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Chapter 1

Preliminaries

The word “Thermodynamics” is derived from the greek words therme, meaning “heat”,
and dynamikos, meaning force or power. It is the area of physics that deals with the
relationship of “heat” to other forms of energy and to mechanical work, and examines how
these quantities are related to the measurable properties of a thermodynamic system.
A thermodynamic system is a macroscopic portion of the universe, by which we mean that
it consists of a very large number of more elementary constituents, each of which is able to
carry mechanical energy. In contrast, the rest of the universe is called the environment
and the separation between the “system” and the “environment” is generally assumed
to occur via a boundary separating the two. Thermodynamics assumes from the start
that the elementary constituents of the system and its environment are so many that
fluctuations about their average behavior can be completely ignored.

Every thermodynamic system is able to store energy by virtue of the fact that its
elementary constituents possess mechanical energy. A fundamental objective of thermo-
dynamics is to describe the interaction of such a system with the environment or the
interaction between different systems among themselves. Such interactions inevitably
lead to an exchange of energy between them and there are broadly two ways in which this
can occur: (i) either energy enters or leaves the system because an external mechanical
constraint is changed (this occurs, for example, when a gas expands or is compressed and
its volume changes) or (ii) energy spontaneously moves across the boundary by transfer
on the molecular level (for instance, when a hot body is brought in contact with a cold
body). We say that the first kind of energy transfer occurs by useful work, the second
occurs by Heat.

The possibility of transforming heat into useful work and vice-versa had been recog-
nized for a very long time, in fact even before the nature of heat as a transfer of energy
was understood. Heat was originally supposed to be a kind of fluid, called “caloric”,
flowing from one body to another. This understanding was replaced in the mid and late

1



2 CHAPTER 1. PRELIMINARIES

nineteenth century by the more modern mechanical theory of heat, thanks to the work of
Mayer, Joule, Maxwell, Boltzmann and others. Since every macroscopic system is made
up of elementary constituents, exchanges of energy must eventually be mechanical pro-
cesses occurring on a microscopic scale. Understood in this way thermodynmics becomes
a special branch of mechanics: the mechanics, classical or quantum as the need may be,
of very many elementary constituents interacting with each other.

Anyone who has tried to solve the equations of motion for more than two interacting
particles knows already that this is an extremely difficult, if not impossible task. The
general N body problem contains 6N variables. Subtracting the ten first integrals of the
motion (one for energy, three for the motion of the center of mass, three for the total
momentum, three for the total angular momentum) leaves us with 6N − 10 variables,
subject to the same number of initial conditions, to contend with. If the system has
on the order of Avogadro’s number (6.023 × 1023) of elementary constituents then the
problem is computationally unfeasable, even assuming that the initial conditions could
all be obtained experimentally, which itself is possibly still less feasable a task. Yet, one
should be sensitive to the fact that even if such a solution could be obtained, it would
give us information that is far in excess of what we can reasonably measure or control.
In fact, we are able in practice to impose only very coarse constraints on a macroscopic
system and to measure only a very small number of its properties (an example would be
the pressure, volume and temperature of a gas) compared to the number of mechanical
variables involved in a microscopic treatment. The treatment via mechanics, even if it
could be accomplished, would therefore be quite useless from a practical standpoint. A
way out, originally proposed by Boltzmann, is to treat the mechanical system statistically
i.e., asking not detailed questions concerning the motion of the individual constituents
but rather asking questions about the average behavior of the system. This microscopic
approach, combining mechanics and statistics, leads to “Statistical Mechanics”, a part of
which we will examine in the latter half of this text.

Because we measure and control a very small number of properties of the system,
some of which are related only statistically to its underlying microscopic properties, it is
worth asking how far we can go if we simply ignore the underlying mechanics. This is
the approach of Thermodynamics, which concentrates only on relationships between the
measurable properties of the system. Of course it requires us to define clearly the properties
(variables) we use in our description of the macroscopic system by describing instruments
to precisely measure them. Once this is accomplished, the sole task of thermodynamics
is to codify experiment by postulating a set of principles relating these “thermodynamic
varables”. On the surface at least this sort of description would seem to have little to do
with the theory of dynamical systems. It is an interesting fact then that Thermodynamics
admits a rather elegant formulation as a dynamical system in its own right. We will show
this in a forthcoming chapter.

Both approaches have their advantages and disadvantages. In the microscopic ap-
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proach (Statistical Mechanics) the system must be modeled mechanically in a fairly de-
tailed fashion and our understanding of it is proportionally more profound, but the mathe-
matical difficulties involved in the actual transition from theoretical model to experimental
predictions and vice versa are also greater. In the macroscopic approach (Thermodynam-
ics, as conceived by Mayer, Carnot, Clausius, Kelvin and many others) our understanding
of the actual processes between the elementary constituents is sacrificed for mathematical
simplicity. It is remarkable indeed that many deep results can yet be obtained without any
reference whatsoever to the underlying mechanics. This must be understood as evidence of
the power of statistical averaging: when very large numbers are involved statistical fluctu-
ations become vanishingly small and Thermodynamics becomes an excellent effective but
nevertheless complete and internally consistent theory, within its realm of applicability.

1.1 Equilibrium States and State Variables

A thermodynamic state is the macroscopic condition of a thermodynamic system as de-
scribed by the values of a small number of variables, such as the temperature, pressure,
density, volume, composition and others that will be defined in the following chapters.
These are called the state variables and together the state variables span the thermo-
dynamic phase space of the system. They are always few in number when compared to
the number of mechanical variables that would be required, and generally may be strictly
defined only when the system is in “equilibrium” (equilibrium refers to a situation in
which there is no change of the state variables in time.) They define a space of possible
equilibrium states of the system. An essential task of thermodynamics is to discover a
reasonably “complete” set of state variables for the given system.

Thermodynamic variables are often divided into two categories: the intensive vari-
ables, which are independent of the system size or the quantity of matter contained in the
system and the extensive variables whose values, by contrast, do depend on the system
size or the amount of matter in the system. For example, temperature is an intensive
property of a thermodynamic system. The same applies to the density of a homogeneous
system since if the size (volume) of such a system is scaled by some factor, then its mass
is scaled by the same factor and therefore the density stays constant. On the other hand,
the total energy of a system of weakly interacting particles, or of particles with very short
range interactions, is extensive.

Now volume is a geometric quantity for which we have a well developed intuition and
the mass density, ρ(~r), defined according to

M =

∫
V
d3~rρ(~r), (1.1.1)

is likewise well understood. Let us precisely define two other basic of state variables, viz.,
the pressure, and the temperature. Others will be defined as the subject unfolds.
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Figure 1.1: A gas is confined in a chamber with a piston at one end

1.1.1 Pressure

Imagine that the gas is confined in a container with a piston at one end. The piston gives
us some measure of control over the volume of the gas (see figure 1.1). The gas exerts
a force on the piston, which can be measured by placing weights on the piston until the
upward force of the gas on the piston balances its weight. In this state of mechanical
equilibrium we may crudely define the pressure of the gas as the force, F , exerted by it
per unit area, A, of the piston

p =
F

A
(1.1.2)

but this expression is really only the definition of the average pressure. Note that the
direction of the force is perpendicular (normal) to the surface bounding the gas, equiva-
lently that of the piston. A more general definition of pressure may be given by expressing
the above relationship in terms of infinitesimal quantities. Consider any macroscopic,
continuous system and a surface within the system or bounding it. Let d~S be an infinites-
imal, directed element of this surface (the direction is taken to be the outward normal,
the word “outward” signifying that it points into the environment). Let the force on this
infinitesimal element of surface and normal to it be d~Fn, then define the pressure as the
proportionality in the relationship

d~Fn = pd~S (1.1.3)

between ~Fn and d~S. Thus the force on a finite area of any surface would be

~Fn =

∫
S
pd~S (1.1.4)

where the integral is taken over the portion of the surface under consideration. If the
pressure is constant we obviously recover the simple definition in (1.1.3). We say that



1.1. EQUILIBRIUM STATES AND STATE VARIABLES 5

two systems in contact with one another are in mechanical equilibrium when their
pressures are equal.

1.1.2 The Zeroeth Law and Temperature

Temperature is more subtle. We have an intuitive understanding of temperature in terms
of “hot” and “cold” or better still a number we can read on a “thermometer”. For the
purposes of physics, however, this is not enough and we must give a precise meaning to
temperature. Consider two thermodynamic systems, A and B, one of which is “hotter”
than the other. Now bring them into contact with one another, allowing them only to
exchange energy through an immovable partition so that no mechanical work is done
by one system on the other, then experience tells us that the “hotter” system becomes
“colder” and the “colder” system becomes “hotter” until finally, after a very long time
(which depends on the composition of the systems), the two bodies are equally “hot”. At
this point they have ceased to exchange energy between themselves on the average and
we say that they are in thermal equilibrium. Thermal equilibrium is an equivalence
relation between systems: first we specify that every thermodynamic system must be in
thermal equilibrium with itself so that thermal equilibrium is a reflexive relation, then we
claim that it is also right-Euclidean, and codify this claim in so-called zeroeth law of
thermodynamics:

Zeroeth Law: If two thermodynamic systems are in thermal equilibrium with a third
system then they are in thermal equilibrium with each other.

Any relation that is reflexive and Euclidean is an equivalence relation (the zeroeth law of
thermodynamics guarantees that thermal equilibrium is both symmetric and transitive)
and every equivalence relation divides a set into disjoint subsets. In this case, the disjoint
subsets of the set of all thermodynamic systems would consist of all the systems in thermal
equilibrium with one another. These disjoint subsets may be labeled, and “Temperature”
is just the variable used in the labeling process. So we may give the following definition:

Temperature is that variable of thermodynamic systems, whose equality ensures that
that they are in thermal equilibrium and whose inequality ensures that they are not in
thermal equilbrium with each other. Systems that are not in thermal equilibrium with
each other will exchange energy between themselves if they are brought in contact with
one another, even if no mechanical work is done in the process.

Note that the zeroeth law of thermodynamics does not guarantee order (with respect
to “hot” or “cold”) or continuity of the temperature, but these are properties that we will
nevertheless associate with this variable. With this operational definition of temperature,
we now ask how we should quantify it. There are many properties of matter that depend
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monotonically on the temperature and that can be measured directly. For example, we
know that materials expand and contract when heated and cooled respectively at fixed
pressure, so length, area and volume which can be measured geometrically are examples of
such properties.1 Likewise, the pressure of a gas kept at a fixed volume will increase with
increasing temperature, so pressure is also such a property. Another example would be the
electrical resistance of materials which grows with temperature. Properties of materials
that change monotonically with the temperature are called thermometric properties.

We can use thermometric properties to build thermometers as follows. Let X be the
thermomentric property of some material we wish to turn into a thermometer. We simply
define the scale of temperature in such a way that the variation of the thermometric
property is a linear function of the temperature, then

X(T ) = X0 + α−1(T − T0) (1.1.5)

Clearly X0 represents the value of X at T0 and α determines the slope of the scale.
Inverting we have

T (X) = T0 + α(X −X0) (1.1.6)

The two constants that define this linear scale must be fixed by choosing two phenomena
which are known to always occur at the same temperature. It’s also best to choose them
in such a way that they are very easily reproducible. Since water is ubiquitous on our
planet, choose two phenomena connected with water. The candidates could be the boiling
of pure water at sea level and the freezing of pure water (more accurately, its tripple point,
i.e., when water coexists in equilibrium with water vapor, and ice), again at sea level. Call
the temperatures associated with these events Tb and Tf respectively and the values of X
associated with these events Xb and Xf . Then, replacing (X0, T0) with (Xf , Tf ), we have

Tb = Tf + α(Xb −Xf )⇒ α =
Tb − Tf
Xb −Xf

(1.1.7)

and so

T = Tf +
Tb − Tf
Xb −Xf

(X −Xf ) (1.1.8)

The thermometric property, X, is easily measured and so we fix the values of Xf and Xb.
Finally complete setting up the temperature scale by choosing convenient values for Tf
and Tb. A particularly simple choice would be Tf = 0 and Tb = 100, then

T (C) =
100

Xb −Xf
(X −Xf ) (1.1.9)

1A notable exception is water, which contracts as the temperature rises from 0◦C to about 4◦C and
then expands monotonically until it vaporizes at 100◦C.
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gives the temperature for any value of X once Xf and Xb are determined. This is the
Celsius scale (C), named after the astronomer Anders Celsius who developed it in 1742.
Alternatively, by choosing Tf = 32, Tb = 212, we get the Fahrenheit scale (F),

T (F ) = 32 +
180

Xb −Xf
(X −Xf ), (1.1.10)

which is named after Daniel Gabriel Fahrenheit who proposed it in 1724.2

Both the Celsius and Fahrenheit scales are linear scales and can be directly compared
to one another. Using C and F to represent temperatures measured in the Celsius and
the Fahrenheit scales respectively (instead of T (C) and T (F )) we see that

C =
5

9
(F − 32)

F = 32 +
9

5
C (1.1.11)

There is nothing special about either of the scales above and nothing special about the
choice of fixed points. All that is important is to remember that they are linear scales.
In general we could choose T = T (X,α, β) to be a more complicated monotonic function
with two arbitrary constants that could subsequently be determined as above. This would
not lead to any new physics. The linear function is the simplest monotonic function and
therefore the best choice.

1.1.3 The Thermodynamic or Absolute Temperature Scale

Because we never prescribed the material or thermometric property that we would use, an
implicit assumption that has been made in the above discussion is that the temperature
can be defined as a linear function of all thermometric properties of all materials. Actually
this is not the case, for if we were to assume a linear relationship between the temperature
and a particular thermometric property of some material and construct a thermometer
from it, we should find that another thermometric property of the same material or the
same thermometric property of a different material would no longer be a linear function
of the temperature as measured by our thermometer. We must therefore choose one
thermometric property of one particular substance which we then take as our standard.
The standard material chosen is an ideal gas (which will be precisely defined later and
which can be approximated in the laboratory to excellent precision by real gases at very

2Fahrenheit actually did not use the two fixed points we mention in this text. Instead he used a certain
mixture of ice, water and ammonium chloride, which is known to achieve a fixed temperature regardless
of the initial temperatures of its constituents (such mixtures are called frigorific mixtures), for the lower
fixed point and called it Tf = 0. He then used the tripple point of water as the upper fixed point and
called it Tb = 32.
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Figure 1.2: Pressure vs Temperature for different gases at constant volume

low densities; experiments show that the behavior of gases at very low densities is nearly
independent of the molecular structure of the gas provided that the temperature is above
the point at which the gas liquefies). The standard thermometric property chosen is
generally the pressure of the gas at constant volume and the thermometer so constructed
is called a constant volume gas thermometer.3

If we now plot the pressure vs. the temperature as measured by our thermometer for
different gases (low densities and fixed but different volumes), we get straight lines similar
to those shown in figure 1.2. The different lines refer to the different (constant) volumes
of the gases. Notice that in all cases the lines intersect the T axis at a fixed point, i.e.,
C = −273.16 Celsius. At this temperature the pressure would be exactly zero. If we
were to attempt to extend the line to the left, the pressure would end up being negative.
Since pressure cannot be negative, we must consider the temperature −273.16◦C to be
the absolute minimum temperature attainable. It is often referred to as absolute zero and
serves as a basis for a new scale (the absolute or Kelvin scale, K) in which the size of one
degree is taken to be precisely the same as the size of one degree Celsius. Therefore the
conversion between these temperatures is

K = C + 273.16 (1.1.12)

Our definition of temperature via the pressure of a constant volume gas thermometer
means that p is proportional to T at constant volume (for an ideal gas).

Again, plots of volume vs. temperature as measured by our thermometer for different
gases (low densities and fixed but different pressures), also turn out to be straight lines as
shown in figure 1.3 and plots of pressure vs. volume holding the temperature as measured

3See any elementary text for a description of how the constant volume gas thermometer is built.
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Figure 1.3: Volume vs Temperature for different gases at constant pressure
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Figure 1.4: Pressure vs Volume for different gases at constant temperature

by our thermometer fixed for different gases (low densities and fixed but different temper-
atures) gives the set of curves shown in figure 1.4. These plots indicate that we should
expect a relationship between the pressure, volume and temperature of ideal gases of the
form

f(p, V, T ) = 0, (1.1.13)

where f is some function. Such an equation is a constraint that defines a hypersurface
in the space of thermodynamic variables, showing that not all points in this space are
acceptable equilibrium states but only those that lie on the constraint surface. A careful
examination of the curves in 1.2, 1.3 and 1.4 leads to the famous ideal gas law of Boyle,
Charles and Guy-Lussac,

pV = νRT (1.1.14)
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Figure 1.5: Hypersurface of acceptable equilibrium states of an ideal gas

where p is the pressure of the gas, V is its volume, T its absolute temperature (measured
in Kelvins), ν is the number of moles present and R is the ideal gas constant R = 8.31
J/mol·K. The surface on which acceptable equilibrium states of the gas live is shown in
figure 1.5

Although we have considered a pure gas, made of a single type of molecule, the calcu-
lations above are straightforwardly generalized to a homogeneous mixture of (ideal) gases.
Let us define the partial pressure of a gas in a mixture of gases as the pressure that
the gas would exert if it alone occupied the entire volume occupied by the mixture. Then
Dalton’s law states that the pressure exerted by a mixture of gases is the sum of the
partial pressures exerted by the components of the mixture. Thus consider a mixture of
N gases, occupying a volume V . If j labels the gases, the partial pressure of each satisfies
the relation

pjV = νjRT (1.1.15)

where νj is the number of moles in of type j in the mixture. By Dalton’s law, the pressure
exerted by the mixture is

p =
N∑
j=1

pj =
RT

V

N∑
j=1

νj (1.1.16)

and so the equation of state for the mixture is the same as that of the pure gas,

pV = νRT (1.1.17)

with the understanding that ν =
∑

j νj .
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1.2 Thermodynamic Processes

A thermodynamic process is any process that takes a macroscopic system from one
equilibrium state to another. Since every equation of state is a constraint on the state
variables, together they define a hypersurface in the thermodynamic phase space, much
like the Hamiltonian of a conservative mechanical system defines a hypersurface in the
mechanical phase space upon which all the dynamics occurs. Allowed thermodynamic
states are represented by points in the hypersurface and thermodynamic processes are
trajectories in it. The dimension of the hypersurface is the number of state variables less
the number of equations of state.

Broadly, thermodynamic processes may be divided into two classes, which we can
motivate by considering the following examples. Consider a gas which is enclosed inside
a container of volume V1. Suppose that the container has a stopcock which is closed but
which may be opened at any time and that the container is itself enclosed inside a larger
container of volume V2 which is vacuous. Wait for long enough so that the gas inside V1

is in equilibrium, then suddenly open the stopcock. The gas will immediately rush out
of the opening and fill the entire volume V2. For a time after the stopcock is opened the
gas is not in an equilibrium state, in fact the variables p, V and T , and especially T ,
cannot be measured because measuring them requires equilibrium. It is said to be in a
dynamical state. Yet, if we wait long enough the gas will achieve a new equilibrium state
with a new pressure, volume and temperature. Therefore, the process of expansion has
transformed the gas from one equilibrium state to another equilibrium state, but itself
cannot be described by the equilibrium variables. It is one example of a thermodynamic
process.

Because the process described above cannot be described by the equilibrium variables,
Thermodynamics, which relies on relationships between equilibrium variables, will have
little to say about it. However, we can imagine that the gas is made to expand slowly.
So slowly, in fact, that it can be treated as though it is always in equilibrium. To ac-
complish this imagine opening the stopcock for a very short interval of time so that only
an infinitesimal quantity of gas is released. Then wait for the system to come to equi-
librium. Repeat the process a very large number of times, each time releasing only an
infinitesimal quantity of gas and then waiting for equilibrium. In this way we will end up
with a final equilibrium state that will in general not be the same as the state we ended
up with in the first process. Nevertheless we still have a thermodynamic process taking
the system from an initial equilibrium state to a final equilibrium state, and this process
occurs slowly enough that the gas may always be considered to exist in equilibrium. Such
a thermodynamic process is called a quasi-static process. During a quasi-static process
the successive states of the transformation differ infinitesimally from each other and the
equilibrium variables can be used to describe the evolution of the system. The first kind
of process, during which the change occurs so rapidly that equilibrium is never achieved
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until the final state is reached making the thermodynamic variables meaningless during
the process itself is non-quasi-static.

1.2.1 Work

We will be concerned with energy conservation in thermodynamic processes. An essential
part of our considerations will involve the work done by a thermodynamic system on the
environment or, conversely, the work that the environment does on the system during
any process. Let S be the (closed) boundary of our system and let ~Fn be the net force
exerted by the system on an infinitesimal area d~S of the boundary. Suppose that the
boundary experiences a deformation, so that the infinitesimal area d~S is displaced by d~r.
The infinitesimal work done by the system on the boundary is then

d−W = ~Fn · d~r = p(d~S · d~r), (1.2.1)

using our definition of pressure. Now the quantity d~S · d~r may be interpreted as the
infinitesimal contribution to the change in the volume of the closed surface S by the
displacement of d~S along d~r. Thus

d−W = pdV (1.2.2)

is the work done by the system on the environment in changing its volume by dV . d−W
is not an exact differential because its integral depends on the “path” that is taken in the
phase space of the system as it goes from its initial state to its final state. In other words,
the integral of d−W depends on the process.

As a simple example, consider a quasi-static process in which the volume of an ideal gas
inside a container changes. Suppose that the initial state is given by the pair (pi, Vi) and
the final state by the pair (pf , Vf ), then the work done by the system on the environment
is just

d−W = pdV, Wif =

∫ f

i
pdV (1.2.3)

We are able to evaluate the integral only once the process of going from i to f is known.
Obviously no work is done during a constant volume or isovolumetric process for

then dV = 0. If the process occurs at a constant temperature, i.e., it is isothermal, then
because p = νRT/V we find

Wif = νRT

∫ f

i

dV

V
= νRT ln

(
Vf
Vi

)
(1.2.4)

Naturally, we could express this result in terms of the initial and final pressures as well by
using the equation of state,

Wif = νRT ln

(
pf
pi

)
, (1.2.5)
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since the temperature is constant throughout. On the other hand, if the process is isobaric
i.e., occurs at constant pressure, then

Wif = p

∫ f

i
dV = p(Vf − Vi) (1.2.6)

This could be expressed in terms of the change in temperature as well by using the equation
of state,

Wif = νR(Tf − Ti) (1.2.7)

since the pressure is held fixed. In both processes treated, if Vf < Vi then the work done
is negative. Negative work done by the gas on the environment is the same as positive
work done by the environment on the gas.

The processes considered above are special types of trajectories in the three dimensional
thermodynamic phase space of the ideal gas. Because there is one equation of state,
all processes will occur in a two dimensional hypersurface, which we might take to be
spanned by any of the three possible pairs: (p, V ), (p, T ) or (V, T ). The three trajectories
considered in the example, viz., isobaric, isothermal and isovolumetric, are drawn first in
the (p, V ) plane in figure 1.6 and next in the (V, T ) plane in figure 1.7. A more general
thermodynamic process will be a more complex curve connecting the initial and final states
of the system, but the work done will always simply be the area under the curve in the
p− V plane.

In general, the infinitesimal work done by a thermodynamic system will have the form

d−W =
∑
i

pXidXi (1.2.8)

where Xi are some extensive variables (different from the energy) governing the system
and pXi are the “generalized forces” associated with their deformation. For example,
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one can show that the work done by the surface tension, σ, during an interfacial expansion,
is

d−W = σdA. (1.2.9)

In some cases this may actually be the major contribution to the work done, more im-
portant than the pdV term.4 Other examples of mechanical work are the work done by
friction, ~f ,

d−W = fds, (1.2.10)

where ds is an infinitesimal displacement tangent to the path of the body and the work
done by the tension, τ , in a wire of length L in elongating it by dL is

d−W = τdL. (1.2.11)

Likewise, the work done by an external applied electric field in polarizing a dielectric is

d−W = ~E · d~P , (1.2.12)

where ~P is the electric polarization vector of the dielectric and ~E is the applied external
electric field and the work done by the electric field of a charge distribution during the
addition of a charge dq to it is

d−W = Φdq (1.2.13)

where Φ is the electric potential of the distribution.5 “Generalized forces” are intensive
variables.

1.2.2 Heat

As mentioned in the introduction, Heat is energy transferred into or removed from a
macroscopic system on the molecular level, as opposed to the direct application of me-
chanical work on the system by deformations of its macroscopic parameters. While the
transfer of energy may occur because of an existing difference in temperatures between
two macroscopic systems, this is not the only way in which the transfer may occur. For
example, friction transfers energy from a mechanical system into its environment: a block
sliding along the rough surface of a table transfers mechanical energy to the table although
no work is done on the table. Stirring liquid in a cup or shaking it in a flask transfers
mechanical energy from the stirring or shaking device to the liquid, as evidenced by the

4Problem: Consider a bubble of water vapor expanding in water at 300 K from 1µm to 1.1µm. The
vapor pressure of water at 300 K is approximately 0.0234 atm and σ = 0.0724 N/m. Determine the work
done by the volume expansion and by the surface expansion. Which is larger?

5Problem: Convince yourself that all these are correct by performing a similar analysis as given here
for d−W = pdV .
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rise it temperature of the liquid. Again, no work is done on the liquid since its volume
remains unchanged. In both cases, the energy is transferred by heat.

This understanding of the relationship between “heat” and energy is relatively modern.
It was Sir Benjamin Thomson (Count Rumford) who, while supervising the manufacture
of canons for the government of Bavaria, noticed that the more the canons were bored the
more the water that was required to cool them. Noticing that the supply of “heat” from
boring a canon was inexhaustible and that no chemical change had actually occurred in
the material of the bored canon, he associated heat with the mechanical energy that went
into the boring process because, he argued, it was impossible to generate an indefinite
amount of caloric by the boring process. Nearly fifty years later Helmholtz declared that
heat is a “form of energy” and that all forms of energy are equivalent and interchangeable.
However, while one form of energy can be exhanged for another or transferred from one
subset of the universe to another, energy itself cannot be created nor destroyed and the
total amount of energy present within the universe is constant.

Back when heat was considered a fluid (caloric) a unit of heat was defined as the
amount of caloric required to raise the temperature of one gram of pure water at standard
pressure from 14.5◦C to 15.5◦C. This unit was called the calorie. Today, we simply say
that a calorie is the amount of energy that must be transferred to pure water by heat at
standard pressure to raise its temperature from 14.5◦C to 15.5◦C.

Notice that it is necessary to specify the material, its mass, the temperature range
(including the starting temperature) and the pressure in order to have a precise definition
of the calorie. This is because of the well-known experimental fact that the amount of
heat required to raise the temperature of a substance by one degree Kelvin (or Celsius)
depends on all of these factors. We define the heat capacity of a thermodynamic system
as the amount of energy required to be transferred by heat to raise the temperature of the
system by one degree Kelvin (the letter Q is generally used to represent “heat”)

C =
∆Q

∆T
→ d−Q

dT
(1.2.14)

where ∆Q (or d−Q) is the energy transferred by heat and ∆T (or dT ) is the change in
temperature, and is measured in cal/◦C. We have used d−Q instead of dQ because ∆Q
depends on the process by which energy is transferred. It follows that, even apart from
the composition of the system, the temperature range over which the energy is transferred
and other external factors, such as the pressure, etc., C will also depend on the process
by which the energy is transferred.

