, although very skimpily in some cases.
© 2001 by CRC Press LLC

Important topics not discussed are

• Type parameterization through the use of discriminants. This is particularly important in OOP
for enabling one type to be parameterized by another and provides the capabilities of multiple
inheritance.

• More general access types. These provide the flexibility to reference objects on the stack as well
as the heap. However, the rules are carefully designed to avoid “dangling references” without undue
loss of flexibility. Access to subprogram types are important for interaction with software written
in other languages and especially for programming call-back.

• Limited types. These are types which cannot be assigned. They are particularly helpful for modeling
objects in the real world which by their nature are never copied. They are also useful for controlling
resources.

• Controlled types. These are forms of tagged types which have automatic initialization and finaliza-
tion. They enable the reliable programming of servers that keep track of resources used by clients
in a foolproof manner. Controlled types also provide the capability for user-defined assignment.

It should also be noted that we have not discussed the specialized annexes at all. These provide
important capabilities in a variety of areas. Very briefly, their contents are as follows:

Systems Programming. This covers a number of low-level features such as in-line machine instructions,
interrupt handling, shared variable access, task identification, and per-task attributes. This annex
is a prior requirement for the Real-Time Systems annex.

Real-Time Systems. This annex addresses various scheduling and priority issues including setting
priorities dynamically, scheduling algorithms, and entry queue protocols. It also includes detailed
requirements on a monotonic time package Ada.Real_Time (as distinct from the core package
Calendar which might go backwards because of time zone or daylight-saving changes). There
are also suggested tasking restrictions which might be appropriate for the development of very
efficient run time systems for specialized applications.

Distributed Systems. The core language introduces the idea of a partition whereby one coherent
“program” is distributed over a number of partitions each with its own main task. This annex
defines active and passive partitions and interpartition communication using statically and dynam-
ically bound remote subprogram calls.

Information Systems. The core language includes basic support for decimal types. This annex defines
additional attributes and a number of packages providing detailed facilities for manipulating
decimal values and conversion to and from external formats using picture strings.

Numerics. This annex addresses the special needs of the numeric community. It defines generic
packages for the definition and manipulation of complex numbers. It also defines the accuracy
requirements for numerics.

Safety and Security. This annex addresses restrictions on the use of the language and requirements of
compilation systems for programs to be used in safety-critical and related applications where
program security is vital.

As the reader will appreciate, many of these topics are important for avionics applications. The
provision of these annexes ensures that these specialized capabilites are provided by all relevant imple-
mentations in a standard manner.

References

Barnes, J. (Ed.), 1997, Ada 95 Rationale, LNCS 1247, Springer Verlag.
Barnes, J.G.P., 1998. Programming in Ada 95, 2nd editiion, Addison-Wesley, Reading, MA.
Intermetrics Inc., 1995. Annotated Ada 95 Reference Manual, Intermetrics Inc., Burlington, MA.
International Organization for Standardization, 1995. Information Technology — Programming

Languages — Ada. Ada Reference Manual. ISO/IEC 8652:1995(E).
Taft, S. T. and Duff, R.A. (Eds.), 1997, Ada 95 Reference Manual, LNCS 1246, Springer Verlag.
© 2001 by CRC Press LLC

Further Information

The official definition of Ada 95 is the Reference Manual for the Ada Programming Language [ISO, 1995].
This has been reprinted [Taft and Duff, 1997]. An annotated version containing detailed explanatory
information is also available [Intermetrics, 1995]. There is also an accompanying Rationale document
giving a broad overview of the language and especially the reasons for the changes from Ada 83 [Barnes,
1997].

This chapter is based on a somewhat condensed form of Chapters 1 to 4 of Programming in Ada 95
by the author and published by Addison-Wesley [Barnes, 1998]. The author is grateful to Addison-Wesley
for their permission to use the material presented here. Programming in Ada 95 is a comprehensive
description of the core of Ada 95 with many illustrative examples plus exercises and answers. It extends
to 23 chapters and includes full coverage of the predefined library, an overview of the annexes, and a CD
containing an Ada compiler and a number of complete example programs.
© 2001 by CRC Press LLC

Thomas K. Ferrell et al. “RTCA DO-178B/EUROCAE ED-12B”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

27
RTCA

DO-178B/EUROCAE
ED-12B

27.1 Introduction
Comparison with Other Software Standards • Document
Overview • Software as Part of the System

27.2 Software Life-Cycle Processes
Software Planning Process • Software Development
Process

27.3 Integral Process
Software Verification • Software Configuration Management •
Software Quality Assurance • Certification Liaison Process

27.4 Additional Considerations
Previously Developed Software • Tool Qualification

27.5 Additional Guidance
27.6 Synopsis
References
Further Information

27.1 Introduction

This chapter provides a summary of the document RTCA DO-178B, Software Considerations in Airborne
Systems and Equipment Certification,1 with commentary on the most common mistakes made in under-
standing and applying DO-178B. The joint committee of RTCA Special Committee 167 and EUROCAE*
Working Group 12 prepared RTCA DO-178B** (also known as EUROCAE ED-12B), and it was subse-
quently published by RTCA and by EUROCAE in December 1992. DO-178B provides guidance for the
production of software for airborne systems and equipment such that there is a level of confidence in
the correct functioning of that software in compliance with airworthiness requirements. DO-178B rep-
resents industry consensus opinion on the best way to ensure safe software. It should also be noted that
although DO-178B does not discuss specific development methodologies or management activities, there
is clear evidence that by following rigorous processes, cost and schedule benefits may be realized. The
verification activities specified in DO-178B are particularly effective in identifying software problems
early in the development process.

*European Organization for Civil Aviation Equipment.
**DO-178B and ED-12B are copyrighted documents of RTCA and EUROCAE, respectively. In this chapter, DO-

178B shall be used to refer to both the English version and the European equivalent. This convention was adopted
solely as a means for brevity.

Thomas K. Ferrell
Ferrell and Associates Consulting

Uma D. Ferrell
Ferrell and Associates Consulting
© 2001 by CRC Press LLC

27.1.1 Comparison with Other Software Standards

DO-178B is a mature document, having evolved over the last 20 years through two previous revisions,
DO-178 and DO-178A. It is a consensus document that represents the collective wisdom of both the
industry practitioners and the certification authorities. DO-178B is self-contained, meaning that no
other software standards are referenced except for those that the applicant produces to meet DO-178B
objectives. Comparisons have been made between DO-178B and other software standards such as MIL-
STD-498, MIL-STD-2167A, IEEE/EIA-12207, IEC 61508, and U.K. Defense Standard 0-55. All of these
standards deal with certain aspects of software development covered by DO-178B. None of them has
been found to provide complete coverage of DO-178B objectives. In addition, these other standards lack
objective criteria and links to safety analyses at the system level. However, organizations with experience
applying these other standards often have an easier path to adopting DO-178B.

Advisory Circular AC 20-115B specifies DO-178B as an acceptable means, but not the only means,
for receiving regulatory approval for software in systems or equipment being certified under a Technical
Standard Order (TSO) Authorization, Type Certificate (TC), or Supplemental Type Certificate (STC).
Most applicants use DO-178B to avoid the work involved in showing that other means are equivalent to
DO-178B. Even though DO-178B was written as a guideline, it has become the standard practice within
the industry. DO-178B is officially recognized as a de facto international standard by the International
Organization for Standardization (ISO).

27.1.2 Document Overview

DO-178B consists of 12 sections, 2 annexes, and 3 appendices as shown in Figure 27.1.
Section 2 and Section 10 are designed to illustrate how the processes and products discussed in DO-178B

relate to, take direction from, and provide feedback to the overall certification process. Integral Processes
detailed in Sections 6, 7, 8, and 9, support the software life cycle processes noted in Sections 3, 4, and 5.

Section 11 provides details on the life cycle data and Section 12 gives guidance to any additional
considerations. Annex A, discussed in more detail below, provides a leveling of objectives. Annex B
provides the document’s glossary. The glossary deserves careful consideration since much effort and care
was given to precise definition of the terms. Appendices A, B, C, and D provide additional material

FIGURE 27.1 Document structure.

System Aspects Relating To
Software Development - Section 2

Overview of Aircraft and Engine
Certification - Section 10

SW Life Cycle - Section 3

SW Planning - Section 4

SW Development - Section 5

SW Life Cycle Data - Section 11

Additional Considerations - Section 12

SW Verification - Section 6

SW Configuration Mgmt. - Section 7

SW Quality Assurance - Section 8

Certification Liaison - Section 9

Integral ProcessesSW Life Cycle Processes

Appendices A, B, C, & D

Annex A & B
© 2001 by CRC Press LLC

including a brief history of the document, the index, a list of contributors, and a process improvement
form, respectively. It is important to note that with the exception of the appendices and some examples
embedded within the text, the main sections and the annexes are considered normative, i.e., required to
apply DO-178B.

The 12 sections of DO-178B describe processes and activities for the most stringent level of software.*
Annex A provides a level by level tabulation of the objectives for lower levels of software.** This leveling
is illustrated in Figure 27.2 extracted from Annex A Table A-4, Verification of Outputs of Software Design
Process.

In addition to the leveling of objectives, Annex A tables serve as an index into the supporting text by
way of reference, illustrate where independence is required in achieving the objective, which data items
should include the objective evidence, and how that evidence must be controlled. More will be said about
the contents of the various Annex A tables in the corresponding process section of this text. If an applicant
adopts DO-178B for certification purposes, Annex A may be used as a checklist to achieve these objectives.
The FAA’s position is that if an applicant provides evidence to satisfy the objectives, then the software is
DO-178B compliant. Accordingly, the FAA’s checklists for performing audits of DO-178B developments
are based on Annex A tables.

Before discussing the individual sections, it is useful to look at a breakout of objectives as contained in
Annex A. While DO-178B contains objectives for the entire software development life cycle, there is a clear
focus on verification as illustrated by Figure 27.3. Although at first glance it appears that there is only one
objective difference between levels A and B, additional separation between the two is accomplished through

FIGURE 27.2 Example objective from Annex A.

FIGURE 27.3 Objectives over the software development life cycle.

*Levels are described in Section 27.1.3, “Software as part of system.”
**Software that is determined to be at level E is outside the scope of DO-178B.

Objective Applicability
by SW Level

Output Control
Category
by SW
Level

Description Ref. A B C D Description Ref. A B C D
1 Low-level

Requirements
comply with
High-level
Requirements.

6.3.2a � Software
Verification
Results

11.14�� 2 2 2 2� � ��

0
5

10
15
20
25
30
35
40

Level A
Level B
Level C
Level D

Planning

Dvlpmt
Verif. CM QA

Cert.
© 2001 by CRC Press LLC

the relaxation of independence requirements. Independence is achieved by having the verification or
quality assurance of an activity performed by a person other than the one who initially conducted the
activity. Tools may also be used to achieve independence.

27.1.3 Software as Part of the System

Application of DO-178B fits into a larger system of established or developing industry practices for
systems development and hardware. The system level standard is SAE ARP4754, Certification Consider-
ations for Highly-Integrated or Complex Aircraft Systems.2 The relationship between system, software, and
hardware processes is illustrated in Figure 27.4.

The interfaces to the system development process were not well defined at the time DO-178B was
written. This gap was filled when ARP4754 was published in 1996. DO-178B specifies the information
flow between system processes and software processes. The focus of the information flow from the system
process to the software process is to keep track of requirements allocated to software, particularly those
requirements that contribute to the system safety. The focus of information flow from the software process
to the system process is to ensure that changes in the software requirements, including the introduction
of derived requirements (those not directly traceable to a parent requirement), do not adversely affect
system safety.

The idea of system safety, although outside the scope of DO-178B, is crucial to understanding how to
apply DO-178B. The regulatory materials governing the certification of airborne systems and equipment
define five levels of failure conditions. The most severe of these is catastrophic, meaning failures that
result in the loss of ability to continue safe flight and landing. The least severe is no effect, where the
failure results in no loss of operational capabilities and no increase in crew workload. The intervening
levels define various levels of loss of functionality resulting in corresponding levels of workload and
potential for loss of life. These five levels map directly to the five levels of software defined in DO-178B.
This mapping is shown in Figure 27.5.

It is important to note that software is never certified as a standalone entity. A parallel exists for the
hardware development process and flow of information between hardware processes and system process.
Design trade-offs between software processes and hardware processes are also taken into consideration

FIGURE 27.4 Relationship between system development process and the software development process.

System
and Safety

Development
Assessment

Hardware
Development

Process

Software
Development

Process

Software
Development

Process Inputs
And Outputs

Design
Tradeoffs

Hardware
Development

Process Inputs
And Outputs
© 2001 by CRC Press LLC

at the system level. Software levels may be lowered by using protective software or hardware mechanisms
elsewhere in the system. Such architectural methods include partitioning, use of hardware or software
monitors, and architectures with built-in redundancy.

27.2 Software Life-Cycle Processes

The definition of how data are exchanged between the software and systems development processes is
part of the software life-cycle processes discussed in DO-178B. Life-cycle processes include the planning
process, the software development processes (requirements, design, code, and integration), and the
integral processes (verification, configuration management, software quality assurance, and certification
liaison). DO-178B defines objectives for each of these processes as well as outlining a set of activities for
meeting the objectives.

DO-178B discusses the software life-cycle processes and transition criteria between life-cycle processes
in a generic sense without specifying any particular life-cycle model. Transition criteria are defined as
“the minimum conditions, as defined by the software planning process, to be satisfied to enter a process.”
Transition criteria may be thought of as the interface points between all of the processes discussed in
DO-178B. Transition criteria are used to determine if a process may be entered or reentered. They are a
mechanism for knowing when all of the tasks within a process are complete and may be used to allow
processes to execute in parallel. Since different development models require different criteria to be satisfied
for moving from one step to the next, specific transition criteria are not defined in DO-178B. However,
it is possible to describe a set of characteristics that all well-defined transition criteria should meet. For
transition criteria to successfully assist in entry from one life-cycle process to another, they should be
quantifiable, flexible, well documented, and present for every process. It is also crucial that the process
owners agree upon the transition criteria between their various processes.

27.2.1 Software Planning Process

DO-178B defines five types of planning data* for a software development. They are

• Plan for Software Aspects of Certification (PSAC)

• Software Development Plan

• Software Verification Plan

FIGURE 27.5 Software levels.

*The authors of DO-178B took great pains to avoid the use of the term “document” when referring to objective
evidence that needed to be produced to satisfy DO-178B objectives. This was done to allow for alternative data
representations and packaging as agreed upon between the applicant and the regulatory authority. For example, the
four software plans-outlining development, verification, QA, and CM may all be packaged in a single plan, just as
the PSAC may be combined with the System Certification Plan.

Failure Condition DO-178B
Software

Level

Catastrophic A

Hazardous B

Major C

Minor D

No effect E
© 2001 by CRC Press LLC

• Software Configuration Management Plan

• Software Quality Assurance Plan

These plans should include consideration of methods, languages, standards, and tools to be used during
the development. A review of the planning process should have enough details to assure that the plans,
proposed development environment, and development standards (requirements, design, and code) com-
ply with DO-178B.

Although DO-178B does not discuss the certification liaison process until Section 9, the intent is that
the certification liaison process should begin during the projects’ planning phase. The applicant outlines
the development process and identifies the data to be used for substantiating the means of compliance
for the certification basis. It is especially important that the applicant outline specific features of software
or architecture that may affect the certification process.

27.2.2 Software Development Process

Software development processes include requirements, design, coding, and integration. DO-178B allows
for requirements to be developed that detail the system’s functionality at various levels. DO-178B refers
to these levels as high- and low-level requirements. System complexity and the design methodology
applied to the system’s development drive the requirements’ decomposition process. The key to under-
standing DO-178B’s approach to requirement’s definition can be summed up as, “one person’s require-
ments are another person’s design.” Exactly where and to what degree the requirements are defined is
less important than ensuring that all requirements are accounted for in the resulting design and code,
and that traceability is maintained to facilitate verification.

Some requirements may be derived from the design, architecture, or the implementation nuances of
the software and hardware. It is recognized that such requirements will not have a traceability to the
high-level requirements. However, these requirements must be verified and must also be considered for
safety effects in the system safety assessment process.

DO-178B provides only a brief description of the design, coding, and integration processes since these
tend to vary substantially between various development methodologies. The one exception to this is in
the description to the outputs of each of the processes. The design process yields low-level requirements
and software architecture. The coding process produces the source code, typically either in a high-order
language or assembly code. The result of the integration effort is executable code resident on the target
computer along with the various build files used to compile and link the executable. Each of these outputs
is verified, assured, and configured as part of the integral processes.

27.3 Integral Processes

DO-178B defines four processes as integral, meaning that they overlay and extend throughout the software
life cycle. These are the software verification process, software configuration management, software
quality assurance, and certification liaison process.

27.3.1 Software Verification*

As noted earlier, verification objectives outnumber all others in DO-178B, accounting for over two thirds
of the total. DO-178B defines verification as a combination of reviews, analyses, and testing. Verification
is a technical assessment of the results of both the software development processes and the software
verification process. There are specific verification objectives that address the requirements, design,
coding, integration, as well as the verification process itself. Emphasis is placed at all stages to assure that
there is traceability from high-level requirements to the final “as-built” configuration.

*Software Verification is a complex topic, which deserves in-depth treatment. The reader is directed to References 4,
5, and 6 for detailed discussion on verification approaches and explanation of terms.
© 2001 by CRC Press LLC

Reviews provide qualitative assessment of a process or product. The most common types of reviews
are requirements reviews, design reviews, and test procedure reviews. DO-178B does not prescribe how
these reviews are to be conducted, or what means are to be employed for effective reviews. Best practices
in software engineering process states that for reviews to be effective and consistent, checklists should be
developed and used for each type of review. Checklists provide:

• Objective evidence of the review activity

• A focused review of those areas most prone to error

• A mechanism for applying “lessons learned”

• A practical traceable means for ensuring that corrective action is taken for unsatisfactory items

Review checklists can be common across projects, but they should themselves be reviewed for appropri-
ateness and content for a particular project.

Analyses provide repeatable evidence of correctness and are often algorithmic or procedural in nature.
Common types of analyses used include timing, stack, data flow, and control flow analyses. Race condi-
tions and memory leakage should be checked as part of the timing and stack analysis. Data and control
coupling analysis should include, a minimum, basic checks for set/use and may extend to a full model
of the system’s behavior. Many types of analyses may be performed using third-party tools. If tools are
used for this purpose, DO-178B rules for tool qualification must be followed.

The third means of verification, testing, is performed to demonstrate that

• The software product performs its intended function

• The software does not demonstrate any unintended actions

The key to accomplishing testing correctly to meet DO-178B objectives in a cost-effective manner is to
maintain a constant focus on requirements. This requirements-based test approach represents one of the
most fundamental shifts from earlier versions of the document. As test cases are designed and conducted,
requirements coverage analysis is performed to assess that all requirements are tested. A structural coverage
analysis is performed to determine the extent to which the requirements-based test exercised the code.
In this manner, structural coverage is used as a means of assessing overall test completion. The possible
reasons for lack of structural coverage are shortcomings in requirements-based test cases or procedures,
inadequacies in software requirements, compiler generated code, unreachable, or inactive code.

As part of the test generation process, tests should be written for both normal range and abnormal
inputs (robustness). Tests should also be conducted using the target environment whenever possible.

Structural coverage and how much testing is required for compliance at the various levels are misun-
derstood topics. Level D software verification requires test coverage of high-level requirements only. No
structural coverage is required.

Low-level requirements testing is required at level C. In addition, testing of the software structure to
show proper data and control coupling is introduced. This coverage involves coverage of dependencies of
one software component on other software component via data and control. Decision coverage is required
for level B, while level A code requires Modified Condition Decision Coverage (MCDC).

For level A, structural coverage analysis may be performed on source code only to the extent that the
source code can be shown to map directly to object code. The reason for this rule is that some compilers
may introduce code or structure that is different from source code.

MCDC coverage criteria were introduced to retain the benefits of multiple-condition coverage while
containing the exponential growth in the required number of test cases required. MCDC requires that
each condition must be shown to independently affect the outcome of the decision and that the outcome
of a decision changes when one condition is changed at a time. Many tools are available to determine
the minimum test case set needed for DO-178B compliance. There is usually more than one set of test
cases that satisfy MCDC coverage.3 There is no firm policy on which set should be used for compliance.
It is best to get an agreement with the certification authorities concerning the algorithms and tools used
to determine compliance criteria.
© 2001 by CRC Press LLC

27.3.2 Software Configuration Management

Verification of the various outputs discussed in DO-178B are only credible when there is clear definition
of what has been verified. This definition or configuration is the intent of the DO-178B objectives for
configuration management. The six objectives in this area are unique, in that they must be met for all
software levels. This includes identification of what is to be configured, how baselines and traceability
are established, how problem reports are dealt with, how the software is archived and loaded, and how
the development environment is controlled.

While configuration management is a fairly well-understood concept within the software engineering
community (as well as the aviation industry as a whole), DO-178B does introduce some unique termi-
nology that has proven to be problematic. The concept of control categories is often misunderstood in
a way that overall development costs are increased, sometimes dramatically. DO-178B defines two control
categories (CC1 and CC2) for data items produced throughout the development.

The authors of DO-178B intended the two levels as a way of controlling the overhead costs of creating
and maintaining the various data items. Items controlled as CC2 have less requirements to meet in the
areas of problem reporting, baselining, change control, and storage. The easiest way to understand this
is to provide an example. Problem reports are treated as a CC2 item. If problem reports were a CC1 item
and a problem was found with one of the entries on the problem report itself, a second problem report
would need to be written to correct the first one.

A second nuance of control categories is that the user of DO-178B may define what CC1 and CC2 are
within their own CM system as long as the DO-178B objectives are met. One example of how this might
be beneficial is in defining different retention periods for the two levels of data. Given the long life of
airborne systems, these costs can be quite sizeable. Another consideration for archival systems selected
for data retention is technology obsolescence of the archival medium as well as means of retrieval.

27.3.3 Software Quality Assurance

Software quality assurance (SQA) objectives provide oversight of the entire DO-178B process and require
independence at all levels. It is recognized that it is prudent to have an independent assessment of quality.
SQA is active from the beginning of the development process. SQA assures that any deviations during
the development process from plans and standards are detected, recorded, evaluated, tracked, and
resolved. For levels A and B, SQA is required to assure transition criteria are adhered to throughout the
development process.

SQA works with the CM process to assure that proper controls are in place and applied to life cycle
data. This last task culminates in the conduct of a software conformity review. SQA is responsible for
assuring that the as-delivered products matches the as-built and as-verified product. The common term
used for this conformity review in commercial aviation industry is “First Article Inspection.”

27.3.4 Certification Liaison Process

As stated earlier, the certification liaison process is designed to streamline the certification process by
ensuring that issues are identified early in the process. While DO-178B outlines twenty distinct data items
to be produced in a compliant process, three of these are specific to this process and must be provided
to the certifying authority. They are

• Plan for Software Aspects of Certification (PSAC)

• Software Configuration Index

• Software Accomplishment Summary

Other data items may be requested by the certification authority, if deemed necessary. As mentioned
earlier, applicants are encouraged to start a dialogue with certification authorities as early in the process
as possible to reach a common understanding of a means of achieving compliance with DO-178B. This
is especially important as new technology is applied to avionics and as new personnel enter the field.
© 2001 by CRC Press LLC

Good planning up front, captured in the PSAC, should minimize surprises later in the development
process, thus minimizing cost. Just as the PSAC states what you intend to do, the accomplishment summary
captures what you did. It is used to gauge the overall completeness of the development process and to
ensure that all objectives of DO-178B have been satisfied.