If the system is homogeneous, its heat capacity will depend linearly on its mass, m.
We can eliminate this dependence on the mass of the system by defining the specific heat
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as the heat capacity of a unit mass,6,7

c =
1

m

d−Q

dT
(1.2.15)

Naturally, the specific heat will depend on all the other factors upon which C depends.
Alternatively, we can define the molar heat capacity as the heat capacity of one mole
of the substance,

C =
1

ν

d−Q

dT
. (1.2.16)

The molar heat capacity is measured in cal/mol·◦C. For example, the molar heat capacity
of pure water at STP is Cw = 18 cal/mol·◦C. Again, the molar heat capacity will depend
on the substance, the process by which the substance is heated, the temperature range
over which the heating occurs and other external parameters.

In terms of the specific heat,

c(T ) =
1

m

d−Q

dT
⇒ Qif = m

∫ f

i
c(T )dT (1.2.17)

If it is known that c(T ) is approximately constant during the process of heating, then

Qif = mc(Tf − Ti) (1.2.18)

but if, for example, it is determined that c(T ) = a+bT 2 for a particular system undergoing
a particular process then the average specific heat of the system in the range [Ti, Tf ] is

cav =
1

Tf − Ti

∫ f

i
(a+ bT 2)dT = a+

b

3
(Tf − Ti)2 (1.2.19)

which differs considerably from its value at Ti or at Tf unless b� a/(Tf − Ti)2. The heat
absorbed by the system (of mass, say, m) is

Qif = m

∫ f

i
c(T )dT = mcav(Tf − Ti) = m(Tf − Ti)

[
a+

b

3
(Tf − Ti)2

]
. (1.2.20)

For many substances and processes of interest c(T ) is a slowly varying function of the tem-
perature and as long as temperature does not change too much it is a good approximation
to replace c(T ) by cav.

6More precisely, if the material is inhomogeneous, one can define the specific heat via the equation

C =

∫
system

dm(~r)c(~r) =

∫
V

d3~rρ(~r)c(~r)

7By definition, one calorie of energy was required to be transferred by heat to pure water at standard
pressure to raise its temperature by 1◦C, so the specific heat of pure water is 1 cal/g·◦C.
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The heat capacity of a system is a useful concept so long as the process involves a
temperature change. Yet, energy may be absorbed or released from a system during
isothermal processes as well. In a class of such processes a substance changes phase, say
from solid to liquid and vice-versa or liquid to gas and vice-versa or from solid to gas
(“sublimation”) and vice-versa. Such processes are reffered to as phase transitions.
During phase transition, the temperature of the substance remains constant but energy
must continue to be transferred either into or out of the system for the process to continue.
For example, if the source of energy (the stove) is turned off during the boiling of water the
process ceases. This shows that heat is required to be absorbed by the water in order to
maintain the boiling, yet the temperature of the water itself remains constant throughout.
The energy that is being absorbed by the water is required to convert the liquid into vapor

We define the latent heat as the heat required to change the phase of one gram of a
substance,

L =
∆Q

m
(1.2.21)

and is measured in cal/g. The latent heat is associated with a particular kind of phase
transition and a particular substance. For example, the latent heat of the vaporization
of water is Lv = 540 cal/g, i.e., it takes 540 calories of heat to vaporize one g of water.
When the vapor condenses, every gram will then release 540 calories. Similarly, the heat
released from water when one gram freezes to form one gram of ice at standard pressure
is 80 calories, i.e., the latent heat of fusion of water is Lf = 80 cal/g. When ice melts at
standard pressure it absorbs 80 cal/g.

1.3 Calorimetry

Heat capacities, specific heats and latent heats of substances are measured using Calorime-
try. Generally speaking a calorimetric experiment involves the transfer of energy between
two or more thermodynamic systems while the combination of the systems is kept isolated
from the rest of the universe. Devices in which the exchange of energy occurs are called
calorimeters, their main function being to isolate whatever is placed inside. Since the
combination of thermodynamic systems is kept isolated, the calorimetric process satisfies

∆Q ≡ 0 (1.3.1)

where ∆Q represents the energy exchanged by the combination with the rest of the uni-
verse. Denoting the systems by the subscript “j”, this means that

∆Q =
∑
j

∆Qj ≡ 0 (1.3.2)

where ∆Qj is the energy absorbed (positive) or liberated (negative) by system j. Consider
the following two examples.
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Example 1. A copper block of mass 75 g is taken from an oven and placed in a glass of
mass 300 g which contains 200 g of water. The initial temperature of the glass and water
is 12◦C and the temperature rises to 27◦C. Determine the temperature of the oven.

The process does not involve changes of state. Assuming that no energy is lost to the
environment (a somewhat strong assumption) and that there is no vaporization of the
water during the process, energy is only exchanged between the copper block, the glass
and the water. We have

∆Q = ∆Qcopper + ∆Qglass + ∆Qwater ≡ 0⇒

mCucCu(T fin − T in
Cu) +mglcgl(T

fin − T in
gl ) +mwcw(T fin − T in

w ) (1.3.3)

We need T in
Cu. Solving,

T in
Cu =

(mCucCu +mglcgl +mwcw)T − (mglcgl +mwcw)T in
w

mCucCu
≈ 540.04◦C (1.3.4)

where we used the fact that T in
gl = T in

w .

Example 2. Two 50 g icecubes are dropped into 200 g of water in a calorimeter.
If the temperature of the water was initially 25◦C and the temperature of the ice was
initially −15◦C. Determine the specific heat of ice (at constant pressure) assuming that it
is constant over the interval [−15, 0]◦C if the final temperature of the mixture is 12.5◦C

Since all the energy transfer occurs exclusively between the water and the ice (assuming
an ideal calorimeter), we have

∆Q = ∆Qice + ∆Qwater = 0⇒

mici(0− T in
i ) +miLf +micw(T fin − 0) +mwcw(T fin − T in

w ) = 0 (1.3.5)

(since, in the final equilibrium state, the temperatures of the water and ice coincide, T fin

carries no subscript). Solving for ci we find

ci =
miLf +micw(T fin − 0) +mwcw(T fin − T in

w )

miT in
i

≈ 0.5 cal/gm ·◦ C (1.3.6)

In this example the ice melts and the ensuing water warms to the final temperature, so
we had to take into account the latent heat of fusion of water. We have ignored the heat
released by the calorimeter itself.
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Figure 1.8: The Joule experiment

1.4 Mechanical Equivalent of Heat

We have seen that it is possible, by friction, to transfer energy from a mechanical system
to a macroscopic system causing the latter’s temperature to rise. It should therefore be
possible to define a unit of heat in terms of the mechanical unit of energy, the Joule. Recall
that the calorie was defined as the amount of heat necessary to raise the temperature of
one gram of pure water from 14.5◦C to 15.5◦C at standard pressure. Suppose we consider
the aparatus of figure 1.8 in which a falling weight is made to turn a paddle which stirs a
liquid placed in a calorimeter. Stirring the liquid transfers the initial potential energy of
the falling weight to the liquid in the calorimeter by friction. By measuring the mass of the
falling weight and the height through which it should fall in order to raise the temperature
of 1 gram of water from 14.5◦C to 15.5◦C at standard pressure we can determine the
relationship between the calorie and the Joule. One finds that 1.0 calorie = 4.184 Joules.

1.5 Energy Transfer as Heat

Energy transfer between macroscopic systems broadly occurs in three ways as Heat.
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Figure 1.9: Heat conduction across any cross section of a solid

1.5.1 Conduction: Newton’s Law

Energy transfer between two macrscopic systems due to a difference in temperature be-
tween them and which does not involve the gross movement of matter is called conduc-
tion. This process bears primary responsibility for energy transfer in solids. Conduction
can be understood on the microscopic scale as the direct exchange of mechanical energy
from a region of higher temperature to a region of lower temperature by molecular colli-
sions at the boundary, without recourse to the bulk motion of the substance. It is most
effective in solids and can occur in liquids but not it gases because of their low molecular
density, which implies that molecular collisions simply do not occur frequently enough.

Take a piece of some solid material and consider a cross sectional area S as shown in
figure 1.9. Let d~S represent an infinitesimal, directed element of S, then Newton’s Law
of heat conduction says that, assuming there is a temperature gradient across S, the rate
at which energy is transferred across S is given by

H =
∂Q

∂t
= −k

∫
S
d~S · ~∇T (1.5.1)

where H, measured in Watts, is the rate of energy flow across the surface and k is a
constant characterizing the material of which the solid is made. k is called the coefficient
of heat conduction ([k] = W/m·◦C) or conductivity. The direction of the area element d~S
is chosen to be the direction of the energy flow if H > 0 and opposite the energy flow if
H < 0.
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Figure 1.10: Heat conduction across a solid of uniform cross sectional area.

Examples

In the steady state the temperature does not depend on time. This is possible only
if the quantity of energy flowing into any region is precisely equal to the energy flowing
out of that region. Suppose we are able, by symmetry, to find surfaces ξ(~r) = const. of
normal n̂ which are such that n̂ ·∇T is constant along the hypersurface. If the area of the
hypersurfaces is denoted by A(ξ), Newton’s law will read

H =
∂Q

∂t
= −kA(ξ)

dT

dξ
(1.5.2)

A simple example of its application occurs in a solid rod of uniform cross-sectional area
as shown in 1.10, one end of which (the left) is maintained at a high temperature (source)
and the other end (right) at a lower temperature (sink). Energy will flow uniformly across
planes from left to right, i.e., from source to sink, and the symmetry indicates that the
surfaces satisfying the condition above are described by x = const. We have

H =
∂Q

∂t
= −kAdT

dx
(1.5.3)

with constant H. Since the cross sectional area is uniform throughout the rod, it follows
that dT/dx must also be constant. Then we could replace

dT

dx
=
T2 − T1

L
(1.5.4)

where T1,2 are the temperatures of the extremities as shown. Notice that dT/dx is negative
if energy is flowing to the right. This justifies the negative sign: its presence indicates that
energy flows in the direction of decreasing temperature. Thus,

H = −σ(T2 − T1) (1.5.5)

where σ = kA/L is called the thermal conductance of the material ([σ]= W/◦C). Its
reciprocal is called the thermal resistance (or R value), R, of the material ([R] =◦C/W).
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Figure 1.11: A homogeneous spherical
conductor.

Figure 1.12: A homogeneous cylindri-
cal conductor.

For another example, consider a homogeneous, spherical conductor of radius r2 with
a heat source at a constant temperature, T1, of radius r1 < r2 located at its core and a
sink surrounding the sphere at temperature T2 (figure 1.11). Heat flows radially outwards,
from the core to the surface and spherical symmetry suggests that the surfaces of interest
are given by r = const. Therefore

H =
∂Q

∂t
= −4πkr2dT

dr
(1.5.6)

with constant H. In the steady state, integrating from r1 to r2∫ r2

r1

dr

r2
= −4πk

H
(T2 − T1) ⇒ H = −4πkr1r2

r2 − r1
(T2 − T1) = −σ(T2 − T1) (1.5.7)

where the thermal conductance is now given by σ = 4πkr1r2/(r2−r1). A similar argument
for cylinders of length L (figure 1.12) will yield

H = −σ(T2 − T1), σ =
2πkL

ln(r2/r1)
. (1.5.8)

The thermal conductance depends not only on the material but also sensitively on the
geometry.

We might also imagine two rods of conductances σ1 and σ2 respectively, connected in
series as shown in figure 1.13, so that the left surface is kept at temperature T1 and the
right surface at T2 (one could equally well consider concentric spheres or coaxial cylinders).
Then if Tx is the temperature at the boundary between the rods

H1 = −σ1(Tx − T1), H2 = −σ2(T2 − Tx) (1.5.9)

represent the energy flux by conduction across the two rods. In the steady state H1 =
H2 = H, so we can eliminate Tx,

Tx =
σ1T1 + σ2T2

σ1 + σ2
(1.5.10)
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Figure 1.13: Heat conductors in series.

and substitute back into either expression for H to find

H = −σeff(T2 − T1) (1.5.11)

where
1

σeff
=

1

σ1
+

1

σ2
(1.5.12)

and therefore Reff = R1 + R2. The argument may be made for an arbitrary number of
conductors in series,8 so we have

1

σeff
=

N∑
j=1

1

σj
, Reff =

N∑
j=1

Rj (1.5.13)

for N conductors in series (in the steady state).
On the other hand, imagine that the rods are arranged in parallel as shown in figure

1.14. The net energy transferred is the sum of

H1 = −σ1(T2 − T1), H2 = −σ2(T2 − T1) (1.5.14)

or

H = H1 +H2 = −σeff(T2 − T1)⇒

σeff = σ1 + σ2,

1

Reff
=

1

R1
+

1

R2
(1.5.15)

These expressions may likewise be generalized to describe N conductors in parallel by the
method of induction,

σeff =

N∑
j=1

σj

8Use induction to prove this.
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Figure 1.14: Heat conductors in parallel.

1

Reff
=

N∑
j=1

1

Rj
(1.5.16)

Similarities between these expressions for the effective resistances and the corresponding
expressions in resistive electric networks (Ohm’s Law) should be obvious.

1.5.2 Conduction: The Heat Equation

Let S be a closed surface within the material, bounding a volume V , and let d~S be an
inward directed surface element on S. According to Newton’s law, the rate at which energy
flows into the volume, V , will be

∂Q

∂t
= −k

∮
S
d~S · ∇T. (1.5.17)

If there are no other means of energy transfer into the volume then conservation of energy
says that the left hand side must be the rate at which the energy content of the material
in this volume is changing. Therefore, if cp is the specific heat of the material (under
constant pressure, for example) and ρ is its mass density then

∂Q

∂t
=

∫
V
cp
∂T

∂t
ρdV. (1.5.18)

which means that ∫
V
ρcp

∂T

∂t
dV = −k

∮
S
d~S · ∇T = k

∫
V
∇2TdV, (1.5.19)

where we used Gauss’ law in the last step. The change of sign occurs because d~S was
chosen to be inward directed. As our volume is arbitrary, we obtain

∂T

∂t
=

k

ρcp
∇2T, (1.5.20)

which will be recognized as the diffusion equation. If we take cp and ρ to be approximately
constant then α = k/ρcp is called the coefficient of thermal diffusivity.
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Examples

The boundary value problem for T (t, ~r) seeks a solution inside some region, R, bounded by
a set of surfaces that we will collectively denote by ∂R. The equation is linear, therefore,
by the principle of superposition, any linear combination of solutions is also a solution.
Furthermore, a unique solution can be obtained only if the initial temperature distribution,
T (0, ~r), is specified along with Dirichlet or Neumann boundary conditions on ∂R. Dirichlet
boundary conditions require specifying the temperature on the bounding surfaces, whereas
Neumann boundary conditions require specifying the normal derivative of the temperature
on ∂R and apply principally to an insulated boundary.

Returning to the steady state examples of the previous section, we use the heat equation
to determine T as a function of the distance from the source. In the steady state, we solve
Laplace’s equation subject to appropriate boundary conditions. Therefore, in the case of
the rod, exploiting the rectangular symmetry and setting T = T (x), we have

d2T

dx2
= 0 ⇒ T = ax+ b (1.5.21)

where a and b are constants, which must be fixed by the Dirichlet conditions T (0) = T1

and T (L) = T2. This gives

T (x) = (T2 − T1)
x

L
+ T1 (1.5.22)

which agrees with (1.5.4). For the spherical conductor in the steady state we have T = T (r)
and express the Laplacian in spherical coordinates. This gives

1

r2

d

dr

(
r2dT

dr

)
= 0 ⇒ dT

dr
=

a

r2
⇒ T (r) = −a

r
+ b. (1.5.23)

Applying the Dirichlet boundary conditions T (r1,2) = T1,2 gives

T (r) =
r1r2

r2 − r1

(
1

r
− 1

r1

)
(T1 − T2) + T1 (1.5.24)

and it is easy to recover (1.5.7).9

Except in the steady state, the temperature will depend on time, T = T (t, ~r). One
useful method to solve the heat equation is to look for “separable” solutions, T (t, ~r) =
A(t)Φ(~r), which is inserted as an ansatz into the heat equation. We arrive at

Ȧ

A
=
α

Φ
∇2Φ (1.5.25)

9Problem: Repeat the exercise for the cylindrical conductor: find the temperature as a function of the
cylinder radius, then recover its conductance.
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Figure 1.15: A rectangular lamina.

Because the left hand side depends only on t and the right hand side only on ~r, they must
each equal the same constant,

Ȧ

A
=
α

Φ
∇2Φ = −λ (1.5.26)

so that a general (separable) solution would have the form

T (t, ~r) = e−λtΦ(~r) (1.5.27)

where Φ(~r) satisfies

∇2Φ(~r) + kΦ(~r) = 0, k =
λ

α
, (1.5.28)

which must be solved subject to appropriate boundary conditions.
As an example of the application of this method, consider the rectangular lamina shown

in figure 1.15. The plate is heated so that at the initial time, t = 0, the temperature on
the lamina satisfies

T (0, x, y) = T1 + (T2 − T1)
y

b
(1.5.29)

then the sides are kept insulated. We wish to find the way in which the temperature
gets redistributed on the lamina. Because the sides are insulated, we will apply Neumann
conditions on the edges. In rectangular coordinates, the Helmholtz equation reads

Φxx(x, y) + Φyy(x, y) + κΦ(x, y) = 0 (1.5.30)

so let us seek a separable solution of this equation as well. Let Φ(x, y) = A(x)B(y), then

Axx
A

= −Byy
B
− κ (1.5.31)

Again we have a situation in which the left hand side may depend only on x and the right
hand side only on y, so they must both be equal to the same constant we call µ. Then

Axx − µA = 0 ⇒ A(x) = Ce
√
µ x +De−

√
µ x, Ax(0) = 0 = Ax(a) (1.5.32)
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where C and D are complex constants to be determined. Likewise

Byy + (κ+ µ)B = 0 ⇒ B(y) = Eei
√
κ+µ y + Fe−i

√
κ+µ y, By(0) = 0 = By(b) (1.5.33)

where E and F are also complex constants to be determined.
Applying the boundary conditions on A(x) we find that Ax(0) = 0 ⇒ C = D and

Ax(a) = 0 ⇒ √
µa = inπ, for integer n, which gives

An(x) = 2Cn cos
(nπx

a

)
(1.5.34)

in terms of a real constant Cn. In the same way, By(0) = 0 ⇒ F = E and By(b) =
0 ⇒ κ+ µ = m2π2/b2 for integer m and

Bm(y) = 2Em cos
(mπy

b

)
.

for some real Em. Solutions for T (t, x, y) satisfying the insulated boundary conditions
depend on two integers, (m,n), and may be written as

Φmn(t, x, y) = Amne
−λmnt cos

(nπx
a

)
cos
(mπy

b

)
(1.5.35)

where

λmn = ακmn = α

(
n2

a2
+
m2

b2

)
. (1.5.36)

We now use the fact that the heat equation is linear and the solutions are superposable
to write the most general separable solution satisfying the given boundary conditions in
terms of a double Fourier series,

Φ(t, x, y) =
∞∑

m,n=−∞

[
Amne

−λmnt cos
(nπx

a

)
cos
(mπy

b

)]
(1.5.37)

and must now ensure that it also satisfies the initial condition of (1.5.29), i.e.,

T1 + (T2 − T1)
y

b
=

∞∑
m,n=−∞

[
Amn cos

(nπx
a

)
cos
(mπy

b

)]
(1.5.38)

Since the left hand side does not depend on x, we may safely set Amn = 0 when n 6= 0.
We are left with the Fourier series

T1 + (T2 − T1)
y

b
=

1

2
B0 +

∞∑
m=1

Bm cos
(mπy

b

)
(1.5.39)
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The coefficients can then be evaluated in terms of the integrals

B0 =
2

b

∫ b

0

(
T1 + (T2 − T1)

y

b

)
dy = (T1 + T2)

Bm =
2

b

∫ b

0

(
T1 + (T2 − T1)

y

b

)
cos
(mπy

b

)
dy =

2[1− (−)m]

m2π2
(T1 − T2)

(1.5.40)

so we finally get the (unique!) solution

T (t, y) = Tav + 2(T1 − T2)
∞∑
m=1

[1− (−)m]

m2π2
e−αm

2t/b2 cos
(mπy

b

)
. (1.5.41)

where Tav is the average of the boundary temperatures, Tav = (T1 + T2)/2. After a time
t� b2/α, the temperature of the lamina approaches a constant value equal to Tav.10,11

1.5.3 Convection

Energy transfer between two or more macroscopic systems, or within a single macroscopic
system that is not in equilibrium, by the gross movement of the substance(s) composing
the system(s), is called convection. A typical example of convection occurs when boiling
water in a vessel from below. Energy is transferred to the lowest layer of the water in the
vessel by conduction. As the layer warms up it expands and its density decreases causing
it to rise by Archimedes’ principle. Cooler layers above it descend to take its place and get
warmed by contact with the base of the the vessel. In this way there is a gross movement
of the water which eventually transfers the energy being supplied through the base to the
entire volume of water in the vessel. Convection is employed by radiators, which warm a
room by warming the air in contact with them. The hot air then rises allowing colder air
to take its place close to the radiator, thus setting up a circulation. Wind currents, ocean
currents etc., are all examples of convection. Convection is responsible for energy transfer
in the sun and in any main sequence star,12 occurring in a spherical shell, whose thickness

10Problem: Solve the steady state heat equation for the lamina given the following Dirichlet conditions:
T (0, y) = 0, T (a, y) = 0, T (x, 0) = 0, T (x, b) = f(x), where f(x) = Ax(a− x).

11Problem: Many solutions, but not all, can be obtained using the technique of separation of variables.
Show that

T (t, x) =
1√
κt
e−x

2/(4κt)

solves the one dimensional heat equation. Determine the initial (t → 0) temperature distribution. What
happens to the distribution as t→∞?

12A main sequence star is one that exists in hydrostatic equilibrium, i.e., one in which the tendency
of matter to collapse gravitationally is balanced by the outward pressure that results from the fusion (of
Hydrogen) occurring in its core.
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is about 200,000 km, that lies between a region dominated by radiation and adjacent to
the fusing core, called the radiation zone, and the photosphere, which is, roughly speaking,
the thin, visible layer (about 100 km) of gas on the surface of the sun from which photons
are able to escape freely. The range of radii in which the energy is transferred primarily by
convection is called the “convection zone”. In this region, mass movement of the plasma
within the star forms a circular current in which the heated plasma at the bottom rises
and cooler plasma that has passed its energy into the photosphere descends. Convective
heat transfer occurs whenever there is the possibility of a flow and when the temperature
gradient is high enough. Unfortunately, however, a quantitative discussion of convection
involves the theory of fluid dynamics and lies beyond the scope of these notes. Details
may be found in the notes on Classical Dynamics in this same series.

1.5.4 Radiation

A third means of energy transfer is by thermal radiation. In a hot body, energy is
distributed randomly between its constituent atoms and molecules. This energy causes the
charges within the body to oscillate and the oscillating charges then emit electromagnetic
waves. When the ensuing radiation is in thermal equilibrium with its source, it is said to
be “thermal”.

Every radiating body can be characterized by its absorptivity and its emissivity.
The absorptivity, a, of a body is the fraction of incident radiant energy that it is able to
absorb. An ideal black body is defined to be a perfect absorber, i.e., one that absorbs all
of the incident radiant energy, so for such a body a = 1. We will use the subscript “B” to
denote the black body. Real objects have some reflectivity and are not perfect black bodies.
The closest approximation to a perfect black body would be a “cavity”, i.e., a small hole
leading to the inside of a hollow object that is coated with some amorphous black material,
such as soot. Radiation incident on the hole from the outside is reflected a large number
of times on the interior walls as shown in figure (1.16); during each collision the walls will
absorb some of the incident radiation and hence the cavity acts as a near-perfect absorber.
If the temperature of the cavity is above that of its environment, radiation may leave
the cavity only after multiple reflections with the walls during which it achieves thermal
equilibrium with them. It is therefore characterized exclusively by the temperature of the
cavity walls and does not depend on the material of which they are made. The spaces
within the pores of hot charcoal behave like small cavities, absorbing incident radiation
and emitting radiation that is characterized only by the temperature of the coal.

The emissivity of a body is defined as the ratio of the energy radiated by the body
to the energy radiated by a perfectly black body at the same temperature. No body is
as efficient an emitter as a black body. This can be proved quite easily if we consider
two bodies, A and B, one of which (say B) is a black body, which are able to exchange
energy with each other by radiation only and exist in thermal equilibrium at temperature
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T . Let PB be the energy radiated by the black body per second and assume that all of it
is incident on body A. If a is the absorptivity of A then the energy absorbed by A will
be Pabs = aPB. But, since A and B are in thermal equilibrium at a fixed temperature, A
must be radiating back the same amount of energy, otherwise it would be a net absorber
or emitter of energy and either warm up or cool down, which is not allowed because A
and B are in thermal equilibrium by assumption. Thus Prad = Pabs = aPB. By definition
then

e =
Prad

PB
= a (1.5.42)

The statement that the emissivity of a body in thermal equilibrium is equal to its absorp-
tivity is known as Kirchoff’s law of thermal radiation. It follows that the emissivity can
only take values between zero and unity and if the emissivity of a body is unity then it is
a black body. In general, the absorptivity and emissivity will depend on the temperature,
the wavelength of the radiation and the angle of incidence or emission. However, to a very
good approximation they change only slowly with these variables and can often be taken
to be constant.

Now it has been known, since the late nineteenth century, that the total power radiated
by a black body depends only on the temperature of the source according to

P = σAT 4, (1.5.43)

where A is the surface area of the source and T is its absolute temperature. This is the
Stefan-Boltzmann law of thermal radiation and the constant σ is called the Stefan-
Boltzmann constant. It has the value σ = 5.67×10−8 W·m−2·K−4. Its origin is quantum
mechanical and it can be determined directly in terms of the fundamental constants ~,
(Planck’s constant), the speed of light, c, and Boltzmann’s constant, kB. It follows that
the total power radiated by any body in thermal equilibrium at the same temperature will
be

P = σeAT 4, (1.5.44)

where e is its emissivity. The total radiated power does not give us any of the details of the
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Figure 1.17: The spectral radiancy of a black body for temperatures T1 > T2 > T3.

radiation itself. For instance, it says nothing about the amount of radiation emitted by a
black body within different frequency ranges. For this purpose one defines the spectral
radiancy, F(f, T ), so that F(f, T )df represents the energy radiated per unit time per
unit area of the radiating surface (the flux) in the frequency range between f and f + df .
By definition, it should satisfy the condition

F(T ) =

∫ ∞
0
F(f, T )df = σT 4, P = AF(T ) (1.5.45)

for a black body. Experimentally, F(f, T ) can be easily determined by passing the ra-
diation emitted from the source through filters of known frequency bandwidth before
measuring the flux and is given by the curves in figure (1.17). These curves have the
interesting feature that each depends exclusively on the temperature of the black body,
i.e., it is sufficient to know just two points on any curve to determine the curve entirely.
Furthermore, the radiancy at every temperature rapidly approaches zero both at the low
and at the high frequency ends of the spectrum (which is essential for the area under the
curves to remain finite) and each curve peaks at a frequency that depends, once again, only
on the temperature of the source. Wien’s displacement law says that this frequency,
at which the radiated flux is maximum, is directly proportional to the temperature,

fmax = δWT (1.5.46)

where δW is Wien’s constant, with value δW = 5.88× 1010 Hz/K. It may also be stated in
terms of the wavelength at which the radiated flux peaks; one finds

λmax =
bW
T

(1.5.47)

where bW = 2.898× 10−3 m·K.
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For example, it is known that the radiation intensity from our sun peaks at around
λmax = 500 nm. According to Wien’s displacement law, assuming that the sun behaves
roughly like a black body13 and that the radiation we receive arrives from the photosphere,
this would mean the the photosphere’s temperature is on the average about 5796 K.
Actually the temperature of the photosphere varies from above 6000 K near the convection
zone down to around 4500 in its outermost layers, with an average temperature of about
5800 K. Knowing the temperature of the photosphere, we can estimate the radiation flux
from the surface as F = σT 4 ≈ 64 × 106 W/m2, and therefore its total power output or
Luminosity as

L = 4πR2
sF ≈ 3.9× 1026 W,

given that its mean radius is Rs ≈ 6.96× 108 m.14

13Actually the sun is not a perfect black body, having an emissivity of about 0.95.
14Problem: Considering that the energy emitted by the sun is predominantly obtained by repeatedly

converting four Hydrogen nuclei (protons) into one Helium nucleus whose mass is 3.97mp, determine the
number of reactions that must be carried out in the core per second to sustain the sun’s luminosity.
Determine the Hydrogen consumption per second and, assuming that roughly 10% of the sun’s mass will
be used during the main sequence, determine for how long the sun can be expected to remain stable.



Chapter 2

The First Law

2.1 The Internal Energy

The first law of thermodynamics is essentially a law of conservation of energy for macro-
scopic systems. “Conservation” can be imposed by requiring that the variation of the
total energy of the system and its environment is identically zero. However, in order to
make this line of thinking precise one should be able to say what exactly the energy of
a macroscopic system is in the first place. Now every macroscopic system is eventually
a mechanical system, albeit composed of a very large number of constituents, and it is
reasonable to say that its energy is just the average total mechanical energy, i.e., the sum
of the kinetic and potential energies of its constituents. Call this energy the internal
energy, U , of the system and assume that it is a function of the state of the system, i.e.,
U = U(~Z), where ~Z is used to denote all the state variables, intensive and extensive. If
the system is isolated both thermally and mechanically so that it exchanges no energy
with the environment and then transforms from some initial state, i, to some final state,
f , then one may further assume that U(~Zi) = U(~Zf ). If some external forces are acting
upon the system by virtue of its interaction with the environment then there is no reason
to assume that the internal energy would stay constant because then our system may do
work upon the environment or have work done upon it by the environment via the external
forces, in which case one may argue that the change in internal energy should be equal to
the work done,

∆U = U(~Zf )− U(~Zi) = −Wif , (2.1.1)

or, in infinitesimals,

dU(~Z) = −d−W = −
∑
i

pXidXi (2.1.2)

where pXi is the “pressure” associated with the deformation of the extensive variables Xi

of the system (eg., if Xi is the volume, pXi is the usual pressure). We have chosen our

33



34 CHAPTER 2. THE FIRST LAW

sign conventions in such a way that Wif would be positive when the system does work
and negative when work is done upon it.

Equation (2.1.1) would hold true only if the work done were independent of the actual
transformation process in going from the initial state, i, to the final state, f , because we
have assumed that the internal energy is a function of the state variables (a function of
state) and so the left hand side of (2.1.1), dU , is an exact differential. But we have already
noted that the right hand side, d−W , is not an exact differential, so we can expect that the
change in internal energy will not always be the work done by the system. For example,
when an ideal gas is compressed isothermally work is done on the gas but its internal
energy remains unchanged – as we will see shortly. Situations like this would mean one
of two things: either energy is not conserved or the system is able to exchange energy
with its environment in a form that is different from mechanical work. If we assume that
energy is conserved1 and take into account energy transfer on the molecular level, then we
write

dU = −d−W + d−Q. (2.1.3)

where d−Q is the “heat”. It cannot be an exact differential because d−W is not an exact
differential, but the sum of d−Q and d−W must be an exact differential. We have thus
arrived at the first law of Thermodynamics, which states simply that there is a function
of state, called the internal energy (our function U(~Z)), which satisfies

dU = d−Q− d−W, or d−Q = dU + d−W (2.1.4)

Let’s pause to reiterate the sign conventions being used here:

• d−Q is positive when energy is transferred into the system, negative when energy is
released by the system into the environment.

• d−W is positive when work is done by the system, negative when work is done on
the system by the environment

• dU is positive when the internal energy increases and negative when the internal
energy decreases.

For the example of the ideal gas undergoing isothermal compression: since we know that
dU = 0 and d−W < 0 it follows that d−Q < 0 and hence energy is being released from
the gas into a “heat reservoir” (environment), which is being used to keep it at a fixed
temperature.

1The law of conservation of energy, which says that energy can neither be created nor destroyed,
is an empirical law of physics having a long and sometimes confused history. Today, by “energy” we mean
all forms of it, including matter energy, according to Einstein’s famous relation E = mc2, which comes
into play when processes such as fusion, in which mass is converted into radiation, are involved.
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A deeper, more microscopic way to see how the first law arises is to realize that
because the variables determining the thermodynamic states are small in number compared
to the number of microscopic, mechanical variables required for a complete mechanical
description of it, there will in general exist a very large number of “microstates” (states
defined by the allowed values of the 6N − 10 variables) that are all consistent with any
given thermodynamic state. Let us label these microscopic states by α, then we associate
the internal energy with the average value of the mechanical energy Eα associated with
the microstates. Thus

U =
∑
α

PαEα (2.1.5)

where Pα represents the probability that the system is in the microstate α. Any change
in U arises for one or both of two reasons: either the distribution of probabilities changes
or the energies associated with the microstates changes. In other words,

dU =
∑
α

(dPα)Eα +
∑
α

Pα(dEα) (2.1.6)

The right hand side consists of two inexact differentials. The first term is associated
with changes in the occupation probability distribution i.e., the probabilities with which
the different microstates are occupied, while the energies of the states themselves remain
unchanged. The second term is associated with changes in the energies of the microstates,
holding the occupation probability distribution fixed. The second sum is associated with
the mechanical work that is done on the system,

d−W = −
∑
α

Pα(dEα), (2.1.7)

where the negative sign accounts for the fact that if the energies associated with the states
decrease then the system does work on the environment and vice versa. The first term is
associated with the “heat”, i.e.,

d−Q =
∑
α

(dPα)Eα (2.1.8)

Note that the sum of probabilities is constrained to be unity because the system must
occupy one of its microstates at any time, therefore

∑
α dPα = 0. Thus d−Q > 0 only if the

probability to occupy higher energy states increases causing the probability of occupying
lower energy states to correspondingly decrease. Conversely, d−Q < 0 if the reverse occurs.
With these definitions, (2.1.6) is precisely (2.1.4) and, in this way of looking at it, heat is
associated with the redistribution of the probabilities with which the system occupies its
various microstates, holding the energy of the microstates fixed.
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2.2 Simple Applications to Gases

Consider a gas, not necessarily ideal, whose macrostates are labeled by the set (p, V, T )
and governed by some equation of state f(p, V, T ) = 0. Evidently we can use the equation
of state to eliminate one of the three variables and express the internal energy in terms of
the other two. This can be done in three ways; if we eliminate p then the internal energy
gets expressed as U(V, T )

d−Q =

(
∂U

∂T

)
V

dT +

(
∂U

∂V
+ p

)
T

dV (2.2.1)

where the suffices tell which variable is held fixed during the differentiation. Likewise, if
we chose to elliminate V , we would get

d−Q =

(
∂U

∂T
+ p

∂V

∂T

)
p

dT +

(
∂U

∂p
+ p

∂V

∂p

)
T

dp (2.2.2)

and finally, ellimating T ,

d−Q =

(
∂U

∂p

)
V

dp+

(
∂U

∂V
+ p

)
p

dV (2.2.3)

These three relations have some interesting physical applications as we now see.

2.2.1 Heat Capacities of Gases

By definition, the heat capacity of the gas is d−Q/dT but, because d−Q is inexact, the heat
capacity will be process dependent. Two heat capacities are of interest, viz., (i) the heat
capacity at constant volume, CV and (ii) the heat capacity at constant pressure, Cp. (i) is
defined as the heat capacity during an isovolumetric process and (ii) as the heat capacity
during an isobaric process. It is easy to see then that

CV =

(
d−Q

dT

)
V

=

(
∂U

∂T

)
V

(2.2.4)

by (2.2.1), where we have set dV = 0, since the process is isovolumetric. To find Cp we
can use the second equation with the same reasoning to get

Cp =

(
d−Q

dT

)
p

=

(
∂U

∂T

)
p

+ p

(
∂V

∂T

)
p

(2.2.5)

If we restrict attention to ideal gases we can use the equation of state,

pV = NkT.
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Later, we will argue that the equation of state implies that the internal energy can be a
function only of the absolute temperature. This was known early on an experimental basis
following Joule: two isolated chambers A and B are joined by a tube with a stop-cock
seperating them. Chamber B is very much larger than champer A. Chamber A is filled
with an ideal gas up to a certain pressure whereas chamber B is a vacuum. The stop-cock
is suddenly opened so that the gas flows freely from A to B. In doing so the gas does no
work, so by the first law of thermodynamics

d−Q = 0 = dU + d−W ⇒ dU = 0 (2.2.6)

Now the final temperature, volume and pressure of the gas are measured and it is found
that dT = 0, i.e., the process occurs isothermally. Neither dp nor dV are vanishing, so we
conclude that U = U(T ), for an ideal gas. Thus we can write

CV =
dU

dT
⇒ ∆U = Uf − Ui =

∫ f

i
CV (T )dT (2.2.7)

For a more general equation of state, CV could depend on both T and V so we should
have

U(T, V ) =

∫ f

V,i
CV (T, V )dT + U(V ) (2.2.8)

where the subscript “V ” on the integral means that we integrate with respect to T keeping
V fixed, and where U is a function only of V . Returning to the ideal gas, the first law
takes the form

d−Q = CV dT + pdV (2.2.9)

for all processes. Now if the process is isobaric then either from the first law above or
according to (2.2.5) (applying the equation of state) we should have

Cp = CV +Nk (2.2.10)

2.2.2 Adiabatic Equation of State

A process in which no energy is transferred to a system except by work is said to be
adiabatic and the system is then said to be thermally isolated. During an adiabatic
process, d−Q = 0, and for an ideal gas(

∂T

∂p

)
V

=
V

Nk(
∂T

∂V

)
p

=
p

Nk
(2.2.11)
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so by (2.2.3), using U = U(T ),

CV
Nk

V dp+

(
CV
Nk

+ 1

)
pdV =

CV
Nk

V dp+
Cp
Nk

pdV = 0 (2.2.12)

and therefore
dp

p
= − Cp

CV

dV

V
(2.2.13)

The quantity γ = Cp/CV is of some interest in thermodynamics, and is related to the
number of degrees of freedom of the elementary constituents as we shall soon see. (The
number of degrees of freedom of a molecule is the number of ways in which it can store
energy.) Integrating the above we find

pV γ = const. (2.2.14)

This is an alternative equation of state, applicable only to ideal gases undergoing adiabatic
processes. Knowing the process is equivalent to having an additional constraint on the
system, which can be used to eliminate yet another variable of state. Thus, in the case of
the ideal gas, only one of the three thermodynamic variables remains independent during
any given process (this is why the process is a path in the p-V plane). The resulting
equation of state will, of course, be applicable only to the given process. Other examples
are the isovolumetric process in which the equation of state takes the form p/T = const.
(law of Charles), the isobaric process during which V/T = const. (law of Gay-Lusac), and
the isothermal process during which pV = const. (law of Boyle).

2.3 Elementary Kinetic Theory of Gases

We will now embark on a simplistic treatment of ideal gases which, nevertheless, gives a
remarkably accurate picture of their behavior. This is a digression into elementary Kinetic
theory, a topic we shall return to in some detail in a forthcoming chapter.

2.3.1 Basic Postulates and Results

We take the microscopic point of view, making the following assumptions about what an
ideal gas really is.

• An ideal gas is made up of molecules, all of which are identical.

• The molecules obey Newton’s laws.

• The number of molecules is large, so that the laws of statistics apply
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• Although the number of molecules is large, the volume they occupy is vanishingly
small compared to the total volume of the gas.

• There are no interactions between the molecules except by hard-body collisions.

• The time during which the molecular collisions occur (the collision time) is negligibly
small compared with the the time spent by the molecules as free particles (free time).

First consider a one-dimensional gas in a one-dimensional box, of length L. Let the length
of the box lie along the x−axis and consider a single molecule travelling along this axis, for
convenience from left to right. Upon colliding with the wall on the right, the molecule will
change direction, moving to the left. If the box is rigid, much heavier than the moelcule
and if the collision is elastic, the molecule’s recoil speed will be the same as its original
speed. It’s direction is reversed, however, so if vx is its speed prior to collision,

∆p = pf − pi = −2mvx (2.3.1)

The molecule must travel a distance 2L before returning to the same wall for another
collision with it, so it returns after a time ∆t = 2L/v. Thus, we can estimate the rate at
which the wall imparts momentum to the molecule as

Fwall =
∆p

∆t
= −mv

2
x

L
(2.3.2)

By Newton’s second law, this must be the force exerted by the wall on the molecule and by
Newton’s third law it is the force that the molecule exerts upon the wall (in the opposite
direction), i.e.,

Fmol = +
mv2

x

L
(2.3.3)

If there are N molecules in the box, the rate at which momentum is imparted to the wall,
or the force on the wall, is

〈F 〉 =
Nm〈v2

x〉
L

, (2.3.4)

where the angular brackets denote that we are speaking about the average behavior. The
pressure on the wall is then just the force divided by the cross-sectional area of the wall,

p =
Nm〈v2

x〉
LA

=
Nm〈v2

x〉
V

⇒ pV = Nm〈v2
x〉 (2.3.5)

In general, molecules do not travel exclusively in one direction. We expect motion in
all directions, randomly distributed between the three linearly independent directions of
space. In other words,

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 (2.3.6)
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(where we have used mean square components because the average of each component can
be expected to vanish, 〈vx〉 = 〈vy〉 = 〈vz〉 = 0, it being equally probable for a molecule to
be traveling to the left as to the right otherwise one direction in the gas would be preferred
over another). Because

〈v2〉 = 〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉 (2.3.7)

it then follows that

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 =

1

3
〈v2〉 (2.3.8)

and we could write (2.3.5) as

pV =
1

3
Nm〈v2〉. (2.3.9)

which looks strikingly similar to the equation of state of the ideal gas, if suitable identifi-
cations are made.2

2.3.2 Internal Energy and Heat Capacities

Indeed, comparing we find that the temperature is to be associated with the mean kinetic
energy, 〈Kmol〉

kT =
1

3
m〈v2〉 =

2

3
〈Kmol〉 (2.3.10)

In the first place, we obtain an interesting relationship between the root mean square
velocity, vrms and the absolute temperature of the gas,

vrms
def
=
√
〈v2〉 =

√
3kT

m
(2.3.11)

In the second place, since we assumed that there were no interactions between the molecules,
the only contribution to the molecular energy comes from the kinetic energy and we have

〈Emol〉 = 〈Kmol〉 =
3

2
kT (2.3.12)

2We have used the non-relativistic approximation in this derivation. If the molecules of the gas are
relatvistic (as might occur under extreme conditions as, for example, for the electron gas in a white dwarf)
then (2.3.9) gets modified according to

pV =
1

3
Nvrmsprms,

where vrms and prms are respectively the root-mean-square values of the three velocity and relativistic
momentum. Show this, using the relativistic equations of motion, assuming that the box is stationary in
the frame of the observer.
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Since each (point-like) molecule has but three degrees of freedom, we can say that it has
kT/2 units of energy per degree of freedom. Finally, dividing (2.3.9) by V and calling n
the number density of molecules

p =
1

3
nmv2

rms =
1

3
ρv2

rms (2.3.13)

(2.3.9) gives us a relationship between the pressure of a gas, its density, ρ, and the mean
molecular speed.

The internal energy of the gas is just the sum of the individual molecular kinetic
energies

U = N〈Emol〉 =
3

2
NkT (2.3.14)

which, as mentioned earlier, depends only on the temperature. It also immediately follows
that the heat capacity of the gas at constant volume is,

CV =
dU

dT
=

3

2
Nk (2.3.15)

and therefore the heat capacity at constant pressure must be

Cp = CV +Nk =
5

2
Nk (2.3.16)

Thus the ratio of heat capacities has the value

γ =
Cp
CV

=
5

3
(2.3.17)

for an ideal gas of point-like molecules. Point-like molecules are idealizations, of course.
If the molecules have additional structure, we must learn to take it into account. For
instance, point-like molecules carry energy only by virtue of their translational motions.
With additional structure a molecule may carry energy in internal vibrations as well as in
rotational motion about its center of mass.

2.3.3 Law of Equipartition of Energy

We have seen that the average energy of each molecule in a gas is 3kT/2, and that the
factor of “3” can be attributed to the three translational degrees of freedom of a point
like molecule, so that each degree of freedom carries an average of kT/2 units of energy.
The law of equipartition of energy declares that the same holds true for vibrational and
rotational degrees of freedom as well.

As examples, consider a diatomic molecule and assume that the bond between its
constituent atoms is effectively rigid. The molecule has three translational degrees of
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freedom (center of mass motion). In addition it has two rotational degrees of freedom
corresponding to rotations about the two axes orthogonal to the axis of symmetry of the
molecule (the line joining its atoms). Of course, we exclude rotations about the axis
of symmetry itself, since such rotations carry no energy on account of the fact that the
moment of inertia about this axis vanishes. The internal energy of the gas of diatomic
molecules is the

U =
5

2
NkT (2.3.18)

gving CV = 5Nk/2, Cp = 7Nk/2 and γ = 7/5. For polyatomic molecules, all three
rotational degrees of freedom are to be counted and we find U = 3NkT , CV = 3Nk,
Cp = 4Nk and γ = 4/3. The counting of vibrational degrees of freedom must take into
account the fact that energy is stored both in the kinetic and potential energy of the
oscillator, so there are generally two vibrational degrees of freedom per space dimension
or six for a general polyatomic molecule. In general, let g be the number of degrees of
freedom per molecule, then

E =
g

2
NkT ⇒ CV =

g

2
Nk, Cp =

g + 2

2
Nk, γ =

g + 2

g
(2.3.19)

so γ is related to the number of degrees of freedom per molecule, as promised earlier.

In practice, one has to take into account the quantum theory which requires that the
energy of motion with closed or periodic phase space orbits is quantized. What this means
is that although a molecule may possess rotational and vibrational degrees of freedom, it
can be excited to higher rotational and vibrational energy levels only by the absorption
of discrete packets of energy. If the minimum energy required for a jump between energy
levels is not available to the molecule, the rotational and vibrational energy levels cannot
be excited. Therefore, at low temperatures the energy a molecule may gain by collisions
with other molecules is generally not large enough to raise it to the first excited state
of either rotation or vibration. As a consequence, at low temperatures, a molecule will
have only three effective (translational) degrees of freedom. As the temperature is raised,
a fraction of the molecules may be able to acquire enough energy through collisions to
excite them to the first rotational state. The fraction of excited molecules will rise with
the temperature and the specific heat will also begin to rise. This continues until the
temperature is high enough that all the molecules are able to obtain energy enough to
rotate. At this point the number of effective degrees of freedom per molecule is five or
six depending of whether the molecule is diatomic or polyatomic. Rotational degrees of
freedom contribute in most gases at around room temperature. However, the temperature
must be raised significantly (to about 103 K) to begin to excite vibrational energies, which
begin to contribute fully to the specific heat of the gas only at above 104 K.
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2.3.4 The Mean Free Path

In our simple model above, we assumed that the molecule travels freely from one end of
the box to another. In fact this cannot be the case if the molecule has a non-vanishing
collision cross-section, i.e., a finite size. One can guess how far a molecule would travel
collision-free, if it had an effective diameter d as follows. The estimate is easily made
on more or less dimensional grounds, for in travelling a distance D a spherical molecule
sweeps out a cylinder of radius d/2 and length D. Another molecule would collide with it
if the centers of the two molecules were to come within a distance d from one another. This
means that the number of collisions that a particular molecule experiences in traveling a
distance D would be approximately the number of molecules that lie within a cylinder of
radius d and length D. Let n be the number density of molecules in the gas and ND the
number of collisions in a distance D

ND = nVD = nπd2D ⇒ D =
ND

nπd2
(2.3.20)

The distance over which one collision may be expected (called the mean free path, 〈l〉)
is then

〈l〉 =
1

nπd2
(2.3.21)

This rather ad-hoc calculation is in the spirit of the “derivation” of the internal energy
in the previous section. However, the result is not so far from that obtained from a more
robust calculation we shall do later in this text. If one takes into account the motion of all
the molecules (we have essentially assumed that only one – “our” – molecule is in motion
relative to the gas as a whole and that all the other molecules in the gas are at rest relative
to it!) one finds the Clausius formula

〈l〉 =
1√

2nπd2
(2.3.22)

To get an idea of the magnitude of the mean free path, let us compute it for an average
molecule of air at 20◦C and 1 atm pressure. The average molecule of air has mass (20%
Oxygen and 80% Nitrogen)

〈m〉 = [0.2mO + 0.8mN ]mp = [(0.2)(32) + (0.8)(28)]× 1.67× 10−27 = 4.81× 10−26 kg
(2.3.23)

The density of dry air at STP3 is ρ ≈ 1.29 kg/m3, therefore the number density of
molecules is

n =
ρ

〈m〉
=

1.29

4.81× 10−26
= 2.68× 1025 /m3 (2.3.24)

3We ae using NIST’s definition of STP here.
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Figure 2.1: A rectangular piped of surface area A and height dz in a gravitational field

Take the diameter of the average molecule to be d ≈ 3.5 × 10−10 m. Plugging all this
information into the expression for 〈l〉 gives 〈l〉 = 6.9× 10−6 cm.4

Now if we know the mean free path, we can compute the mean free time τ , which is
the time between collisions, as the name suggests,

τ =
〈l〉
vrms

(2.3.25)

and the collision frequency, defined as the reciprocal of the mean free time, becomes
f = 1/τ = vrms/〈l〉. For the example of air at STP we find that vrms ≈ 508.167 m/s and
so f ≈ 7.4× 109 s−1. A molecule of air is collision free for less than a nanosecond!

2.3.5 Maxwell-Boltzmann distribution of Molecular Velocities

We mentioned taking averages in the previous section, but with no word about the dis-
tribution of probabilities over which the averages were taken. Yet, we must assume that
there is a certain probability distribution over the velocities of molecules at any given
temperature. In this section we consider what that distribution might look like.

This so-called molecular velocity distribution was first discussed by J.C. Maxwell in
1859, however we shall follow L. Boltzmann’s derivation. Consider a volume of some ideal
gas in the shape of a rectangular parallelpiped and situated in an external gravitational
field which we assume for convenience to be constant and directed “downward”, as shown
in figure 2.1. From elementary hydrostatics, we know that the pressure of the gas at the
lower surface of the cube will not be the same as the pressure at the upper surface. Let
n = n(z) represent the number density of molecules, pu and pl the pressures on the upper
and lower surfaces, each of which has area A, and let dz be the height of the rectangular

4Problem: This answers a question we may have had about the applicability of classical mechanics.
Quantum effects become important when the wave functions of molecules overlap leading to interference.
Argue (i) that a typical molecule of air at STP is non-relativistic and (ii) that its de Broglie wavelength is
many orders of magnitude smaller than its mean free path.
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parallelpiped. Evidently, in equilibrium we must have

(−pu + pl)A = nmgAdz, (2.3.26)

where m is the molecular mass of the molecules. Then if we let pu − pl = dp,

dp

dz
= −nmg (2.3.27)

and from the equation of state, p = nkT , assuming that T does not change with height,

dn

dz
= −nmg

kT
(2.3.28)

gives the number density of molecules at any height z in terms of the number density n0

at z = 0. As the temperature is assumed uniform throughout our gas, integration yields

n = n0e
−mgz

kT (2.3.29)

and applying the equation of state,

p = p0e
−mgz

kT . (2.3.30)

We see that the isothermal gas does not have a well defined boundary, but it becomes
more diffuse with increasing height.

What if the gas is isolated instead of isothermal? Returning to (2.3.27), replace n by
p/kT to get

dp

dz
= − p

kT
mg (2.3.31)

The equation of state for adiabatic processes, in the form p1−γT γ = const., can be rewritten
in the form

dp

p
=

γ

γ − 1

dT

T
(2.3.32)

so (2.3.31) becomes
dT

dz
= −γ − 1

γ

mg

k
, (2.3.33)

which is trivially integrated from the surface to z, with solution

T = T0

[
1− γ − 1

γ

z

z0

]
, (2.3.34)

where T0 is the surface level temperature and z0 = kT0/mg. The solution is valid so long
as z ≤ γz0/(γ − 1). The pressure can now be given as

p = p0

[
1− γ − 1

γ

z

z0

] γ
γ−1

(2.3.35)
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so we see that the adiabatic gas possesses a sharp boundary, in contrast with the isothermal
gas.

For the atmosphere, z0 ≈ 29.4 km. Earth’s atmosphere behaves more or less adiabat-
ically up to about 20 km, at which point we enter the stratosphere. Above 20 km, i.e.,
in the stratosphere, it behaves isothermally, and the pressure falls off exponentially with
increasing height.

Now the change in n with height has a simple meaning: not every molecule of the gas
is able to rise to any given altitude. Consider a single molecule which starts off from some
(arbitrary) height z′ with speed v′. Simply from the point of view of its total mechanical
energy, it would reach a height z > z′ only if v′2 ≥ 2g(z−z′). If its speed is large enough it
could even cross z, but if its speed is not large enough it will not get to z. Put in another
way, the number of molecules at z, will be a function of the mean molecular speed at z′.
So we expect that the number density obtained above as a function of z is really telling
us about the velocity distribution of the molecules in the gas.