Finally, the configuration index serves as an overall accounting of the content of the final product as
well as the environment needed to recreate it.

27.4 Additional Considerations

During the creation of DO-178B, it was recognized that new development methods and approaches
existed for developing avionics. These included incorporation of previously developed software, use of
tools to accomplish one or more of the objectives required by DO-178B, and application of alternate
means in meeting an objective such as formal methods. In addition, there are a small class of unique
issues such as field-loadable and user-modifiable software. Section 12 collects these items together under
the umbrella title of Additional Considerations. Two areas, Previously Developed Software (PDS) and
Tool Qualification, are common sources of misunderstanding in applying DO-178B.

27.4.1 Previously Developed Software

PDS is software that falls in one of the following categories:

• Commercial off-the-shelf software (e.g., shrink-wrap)

• Airborne software developed to other standards (e.g., MIL-STD-498)

• Airborne software that predates DO-178B (e.g., developed to the original DO-178 or DO-178A)

• Airborne software previously developed at a lower software level

The use of one or more of these types of software should be planned for and discussed in the PSAC.
In every case, some form of gap analysis must be performed to determine where specific objectives of
DO-178B have not been met. It is the applicant’s responsibility to perform this gap analysis and propose
to the regulatory authority a means for closing any gaps. Alternate sources of development data, service
history, additional testing, reverse engineering, and wrappers* are all ways of ensuring the use of PDS is
safe in the new application.

In all cases, usage of PDS must be considered in the safety assessment process and may require that
the process be repeated if the decision to use a PDS component occurs after the approval of PSAC. A
special instance of PDS usage occurs when software is used in a system to be installed on an aircraft
other than the one for which it was originally designed. Although the function may be the same, interfaces
with other aircraft systems may behave differently. As before, the system safety assessment process must
be repeated to assure that the new installation operates and behaves as intended.

If service history is employed in making the argument that a PDS component is safe for use, the
relevance and sufficiency of the service history must be assessed. Two tests must be satisfied for the
service history approach to work. First, the application for which history exists must be shown to be
similar to the intended new use of the PDS. Second, there should be data, typically problem reports,
showing how the software has performed over the period for which credit is sought. The authors of
DO-178B intended that any use of PDS be shown to meet the same objectives required of newly
developed code.

Prior to identifying PDS as part of a new system, it is prudent to investigate and truly understand the
costs of proving that the PDS satisfies the DO-178B objectives. Sometimes, it is easier and cheaper to
develop the code again!

*Wrappers is a generic term used to refer to hardward or software components that isolate and filter inputs to
and from the PDS for the purposes of protecting the system from erroneous PDS behavior.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

27.4.2 Tool Qualification

DO-178B requires qualification of tools when the processes noted by DO-178B are eliminated, reduced,
or automated by a tool without its output being verified according to DO-178B. If the output of a tool
is demonstrated to be restricted to a particular part of the life cycle, the qualification can also be limited
to that part of the life cycle. Only deterministic tools can be qualified.

Tools are classified as development tools and verification tools. Development tools produce output
that becomes a part of the airborne system and thus can introduce errors. Rules for qualifying develop-
ment tools are fashioned after the rules of assurance for generating code. Once the need for development
tool qualification is established, a tool qualification plan must be written. The rigor of the plan is
determined by the nature of the tool and the level of code upon which it is being used. A tool accom-
plishment summary is used to show compliance with the tool qualification plan. The tool is required to
satisfy the objectives at the same level as the software it produces, unless the applicant can justify a
reduction in the level to the certification authority.

Verification tools cannot introduce errors but may fail to detect them or mask their presence. Quali-
fication criterion for verification tools is the demonstration of its requirements under normal operational
conditions. Compliance is established by noting tool qualification within PSAC and Software Accom-
plishment Summary. A tool qualification plan and a tool accomplishment summary are not required for
verification tools by DO-178B although an applicant may find them useful for documenting the quali-
fication effort.

27.5 Additional Guidance

RTCA SC-190/EUROCAE WG-52 was formed in 1997 to address issues that were raised by the industry
and certification authorities in the course of applying DO-178B since its release in 1992. The membership
in this committee includes over 200 industry and regulatory representatives from the U.S. and Europe.
The outputs of the SC-190 consensus process are available to industry from the RTCA or EUROCAE in
the form of errata, frequently asked questions, and discussion papers. These outputs have been collated
and published in DO-248/ED-94.7

27.6 Synopsis

DO-178B provides objectives for software life-cycle processes, activities to achieve these objectives, and
outlines objective evidence for demonstrating that these objectives were accomplished. The purpose of
software compliance to DO-178B is to provide considerable confidence that the software is suitable for
use in airborne systems. DO-178B should not be viewed as a documentation guide.

Compliance data are intended to be a consequence of the process. Complexity and extent of the
required compliance data depend upon the characteristics of the system/software, associated development
practices, and the interpretation of DO-178B, especially when it is applied to new technology and no
precedent is available.

Finally, it has to be emphasized that DO-178B objectives do not directly deal with safety. Safety is dealt
with at the system level via the system safety assessment. DO-178B objectives help verify the correct
implementation of safety-related requirements that flow from the system safety assessment. Like any
standard, DO-178B has good points and bad points (and even a few errors). However, careful consider-
ation of its contents, taken together with solid engineering judgment, should result in better and safer
airborne software.

References

1. RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification,
RTCA Inc.,Washington, D.C, 1992. Copies of DO-178B may be obtained from RTCA, Inc., 1140
Connecticut Avenue, NW, Suite 1020, Washington, D.C. 20036-4001 U.S. (202) 833-9339. This
document is also known as ED 12B, Software Considerations in Airborne Systems and Equipment

Certification, EUROCAE, Paris, 1992. Copies of ED-12B may be obtained from EUROCAE, 17,
rue Hamelin, 75783 PARIS CEDEX France, (331) 4505-7188.

2. SAE ARP4754, Certification Considerations for Highly-Integrated or Complex Aircraft Systems, SAE,
Warrendale, PA, 1996.

3. Chilenski, J.J. and Miller, P.S., Applicability of modified condition/decision coverage to software
testing, Software Eng. J., 193, September 1994.

4. Myers, G. J., The Art of Software Testing, John Wiley & Sons, New York, 1979.
5. Beizer, B., Software Testing Techniques, 2nd ed., Coriolis Group, Scottsdale, AZ, 1990.
6. McCracken, D. and Passafiume, M., Software Testing and Evaluation, Benjamin/Cummings, Menlo

Park, CA, 1987.
7. RTCA DO-248, Annual Report for Clarification of DO-178B “Software Considerations in Airbone

Systems and Equipment Certification; EOROCAE ED-94, Annual Report for Clarification of ED-
12B “Software Considerations in Airbone Systems and Equipment Certification.”

Further Information

1. The Federal Aviation Administration Web Page: www.faa.gov.
2. The RTCA Web Page: www.rtca.org.
3. Spitzer, C.R., Digital Avionics Systems Principles and Practice, 2nd ed., McGraw-Hill, New York,

1993.
4. Wichmann, B.A., A Review of a Safety-Critical Software Standard, National Physical Laboratory,

Teddington, Middlesex, U.K. (report is not dated).
5. Herrman, D.S., Software Safety and Reliability, IEEE Computer Society Press, Washington, D.C.,

1999.
© 2001 by CRC Press LLC

Ellis F. Hitt et al. “Fault-Tolerant Avionics”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC
© 2001 by CRC Press LLC

V

Implementation

Cary R. Spitzer

AvioniCon

28 Fault-Tolerant Avionics

Ellis F. Hitt, Dennis Mulcare

Introduction • System Level Fault Tolerance • Hardware-Implemented Fault Tolerance
(Fault-Tolerant Hardware Design Principles) • Software-Implemented Fault
Tolerance—State Consistency • Software Fault Tolerance • Summary

29 Boeing B-777

Michael J. Morgan

Introduction • Background • Boeing 777 Airplane Information Management System
(AIMS) • Cabinet Architecture Overview • Backplane Bus • Maintenance • Growth

30 New Avionics Systems —Airbus A330/A340

J.P. Potocki de Montalk

Overview • Highlights • Systems • Cockpit • User Involvement • Avionics •
Instruments • Navigation • Flying Controls • Central Maintenance System •
Communications • Flexibility and In-Service Updates • Development Environment •
Support Environment

31 McDonnell Douglas MD-11 Avionics System

Gordon R. A. Sandell

Introduction • Flight Controls (ATA 22-00 and 27-00) • Communications System
(ATA 23-00) • Entertainment System (23-00) • Display System (ATA 31-00) • Recording
Systems (ATA 31-00) • Navigation Systems (ATA 34-00) • Maintenance Systems
(ATA 45-00) • Aircraft Systems • Interchangeability • CNS/ATM Architecture •
Derivatives

32 Lockheed F-22 Raptor

Mr. Ronald W. Brower

F-22 Role and Mission • IAS Hierarchical Functional Design • Integrated Avionics
Architecture • Fault Tolerance and Recovery • Summary

33 Advanced Distributed Architectures

Jim Moore

Drivers and Trends • Integrated Modular Avionics (IMA) • Aircraft and Systems
Architecture Issues • Conclusions

The ultimate goal of any avionics effort is to reduce it to practice, to build it, and to operate it, or, in
other words, to implement it. This section presents five examples of current or projected avionics systems
along with a discussion of fault tolerance, a key concept in extremely critical (cannot lose its function)
avionics.

Fault tolerance is the ability to continue to operate in a satisfactory manner (as defined by the customer)
in the presence of multiple temporary or permanent hardware or software faults. Fault tolerance can be
achieved in either hardware and/or software. Chapter 28 reviews many techniques for realizing satisfac-
tory operation in the presence of faults.

Two modern commercial transports, the Boeing B-777 and the Airbus A330/340, have some of the
most advanced avionics available today. The B-777 Airplane Information Management System (AIMS)
is the first significant application of integrated, modular avionics to commercial transport aircraft and
is performing admirably in revenue service. The A330/340 has an advanced, second-generation, fly-by-
wire flight control system (featuring side stick controllers) and other cutting edge avionics that have
proved to be very attractive to the operators in terms of economic payoff.

The Boeing MD-11 is an interesting retrofit architecture that demonstrates what upgraded, modern
avionics can do for a vintage aircraft design (the DC-10). The MD-11 avionics not only eliminated the
need for the third flight crew member by automating many of the functions of that position, but also
offered reduced operating expenses and increased functionality.

The most modern, cutting-edge avionics architecture in military aircraft is the Lockheed F-22 Raptor.
Like the B-777 AIMS, the F-22 makes extensive use of integrated, modular avionics for both the vehicle
and the mission functions. The Common Integrated Processor (CIP) cabinets have space for up to 66
modules, but have only five different types of modules.

A visionary look at the future is capsulized in the advanced distributed architecture, made possible by
the increasing throughput of microprocessors and the ever-growing bandwidth of data busses such as
Ethernet. Perhaps the need for centralized processing will be taken over by distributed microprocessors.

28
Fault-Tolerant Avionics

28.1 Introduction
Motivation • Definitional Framework • Dependability
• Fault Tolerance Options • Flight Systems
Evolution • Design Approach

28.2 System Level Fault Tolerance
General Mechanization • Redundancy
Options • Architectural Categories • Integrated Mission
Avionics • System Self Tests

28.3 Hardware-Implemented Fault Tolerance
(Fault-Tolerant Hardware Design Principles)
Voter Comparators • Watchdog Timers

28.4 Software-Implemented Fault Tolerance—State
Consistency
Error Detection • Damage Confinement and
Assessment • Error Recovery • Fault
Treatment • Distributed Fault Tolerance

28.5 Software Fault Tolerance
Multiversion Software • Recovery Blocks • Trade-Offs

28.6 Summary
Design Analyses • Safety • Validation • Conclusion

References
Further Information

28.1 Introduction

Fault-tolerant designs are required to ensure safe operation of digital avionics systems performing
flight-critical functions. This chapter discusses the motivation for fault-tolerant designs, and the many
different design practices that are evolving to implement a fault-tolerant system. The designer needs to
make sure the fault tolerance requirements are fully defined to select the design concept to be implemented
from the alternatives available. The requirements for a fault-tolerant system include performance,
dependability, and the methods of assuring that the design, when implemented, meets all requirements.
The requirements must be documented in a specification of the intended behavior of a system, specifying
the tolerances imposed on the various outputs from the system [Anderson and Lee, 1981].

Development of the design proceeds in parallel with the development of the methods of assurance to
validate that the design meets all requirements including the fault tolerance. The chapter concludes with
references to further reading in this developing field.

A fault-tolerant system provides continuous, safe operation in the presence of faults. A fault-tolerant
avionics system is a critical element of flight-critical architectures which include the fault-tolerant com-
puting system (hardware, software, and timing), sensors and their interfaces, actuators, elements, and
data communication among the distributed elements. The fault-tolerant avionics system ensures integrity

Ellis F. Hitt
Battelle

Dennis Mulcare
Science Applications
International Co.
© 2001 by CRC Press LLC

of output data used to control the flight of the aircraft, whether operated by the pilot or autopilot. A
fault-tolerant system must detect errors caused by faults, assess the damage caused by the fault, recover
from the error, and isolate the fault. It is generally not economical to design and build a system that is
capable of tolerating all possible faults in the universe. The faults the system is to be designed to tolerate
must be defined based on analysis of requirements including the probability of each fault occurring, and
the impact of not tolerating the fault.

A user of a system may observe an error in its operation which is the result of a fault being triggered
by an event. Stated another way, a fault is the cause of an error, and an error is the cause of a failure. A
mistake made in designing or constructing a system can introduce a fault into the design of the system,
either because of an inappropriate selection of components or because of inappropriate (or missing)
interactions between components. On the other hand, if the design of a system is considered to be correct,
then an erroneous transition can occur only because of a failure of one of the components of the system.
Design faults require more powerful fault-tolerance techniques than those needed to cope with component
faults. Design faults are unpredictable; their manifestation is unexpected and they generate unanticipated
errors. In contrast, component faults can often be predicted, their manifestation is expected, and they
produce errors which can be anticipated [Anderson and Lee, 1981].

In a non-fault-tolerant system, diagnosis is required to determine the cause of the fault that was
observed as an error. Faults in avionics systems are of many types. They generally can be classified as
hardware, software, or timing related. Faults can be introduced into a system during any phase of its life
cycle including requirements definition, design, production, or operation.

In the 1960s, designers strived to achieve highly reliable safe systems by avoiding faults, or masking
faults. The Apollo guidance and control system employed proven, highly reliable components and triple
modular redundancy (TMR) with voting to select the correct output. Improvements in hardware reli-
ability, and our greater knowledge of faults and events which trigger them, has led to improved design
methods for fault-tolerant systems which are affordable.

In any fault-tolerant system, the range of potential fault conditions that must be accommodated is
quite large; enumerating all such possibilities is a vital yet formidable task in validating the system’s
airworthiness, or its readiness for deployment. The resultant need to handle each such fault condition
prompts attention to the various assurance-oriented activities that contribute to certification system
airworthiness.

28.1.1 Motivation

Safety is of primary importance to the economic success of the aviation system. The designer of avionics
systems must assure that the system provides the required levels of safety to passengers, aircrew, and main-
tenance personnel. Fault-tolerant systems are essential with the trend to increasingly complex digital systems.

Many factors necessitate fault tolerance in systems that perform functions that must be sustained
without significant interruption. In avionics systems, such functions are often critical to continued safe
flight or to the satisfactory conduct of a mission; hence the terms flight-critical and mission-critical. The
first compelling reality is that physical components are non-ideal, i.e., they are inescapably disposed to
physical deterioration or failure. Clearly then, components inherently possess a finite useful life, which
varies with individual instances of the same component type. At some stage, then, any physical component
will exhibit an abrupt failure or excessive deterioration such that a fault may be detected at some level
of system operation.

The second contributing factor to physical faults is the non-ideal environment in which an avionics
system operates. Local vibrations, humidity, temperature cycling, electrical power transients, electromag-
netic interference, etc. tend to induce stress on the physical component which may cause abrupt failure
or gradual deterioration. The result may be a transient or a permanent variation in output, depending
on the nature and severity of the stress. The degree of induced deterioration encountered may profoundly
influence the useful life of a component. Fortunately, design measures can be taken to reduce susceptibility
to the various environmental effects. Accordingly, a rather comprehensive development approach is
© 2001 by CRC Press LLC

needed for system dependability, albeit fault tolerance is the most visible aspect because it drives the
organization and logic of the system architecture.

The major factor necessitating fault tolerance is design faults. Tolerance of design faults in hardware
and software and the overall data flow is required to achieve the integrity needed for flight-critical systems.
Reliance on the hardware chip producing correct output when there is no physical failure has been shown
to be risky, as demonstrated by the design error discovered in the floating point unit of a high-performance
microprocessor in wide use. Because of the difficulty in eliminating all design faults, dissimilar redundancy
is used to produce outputs which should be identical even though computed by dissimilar computers. Use
of dissimilar redundancy is one approach to tolerating common-mode failures. A common-mode failure
(CMF) occurs when copies of a redundant system suffer faults nearly simultaneously, generally due to a
single cause [Lala, 1994].

28.1.2 Definitional Framework

A digital avionics system is a “hard real-time” system producing time-critical outputs that are used to
control the flight of an aircraft. These critical outputs must be dependable. A dependable system is both
reliable and safe. Reliability has many definitions, and is often expressed as the probability of not failing.
Another definition of reliability is the probability of producing a “correct” output [Vaidya and Pradhan, 1993].
Safety has been defined as the probability that the system output is either correct, or the error in the
output is detectable [Vaidya and Pradhan, 1993]. Correctness has been defined as the requirement that
the output of all channels agree bit-for-bit under no-fault conditions [Lala, 1994]. Another design
approach, approximate consensus, considers a system to be correct if the outputs agree within some
threshold. Both approaches are in use.

Hardware component faults are often classified by extent, value, and duration [Avizienis, 1976]. Extent
applies to whether the errors generated by the fault are localized or distributed; value indicates whether
the fault generates fixed or varying erroneous values; duration refers to whether the fault is transient or
permanent. Several studies have shown that permanent faults cause only a small fraction of all detected
errors, as compared with transient faults [Sosnowski, 1994]. A recurring transient fault is often referred
to as intermittent [Anderson and Lee, 1981]. Figure 28.1 depicts these classifications in the tree of faults.

Origin faults may result from a physical failure within a hardware component of a system, or may
result from human-made faults. System boundary internal faults are those parts of the system’s state
which, when invoked by the computation activity, will produce an error, while external faults result from
system interference caused by its physical environment, or from system interaction with its human
environment. Origin faults classified by the time phase of creation include design faults resulting from

FIGURE 28.1 Fault Classification.

Origin Extent
Phenomenological

Causes
Physical Faults
Human Made Faults

System Boundaries
Internal Faults
External Faults

Phase of Creation
Design Faults
Operational Faults

Localized
External
Global

Common Mode
Generic
Propagated

Fixed
Varying

Transient

Permanent
Temporary

Intermittent
Safeguarded

ModeValue Duration

Latency Time

Latent

Active
Unanticipated

Fault Coupling
System

Physical
Domain

Logical

Fault Characterization

Information
© 2001 by CRC Press LLC

imperfections that arise during the development of the system (from requirements specification to
implementation), subsequent modifications, the establishment of procedures for operating or maintain-
ing the system, or operational faults which appear during the system operation [Lala and Harper, 1994].

A fault is in the active mode if it yields an erroneous state, either in hardware or software, i.e.,
a state that differs from normal expectations under extant circumstances. Alternatively, a fault is
described as latent when it is not yielding an erroneous state. Measures for error detection that can
be used in a fault-tolerant system fall into the following broad classification [Anderson and Lee, 1981]:

1. Replications checks
2. Timing checks
3. Reversal checks
4. Coding checks
5. Reasonableness checks
6. Structural checks
7. Diagnostic checks.

These checks are discussed in Section 28.4.
During the development process, it is constructive to maintain a perspective regarding the fault

attributes of Domain and Value in Figure 28.1. Basically, Domain refers to the universe of layering of
fault abstractions that permit design issues to be addressed with a minimum of distraction. Value simply
refers to whether the erroneous state remains fixed, or whether it indeterminately fluctuates. While
proficient designers tend to select the proper abstractions to facilitate particular development activities,
these associated fault domains should be explicitly noted:

• Physical: elemental PHYSICAL FAILURES of hardware components — underlying short, open,
ground faults

• Logical: manifested LOGICAL FAULTS per device behavior — stuck-at-one, stuck-at-zero, inverted

• Informational: exhibited ERROR STATES in interpreted results — incorrect value, sign change,
parity error

• System: resultant SYSTEM FAILURE provides unacceptable service — system crash, deadlock, hardover.

These fault domains constitute levels of design responsibilities and commitments as well as loci of
fault tolerance actions per se. Thus, fault treatment and, in part, fault containment, are most appropriately
addressed in the physical fault domain. Similarly, hardware fault detection and assessment are most
readily managed in the logical fault domain, where the fixed or fluctuating nature of the erroneous
value(s) refines the associated fault identification mechanism(s). Lastly, error recovery and perhaps some
fault containment are necessarily addressed in the informational fault domain, and service continuation
in the system fault domain.

For safety-critical applications, physical hardware faults no longer pose the major threat to dependability.
The dominant threat is now common-mode failures. Common-mode failures (CMFs) result from faults
that affect more than one fault containment region at the same time, generally due to a common cause.
Fault avoidance, fault removal through test and evaluation or via fault insertion, and fault tolerance
implemented using exception handlers, program checkpointing, and restart are approaches used in toler-
ating CMFs [Lala, 1994]. Table 28.1 presents a classification of common-mode faults with the X indicating
the possible combinations of faults that must be considered which are not intentional faults.

Physical, internal, and operational faults can be tolerated by using hardware redundancy. All other faults
can affect multiple fault-containment regions simultaneously. Four sources of common-mode failures
need to be considered:

1. Transient (External) Faults which are the result of temporary interference to the system from its
physical environment such as lightning, High Intensity Radio Frequencies (HIRF), heat, etc.;

2. Permanent (External) Faults which are the result of permanent system interference caused by
its operational environment such as heat, sand, salt water, dust, vibration, shock, etc.;
© 2001 by CRC Press LLC

3. Intermittent (Design) Faults which are introduced due to imperfections in the requirements
specifications, detailed design, implementation of design, and other phases leading up to the
operation of the system;

4. Permanent (Design) Faults are introduced during the same phases as intermittent faults, but
manifest themselves permanently [Lala, 1994].