The molecules that arrive at z are the molecules that interest us. Conserving energy,

1

2
m~v2 +mgz =

1

2
m~v′2 +mgz′ (2.3.36)

We can take z′ = 0 and, since we’re interested in the molecules that just make it to z, take
~v = 0 as well. Thus, to get to z a molecule must have kinetic energy larger than mgz at
z′ = 0. In differential form

~v′ · d~v′ = gdz ⇒ 1

2
d~v′2 = gdz, (2.3.37)

which says that a change in the height z, would necessitate a corresponding change in the
speed that a molecule would have to have had at z′ = 0 in order to arrive at z. We can
now write a velocity distribution as follows. If n(~v′) is the number density of molecules
with velocities between ~v′ and ~v′ + d~v′, then the number of molecules with velocities in
this interval would be n(~v′)d3~v′. But, inserting (2.3.37) into (2.3.28) we get

2
dn

d~v′2
= −nm

kT
, (2.3.38)

which is integrated holding the temperature fixed to give

n(~v′) = n0e
−m~v

′2
2kT , (2.3.39)

where n0 represents the number of molecules with zero speed. The number of molecules
having velocities between ~v′ and ~v′ + d~v′ should be

n(~v′)d3~v′ = n0e
−mv

′2
2kT d3~v′. (2.3.40)
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Henceforth drop the primes, remembering that the distribution is valid at z′ = 0 where
the gravitational potential energy is zero. Assuming local rotational symmetry in velocity
space, which is certainly reasonable in equilibrium as no particular direction is preferred
over another, we can replace d3~v by 4πv2dv,

n(~v)d3~v = 4πn0e
−mv

2

2kT v2dv
def
= n(v)dv (2.3.41)

where n(v)dv can be thought of as the distribution in speeds. Recall that here n0 represents
the number of molecules having zero velocity. To estimate its value note that the integral
of n(~v)d3~v over all possible velocities should yield the total number of molecules. Thus

N = 4πn0

∫ ∞
0

e−
mv2

2kT v2dv = n0

(
2πkT

m

)3/2

(2.3.42)

and so

n(~v)d3v = 4πN
( m

2πkT

)3/2
e−

mv2

2kT v2dv (2.3.43)

is the desired distribution of molecular velocities. It allows us to compute the expectation
(average) values used in the previous sections. In fact, any function f(~v) would have an
expectation value given by

〈f(~v)〉 =
1

N

∫
f(~v)n(~v)d3~v (2.3.44)

For example, the average velocity of any molecule is obviously identically zero because the
integral defining it,

〈~v〉 =
1

N

∫
~vn(~v)d3~v (2.3.45)

is odd for every component. On the other hand,

〈v2〉 = 4π
( m

2πkT

)3/2
∫ ∞

0
e−

mv2

2kT v4dv =
3kT

m
(2.3.46)

so

vrms =

√
3kT

m
(2.3.47)

which is just (2.3.11). We should note that the rms speed of the molecules is different
from their mean speed, since

〈v〉 = 4π
( m

2πkT

)3/2
∫ ∞

0
e−

mv2

2kT v3dv =

√
8kT

πm
, (2.3.48)
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and that both of these are different from their most probable speed, which is defined as
the speed that maximizes the distribution in speeds,

dn(v)

dv

∣∣∣∣
ṽ

= 0⇒ ṽ =

√
2kT

m
(2.3.49)

Thus we have three different quantities, all of which characterize the mean speed of the
molecules. Which of these is meaningful depends always on the particular problem that
is being addressed.

2.4 Thermodynamic Cycles: Engines and Refrigerators

A Thermodynamic Cycle is a process in which the thermodynamic system (we will
sometimes refer to the thermodynamic system as the working substance) periodically
returns to its original macrostate. As we will shortly show, any system undergoing a
cyclic process will either do work on the environment or have work done upon it by the
environment. By the first law of thermodynamics, if work is done by the cycle then the
energy for the work done must be extracted from some external source. To simplify matters
we will work with heat reservoirs: a “heat reservoir” is a thermodynamic system with
a very large heat capacity compared with the working substance, so that any exchange
of heat between the substance and the reservoir will result in no significant change in
the reservoir’s temperature. Thus heat reservoirs maintain their temperature no matter
how much energy is extracted or deposited into them. We define a Heat Engine as
any thermodynamic cycle which extracts energy from a reservoir in the form of heat
and performs mechanical work. On the other hand, a Refrigerator will be any cyclic
thermodynamic process which transfers energy in the form of heat from a reservoir at
a lower temperature to a reservoir at a higher temperature. We will soon see that any
thermodynamic cycle that operates as a heat engine will operate as a refrigerator if the
cycle is reversed.

We had begun our study of Thermodynamics by saying that one of its principle objec-
tives is to better understand processes that transform heat into useful work and vice-versa.
Let us therefore get a better look at these processes. A cyclic process would be represented
by a closed curve in the thermodynamic phase space. This follows from the requirement
that the thermodynamic system should periodically return to its initial state. Upon com-
pletion of a cycle, the state properties do not change and the engine is able to repeat the
cycle. However, path dependent quantities, such as Heat and Work do change during each
cycle, and so may change indefinitely as the cycle repeats itself. The closed curve repre-
senting a cycle separates the p−V plane into two regions, an “interior” and an “exterior”.
The work done,

W =

∮
C
pdV, (2.4.1)
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V

p

Figure 2.2: A cycle and schematic representing a heat engine: Th > Tl

where C represents the closed curve in the p − V plane will always be the area of the
interior region. This assumes that the only way a system may do external work is via
changes in the volume. In general there may be several external parameters, Xi, whose
change requires the system to do work on the environment. In that case,

d−W =
∑
i

pXidXi ⇒W =

∮
C

∑
i

pXidXi (2.4.2)

should replace (2.4.1), where pXi represents the “generalized force” corresponding to
changes in Xi. The generalized force pXi is said to be conjugate to the external parame-
ter Xi. Pressure in a fluid is just one example of a “generalized force” in thermodynamics,
being the generalized force conjugate to the volume. In what follows, the expression pdV
will be understood to represent

∑
i pXidXi whenever we work with systems in which the

volume is not the only external variable whose change involves external work.
If the cycle operates in a clockwise direction then the work done is positive. In this

case the cycle is a heat engine (see figure 2.2). On the contrary, if it operates in a
counterclockwise direction the work done is negative and the cycle will be a refrigerator.
Since the internal energy is a function only of the state variables, the energy added by
heat to the cycle must be given by

Q = W (2.4.3)

at the completion of each cycle, according to the first law of Thermodynamics. Now in
general the energy transferred by heat can be divided into two parts: the energy transferred
by heat to the cycle from some reservoir, which we call Qin, and the energy transferred by
heat out of the cycle and into some other reservoir. We call this energy Qout, then

Q = Qin +Qout. (2.4.4)

is the energy added by heat to the cycle.
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Figure 2.3: A cycle and schematic representing a refrigerator: Th > Tl

The efficiency of the cycle is defined differently depending on whether the cycle is op-
erating as a heat engine (clockwise) or as a refrigerator (counterclockwise). The efficiency
is supposed to provide some measure of how well the cycle accomplishes its purpose, so it
is quite generally defined by the ratio

e =
design output

design input
(2.4.5)

The purpose of the heat engine is to do useful work. To do so we must supply the engine
with energy in some form, which costs money and is thus not desirable. Thus the efficiency
of the engine would be

eh =
W

Qin
=
Qin +Qout

Qin
= 1 +

Qout

Qin
(2.4.6)

which is always between zero and one, since Qout ≤ 0 and 0 ≤ |Qout| ≤ Qin as long as work
is done (W ≥ 0). An efficiency of unity would represent an ideal heat engine that is able
to convert all of the supplied energy into useful work. An efficiency of zero is the other
limit in which no work is done for the energy supplied. The purpose of a refrigerator, on
the other hand, is to remove energy in the form of heat from some reservoir at a lower
temperature and deposit it into a reservoir at a higher temperature. The design output
would therefore be the energy removed (from the colder reservoir). Doing mechanical work
on the cycle to accomplish this would be the input of the process, so the efficiency of the
cycle should be defined as

er =
Qin

|W |
= − Qin

Qin +Qout
= − 1

1 + Qout

Qin

=
1

|Qout|
Qin
− 1

. (2.4.7)

Because W ≤ 0 for the refrigerator we must have |Qout| ≥ Qin and it follows that the
efficiency of a refrigerator can be any non-negative real number. A perfect refrigerator



2.5. SAMPLE CYCLES 51

would require no work to be done and so have an infinite efficiency. An efficiency of zero
would represent the opposite limit in which an infinite amount of work must be done on
the refrigerator to accomplish the transfer of any energy. Let’s now consider some concrete
examples of heat engines and refrigerators.

2.5 Sample Cycles

Our examples will be idealized because we will neglect some details of processes involved as
well as energy losses due to friction and other causes and concentrate only on the essential
characteristics of each cycle. This has the advantage of making the calculation of the
efficiency in each case tractable while retaining the underlying physics of what is going
on. We begin with the standard engine, the Carnot cycle, whose great advantage as we
will see later is that it operates between just two heat reservoirs and so two temperatures.

2.5.1 The Carnot Engine

Take an ideal gas for the working substance and imagine that it is enclosed in a container
of the following description: it has insulating and rigid walls so that no energy may enter
or leave the interior either by mechanical means or by heat through the walls. It also has
a conducting base so that energy transfer in the form of heat can occur only through the
base. The top of the cylinder is closed by an insulating piston (effectively a movable wall)
so that while no energy may be exchanged with the system by heat through the piston,
energy exchange via mechanical work may occur.

Let there be two heat reservoirs and let the two reservoirs be at temperatures Th and
Tl such that Th ≥ Tl. We will refer to the reservoirs either directly by their temperatures
or as the “high temperature” and “low temperature” reservoirs respectively. We now take
the working substance through the following four steps, all of which are shown in the p−V
diagram of figure 2.4.

1. Place the gas, initially in equilibrium at temperature Th, on the high temperature
reservoir and allow it to expand quasi-statically from state “1” to state “2” by slowly
decreasing the weight on the piston. The expansion is isothermal because the gas is
continuously in thermal equilibrium with the reservoir. Again, this means that its
internal energy is also constant and it absorbs a quantity of energy, Qin, through the
base from the reservoir, converting all of it into useful work,

Qin = W12 = NkTh

∫ 2

1

dV

V
= NkTh ln

(
V2

V1

)
, U1 = U2 (2.5.1)

2. Now place the gas on an isulating stand, allowing the gas to continue to expand from
“2” to “3” by slowly decreasing the weight on the piston. Because no energy enters
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Figure 2.4: A p− V diagram for the Carnot cycle.

or leaves the system by heat, the work done by the gas is at the cost of its internal
energy causing its temperature to decrease. Continue the process of expansion until
the temperature reaches Tl. Then

U3 −U2 = −W23 = −
∫ 3

2
pdV = −α

∫ 3

2
V −γdV = − α

(1− γ)
(V 1−γ

3 − V 1−γ
2 ) (2.5.2)

where α is the constant on the right hand side of the adiabatic equation of state
(2.2.14). Dividing the ideal gas equation of state pV = NkT by pV γ = α, we find

αV 1−γ = NkT ⇒ U3 − U2 = −W23 = − Nk

γ − 1
(Th − Tl), ∆Q = 0 (2.5.3)

for this process.

3. Remove the gas from the insulating stand and place it on the low temperature
reservoir, slowly compressing the gas by increasing the weight on the piston until it
reaches some volume V1 < V4 < V3, which we determine by requiring the state “3”
and the state “1” to lie on the same adiabatic line. This is always possible. In this
step, work is done on the gas at constant temperature. Because the internal energy
is held constant energy in the form of heat, Qout is expelled from the gas. By the
first law,

Qout = W34 = −NkTl ln
(
V3

V4

)
, U3 = U4 (2.5.4)
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4. Finally place the gas once again on the insulating stand and continue to increase
the weight on the piston so that the gas continues to be compressed until it achieves
the volume V1. Again, no energy is allowed to enter or leave the gas by heat, so the
work done on the gas increases its internal energy and therefore its temperature. In
fact,

U1 − U4 = −W34 =
Nk

γ − 1
(Th − Tl) (2.5.5)

To calculate the efficiency of the Carnot engine, we need to compare the total work done
by the cycle to the energy absorbed at the hight temperature reservoir. Thus using (2.4.6)

eh = 1 +
Qout

Qin
= 1− Tl

Th

ln(V3/V4)

ln(V2/V1)
(2.5.6)

To simplify the expression, relate each of the states by the equations of state appropriate
to the process connecting them

p1V1 = p2V2

p2V
γ

2 = p3V
γ

3

p3V3 = p4V4

p4V
γ

4 = p1V
γ

1 (2.5.7)

Multiplying these equations,we find

V1V
γ

2 V3V
γ

4 = V2V
γ

3 V4V
γ

1 ⇒
(
V3

V4

)1−γ
=

(
V2

V1

)1−γ
(2.5.8)

so that

eh = 1− Tl
Th

(2.5.9)

and, because Tl ≤ Th, eh ≤ 1. If it were possible to have a reservoir at Tl = 0 temperature,
we could create an ideal engine whose efficiency would be precisely one. In the other limit,
if Tl = Th the efficiency is precisely zero.

The Carnot cycle, operating in a clockwise direction had the net effect of removing
energy from the high temperature reservoir and converting a portion of it into mechanical
work. Now we can think of operating the cycle in reverse [see figure 2.5]. It would then
take energy in the form of heat from the low temperature reservoir and pass it on to the
high temperature reservoir. The cycle now operates as a refrigerator and work must be
done to operate this cycle. The efficiency of the refrigerator can be easily calculated from
our earlier results and using the definition in (2.4.7)

er =
1

Th
Tl

ln(V2/V1)
ln(V3/V4) − 1

=
1

Th
Tl
− 1

(2.5.10)
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Figure 2.5: A p− V diagram for the Carnot cycle in reverse.

We see that because Th/Tl ≥ 1 the efficiency of the refrigerator becomes arbitrarily large
as Th → Tl but it quickly becomes less than one when Th > 2Tl.

5

2.5.2 The Otto Cycle (Gasoline Engine)

We consider the four stroke version of the Otto cycle as shown in figure 2.9. The working
substance is an mixture of air and fuel. The mixture is forced into a cylinder through one
of two valves, which are built into the the cylinder head (at the top of the cyclinder). The
other valve is used to release waste gases from the cylinder at the appropriate point in the
cycle. Also attached to the cylinder head is a spark plug, whose purpose it is to generate
an electric spark when required. The base of the cylinder consists of a piston that is free
to move up and down. The piston turns a crankshaft and a flywheel, which stores the
mechanical energy that is transferred to it.

The cycle begins at “top dead center”, i.e., when the piston is at the top of its motion.
Both valves are closed and inside the cyclinder is a mixture of air and fuel that is exploded
by generating an electric spark. The explosion causes the pressure to rise very rapidly. We
may model this by an isovolumetric process (“1” to “2”) because the piston does not have
time to move downward during the initial phase of the explosion. Eventually, however,

5It is important to bear in mind what this result says: the work done to accomplish the transfer of
energy from the low temperature reservoir to the high temperature one will be less than the quantity of
energy transferred in the form of heat provided that the temperature of the high temperature reservoir is
less than twice the temperature of the low temperature reservoir.
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Figure 2.6: A p− V diagram for the Otto Cycle.

the hot gaseous products of the explosion expand, pushing the piston down in a more or
less adiabatic process (from “2” to “3”), the so-called “power stroke”, and the mechanical
energy is trasferred to the flywheel which stores it. When the piston reaches its lowest
level, the exhaust valve opens and the (cooler) products of the combustion are released into
the atmosphere as the piston continues moving upward in the so-called “exhaust stroke”.
When it has reached top dead center again, the exhaust valve is closed and the intake valve
is opened to let in a fresh batch of the air-fuel mixture as the piston makes its way down
again. Both these steps can be represented by the isovolumetric process from “3” to “4”.
The intake valve is closed when the piston reaches the bottom and, with both valves now
closed, the air fuel mixture is compressed (almost) adiabatically until the piston returns
to top dead center (“4” to “1”), when the cycle is complete and ready to be repeated.

In our idealized version of events, energy in the form of heat is absorbed by the engine
during the first stage, and rejected by the engine during the third stage. Both these process
are isovolumetric, the first being at the smallest possible volume, Vi, in the cylinder and
the last being at the largest possible volume, Vf . The ratio b = Vf/Vi is generally called
the compression ratio and expresses the degree to which the air-fuel mixture is compressed
before ignition. The work done by the cycle is

W = α23

∫ Vf

Vi

V −γdV + α41

∫ Vi

Vf

V −γdV (2.5.11)

where we use the adiabatic equation of state for the two processes that do work: pV γ = α
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and the subscript on α refers to the path. Thus6

W =
Nk

γ − 1
[T2 − T3 + T4 − T1] (2.5.12)

On the other hand, heat is absorbed during an isovolumetric process and therefore

Qin = U2 − U1 = CV (T2 − T1) (2.5.13)

so the efficiency of the engine is

eh =
Nk

CV (γ − 1)

[
1− T3 − T4

T2 − T1

]
(2.5.14)

The ratio of the temperatures in the square brackets, can be given in terms of the com-
pression ratio if we recognize that steps “2” to “3” and “4” to “1” are adiabatic, so

T2V
γ−1
i = T3V

γ−1
f and T4V

γ−1
f = T1V

γ−1
i (2.5.15)

implying that
T3 − T4

T2 − T1
=

(
Vi
Vf

)γ−1

(2.5.16)

and therefore, in terms of the compression ratio b = Vf/Vi,

eh = 1− b1−γ (2.5.17)

where we also used the fact that γ − 1 = (Cp − CV )/CV = Nk/CV . Clearly 0 < eh < 1,
because γ > 1 as we have seen. Observe that the efficiency of the idealized cycle depends
only on the compression ratio; the larger the compression ratio the greater the efficiency.
Unfortunately, in practice it is not possible to increase the compression ratio indefinitely
because one is limited by the volatility of the air-fuel mixture. Excessive compression
ratios can cause the mixture to burn prematurely, i.e., before the spark ignites it at top
dead center. This will cause the engine to lose power and efficiency.

2.5.3 The Diesel Cycle

The difference between the Otto cycle and the diesel cycle is that the fuel mixture is
not ignited suddenly by a spark, but is ignited by the higher compression and is then
allowed to burn “slowly”. The resulting idealization of the cycle is shown in figure 2.7 In
the figure, “1” represents the point at which the burning begins. The gas then expands
pushing the piston down in the power stroke which occurs through two stages, first in

6Again use αV 1−γ = NkT
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Figure 2.7: A p− V diagram for the Diesel Cycle.

an isobaric process (“1” to “2”) as the fuel continues to burn and then in an adiabatic
process (“2” to “3”) when the fuel is spent and the hot gases continue to expand. The
isovolumetric process “3” to “4” occurs when the exhaust valve is opened and the waste
gases are eliminated. A fresh batch of the air-fuel mixture is let into the combustion
chamber and compressed in last last stage (“4” to “1”), bringing the cycle to completion.

The efficiency is slightly more difficult to calculate than for the Otto cycle, because
work is now done in three of the four stages and energy in the form of heat is absorbed
during an isobaric process. Thus we have

Qin = Cp(T2 − T1) (2.5.18)

and

Qout = CV (T4 − T3) (2.5.19)

so the efficiency of the cycle is

eh = 1 +
1

γ

T4 − T3

T2 − T1
(2.5.20)

Now three volumes are involved in this cycle, viz., V1, V2 and V3 = V4, so let us try to
express the ratio of temperatures in terms of them. To do so, we again use the adiabatic
lines “2” to “3” and “4” to “1” to get

T2V
γ−1

2 = T3V
γ−1

3 T4V
γ−1

3 = T1V
γ−1

1 (2.5.21)
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Figure 2.8: A p− V diagram for the ideal Brayton Cycle.

so

(T4 − T3)V γ−1
3 = T1V

γ−1
1 − T2V

γ−1
2 (2.5.22)

or

(T4 − T3)

(
V3

V1

)γ−1

= T1 − T2

(
V2

V1

)γ−1

(2.5.23)

The ratio c = V2/V1 is called the “cut-off” ratio. Let b = V3/V1 and use the effective
equation of state during the process “1” to “2”, i.e., T1/V1 = T2/V2 ⇒ T2 = cT1, to
rewrite the above equation in terms of b, c and T1

(T4 − T3)bγ−1 = T1(1− cγ)⇒ (T4 − T3)

T2 − T1
= −b

1−γ(cγ − 1)

c− 1
(2.5.24)

and so

eh = 1− b1−γ(cγ − 1)

γ(c− 1)
(2.5.25)

Because there is no spark and the fuel burning is slow, the diesel cycle is less stressful on
the engine than its sister the Otto cycle. For this reason diesel engines tend to last longer
and cost less to maintain than gasoline engines.

2.5.4 The Brayton Cycle

The Brayton (or Joule) cycle represents the operation of a turbine (or jet engine). The
idealized cycle consists of the four processes shown in the diagram of figure 2.8. In the
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first step (“1” to “2”) air is taken into the engine and compressed adiabatically in the
compressor before passing into the combustor, where fuel is burned at constant pressure
(“2” to “3”), adding energy to the gases, which are then allowed to expand adiabatically
through a turbine (“3” to “4”). Some of the work done is then used to drive the compressor
and the rest is used either for jet propulsion or to turn a generator for electrical power
generation. In the last step the gas is released into the reservoir from which the air
was extracted, where it cools and contracts at constant pressure, returning to its initial
condition.

Energy is absorbed as heat during the combustion (“2” to “3”) and released during
the isobaric cooling (“3” to “4”). We have

Qin = Cp(T3 − T2), Qout = Cp(T1 − T4) (2.5.26)

so the efficiency of the engine is

eh = 1− T4 − T1

T3 − T2
(2.5.27)

We would like to express this result in terms of the two pressures that characterize the
engine, viz., the atmospheric pressure at “1” and the pressure inside the combustion
chamber at “2”. This is easily done if we write the equation of state for the adiabatic
processes “1” to “2” and “3” to “4”, respectively (noting that p3 = p2 and p4 = p1)

p
1−γ
γ

1 T1 = p
1−γ
γ

2 T2

p
1−γ
γ

2 T3 = p
1−γ
γ

1 T4 (2.5.28)

so

eh = 1−
(
p2

p1

) 1−γ
γ

(2.5.29)

or, using the first of (2.5.28),

eh = 1− T1

T2
(2.5.30)

Note that T1 is the atmospheric temperature and T2 represents the temperature at the
compressor exit.

2.5.5 The Stirling Cycle

In the Stirling engine, a working substance, which here will be assumed to be an ideal
gas possessing g degrees of freedom per molecule, at initial volume V1 and temperature
Tl takes in energy in the form of heat at constant volume until its temperature reaches
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Figure 2.9: A p− V diagram for the Stirling Cycle.

Th and then expands isothermally to a volume V2. At this point it gives up some of the
energy it absorbed earlier in an isovolumetric process until its temperature drops back to
Tl. Finally, it returns to its original state by isothermal compression. We want to compute
the efficiency of this cycle.

Energy in the form of heat is supplied during the first two steps (from “1” to “2” and
from “2” to “3”) so we have

Qin =
g

2
Nk(Th − Tl) +NkTh ln

(
V2

V1

)
(2.5.31)

Work is done by the cycle during the two isothermal processes, so

W = Nk(Th − Tl) ln

(
V2

V1

)
(2.5.32)

and the efficiency can be directly computed as

1

e
=
Qin

W
=

Th
(Th − Tl)

+
g/2

ln (V2/V1)
(2.5.33)
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Figure 2.10: A p− V diagram for the ideal Rankine Cycle.

2.5.6 The Rankine Cycle

The Rankine Cycle is an idealized cycle describing the steam engine (see figure 2.10).
The steps involved are the following. From “1” to “2” the water (or fluid) is compressed
isovolumetrically to the pressure of the boiler, from “2” to “3” the water is injected
into boiler where it is heated to boiling point, vaporizes into saturated steam and is
superheated to the final temperature (T3) in an isobaric process. It is then let into the
piston chamber where it expands adiabatically pushing the piston and doing work from
“3” to “4”. (Alternatively, in modern steam turbines, it is allowed to expand through
a turbine, doing work by turning it.) It is then released from the piston chamber into
a condenser, where it condenses at constant pressure and is returned to the compressor
where it renews the cycle. Energy is absorbed in the form of Heat during stages “1 ” to
“2” and “2” to “3”, and it is rejected during the final stage, from “4” to “1”. Calculating
the efficiency of the Rankine cycle involves accounting for changes of phase from liquid to
gas and vice-versa. This also means that the efficiency is more sensitive to the nature of
the working substance. 7

There are many cycles that we have not explored, but with the few examples that we

7Problem: Imagine an ideal gas undergoing a Rankine cycle. As was the case for the Diesel cycle, its
efficiency may be stated exclusively in terms of the ratios V3/V1 = c (the “cut-off” ratio) and V4/V1 = b.
Show that

eh = 1− γ(b− 1)(
b
c

)γ
[1 + γ(c− 1)]− 1

.
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have looked at it should be clear that no cycle is capable of converting the energy absorbed
in the form of heat into useful work without some other effect. This “other effect” takes the
form of a rejection of some part of the energy absorbed. Neither was it possible to simply
transfer energy from a “colder” reservoir to a “hotter” reservoir without some other effect.
This other effect takes the form of work that must be done to accomplish the transfer of
energy. These simple observations are essentially the two (equivalent) early statements of
the second law of thermodynamics which we will examine in the next chapter.



Chapter 3

The Second Law and Entropy

The only restriction that the first law of thermodynamics places on a process is that
energy should be conserved. One consequence, for example, is that it prohibits any cyclic
process from performing mechanical work without extracting energy (eg. in the form of
heat) from some source. A cycle that is capable of performing mechanical work without
extracting energy from any source, were it possible, would be called a “perpetual motion
machine” (“perpetuum mobile”) of the first kind. The first law assures us that such a
cycle does not exist. However, we could imagine the exciting possibility of a machine that
extracts energy from a reservoir of some sort and transforms all of the extracted energy
into useful mechanical work with no other effect. If this were in fact possible we could build
machines that for all practical purposes would have no environmental footprint. We could
also (for all practical purposes endlessly) extract energy from some reservoir of energy,
convert all the extracted energy into useful work and then transfer that energy back into
the reservoir from which we extracted it in the first place. This kind of a cycle is called a
“perpetual motion machine” of the second kind. Experience teaches us that a perpetual
motion machine of the second kind also does not exist: every heat engine we have built
involves a transfer of energy from some “hotter” reservoir of energy (eg. gasoline in an
automobile) to a “colder” one (the atmosphere, for most engines). A perpetual motion
machine of the second kind would need just one reservoir of energy.

Perpetual motion machines are not the only processes that never seem to occur in
nature. A little thought will show that in fact there are many processes that do not occur
spontaneously in nature even though the first law would allow them. For example, a lake
on a warm summer’s day does not simply give up its energy to the atmosphere and freeze,
although energy would be conserved in the process.1 An egg that has been dropped and
splattered on the floor does not spontaneously put itself together again even though such

1More generally, if two bodies, A and B, at temperatures TA and TB with TA ≥ TB are placed in
thermal contact, it never happens that A spontaneously keeps getting hotter and B colder.
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a process may not in fact violate energy conservation. What this is saying is that the
first law is only a necessary condition for the occurrence of a thermodynamic process, not
a sufficient one. The impossibility of the processes described in the examples above is
captured by the second law of thermodynamics.

3.1 The Kelvin and Clausius statements

There are two original statements of the Second Law of Thermodynamics. The first is
due to the British physicist and engineer William Thomson (Lord Kelvin) and concerns
heat engines:

• Kelvin Statement: A thermodynamic cycle whose only effect is to transform en-
ergy extracted from a body in the form of heat into useful work is impossible.

The second is due to the German physicist Rudolf Clausius and concerns refrigerators.

• Clausius Statement: A thermodynamic cycle whose only effect is to transfer en-
ergy in the form of heat from a body at a given temperature to a body at a higher
temperature is impossible.

Although these two statements appear different, they are indeed quite rigorously equivalent
to each other. Let’s prove this in two parts: first we’ll show that if Kelvin’s statement is
not true then Clausius’ statement cannot be true. Then we’ll do the same with Clausius’
statement, i.e., we’ll show that if it is not true then Kelvin’s statement cannot be true
either.

Let’s assume that Kelvin’s statement of the second law is not true. This means that
it is possible in principle to transform energy absorbed as heat from a reservoir at some
temperature (say, T1) into useful work with no other effect. Of course, the mechanical work
produced can now be transferred to a body at another temperature (say, T2) by friction
(as in the Joule experiment). This transfer of energy takes place no matter what the
temperature, T2. In particular T2 could be greater than T1 and we would have succeeded
in transferring energy in the form of heat from a body at a lower temperature to one at a
higher temperature with no other effect. This contradicts the Clausius statement.

Next assume that Clausius’ statement of the second law is not true. This means that
it is possible to transfer heat from a body at a lower temperature, Tl, to a body at a
higher temperature, Th, with no other effect. With the help of a Carnot engine operating
between Th and Tl we could then extract the same amount of heat from the body at Th
and convert at least a part of it into useful work. Since the body at Th absorbs a certain
quantity of energy and then releases the same quantity of energy, no change has occurred
in its state. The result is that we have a process whose net effect is to transform heat
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absorbed from the body at Tl into useful work. This contradicts Kelvin’s statement, and
completes our proof.

Before proceeding to develop this law let us prove that of all engines operating between
two temperatures, the Carnot engine is the most efficient. More formally, let C be a Carnot
engine operating between the temperatures Th and Tl (Th > Tl) and let M represent any
other heat engine operating between the same two temperatures, then it is always true
that ∣∣∣∣Q1

Q2

∣∣∣∣ ≥ ∣∣∣∣Q′1Q′2
∣∣∣∣ (3.1.1)

where the unprimed quantities refer to C and primed quantities to M , and where Q1 (Q′1)
refers to the energy exchanged as heat with the reservoir at Th (since energy is absorbed
at Th, Q1, Q

′
1 > 0) and Q2 (Q′2) to the energy exchanged as heat with the reservoir at Tl

(since energy is discharged at Tl, Q2, Q
′
2 < 0). Let W (W ′) be the work done by the two

machines in one cycle. By the first law of thermodynamics (we now use absolute values,
to avoid confusion with the signs)

W = |Q1| − |Q2|

W ′ = |Q′1| − |Q′2|. (3.1.2)

Consider the ratio |Q1/Q
′
1|. To as good an approximation as we desire this ratio can be

approximated by a rational number, i.e.,∣∣∣∣Q1

Q′1

∣∣∣∣ =
n′

n
(3.1.3)

where n and n′ are positive integers. Now consider a process consisting of n′ cycles of M
and n cycles of C in reverse (see figure 3.1). While operating in reverse, C absorbs an
amount of energy Q2 in the form of heat from Tl and an amount of work W , depositing
Q1 into the reservoir at Th, while M absorbs Q′1 from the reservoir at Th, does work W ′

and rejects Q′2 into the reservoir at Tl. The net external work done by our system is then

Wtot = n′W ′ + nW = n′|W ′| − n|W | (3.1.4)

(recall that W is negative in our convention), the net heat removed from Th is

Qh = n′Q′1 + nQ1 = n′|Q′1| − n|Q1| (3.1.5)

(Q1 is negative because it is leaving C, which is operating in reverse) and the net heat
added to Tl is

Ql = −n′Q′2 − nQ2 = n′|Q′2| − n|Q2| (3.1.6)
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Figure 3.1: Schematic representing M operating as a heat engine and C as a refrigerator.

(Q′2 is negative because it is leaving M). By energy conservation (the first law)

Wtot = n′|W ′| − n|W | = Qh −Ql (3.1.7)

but, because we have adjusted

|Q1| =
n′

n
|Q′1|, (3.1.8)

it follows that Qh = 0 and so

Wtot = −Ql = −n′|Q′2|+ n|Q2| (3.1.9)

Now Kelvin’s statement of the second law ensures that Wtot ≤ 0, for if Wtot > 0 we
would have a process which extracts a certain amout of heat from the reservoir at Tl and
performs useful work, with no other effect. After all, no net heat was added to the high
temperature reservoir. But

Wtot ≤ 0⇒ Ql ≥ 0⇒ n′|Q′2| ≥ n|Q2| (3.1.10)

Replacing

n′ = n

∣∣∣∣Q1

Q′1

∣∣∣∣ (3.1.11)

in the last inequality, we then have the desired result,∣∣∣∣Q1

Q2

∣∣∣∣ ≥ ∣∣∣∣Q′1Q′2
∣∣∣∣ . (3.1.12)

Of course, this means that the Carnot engine has the best efficiency of all engines operating
between two temperatures.
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3.2 Thermodynamic definition of Temperature

We could have made the argument in the opposite way, using M as a refrigerator (i.e.,
running in reverse) and C as a heat engine. Provided that M , operating as a refrigerator,
(i) absorbs the same amount of energy in the form of heat from the colder reservoir as it
would reject into the colder reservoir as a heat engine, (ii) absorbs the same amount of
energy in the form of useful work as it would perform as a heat engine and (iii) rejects the
same amount of energy into the hotter reservoir as it would absorb as a heat engine we
could prove that ∣∣∣∣Q′1Q′2

∣∣∣∣ ≥ ∣∣∣∣Q1

Q2

∣∣∣∣ . (3.2.1)

Of course, (3.1.12) is compatible with (3.2.1) if and only if∣∣∣∣Q1

Q2

∣∣∣∣ =

∣∣∣∣Q′1Q′2
∣∣∣∣ , (3.2.2)

i.e., the efficiencies of the two engines are identical. If conditions (i), (ii) and (iii) are
met then the cycle M is called a reversible cycle. A reversible process or a reversible
cycle will be a process (or cycle) in which both the system and the rest of the universe
– its environment – can be returned to the original state (the process can be reversed)
by means of quasi-static processes. It is easy to see that the Carnot engine is reversible.
Firstly, it is itself made of quasi-static processes. Secondly, per cycle, let the Carnot
engine remove −δQh from the high temperature reservoir and deposit δQl to the low
temperature reservoir. Run the engine as a refrigerator, then the cycle removes exactly
−δQl from the low temperature rerervoir and deposits +δQh into the high temperature
reservoir per cycle. Since the engine, by definition, returns to its original state and, by
running in reverse, is capable of returning the reservoirs to their original states, it must
be reversible. We conclude that the efficiencies of reversible cycles operating between two
temperatures are identical and equal to the Carnot efficiency. The efficiency of a cycle
that is not reversible is always less than the efficiency of the Carnot engine.

Because ∣∣∣∣Q1

Q2

∣∣∣∣ (3.2.3)

is the same for all reversible cycles operating between two temperatures (now call them T1

and T2, where T1 > T2), the ratio cannot depend on the cycle but only on the temperatures,
i.e., ∣∣∣∣Q1

Q2

∣∣∣∣ = f(T1, T2) (3.2.4)

We want to prove that the function f(T1, T2) as defined above is multiplicatively separable
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Figure 3.2: A Carnot engine (left) replaced by two Carnot engines (right): T1 > T0 > T2

and, moreover, can be written in the form

f(T1, T2) =
Θ(T1)

Θ(T2)
(3.2.5)

To prove this, imagine a Carnot engine operating between temperatures T1 and T2 (T1 >
T2) that absorbs Q1 from the hotter reservoir and rejects Q2 into the colder reservoir.
Then replace it by two Carnot cycles, C1 and C2, the first one operating between T1 and
T0 (T1 > T0) and the other between T0 and T2 (T0 > T2) as shown in figure 3.2. Let C1

absorb Q1 from the reservoir at temperature T1 and reject Q0 into the reservoir at T0. It
must be true that ∣∣∣∣Q1

Q0

∣∣∣∣ = f(T1, T0). (3.2.6)

Likewise, let C2 absorb Q0 from the reservoir at temperature T0 and reject Q2 into the
reservoir at T2. It will then also be true that∣∣∣∣Q0

Q2

∣∣∣∣ = f(T0, T2) =
1

f(T2, T0)
. (3.2.7)

Multiplying (3.2.6) and (3.2.7) gives∣∣∣∣Q1

Q2

∣∣∣∣ = f(T1, T2) =
f(T1, T0)

f(T2, T0)
(3.2.8)

Now T0 was completely arbitrary and can be viewed as some constant. Letting Θ(Ti) =
f(Ti, T0), we find ∣∣∣∣Q1

Q2

∣∣∣∣ = f(T1, T2) =
Θ(T1)

Θ(T2)
(3.2.9)
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Figure 3.3: An arbitrary reversible heat engine broken up into a very large number of
Carnot cycles

Our beginning definition of temperature was empirical, based on the an extrapolation to
the “ideal” gas. Now we can make it more precise, using Θ(T ) as a new definition of
temperature. However, we notice that Θ is defined only upto a constant multiplicative
factor. This factor corresponds to the “scale”, i.e., what we decide to call “one degree”.
Θ is called the absolute thermodynamic scale and is independent of the thermodynamic
properties of any single thermodynamic substance used in the Carnot cycle. Moreover we
have already seen that, for the ideal gas as a working substance,∣∣∣∣Q1

Q2

∣∣∣∣ =
T1

T2
, (3.2.10)

so if we choose our scale properly we can adjust things so that Θ = T , thus taking the
ideal gas temperature to be precisely the thermodynamic scale.

3.3 The Entropy

The next step in our development of the second law will be the concept of entropy in
thermodynamics. This is the precursor of the definition of “information”, proposed by
Shannon.2 Information is carried, stored and processed by all macroscopic physical sys-

2Shannon, C.E., “A Mathematical Theory of Communication”, Bell System Technical Journal, 27,
(1948) 379 — 423 & 623 -– 656.
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tems and is ultimately governed by the laws of physics, so it is not surprising that physics
and information should be closely related to one another. The usefulness of the concept
of entropy can hardly be overstated and it is probably fair to say that the connection be-
tween physics and information is still not fully exploited. We will look at the microscopic
origins of the entropy later in this course; for now we introduce it as a thermodynamic
state variable.

Let us consider an arbitrary reversible heat engine, S, and divide the cycle into a very
large number of Carnot engines as shown in figure 3.3.3 An important property of each
of the Carnot cycles is that heat is absorbed and rejected by the cycle during isothermal
processes and

|Qin|
Tin

=
|Qout|
Tout

(3.3.1)

Taking into account the appropriate signs (Qin is positive, Qout is negative) we can write
this as

Qin

Tin
+
Qout

Tout
≡ 0 (3.3.2)

Each of the Carnot cycles in the figure absorbs and rejects an infinitesimal quantity of
energy as heat, δQi, at each reservoir. Moreover, the reservoirs come in pairs, so label
them from 1 to 2n in such a way that the Carnot cycle j operates between temperatures
Tj (high) and Tn+j (low), where n represents the number of cycles. For the set of cycles
shown in figure 3.3 we can say that

2n∑
i=1

δQi
Ti

= 0, (3.3.3)

Of course we are taking the limit as the number of cycles approaches infinity, at which
point the series of Carnot engines exactly reproduces the original cycle. This means that
the adiabatic lines become infinitesimally close to each other and δQi approaches zero at
each reservoir, so we have

lim
n→∞

2n∑
i=1

δQi
Ti

=

∮
S

d−Q

T
≡ 0 (3.3.4)

Now consider a cycle that is not reversible. This implies that there are one or more
portions of the engine that cannot be accurately described by Carnot cycles as depicted
in figure 3.3. Consider one such portion, say k. Call the actual energy absorbed as heat
at the high temperature reservoir involved in covering this portion δQ′k and the actual

3An analogous division of the region under a curve into rectangles is used in elementary calculus to
define the definite integral as the limit of a sum.
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energy rejected as heat at the low temperature reservoir δQ′k+n. We know that∣∣∣∣∣ δQ′kδQ′k+n

∣∣∣∣∣ ≤
∣∣∣∣ δQkδQk+n

∣∣∣∣ =
Tk
Tk+n

(3.3.5)

which means that
δQ′k
Tk

+
δQ′k+n

Tk+n
≤ 0 (3.3.6)

To reproduce the cycle, the left hand side of (3.3.3) should be replaced by

∑′2n

i=1

δQi
Ti

+
∑
k

(
δQ′k
Tk

+
δQ′k+n

Tk+n

)
(3.3.7)

where the prime on the first sum indicates that those Carnot cycles overlapping portions
of the cycle that are not reversible should be omitted and replaced by the second sum.
But, since the first sum is identically zero and the second sum is less than or equal to zero
we have

2n∑
i=1

δQi
Ti
≤ 0 (3.3.8)

and in the limit as the number of adiabatic lines approaches infinity,∮
S

d−Q

T
≤ 0 (3.3.9)

The equality holds only when S is reversible. This is Clausius’ theorem.

We might give an alternative proof of Clausius’ theorem as follows. The engine S
can be thought of as exchanging energy in the form of heat with a large number, N , of
reservoirs at various temperatures which may be labeled as T1, . . . Ti . . . TN . Let Qi be the
energy exchanged with reservoir Ti. Clearly Qi is larger than zero if energy is absorbed
from Ti in the form of heat and is less than zero if energy is rejected in the form of heat into
Ti. Connect all the reservoirs to a single reservoir at temperature T0 by Carnot engines
operating either as heat engines or refrigerators, in such a way that the Carnot engine
linking the ith reservoir to T0 supplies to that reservoir (or removes from it) precisely that
amount of energy in the form of heat that is removed from (or supplied to) it by S. Thus,
if S absorbs Qi from Ti then Ci gives Qi to Ti and vice-versa.

According to our definition of temperature, for each Ci∣∣∣∣ QiQi,0

∣∣∣∣ =
Ti
T0

(3.3.10)
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where Qi,0 is the amount of energy given or taken from T0 by Ci. Then

Qi,0 = T0
Qi
Ti

(3.3.11)

Notice that the signs take care of themselves: if S absorbs a certain amount of energy
from Ti then the Carnot cycle connected to Ti should replace that energy and it can only
do so by absorbing Qi,0 from T0. Thus, if Qi > 0 so is Qi,0 and vice versa. Now the net
exchange of energy at each of the reservoirs Ti by heat is precisely zero in our construction.
The net effect of the process is then to take

∑
iQi,0 from T0 and transform it into useful

work. By Kelvin’s statement of the second law this would imply that W =
∑

iQi,0 ≤ 0,
or

N∑
i=1

Qi
Ti
≤ 0 (3.3.12)

If S were reversible, then reversing S and all the connected Carnot cycles, we would find
that

N∑
i=1

(
−Qi
Ti

)
≤ 0 (3.3.13)

which would only be possible if
N∑
i=1

Qi
Ti
≡ 0 (3.3.14)

Once again, considering infinitesimal exchanges of energy by heat we find that∮
S

d−Q

T
≤ 0 (3.3.15)

for any cycle, where the equality holds for reversible cycles.

Let’s consider the implications of this statement. In the first place because∮
S

d−Q

T
≡ 0 (3.3.16)

for a reversible cycle it follows that the differential d−Q/T must be exact (i.e., its integral
must be indepdendant of the path). To see this, choose two states i and f on the reversible
cycle as in figure 3.4. Then we could write 3.3.15 as∮

S

d−Q

T
= 0⇒

∫ f

I,i

d−Q

T
+

∫ i

II,f

d−Q

T
= 0 (3.3.17)
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Figure 3.4: A cycle can be thought of as two processes I from i to f and II from f to i

and so, changing direction on path II,∫ f

I,i

d−Q

T
=

∫ f

II,i

d−Q

T
(3.3.18)

i.e., the value of the integral depends only on the end points, i and f and not on the path
(process) linking them. This in turn implies that during a reversible process

d−Q = TdS (3.3.19)

where S is some function of state,

Sf − Si =

∫ f

i,(q.s.)

d−Q

T
(3.3.20)

where we have introduced the suffix “q.s.” to emphasize the fact that the integral is to
be evaluated along some reversible, quasi-static path from i to f . Note that no further
specification of the path is required since, so long as the path is quasi-static the change
Sf − Si will be the same. The function S is called the entropy of the system. Equation
3.3.20 tells us how to compute changes in the entropy of a system that has been transformed
from a state “i” to a state “f”, but tells us nothing of the actual value of the entropy
at i or f or anywhere else. However, imagine that we choose a standard state, call it ∗,
at which we arbitrarily set the entropy to be numerically equal to zero (like energy in
classical mechanics, only changes in entropy are so far relevant), then

S(k) =

∫ k

∗

d−Q

T
(3.3.21)

gives the entropy of any other state, k. A change in our standard from ∗ to ∗′ would
introduce a constant, which would be precisely the change in entropy from ∗ to ∗′, because

S′(k) =

∫ k

∗′

d−Q

T
=

∫ ∗
∗′

d−Q

T
+

∫ k

∗

d−Q

T
= S∗ + S(k) (3.3.22)
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Thus we write the entropy of any state k as the indefinite integral

S(k) =

∫ k d−Q

T
+ S∗ (3.3.23)

with an arbitrary constant, S∗.
If the cycle S were irreversible then instead of the equality in (3.3.17) we would have

an inequality as in (3.3.15). Choose two points on the cycle so that path I from i to f is
not quasi-static and path II from f to i is quasi-static. Then∮

S

d−Q

T
≤ 0⇒

∫ f

I,i

d−Q

T
≤
∫ f

II,i

d−Q

T
(3.3.24)

Now, by definition, because path II is quasi-static

∆Sif = Sf − Si =

∫ f

II,i

d−Q

T
(3.3.25)

so we have

∆Sif ≥
∫ f

I,i

d−Q

T
(3.3.26)

In particular, since path I is not restricted to be quasi-static we could take it to be
adiabatic (but not quasi-static!). Then d−Q = 0 and we find that

∆Sif ≥ 0 (3.3.27)

for isolated systems. We have just proved the third and most modern statement of the
second law of thermodynamics

• The entropy of a thermally isolated system undergoing a thermodynamic process
may never decrease.

It follows that thermally isolated systems achieve equilibrium at the maximum of the
entropy, but it is essential to keep in mind that this holds only for thermally isolated
systems. In a system consisting of many interacting parts the entropy of an individual
part may decrease, although the entropy of the whole, so long as it is isolated, must
either increase or stay the same. As a simple example, consider the earth-sun system as
reasonably isolated, and only that part of the energy from the sun that is incident upon
the earth, ignoring the rest. To a very good approximation both the sun and the earth
can be approximated by reservoirs at temperatures Ts and Te. The net change in entropy
of the system when δQ of energy from the sun is absorbed by the earth as heat is

δS = −|δQ|
Ts

+
|δQ|
Te

> 0 (3.3.28)
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because Te � Ts.

Another point worth remembering is that the entropy may increase even during adi-
abatic processes, if they are not quasi-static. Consider, for example, the free expansion
of an ideal gas, i.e., imagine that a gas at high pressure, pi, inside a chamber of volume
Vi is allowed to expand in a vacuum by suddenly opening a stopper. Imagine that this
vacuum exists in another, much larger and isolated chamber of volume Vf enclosing the
first, so that the expansion is adiabatic but not quasi-static and the gas achieves a final
equilibrium state with volume Vf . Since the gas expands freely, no work is done in the
process. Moreover, because the process is also adiabatic, the first law guarantees that the
internal energy of the gas does not change, therefore the final temperature of the gas will
be equal to its initial temperature. To compute the entropy change we need to invent
a quasi-static process connecting the initial and final states; we are guaranteed that an
isothermal process will do the job because the internal energy stays constant during the
expansion. The entropy change is therefore

∆S =

∫ f

i,isotherm

d−Q

T
=

∫ f

i,isotherm

p

T
dV = Nk ln

Vf
Vi

> 0 (3.3.29)

where we used the equation of state. The entropy change during a quasi-static and adia-
batic process is, of course, identically zero.

Equation (3.3.26) gives us the generalization of (3.3.19) that also applies to irreversible
processes,

d−Q ≤ TdS (3.3.30)

so, in terms of the entropy, the first law reads

TdS ≥ dU + pdV. (3.3.31)

or more generally,

TdS ≥ dU +
∑
i

pXidXi. (3.3.32)

This statement and the statement that ∆S ≥ 0 for an isolated system, together summarize
the content of the first two laws of thermodynamics. If attention is confined exclusively
to processes that are reversible we can use

TdS = dU +
∑
i

pXidXi (3.3.33)

together with ∆S = 0 for an isolated system.
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3.4 The Thermodynamic Phase Space

Let us now confine our attention to reversible processes unless otherwise stated. It is
somewhat instructive to rewrite the first law as

dU − TdS +
∑
i

pXidXi = 0 (3.4.1)

(where we assume there are n external parameters, Xi, so that there are 2n+ 3 variables
in all) because this form suggests enlarging our set of external parameters by including the
entropy and viewing the temperature (actually, −T ) as the “generalized force” conjugate
to it. Alternatively, we could divide throughout by the temperature and express the first
law as

dS − dU

T
−
∑
i

pXi
T
dXi = 0, (3.4.2)

which suggests enlarging our set of external parameters by including the internal energy
and viewing −1/T as the “generalized force” conjugate to it. In fact we could rewrite the
first law so that any of the 2n+ 3 variables occupies the privileged position of U and S in
the above examples, and the first law will always take the form

dq0 −
n+1∑
i=1

pidq
i = 0 (3.4.3)

in terms of n+1 qi’s and as many pi’s. Thus, in the first example, q0 would be the internal
energy, U , and in the second it would be the entropy, S. Note that the qi may be intensive
or extensive state variables, and the same holds for the pi, although if qk is intensive then
pk will be extensive and vice-versa. For example, the first law can be written as

dŨ − TdS −
∑
i

XidpXi = 0 (3.4.4)

where Ũ = U +
∑

i pXiX
i. In each picture there will be one “thermodynamic potential”

and a set of “fundamental variables” (qi, pi). Because q0 is a function of state, it can only
depend on the variables (qi, pi). Therefore (3.4.3) ensures that it can be naturally viewed
as a function of the qi’s only. If we knew this function, i.e., given

q0 = Φ(qi) (3.4.5)

we would immediately be able to derive n+ 1 equations of state,

pi =
∂Φ

∂qi
, (3.4.6)
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interpreted as equations for the pi. The pi’s would consequently satisfy the n(n + 1)/2
integrability conditions

∂pi
∂qj

=
∂2Φ

∂qj∂qi
=

∂2Φ

∂qi∂qj
=
∂pj
∂qi

. (3.4.7)

This is the content of the first law. The n + 2 equations in (3.4.5) and (3.4.6) therefore
define an n + 1 dimensional subspace in the thermodynamic phase space and physical
processes may only occur on this subspace. For example, the thermodynamic phase space
of an ideal gas consists of the five variables {U, S, V, T, p}, but the physical phase space is
only two dimensional (since n = 1). Therefore any three of the state variables can always
be expressed as functions of the other two.

It is not generally possible to determine Φ(qi), although for some simple systems a
knowledge of the equations of state can get us close. For example we know that for an
ideal gas

p =
NkT

V
(3.4.8)

so re-writing the first law in the form

dS =
dU

T
+Nk

dV

V
(3.4.9)

we see that T can be viewed as an integrating factor. In fact, because dU/T is an exact
differential, we must have T = f(U). Thermodynamics cannot tell us more than this, but
from the kinetic theory we already know that for the ideal gas

T =
2U

gNk
(3.4.10)

where g represents the number of degrees of freedom of the molecules, so integrating gives

S = Nk

[
g

2
ln

(
U

U∗

)
+ ln

(
V

V∗

)]
(3.4.11)

where U∗ and V∗ are arbitrary constants, depending possibly on N , which reflect our lack
of knowledge about the actual value of the entropy. Of course we could now re-express the
entropy in terms of any pair of the remaining phase space variables using the equation of
state.4

The procedure is slightly more interesting for gases that satisfy the Van der Waals
equation of state, (

p+
aN2

V 2

)
(V −Nb) = NkT, (3.4.12)

4Problem: Write expressions for the entropy as a function of every pair of the four variables {U, V, p, T}.
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which generalizes the ideal gas equation by taking into account the finite size of atoms and
molecules as well as the weak electromagnetic interactions between them. The constant
a represents the effect of an attractive interaction between the molecules if a is positive
(and a replusion if a is negative) whereas the constant b represents the volume of a single
molecule. That is why, for the ideal gas whose molecules are taken to be point-like and
non-interacting both a and b are vanishing, which returns the ideal gas equation of state.
The entropy is now

dS =
NkdV

V −Nb
+
dU − aN2

V 2 dV

T
(3.4.13)

and, once again, T is an integrating factor that makes the last term an exact differential,
so it must have the form

T = f

(
U +

aN2

V

)
. (3.4.14)

In the limit as the intermolecular forces become vanishing (equivalently as V approaches
infinity) we should find that T approaches its relationship to U in the ideal gas limit. This
means that

T =
2

gNk

(
U +

aN2

V

)
(3.4.15)

and we find5

S(U, V ) = Nk

[
ln

(
V −Nb
V∗ −Nb

)
+
g

2
ln

(
U + aN2

V

U∗ + aN2

V∗

)]
(3.4.16)

which, naturally, returns (3.4.11) in the limit as a and b become vanishing. The general
equations for a gas involve two “arbitrary” constants, which we think of as describing a
class of substances (fluids).

Maxwell’s construction

It is interesting to examine the isotherms of the Van der Waals gas in greater detail.
Expressing the equation of state in terms of the molecular volume (volume per molecule)
v = V/N , as

p =
kT

v − b
− a

v2
, (3.4.17)

we find that there is an isotherm, called the critical isotherm which admits an inflection
point at a positive pressure and volume, pc and vc. To determine the inflection point, set(

∂p

∂v

)
Tc

= 0 =

(
∂2p

∂v2

)
Tc

(3.4.18)

5Problem: Determine S = S(T, V ), S = S(T, p) and S = S(p, V ) for the Van-der-Waals gas.
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T > Tc

Tc
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T2
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p

Figure 3.5: Isotherms of a Van der Waal’s gas.
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v1 v2

B
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p

Figure 3.6: Maxwell’s construction for the isotherms of a Van der Waal’s gas.
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and solve the set of three equations (the two above and the equation of state) for the
pressure, volume and temperature to find

vc = 3b, pc =
a

27b2
, kTc =

8a

27b
(3.4.19)

For isotherms above the critical temperature, the pressure decreases monotonically with
volume but for isotherms below the critical temperature the pressure volume relationship
is not monotonic, as shown in figure 3.5. These isotherms admit a region over which
∂p/∂v > 0, which indicates that the pressure actually increases with increasing volume!
This is unphysical behavior and signals a breakdown of the equation of state and the
isotherms must be corrected. Maxwell suggested that the corrected behavior is obtained
by drawing a horizontal line across the isotherm, as shown in figure 3.6, in such a way
that the areas A and B in the figure are equal. This is equivalent to saying that the work
done along the corrected isotherm is equal to that done along the uncorrected one,

p(T )(v2 − v1) =

∫ v2

v1,VdW
pdv. (3.4.20)

The corrected isotherm corresponds to a phase transition taking place at a fixed, temper-
ature dependent pressure, p = p(T ), between volumes V1 and V2 as indicated in the figure.
This is known as Maxwell’s construction. In a later section we obtain an equation
that determines p(T ) from purely thermodynamic considerations (the Clausius Clapeyron
equation) and in the next chapter we will give a physical argument for the consistency of
Maxwell’s approach.