An elemental physical failure, which is an event resulting in component malfunction, produces a
physical fault. These definitions are reflected in Figure 28.2, a state transition diagram that portrays four
fault status conditions and associated events in the absence of fault tolerance. Here, for example, a Latent
Fault Condition transitions to an Active Fault Condition due to a Potentiating Event. Such an event might
be a functional mode change that caused the fault region to be exercised in a revealing way. Following
the incidence of a sufficiently severe active fault from which spontaneous recovery is not forthcoming,
a system failure event occurs wherein expected functionality can no longer be sustained. If the effects of
a particular active fault are not too debilitating, a system may continue to function with some degradation
in services. Fault tolerance can of course forestall both the onset of system failure and the expectation
of degraded services.

The Spontaneous Recovery Event in Figure 28.2 indicates that faults can sometimes be transient in
nature when a fault vanishes without purposeful intervention. This phenomenon can occur after an
external disturbance subsides or an intermittent physical aberration ceases. A somewhat similar occur-
rence is provided through the Incidental Fault Remission Event in Figure 28.2. Here, the fault does not

TABLE 28.1 Classification of Common-Mode Faults

Phenomenological
Cause System Boundary Phase of Creation Duration Common

Mode Fault
LabelPhysical

Human
Made Internal External Design Operational Permanent Temporary

X X X X Transient
(External)

CMF
X X X X Permanent

(External)
CMF

X X X X Intermittent
(Design) CMF

X X X X Permanent
(Design) CMF

X X X X Interaction
CMF

FIGURE 28.2 Hardware states (no corrective action).

Fault
Free

Active
Fault

Spontaneous
Recovery

Elemental
Failure Event

Elemental
Failure Event

System Failure
Event

System
 Failed

Potentiating
Event Incidental

Fault Remission

Latent
Fault
© 2001 by CRC Press LLC

vanish, but rather spontaneously reverts from an active to a latent mode due to the cessation or removal
of fault excitation circumstances. Table 28.2 complements Figure 28.2 in clarifying these fault categories.
Although these transient fault modes are thought to account for a large proportion of faults occurring
in deployed systems, such faults may nonetheless persist long enough to appear as permanent faults to
the system. In many cases then, explicit features must be incorporated into a system to ensure the timely
recovery from faults that may induce improper or unsafe system operation.

Three classes of faults are of particular concern because their effects tend to be global regarding extent,
where global implies impact on redundant components present in fault-tolerant systems. A common
mode-fault is one in which the occurrence of a single physical fault at a one particular point in a system
can cause coincident debilitation of all similar redundant components. This phenomenon is possible
where there is a lack of protected redundancy, and the consequence would be a massive failure event. A
generic fault is a development fault that is replicated across similar redundant components such that its
activation yields a massive failure event like that due to a common mode fault. A propagated fault is one
wherein the effects of a single fault spread out to yield a compound erroneous state. Such fault symptoms
are possible when there is a lack of fault containment features. During system development, particular
care must be exercised to safeguard against these classes of global faults, for they can defeat fault-tolerance
provisions in a single event. Considerable design assessment is therefore needed, along with redundancy
provisions, to ensure system dependability.

28.1.3 Dependability

Dependability is an encompassing property that enables and justifies reliance upon the services of a
system. Hence, dependability is a broad, qualitative term that embodies the aggregate nonfunctional
attributes, or “ilities,” sought in an ideal system, especially one whose continued safe performance is
critical. Thus, attributes like safety, reliability, availability, and maintainability, which are quantified using
conditional probability formulas, can be conveniently grouped as elements of dependability. As a practical
matter, however, dependability usually demands the incorporation of fault tolerance into a system to
realize quantitative reliability or availability levels. Fault tolerance, moreover, may be need to achieve
maintainability requirements, as in the case of on-line maintenance provisions.

For completeness, sake, it should be noted as depicted in Figure 28.3 that the attainment of depend-
ability relies on fault avoidance and fault alleviation, as well as on fault tolerance.

This figure is complemented by Table 28.3, which emphasizes the development activities, such as
analyzing fault possibilities during design to minimize the number and extent of potential fault cases. This
activity is related to the criteria of containment in Figure 28.3 in that the analysis should ensure that both
the number and propagation of fault cases are contained. The overall notion here is to minimize the
number of fault possibilities, to reduce the prospects of their occurrences, and to ensure the safe handling
of those that do happen in deployed systems.

TABLE 28.2 Delineation of Fault Conditions

Recovered Mode Latent Mode Active Mode

Spontaneous Recovery
following Disruption

or
Marginal Physical Fault

Recovery

—

—

Erroneous State Induced by
Transient Disturbance

or
Passing Manifestation of

Marginal Fault
—

—

Hard Physical Fault
Remission

or
Hard Physical Fault

Latency

Passing Manifestation of
Hard Fault

or
Persistent Manifestation of

Hard Fault
© 2001 by CRC Press LLC

28.1.4 Fault Tolerance Options

System reliability requirements derive from the function criticality level and maximum exposure time.
A flight-critical function is one whose loss might result in the loss of the aircraft itself, and possibly the
persons on-board as well. In the latter case, the system is termed safety-critical. Here, a distinction can
be made between a civil transport, where flight-critical implies safety-critical, and a combat aircraft. The
latter admits to the possibility of the crew ejecting from an unflyable aircraft, so its system reliability
requirements may be lower. A mission-critical function is one whose loss would result in the compro-
mising or aborting of an associated mission. For avionics systems, a higher cost usually associates with
the loss of an aircraft than with the abort of a mission (an antimissile mission to repel a nuclear weapon
could be an exception). Thus, a full-time flight-critical system would normally pose much more demand-
ing reliability requirements than a flight-phase mission-critical system. Next, the system reliability require-
ments coupled with the marginal reliabilities of system components determine the level of redundancy
to ensure fault survivability, i.e., the minimum number of faults that must survive. To ensure meeting
reliability requirements then, the evolution of a fault-tolerant design must be based on an interplay
between design configuration commitments and substantiating analyses.

For civil transport aircraft, the level of redundancy for a flight-phase critical function like automatic all-
weather landing is typically single fail-operational, meaning that the system should remain operable after
any potential single elemental failure. Alternatively, a full-time critical function like fly-by-wire primary
flight controls is typically double fail-operational. It should be noted that a function that is not flight-critical
itself can have failure modes that threaten safety of flight. In the case of active controls to alleviate structural
loads due to gusts or maneuvering, the function would not be critical where the purpose is merely to reduce

TABLE 28.3 Ensuring Dependability

Physical Faults Development Faults

Fault Avoidance Minimize by Analysis Prevent by Rigor
Development Errors

Fault Alleviation Selectivity the
Incidence of Faults

Remove by Verification

Fault Tolerance Ensure by Redundancy Testing

Note: Both physical and development fault handling may be present but any deficiency
revealed is a development defect.

FIGURE 28.3 Dependability.

Criteria appear as boxed terms, with

first term applying to physical faults

 and second term to development faults

Fault
Avoidance

Fault
Tolerance
Coverage &
Certitude

Fault Alleviation

Containment &
Correctness

Insusceptibility
&Thoroughness
© 2001 by CRC Press LLC

structural fatigue effects. If the associated flight control surfaces have the authority during a hardover or
runaway fault case to cause structural damage, then such a failure mode is safety-critical. In such cases, the
failure modes must be designed to be fail-passive, which precludes any active mode failure effect like a
hardover control surface. A failure mode that exhibits active behavior can still be failsafe, however, if the
rate and severity of the active effects are well within the flight crews capability to manage safely.

28.1.5 Flight Systems Evolution

Beginning in the 1970s, NASA’s F-8 digital fly-by-wire (DFBW) flight research program investigated the
replacement of the mechanical primary flight control systems with electronic computers and electrical
signal paths. The goal was to explore the implementation technology and establish the practicality of
replacing mechanical linkages to the control surfaces with electrical links, thereby yielding significant
weight and maintenance benefits. The F-8 DFBW architecture relied on bit-wise exact consensus of the
outputs of redundant computers for fault detection and isolation [Lala et al., 1994].

The Boeing 747, Lockheed L-1011, and Douglas DC-10 utilized various implementations to provide
the autoland functions which required a probability of failure of �10�9 during the landing. The 747
used triply redundant analog computers. The L-1011 used digital computers in a dual-dual architecture,
and the DC-10 used two identical channels, each consisting of dual-redundant fail-disconnect analog
computers for each axis.

Since that time, the Airbus A-320 uses a full-time DFBW flight control system. It uses software design
diversity to protect against common-mode failures. The Boeing 777 flight control computer architecture
uses a 3 by 3 matrix of 9 processors of 3 different types. Multiversion software is also used.

28.1.6 Design Approach

It is virtually impossible to design a complex avionics system that will tolerate all possible faults. Faults
can include both permanent and transient faults, hardware and software faults, and they can occur
singularly or concurrently. Timing faults directly trace to the requirement of real-time response within
a few milliseconds, and may be attributable to both hardware and software contributions to data latency,
as well as incorrect data.

The implementation of fault tolerance entails increased system overhead, complexity, and validation
challenges. The overhead, which is essentially increased system resources and associated management
activities, lies in added hardware, communications, and computational demands. The expanded com-
plexity derives from more intricate connectivity and dependencies among both hardware and software
elements; the greater number of system states that may be assumed; and appreciably more involved logic
to manage the system. Validation challenges are posed by the need to identify, assess, and confirm the
capability to sustain system functionality under a broad range of potential fault cases. Hence, the design
approach taken for fault-tolerant avionics must attain a balance between the costs incurred in imple-
menting fault tolerance and the degree of dependability realized.

Design approach encompasses both system concepts, development methodology, and fault tolerance ele-
ments. The system concepts derive largely from the basic fault-tolerance options introduced in Section 28.1.4,
with emphasis on judicious combinations of features that are adapted to given application attributes. The
development methodology reduces to mutually supportive assurance-driven methods that propagate consis-
tency, enforce accountability, and exact high levels of certitude as to system dependability. Fault tolerance
design elements tend to unify the design concepts and methods in the sense of providing an orderly pattern
of system organization and evolution. These fault tolerance elements, which in general should appear in some
form in any fault-tolerant system, are

• Error Detection — recognition of the incidence of a fault

• Damage Assessment — diagnosis of the locus of a fault

• Fault Containment — restriction of the scope of effects of a fault
© 2001 by CRC Press LLC

• Error Recovery — restoration of a restartable error-free state

• Service Continuation — sustained delivery of system services

• Fault Treatment — repair of fault.

A fundamental design parameter that spans these elements and constrains their mechanization is that
of the granularity of fault handling. Basically, the detection, isolation, and recovery from a fault should
occur at the same level of modularity to achieve a balanced and coherent design. In general, it is not
beneficial or justified to discriminate or contain a fault at a level lower than that of the associated fault-
handling boundary. There may be exceptions, however, especially in the case of fault detection, where a
finer degree of granularity may be employed to take advantage of built-in test features or to reduce fault
latency.

Depending on the basis for its instigation, fault containment may involve the inhibition of damage
propagation of a physical fault and/or the suppression of an erroneous computation. Physical fault
containment has to be designed into the hardware, and software error-state containment has to be
designed into the applications software. In most cases, an erroneous software state must be corrected
because of applications program discrepancies introduced during the delay in detecting a fault. This error
recovery may entail resetting certain data object values and backtracking a control flow path in an operable
processor. At this point, the readiness of the underlying architecture, including the coordination of
operable components, must be ensured by the infrastructure. Typically, this activity relies heavily on
system management software for fault tolerance. Service continuation, then, begins with the establish-
ment of a suitable applications state for program restart. In an avionics system, this sequence of fault
tolerance activities must take place rather quickly because of real-time functional demands. Accordingly,
an absolute time budget must be defined, with tolerances for worst-case performance, for responsive
service continuation.

28.2 System Level Fault Tolerance

28.2.1 General Mechanization

As discussed in Section 28.1.2, system failure is the loss of system services or expected functionality. In
the absence of fault tolerance, a system may fail after just a single crucial fault. This kind of system, which
in effect is zero fail-operational, would be permissible for non-critical functions. Figure 28.2, moreover,
characterizes this kind of system in that continued service depends on spontaneous remission of an active
fault or a fault whose consequences are not serious enough to yield a system failure.

Where the likelihood of continued service must be high, redundancy can be incorporated to ensure
system operability in the presence of any permanent fault(s). Such fault-tolerant systems incorporate an
additional fault status state, namely that of recovery, as shown in Figure 28.4. Here, system failure occurs
only after the exhaustion of spares or an unhandled severe fault. The aforementioned level of redundancy
can render it extremely unlikely that the spares will be exhausted as a result of hardware faults alone. An
unhandled fault could occur only as a consequence of a design error, like the commission of a generic
error wherein the presence of a fault would not even be detected.

This section assumes a system-level perspective, and undertakes to examine fault-tolerant system
architectures and examples thereof. Still, these examples embody and illuminate general system-level
principles of fault tolerance. Particular prominence is directed toward flight control systems, for they
have motivated and pioneered much of the fault tolerance technology as applied to digital flight systems.
In the past, such systems have been functionally dedicated, thereby providing a considerable safeguard
against malfunction due to extraneous causes. With the increasing prevalence of integrated avionics,
however, the degree of function separation is irretrievably reduced. This is actually not altogether detri-
mental, more avionics functions than ever are critical, and a number of benefits accrue from integrated
processing. Furthermore, the system developer can exercise prerogatives that afford safeguards against
extraneous faults.
© 2001 by CRC Press LLC

28.2.2 Redundancy Options

Fault tolerance is usually based on some form of redundancy to extend system reliability through the
invocation of alternative resources. The redundancy may be in hardware, software, time, or combinations
thereof. There are three basic types of redundancy in hardware and software: static, dynamic, and hybrid.
Static redundancy masks faults by taking a majority of the results from replicated tasks. Dynamic
redundancy takes a two-step procedure for detection of, and recovery from faults. Hybrid redundancy
is a combination of static and dynamic redundancy [Shin and Hagbae, 1994].

In general, much of this redundancy resides in additional hardware components. The addition of
components reduces the mean-time-between-maintenance actions, because there are more electronics
that can, and at some point will, fail. Since multiple, distinct faults can occur in fault-tolerant systems,
there are many additional failure modes that have to be evaluated in establishing the airworthiness of
the total system. Weight, power consumption, cooling, etc. are other penalties for component redundancy.
Other forms of redundancy also present system management overhead demands, like computational
capacity to perform software-implemented fault tolerance tasks. Like all design undertakings, the real-
ization of fault tolerance presents trade-offs and the necessity for design optimization. Ultimately, a
balanced, minimal, and validatable design must be sought that demonstrably provides the safeguards
and fault survival margins appropriate to the subject application.

A broad range of redundancy implementation options exist to mechanize desired levels and types of
fault tolerance. Figure 28.5 presents a taxonomy of redundancy options that may be invoked in appro-
priate combinations to yield an encompassing fault tolerance architecture.

This taxonomy indicates the broad range of redundancy possibilities that may be invoked in system
design. Although most of these options are exemplified or described in later paragraphs, it may be noted
briefly that redundancy is characterized by its category, mode, coordination, and composition aspects.
Architectural commitments have to be made in each aspect. Thus, a classical system might, for example,
employ fault masking using replicated hardware modules that operate synchronously. At a lower level,
the associated data buses might use redundancy encoding for error detection and correction. To safeguard
against a generic design error, a backup capability might be added using a dissimilar redundancy scheme.

Before considering system architectures per se, however, key elements of Figure 28.5 need to be described
and exemplified. Certain of these redundancy implementation options are basic to formulating a fault-tolerant

FIGURE 28.4 Hardware states (with corrective action).

ACTIVE
FAULT

UNDETECTED
FAULT(S) SYSTEM

FAILED

FAULT
DETECTED

SPARES EXHAUSTION
or

UNHANDLED FAULT

RECOVERY
ELEMENTAL

FAILURE

ELEMENTAL
FAILURE

FAULT DETECTED

RECOVERY COMPLETION

FAULT
FREE

ELEMENTAL
FAILURE

ELEMENTAL
FAILURE

SPONTANEOUS
RECOVERY

SPONTANEOUS
RECOVERY

POTENTIATING
EVENT

LATENT
FAULT
© 2001 by CRC Press LLC

architecture, so their essential trade-offs need to be defined and explored. In particular, the elements of masking
vs. reconfiguration, active vs. standby spares, and replicated vs. dissimilar redundancy are reviewed here.

No unifying theory has been developed that can treat CMFs the same way the Byzantine resilience
(BR) treats random hardware or physical operational faults. Three techniques, fault-avoidance, fault-
removal, and fault-tolerance are the tools available to design a system tolerant of CMFs. The most cost
effective phase of the total design and development process for reducing the likelihood of CMFs is the
earliest part of the program. Table 28.4 presents fault avoidance techniques and tools that are being used
[Lala and Harper, 1994].

Common-mode fault removal techniques and tools include design reviews, simulation, testing, fault
injection, and a rigorous quality control program. Common-mode fault tolerance requires error detection
and recovery. It is necessary to corroborate the error information across redundant channels to ascertain
which recovery mechanism (i.e., physical fault recovery, or common-mode failure recovery) to use.
Recovery from CMF in real time requires that the state of the system be restored to a previously known
correct point from which the computational activity can resume [Lala and Harper, 1994].

28.2.3 Architectural Categories

As indicated in Figure 28.5, the three categories of fault-tolerant architectures are masking, reconfigura-
tion, and hybrid.

28.2.3.1 Fault Masking

The masking approach is classical per von Neumann’s triple modular redundancy (TMR) concept, which
has been generalized for arbitrary levels of redundancy. The TMR concept centers on a voter that, within
a spares exhaustion constraint, precludes a faulted signal from proceeding along a signal path. The
approach is passive in that no reconfiguration is required to prevent the propagation of an erroneous
state or to isolate a fault.

FIGURE 28.5 Redundancy classification.

TABLE 28.4 Fault Avoidance Techniques and Tools

Technique

Use of mature and formally verified components
Conformance to standards
Formal methods
Design automation
Integrated formal methods and VHDL design methodology
Simplifying abstractions
Performance common-mode failure avoidance
Software and hardware engineering practice
Design diversity

REDUNDANCY CHARACTERIZATION

MODECATEGORY COORDINATION COMPOSITION

Static
(Masking)

Dynamic
(Reconfiguration)

Hybrid Synchronous Asynchronous Single-
Threaded

Dissimilar Integral Replicated

Temporal

Transformation Repetition

Informational

Analytical Data Encoding

Procedural (Software)

Hardware Model Software Diversity

Recovery BlockMultiversion

Physical (Hardware)

Module Path

All Active Hot Spare Cold Spare
© 2001 by CRC Press LLC

Modular avionics systems consisting of multiple identical modules and a voter require a trade-off of
reliability and safety. A “module” is not constrained to be a hardware module; a module represents an entity
capable of producing an output. When safety is considered along with reliability, the module design affects
both safety and reliability. It is usually expected that reliability and safety should improve with added
redundancy. If a module has built-in error detection capability, it is possible to increase both reliability and
safety with the addition of one module providing input to a voter. If no error detection capability exists at
the module level, at least two additional modules are required to improve both reliability and safety. An error
control arbitration strategy is the function implemented by the voter to decide what is the correct output,
and when the errors in the module outputs are excessive so that the correct output cannot be determined,
the voter may put out an unsafe signal. Reliability and safety of an n-module safe modular redundant (nSMR)
depend on the individual module reliability and on the particular arbitration strategy used. No single
arbitration strategy is optimal for improving both reliability and safety. Reliability is defined as the probability
the voter’s data output is correct and the voter does not assert the unsafe signal. Safety � Reliability plus the
probability the voter asserts the unsafe signal. As system reliability and safety are interrelated, increasing
system reliability may result in a decrease in system safety, and vice versa [Vaidya and Pradhan, 1993].

Voters that use bit-for-bit comparison have been employed when faults consist of arbitrary behavior
on the part of failed components, even to the extreme of displaying seemingly intelligent malicious
behavior [Lala and Harper, 1994]. Such faults have been called Byzantine faults. Requirements levied on
an architecture tolerant of Byzantine faults (referred to as Byzantine-resilient [BR]) comprise a lower
bound on the number of fault containment regions, their connectivity, their synchrony, and the utilization
of certain simple information exchange protocols. No a priori assumptions about component behavior
are required when using bit-for-bit comparison. The dominant contributor to failure of correctly designed
BR system architecture is the common-mode failure.

Fault effects must be masked until recovery measures can be taken. A redundant system must be
managed to continue correct operation in the presence of a fault. One approach is to partition the
redundant elements into individual fault containment regions (FCRs). An FCR is a collection of com-
ponents that operates correctly regardless of any arbitrary logical or electrical fault outside the region.
A fault containment boundary requires the hardware components be provided with independent power
and clock sources. Interfaces between FCRs must be electrically isolated. Tolerance to such physical
damage as a weapons hit necessitates a physical separation of FCRs such as different avionics bays. In
flight control systems, a channel may be a natural FCR. Fault effects manifested as erroneous data can
propagate across FCR boundaries. Therefore, the system must provide error containment as well. This
is done using voters at various points in the processing including voting on redundant inputs, voting the
result of control law computations, and voting at the input to the actuator. Masking faults and errors
provides correct operation of the system with the need for immediate damage assessment, fault isolation,
and system reconfiguration [Lala and Harper, 1994].

28.2.3.2 Reconfiguration

Hardware interlocks provide the first level of defense prior to reconfiguration or the use of the remaining
non-faulty channels. In a triplex or higher redundancy system, the majority of channels can disable the
output of a failed channel. Prior to taking this action, the system will determine whether the failure is
permanent or transient.

Once the system determines a fault is permanent or persistent, the next step is to ascertain what functions
are required for the remainder of the mission and whether the system needs to invoke damage assessment,
fault isolation, and reconfiguration of the remaining system assets. The designer of a system required for
long-duration missions may undertake to implement a design having reconfiguration capability.

28.2.3.3 Hybrid Fault Tolerance

Hybrid fault tolerance uses hybrid redundancy, which is a combination of static and dynamic redundancy,
i.e., masking, detection, and recovery that may involve reconfiguration. A system using hybrid redundancy
will have N-active redundant modules, as well as spare (S) modules. A disagreement detector detects if
© 2001 by CRC Press LLC

the output of any of the active modules is different from the voter output. If a module output disagrees
with the voter, the switching circuit replaces the failed module with a spare. A hybrid (N,S) system cannot
have more than (N-1)/2 failed modules at a time in the core, or the system will incorrectly switch out
the good module when two out of three have failed.

28.2.3.4 Hybrid Fault Tolerance

Hybrid fault tolerance employs a combination of masking and reconfiguration, as noted in Section 28.2.3.
The intent is to draw on strengths of both approaches to achieve superior fault tolerance. Masking
precludes an erroneous state from affecting system operation and thus obviating the need for error
recovery. Reconfiguration removes faulted inputs to the voter so that multiple faults cannot defeat the
voter. Masking and reconfiguration actions are typically implemented in a voter-comparator mechanism,
which is discussed in Section 28.3.1.

Figure 28.6 depicts a hybrid TMR arrangement with a standby spare channel to yield double fail-
operational capability. Upon the first active channel failure, it is switched out of the voter-input config-
uration, and the standby channel is switched in. Upon a second channel failure, the discrepant input to
the voter is switched out. Only two inputs remain then, so a succeeding (third) channel failure can be
detected but not properly be identified by the voter per se. With a voter that selects the lower of two
remaining signals, and hence precludes a hardover output, a persistent miscomparison results in a fail-
passive loss of system function.