3.5 Integrability Conditions

In the previous section, we were able to determine the relationship between the internal
energy and the temperature of a gas simply by noting that T serves as an integrating factor
in the equation for S. In this section, we examine the integrability conditions in greater
detail. Although we’ll work with the five dimensional phase space (S,U, p, V, T ), all that
we learn below can be straightforwardly generalized to an arbitrary 2n + 3 dimensional
phase space and multiple equations of state. Since there is but one external parameter in
our phase space we know that the relevant hypersurface is two dimensional. Viewing S as
a function of U and V , i.e., S = S(U, V ), the equation

dS =
dU

T
+
p

T
dV (3.5.1)

requires that
∂S

∂U
=

1

T
,
∂S

∂V
=
p

T
(3.5.2)
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so that the integrability of S,
∂2S

∂V ∂U
=

∂2S

∂U∂V
(3.5.3)

implies that (
∂T

∂V

)
U

= −T 2

[
∂

∂U

( p
T

)]
V

= p

(
∂T

∂U

)
V

− T
(
∂p

∂U

)
V

(3.5.4)

where, in the last equation, we have explicitly labeled the variable being held constant
with each derivative. This is our first integrability condition. It must hold for every
thermodynamic system for which the first law can be given in the form (3.3.33), i.e., for
every system in which the work done by the system can be expressed as d−W = pdV .6

This is not the only integrability condition possible. Although the entropy is naturally
viewed as a function of the internal energy and the volume, nothing constrains us from
thinking of it as a function of any pair of variables, eg., the volume and temperature. We
would then think of the internal energy as a function of (V, T ). The first law is written as

dS =

(
1

T

∂U

∂V
+
p

T

)
dV +

1

T

∂U

∂T
dT (3.5.5)

which shows that

∂S

∂V
=

(
1

T

∂U

∂V
+
p

T

)
∂S

∂T
=

1

T

∂U

∂T
(3.5.6)

Integrability of these equations,
∂2S

∂T∂V
=

∂2S

∂V ∂T
(3.5.7)

then means that

− 1

T 2

∂U

∂V
+

1

T

∂2U

∂T∂V
− p

T 2
+

1

T

∂p

∂T
=

1

T

∂2U

∂V ∂T
. (3.5.8)

Simplifying, we find (
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p (3.5.9)

Instead, if we had taken S = S(T, p) (take (T, p) as independent variables),

dS =
1

T

(
∂U

∂p
+ p

∂V

∂p

)
dp+

1

T

(
∂U

∂T
+ p

∂V

∂T

)
dT (3.5.10)

6Problem: Generalize (3.5.4) to systems in which d−W =
∑
i pidXi. Note that in this case, S = S(U,Xi).
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which shows that

∂S

∂p
=

1

T

(
∂U

∂p
+ p

∂V

∂p

)
∂S

∂T
=

1

T

(
∂U

∂T
+ p

∂V

∂T

)
(3.5.11)

Integrability then implies gives,(
∂U

∂p

)
T

= −p
(
∂V

∂p

)
T

− T
(
∂V

∂T

)
p

(3.5.12)

Finally, if we consider S = S(p, V ) we find

dS =
1

T

∂U

∂p
dp+

1

T

(
∂U

∂V
+ p

)
dV, (3.5.13)

which gives the integrability condition

T =

[(
∂U

∂V

)
p

+ p

](
∂T

∂p

)
V

−
(
∂U

∂p

)
V

(
∂T

∂V

)
p

(3.5.14)

The four integrability conditions (3.5.4), (3.5.9), (3.5.12) and (3.5.14) can be quite useful,
as we will soon see.7

3.5.1 Internal energy of a Gas

The integrability conditions are different ways to express the fact that dS is an exact
differential. For example, let’s use (3.5.4) to show that the temperature of an ideal gas
depends only on its internal energy. From the equation of state, pV = NkT , we see that(

∂p

∂U

)
V

=
Nk

V

(
∂T

∂U

)
V

(3.5.15)

so inserting this into the right hand side of (3.5.4) shows that (∂T/∂V )U = 0 i.e., T = f(U)
as we had before. On the other hand, for the Van-der-Waals gas(

∂p

∂U

)
V

=
Nk

V −Nb

(
∂T

∂U

)
V

. (3.5.16)

7Problem: Complete the proofs of (3.5.12) and (3.5.14). Obtain two more integrability conditions,
taking the entropy as a function of the pairs (U, p) and (U, T ).
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Inserting this into the right hand side of (3.5.4) we find(
∂T

∂V

)
U

+
aN2

V 2

(
∂T

∂U

)
V

= 0 (3.5.17)

The equations for the characteristic curves of this equation are

dV =
V 2

aN2
dU, T (U, V ) = const. (3.5.18)

and imply that

T (U, V ) = f

(
U +

aN2

V

)
(3.5.19)

as we guessed before.
We could just as well use (3.5.9) to arrive at the same conclusions. For an ideal gas,

the equation of state allows us to express the pressure as

p =
NkT

V
⇒
(
∂p

∂T

)
V

=
Nk

V
(3.5.20)

It follows from (3.5.9) that (
∂U

∂V

)
T

=
NkT

V
− p ≡ 0 (3.5.21)

so U = U(T ). The situation is only mildly different for the Van-der-Waals gas, for now(
∂p

∂T

)
V

=
Nk

V −Nb
(3.5.22)

and, plugging this into (3.5.9) gives(
∂U

∂V

)
T

= p+
aN2

V 2
− p⇒ U = −aN

2

V
+ g(T ) (3.5.23)

where g is an undetermined function only of the temperature. Inverting this relationship
gives precisely (3.5.19).8 Once again, because we know the internal energy of the ideal
gas, we determine

g(T ) =
g

2
NkT (3.5.24)

where g is the number of degrees of freedom per molecule. Thus,

U(T, V ) = −aN
2

V
+
g

2
NkT (3.5.25)

is exact for the internal energy of the Van-der-Waals gas.

8Problem: Repeat these calculations with the integrability conditions in the form of (3.5.12) and (3.5.14)
both for the ideal gas and the Van-der-Waals gas.
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Liquid

Vapor

Piston

Figure 3.7: A liquid vapor system in equilibrium at a fixed temperature.

3.5.2 Phase Equilibrium

Consider a liquid inside a container that is closed on one end with a piston which may
move freely up and down as in figure 3.7, making it possible to continuously change the
volume and pressure inside the container. Let the base of the container be non-insulating,
i.e., able to transfer thermal energy across it and place it in contact with a reservoir of
temperature T , allowing the liquid to achieve equilibrium with its vapor at T .

It’s best to first understand this system microscopically. The molecules of the liquid
have a certain amount of thermal energy, indeed some may acquire enough energy to escape
the bonds that keep them attached to other molecules of the liquid. These molecules of
positive total energy will attempt to leave the liquid, contributing to the vapor. However,
the molecules in the vapor already present also have a certain amount of thermal energy by
virtue of which they exert a (downward) pressure on the liquid. Assuming that they behave
more or less like an ideal gas as a first approximation, this pressure will depend on the
number density of molecules already present, according to the equation of state p = nkT
and will act to oppose the molecules that are trying to leave the liquid. The higher this
vapor pressure the more energy a liquid molecule would have to acquire in order to escape
into the vapor. Clearly, there will a point at which the probability that a liquid molecule
has enough energy to pass into the vapor becomes negligibly small. When this happens the
number density of molecules in the vapor remains constant (modulo small fluctuations)
and therefore so does the pressure. Suppose we now increase the pressure slightly, holding
the temperature fixed. The less energetic molecules in the vapor will condense and return
to the liquid. As molecules leave the vapor, the vapor pressure drops, back to the level
it was before we increased the pressure. On the other hand, if we decrease the pressure
by lowering the weight on the piston, the most energetic molecules of the liquid will now
be able to pass to the vapor phase, increasing the number density of molecules in the
vapor phase and therefore also the vapor pressure, again to the same level it was before
we decreased it. Thus the net effect is that the pressure always tries to stabilize itself. Of
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Figure 3.8: The liquid-gas isotherms

course, this can happen so long as there are both liquid and vapor phases present. On
the extreme ends, if the pressure is too large all the vapor condenses to the liquid phase
and the entire system behaves as a liquid, while if the pressure is too low all the liquid is
transformed into vapor, after which the system behaves as a gas.

Experimentally, one finds the situation depicted in figure 3.8. Notice that there is an
isotherm for which the region of constant pressure reduces to just one point. This is called
the critical point and the temperature, volume and pressure are “critical”. What we’re
after is the vapor pressure as a function of the temperature in the liquid-vapor equilibrium
phase. Let m be the total mass of the system, ml the mass of the liquid and mv the mass
of the vapor so that

m = ml +mv (3.5.26)

Let the volume per unit mass (the specific volume) of the liquid be vl and that of the
vapor vv (clearly, vv � vl). Also let the internal energy per unit mass be ul and uv
respectively for the liquid and the vapor. Then, because U and V are extensive,

U = mlul +mvuv

V = mlvl +mvvv (3.5.27)

are the total internal energy and the total volume respectively. Considering changes in U
and V , and keeping in mind that the total mass is constant, i.e., dm = 0⇒ dml = −dmv
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we get

dU = dmv(uv − ul)

dV = dmv(vv − vl) (3.5.28)

so by the first law

d−Q = dU + pdV = dmv(uv − ul) + pdmv(vv − vl) (3.5.29)

and therefore
d−Q

dmv
= (uv − ul) + p(vv − vl) = L (3.5.30)

Experimentally, the right hand side is constant. It is precisely the latent heat of vaporiza-
tion per unit mass, i.e., the amount of energy required to be given to a unit mass of the
liquid to cause it to change its state from liquid to vapor. Now, according to (3.5.9) (the
independent variables are (T, V ))(

∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p (3.5.31)

Clearly, p cannot depend on the volume in equilibrium (see the isotherms in figure 3.8),
so p = p(T ) and the partial derivative is really a total derivative. Moreover,(

∂U

∂V

)
T

=
uv − ul
vv − vl

(3.5.32)

so our integrability condition becomes

T
dp

dT
=
uv − ul
vv − vl

+ p =
(uv − ul) + p(vv − vl)

vv − vl
(3.5.33)

or
dp

dT
=

L

T (vv − vl)
≈ L

Tvv
(3.5.34)

since vv � vl. Notice the great beauty of this equation. It is a general relationship
between measurable quantities, which we have found using only the first and second laws of
thermodynamics (via the integrability condition (3.5.9)). Suppose that the vapor behaves
as an ideal gas, then pvv = nkT , where n is the number of molecules per unit mass, i.e.,
n = N0/M , where N0 is Avogadro’s number and M is the molecular mass in grams. Thus
we can write

vv =
N0kT

pM
⇒ dp

dT
=
MLp

RT 2
(3.5.35)
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and this equation is easily integrated, provided L is independent of T , to give

p = p0e
− ML
N0kT (3.5.36)

where p0 is a constant that must be obtained experimentally. Notice that as T increases,
the exponent also increases and the pressure increases. Vice-versa, when the tempera-
ture decreases, the pressure decreases as well. Equation (3.5.34) is called the Clausius-
Clapeyron equation and all known substances in the two-phase region experimentally
obey it.

3.5.3 Magnetic Systems

Each current loop inside a magnet is subject to an effective magnetic field, the magnetic
field intensity ~H. For a magnetic system, the work done must include not just the mechan-
ical work pdV associated with changes in volume but also the magnetic work associated
with changes in the magnetic intensity. We will now argue for an expression for the work
done by small changes in H. For simplicity, we will consider a magnet oriented along the
direction of the field, which we take to be in the positive z−direction (see figure 3.9). In
the figure we have shown a typical current loop generating a magnetization in z− direc-
tion, i.e., the direction of the magnetic intensity vector, ~H. If we imagine that the ~H
changes along the x− direction, the net force on the loop will be

∆F = (I)
∂H

∂x
∆x∆y = (I∆A)

∂H

∂x
= ∆M

∂H

∂x
(3.5.37)

where M is the magnetic moment of the loop. The force on the entire sample can be
viewed as the superposition of these small forces on single current loops,

F = M
∂H

∂x
(3.5.38)

so the work done on the sample in moving it a distance dx will be

d−W = M
∂H

∂x
dx = MdH (3.5.39)

and the first law of thermodynamics reads

TdS = dU +MdH. (3.5.40)

where the magnetization used above is just the system’s average magnetic moment.
The magnetic analogue of the ideal gas is the ideal paramagnet. The magnetic dipoles

of a paramagnet do not interact with one another but only respond to an external magnetic
field. The magnetic dipoles of a ferromagnet, on the other hand, interact not only with
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F=I H(x) yD F=I H(x+ x) yD D
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z

Figure 3.9: Work done on a magnetic system by a change in the magnetic field

the externally applied magnetic field but also with the average magnetic field of all the
other magnetic dipoles within the system. Thus a ferromagnet can remain magnetized,
i.e., continue to possess a non-vanishing average magnetization, even in the absence of
an external magnetic field. The ferromagnetic system can be thought of as the analogue
of the Van der Waals gas. Let us write down the integrability conditions, drawn directly
from (3.5.4), (3.5.9), (3.5.12) and (3.5.14),(

∂T

∂H

)
U

= M

(
∂T

∂U

)
H

− T
(
∂M

∂U

)
H(

∂U

∂H

)
T

= T

(
∂M

∂T

)
H

−M(
∂U

∂M

)
T

= −M
(
∂H

∂M

)
T

− T
(
∂H

∂T

)
M

T =

[(
∂U

∂H

)
M

+M

](
∂T

∂M

)
H

−
(
∂U

∂M

)
H

(
∂T

∂H

)
M

(3.5.41)

3.5.4 Paramagnetism

If the magnetic dipoles do not interact with one another, we may simply replace the
magnetic field intensity by the external applied field, B. The equation of state relates the
mean magnetic moment to the external magnetic field and the temperature, taking on a
very simple form when the dipoles are spin 1

2 particles,

M = Nµ tanh

(
µB

kT

)
(3.5.42)

where µ is the magnetic moment of the individual particles, the Bohr magneton,

µ =
e~
2m

, (3.5.43)

N is the total number of paramagnetic particles and B is a constant external magnetic
field. Notice that the magnetization is an odd function of B, as it should be. Further it is
a bounded function, approaching the limits ±Nµ, which represent the condition in which
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all the particles are either aligned or antialigned with the magnetic field. We now aim to
use the integrability conditions in (3.5.41) with H replaced by B. By (3.5.42)(

∂M

∂T

)
B

= −Nµ
2B

kT 2
sech2

(
µB

kT

)
(3.5.44)

so applying the second of the integrability conditions we find

U = −NµB tanh

(
µB

kT

)
+ U(T ) (3.5.45)

and U(T ) is a non-magnetic contribution to the internal energy. All the other integration
conditions are now straightforwardly verified. Setting U(T ) = 0, we find the magnetic
contribution to the heat capacity at constant B,

CB =

(
∂U

∂T

)
B

= Nk

(
µB

kT

)2

sech2

(
µB

kT

)
. (3.5.46)

and eliminating T in favor of U according to

kT = − µB

tanh−1
(

U
NµB

) , (3.5.47)

we may express the entropy by

dS

k
=

dU

kT
+
M

kT
dB

= − 1

µB
tanh−1

(
U

NµB

)[
dU − U

B
dB

]
= − U

µB
tanh−1

(
U

NµB

)
d ln

U

B
(3.5.48)

But now this can be integrated directly and expressed as

S(U,B) = −kU
µB

tanh−1

(
U

NµB

)
− N

2
ln

(
1

4
− U2

4N2µ2B2

)
+ S0 (3.5.49)

where S0 is an arbitrary, integration constant, chosen so that it is the entropy at zero
temperature. This can be seen more directly when S is re-expressed in terms of the pair
(T,B). We find

S(T,B) = Nk

[
ln 2 + ln cosh

(
µB

kT

)
− µB

kT
tanh

(
µB

kT

)]
+ S0 (3.5.50)
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Figure 3.10: S (solid) and CB (dashed) of the spin 1
2 paramagnetic system.

whence it is clear that the magnetic part of S vanishes as T → 0 if S0 = 0.
At high temperatures, when µB � kT , we find

S(T,B) ≈ Nk
[
ln 2− µ2B2

2k2T 2

]
+ S0 (3.5.51)

showing that the magnetic contribution is just S ∼ Nk ln 2 = k ln 2N as T →∞. At very
high temperatures the molecules become randomly oriented. In this disordered condition
each elementary constituent is allowed only two states, viz., either aligned or anti-aligned
with the magnetic field, thus there are a total of 2N states. The suggestion here is that
the entropy is k times the natural logarithm of the number of states that are accessible
to the system, provided that the integration constant is chosen so that it vanishes at zero
temperature.

3.5.5 Ferromagnetism

In ferromagnetic materials the atoms possess an interaction between themselves, together
with their interaction with an external magnetic field. The interaction is such as to lead
to a decrease in the internal energy when the spins of neighboring atoms are oriented
parallel to one another and an increase in energy when they are anitparallel. This favors
spin alignment in the material, but the interaction energy is so small as to make the effect
quite negligible at high temperatures. At low temperatures, however, cooperative behavior
between the atoms can lead to a net magnetization of the material even in the absence
of an external magnetic field. In the Weiss molecular, or mean, field approximation, each
individual atom is taken to interact with an internal, mean molecular magnetic field, in
addition to the external applied field if one is present. The molecular field is taken to be
proportional to the mean magnetization (magnetic moment per unit volume) within the
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material, and one obtains an equation of state similar to the one we used for paramagnetic
systems but with an additional contribution due to the magnetization itself inside the
hyperbolic tangent. It has the form

M = Nµ tanh

(
µB

kT
+
MTc
NµT

)
(3.5.52)

where M is the mean magnetic moment of the sample, B is an external magnetic field
and Tc is a parameter that is determined by the specifics of the material and the strength
of the spin-spin interaction. Equation (3.5.52) is a self-consistent equation for M , but not
a very transparent one. First we note that in the absence of the external field, B, it has
non-trivial solutions for M only if Tc/T > 1. When Tc/T < 1, the only solution of the
equation of state is the trivial one, M = 0. Thus Tc represents a critical temperature,
below which M may be non-vanishing even in the absence of an external magnetic field.

Solving the equation of state to express B in terms of M and T , we find

B =
kT

µ
tanh−1 M

Nµ
− MkTc

Nµ2
(3.5.53)

and it follows that (
∂B

∂T

)
M

=
k

µ
tanh−1 M

Nµ

and (
∂B

∂M

)
T

=
kT

Nµ2

[
1

1− M2

(Nµ)2

− Tc
T

]
.

We can now integrate the third of the integrability conditions, which has the form(
∂U

∂M

)
T

= −MkT

Nµ2

[
1

1− M2

(Nµ)2

− Tc
T

]
− kT

µ
tanh−1 M

Nµ
, (3.5.54)

to find that the internal energy is

U(N,m, T ) = N

[
m2kTc

2µ2
− mkT

µ
tanh−1 m

µ

]
+ U(T ), (3.5.55)

where we have expressed the result in terms of the magnetization per atom (the specific
magnetization), m = M/N , so that the internal energy per atom is u = U/N . We may
use this equation to eliminate the temperature in favor of {u,m},

kT = −µ[u−m2kTc/(2µ
2)]

m tanh−1(m/µ)
. (3.5.56)
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and express B as a function of {u,m},

B = − u
m
− kTcm

2µ2
, (3.5.57)

then, according to the first law, the specific entropy will be

Tds = du+mdB = du+m

[(
∂B

∂u

)
m

du+

(
∂B

∂m

)
u

dm

]
(3.5.58)

and we determine that it depends only on the specific magnetization,

ds

k
= −

(
1

µ
tanh−1 m

µ

)
dm (3.5.59)

Integrating this equation gives the entropy,

S = Nk

[
ln cosh tanh−1 m

µ
− m

µ
tanh−1 m

µ

]
+ S0, (3.5.60)

where we have repeatedly used the equation of state and finally added the arbitrary
constant, S0. We have seen that, even in the absence of an external magnetic field,
there are two non-zero minima for the specific magnetization so long as T < Tc. As such,
we expect m → ±µ as T → 0. If, as m → µ, we expand the expression for S in terms of
δ = 1−m/µ (or δ = 1 +m/µ if m→ −µ), we find that S behaves as

S → Nk

[
− ln 2 +

1

2

(
1− ln

δ

2

)
δ +O(δ2)

]
+ S0 (3.5.61)

and vanishes as δ → 0 (m→ µ) provided that S0 = Nk ln 2. On the other hand, because
m→ 0 as T →∞, the entropy will approach S0 or Nk ln 2 in this limit. This is the result
we obtained for paramagnetic systems and shows again that the entropy is indeed k times
the natural logarithm of the number of accessible states. The cooperative behavior that
exists between the ferromagnetic atoms by virtue of their mutual interactions is irrelevant
in the limit of high temperature.

3.6 Macroscopic Motion of Systems in Equilibrium

We have so far been implicitly considering systems that are “at rest” relative to the lab-
oratory frame, i.e., systems that do not possess any macroscopic motion. Macroscopic
motion is distinct from the microscopic motion, which is assiciated with the motion of
molecules. To make this more precise, imagine that the system is made up of several
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macroscopic parts, which do not significantly interact with one another and which we la-
bel by a. Suppose that each part carries a momentum ~pa. If the system is macroscopically
at rest then

∑
a ~pa = 0. If a system is in macroscopic motion then

∑
a ~pa 6= 0 and we

will consider only the case when the system is mechanically closed so that the total linear
momentum and the total angular momentum is conserved,∑

a

~pa = const. and
∑
a

~ra × ~pa = const., (3.6.1)

where ~ra is the position vector of the ath part. Since the different parts of the system
are assumed not to interact, the entropy of the system as a whole will be the sum of the
entropies of its parts, S =

∑
a Sa and the entropy of each part will be a function of the

energy of that part in its own rest frame, Ea. Since its energy in the laboratory frame is
related to Ea by

E′a = Ea +
~p2
a

2ma
(3.6.2)

we can say that

Sa = Sa

(
E′a −

~p2
a

2ma

)
(3.6.3)

In equilibrium we must maximize the total entropy, S, for a given E′a and subject to the
two conditions in (3.6.1), so we apply the method of Lagrange multipliers and set the
derivative with respect to ~pa of∑

a

[Sa + ~a · ~pa +~b · (~ra × ~pa)] (3.6.4)

to zero, for arbitrary constant vectors ~a and ~b. This gives∑
a

[
−~va
T

+ ~a+~b× ~ra
]

= 0 (3.6.5)

where we used
∂Sa
∂~pa

=

(
∂Sa
∂Ea

)(
∂Ea
∂~pa

)
=

1

T

(
− ~pa
ma

)
= −~va

T
. (3.6.6)

Because the subsystems labeled by “a” are independent, we conclude that

− ~va
T

+ ~a+~b× ~ra = 0 (3.6.7)

for every subsystem, i.e.,
~va = ~u+ ~Ω× ~ra (3.6.8)

where ~u = T~a and ~Ω = T~b. Since ~u and ~Ω are the same for all parts of the system, only
translations of the system as a whole with constant linear velocity and/or rotations of the
system as a whole with constant angular velocity are allowed in equilibrium.



Chapter 4

Thermodynamic Potentials

The introduction of a new state function, the entropy, provided us with the integrability
conditions. These amounted to new consistency conditions between the state variables
and we saw that, combined with the equation of state, these conditions can be used to
good effect in describing thermodynamic systems. In this chapter we want to make the
arguments leading to the integrability conditions more formal and more general. In the
process we will introduce new functions of state, the so-called Thermodynamic Poten-
tials. These new state functions will be defined in terms of the old ones and so will not
be independent of them as, for example, the entropy is independent of the internal energy.
Their usefulness lies in the ease with which they may describe particular thermodynamic
systems and processes that occur frequently enough to be of general interest as well as in
the deeper intuition they will provide for thermodynamics as a whole. We might get a
better picture of where we’re headed if we rexamine the integrability conditions (3.5.9),
(3.5.12) and (3.5.14) from a slightly different point of view.

4.1 Legendre Transformations

Often in mathematics and physics it is desirable to express a function f(x) as a different
function whose argument is the derivative of f(x) with respect to x rather than x itself.
Suppose that we define

p =
df

dx
(4.1.1)

and invert the relationship p = f ′(x) to get x = x(p). Then the Legendre Transform
of f(x) is the function f?(p) defined by

f?(p) = px− f(x) (4.1.2)

94
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We can readily check that f? does not depend on x, since

df?

dx
= p− df

dx
≡ 0 (4.1.3)

by the definition of p. To actually calculate f?(p) we should replace x by x(p) everywhere
in the definition (4.1.2) of f?(p). Thus the Legendre transformation of f(x) produces a new
function in which the independent variable x is replaced by the new variable p = df/dx.
As an example consider the function f(x) = x2. Letting p = f ′(x) = 2x or x = p/2
we find that the Legendre transform of f(x) = x2 is f?(p) = p2/4. The same quadratic
dependence was to be expected since the slope of tangents depends linearly on x. If
instead we had the function f(x) = ex, then p = ex ⇒ x = ln p and we find the Legendre
transform to be f?(p) = p ln p − p, with p ∈ (0,∞). Applying the Legendre transform
twice returns the original function. This is not difficult to verify. Suppose f?(p) is the
Legendre transformation of f(x), then

f?(p) = px(p)− f(x(p))⇒ df?(p)

dp
= x(p) + p

dx

dp
− df

dx

dx

dp

= x(p) + p
dx

dp
− pdx

dp
= x(p) (4.1.4)

where we used the equation defining p. Thus

f??(x) = xp(x)− f?(p(x)) = xp(x)− p(x)x+ f(x) = f(x) (4.1.5)

For example, for the Legendre transform of ex we have f?(p) = p ln p− p and so we find

df?

dp
= ln p = x⇒ p(x) = ex (4.1.6)

so that f??(x) = xp(x)− f?(p(x)) = xex − xex + ex = ex = f(x).

When the functions we are dealing with are multivariate, the Legendre transform can
be defined independently for as many of the independent variables as we choose, provided
that the equations defining the new variables (in terms of derivatives of the function) can
be inverted. Imagine that we have a function f(xi) and we define

pa =
∂f

∂xa
(4.1.7)

for some subset of the variables xi. The required Legendre transformation would then be∑
a

paxa − f(xi) (4.1.8)
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but, by the inverse function theorem, the relations can be inverted to eliminate the xa in
favor of the pa if and only if

det

∣∣∣∣∂pa∂xb

∣∣∣∣ = det

∣∣∣∣ ∂2f

∂xa∂xb

∣∣∣∣ 6= 0 (4.1.9)

The matrix Wab = ∂pa/∂xb is called the Hessian. We will only consider cases with non-
vanishing det|Wab|. For example, we could not find a double Legendre transformation of
the function f(x, y) = x2 + y since the Hessian

W =

(
2 0
0 0

)
(4.1.10)

is is not invertible, but we could find the double Legendre transformation for the function
f(x, y) = x2 + xy, because for this function |Wab| = −1.

As examples closer to home, consider the entropy function which, according to the
first law, is naturally thought of as a function of the internal energy and the volume,
S = S(U, V ). The first law also implies that

∂S

∂U
=

1

T
,
∂S

∂V
=
p

T
(4.1.11)

Suppose we wish to replace the internal energy U by the temperature T . We could perform
a Legendre transformation of S by setting

S?1 =
U

T
− S (4.1.12)

Evidently, S?1 = S?1(T, V ) because, using the first law,

dS?1 = d

(
U

T

)
− dS =

dU

T
− U

T 2
dT − dU

T
− p

T
dV = − U

T 2
dT − p

T
dV (4.1.13)

and therefore
∂S?1
∂T

= − U

T 2
,
∂S?1
∂V

= − p
T

(4.1.14)

It is straightforward to show then that the integrability condition for S?1 is just (3.5.9).1

Again, if we wanted to replace U with T and V with p/T , we could do so by making the
double Legendre transformation2

S?2 =
U

T
+
pV

T
− S (4.1.15)

1Problem: Show this by simplifying
∂2S?1
∂V ∂T

=
∂2S?1
∂T∂V

2Problem: What condition ensures invertibility in this case? Verify that it holds for an ideal gas.
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Checking its dependence as before we see that

dS?2 =
dU

T
− U

T 2
dT +

p

T
dV +

V

T
dp− pV

T 2
dT − dU

T
− p

T
dV

= −
(
U + pV

T 2

)
dT +

V

T
dp (4.1.16)

so S?2 is a function of (T, p) and

∂S?2
∂T

= −U + pV

T 2
,
∂S?2
∂p

=
V

T
(4.1.17)

Again, one can show that the integrability condition for S?2 is precisely (3.5.12).3

4.2 Maxwell Relations

If the first law is rewritten in the form

dU = TdS − pdV, (4.2.1)

we see that U is naturally viewed as a function of (S, V ) and

∂U

∂S
= T,

∂U

∂V
= −p (4.2.2)

Integrability of U then requires that(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(4.2.3)

We could define the new function, H, by using a Legendre transformation to trade V for
p,

−H(S, p) = V
∂U

∂V
− U ⇒ H = U + pV (4.2.4)

The function H is called the Enthalpy. It is the first of three new thermodynamic
potentials that we will examine in this section and is naturally a function of (S, p),

dH = dU + pdV + V dp = TdS + V dp (4.2.5)

This gives the relations
∂H

∂S
= T,

∂H

∂p
= V (4.2.6)

3Problem: Show this explicitly.
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and the integrability conditions (
∂T

∂p

)
S

=

(
∂V

∂S

)
p

(4.2.7)

Again, according to (4.2.2), we could also choose to trade S for T by a Legendre transfor-
mation, defining

− F (T, V ) =
∂U

∂S
S − U ⇒ F = U − TS (4.2.8)

The function F , called the Helmholz Free Energy, is our second thermodynamic po-
tential, and satisfies

dF = dU − TdS − SdT = −SdT − pdV. (4.2.9)

It follows that
∂F

∂T
= −S, ∂F

∂V
= −p, (4.2.10)

so integrability of F requires that (
∂S

∂V

)
T

=

(
∂p

∂T

)
V

. (4.2.11)

Finally, let’s perform a double Legendre transformation, which is possible only so long as∥∥∥∥∥∥∥∥
(
∂T
∂S

)
V
−
(
∂p
∂S

)
V(

∂T
∂V

)
S
−
(
∂p
∂V

)
S

∥∥∥∥∥∥∥∥ 6= 0, (4.2.12)

to get the last of the three new thermodynamic potentials that we will introduce, the
Gibbs Free Energy

−G(T, p) =

(
∂U

∂V

)
S

V +

(
∂U

∂S

)
V

S − U ⇒ G = U − TS + pV, (4.2.13)

which satisfies

dG = dU − TdS − SdT + pdV + V dp = −SdT + V dp. (4.2.14)

Integrability of the Gibbs free energy will then require

−
(
∂S

∂p

)
T

=

(
∂V

∂T

)
p

(4.2.15)

Relations (4.2.3),(4.2.7),(4.2.11) and (4.2.15) are examples of the Maxwell relations of
Thermodynamics. In our discussion above, each thermodynamic function depended on
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two variables, but in general they may depend on several. In that case there will be more
than one Maxwell relation per thermodynamic potential. This follows from the fact that
they are statements about integrability. If the thermodynamic potential Φ is an analytic
function of several variables, call these Zi, then

∂

∂Zi

(
∂Φ

∂Zj

)
≡ ∂

∂Zj

(
∂Φ

∂Zi

)
(4.2.16)

and so there are n(n−1)/2 Maxwell relations per thermodynamic function, where n is the
number of natural variables for that potential. We will soon see that they can be potent
problem solving tools in Thermodynamics.

4.2.1 Heat Capacities

In Chapter 2, we had obtained a simple relation between the heat capacity of an ideal gas
and constant volume and its heat capacity at constant pressure. This relationship relied
heavily on the equation of state, its simplicity resulting from the simple form that the
ideal gas equation of state has. We would like to obtain a relationship between the heat
capacities for an arbitrary thermodynamic system, regardless of the equation of state.

Let’s begin by noting that since

d−Q = TdS (4.2.17)

then considering S = S(p, T ), we find

d−Q = T

(
∂S

∂T

)
p

dT + T

(
∂S

∂p

)
T

dp (4.2.18)

showing that

Cp =

(
d−Q

dT

)
p

= T

(
∂S

∂T

)
p

(4.2.19)

and

d−Q = CpdT + T

(
∂S

∂p

)
T

dp (4.2.20)

But, now if we think of p = p(V, T ) then

d−Q = CpdT + T

(
∂S

∂p

)
T

[(
∂p

∂V

)
T

dV +

(
∂p

∂T

)
V

dT

]
(4.2.21)

so the heat capacity at constant volume will be(
d−Q

dT

)
V

= CV = Cp + T

(
∂S

∂p

)
T

(
∂p

∂T

)
V

(4.2.22)
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and so we end up with the analogue of (2.2.10),

Cp − CV = −T
(
∂S

∂p

)
T

(
∂p

∂T

)
V

(4.2.23)

The right hand side has a derivative of the entropy, which is not a quantity easily measured.
However, thanks to the Maxwell’s equation (4.2.15), we could trade the derivative of S for
a derivative of V , to write this relation in the more useful form

Cp − CV = T

(
∂V

∂T

)
p

(
∂p

∂T

)
V

. (4.2.24)

Experimentally, the quantity

γ =
1

V

(
∂V

∂T

)
p

(4.2.25)

is easily measured and changes slowly with temperature in most cases, and is called the
coefficient of volume expansion. So we may write the difference in heat capacities in
terms of the coefficient of volume expansion as

Cp − CV = γTV

(
∂p

∂T

)
V

. (4.2.26)

The derivative of p that appears on the right hand side is easy to measure, but still we’ll
trade it for volume derivatives which are most often used as descriptors of the physical
properties of thermodynamic systems. To bring it to final form, let’s think of V = V (p, T ),
so

dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT = 0 (4.2.27)

(for a constant volume process) and therefore(
∂p

∂T

)
V

= −

(
∂V
∂T

)
p(

∂V
∂p

)
T

(4.2.28)

If we divide both numerator and denominator by V , we will recognize the numerator as the
coefficient of volume expansion. The denominator is also easily measured and its opposite
is called the coefficient of isothermal compressibility,

κ = − 1

V

(
∂V

∂p

)
T

. (4.2.29)

Finally, we have

Cp − CV =
α2

κ
TV (4.2.30)
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For the ideal gas, with pV = NkT ,

α =
1

V

(
∂V

∂T

)
p

=
Nk

pV
=

1

T
(4.2.31)

whereas

κ = − 1

V

(
∂V

∂p

)
T

=
NkT

p2V
=

1

p
(4.2.32)

Plugging these into (4.2.30) we find (2.2.10). To find the analogue for the Van-der-Waals
gas, we use the equation of state (3.4.12) to obtain

α =
1

V

(
∂V

∂T

)
p

=
Nk

NkTV
V−Nb −

2aN2

V 2 (V −Nb)

κ = − 1

V

(
∂V

∂p

)
T

=
V −Nb

NkTV
V−Nb −

2aN2

V 2 (V −Nb)
(4.2.33)

giving

Cp − CV =
(Nk)2TV

(V −Nb)
(
NkTV
V−Nb −

2aN2

V 2 (V −Nb)
) , (4.2.34)

which depends on both the volume and temperature, but reduces to (2.2.10) in the limit
of very large volume, or as a and b vanish.

The auxilliary functions U , H, F and G that were introduced in the previous section
are four out of five thermodynamic potentials. Each leads to an integrability condition,
a Maxwell relation, by virtue of the fact that it is a state function. Each acquires a
special meaning for particular thermodynamic processes, so it’s worth having a summary
of results at our disposal, for future use:

The Internal Energy: U(S, V )
(
∂T
∂V

)
S

= −
(
∂p
∂S

)
V

The Enthalpy: H(S, p) = U + pV
(
∂T
∂p

)
S

=
(
∂V
∂S

)
p

The Helmholz Free Energy: F (T, V ) = U − TS
(
∂S
∂V

)
T

=
(
∂p
∂T

)
V

The Gibbs Free Energy: G(T, p) = U − TS + pV −
(
∂S
∂p

)
T

=
(
∂V
∂T

)
p

(4.2.35)

An important fact to keep in mind is that all the thermodynamic potentials are extensive
quantities. By this we mean that if a thermodynamic potential Φ is given in terms of some
extensive variables ~X (apart, possibly, from some intensive ones), then

Φ(. . . , α ~X) = αΦ(. . . , ~X) (4.2.36)
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Porous plug

High pressure Low pressure

Porous plug

Figure 4.1: The Joule-Thompson process.

where . . . refer to the intensive variables on which Φ may depend. Our purpose in the
following sections is to explore their usefulness and scope. Since we already have a good
idea of what the internal energy signifies via the first law of thermodynamics we begin
with the enthalpy.

4.3 The Enthalpy

The relation dH = TdS + V dp tells us that during a reversible isobaric process (dp = 0)
the change in enthalpy is just the amount of energy that is transferred to a system by
heat, dH = TdS = d−Q. We can see that this is true for an irreversible process as well,
since

d−Q = dU + pdV = d(U + pV )− V dp = dH − V dp = dH (4.3.1)

where the last equality holds only if the process is isobaric. Most chemical reactions
occur at constant pressure rather than at constant volume (for isovolumetric processes,
d−Q = dU) and for them dH would represent the energy absorbed by the reactants and
products as heat. If the enthalpy decreases it means that the reaction is exothermic
(releases energy by heat) and if it increases the reaction is endothermic (absorbs energy
by heat).

If we think of H = H(T, p) (even though S and not T is a natural variable for H), the
first law of thermodynamics says that

Cp =

(
d−Q

dT

)
p

=

(
∂H

∂T

)
p

(4.3.2)

and therefore that

H(T, p) =

∫ f

p,i
Cp(T, p) dT +H(p) (4.3.3)

where the suffix p indicates that the integral is to be carried out holding p fixed.
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We can obtain expressions for the enthalpy in certain simple cases. For an ideal gas,
whose internal energy is U = gkT/2, we have

H(T ) =
g

2
kT + pV =

(g
2

+ 1
)
NkT = CpT (4.3.4)

and for the Van der Waals gas

H(T, V ) = −aN
2

V
+
g

2
NkT + p(T, V )V = −2aN2

V
+
g

2
NkT +

NkTV

V −Nb
(4.3.5)

where we use (3.5.25) for the internal energy in the first step and the equation of state
(3.4.12) in the last.

4.3.1 The Joule-Thompson (throttling) process

A very important application of the enthalpy is the Joule-Thompson or throttling
process. Here a gas is allowed to flow adiabatically and steadily from a region of constant
high pressure to a region of constant low pressure through a porous plug as shown on the
left of figure 4.1. Since the flow occurs adiabatically, then

d−Q = 0 = dU + d−W. (4.3.6)

To calculate the work that is done in passing from one side of the porous plug to the other,
it is convenient to imagine that a volume Vh from the high pressure region is moved to
occupy a volume Vl in the low pressure region by the action of two pistons as shown on
the right of figure 4.1 (generally a steady flow and constant pressures are maintained by
pumps). For instance, to start with the piston on the right would be pressed against the
plug (Vl = 0) and a certain volume Vh of the gas would lie between the piston on the left
and the porous plug. The pistons are then moved together quasi-statically to the right
in such a way that the pressures in each region are kept constant and, by the end of this
process, a volume Vh has passed from the left to the right of the porous plug. It is then
easy to see that the work done by the gas in the high pressure region is −phVh and in the
low pressure region it is plVl. It follows that the total work done by the gas is

∆W = −phVh + plVl (4.3.7)

and the total change in internal energy, because the gas was initially in the high pressure
region and ends up in the low pressure region is

∆U = Ul − Uh (4.3.8)

so by the first law (there is no energy transfer by heat)

Ul − Uh − phVh + plVl = 0⇒ Hl = Ul + plVl = Uh + phVh = Hh (4.3.9)
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and the process is isenthalpic (i.e., the enthalpy of the gas remains unchanged). We would
like to know if there is a change in temperature as the gas expands. Let’s consider the
situation microscopically first. If the molecules exert an attractive force on one another
then the effect of increasing the intermolecular distance as they pass from the high pres-
sure region to the low pressure region is to increase the intermolecular potential energy.
Since energy is conserved, this would cause the kinetic energy of each molecule to corre-
spondigly decrease causing a drop in the temperature. There is another opposing effect,
however. During collisions, kinetic energy is temporarily converted into potential energy.
If the intermolecular collision rate decreases then on the average less energy is stored as
potential energy and the average molecular kinetic energy will correspondingly increase.
This would cause a rise in the temperature. Below a certain temperature we expect the
first effect to dominate. Above this temperature the latter effect should dominate. The
temperature at which the behavior of the gas changes from one to the other is called the
inversion temperature. Our objective is to determine (∂T/∂p)H , which is called the
Joule-Thompson coefficient, µJT. Inversion will occur when µJT vanishes.

Now we have seen that dH = TdS + V dp. If we think of S = S(p, T ) then

dH = T

(
∂S

∂T

)
p

dT +

[
T

(
∂S

∂p

)
T

+ V

]
dp (4.3.10)

But evidently since (
∂H

∂T

)
p

= Cp = T

(
∂S

∂T

)
p

(4.3.11)

and since H itself is constant during the Joule-Thompson process,

0 = CpdT +

[
T

(
∂S

∂p

)
T

+ V

]
dp (4.3.12)

Replace the derivative of S with respect to p using the Maxwell relation in (4.2.15), we
have

CpdT =

[
T

(
∂V

∂T

)
p

− V

]
dp (4.3.13)

The derivative of V that appears above is related to the coefficient of volume expansion,
γ by

γ =
1

V

(
∂V

∂T

)
p

, (4.3.14)

therefore

µJT =

(
∂T

∂p

)
H

=
V

Cp
(γT − 1) (4.3.15)
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Only when µJT > 0 will the gas cool upon expansion. When µJT < 0 the gas will actually
warm during expansion.

For the ideal gas, the coefficient of volume expansion is just γ = 1/T , therefore µJT = 0.
This is to be expected because neither mechanism for a change of temperature is available
to the ideal gas: (i) there are no molecular interactions, so there is no loss of kinetic energy
in favor of potential energy and (ii) the molecules are pointlike and there are no collisions,
so no kinetic energy is never temporarily stored as potential energy during collisions.

The situation is more complicated with a Van-der-Waals gas, for which(
∂V

∂T

)
p

=
Nk

p− aN2

V 2 + 2N2ab
V 3

=
Nk

NkT
V−Nb −

2aN2

V 2 + 2N2ab
V 3

(4.3.16)

We can insert this into the expression for the Joule-Thompson coefficient, (4.3.15), to get

µJT =
1

Cp

[
NkT

NkT
V−Nb −

2aN2

V 2 + 2N2ab
V 3

− V

]
(4.3.17)

First let’s calculate Cp. According to (4.3.5),

Cp =
g

2
Nk +

NkT

V −Nb

(
∂V

∂T

)
p

=
g

2
Nk +

NkT

V −Nb
Nk

NkT
V−Nb −

2aN2

V 2 + 2N2ab
V 3

(4.3.18)

Notice that as V approaches infinity, Cp → (g + 2)Nk/2 (as we expect) but

lim
V→∞

µJT =
2

(g + 2)k

[
2a

kT
− b
]

(4.3.19)

In this limit the Van-der-Waals should behave like an ideal gas, but we see that the Joule-
Thompson coefficient does not approach zero. The inversion temperature is determined
by both a and b as Tc = 2a/kb and at low temperatures (T < Tc) the coefficient is
positive (the gas cools upon expansion) but at high temperatures (T > Tc) the coefficient
is negative and the gas would warm on expanding. As you have probably guessed by now,
the Joule-Thompson effect is used in refrigeration.

4.4 The Helmholz Free Energy

For the Helmholz free energy, we had obtained dF = −SdT − pdV , showing that for an
isothermal process pdV = −dF , i.e., the decrease in free energy is the work done by the
system. This holds for reversible processes, only. To see what would happen during an
irreversible process we must return to the first law,

TdS ≥ d−Q = dU + pdV ⇒ d(TS)− SdT ≥ dU + pdV
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⇒ dF = d(U − TS) ≤ −SdT − pdV (4.4.1)

from which we see that during an isothermal process (only)

pdV ≤ −dF (4.4.2)

Thus the decrease in the Helmholz free energy is really an upper bound for the amount of
work extracted from the system (done by the system). This is what gives this thermody-
namic function its name, the “free energy”. Only if the process is reversible is it possible
to extract an amount of work equal to the decrease in free energy. In this sense the free
energy plays the role of the energy in mechanical systems, but it should be remembered
that in mechanical systems the equality always holds. During a process in which no work
is done either by or on the system, say an isovolumetric process, dF ≤ 0 and we conclude
that for isothermal systems involving no exchange of energy with the environment by me-
chanical work, the free energy may never increase. It follows that mechanically isolated
systems operating at constant temperature achieve equilibrium at the minimum of the free
energy.

Using the expression (3.4.11) and the ideal gas equation of state it is not difficult to
find that

F (T, V ) =
g

2
NkT

[
1− ln

(
T

T∗

)
− 2

g
ln

(
V

V∗

)]
(4.4.3)

and, for the Van-der-Waals gas, using (3.4.16),

F (T, V ) =
g

2
NkT

[
1− ln

(
T

T∗

)
− 2

g
ln

(
V −Nb
V∗ −Nb

)]
(4.4.4)

Armed with a knowledge of the meaning of the Helmolz free energy, we can now address the
following natural question. We know that every isotherm involves work. If the isothermal
process results in an expansion of the system then work is done by the system on the
environment and, vice-versa, if there is a reduction of the volume of the system work is
done on the system by the environment. What is the upper limit on the amout of work
that is done during an isothermal process as a function of the temperature, but for the
same net expansion?

4.4.1 The Van ’t Hoff Equation

For definiteness, let’s consider two isothermal expansions at temperatures that differ by
dT . Call these AB and A′B′ as in figure 4.2. Join the isotherms by isovolumetric processes
at either end as shown in the figure. If W and W ′ are the maximum amounts of work for
processes AB and A′B′ respectively, then

W = F (A)− F (B)
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Figure 4.2: The Van ’t Hoff isochores

W ′ = F (A′)− F (B′) (4.4.5)

The difference in the works done by the two isotherms is therefore

dW = W ′ −W = [F (A′)− F (A)]− [F (B′)− F (B)] = dF (A)− dF (B) (4.4.6)

But, F = U − TS, and we can go from A to A′ via the isochore on the left and from B to
B′ via the isochore on the right. No work is done along the isochores, so at A

dF (A) = −S(A)dT =
dT

T
[F (A)− U(A)] (4.4.7)

and likewise at B

dF (B) = −S(B)dT =
dT

T
[F (B)− U(B)] (4.4.8)

It follows that

dW =
dT

T
{[F (A)− F (B)]− [U(A)− U(B)]} (4.4.9)

and, therefore

dW =
dT

T
{W + ∆UAB}, (4.4.10)

where ∆UAB = UB − UA, or
dW

dT
− W

T
=

∆UAB(T )

T
(4.4.11)

This is called the Van ’t Hoff equation. It has Bernoulli’s form and can be formally
integrated,

W (T ) = T

[∫
∆UAB(T )

T 2
dT + α

]
(4.4.12)
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Figure 4.3: An Electrochemical Cell

where α is independent of T but may depend on the other parameters of the system. Since
W in the Van ’t Hoff equation actually represents the work done along an isotherm, let’s
rename it ∆W and note that the Van ’t Hoff equation can be put into the form

T
d∆W

dT
= ∆W + ∆UAB (4.4.13)

which suggests that

∆Q = T
d∆W

dT
(4.4.14)

is to be interpreted as the heat absorbed or given out by the system during the process.

For the ideal gas, no change in the internal energy occurs along any isotherm, so we
find

W = αT, (4.4.15)

which could also be obtained from a direct integration of the work. This gives α =
Nk ln(VB/VA). The work done along an isotherm will generally depend on the form of the
internal energy. For the Van-der-Waals gas, the internal energy changes as one goes from
A to B, but only by the constant

∆UAB = −aN2

[
1

VB
− 1

VA

]
(4.4.16)

and we see that

W = αT −∆UAB. (4.4.17)

(If a > 0, the change in potential energy is positive when VB > VA. This is to be expected
because the molecular potential energy rises as the intermolecular separation increases,
consequently the work done decreases.)
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4.4.2 The Reversible Electrochemical Cell

Although we have, by and large, considered external work to have the form d−W = pdV ,
the concept of mechanical work is not limited to changes in volume, as we have already seen
with magnetic systems. We can also consider processes that do external work electrically.
An electrochemical cell is a device used for generating an electromotive force (e.m.f.)
via chemical reactions, as shown in figure 4.3. In general the cell consists of two chambers,
each of which is made up of an electrode and an electrolyte. Ions in the electrolyte from
one chamber lose electrons to their electrode, which then pass to the other electrode by
means of an external circuit, allowing ions in the electrolyte from the other chamber to
gain electrons. The flow of negative charge back to the first chamber is maintained via a
“salt bridge” connecting the electrolytes, whose function is to selectively permit the flow
of negative ions from the latter chamber to the first. Each chamber has a characteristic
potential, depending on its composition. In the figure, the chamber on the left consists of
a Zinc (Zn) electrode immersed in a aqueous solution of Zinc Sulphate (ZnSO4), whereas
the chamber on the right consists of a Copper (Cu) electrode immersed in a solution of
Copper Sulphate (CuSO4). Zn atoms in the electrode on the left tend to cede electrons
to the Cu ions in the electrolyte on the right, the reaction being

Zn + Cu++ → Zn++ + Cu. (4.4.18)

As the electrons flow from the Zn electrode to the Cu electrode by way of the external
circuit, the Zn atoms lose electrons and become positive ions, which go into the aqueous
solution. The Zinc electrode loses mass. On the other hand, the electrons gained by the
Cu electrode allow it to convert Cu ions from the solution to uncharged Cu atoms which
deposit on the electrode. The Cu electrode gains mass. The two chambers are connected
by a salt bridge which permits the movement of sulphate ions from the right cell to the
left cell and prevents the movement of the metal ions. This is generally accomplished by
separating the electrolytes by a porous membrane (or other mechanism) that provides for
the selective movement of the negative ions in the electrolyte from right to left.

Consider a cell which functions reversibly.4 Let E(T ) be the e.m.f. across the cell,
then the work done by the cell in moving a very small charge, δq, across from the positive
terminal to the negative terminal (we take δq to be positive, for convenience but in fact
electrons are flowing from the negative terminal to the positive one) is W = δqE(T ). We
assume that the work is done isovolumetrically, so there is no contribution to the work
from changes in volume.

There is also a change of internal energy, ∆U , which must be negative because the cell
converts chemical energy to electrical energy and, by the Van ’t Hoff equation, we know

4A reversible cell can always be brought back to its initial state by simply allowing an equal amount of
charge to flow in the reverse direction.
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that
dW

dT
− W

T
=

∆U

T
. (4.4.19)

Now the change in internal energy must be proportional to the charge being moved across
the cell and it is more convenient to work with the change in internal energy per unit of
charge moved, defined by u(T ) = −∆U/δq. Substituting for W and ∆U , and dividing
throughout by δq gives

dE
dT
− E
T

= −u(T )

T
, (4.4.20)

from which we obtain the e.m.f. as a function of temperature

E(T ) = T

[
−
∫
u(T )

T 2
dT + C

]
. (4.4.21)

Because the work done to move a charge ∆q at temperature T is ∆W = ∆qE(T ), it follows
from (4.4.14) that

∆Q = ∆qT
dE
dT

(4.4.22)

is the heat absorbed or given out to the environment during the transfer of charge. This
is the heat of the chemical reaction and it may be positive or negative depending on the
behavior of u(T ).

4.4.3 The Law of Mass Action

The Law of Mass Action is a statement concerning the equilibrium concentrations of the
gases in a mixture, for example the system consisting of hydrogen, H2, oxygen, O2, and
water, H2O, and the reaction

2H2 + O2 
 2H2O (4.4.23)

where two molecules of hydrogen combine with one of oxygen to yield two molecules of
water. In general we can consider a reaction

n1A1 + n2A2 + . . .+ n3A3 
 m1B1 +m2B2 + . . .+msBs (4.4.24)

where “Ar” represent the reagents, “Bs” the products, nr the number of moles of the
reagent Ar and ms the number of moles of the product Bs. If we define the concentration,
c, of each gas in the mixture as the number of moles per unit volume of the gas present,
the law of mass action states that in equilibrium

cn1
A1
cn2

A2
. . . cnrAr

cm1
B1
cm2

B2
. . . cmsBs

= K(T ) (4.4.25)
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where K(T ) is a function only of the equilibrium temperature T , called the equilibrium
constant of the reaction. We shall determine K(T ).