An alternative double-fail operational configuration would forego the standby channel switching and
simply employ a quadruplex voter. This architecture is actually rather prevalent in dedicated flight-critical
systems like fly-by-wire (FBW) flight control systems. This architecture still employs reconfiguration to
remove faulty inputs to the voter.

The fault tolerance design elements described in Section 28.1.6 are reflected in the fault-tolerant
architecture in Figure 28.6 by way of annotations. For example, error detection is provided by the
comparators; damage assessment is then accomplished by the reconfiguration logic using the various
comparator states. fault containment and service continuation are both realized through the voter, which
also obviates the need for error recovery. Last, fault treatment is accomplished by the faulty path switching
prompted be the reconfiguration logic. Thus, this simple example illustrates at a high level how the
various aspects of fault tolerance can be incorporated into an integrated design.

FIGURE 28.6 Masking vs. Reconfiguration.

MODULE 1

MODULE 1

MODULE 2

MODULE 2

MODULE 3

MODULE 3

SELECTOR SELECT 2

SELECT 3

VOTER

MASKING (Triple Modular Redundancy)

OUTPUT

NOTE
3-Channel Redundancy Usually Provides Single
Fail-Operational Fail-Passive Capability

 RECONFIGURATION (Triplex Redundancy)

OUTPUT
© 2001 by CRC Press LLC

28.2.4 Integrated Mission Avionics

In military applications, redundant installations in some form will be made on opposite sides of the
aircraft to avoid loss of functionality from battle damage to a single installation. Vulnerability to physical
damage also exists in the integrated rack installations being used on commercial aircraft. Designers must
take these vulnerabilities into account in the design of a fault-tolerant system.

28.2.5 System Self Tests

Avionics system reliability analyses are conditional on assumptions of system readiness at dispatch. For
lower-criticality systems, certain reductions in redundancy may sometimes be tolerable at dispatch. For

FIGURE 28.7 Hybrid TMR arrangement.

FIGURE 28.8 Triplex voter-comparator.

MODULE 1

MODULE 2

MODULE 3

MODULE 4

Fault_1

Fault_2

Fault_3

Select_4
Fault Treatment by
Module Switching
Reconfiguration

Damage
Assessment by
Reconfiguration
Logic

Error recovery not
necessary because
voter masks error

Error Detection by
Comparator

Comparator C1

Fault Containment & Service
Continuation by Voter

C2

C3

C4

VOTER

OUTPUT

Reconfiguration
Logic

+

+

+

+

+

+

-

-

-

Amplitude
Threshold
Detector

Amplitude
Threshold
Detector

Amplitude
Threshold
Detector

Time Duration
Threshold
Detector

Time Duration
Threshold
Detector

Time Duration
Threshold
Detector

Set

Reset

Set

Reset

Set

Reset

Fault No.1

Fault No.2

Fault No.3

Middle
Signal Level

Detector

Channel No. 1

Channel No. 2

Channel No. 3

2
2

2

3

3 3

VOTER

LEVEL DETECTORS

COMPARATORS

Input
Signals

Output
Signal
© 2001 by CRC Press LLC

full-time flight-critical systems, however, a fully operable system with all redundancy intact is generally
assumed in a system reliability prediction. This assumption places appreciable demands on system
preflight self test in terms of coverage and confidence values. Such a test is typically an end-to-end test
that exercises all elements in a phased manner that would not be possible during flight. The fault tolerance
provisions demand particular emphasis. For example, such testing deliberately seeks to force seldom-
used comparator trips to ensure the absence of latent faults, like passive hardware failures. Analysis of
associated testing schemes and their scope of coverage is necessarily an ongoing design analysis task
during development. These schemes must also include appropriate logic interlocks to ensure safe execu-
tion of the preflight test, e.g., a weight-on-wheels interlock to preclude testing except on the ground.
Fortunately, the programming of system self-tests can be accomplished in a relatively complete and high-
fidelity manner.

Because of the discrete-time nature of digital systems, all capacity is not used for application functions.
Hence, periodic self tests are possible for digital components like processors during flight. Also, the
processors can periodically examine the health status of other system components. Such tests provide a
self-monitoring that can reveal the presence of a discrepancy before error states are introduced or exceed
detection thresholds. The lead time afforded by self tests can be substantial because steady flight may
not simulate comparator trips due to low-amplitude signals. Moreover, the longer a fault remains latent,
the greater the possibility that a second fault can occur. Hence, periodic self-tests can significantly enhance
system reliability and safety by reducing exposure to coincident multiple fault manifestations.

Self-monitoring may be employed at still lower levels, but there is a trade-off as to the granularity of
fault detection. This trade-off keys on fault detection/recovery response and on the level of fault con-
tainment selected. In general, fault containment delineates the granularity of fault detection unless
recovery response times dictate faster fault detection that is best achieved at lower levels.

28.3 Hardware-Implemented Fault Tolerance
(Fault-Tolerant Hardware Design Principles)

28.3.1 Voter Comparators

Voter comparators are very widely used in fault-tolerant avionics systems, and they are generally vital to
the integrity and safety of the associated systems. Because of the crucial role of voter comparators, special
care must be exercised in their development. These dynamic system elements, which can be implemented
in software as well as hardware, are not as simple as they might seem. In particular, device integrity and
threshold parameter settings can be problematic.

Certain basic elements and concerns apply over the range of voter-comparator variants. A conceptual
view of a triplex voter-comparator is depicted in Figure 28.7. The voter here is taken to be a middle signal
selector, which means that the intermediate level of three inputs is selected as the output. The voter
section precedes the comparators because the output of the voter is an input to each comparator. Basically,
the voter output is considered the standard of correctness, and any input signal that persists in varying
too much from the standard is adjudged to be erroneous.

In Figure 28.7, the respective inputs to each of the signal paths is an amplitude-modulated pulse train,
as is normal in digital processing. Each iteration of the voter is a separate selection, so each voter output
is apt to derive from any input path. This is seen in Figure 28.8, where the output pulse train components
are numbered per the input path selected at each point in time. At each increment of time, the voter
output is applied to each of the comparators, and the difference with each input signal is fed to a
corresponding amplitude threshold detector. The amplitude threshold is set so that accumulated toler-
ances are not apt to trip the detector. As shown here, the amplitude detector issues a set output when
an excessive difference is first observed. When the difference falls back within the threshold, a reset output
is issued.
© 2001 by CRC Press LLC

Because transient effects may produce short-term amplitude detector trips, a timing threshold is
applied to the output of each amplitude detector. Typically, a given number of consecutive out-of-
tolerance amplitude threshold trips are necessary to declare a faulty signal. Hence, a time duration
threshold detector begins a count whenever a set signal is received, and in the absence of further inputs,
increments the count for each sample interval thereafter. If a given cycle count is exceeded, a erroneous
state is declared and a fault logic signal is set for the affected channels. Otherwise, the count is returned
to zero when a reset signal is received.

The setting of both the timing and amplitude thresholds is of crucial importance because of the trade-
off between nuisance fault logic trips and slow response to actual faults. Nuisance trips erode user
confidence in a system, their unwarranted trips can potentially cause resource depletion. On the other
hand, a belated fault response may permit an unsafe condition or catastrophic event to occur. The
allowable time to recover from a given type of fault, which is application-dependent, is the key to setting
the thresholds properly. The degree of channel synchronization and data skewing also affect the threshold
settings, because they must accommodate any looseness. The trade-off can become quite problematic
where fast fault recovery is required.

Because the integrity and functionality of the system is at stake, the detailed design of a voter com-
parator must be subject to careful assessment at all stages of development. In the case of a hardware-
implemented device, its fault detection aspects must be thoroughly examined. Passive failures in circuitry
that is not normally used are the main concern. Built-in test, self-monitoring, or fail-hard symptoms are
customary approaches to device integrity. In the case of software-implemented voter comparators, their
dependability can be reenforced through formal proof methods and in-service verified code.

28.3.2 Watchdog Timers

Watchdog timers can be used to catch both hardware and software wandering into undesirable states
[Lala and Harper, 1994]. Timing checks are a form of assertion checking. This kind of check is useful
because many software and hardware errors are manifested in excessive time taken for some operation.
In synchronous data flow architectures, data are to arrive at a specific time. Data transmission errors of
this type can be detected using a timer.

28.4 Software-Implemented Fault
Tolerance—State Consistency

Software performs a critical role in digital systems. The term ‘‘software implemented fault tolerance’’ as
used in this chapter is used in the broader sense indicating the role software plays in the implementation
of fault tolerance, and not as a reference to the SRI International project performed for NASA in the late
1970s and referred to as SIFT.

28.4.1 Error Detection

Software plays a major role in error detection. Error detection at the system level should be based on the
specification of system behavior. The outputs of the system should be checked to assure that the outputs
conform to the specification. These checks should be independent of the system. Since they are implemented
in software, the checks require access to the information to be checked, and therefore may have the
potential of corrupting that information. Hence, the independence between a system and its check cannot
be absolute. The provision of ideal checks for error detection is rarely practical, and most systems employ
checks for acceptability [Anderson and Lee, 1981].

Deciding where to employ system error detection is not a straightforward matter. Early checks should
not be regarded as substitute for last-moment checks. An early check will of necessity be based on a
knowledge of the internal workings of the system and hence will lack independence from the system. An
early check could detect an error at the earliest possible stages and hence minimize the spread of damage.
© 2001 by CRC Press LLC

A last moment check ensures that none of the output of the system remains unchecked. Therefore, both
last-moment and early checks should be provided in a system [Anderson and Lee, 1981].

In order to detect software faults, it is necessary that the redundant versions of the software be
independent of each other, that is, of diverse design [Avizenis and Kelley, 1982] (See Section 28.5).

28.4.1.1 Replication Checks

If design faults are expected, replication must be provided using versions of the system with different
designs. Replication checks compare the two sets of results produced as outputs of the replicated modules.
The replication check raises an error flag and intiates the start of other processes to determine which
component or channel is in error [Anderson and Lee, 1981].

28.4.1.2 Timing Checks

Timing checks are used to reveal the presence of faults in a system, but not their absence [Anderson and
Lee, 1981] In synchronous hard real-time systems, messages containing data are transmitted over data
buses at a specific schedule. Failure to receive a message at the scheduled time is an error. The error could
be caused by faults in a sensor, data bus, etc. In this case, if the data were critical, a method of tolerating
the fault may be to use a forward state extrapolation.

28.4.1.3 Reversal Check (Analytical Redundancy)

A reversal check takes the outputs from a system and calculates what the inputs should have been to
produce that output. The calculated inputs can then be compared with the actual inputs to check whether
there is an error. Systems providing mathematical functions often lend themselves to reversal checks
[Anderson and Lee, 1981].

Analytic redundancy using either of two general error detection methods, multiple model (MM) or
generalized likelihood ratio (GLR), is a form of reversal check. Both methods make use of a model of
the system represented by Kalman filters. The MM attempts to calculate a measure of how well each
of the Kalman filters is tracking by looking at the prediction errors. Real systems possess nonlinearity
and the model assumes a linear system. The issue is whether the tracking error from the extended Kalman
filter corresponds to the linearized model “closest to” the true, nonlinear system and is markedly smaller
than the errors from the filters based on “more distant” models. Actuator and sensor failures can be
modeled in different ways using this methodology [Willsky, 1980].

The Generalized Likelihood Ratio (GLR) uses a formulation similar to that for MM, but different
enough that the structure of the solution is quite different. The starting point for GLR is a model
describing normal operation of the observed signals or of the system from which they come. Since
GLR is directly aimed at detecting abrupt changes, its applications are restricted to problems involving
such changes, such as failure detection. GLR, in contrast to MM, requires a single Kalman filter. Any
detectable failure will exhibit a systematic deviation between what is observed and what is predicted
to be observed. If the effect of the parametric failure is “close enough” to that of the additive one, the
system will work.

Underlying both the GLR and MM methods is the issue of using system redundancy to generate
comparison signals that can be used for the detection of failures. The fundamental idea involved in
finding comparison signals is to use system redundancy, i.e., known relationships among measured
variables to generate signals that are small under normal operation and which display predictable patterns
when particular anomalies develop. All failure detection is based on analytical relationships between
sensed variables, including voting methods, which assume that sensors measure precisely the same
variable. The trade-off using analytical relationships is that we can reduce hardware redundancy and
maintain the same level of fail-operability. In addition, analytical redundancy allows extracting more
information from the data, permitting detection of subtle changes in system component characteristics.
On the other hand, the use of this information can cause problems if there are large uncertainties in the
parameters specifying the analytical relationships [Willsky, 1980].
© 2001 by CRC Press LLC

The second part of a failure detection algorithm is the decision rule that uses the available comparison
signals to make decisions on the interruption of normal operation by the declaration of failures. One
advantage of these methods is that the decision rule — maximize and compare to a threshold — are simple,
while the main disadvantage is that the rule does not explicitly reflect the desired trade-offs. The Bayesian
Sequential Decision approach, in which an algorithm for the calculation of the approximate Bayes
decision, has exactly the opposite properties, i.e., it allows for a direct incorporation of performance
trade-offs, but is extremely complex. The Bayes Sequential Decision Problem is to choose a stopping rule
and terminal decision rule to minimize the total expected cost, and the expected cost that is accrued
before stopping [Willsky, 1980].

28.4.1.4 Coding Checks

Coding checks are based on redundancy in the representation of an object in use in a system. Within an
object, redundant data are maintained in some fixed relationship with the (nonredundant) data repre-
senting the value of the object. Parity checks are a well-known example of a coding check, as are error
detection and correction codes such as the Hamming, cyclic redundancy check, and arithmetic codes
[Anderson and Lee, 1981].

28.4.1.5 Reasonableness Checks

These checks are based on knowledge of the minimun and maximum values of input data, as well as the
limits on rate of change of input data. These checks are based on knowledge of the physical operation
of sensors, and employ models of this operation.

28.4.1.6 Structural Checks

Two forms of checks can be applied to the data structures in a computing system. Checks on the semantic
integrity of the data will be concerned with the consistency of the information contained in a data
structure. Checks on the structural integrity will be concerned with whether the structure itself is
consistent. For example, external data from subsystems is transmitted from digital data buses such as
MIL-STD-1553, ARINC 429 or ARINC 629. The contents of a message (number of words in the message,
contents of each word) from a subsystem are stored and the incoming data checked for consistency.

28.4.1.7 Diagnostic Checks

Diagnostic checks create inputs to the hardware elements of a system, which should produce a known
output. These checks are rarely used as the primary error detection measure. They are normally run at
startup, and may be initiated by an operator as part of a built-in test. They may also run continously in a
background mode when the processor might be idle. Diagnostic checks are also run to isolate certain faults.

28.4.2 Damage Confinement and Assessment

When an error has been discovered, it is necessary to determine the extent of the damage done by the
fault before error recovery can be accomplished. Assessing the extent of the damage is usually related to
the structure of the system. Assuming timely detection of errors, the assessment of damage is usually
determined to be limited to the current computation or process. The state is assumed consistent on entry.
An error detection test is performed before exiting the current computation. Any errors detected are
assumed to be caused by faults in the current computation.

28.4.3 Error Recovery

After the extent of the damage has been determined, it is important to restore the system to a consistent
state. There are two primary approaches — backward and forward error recovery. In backward error
recovery, the system is returned to a previous consistent state. The current computation can then be
© 2001 by CRC Press LLC

retried with existing components (retry)* with alternate components (reconfigure), or it can be ignored
(skip frame).** The use of backward recovery implies the ability to save and restore the state. Backward
error recovery is independent of damage assessment.

Forward error recovery attempts to continue the current computation by restoring the system to a
consistent state, compensating for the inconsistencies found in the current state. Forward error recovery
implies detailed knowledge of the extent of the damage done, and a strategy for repairing the inconsistencies.
Forward error recovery is more difficult to implement than backward error recovery [Hitt et al., 1984].

28.4.4 Fault Treatment

Once the system has recovered from an error, it may be desirable to isolate and/or correct the component
that caused the error. Fault treatment is not always necessary because of the transient nature of some
faults or because the detection and recovery procedures are sufficient to cope with other recurring errors.
For permanent faults, fault treatment becomes important because the masking of permanent faults
reduces the ability of the system to deal with subsequent faults. Some fault-tolerant software techniques
attempt to isolate faults to the current computation by timely error detection. Having isolated the fault,
fault treatment can be done by reconfiguring the computation to use alternate forms of the computation
to allow for continued service. (This can be done serially, as in recovery blocks, or in parallel, as in N-
Version programming.) The assumption is that the damage due to faults is properly encapsulated to the
current computation and that error detection itself is faultless (i.e., detects all errors and causes none of
its own) [Hitt et al., 1984].

28.4.5 Distributed Fault Tolerance

Multiprocessing architectures consisting of computing resources interconnected by external data buses
should be designed as a distributed fault-tolerant system. The computing resources may be installed in
an enclosure using a parallel backplane bus to implement multiprocessing within the enclosure. Each
enclosure can be considered a virtual node in the overall network. A network operating system, coupled
with the data buses and their protocol, completes the fault-tolerant distributed system. The architecture
can be asynchronous, loosely synchronous, or tightly synchronous. Maintaining consistency of data across
redundant channels of asynchronous systems is difficult [Papadopoulos, 1985].

28.5 Software Fault Tolerance

Software faults, considered design faults, may be created during the requirements development, specifi-
cation creation, software architecture design, code creation, and code integration. While many faults may
be found and removed during system integration and testing, it is virtually impossible to eliminate all
possible software design faults. Consequently, software fault tolerance is used. Table 28.5 lists the major
fault-tolerant software techniques in use today.

The two main methods that have been used to provide software fault tolerance are N-version software
and recovery blocks.

28.5.1 Multiversion Software

Multiversion software is any fault-tolerant software technique in which two or more alternate versions
are implemented, executed, and the results compared using some form of a decision algorithm. The goal
is to develop these alternate versions such that software faults that may exist in one version are not

*This is only useful for transient timing on hardware faults.
**For example, in a real-time system no processing for the current computation is accomplished in the current

frame, sometimes called “skip frame.”
© 2001 by CRC Press LLC

contained in the other version(s) and the decision algorithm determines the correct value from among the
alternate versions. Whatever means are used to produce the alternate versions, the common goal is to have
distinct versions of software such that the probability of faults occuring simultaneously is small and that
faults are distinguishable when the results of executing the multiversions are compared with each other.

The comparison function executes as a decision algorithm once it has received results from each
version. The decision algorithm selects an answer or signals that it cannot determine an answer. This
decision algorithm and the development of the alternate versions constitute the primary error detection
method. Damage assessment assumes the damage is limited to the encapsulation of the individual software
versions. Faulted software components are masked so that faults are confined within the module in which
they occur. Fault recovery of the faulted component may or may not be attempted.

N-versions of a program are independently created by N-software engineering teams working from a
(usually) common specification. Each version executes independently of the other versions. Each version
must have access to an identical set of input values and the outputs are compared by an executive which
selects the result used. The choice of an exact or inexact voting check algorithm is influenced by the
criticality of the function and the timing associated with the voting.

28.5.2 Recovery Blocks

The second major technique shown in Table 28.5 is the recovery block and its subcategories — deadline
mechanism and dissimilar backup software. The recovery block technique recognizes the probability that
residual faults may exist in software. Rather than develop independent redundant modules, this technique
relies on the use of a software module which executes an acceptance test on the output of a primary
module. The acceptance test raises an exception if the state of the system is not acceptable. The next step
is to assess the damage and recover from the fault. Given that a design fault in the primary module could
have caused arbitrary damage to the system state, and that the exact time at which errors were generated
cannot be identified, the most suitable prior state for restoration is the state that existed just before the
primary module was entered [Anderson and Lee, 1981].

28.5.3 Trade-Offs

Coverage of a large number of faults has an associated overhead in terms of redundancy, and the
processing associated with the error detection. The designer may use modeling and simulation to deter-
mine the amount of redundancy required to implement the fault tolerance vs. the probability and impact
of the different types of faults. If a fault has minimal or no impact on safety, or mission completion,

TABLE 28.5 Categorization of Fault-Tolerant Software
Techniques

Multiversion Software
N-Version Program
Cranfield Algorithm for Fault-Tolerance (CRAFT) Food Taster
Distinct and Dissimilar Software

Recovery Blocks
Deadline Mechanism
Dissimilar Backup Software

Exception Handlers
Hardened Kernel
Robust Data Structures and Audit Routines
Run Time Assertionsa

Hybrid Multiversion Software and Recovery Block Techniques
Tandem
Consensus Recovery Blocks

a Not a complete fault-tolerant software technique as it only
detects errors.

Source: From Hitt, E. et al., Study of Fault-Tolerant Software
Technology, NASA CR 172385.
© 2001 by CRC Press LLC

investing in redundancy to handle that fault may not be effective, even if the probability of the fault
occuring is significant.

28.6 Summary

Fault-tolerant systems must be used whenever a failure can result in loss of life, or loss of a high-value
asset. Physical failures of hardware are decreasing whereas design faults are virtually impossible to
completely eliminate.

28.6.1 Design Analyses

In applying fault-tolerance to a complex system, there is a danger that the new mechanisms may introduce
additional sources of failure due to design and implementation errors. It is important, therefore, that the
new mechanisms be introduced in a way that preserves the integrity of a design, with minimum added
complexity. The designer must use modeling and simulation tools to assure that the design accomplishes
the needed fault tolerance.

Certain design principles have been developed to simplify the process of making design decisions.
Encapsulation and hierarchy offer ways to achieve simplicity and generality in the realization of particular
fault-tolerance functions. Encapsulation provides:

• Organization of data and programs as uniform objects, with rigorous control of object interaction.

• Organization of sets of alternate program versions into fault-tolerant program modules (e.g.
recovery blocks and N-version program sets).

• Organization of consistent sets of recovery points for multiple processes.

• Organization of communications among distributed processes as atomic (indivisible) actions.

• Organization of operating system functions into recoverable modules.

Examples of the hierarchy principle used to enhance reliability of fault-tolerance functions include:

• Organization of all software, both application and system type, into layers, with unidirectional
dependencies among layers.

• Integration of service functions and fault-tolerance functions at each level.

• Use of nested recovery blocks to provide hierarchical recovery capability.

• Organization of operating system functions so that only a minimal set at the lowest level (a
“kernel”) needs be exempted from fault tolerance.

• Integration of global and local data and control in distributed processors.

That portion of the operating system kernel that provides the basic mechanisms the rest of the system
uses to achieve fault-tolerance should be “trusted.” This kernel should be of limited complexity so that
all possible paths can be tested to assure correct operation under all logic and data conditions. This kernel
need not be fault tolerant if the foregoing can be assured.

28.6.2 Safety

Safety is defined in terms of hazards and risks. A hazard is a condition, or set of conditions that can
produce an accident under the right circumstances. The level of risk associated with the hazard depends
on the probability that the hazard will occur, the probability of an accident taking place if the hazard
does occur, and the potential consequence of the accident [Williams, 1992].

28.6.3 Validation

Validation is the process by which systems are shown through operation to satisfy the specifications.
The validation process begins when the specification is complete. The difficulty of developing a precise
specification that will never change has been recognized. This reality has resulted in an iterative
© 2001 by CRC Press LLC

development and validation process. Validation requires developing test cases and executing these test
cases on the hardware and software comprising the system to be delivered. The tests must cover 100%
of the faults the system is designed to tolerate, and a very high percentage of possible design faults,
whether hardware, software, or the interaction of the hardware and software during execution of all
possible data and logical paths. Once the system has been validated, it can be put in operation. In order
to minimize the need to validate a complete Operational Flight Program (OFP) every time it is modified,
development methods attempt to decompose a large system into modules that are independently spec-
ified, implemented, and validated. Only those modules and their interfaces that are modified must be
revalidated using this approach (see Chapter 29).

Rapid prototyping, simulation, and animation are all techniques that help validate the system. Formal
methods are being used to develop and validate digital avionics systems. There are arguments both in
favor of and against the use of formal methods [Rushby, 1993; Williams, 1992].

28.6.4 Conclusion

For safety-critical systems, fault tolerance must be used to tolerate design faults which are predominately
software- and timing-related. It is not enough to eliminate almost all faults introduced in the later stages
of a life cycle; assurance is needed that they have been eliminated, or are extremely improbable. Safety
requirements for commercial aviation dictate that a failure causing loss of life must be extremely improb-
able, on the order of 10�9 per flight-hour. The designer of safety-critical fault-tolerant systems should
keep current with new development in this field since both design and validation methods continue to
advance in capability.

References

Anderson, T. and Lee, P. A., 1981. Fault Tolerance, Principles and Practices, Prentice-Hall, London.
Anderson, T., Ed., 1989. Safe and Secure Computing Systems, Blackwell Scientific, Oxford, U.K.
Avizienis, A., 1976. Fault-Tolerant Systems, IEEE Trans. Comput., C-25(12):1304-1312.
Avizienis, A. and Kelly, J., 1982. Fault-Tolerant Multi-Version Software: Experimental Results of a Design

Diversity Approach, UCLA Computer Science Department. Los Angeles, CA.
Avizienis, A., Kopetz, H., and Laprie, J.C., Eds., 1987. The Evolution of Fault-Tolerant Computing, Springer-

Verlag, New York.
Best, D. W., McGahee, K. L., and Shultz, R. K.A., 1988. Fault Tolerant Avionics Multiprocessing System

Architecture Supporting Concurrent Execution of Ada Tasks, Collins Government Avionics Divi-
sion, AIAA 88-3908–CP.

Gargaro, A.B. et al., 1990. Adapting Ada for Distribution and Fault Tolerance, in Proc. 4th Int. Workshop
Real-Time Ada Issues, ACM.

Gu, D., Rosenkrantz, D. J., and Ravi, S. S., 1994. Construction of Check Sets for Algorithm-Based Fault
Tolerance, IEEE Trans. Comput., 43(6): 641–650.

Hitt, E., Webb, J., Goldberg, J., Levitt, K., Slivinski, T., Broglio, C., and Wild, C., 1984. Study of Fault-
Tolerant Software Technology, NASA CR 172385, Langley Research Center, VA.

Hudak, J., Suh, B.H., Siewiorek, D., and Segall, Z., 1993. Evaluation and Comparison of Fault Tolerant
Software Techniques, IEEE Trans. Reliability.

Lala, J. H. and Harper, R. E., 1994. Architectural Principles for Safety-Critical Real-Time Applications,
Proc. IEEE, 82(1): 25–40.

Lala, P. K., 1985. Fault Tolerant & Fault Testable Hardware Design, Prentice-Hall, London, ISBN 0-13-
308248-2.

Papadopoulos, G. M., 1985. Redundancy Management of Synchonous and Asynchronous Systems, Fault
Tolerant Hardware/Software Architecture for Flight Critical Functions, AGARD-LS-143.

Rushby, J., 1993. Formal Methods and Digital Systems Validation for Airborne Systems, NASA CR 4551,
Langley Research Center, VA.
© 2001 by CRC Press LLC

Shin, K. G. and Parmeswaran R., 1994. Real-Time Computing: A New Discipline of Computer Science
and Engineering, Proc. IEEE, 82(1): 6–24.

Shin, K. G. and Hagbae, K., 1994. A Time Redundancy Approach to TMR Failures Using Fault-State
Likelihoods, IEEE Trans. Comput., 43(10): 1151–1162.

Sosnowski, J., 1994. Transient Fault Tolerance in Digital Systems, IEEE Micro, 14(1): 24–35.
Tomek, L., Mainkar, V., Geist, R. M., and Trivedi, K. S., 1994. Reliability Modeling of Life-Critical, Real-

Time Systems, Proc. IEEE, 82(1): 108–121.
Vaidya, N. H. and Pradhan, D. K., 1993. Fault-Tolerant Design Strategies for High Reliability and Safety,

IEEE Trans. Comput., 42(10): 1195–1206
Williams, L. G., 1992. Formal Methods in the Development of Safety Critical Software Systems, UCRL-

ID-109416, Lawrence Livermore National Laboratory.
Willsky, A. S., 1980. Failure Detection in Dynamic Systems, Fault Tolerance Design and Redundancy

Management Techniques, AGARD-LS-109.

Further Information

A good introduction to fault-tolerant design is presented in Fault Tolerance, Principles and Practices, by
Tom Anderson and P.A. Lee. Hardware-specific design techniques are described by P.K. Lala in Fault
Tolerant & Fault Testable Hardware Design.

Other excellent journals are the IEEE publications, Computers, Micro, Software, and Transactions on
Computers, and Software Engineering.
© 2001 by CRC Press LLC

Michael J. Morgan “Boeing B-777”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

29
Boeing B-777

29.1 Introduction
29.2 Background
29.3 Boeing 777 Airplane Information Management

System (AIMS)
29.4 Cabinet Architecture Overview
29.5 Backplane Bus
29.6 Maintenance
29.7 Growth
References
Further Information

29.1 Introduction

The avionics industry has long recognized the substantial cost benefits which could be realized using a
large-scale integrated computing architecture for airborne avionics. Technology achievements by air-
frame, avionics, and semiconductor manufacturers allow implementation of these integrated avionics
architectures resulting in substantial life cycle cost benefits. The Boeing 777 Aircraft Information Man-
agement System (AIMS) represents the first application of an integrated computing architecture in a
commercial air transport.

29.2 Background

Since 1988, the avionics industry has made a significant effort to develop the requirements and goals for
a next-generation integrated avionics architecture. This work is documented in ARINC Project Paper
651. Top-level goals of the Integrated Modular Avionics (IMA) architecture are to reduce overall cost of
ownership through reduced spares requirements (includes reduction in cost of spare Line Replaceable
Modules [LRM]) and reduction in number of LRMs required), reduced equipment removal rate, and
reduced weight and volume in both avionics and wiring. In addition, IMA addresses the airlines’ demand
for better MTBUR/MTBF (Mean Time Between Unscheduled Removals as a fraction of Mean Time
Between Failures), improved system performance (response time), increased airborne functionality, better
fault isolation and test, and maintenance-free dispatch for extended intervals.

Technology trends in microprocessor and memory technology demand that airborne computing
architectures evolve if the avionics industry is to meet the goals of IMA. By exploiting these develop-
ments in the microprocessor and memory industries, very highly integrated architectures previously
not technologically feasible or cost-effective may now be realized. These functionally integrated archi-
tectures minimize life cycle cost by minimizing the duplication of hardware and software elements
(see Figure 29.1).

Michael J. Morgan
Honeywell
© 2001 by CRC Press LLC

High levels of functional integration dictate availability and integrity requirements far exceeding the
requirements for distributed implementations. Resource availability requirements must be sufficient to
probabilistically preclude the simultaneous loss of multiple functions utilizing shared resources. These
availability requirements imply application of fault-tolerant technology. Although fault tolerance is
required to meet the integrity and availability goals of IMA, it is also directly compatible with the airline
goal for deferred maintenance. Furthermore, since fault-tolerant technology requires high-integrity mon-
itoring, it also is compatible with airline desires for improved fault isolation, better maintenance diag-
nostics, and reduced unconfirmed removal rate (MTBUR). Current IMA implementations are realizing
a more than six times improvement in unconfirmed equipment removals over a typical federated LRU-
based architecture.

FIGURE 29.1 Components of a typical LRU.
© 2001 by CRC Press LLC

High functional integration also implies the requirement to maintain functional independence for
software utilizing any shared resource. Strict CPU separation is not sufficient to ensure that functions
will not adversely affect each other. I/O resource sharing demands a backplane bus architecture which
has extremely high integrity and enforces rigid partitioning between all users. Processor resource sharing
requires a robust software partitioning system where all partition protection elements are monitored to
ensure isolation integrity.

Robust partitioning protection must be performed as an integral part of the architecture, and isolation
must not be dependent upon the integrity of the application software. In this environment, the robust
partitioning architecture would be certified as a standalone element allowing functional software to be
updated and certified independently of other functions sharing the same computational or I/O resources.
Since it is anticipated that airborne functionality will continue to increase and that the majority of this
increase will be accommodated via software changes alone, this partitioned environment will provide
flexibility in responding to evolving system requirements (e.g., CNS/ATM).

29.3 Boeing 777 Airplane Information Management
System (AIMS)

The Boeing 777 Airplane Information Management System implements the IMA concept in an architec-
ture which supports a high degree of functional integration and reduces duplicated resources to a
minimum. In this architecture the conventional Line Replaceable Units (LRUs) which typically contain
a single function, are replaced with dual integrated cabinets which provide the processing and the I/O
hardware and software required to perform the following functions (see Figure 29.2):

Flight Management
Display
Central Maintenance
Airplane Condition Monitoring
Communication Management (including flight deck communication)
Data Conversion Gateway (ARINC 429/629 Conversion)

The integrated cabinets are connected to the airplane interfaces via a combination of ARINC 429,
ARINC 629, and discrete I/O channels (see Figure 29.3 Note that for clarity the 429 and discrete channels
are not shown).

29.4 Cabinet Architecture Overview

The heart of the AIMS system consists of dual cabinets in the electronics bay that each contain four core
processor modules (CPMs) and four input/output modules (IOMs), with space reserved in the cabinet
to add one CPM and two IOMs to accommodate future growth (reference Figure 29.4). The shared
platform resources provided by AIMS are

Common processor and mechanical housing,
Common input/output ports, power supply, and mechanical housing,
Common backplane bus (SAFEbus™) to move data between CPMs and between CPMs and IOMs,
Common operating system and built-in test (BIT) and utility software.

Instead of individual applications residing in a separate LRU, applications are integrated on common
CPMs. The IOMs transmit data from the CPMs to other systems on the airplane, and receive data from
these other systems for use by the CPM applications. A high-speed backplane bus, called SAFEbus™,
provides a 60-Mbit/s data pipe between any of the CPMs and IOMs in a cabinet. Communication between
AIMS cabinets is through four ARINC 629 serial buses.

The robust partitioning provided by the architecture allows applications to use common resources
without any adverse interactions. This is achieved through a combination of memory management and
© 2001 by CRC Press LLC

deterministic scheduling of application software execution. Memory is allocated before run time, and
only one application partition is given write-access to any given page of memory. Scheduling of processor
resources for each application is also done before run time, and is controlled by a set of tables loaded
onto each CPM and IOM in the cabinet. This set of tables operates synchronously, and controls appli-
cation scheduling on the CPMs as well as data movement between modules across the SAFEbus™.

Hardware fault detection and isolation is achieved via a lock-step design of the CPMs, IOMs, and the
SAFEbus™. Each machine cycle on the CPMs and IOMs is performed in lock-step by two separate
processing channels, and comparison hardware ensures that each channel is performing identically. If a
miscompare occurs, the system will attempt retries where possible before invoking the fault handling
and logging software in the operation system. The SAFEbus™ has four redundant data channels that are
compared in real time to detect and isolate bus faults.

FIGURE 29.2 AIMS baseline functional distribution.
© 2001 by CRC Press LLC

FIGURE 29.3 Airplane interface schematic.

FIGURE 29.4 AIMS cabinet.
© 2001 by CRC Press LLC

The applications hosted on AIMS are listed below, along with the number of redundant copies of each
application per shipset in parentheses:

Displays (4)
Flight Management/Thrust Management (2)
Central Maintenance (2)
Data Communication Management (2)
Flight Deck Communication (2)
Airplane Condition Monitoring (1)
Digital Flight Data Acquisition (2)
Data Conversion Gateway (4)

All of the IOMs in the two AIMS cabinets are identical. The CPMs have common hardware for
processor, memory, power, and SAFEbus™ interface, but have the capability to include a custom I/O
card to provide specific hardware for an application “client.” The client hardware in AIMS includes the
displays graphics generator, the data communications management fiber optic interface, the digital flight
data acquisition interface to the data recorder, ACARS modem interface, and the airplane condition
monitoring memory.

The other flight deck hardware elements that make up the AIMS system are

Six flat panel display units
Three control and display units
Two EFIS display control panels
Display select panel
Cursor control devices
Display remote light sensors.

29.5 Backplane Bus

As stated previously, the cabinet LRMs are interconnected via dual high-speed serial buses called SAFE-
bus™ (see Figure 29.5). These buses provide the only communication mechanism between the processing
and I/O elements of the integrated functions. As such, extremely high availability and integrity require-
ments are necessary to preclude the simultaneous loss of multiple functions and to preserve robust
partitioning of I/O resources. In addition, SAFEbus™ itself is required to provide and enforce the integrity
of this key shared resource. Absolute data integrity must be ensured independent of hardware or software
failures within any module. In this environment, SAFEbus™ behaves as a generic and virtual resource
capable of supporting high levels of I/O integration.

The SAFEbus™ protocol is driven by a sequence of commands stored in each Bus Interface Unit’s
(BIU) internal table memory. Each command corresponds to a single message transmission. All BIUs
are synchronized so that at any given point in time all BIU’s “know” the state of the bus and are at
equivalent points in their tables. Because buffer addresses are stored in tables they do not need to be
transmitted over the bus, and since all transactions are scheduled deterministically, there is no need to
arbitrate the bus. This allows for extremely high bus efficiency (�94%) with no bits required to be
dedicated to address control and minimal bits required to control data. A more detailed description of
SAFEbus™ operation can be found in ARINC Project Paper 659 and also in Reference 3.

29.6 Maintenance

The requirements for fault tolerance allow increased design flexibility and capability for deferred main-
tenance operation. By taking advantage of the high-integrity hardware monitoring which fault-tolerant
design provides, the AIMS cabinets are capable of instantaneous fault detection and confinement. This
increased fault visibility allows the cabinet to suppress most faults prior to producing a flight deck effect.
This is an important step in reducing the mean time between removal (MTBR) of the equipment.
© 2001 by CRC Press LLC

In addition, fault tolerance also provides the capability for deferring maintenance to regular (and thus
schedulable) intervals. Depending upon the “fail-to-dispatch” probability that the airline is willing to endure,
dispatch can continue for 10 to 30 days without maintenance following any first failure in the AIMS.

29.7 Growth

Functional growth is provided in the cabinets through two paths: spare computing and backplane
resources provided as part of the baseline AIMS, and three spare LRM slots provided in each cabinet.
Spare computing and backplane resources may be used by any function (new or existing) which requires
additional throughput or I/O. Existing spare I/O hardware, for example 629 terminals, 429 terminals,
and discrete I/O are also available for use by any function integrated into the cabinet. Spare LRM slots
may be used for additional processing, I/O, or additional unique hardware which may be required for a
specific function due to the generic backplane interface. Additional processing modules may be added
as required without changes to existing cabinet hardware. Addition of I/O may require wiring changes
if new airplane interfaces are needed.

References

1. Kelly, Michael R., Honeywell, Inc., “Airborne Computer Technology Initiatives,” RTCA Paper,
December 3, 1990.

2. ARINC Project Paper 651, Draft 6, Design Guidance for Integrated Modular Avionics.
3. Hoyme, Driscoll, Herrlin and Radke, Honeywell, Inc., “ARINC 629 and SAFEbus™: Data Buses

for Commercial Aircraft,” Scientific Honeyweller, Fall 1991.

FIGURE 29.5 SAFE busTM dual serial buses.
© 2001 by CRC Press LLC

Further Information

This chapter is substantially a reprint of material originally presented in:
Morgan, Michael J., Honeywell, Inc., “Integrated Modular Avionics for Next Generation Airplanes,”

IEEE AES Systems Magazine, August 1991.
Witwer, Robert, Honeywell, Inc., “Developing the 777 Airplane Information Management System

(AIMS) A View from Program Start to One Year of Service,” August 1996.
© 2001 by CRC Press LLC

J.P. Potocki de Montalk “New Avionics Systems —Airbus A330/A340”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

30
New Avionics Systems

—Airbus A330/A340

30.1 Overview
30.2 Highlights
30.3 Systems
30.4 Cockpit
30.5 User Involvement
30.6 Avionics
30.7 Instruments
30.8 Navigation
30.9 Flying Controls
30.10 Central Maintenance System
30.11 Communications
30.12 Flexibility and In-Service Updates
30.13 Development Environment
30.14 Support Environment

30.1 Overview

The A330/A340 project is a twin programme — the first time that an aircraft has been designed from
the outset both with four engines, and also with two engines. Both aircraft types have essentially the
same passenger and freight capacity. The four-engined A340 is optimized for long-range missions, but
is also efficient at shorter ranges. With two engines, the A330 offers even better operating economics for
the missions where an airline does not need the very long range of the A340.

The realization that on the two different aircraft very many features could in fact be engineered the
same way without a penalty, was the key to obtaining substantial commonality between the two products.
This approach has provided very substantial advantages for the operators, the airframe manufacturer,
and for the equipment vendors. In effect, by designing for both sister aircraft from the outset, the
requirements were engineered in common, and any added features for either of the two aircraft could
be introduced at a point in the design where they cost very little extra in terms of price, weight,
reliability/maintainability or fuel burn.

As a result, the two aircraft use the same parts (except the engine-related parts), can use the same
aircrews, use the same airport and maintenance environment, and cost almost the same to develop as a
single aircraft. And both are supremely efficient.

The A340 is offered in two configurations, allowing operators to tailor capacity and capability to
demand. The larger A340-300 has the same fuselage length as the A330 and, while seating 300 to
350 passengers, has seat-mile costs close to those of the latest 747, making it an economical alternative
on long-range routes with lower traffic densities.

J.P. Potocki de Montalk
Airbus Industrie
© 2001 by CRC Press LLC

The A340-200, seating 250 to 300 passengers, has the longest range capability of any commercial
airliner available. Its low trip costs, coupled with the operating flexibility of four engines, make it an
ideal aircraft for taking over when long-range twins become uneconomic.

While the A340 serves very long routles, the A330 is designed to serve high-growth, high-density
regional routes. At the same time, it has the capability to operate economically on extended-range
international routes. With typically 335 seats in a two-class arrangement, the A330 has a range of 4500
nmi with a full complement of passengers and baggage and 3200 nmi with maximum payload, making
it ideal as a direct replacement for the costlier trijets and as a growth replacement for earlier twinjets.

30.2 Highlights

The A330 and A340 are built on the technological background established by two previous, complemen-
tary, product lines.

The A300/A310 series is the world’s best-established twin-jet twin-aisle aircraft programme, with a
very large number of technologically advanced features that transfer to larger, longer-range aircraft.

The A319/A320/A321 series is the world’s most advanced single-aisle aircraft programme, again offer-
ing a large number of features that are found on much larger aircraft.

During the entire development process, there has been an insistence on securing the maximum
commonality that could be achieved with the other programmes without loss of efficiency. Using selected
features from each of these product lines, updated as needed, resulted in an all-new A330/A340 aircraft
programme remarkably free of teething troubles, while at the same time providing a new benchmark for
aircraft in this size category. As an added benefit, the technological features of the A330/A340 can, in
many cases, be used to improve the established older product lines.

30.3 Systems

Before the entry into service of the A330/A340, the world’s most technologically advanced airliner, in
any category, was the A320. Its design formed the basis for the A330/A340 systems.

30.4 Cockpit

The A330/A340 cockpit is designed to be identical to that of the A320, from the point of view of the
crew. The exceptions to this rule are associated with the size of the aircraft and to the added needs of
the long-range mission, such as improved dispatchability, polar navigation capability, and of course,
engine-related features.

The result is that the 130-seat-capacity short/medium haul A319 up to the 340-plus seat capacity very
long-haul A340 have the most advanced flight deck of any airliner, enabling the same crews to fly any of
these aircraft with minimum additional training needed.

30.5 User Involvement

The design of the A330/A340 cockpit has evolved from the same methods that were used successfully on
the first Airbus Industrie A300.

The initial design of the cockpit (and the systems) was based on three features:

• The existing cockpit from the previous aircraft (the A320 in this case).

• The geometry of the A330/A340 nose section (which is based on the geometry of the A300, A310,
and 300-600).

• Applicable new research and development work carried out since the A320 had been designed.
© 2001 by CRC Press LLC

This initial design was reviewed by a task force consisting of pilots and engineers of each of the launch
airlines in the light of their experience with the A320 or with other aircraft that were operating on the
intended routes for the A330 and A340.

The task force met a number of times over a period of over a year. At each of these steps the design
of the A330/A340 was refined, and certain features were mocked up for the next iteration in the review.
The final design of the aircraft system and cockpit is essentially the one that the airline task force
experienced and “flew” in the simulators during their final sessions.

30.6 Avionics

The avionics of the A330/A340 are highly integrated for optimal crew use and for optimal maintenance.
As with all previous new and derivative aircraft since the A300FF of 1981, the primary data bus standard
is ARINC 429 with ARINC 600 packaging. Other industry bus standards are used in specific applications
where ARINC 429 is not suitable.

30.7 Instruments

The six CRTs on the main instrument panel display present flight and systems information to the pilots.
This arrangement provides excellent visibility of all CRTs.

Flight information is provided by the Electronic Flight Instrumentation System (EFIS) consisting of
a PFD and a ND in front of each pilot.

Systems information is provided by the Electronic Centralized Aircraft Monitor (ECAM) consisting
of the engine/warning display on the upper screen and aircraft systems display on the lower screen.

Sensors throughout the aircraft continuously monitor the systems and if a parameter moves out of
the normal range they automatically warn the pilot.

During normal flight the ECAM presents systems displays according to the phase of flight, showing
the systems in which the pilot is interested, e.g., some secondary engine data, pressurization, and cabin
temperature. The pilot can, by manual selection, interrogate any system at any time. Should another
system require attention, the ECAM will automatically present it to the flight crew for action.

Should a system fault occur that results in a cascade of other system faults, ECAM identifies the
originating fault, and presents the operational checklists without any need for added crew actions.

The information display formats currently in use enable the pilots to assimilate the operational
situation of the aircraft much more easily than on the previous generation of aircraft.

There are substantial advantages on the maintenance side as well, in that the entire Electronic Instrument
system consists of only three LRU types, enabling significant dispatchability and spare stocks availability.
In fact, all the flight information (including standby) is presented on only 11 instruments of 6 types.

A new EIS, using liquid crystal displays, is being installed on the A330/A340 and A320 family of aircraft
deliverable from 2001, offering improved capabilities and cost of ownership.

30.8 Navigation

Dual Flight Management Systems (integrated with the Flight Guidance and Flight Envelope computing
functions; FMS) combine the data from the aircraft navigation sensors, including the optional GPS
installation. Backup navigation facilities are included in each pilot’s MCDU, allowing the aircraft to be
dispatched with an inoperative FMS.

The FMS permits the crew to select an optimal flight plan for their route from a selection in the airline
navigation data base, allowing the aircraft to fly automatically, through the autopilot or flight director,
from just after take-off until the crew elects to carry out a precision approach and automatic landing.
The “canned” flight plan captures the data needed for flight from the specifications entered by the crew
prior to departure, as well as along the route as conditions change and more current information on
weather and routing becomes available.
© 2001 by CRC Press LLC

New FMSs, with improved cost of ownership and capability, are being installed on aircraft delivered
from mid-2000. The same new FMSs are being installed on the A320 family.

30.9 Flight Controls

The flight control system of the A330/A340 is essentially the same as that of the A320, with five computers
of two different types allowing the pilot to control the aircraft in pitch, roll, and yaw. The layout of the pilot
controls is essentially the same as that of the A320 series, as are the handling qualities of the A330/A340. The
technology features are also essentially the same, with extensive use of dissimilarity in the hardware and in
the software, and extensive segregation in the hydraulic and electrical power supplies and signalling lanes. As
with the A320 series, mechanical signalling is used for the rudder and for the horizontal stabilizer trim backup.

Detail changes have been introduced reflecting the longer mission times, specially of the A340, to
provide better access to the system, and the opportunity has been taken to reduce the variety of backup
submodes that the crew must use, making the aircraft even easier to fly.

Like the A320 series, the A330/A340 is a conventional, naturally stable airliner. The electronic flight
controls offer a number of advantages to the pilot. There is a large reduction in manually operated
mechanical parts, easier troubleshooting, and no need for rigging. Optimal use of the control surfaces
is facilitated, as is the use of maneuver load alleviation.

The passengers and crew benefit as well, since the aircraft is more comfortable and easier to fly with
precision in turbulence, while the flight envelope and structural protection features allow the crew to
immediately use the whole capability of the aircraft should it be needed in an extreme situation.

30.10 Central Maintenance System

The A320, with its Central Fault Display System (CFDS), pioneered the industry standard for Central
Maintenance Systems (CMS).

This industry background of experience has been built into the A330/A340 CMS. It enables trouble-
shooting and return-to-service testing to be carried out rapidly and with a high degree of confidence,
from the cockpit. Much of the CMS information may also be accessed remotely, via ACARS, giving the
capability for the aircraft to be greeted upon arrival by a maintenance technician that already has a good
idea of the exact nature of any defect, and who has likely been able to procure from stores the proper
spare LRU required to resolve the fault.

Compared with the previous generation of CMSs, such as the A320 CFDS, the A330/A340 CMS has
been improved in a number of respects, allowing trouble-shooting to take place on more than one system
at a time, and with even clearer data available for the job. There has been a significant improvement in
dependability as well, with great attention being paid to maintainability standards by the systems designers
and the equipment vendors, and the incorporation of a maintenance message filter facility that enables
known false message to be eliminated by the CMS, so that the mechanic does not apply the maxim
“Falsus in Uno, Falsus in Omnibus.”*

30.11 Communications

There is a quiet revolution going on in the way that the crew communicates with the ground. This has
been taking place in two ways. The A330/A340 uses the same full-capability standardized flight crew
audio and frequency selections system as used on the A320 series, and also largely used on other recent
derivative aircraft. This is a break from the traditional highly customized lower-capability systems.

*“False in one thing — false in all.”
© 2001 by CRC Press LLC

The other aspect of the revolution is more far-reaching, in that voice communication is giving way to
data communications, with the advantages of lower error rates, more timely service, and lower costs. This
started with highly customized ACARS systems for company communications, using VHF frequencies.

The A330/A340 is equipped with a standardized ACARS system that can be used by any customer,
with allowance for each customer to easily introduce his own custom features to reflect his own needs.

These initial ACARS systems have been extended to offer worldwide coverage, even in mid-ocean and
sparsely inhabited areas, using the Inmarsat facilities and HF data link, and to cover not only company
communications but also ATC services, starting with predeparture and oceanic clearances.

On aircraft delivered since 1998, the ACARS unit has been replaced by the Air Traffic Services Unit
(ATSU), which is designed to also accommodate safety-related ATC functions using the Aeronautical
Telecommunications Network (ATN), offering the majority of ATC and other communication services now
using voice, and more importantly, offering profitable migration to the ATN. The ATSU is the first unit to
host software from a number of different vendors. The same ATSU is also used on the A320 family of aircraft.

The ATN upgrade is being implemented to be available when the corresponding communication and
ATC services are in service.

30.12 Flexibility and In-Service Updates

The first generation of aircraft with widespread digital systems, such as the A300FF, A310, and B767,
suffered from some of the same disadvantages as their analogue-system predecessors in that their avionics
were not designed to accommodate unplanned change. Once a design change was made, equipment had
to be removed from the aircraft, program memories had to be reloaded in the avionics workshops
(sometimes by physically changing parts), and the equipment reinstalled. At some point the airframe
manufacturer usually got involved to certify the change. There was an advantage in the avionics shop,
because reloading a program and retesting is a faster and cheaper activity than installing a kit of new
electronic parts, but the major cost of carrying out the change on the aircraft stayed the same.

The A330/A340 systems have to a large extent overcome this disadvantage, in that those digital LRUs
that have been identified as requiring in-service change now have facilities for updates to be included in
situ on the aircraft, at greatly reduced cost.

Two techniques are used, depending on the criticality of the LRU concerned, and on other practicalities.

1. On-Board Replaceable Memories (OBRMs) are memory modules that are located on the (accessible)
front panel of an LRU. They come in industry-standard sizes, cost much less than the LRU itself,
and can be “recycled” many times. The visible part of the OBRM contains the LRU’s software part
number section. OBRMs comply with the toughest criticality criteria, enable classic configuration
control of the LRU and require no tools to change. They have been in use on the A320 since 1988.

2. The other technique in use is on-board data loading using 3.5 in. diskettes and other media. These
are a little slower and are even less expensive than OBRMs, but do require a data loader to be
carried to or installed on board the aircraft, and an adaptation to the aircraff ’s classic configuration
control techniques. The same data loader is used for the FMS data base.

Both techniques enable software updates to be carried out overnight on the whole fleet.
Another aspect is flexibility in dealing with airlines’ changing needs. The basic equipment for the

aircraft is designed with a number of pin-programmable features that correspond to frequently requested
airline changes, and other systems like the FMS where the airline loads a database which specifies its own
preferences. These features allow airlines to pool databases and standard spares at outstations and still
obtain the kind of operation that they need. Another feature is partitioned software, where heavily
customized systems like ACARS can be certified just once for all users, with one set of “core” software.
The airline may load its own additional operational software on top of this core to reflect its own needs.

Lastly, certain systems like the optional Aircraft Condition Monitoring System (ACMS) which used
to be heavily customized, use a combination of these techniques to enable an airline to select the features
that it needs out of a very powerful selection which forms a superset of the needs of all the customers.
© 2001 by CRC Press LLC

30.13 Development Environment

The development of each Airbus Industrie aircraft has been supported by an Iron Bird whole-aircraft
systems rig, and by supporting systems rigs that enable work to proceed simultaneously, without mutual
interference. The A330/A340 model is no exception, and a number of facilities have been constructed
specifically for this programme. These methods are now being used by other airframe manufacturers.

Proper software development is an essential part of systems development throughout the aircraft, and
a number of software tools have been developed, notably in the areas of formal methods, rapid proto-
typing, automatic coding, and rapid data recovery and analysis. These are supplemented by large, fast
data recording and telemetry facilities on the test aircraft fleet, associated with real-time and rapid-
playback test data displays for the benefit of the flight test observers on board the test aircraft and for
the test and systems engineers on the ground.

The result of this environment, the proper use of features from previous programmes, and the proper
management of test data flow and the resulting decision process, has created an aircraft that has had a
remarkable trouble-free period of introduction into service. This is true both in terms of customer
satisfaction and in terms of measurable parameters such as delay rate, which have been up to an order
of magnitude better for A340 than for the previous derivative long-range aircraft that entered service.

30.14 Support Environment

The A330/A340 airplanes have a number of unique support features, apart from those previously
described.

As with other Airbus Industrie aircraft, an airframe-wide Automatic Test Equipment unit is available
to customers, along with an airframe-wide test program suite. No other airframe manufacturer offers
this facility for avionics.

The Aircraft Maintenance Manual and Trouble Shooting Manual have been carefully designed to
integrate with the CMS for easier, faster fault rectification. For those airlines that wish to use it, a software
package for a PC-compatible lap top is available to further speed fault-finding.

The documentation has also been designed to be compatible with open industry computer text and
graphics standards, to facilitate the introduction of intelligent maintenance documentation systems.
© 2001 by CRC Press LLC

Ronald W. Brower “Lockheed F-22 Raptor”
The Avionics Handbook
Ed. Cary R. Spitzer
Boca Raton, CRC Press LLC. 2001
© 2001 by CRC Press LLC

32
Lockheed F-22 Raptor

32.1 F-22 Role and Mission
32.2 IAS Hierarchical Functional Design
32.3 Integrated Avionics Architecture

Common Integrated Processor (CIP) • APG-77
Radar • Communication, Navigation, Identification
(CNI) • Electronic Warfare (EW) • Stores Management
System (SMS) • Inertial Reference System (IRS) • Controls
and Displays (C&DS)

32.4 Fault Tolerance and Recovery
32.5 Summary

32.1 F-22 Role and Mission

The F-22 will replace the F-15 as the U.S. Air Force’s next generation air superiority fighter. With a first-
look, first-shoot, first-kill capability it will maintain U.S. air supremacy in air-to-air and air-to-ground roles
in the 21st century. It will deploy a wide mix of missiles and stand-off weapons which, under the guidance
of the Integrated Avionics System (IAS), will provide the pilot with robust lethality and mission survivability.

32.2 IAS Hierarchical Functional Design

Behind this first-look, first-kill capability is the F-22’s ability to establish superior situational awareness
concerning target detection, location, identification, and lethality. The IAS provides the pilot situational
awareness well Beyond Visual Range (BVR). Data fusion from multiple sensors is used to achieve long-
range detection, high confidence BVR-Identification (BVRID) and highly accurate target tracking for
BVR weapons employment and/or threat avoidance. The IAS directly contributes to increased surviv-
ability by providing threat warning and countermeasures against threat systems.

This first-look, first-kill requirement depends on the ability to collect data from multiple onboard
sensors, to develop a highly accurate track file on enemy targets, and to do so before the F-22 is detected
by enemy sensors. Each target track file is continually and automatically updated without pilot interven-
tion. Targets receive increasingly tighter tracking accuracies as they penetrate a series of tactical engage-
ment boundaries surrounding the F-22 as shown in Figure 32.1. From outermost inward, these “globes”
are called (1) Situation Awareness Initial Track/ID, (2) Engage/Avoid Decision, (3) BVRID Initial
AMRAAM Launch, (4) Initial Threat Missile Launch, and (5) Threat Missile Lethal Envelope. The globe
boundary concept, inherent in the tactical software design, supports both (1) efficient sensor usage and
(2) automated sensor tasking. It provides the pilot adequate time to make tactical decisions (such as
engage, avoid, commit weapons, or expend countermeasures) instead of controlling sensors.

All multisensor information must be fused or correlated into a consistent, valid, integrated track
file. This is done automatically by the sensor track fusion algorithms and the “smart” sensor-tasking

Ronald W. Brower
United States Air Force
© 2001 by CRC Press LLC

algorithms which are tailored to support each globe boundary’s requirements. The integrated track file
is then presented to the pilot on the integrated offensive, defensive, and area-wide situational awareness
tactical displays.

Mission Software (MS/W) serves as the central controller of IAS operations, interfacing to all sensors,
processors, pilot controls, and displays. It manages, coordinates, and supports the overall integrated
capability to search, detect, track, identify, employ weapons, and expend countermeasures against air-
borne or ground threats. MS/W accomplishes this through a hierarchical functional tree consisting of
three principle levels: the integrating functions level, the decision-aiding functions level, and the mission
functions level (see Figure 32.2).

At the first level, the integrating functions manage and control the various onboard sensors. Sensor
data are fused and correlated with navigation data to form integrated airborne and ground track files.
This information is then sent to the second level of processing: the decision-aiding functions level.

At the second level, decision-aiding functions do critical assessments of the overall offensive and
defensive tactical situation. Three key assessments are performed on the integrated track files received.

FIGURE 32.1 F-22 globe boundaries.

0

100

180

60

Engage/Avoid
Decision

Beyond Visual
Range Identification/

Initial AMRAAM Launch

Situation Awareness
Initial Track & Identification

Initial
Threat
Missile
 Launch

Threat Missile
Lethal Envelope
© 2001 by CRC Press LLC

First, situation assessment is done on the target track relative to the pilot’s own ship threat and targeting
environment. Consistent and timely information is continuously updated on the overall own ship
situation, allowing the pilot to make key decisions to engage or avoid targets of interest. Second, fire
control assessment calculates missile launch the envelopes against designated targets and controls launch
and post-launch weapon support throughout the engagement. Finally, continuous assessments are made
of the F-22’s defensive tactical situation to assist the pilot in managing defensive countermeasures. These
decision-aiding functions provide the pilot consistent and reliable tactical information to support war
fighting decisions without the need to control individual sensors or correlate target track information
in the heat of battle.

At the top level of the mission software hierarchy, mission functions control all avionics hardware and
software and status the health of the IAS. These functions handle mission planning and system reconfigu-
ration should hardware failures occur. Being at the top level of control for the IAS, the mission functions
are the primary interface between the IAS and the pilot, who interacts with the IAS via Controls and Displays.

32.3 Integrated Avionics Architecture

The F-22 avionics architecture is characterized as a common, modular, highly integrated system. These
characteristics result in increased performance, reliability, availability, and affordability. It is the first fully
integrated avionics system in U.S. military aircraft, supplanting the federated architectures of the past.
The F-22 does not employ traditional, single-function “black boxes” to perform basic avionics functions
such as navigation, communications, threat warning, and fire control. Instead, these functions are imple-
mented with common, programmable modules which are software-configured to process many different
functions. This architecture not only allows increased mission effectiveness, but also allows significant
flexibility in basic avionics design through: robust, fault-tolerant reconfiguration capabilities, higher
reliability, easier supportability, higher availability, lower weight, extended growth capability, and lower
acquisition and life cycle cost.

FIGURE 32.2 Avionics functional hierarchy.

Sensors & Actuators

Sensor/Emitter Management
Sensor Track Processing

Navigation (Fusion)
Embedded Training

Situation Assessment
Fire Control

Defensive/Counter Measures

Mission Management
System Control

Diagnostics Management

Pilot
Controls

&
Displays

Tactical Signal Environments

Integrated Functions

Decision Aiding Functions

Mission Functions
© 2001 by CRC Press LLC

The IAS’s system design features an interconnected set of high-speed, modular subsystems which use
Standard Electronics Module Size E (SEM-E) modules. The core processing architecture is a distributed,
parallel processing design that employs common, general purpose digital processor modules to perform
all avionics functions. A common operating system is distributed on all core processing SEM-E modules
to provide maximum flexibility and to support additional modules for new applications or for tech-
nology insertion.

IAS software, written mostly in Ada, is being built and integrated under a multiblock process to reduce
development and integration risk. Each software block provides an increase in F-22 functional capability.
Block 0 provides basic flight systems for initial flight qualification testing. Block 1 provides single-sensor
threads of the IAS system. Block 2 provides multiple-sensor threads. Finally, Block 3 provides full F-22
functionality.

The IAS is partitioned into several interactive systems of antennas, sensors, processors, pilot interfaces,
and high-speed interconnects (see Figure 32.3). The primary subsystems are Core Processing (consisting
of two Common Integrated Processors, or CIPs), Electronic Warfare (EW), Radar, Communications/Nav-
igation/Identification (CNI), Inertial Reference System (IRS), Stores Management System (SMS), and
Controls and Displays (C&D).

By using low observable (LO) antennas and arrays, the sensors receive, measure, and extract both
radio frequency (RF) and non-RF signals. Raw data are preprocessed, digitized, and routed to the CIPs
via 400 Mbps fiber optic buses. Using digital and signal processor modules, the CIPs process raw data
into sensor-level track reports which in turn are processed by sensor-track fusion algorithms residing on
other digital and signal processor modules. Sensor-level reports are then combined into a single integrated
track file and sent to the cockpit displays via fiber optic lines. The two CIPs are connected to one another
via a 50 Mbps fiber optic High-Speed Data Bus (HSDB). Finally, the avionics architecture also features
Mil-Std-1553 buses to interconnect to other aircraft systems.

FIGURE 32.3 Avionics system architecture.

DATA
TRANSFER/

 MASS MEMORY

Sensor Fiber Optics: 400 Mbs
High Speed Data Bus: 50 Mbs
Display Fiber Optics: 400 Mbs
Mil-Std-1553

VMS
RACK (3)

IVSC
RACK (6)

PMA
DEVICE

STORE MGMT

STORE

MGMT

Radar
Receiver Rack

CNI RF Racks

EW/RF Rack

EW/MLDs (6)

Cr eated by
John F . Howar d

3/95

Cr eated by
John F . Howar d

3/95

Cr eated by
John F . Howar d

3/95

Cr eated by
John F . Howar d

3/95

Cr eated by
John F . Howar d

3/95

Cr eated by
John F . Howar d

3/95

CIP #1

CIP #2
© 2001 by CRC Press LLC

32.3.1 Common Integrated Processor (CIP)

The Common Integrated Processor (CIP), developed by Raytheon Systems Company, provides the memory,
I/O, data, and signal processing capability required for the IAS. It has an open, expandable architecture
supporting radar, EW, CNI, mission software and Controls, and Displays processing requirements. The
F-22 core processing system uses two installed CIPs (with growth space for a third). Each CIP contains
66 SEM-E slots in two rows. Due to the wide utilization of common modules, only 13 unique CIP module
types are utilized. To provide for additional growth, each CIP is about two-thirds populated.

32.3.1.1 CIP LRM Types

The Dual Data Processing Element (DDPE) is the backbone of the CIP’s digital processing capability. Each
DDPE has two independent, 32-bit, 25-MHz Intel 80960 (i960®) microprocessors on each side of a SEM-
E module. Each side of the DDPE operates as a general purpose computer executing Ada code. The DDPE
module is Liquid Flow-Through (LFT) cooled, weighs 1.2 lb and is connected to the CIP backplane by
a standard connector which uses 332 electrical pins and 4 fiber optic and two coolant connections. The
IAS employs13 DDPEs to support radar, EW, CNI, and MS/W functions. Currently, product improvement
programs plan to replace the Intel i960® with a state-of-art processor in 2005.

The Dual Signal Processing Element (DSPE) is a generic signal processor that executes mathematically
intensive functions such as the state matrix multiplications used in Kalman filter propagation and Fast
Fourier Transform (FFT) algorithms used in radar signal processing. Each DSPE uses two independent
pipelines to perform high bandwidth signal processing. Each individual SPE can execute a fixed point
instruction within one 25 MHz clock cycle and can operate at up to 18 operations per instruction. The
DSPE consumes nearly 80 W of power, resides on a Liquid Flow-Through (LFT) cooled SEM-E module,
and is connected to the CIP backplane by a standard connector (332 electrical pins and 4 fiber optic and
two coolant connections). The IAS employs 9 DSPEs to support radar, EW, and MS/W functions.

The DPE/Mil-Std-1553 I/O Port (DPE/1553) features a Data Processing Element (DPE) on side A and
a Mil-Std-1553 I/O interface port on side B.

The Global Bulk Memory (GBM) is a memory complex available to modules residing on the CIP
backplane. Each GBM features 12 Mbytes of available bulk memory, consumes about 60 W of power,
resides on a Liquid Flow-Through Cooled (LFT) SEM-E module, and is connected to the CIP backplane
by a standard 360-pin connector.

The Gateway module (GWY) provides a bi-directional communications path between Parallel Interface
(PI) bus segments within a CIP. The GWY module also provides communications between two CIPs via
the fiber-optic HSDB.

The Low Latency Signal Processor (LLSP) uses a Texas Instruments SMJ320C31 (C-31) processor to
provide the interface between the CNI front end and the CIP backplane via a fiber optic line. It performs
low latency signal processing for the CNI system.

The Graphics Processor/Video Interface (GPVI) features a fiberoptic interface to the cockpit Multi-
Function Displays (MFDs). One side of the GPVI module is a standard DPE, the other side performs
graphics processing and I/O, generating up to 30 frames per second and supporting up to two MFD
displays simultaneously.

The Non-RF Signal Processor (NRSP) is an Infra-Red (IR) signal processor that includes a pipeline
processing structure optimized to perform IR impulse-response high-pass filtering, two-dimensional
windowing for spatial filtering, data normalization, and thresholding for IR sensors. One NRSP can
support up to three Missile Launch Detectors (MLDs).

The Data Encryption/Decryption Device (KOV-5) is an integrated Communications Security (COMSEC)
unit housed in a SEM-E module. It can perform any 2 of 17 different COMSEC, data encryption, data
decryption, cryptographic functions. The KOV-5 supports encryption/decryption functions of voice,
text, data, and communications links. The encryption/decryption engine is National Security Agency
(NSA) certified. The IAS employs 5 KOV-5 modules to support various crypto functions.
© 2001 by CRC Press LLC

Voltage Regulator modules (VR) receive �270 VDC aircraft power and output �5 VDC and �5.2
VDC to the CIP backplane.

The User Console Interface (UCIF) is a two-sided LRM featuring a DPE on side A and UCIF hardware
on side B. The UCIF is a nonproduction module which supports instrumentation and access to the CIP
I/O backplanes during integration and test activities.

The Fiber Optic Transmit/Receive Network Interface module (FNIU) provides low latency, high bandwidth
communications between a CIP processing cluster and the sensors. The FNIU supports bi-directional
communications to the Parallel Interface bus or directly into the GBMs at the rate of 400 Mbps to the GBMs.

32.3.1.2 CIP Buses

The CIPs interconnecting communications paths consist of both internal and external buses. These
communications paths are depicted in Figure 32.4.

The Parallel Interconnect (PI) Bus is a 32-bit, error-correcting, parallel, digital data bus that facilitates
data and control exchange between modules within the CIP at a peak rate of 50 Mbytes per second. Each
CIP contains three PI bus segments connected in a “triangle” by three Gateway modules. Each segment
supports 22 modules. To optimize communications, subsystem processing (such as radar or EW) is
usually clustered into modules within the same PI bus segment.

FIGURE 32.4 Simplified CIP structure.

D
1553

D

D

D

D

K

L

FOTR BUS
TO SENSOR
FRONT
ENDS

PI-BUS

TM-BUS

D

D

D

K

L

FOTR TO
SENSOR
FRONT-ENDS

PI-BUS

TM-BUS

CIP 1 CIP 2HSDB HSDB

STAR COUPLER

D = DATA PROCESSOR ELEMENT
DS = DATA PROCESSOR/SERVER
K = KOV-5
L = LLSP
SP = SIGNAL PROCESSOR
F = FNIU
GW = GATEWAY

DTE/MMHSDB
CIP 3

(Growth)

1553 BUSSES
TO NON-CIP
AVIONICS

1553 BUSSES
TO NON-CIP
AVIONICS

GW

GW

GW

GW

GW

GW

GW

GW

GW

SP
D

1553

F

GBM

DS

D

D

D

D GBM

DS
D

F

SP

HSDB
© 2001 by CRC Press LLC

The Test and Maintenance (TM) Bus, like the PI bus, contains three segments connected by the Gateway
modules. The TM bus is a 6.25 MHz bus primarily used for diagnostic monitoring of each module’s
health without interfering with either the PI bus or the internal processing within each module. The TM
bus also supports fault reporting, isolation, and system reconfiguration. Via the TM bus, spare modules,
typically DDPEs, can be commanded to reconfigure to maintain functionality lost due to a failed module.

The High-Speed Data Bus (HSDB) is a fiberoptic bus which provides 50 Mbps data transfer rate between
the CIPs and the Data Transfer Cartridge or Mass Memory unit.

The Fiber Optic Transmit-Receive (FOTR) Bus supports low latency, high bandwidth (400 Mbps) data
communications between the CIP and the sensors.

The Mil-Std 1553 Bus provides I/O communications to standard interfaces such as weapons and aircraft
flight control systems.

32.3.1.3 CIP Software

The CIP software has a layered architecture which provides a common set of utilities for the CIP application
software and handles data transfer integrity and security. It consists of two principle software packages,
the Avionics Operating System (AOS) and the Avionics System Manager (ASM). The layered architecture
with AOS and ASM as an intermediary between the hardware and applications is shown in Figure 32.5.

The AOS provides operating system services to embedded avionics applications running on the CIP.
The AOS resides and executes on each DPE-based module. It supports a multilevel secure execution
environment in which multiple application programs may run and process concurrently at different
security levels. This is enforced by the AOS Privilege Control Tables (PCTs) which require that data at a
given security level not be processed by a program at a lower security level. Communications between
application programs is restricted to those that are allowed by the PCT. The AOS provides four basic
capabilities within the CIP: control of Ada application programs, control of the I/O interfaces to the DPE
modules, debug capability, and PCT security access authorization.

The Avionics System Manager (ASM) is the central resource manager for the CIP, featuring three basic
services: (1) system control, (2) module management, and (3) file services. It assigns global resources,
such as memory and processing elements, to the application programs. ASM is also responsible for
maintaining CIP health status, performing reconfiguration around failed modules, providing file man-
agement functions between applications and the DTC/MM, providing GBM file allocation services, and
coordinating startup and shutdown of CIP functions.

FIGURE 32.5 CIP processing architecture.

Signal
Processing

Software

SPE OS

Signal Process. Data Processor Data Processors Graphics Proc.

Graphics SW

Fiber I/F

GBM / Data Network

Signal
Processing

Control

Sensor
Track

Fusion

Mission

System

(Master)

PI Bus

Common
Operating Sys

Fiber
Optic
Link

to
Displays

Common
Operating Sys

Cockpit
Display

Application Software

Fiber
Optic

Link to
Sensors

Hardware
Layer

AOS/ASM
Layer

Applications
Layer

Common
Operating Sys

Management

Management
© 2001 by CRC Press LLC

32.3.1.4 CIP Signal Flow

The sensor front-ends preprocess RF and non-RF data, converting raw sensor data into blocks of digitized
data that are sent, via 400 Mbps FOTR lines, to the FNIUs. The FNIU modules route the raw digitized data
to the GBM modules in real time for temporary buffering and storage. The data are then extracted over
the Data Networks (DN) by either the DPE or the SPE modules for further processing and refinement.
To reduce PI bus overloading, the GBM also supports intermediate buffering of data between the
processors or between processing tasks on a processor. Processed data are then sent out on the PI bus to
be further processed by other higher-order functions on other DPEs and SPEs. Once these DPEs and
SPEs complete the higher-order functional tasks, the data are again sent on the PI bus to the GPVI
modules, transferred to graphic format, and sent via FOTR lines to the cockpit displays.

This signal and data flow approach reduces bus loading and potential throughput problems. Sensor
data are sent nearly real-time via FOTRs to GBMs and on through the “backdoors” via the DN bus to
the processors. Only after the processors have completed their operational tasks on sensor data is the PI
bus involved.

32.3.2 APG-77 Radar

The F-22’s APG-77 radar is an advanced multimode, multitarget interleaved search/track, all-weather,
fire control radar. Developed by Northrop Grumman, it incorporates the following design features: Active
Electronically Scanned Array (AESA), low observability (LO), electronic counter-countermeasures
(ECCM), and low probability of intercept (LPI). These features give the F-22 radar a major leap in combat
capability. The main array, mounted in the nose radome, is composed of hundreds of Transmit/Receive
(T/R) modules. Beam switching is performed by controlling each T/R module’s phase characteristics,
thus accomplishing a summed beam pattern of all T/R modules. These T/R modules are designed to
operate for over 16,000 hours failure-free. The T/R module application features an extremely fault-
tolerant design, where the system can lose numerous T/R modules before minimum required performance
is affected. The system can continue to effectively operate with loss of even more T/R modules, however
at reduced transmit power levels.

32.3.3 Communication, Navigation, Identification (CNI)

The F-22 CNI subsystem performs standard military communications, navigation, and identification
functions. Developed by Lockheed-Martin Tactical Aircraft Systems (LMTAS) and TRW Military Elec-
tronics and Avionics Division, its primary functions consist of UHF/VHF secure and clear voice, Have
Quick IIA, GPS, TACAN, ILS, MK XII Identification-Friend-or-Foe (IFF), JTIDS receive, and the Intra-
Flight Data Link (IFDL). Like the CIP, the CNI architecture is also highly integrated and uses common
SEM-E modules with diverse CNI functions sharing common hardware components. This integrated
approach requires time-sharing and multiplexing of assets or system reconfiguration between mission
phases (landing vs. engagement operations, for example).

The CNI subsystem is comprised of six major components:

1. Low observable apertures and arrays;
2. External Aperture Electronics (EAE) units (located near the arrays for low noise amplification),
3. RF filtering and switching; the Antenna Interface Unit (AIU) (to interface all RF lines to/from the

RF/Preprocessor racks);
4. RF/Preprocessor Integrated Avionics Racks (IARs) which house SEM-E modules for RF transmis-

sion, reception, and processing;
5. Interphone/Intercom subsystem for voice communication and synthesis; and
6. CNI digital processing LLSP and KOV-5 LRMs resident on the CIP.

The RF/Preprocessor IARs consist of a pair of three-bay, SEM-E modular, liquid-cooled racks and the
LRMs which perform CNI RF processing. The two IARs were originally fully redundant and identical,
but to save weight each IAR is now more specialized. However, aircraft mission-critical functions such
© 2001 by CRC Press LLC

as UHF/VHF communications, ILS, TACAN navigation, or MK XII IFF transpond can be supported
from either rack.

The CNI SEM-E modules which comprise the CNI IAR racks are as follows:

1. Eight L-Band tunable receivers with selectable IF bandwidths to support TACAN, MK-XII tran-
sponder, Mode S ATC, IFDL, and JTIDS receive.

2. Two 5-channel tunable L-Band receivers with common local oscillators used to support direction
finding.

3. One L-Band transponder Carrier Generator/Power Amplifier (CG/PA) used to support low duty cycle
pulse modulation of RF transmit power for MK XII IFF transponder and TACAN functions.

4. One Interrogator CG/PA used to provide low duty cycle RF pulse modulation for MK XII
interrogate. This CG/PA is used as a backup for MK XII transpond and TACAN in the event of an
L-Band Transpond CG/PA failure.

5. Four UHF/VHF single-channel tunable receivers which support U/VHF voice communications,
ILS, and growth satellite communications.

6. Two UHF/VHF CG/PAs for supporting U/VHF transmit.
7. One GPS Receiver Processor to provide a complete decoded GPS navigation solution.
8. Two RF/FE controller LRMs which support all RF asset control, multiplexing, timing references,

and reconfiguration.
9. Four Pulse Narrowband Processor (PNP) LRMs used to support L-Band programmable pulsed

signal decoding such as TACAN, MK XII IFF transponder, and interrogate, and Mode SATC. The
PNP LRM also supports A/D conversion of the U/VHF communications and ILS navigation.

10. One Pulse Environment AOA Processor (PEAP) LRM to convert measured pulse phase and
magnitude data into a calculated Angle of Arrival (AOA) via algorithms which use real-time
calibration data and prestored array characteristics.

11. Two CNI Bus Coupler LRMs to provide a FOTR bus interface to the FNIU module within the CIP.
12. One IFDL Mod/Synth LRM to provide the waveform generation, signal modulation and demod-

ulation, and relative navigation processing for the F-22-to-F-22 Intra-Flight Data Link system.

Other SEM-E modules are the Air-Combat Maneuvering Instrumentation (ACMI) transceiver which
provides ACMI signal modulation and demodulation; the Ovenized crystal oscillator LRM; a 5-volt
backup battery LRM used to maintain system crypto keying and clocks with main power off; and various
RF and digital power supply LRMs which provide up to seven different voltages required by the CNI
system components.

32.3.4 Electronic Warfare (EW)

The EW subsystem provides Radar Warning (RW), Missile Launch Detection (MLD), and chaff and flare
countermeasures. RW was developed jointly by Lockheed Martin Missiles and Fire Control, Lockheed
Sanders, and LMTAS. It provides airborne and ground-based radar emitter detection, tracking, identifica-
tion, and location to the mission software system for integrated target tracking. The Missile Launch Detector
also provides a passive IR capability to detect, declare, track, and report missile launches to mission software.
The defensive countermeasures function is responsible for timing and deploying chaff and flares. Deploy-
ment of countermeasures is programmable for fully automatic, semiautomatic, or manual.

The EW architecture, like the CIP and CNI, is an integrated architecture using common SEM-E modules.
The EW subsystem employs resource sharing of common hardware components to perform the simulta-
neous search, detection, RF and non-RF measurement, signal analysis, direction finding, identification, and
tracking of RF and non-RF signals. This integrated approach requires time and resource sharing of these
common modules.

The EW subsystem is comprised of seven major components:

1. Low observable apertures and arrays;
2. Array Electronics (AEs) units near the arrays for low noise amplification, RF filtering, and switching;
© 2001 by CRC Press LLC

3. Remote Antenna Interface Unit (RAIU) to interface all RF lines to/from the EW RF racks;
4. EW RF Integrated Avionics Racks (IARs) which house SEM-E modules for RF, reception, and

processing;
5. Six Missile Launch Detector sensors;
6. The countermeasures controller and dispenser units to dispense MJU-7 and -10 standard flares,

MJU-39 and -40 flares developed specifically for the F-22, and RR-170 and -180 chaff bundles, and
7. The CIP based DDPE, DSPE, NRSP, and GBM LRMs.

The EW RF IAR consists of a SEM-E modular liquid-cooled rack and the LRMs which perform the
EW RF reception and processing. The EW SEM-E modules which comprise the EW RF IAR rack are as
follows:

1. Six Narrow-Band Receiver (NBR) LRMs with selectable IF bandwidths to support signal analysis,
emitter tracking, and emitter direction finding processing.

2. Six NBR Local Oscillator LRMs to tune the NBRs.
3. Six Pulse Measurement Units to extract RF characteristics from the NBR for signals analysis.
4. Four Wide-Band Receiver (WBR) LRMs to support wideband detection and acquisition of emitters

in the environment.
5. Six signal frequency down converter LRMs to convert RF signals into a base frequency band.
6. Nine power supply LRMs to convert 270 V power to �/�9, �/�15 and �/�5 V.
7. One WBR asset controller LRM.
8. One NBR asset controller LRM.
9. Two RF Delay LRMs to support hand-off of signal analysis for direction finding processing.

10. One Reference Oscillator LRM for supplying a common local oscillator to the NBR and down
converter LRMs.

11. One CIP Interface (CIPI) module to interface digitized EW information onto the CIP fiber optic
FOTR bus.

12. One Data Converter LRM to reformat digitized RF data into pulse descriptor words for CIP
processing.

13. Three Measurement Control Processor (MCP) LRMs to support timing and synchronization of
receiver assets.

14. One Data Distribution Network (DDN) to provide DF triggers for supporting signal direction
finding and angle binning to support pulse de-interleaving.

15. Two Compressive Receiver (CR) LRMs to support high probability of intercept against high
priority signals.

16. One Array-RAIU Controller Interface (ARCI) to control RF line switching and filtering in the
RAIU.

The EW RF IAR racks perform RF to digital conversion and then send the raw digitized information
to the FNIU fiber optic interface module in the CIP for RF sorting, signal characteristic measurement,
signal identification, and emitter tracking.

32.3.5 Stores Management System (SMS)

The SMS monitors, controls and statuses countermeasures, launchers, weapon bay doors, and the F-22
armament (AIM-9, AIM-120, gun). It also controls emergency jettison of stores. The SMS consists of
two rows of SEM-E modules, two AIM-9 power supplies, a gun control unit, and the SMS Controller.

32.3.6 Inertial Reference System (IRS)

Developed by Litton Guidance and Control, the IRS is an advanced laser ring gyro with a common
processor with flight controls. It provides position and rate information to the IAS mission software to
support target location calculations.
© 2001 by CRC Press LLC

32.3.7 Controls and Displays (C&DS)

Unlike today’s generation of fighters, the F-22’s tactical displays are not dedicated to providing sensor-
only information such as radar-only displays. Instead, the F-22 has four active-matrix liquid-crystal
Head-Down displays (HDD) and a Head-Up display (HUD) to provide highly integrated information
concerning the overall tactical situation. The middle HDD, or Tactical Situation Display (TSD), is an
8 � 8 in. color display that provides the pilot with current situational awareness and enhanced
navigational information, including location of airborne friendlies and threats, ownship heading,
navigational waypoints, etc. The left 6 � 6 in. color HDD, or Attack Display, provides the pilot with
the current offensive tactical situation and is tailored for weapons employment including target selection
and offensive and defensive missile engagement ranges. The right 6 � 6 in. color HDD, or Defensive
Display, provides the pilot with the current defensive tactical situation and is tailored for assessing
threat capability against the F-22 and includes location and identification of airborne and ground-
based engagement systems, missile engagement ranges, and countermeasures selection. The lower 6 �
6 in. color HDD provides status of aircraft expendables, stores, engine performance, and external doors
status.

32.4 Fault Tolerance and Recovery

Another characteristic of F-22 avionics is its robust fault tolerance and fault recovery by means of recon-
figuration — a mechanization that restores needed functionality after loss or failure of assets. Reconfigu-
ration is achieved by reallocating and/or reprogramming modular resources. Recovery implies full
operational capability or a degraded mode of operation, depending on the number of spare modular assets
left to support reconfiguration. “Minor reconfiguration” occurs due to the loss of a module (or several)
and “major reconfiguration” occurs due to the loss of an entire rack. Major reconfiguration can be caused
by battle damage, loss of an engine and/or generator, or overheating due to loss of cooling. Major
reconfiguration is the ability to reprogram and reconfigure a fully functional SEM-E rack to support
emergency backup functions such as UHF voice communications, TACAN navigation, instrument landing
system navigation, and MK XII identification for safe return to base or to complete a critical part of the
mission. Minor reconfiguration is accomplished by reprogramming modules to perform functions lost by
the failure of an identical common module. Minor reconfiguration is driven by a function prioritization
table. Once all spare modules of a common type have been used, the lowest-priority function is dropped
to support higher-priority functions. The common modular approach and reconfiguration flexibility
results in outstanding mission availability and graceful degradation.

32.5 Summary

The F-22 program is completing the manufacture of its nine EMD aircraft and moving into production;
339 aircraft are scheduled to be produced. The F-22 IAS is developed in three major functional blocks.
IAS flight testing will be complete in mid-2002. Flight testing on the first block is to begin on air vehicle
number 4, which is the IAS-equipped aircraft, in mid-2000. F-22 Initial Operational Capability is sched-
uled for December 2005.

The IAS places robust, first-of-its-kind, fully integrated tactical war fighting capabilities into the hands
of the pilot. The key avionics contribution to the F-22’s unprecedented combat effectiveness is its ability
to perform fusion of multisensor information to provide the pilot integrated target detection, identifi-
cation, tracking, and threat warning information on his displays, significantly reducing the pilot workload
during battle conditions. The common, modular, and open architecture allows the needed flexibility to
handle growth in the face of ever-changing threat and advancements in avionics technology. The inte-
grated IAS architecture and its superior functional capabilities in conjunction with the advanced F-22
capabilities in stealth, maneuverability, super cruise, and advanced armament will ensure F-22 air supe-
riority and mission effectiveness well into the 21st century.
© 2001 by CRC Press LLC

	Avionic Handbook
	CRC.Press.Avionics.Handbook
	toc
	The Avionics Handbook
	Preface
	Biography
	Contributors
	Contents

	CH-01
	The Avionics Handbook
	Table of Contents
	Section I Elements
	AS 15531/MIL-STD- 1553B Digital Time Division Command/Response Multiplex Data Bus
	1.1 Introduction
	1.1.1 Background
	1.1.2 History and Applications

	1.2 The Standard
	1.2.1 Hardware Elements
	1.2.1.1 Transmission Media
	1.2.1.2 Remote Terminal
	1.2.1.3 Bus Controller
	1.2.1.4 Bus Monitor
	1.2.1.5 Terminal Hardware

	1.3 Protocol
	1.3.1 Word Types
	1.3.1.1 Sync Fields
	1.3.1.2 Command Word
	1.3.1.3 Data Word
	1.3.1.4 Status Word
	1.3.1.4.1 Resetting the Status Word
	1.3.1.4.2 Status Word Bits

	1.3.2 Message Formats, Validation, and Timing
	1.3.2.1 Bus Controller to Remote Terminal
	1.3.2.2 Remote Terminal to Bus Controller
	1.3.2.3 Remote Terminal to Remote Terminal
	1.3.2.3.1 RT-RT Validation

	1.3.2.4 Mode Command Formats
	1.3.2.5 Broadcast Information Transfer Formats
	1.3.2.6 Command and Message Validation
	1.3.2.7 Illegal Commands
	1.3.2.8 Terminal Response Time
	1.3.2.9 Intermessage Gap
	1.3.2.10 Superseding Commands

	1.3.3 Mode Codes
	1.3.3.1 Mode Code Identifier
	1.3.3.2 Mode Code Functions
	1.3.3.3 Required Mode Codes
	1.3.3.4 Broadcast Mode Codes

	1.4 Systems-Level Issues
	1.4.1 Subaddress Utilization
	1.4.1.1 Extended Subaddressing

	1.4.2 Data Wraparound
	1.4.3 Data Buffering
	1.4.4 Variable Message Blocks
	1.4.5 Sample Consistency
	1.4.6 Data Validation
	1.4.7 Major and Minor Frame Timing
	1.4.8 Error Processing

	1.5 Testing
	Further Information

	CH-02
	The Avionics Handbook
	Table of Contents
	ARINC 429
	2.1 Introduction
	2.2 ARINC 419
	2.3 ARINC 429
	2.3.1�General
	2.3.2 History
	2.3.3 Design Fundamentals
	2.3.3.1 Equipment Interconnection
	2.3.3.2 Modulation
	2.3.3.3 Voltage Levels

	2.3.3.4 Impedance Levels
	2.3.3.4.1 Transmitter Output Impedance
	2.3.3.4.2 Receiver Input Impedance
	2.3.3.4.3 Cable Impedance

	2.3.3.5 Fault Tolerance
	2.3.3.5.1 Transmitter External Fault Voltage
	2.3.3.5.2 Transmitter External Fault Load Tolerance

	2.3.3.6 Fault Isolation
	2.3.3.6.1 Receiver Fault Isolation
	2.3.3.6.2 Transmitter Fault Isolation

	2.3.3.7 Logic-Related Elements
	2.3.3.7.1 Digital Language

	2.4 Message and Word Formatting
	2.4.1 Direction of Information Flow
	2.4.2 Information Element
	2.4.3 Information Identifier
	2.4.4 Source/Destination Identifier
	2.4.5 Sign/Status Matrix
	2.4.5.1 BCD Numeric
	2.4.5.2 BNR Numeric Data Words
	2.4.5.3 Discrete Data Words

	2.4.6 Data Standards

	2.5 Timing-Related Elements
	2.5.1 Bit Rate
	2.5.1.1 High-Speed Operation
	2.5.1.2 Low-Speed Operation

	2.5.2 Information Rates
	2.5.3 Clocking Method
	2.5.4 Word Synchronization
	2.5.5 Timing Tolerances

	2.6 Communications Protocols
	2.6.1 Development of File Data Transfer
	2.6.1.1 File Data Transfer Techniques
	2.6.1.2 Data Transfer
	2.6.1.3 Broadcast Data
	2.6.1.4 Transmission Order
	2.6.1.5 Data Bit Encoding Logic
	2.6.1.6 Bit-Oriented Protocol Determination

	2.6.2 Bit-Oriented Communications Protocol
	2.6.2.1 Link Data Units (LDU)
	2.6.2.2 Link Data Unit (LDU) Size and Word Count
	2.6.2.3 System Address Labels (SALs)
	2.6.2.4 Bit Rate and Word Timing
	2.6.2.5 Word Type
	2.6.2.6 Protocol Words
	2.6.2.6.1 Protocol Identifier
	2.6.2.6.2 Destination Code
	2.6.2.6.3 Word Count

	2.7 Applications
	2.7.1 Initial Implementation
	2.7.2 Evolution of Controls
	2.7.3 Longevity of ARINC 429

	2.8 ARINC 453

	CH-03
	The Avionics Handbook
	Table of Contents
	Commercial Standard Digital Bus
	3.1 Introduction
	3.2 Bus Architecture
	3.3 Basic Bus Operation
	3.4 CSDB Bus Capacity
	3.5 CSDB Error Detection and Correction
	3.6 Bus User Monitoring
	3.7 Integration Considerations
	3.7.1 Physical Integration
	3.7.2 Logical Integration
	3.7.3 Software Integration
	3.7.4 Functional Integration

	3.8 Bus Integration Guidelines
	3.9 Bus Testing
	3.10 Aircraft Implementations
	Defining Terms
	References
	Further Information
	Bibliography

	CH-04
	The Avionics Handbook
	Table of Contents
	Head-Up Displays
	4.1 Introduction
	4.2 HUD Fundamentals
	4.2.1 Optical Configurations
	4.2.1.1 Refractive Optical Systems
	4.2.1.2 Reflective Optical Systems

	4.2.2 Significant Optical Performance Characteristics
	4.2.2.1 Display Luminance and Contrast Ratio
	4.2.2.2 Head Motion Box
	4.2.2.3 HUD Display Accuracy
	4.2.2.4 HUD Parallax Errors
	4.2.2.5 Display Line Width

	4.2.3 HUD Mechanical Installation
	4.2.4 HUD System Hardware Components
	4.2.4.1 HUD Overhead Unit
	4.2.4.2 HUD Combiner
	4.2.4.3 HUD Computer
	4.2.4.4 HUD Control Panel

	4.2.5 Aspects of HUD Certification

	4.3 Applications and Examples
	4.3.1 Symbology Sets and Modes
	4.3.1.1 Primary Mode
	4.3.1.1.1 Primary Mode: Low-Visibility Take-off (HGS Guidance)
	4.3.1.1.2 Primary Mode: Climb
	4.3.1.1.3 Primary Mode: Cruise

	4.3.2 AIII Approach Mode
	4.3.2.1 AIII Mode System Monitoring
	4.3.2.2 Unusual Attitude

	4.3.3 Mode Selection and Data Entry
	4.3.3.1 Mode Selection
	4.3.3.2 Data Entry

	4.3.4 HUD Guidance
	4.3.4.1 Annunciations

	4.3.5 Recent Developments
	4.3.5.1 Color HUD
	4.3.5.2 Display of Enhanced Vision Sensor Images

	Defining Terms
	References

	CH-05
	The Avionics Handbook
	Table of Contents
	Head-Mounted Displays
	5.1 Introduction
	5.2 What Is an HMD?
	5.2.1 Image Sources for HMDs
	5.2.2 Optical Design
	5.2.3 Head Mounting

	5.3 The HMD as Part of the Visually Coupled System
	5.4 HMD System Considerations and Trade-Offs
	5.4.1 Ocularity
	5.4.2 Field of View and Resolution
	5.4.3 Luminance and Contrast in High Ambient Luminance Environments

	5.5 Summary
	Recommended Reading
	References

	CH-06
	The Avionics Handbook
	Table of Contents
	Display Devices: RSD™ (Retinal Scanning Display)
	6.1 Introduction
	6.2 An Example Avionic HMD Challenge
	6.3 CRTs and MFPs
	6.4 Laser Advantages, Eye Safety
	6.5 Light Source Availability and Power Requirements
	6.6 Microvision’s Laser Scanning Concept
	6.6.1 Government Testing of the RSD HMD Concept
	6.6.2 Improving RSD Image Quality

	6.7 Next Step
	Defining Terms
	Acknowledgments
	References
	Further Information

	CH-07
	The Avionics Handbook
	Table of Contents
	Night Vision Goggles
	7.1 Introduction
	7.1.1 NVG as Part of the Avionics Suite
	7.1.2 What Are NVG?
	7.1.3 History of NVG in Aviation
	7.1.3.1 1950s
	7.1.3.2 1960s
	7.1.3.3 1970s
	7.1.3.4 1980s
	7.1.3.5 1990s

	7.2 Fundamentals
	7.2.1 Theory of Operation
	7.2.2 Amplification of the Night Scene
	7.2.3 NVG Does Not Work without Compatible Lighting!
	7.2.4 Integration into Aircraft

	7.3 Applications and Examples
	7.3.1 Gen III and AN/AVS-6 ANVIS
	7.3.2 Gen II and AN/PVS-5 NVG
	7.3.3 Cat’s Eyes
	7.3.4 NVG HUD
	7.3.5 ANVIS HUD
	7.3.6 Panoramic NVG
	7.3.7 Low Profile NVG
	7.3.8 Integrated Systems
	7.3.9 Testing and Maintaining the NVG
	7.3.10 Lighting Design Considerations
	7.3.11 Types of Filters/Lighting Sources
	7.3.12 Evaluating Aircraft Lighting
	7.3.13 Measurement Equipment
	7.3.14 Nighttime Illumination — Moon Phases
	7.3.15 NVG in Civil Aviation

	References
	Further Information

	CH-08
	The Avionics Handbook
	Table of Contents
	Speech Recognition and Synthesis
	8.1 Introduction
	8.2 How Speech Recognition Works: A Simplistic View
	8.2.1 Types of Speech Recognizers
	8.2.1.1 Speaker-Dependent Systems
	8.2.1.2 Speaker-Independent Recognizers

	8.2.2 Vocabularies
	8.2.3 Modes of Operation for Speech Recognizers
	8.2.3.1 Continuous Recognition
	8.2.3.2 Discrete Word Recognition

	8.2.4 Methods of Error Reduction
	8.2.4.1 Reduced Vocabulary
	8.2.4.2 Grammar

	8.3 Recent Applications
	8.4 Flightdeck Applications
	8.4.1 Navigation Functions
	8.4.2 Communication Functions
	8.4.3 Checklist

	Defining Terms
	References
	Bibliography
	Further Information

	CH-09
	The Avionics Handbook
	Table of Contents
	Human Factors Engineering and Flight Deck Design
	9.1 Introduction
	9.2 Fundamentals
	9.2.1 Human Factors Engineering
	9.2.1.1 Usability
	9.2.1.2 Workload
	9.2.1.3 Situation Awareness

	9.2.2 Flight Deck Design
	9.2.2.1 Flight Deck Design Philosophy
	9.2.2.2 Pilot/Flight Deck Interfaces
	9.2.2.3 Pilot/Flight Deck Interaction

	9.2.3 Evaluation

	9.3 Additional Considerations
	9.3.1 Standardization
	9.3.2 Error Management
	9.3.3 Integration with Training/Qualification and Procedures

	References

	CH-10
	The Avionics Handbook
	Table of Contents
	Batteries
	10.1 Introduction
	10.2 General Principles
	10.2.1 Battery Fundamentals

	10.3 Lead-Acid Batteries
	10.3.1 Theory of Operation
	10.3.2 Cell Construction
	10.3.3 Battery Construction
	10.3.4 Discharge Performance
	10.3.5 Charge Methods
	10.3.6 Temperature Effects and Limitations
	10.3.7 Service Life
	10.3.8 Storage Characteristics
	10.3.9 Maintenance Requirements
	10.3.10 Failure Modes and Fault Detection
	10.3.11 Disposal

	10.4 Nickel-Cadmium Batteries
	10.4.1 Theory of Operation
	10.4.2 Cell Construction
	10.4.3 Battery Construction
	10.4.4 Discharge Performance
	10.4.5 Charge Methods
	10.4.6 Temperature Effects and Limitations
	10.4.7 Service Life
	10.4.8 Storage Characteristics
	10.4.9 Maintenance Requirements
	10.4.10 Failure Modes and Fault Detection
	10.4.11 Disposal

	10.5 Applications
	10.5.1 Commercial Aircraft
	10.5.2 Military Aircraft

	Defining Terms
	References
	Further Information

	CH-11
	The Avionics Handbook
	Table of Contents
	SECTION II Functions
	Boeing B-777: Fly-By- Wire Flight Controls
	11.1 Introduction
	11.2 System Overview
	11.3 Design Philosophy
	11.4 System Architecture
	11.4.1 Flight Deck Controls
	11.4.2 System Electronics
	11.4.3 ARINC 629 Data Bus
	11.4.4 Interface to Other Airplane Systems
	11.4.5 Electrical Power

	11.5 Control Surface Actuation
	11.5.1 Fly-by-Wire Actuation
	11.5.2 Mechanical Control

	11.6 Fault Tolerance
	11.7 System Operating Modes
	11.8 Control Laws and System Functionality
	11.8.1 Pitch Control
	11.8.2 Yaw Control
	11.8.3 Roll Control
	11.8.4 757 Test Bed
	11.8.5 Actuator Force-Fight Elimination

	11.9 Primary Flight Controls System Displays and Annunciations
	11.10 System Maintenance
	11.10.1 Central Maintenance Computer
	11.10.2 Line Replaceable Units
	11.10.3 Component Adjustment

	11.11 Summary
	Defining Terms

	CH-12
	The Avionics Handbook
	Table of Contents
	Electrical Flight Controls, From Airbus A320/330/340 to Future Military Transport Aircraft: A Fam...
	12.1 Introduction
	12.2 Fly-by-Wire Principles
	12.3 Main System Features
	12.3.1 Computer Arrangement
	12.3.1.1 Redundancy
	12.3.1.2 Dissimilarity
	12.3.1.3 Serve-Control Arrangement
	12.3.1.4 Flight Control Laws
	12.3.1.5 Computer Architecture
	12.3.1.6 Installation

	12.4 Failure Detection and Reconfiguration
	12.4.1 Flight Control Laws
	12.4.2 Actuator Control and Monitor
	12.4.3 Comparison and Robustness
	12.4.4 Latent Failures
	12.4.5 Reconfiguration
	12.4.6 System Safety Assessment
	12.4.7 Warning and Caution

	12.5 A340 Particularities
	12.5.1 System
	12.5.2 Control Laws

	12.6 Design, Development, and Validation Procedures
	12.6.1 Fly-by-Wire System Certification Background
	12.6.2 The A320 Experience
	12.6.2.1 Design
	12.6.2.2 Software
	12.6.2.3 System Validation

	12.6.3 The A340 Experience
	12.6.3.1 Design
	12.6.3.2 Automatic programming
	12.6.3.3 System validation

	12.7 Future Trends
	References

	CH-13
	The Avionics Handbook
	Table of Contents
	Navigation Systems
	13.1 Introduction
	13.2 Coordinate Frames
	13.3 Categories of Navigation
	13.4 Dead Reckoning
	13.5 Radio Navigation
	13.6 Celestial Navigation
	13.7 Map-Matching Navigation
	13.8 Navigation Software
	13.9 Design Trade-Offs
	References
	Further Information

	CH-14
	The Avionics Handbook
	Table of Contents
	Navigation and Tracking
	14.1 Introduction
	14.2 Fundamentals
	14.3 Applications
	14.3.1 Position and Velocity along a Line
	14.3.2 Position and Velocity in Three-Dimensional Space
	14.3.3 Position, Velocity, and Acceleration of a Tracked Object
	14.3.4 Position, Velocity, and Attitude in Three-Dimensional Space (INS Aiding)
	14.3.5 Individual GPS Measurements as Observables

	14.4 Conclusion
	References
	Further Information

	CH-15
	The Avionics Handbook
	Table of Contents
	Flight Management Systems
	15.1 Introduction
	15.2 Fundamentals
	15.2.1 Navigation
	15.2.1.1 Navigation Performance
	15.2.1.2 Navigation Receiver Management

	15.2.2 Flight Planning
	15.2.2.1 Flight Plan Construction
	15.2.2.2 Lateral Flight Planning
	15.2.2.3 Vertical Flight Planning
	15.2.2.4 Atmospheric Models

	15.2.3 Trajectory Predictions
	15.2.3.1 Lateral Profile
	15.2.3.2 Vertical Profile
	15.2.3.3 Maneuver Types
	15.2.3.4 NDB Vertical Angles

	15.2.4 Performance Computations
	15.2.4.1 Speed Schedule Computation
	15.2.4.2 Maximum and Optimum Altitudes

	15.2.5 Guidance
	15.2.5.1 Lateral Guidance
	15.2.5.2 Vertical guidance

	15.3 Summary

	CH-16
	The Avionics Handbook
	Table of Contents
	Synthetic Vision
	16.1 Introduction
	16.2 Background
	16.3 Applications
	16.4 Concepts
	16.5 Challenges
	16.6 Conclusion
	Defining Terms
	Further Information

	CH-17
	The Avionics Handbook
	Table of Contents
	Enhanced Situation Awareness
	17.1 Enhanced Ground Proximity Warning System
	17.2 Fundamentals of Terrain Avoidance Warning
	17.3 Operating Modes
	17.3.1 Mode 1 — Excessive Descent Rate
	17.3.2 Mode 2 — Excessive Closure Rate
	17.3.3 Mode 3 — Accelerating Flight Path Back into the Terrain after Take-off
	17.3.4 Mode 4 — Unsafe Terrain Clearance Based on Aircraft Configuration
	17.3.5 Mode 5 — Significant Descent Below the ILS Landing Glide Path Approach Aid
	17.3.6 Mode 6 — Miscellaneous Callouts and Advisories
	17.3.7 Mode 7 — Flight into Windshear Conditions
	17.3.8 Envelope Modulation
	17.3.9 “Enhanced Modes”
	17.3.9.1 Terrain Proximity Display
	17.3.9.2 Terrain Ahead Alerting
	17.3.9.3 Terrain Clearance Floor

	17.4 EGPWS Standards
	Further Information

	CH-18
	The Avionics Handbook
	Table of Contents
	TCAS II
	18.1 Introduction
	18.2 Components
	18.3 Surveillance
	18.4 Protected Airspace
	18.5 Collision Avoidance Logic
	18.6 Cockpit Presentation

	CH-19
	The Avionics Handbook
	Table of Contents
	SECTION III Requirements, Design Analysis, Validation, and Certification
	Setting Requirements
	19.1 Requirements-Setting for Avionics Systems
	References

	CH-20
	The Avionics Handbook
	Table of Contents
	Digital Avionics Modeling and Simulation
	20.1 Introduction
	20.2 Underlying Principles
	20.2.1 Historic Perspective
	20.2.2 Economic Perspective
	20.2.3 Design Perspective
	20.2.4 Market Perspective
	20.2.5 Requirements in the Trade Space
	20.2.6 Technical Underpinnings of the Practice
	20.2.7 Summary Comments

	20.3 Best Practices
	20.3.1 Requirements Engineering
	20.3.2 Top-Down System Simulation
	20.3.3 TDSS Plan
	20.3.4 TDSS Process
	20.3.5 Software Modeling in TDSS

	20.4 Performance Modeling for System Partitioning (A Case Study)
	20.4.1 System Description
	20.4.2 Model Development
	20.4.3 Modeling Results
	20.4.4 Summary

	20.5 Research Issues and Summary
	Defining Terms
	References
	Further Information

	CH-21
	The Avionics Handbook
	Table of Contents
	Formal Methods
	21.1 Introduction
	21.2 Fundamentals of Formal Methods
	21.2.1 Formal Specification
	21.2.2 Formal Verification
	21.2.3 Limitations

	21.3 Example Application
	21.3.1 English Specification of the Example System
	21.3.2 Formally Specifying the Example System
	21.3.2.1 Events
	21.3.2.2 State Description
	21.3.2.3 Formal Specification of Nextstate Function
	21.3.2.4 Specifying the att_cws��Mode
	21.3.2.5 Specifying the cas_eng Mode
	21.3.2.6 Specifying the fpa_sel Mode
	21.3.2.7 Specifying the alt_eng Mode
	21.3.2.8 Input to Displays
	21.3.2.9 Other Actions
	21.3.2.10 Initial State

	21.3.3 Formal Verification of the Example System
	21.3.4 Alternative Methods of Specifying Requirements
	21.3.1 English Specification of the Example System

	21.4 Some Additional Observations
	Defining Terms
	References
	Further Information

	CH-22
	The Avionics Handbook
	Table of Contents
	Electronic Hardware Reliability
	22.1 Introduction
	22.2 Product Requirements and Constraints
	22.3 The Product Life Cycle Environment
	22.4 Characterization of Materials, Parts, and Manufacturing Processes
	22.5 Parts Selection and Management
	22.5.1 Candidate Part and Part Manufacturer Selection
	22.5.2 Manufacturer, Part, and Distributor Assessment
	22.5.3 Performance Assessment
	22.5.4 Reliability Assessment
	22.5.5 Assembly Issues
	22.5.5.1 Assembly Compatibility
	22.5.5.2 Routing Compatibility
	22.5.5.3 Test and Rework Acceptability

	22.5.6 Life Cycle Mismatch Assessment
	22.5.7 Risk Management

	22.6 Failure Modes and Mechanisms
	22.7 Design Guidelines and Techniques
	22.7.1 Protective Architectures
	22.7.2 Stress Margins
	22.7.3 Derating
	22.7.4 Redundancy

	22.8 Qualification and Accelerated Testing
	22.8.1 Virtual Qualification
	22.8.2 Accelerated Testing

	22.9 Manufacturing Issues
	22.9.1 Process Qualification
	22.9.2 Manufacturability
	22.9.3 Process Verification Testing

	22.10 Summary
	Defining Terms
	References
	Further Information

	CH-23
	The Avionics Handbook
	Table of Contents
	Certification of Civil Avionics
	23.1 Introduction
	23.2 Regulatory Basis of the Federal Aviation Administration
	23.3 FAA Approvals of Avionics Equipment
	23.3.1 Technical Standard Order
	23.3.2 Supplemental Type Certificate
	23.3.3 Type Certificate, Amended Type Certificate, and Service Bulletin

	23.4 FAA Designees
	23.5 System Requirements
	23.6 Safety Assessment
	23.7 Environmental Qualification
	23.8 Software Assurance
	23.9 Manufacturing Approvals
	23.10 The Joint Aviation Authorities
	23.11 Summary
	Defining Terms
	Further Information

	CH-24
	The Avionics Handbook
	Table of Contents
	Processes for Engineering a System
	24.1 Introduction
	24.2 Structure of the Standard
	24.3 Role of the EIA 632 Standard
	24.4 Heritage of EIA 632
	24.5 The Processes
	24.5.1 Process Hierarchy
	24.5.2 Technical Management Processes
	24.5.3 Acquisition and Supply Processes
	24.5.4 System Design Processes
	24.5.5 Product Realization Processes
	24.5.6 Technical Evaluation Processes

	24.6 Project Context
	24.7 Key Concepts
	24.7.1 The System and Its Products
	24.7.2 Building Block Framework
	24.7.3 Development of Enabling Products
	24.7.4 Relationship Between the Building Blocks and the Processes
	24.7.5 Hierarchy of Building Blocks
	24.7.6 Requirements
	24.7.7 Functional, Performance, and Interface Requirements
	24.7.8 Verification and Validation

	Defining Terms
	References
	Further Information

	CH-25
	The Avionics Handbook
	Table of Contents
	Electromagnetic Environment (EME)
	25.1 Introduction
	25.2 EME Energy Susceptibility
	25.2.1 Soft Faults
	25.2.2 MTBUR/MTBF

	25.3 Civil Airworthiness Authority Concerns
	25.3.1 EME Compliance Demonstration for Electrical/Electronic Systems
	25.3.2 EME Energy Propagation

	25.4 Architecture Options for Fault Mitigation
	25.4.1 Electrical/Electronic System
	25.4.2 Digital Computing Platform

	Defining Terms
	References

	CH-26
	The Avionics Handbook
	Table of Contents
	SECTION IV Software
	Ada
	26.1 Introduction
	26.1.1 Software Engineering
	26.1.2 Abstraction and Freedom
	26.1.3 From Ada 83 to Ada 95

	26.2 Key Concepts
	26.2.1 Overall Structure
	26.2.2 Errors and Exceptions
	26.2.3 Scalar Type Model
	26.2.4 Arrays and Records
	26.2.5 Access Types
	26.2.6 Error Detection

	26.3 Abstraction
	26.3.1 Objects and Inheritance
	26.3.2 Classes and Polymorphism
	26.3.3 Genericity
	26.3.4 Object Oriented Terminology
	26.3.5 Tasking

	26.4 Programs and Libraries
	26.4.1 Input-Output
	26.4.2 Numeric Library
	26.4.3 Running a Program

	References
	Further Information

	CH-27
	The Avionics Handbook
	Table of Contents
	RTCA DO-178B/EUROCAE ED-12B
	27.1 Introduction
	27.1.1 Comparison with Other Software Standards
	27.1.2 Document Overview
	27.1.3 Software as Part of the System

	27.2 Software Life-Cycle Processes
	27.2.1 Software Planning Process
	27.2.2 Software Development Process

	27.3 Integral Processes
	27.3.1 Software Verification
	27.3.2 Software Configuration Management
	27.3.3 Software Quality Assurance
	27.3.4 Certification Liaison Process

	27.4 Additional Considerations
	27.4.1 Previously Developed Software
	27.4.2 Tool Qualification

	27.5 Additional Guidance
	27.6 Synopsis
	References
	Further Information

	CH-28
	The Avionics Handbook
	Table of Contents
	SECTION V Implementation
	Fault-Tolerant Avionics
	28.1 Introduction
	28.1.1 Motivation
	28.1.2 Definitional Framework
	28.1.3 Dependability
	28.1.4 Fault Tolerance Options
	28.1.5 Flight Systems Evolution
	28.1.6 Design Approach

	28.2 System Level Fault Tolerance
	28.2.1 General Mechanization
	28.2.2 Redundancy Options
	28.2.3 Architectural Categories
	28.2.3.1 Fault Masking
	28.2.3.2 Reconfiguration
	28.2.3.3 Hybrid Fault Tolerance
	28.2.3.4 Hybrid Fault Tolerance

	28.2.4 Integrated Mission Avionics
	28.2.5 System Self Tests

	28.3 Hardware-Implemented Fault Tolerance (Fault-Tolerant Hardware Design Principles)
	28.3.1 Voter Comparators
	28.3.2 Watchdog Timers

	28.4 Software-Implemented Fault Tolerance—State Consistency
	28.4.1 Error Detection
	28.4.1.1 Replication Checks
	28.4.1.2 Timing Checks
	28.4.1.3 Reversal Check (Analytical Redundancy)
	28.4.1.4 Coding Checks
	28.4.1.5 Reasonableness Checks
	28.4.1.6 Structural Checks
	28.4.1.7 Diagnostic Checks

	28.4.2 Damage Confinement and Assessment
	28.4.3 Error Recovery
	28.4.4 Fault Treatment
	28.4.5 Distributed Fault Tolerance

	28.5 Software Fault Tolerance
	28.5.1 Multiversion Software
	28.5.2 Recovery Blocks
	28.5.3 Trade-Offs

	28.6 Summary
	28.6.1 Design Analyses
	28.6.2 Safety
	28.6.3 Validation
	28.6.4 Conclusion

	References
	Further Information

	CH-29
	The Avionics Handbook
	Table of Contents
	Boeing B-777
	29.1 Introduction
	29.2 Background
	29.3 Boeing 777 Airplane Information Management System (AIMS)
	29.4 Cabinet Architecture Overview
	29.5 Backplane Bus
	29.6 Maintenance
	29.7 Growth
	References
	Further Information

	CH-30
	The Avionics Handbook
	Table of Contents
	New Avionics Systems —Airbus A330/A340
	30.1 Overview
	30.2 Highlights
	30.3 Systems
	30.4 Cockpit
	30.5 User Involvement
	30.6 Avionics
	30.7 Instruments
	30.8 Navigation
	30.9 Flight Controls
	30.10 �Central Maintenance System
	30.11 Communications
	30.12 Flexibility and In-Service Updates
	30.13 Development Environment
	30.14 Support Environment

	CH-32
	The Avionics Handbook
	Table of Contents
	Lockheed F-22 Raptor
	32.1 F-22 Role and Mission
	32.2 IAS Hierarchical Functional Design
	32.3 Integrated Avionics Architecture
	32.3.1 Common Integrated Processor (CIP)
	32.3.1.1 CIP LRM Types
	32.3.1.2 CIP Buses
	32.3.1.3 CIP Software
	32.3.1.4 CIP Signal Flow

	32.3.2 APG-77 Radar
	32.3.3 Communication, Navigation, Identification (CNI)
	32.3.4 Electronic Warfare (EW)
	32.3.5 Stores Management System (SMS)
	32.3.6 Inertial Reference System (IRS)
	32.3.7 Controls and Displays (C&DS)

	32.4 Fault Tolerance and Recovery
	32.5 Summary

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC
	References: References
	Further Information: Further Information