Consider an isothermal mixture of gases in a container of volume V . When the con-
centrations of the gases change as a consequence of the chemical reaction, the free energy
F = U − TS will also change. We know that

dF ≤ −d−W (4.4.26)

and if the volume is held fixed no work is done so dF ≤ 0, i.e., F must be a minimum.
Making use of the fact that the Helmholz free energy is an extensive quantity, we can write

F =
∑
i

Fi =
∑
i

ni(ui − Tsi) = V
∑
i

ci(ui − Tsi) (4.4.27)

where ni represents the number of moles of the individual chemicals, ui is the internal
energy per mole and si is the entropy per mole respectively. We have set ni = ciV . Now
we can use (4.4.3) to express each Fi as

Fi = Fi(T, V ) = V ci[CViT +Wi − T (CVi lnT +R lnV i + a)] (4.4.28)

where V i is the molar volume (the volume occupied by a single mole of species i), CVi is the
molar heat capacity at constant volume of species i, “a” is the entropy constant, R = N0k
is the ideal gas constant and Wi is a constant which represents the internal energy left in
the gas at absolute zero i.e., we take ui = CViT +Wi.

5 Inserting V = c−1
i we have

Fi = Fi(T, V ) = V ci[CViT +Wi − T (CVi lnT −R ln ci + ai)] (4.4.29)

and so

F = V

r∑
i=1

cAi [CVAiT +WAi − T (CVAi lnT −R ln cAi + a)]

+ V
s∑
i=1

cBi [CVBiT +WBi − T (CVBi lnT −R ln cBi + bi)] (4.4.30)

5This zero point energy Wi has not been included in (4.4.3) because we obtained the relation between
the absolute temperature and the internal energy from the kinetic theory, in which the molecules are
treated as non-interacting particles. It is nevertheless good to include it. From the point of view of
thermodynamics alone, if we only assume that the internal energy is independent of the temperature then
simply integrating the defining equation(

∂U

∂T

)
V

= CV ⇒ U = CV T +W (V )

where W is a constant of the integration.
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In an isothermal reaction at constant volume, only the concentrations may change. Since
the free energy is minimum at equilibrium (δF = 0),

V

{
r∑
i=1

δcAi [(CVAiT . . .) +RT ] +
s∑
i=1

δcBi [(CVBiT . . .) +RT ]

}
= 0. (4.4.31)

Of course, the term RT that one gets in the above expression, coming from the derivative
of the log of the concentration, can safely be absorbed into the arbitrary constant, but we
will leave it in for the present. If nAi moles of the reagents react to form nBi moles of the
products, the concentration of the reagents decreases according to δcAi ∼ −nAi and the
concentration of the products increases according to δcBi ∼ mBi . We therefore have

V

{
−

r∑
i=1

nAi [(CVAiT . . .) +RT ] +
s∑
i=1

mBi [(CVBiT . . .) +RT ]

}
= 0 (4.4.32)

It’s useful to write this out completely

−
r∑
i=1

nAi [CVAiT +WAi − T (CVAi lnT −R ln cAi + ai) +RT ]

+

s∑
i=1

nBi [CVBiT +WBi − T (CVBi lnT −R ln cBi + bi) +RT ] = 0 (4.4.33)

and separate out the parts that involve the concentrations. We then find that the equilib-
rium condition can be expressed as

−
r∑
i=1

nAi [CVAiT +WAi − T (CVAi lnT + ai) +RT ]

+
s∑
i=1

nBi [CVBiT +WBi − T (CVBi lnT + bi) +RT ]

= RT

[
r∑
i=1

ln cniAi −
s∑
i=1

ln cmiBi

]
= RT ln

∏r
i=1 c

ni
Ai∏s

i=1 c
mi
Bi

, (4.4.34)

which can be exponentiated to get precisely (4.4.25) with

K(T ) = T
1
R

(
∑r
i=1 niCVAi−

∑s
i=1 miCVBi )×

exp

[
1

R

(
s∑
i=1

mi(CVBi +
WBi

T
+R+ bi)−

r∑
i=1

ni(CVAi +
WAi

T
+R+ ai)

)]
(4.4.35)
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and completes our proof of the law of mass action.
The heat of a reaction at constant volume is the energy absorbed or released as heat

during the reaction, assumed to occur at constant volume. If heat is released, the reaction
is exothermic. If heat is absorbed, it is endothermic. We can calculate the heat of a
reaction at constant volume as follows: if Q represents the energy absorbed (Q will be
negative if it is released) by heat then according to the first law of thermodynamics

Q = ∆U (4.4.36)

because no work is done at constant volume. But we have

U = V

[
r∑
i=1

cAi(CVAiT +WAi) +

s∑
i=1

cBi(CVBiT +WBi)

]
(4.4.37)

and therefore

Q = ∆U = V

[
r∑
i=1

∆cAi(CVAiT +WAi) +

s∑
i=1

∆cBi(CVBiT +WBi)

]

= V

[
−

r∑
i=1

nAi(CVAiT +WAi) +

s∑
i=1

mAi(CVBiT +WBi)

]
. (4.4.38)

Now the natural logarithm of (4.4.35),

lnK(T ) =
1

R

(
s∑
i=1

mi

[
CVBi +

WBi

T
+R+ bi

]
−

r∑
i=1

ni

[
CVAi +

WAi

T
+R+ ai

])

+
1

R

(
r∑
i=1

niCVAi −
s∑
i=1

miCVBi

)
lnT (4.4.39)

has the T derivative

d

dT
lnK(T ) = − 1

RT 2

(
s∑
i=1

miWBi −
r∑
i=1

niWAi

)

+
1

RT 2

(
r∑
i=1

niCVAiT −
s∑
i=1

miCVBiT

)

=
1

RT 2

(
r∑
i=1

ni[CVAiT +WAi ]−
s∑
i=1

mi[CVBiT +WBi ]

)
(4.4.40)
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Figure 4.4: The Free Energy and Maxwell’s Construction

which, when compared to the our expression for Q shows that

d

dT
lnK(T ) = − Q

RT 2
. (4.4.41)

Thus, if the reaction is endothermic (energy is absorbed as heat) then Q > 0 and its
equilibrium constant is an decreasing function of the temperature. On the contrary, if the
reaction is exothermic (energy is released as heat) then Q < 0 and its equilibrium constant
is an increasing function of the temperature.

4.4.4 Maxwell’s construction revisited

Finally we will apply the Helmholz free energy to discuss the reasoning behind Maxwell’s
reconstruction of the Van der Waals isotherms. The rate of change in the free energy
of a gas along an isotherm is given by dF/dv = −p(v), and therefore its concavity is
determined by the rate of change of pressure with volume,

d2F

dv2
= −dp

dv
(4.4.42)

It follows that the free energy is concave up (d2F/dV 2 > 0) so long as the pressure
decreases with the volume (dp/dv < 0) and, vice-versa, it is concave down (d2F/dv2 < 0)
when the pressure increases with the volume (dp/dv < 0). The former situation occurs
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everywhere except between the local minimum and local maximum of the isotherm, during
which dp/dv > 0, therefore it becomes possible to draw a common tangent line such that
it touches the left dip at V1 and the right dip at V2. Because the tangent lies below the free
energy curve, molecules prefer to be in two coexisting phases (gas and liquid) between V1

and V2. The work done in the process will be W = p(T )(V2 − V1) and must equal the net
change in the free energy, which depends only on the initial and final states, therefore

p(T )(V2 − V1) = −(F2 − F1) =

∫ V2

V1,VdW
pdV. (4.4.43)

The left hand side is the area under the horizontal construction (in red) and the right
hand side is the work done along the Van der Waal isotherm. The two areas are equal,
which is precisely Maxwell’s condition.

4.5 The Gibbs Free Energy

The Gibbs free energy is naturally a function of the variables (T, p) because dG = −SdT +
V dp. In processes during which both the pressure and the temperature remain constant,
such as during some phase transitions (for example, boiling) the Gibbs free energy stays
constant. This holds for a reversible process, but it needs to be modified for irreversible
processes. Thus, beginning with the first law,

TdS ≥ d−Q = dU + pdV ⇒ d(U − TS + pV )− V dp− SdT ≤ 0 (4.5.1)

or, for processes that are both isobaric and isothermal, dG ≤ 0. Equilibrium in systems for
which both the temperature and pressure remain constant is determined by the minimum
of the Gibbs free enery.

We could easily obtain expressions for G for gases, using our knowledge of the internal
energy. For the ideal gas,

G(T, V ) =
g

2
NkT

[
1− ln

(
T

T∗

)
− 2

g

{
ln

(
V

V∗

)
− 1

}]
(4.5.2)

and for the Van-der-Waals gas

G(T, V ) =
g

2
NkT

[
1− ln

(
T

T∗

)
− 2

g
ln

(
V −Nb
V∗ −Nb

)]
+ V

[
−aN

2

V 2
+

NkT

V −Nb

]
(4.5.3)

Expressions in terms of other pairs of independent variables can be obtained by using the
appropriate equations of state.
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The most direct justification for Maxwell’s construction comes by examining the phase
transition from the point of view of the Gibbs free energy because, since the phase tran-
sition occurs at a fixed temperature and pressure, the Gibbs free energy cannot change.
Then

0 =

∫ R

L
dG =

∫ R

L
V dp =

∫ R

L
[d(pV )− pdV ] = p(T )(V2 − V1)−

∫ V2

V1,VdW
pdV, (4.5.4)

where L(R) represent the left and right edges of the constant pressure (horizontal) con-
struction. The first term on the right is the area under the horizontal construction between
V1 and V2. The second is the work done along the Van der Waal isotherm. The areas
must be equal and Maxwell’s condition follows.

4.5.1 The Clausius-Clapeyron equation

Let us revisit the Clausius-Clapeyron equation, viewing the equilibrium isotherms through
the lens of the Gibbs free energy. Recall that the system in consideration is a liquid in
equilibrium with its vapor at some temperature T and the p−V diagram is shown in figure
3.8. During the liquid-vapor equilibrium phase both the temperature and the pressure
remain constant, therefore the equilibrium is determined by the minimum of the Gibbs
free energy. Let us continue to use the notation of section (3.4.2). Since the Gibbs free
energy is extensive, we analyze the system in terms of the Gibbs free energy per unit mass.
For the liquid and the gas these are, respectively,

gl = ul − Tsl + pvl

gv = uv − Tsv + pvv (4.5.5)

in obvious notation. Let the mass of liquid be ml and that of vapor be mv, then certainly
ml +mv is constant and any change will be such that dml = −dmv. The total Gibbs free
energy of the system is

G = mlgl +mvgv (4.5.6)

Imagine that a small transformation occurs reversibly in such a way that dml of the liquid
transforms into vapor (dml can be positive or negative). The corresponding change in the
Gibbs free energy is then

dG = dml(gl − gv) (4.5.7)

but, since the system is in equilibrium, dG = 0⇒ gl = gv. Thus

(uv − ul)− T (sv − sl) + p(vv − vl) = 0⇒

d(uv − ul)− dT (sv − sl)− Td(sv − sl) + dp(vv − vl) + pd(vv − vl) = 0 (4.5.8)
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Now, using the first law, Tds = du+ pdv, we find that

dp

dT
=
sv − sl
vv − vl

(4.5.9)

But, sv − sl is the change in entropy when one gram of the liquid changes to vapor at the
temperature T , therefore

sv − sl =
L

T
(4.5.10)

where L is the latent heat of vaporization and so

dp

dT
=

L

T (vv − vl)
(4.5.11)

4.5.2 The Gibbs Phase Rule

In the previous example, we had considered a liquid and its vapor in equilibrium, i.e.,
two phases of a substance. All the properties of each phase depend exclusively on the
temperature, the pressure and the chemical composition of the phase.

What exactly is a phase? A phase is a homogeneous mixture, in a definite physical
state, of all possible chemical compounds that can be formed from the chemical elements
present. Its thermodynamic properties will depend on T , p and the relative concentra-
tions of all the elements. Clearly, the number of components of a phase may be larger
or smaller than the actual number of elements present. For example, if the chemical
elements present in a gaseous phase are Hydrogen and Oxygen we can expect three com-
ponents, viz., molecular Hydrogen, H2, molecular Oxygen, O2, water H2O and perhaps
rarer combinations.

Consider a system composed of p phases and n components. There are clearly a large
number of potential variables describing this system, but not all of them are independent.
The question is: how many of them can be independently chosen? Put in another way,
what are the number of independent variables of the system? The answer is given by the
Gibbs phase Rule.

Let mik be the mass of the ith phase (i ∈ {1, 2, . . . , p} and kth component (k ∈
{1, 2, . . . , n}. Form a p × n matrix m̂ of these masses. Because the Gibbs free energy is
extensive, its value for the system will be

G =
∑
i

Gi (4.5.12)

where Gi is the free energy for each phase. Each function Gi can depend on T , p and the
masses of each component in the ith phase,

Gi = Gi(T, p,mi1,mi2, . . . ,min) (4.5.13)
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Now the masses are extensive and so is each Gi, so if we simply scaled all the masses by
the same factor the net effect would be to scale Gi by the same factor, i.e.,

Gi(T, p, αmi1, αmi2, . . . , αmin) = αGi(T, p,mi1,mi2, . . . ,min) (4.5.14)

Because of this scaling property

∂

∂(αmik)
Gi(p, T, αmi1, . . . , αmin) =

∂

∂mik
Gi(T, p,mi1,mi2, . . . ,min) (4.5.15)

so ∂Gi/∂mik depends only on the ratios of the mik. For each phase there are (n− 1) such
ratios. There are p phases, so p(n− 1) such ratios in all and the total number of variables
required to describe the system is then, including the pressure and the temperature,

v = 2 + p(n− 1) (4.5.16)

but there are constraints. Consider a transformation in which dmik (of the kth component
in the ith phase) transforms to the jth phase and there is no other change, then

dG = dGi + dGj =
∂Gi
∂mik

dmik +
∂Gj
∂mjk

dmjk = 0 (4.5.17)

because if the phases are in equilibrium the total Gibbs free energy is at a minimum. Since
dmik = −dmjk,

∂Gi
∂mik

=
∂Gj
∂mjk

(4.5.18)

These are a total of n(p − 1) equations relating the variables of the system. Taking into
account these constraints, the total number of variables required to describe the system
should be

v = 2 + p(n− 1)− n(p− 1) = n− p+ 2 (4.5.19)

where we have subtracted the n(p − 1) equilibrium conditions. v is called the degree of
variability of the system. This is a truly remarkable relation. Consider some examples.

• For a system consisting of one phase and one chemically well-defined substance,
v = 2.

• For a system of two distinct, chemically well defined gases, v = 3.

• For a system of one chemically well defined substance and two phases (the liquid
vapor system we have just examined), v = 1. This system has only one degree of
freedom in equilibrium which we could choose to be the temperature. Thus there
must be an equation relating the pressure to the temperature; this is the Clausius-
Clapeyron equation.



4.5. THE GIBBS FREE ENERGY 119

• Finally, consider water at its triple point; we have one chemically well defined sub-
stance and three phases, so the system has no degrees of freedom. It can exist only
at a fixed temperature and pressure. This is of course precisely what we mean by
the triple point.



Chapter 5

Variable Contents

In much of our work this far we have implicitly assumed that the contents of the thermo-
dynamic system being considered were fixed, i.e., the number of molecules of any given
kind present in the system was always taken to be constant. However, we soon saw that
there are interesting systems for which it would simply be incorrect to assume that the
total number of molecules of any particular kind is fixed. There are many examples of
such systems. For instance, if we think of a system consisting of a mixture of ice and water
as composed of two systems in thermal contact with one another, one (A) being the ice
and the other (B) being the water then, depending on the pressure and temperature of
the mixture, the quantity of ice and water will change in time. Neither the system A nor
the system B can be assumed to contain a fixed amount of matter. Again, imagine two
chambers separated by a porous medium through which the molecules of some gas which
fills one of the chambers can flow. The number of molecules of gas in neither chamber
will remain fixed in time. Another example arises during chemical reactions in which the
mass of the reagents in the chemical mixture will change in time, as will the mass of the
products. Charging capacitors are still other examples of such systems since the number
of electrons in a charging capacitor, or in a conductor into which electrons are flowing
from some external source is varying in time. The special cases we examined were the
liquid-vapor equilibrium conditions, the law of mass action and the Gibbs phase rule. In
these cases, making use of the extensive property of the thermodynamic potentials, we
built them up from their values per unit mass, which allowed us to indirectly account for
possible changes in in the number of any one kind of molecule. This procedure is, in fact,
unnecessary and it is often a very inconvenient way to set up a thermodynamic system.

Indeed, in practice one never actually measures or directly controls the precise number
of molecules of any given type in a thermodynamic system but rather infers it indirectly
by probing the system, just as one infers the value of its internal energy. Therefore it is
more consistent with the principles of thermodynamics to treat the numbers of particles

120
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of every species as thermodynamic variables. The set of numbers, {Ns}, of molecules of
species labeled by s, specifies the composition of the mixture. In the previous chapters
we simply assumed that these numbers were all constant. In this chapter we generalize
the laws of thermodynamics to take into account situations in which the composition may
vary.

5.1 The Chemical Potential

Our first question concerns the possible form that the first law should take for a system
with variable contents. We have seen earlier that the entropy is rightly viewed as a function
of the internal energy and the extensive, external parameters of the system. Thus we had,
for the real or ideal gas S = S(U, V ). The composition of a system is a set of externally
specified extensive parameters, the number of molecules of each species present. Thus, we
now write S = S(U, V,N1, N2, . . . Ns, . . .), where Ns represents the numbers of molecules
species j. Taking the differential of S for a small change,

dS =

(
∂S

∂U

)
V,Ns

dU +

(
∂S

∂V

)
U,Ns

dV +
∑
s

(
∂S

∂Ns

)
U,V,Nr,r 6=s

dNs (5.1.1)

We see immediately that when the Ns are fixed we must identify(
∂S

∂U

)
V,Ns

=
1

T(
∂S

∂V

)
U,Ns

=
p

T
. (5.1.2)

If we now call (
∂S

∂Ns

)
U,V,Nr,r 6=s

= −µs
T
, (5.1.3)

then the first law, combined with the second, will read

TdS = dU + pdV −
∑
s

µsdNs ≥ 0. (5.1.4)

The quantity µs is called the chemical potential of species s. To understand its signifi-
cance, consider two systems A and B in contact with one another in such a way that they
are able to spontaneously exchange particles between themselves but otherwise interact
weakly. These systems could be coexisting phases of matter, such as water and ice in our
earlier example. The total entropy of A+B is the sum of the individual entropies

S = SA + SB (5.1.5)
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Now imagine that the combined system A+B is mechanically and thermally isolated (but
each system is not isolated from the other), then the total internal energy, volume and
particle number are conserved,

UA + UB = U (0)

VA + VB = V (0)

NA,s +NB,s = N (0)
s (5.1.6)

and it follows that dUA = −dUB, etc., so that the law of entropy increase would read

dS =

(
1

TA
− 1

TB

)
dUA +

(
pA
TA
− pB
TB

)
dVA −

∑
s

(
µA,s
TA
−
µB,s
TB

)
dNA,s ≥ 0. (5.1.7)

Therefore, in equilibrium, TA = TB, pA = pB and µA,s = µB,s for each species, s. The
first and second conditions represent thermal and mechanical equilibrium respectively. If
the systems are already in mechanical and thermal equilibrium, but possibly exchanging
particles, then TA = TB, pA = pB and

−
∑
s

(µA,s − µB,s)dNA,s ≥ 0. (5.1.8)

If there is just one species then system A gains particles, dNA > 0, if and only if µA ≤ µB
and, vice-versa, if A loses particles, dNA < 0 then µA ≥ µB. The chemical potential
is so seen to determine the direction of particle flow. Particles flow spontaneously from
higher chemical potential to lower chemical potential in systems which are in thermal and
mechanical equilibrium.

5.2 Integrability Conditions

Now take another look at the thermodynamic functions we studied in the previous chapters
and extend their range. Rewriting the first law in the form

dU = TdS − pdV +
∑
s

µsdNs, (5.2.1)

we recognize that(
∂U

∂S

)
V,Ns

= T,

(
∂U

∂V

)
S,Ns

= −p,
(
∂U

∂Ns

)
S,V,Nr,r 6=s

= µs (5.2.2)
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First, define the enthalpy etc. in the usual way. For example, H = U + pV so that

dH = TdS − pdV +
∑
s

µsdNs + dpV + V dp = TdS + V dp+
∑
s

µsdNs (5.2.3)

which is now naturally a function of (S, p,Ns). Likewise

F = U − TS ⇒ dF = −SdT − pdV +
∑
s

µsdNs,

G = U + pV − TS ⇒ dG = −SdT + V dp+
∑
s

µsdNs (5.2.4)

and thus we arrive at an enlarged set of Maxwell relations. We get the same Maxwell
relations we had before as well as eight additional relations, two for each function. From
the integrability of the internal energy in (5.2.2) we find(

∂T

∂Ns

)
V,S,Nr,r 6=s

=

(
∂µs
∂S

)
V,Ns(

∂p

∂Ns

)
V,S,Nr,r 6=s

=

(
∂µs
∂V

)
S,Ns

(5.2.5)

whereas from the integrability condition on H,(
∂H

∂S

)
p,Ns

= T,

(
∂H

∂p

)
S,Ns

= V,

(
∂H

∂Ns

)
S,p,Nr,r 6=s

= µs (5.2.6)

we find (
∂T

∂Ns

)
p,S,Nr,r 6=s

=

(
∂µs
∂S

)
p,Ns(

∂V

∂Ns

)
p,S,Nr,r 6=s

=

(
∂µs
∂p

)
S,Ns

(5.2.7)

and likewise, the integrability conditions for the other two potentials,(
∂F

∂T

)
V,Ns

= −S,
(
∂F

∂V

)
T,Ns

= −p,
(
∂F

∂Ns

)
T,V,Nr,r 6=s

= µs(
∂G

∂T

)
p,Ns

= −S,
(
∂G

∂p

)
T,Ns

= +V,

(
∂G

∂Ns

)
T,p,Nr,r 6=s

= µs, (5.2.8)

gives (
∂S

∂Ns

)
V,T,Nr,r 6=s

= −
(
∂µs
∂T

)
V,Ns
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(
∂p

∂Ns

)
V,T,Nr,r 6=s

= −
(
∂µs
∂V

)
T,Ns(

∂S

∂Ns

)
p,T,Nr,r 6=s

= −
(
∂µs
∂T

)
p,Ns(

∂V

∂Ns

)
p,T,Nr,r 6=s

= +

(
∂µs
∂p

)
T,Ns

(5.2.9)

These expressions can be quite useful as we see below.

5.3 Chemical Potential of an ideal gas

As an example of the use of the integrability conditions we now determine the chemical po-
tential of an ideal gas as a function of {U, V,N}. Consider only one species for convenience
and use the integrability conditions arising from the form

dS =
dU

T
+
p

T
dV − µ

T
dN (5.3.1)

which are1 (
∂T

∂V

)
U,N

= −T
(
∂p

∂U

)
V,N

+ p

(
∂T

∂U

)
V,N(

∂T

∂N

)
U,V

= T

(
∂µ

∂U

)
V,N

− µ
(
∂T

∂U

)
V,N

T

(
∂p

∂N

)
U,V

− p
(
∂T

∂N

)
U,V

= −T
(
∂µ

∂V

)
U,N

+ µ

(
∂T

∂V

)
U,N

(5.3.2)

As before, using the equation of state, p = NkT/V , tells us that the left hand side of the
first condition is identically zero, i.e., T = T (U,N). Inserting this into the third equation
and once again using the equation of state we find that(

∂µ

∂V

)
U,N

= −kT
V
⇒ µ(U, V,N) = −kT ln

V

V0
+ γ(U,N) (5.3.3)

where γ is yet to be determined. It is not possible to make further progress without
exploiting our knowledge from the kinetic theory:

T =
2U

gNk
⇒
(
∂T

∂U

)
V,N

=
2

gNk
,

(
∂T

∂N

)
U,V

= − 2U

gN2k
(5.3.4)

1Problem: Work these out.
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Inserting this into the second of the integrability conditions gives

− 2U

gN2k
=

2U

gNk

(
∂µ

∂U

)
V,N

− 2µ

gNk
(5.3.5)

But since (
∂µ

∂U

)
V,N

= − 2

gN
ln
V

V0
+

(
∂γ

∂U

)
V,N

(5.3.6)

we get a rather simple Bernoulli equation for γ(U,N),(
∂γ

∂U

)
V,N

− γ

U
= − 1

N
(5.3.7)

whose solution can be given as

γ(U,N) = −U
N

ln
U

U0
− Uλ(N) (5.3.8)

where λ(N) remains undetermined. Therefore we have found µ(U, V,N) up to one arbi-
trary function of N ,

µ(U, V,N) = − 2U

gN

[
g

2
ln
U

U0
+ ln

V

V0
+
gN

2
λ(N)

]
(5.3.9)

Note that U0 and V0 are constants of the integration and cannot be further determined
within the context of thermodynamics. Neither U0 nor V0 may depend on N because it
has been used as a thermodynamic variable in this approach. This contrasts with the
expressions we derived for the entropy of an ideal gas in (3.4.11).

5.4 Applications of the Equilibrium Conditions

When no chemical reactions occur, the equilibrium conditions together with the integra-
bility conditions of the previous sections can be applied with good effect to a variety of
situations.

5.4.1 The Clausius-Clapeyron Equation

Let us briefly return to the Clausius-Clapeyron equation to see how it may be simply
obtained from the requirement that in equilibrium

µv = µl (5.4.1)
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where µv and µl are the chemical potentials of the water respectively in the vapor and liquid
phases. Letting lower case letters represent the thermodynamic quantities per molecule,
we can write the Gibbs free energy as

G = Nv(uv + pvv − Tsv) +Nl(ul + pvl − Tsl) (5.4.2)

so that the chemical potentials in each case turn out to be

µv =

(
∂G

∂Nv

)
p,T

, µl =

(
∂G

∂Nl

)
p,T

(5.4.3)

and therefore

uv + pvv − Tsv = ul + pvl − Tsl (5.4.4)

Differentiating once we find

− svdT + vvdp = −sldT + vldp⇒
dp

dT
=
sv − sl
vv − vl

(5.4.5)

This of course is precisely (4.5.9).

5.4.2 Thermodynamics of Adsorption

Sometimes the surfaces of certain solids bind significant numbers of molecules of the ambi-
ent gas (or liquid) to their surfaces. This phenomenon is called adsorption. It is different
from absorption in which the molecules are simply dispersed within the absorbing medium.
In adsorption, the molecules although adhering to the surface of the solid are more or less
free in the directions parallel to the solid surface. The adsorbed substance is called the
adsorbate and the solid upon whose surface the molecules are adsorbed is called the
adsorbent. Adsorption can be a very useful process: it is a vital part of catalysis; it can
also be used in a separation process, for example, to remove low concentration pollutants
in a fluid stream, or in a storage process in which molecules are trapped by adsorption
for future release. In the case of adsorption of gaseous molecules the number of adsorbed
molecules depends on the temperature of the system and the gas pressure. For a fixed
temperature fewer molecules are adsorbed at low pressures. On the other hand, for a fixed
pressure fewer molecules are adsorbed at high temperatures.

Adsorption is a consequence of the fact that the adsorbate molecules acquire a small,
negative binding energy when they come close enough to molecules on the surface of the
adsorbent. Another way of saying this is that the adsorbate molecules experience a small,
short range attractive force to the solid surface. This force does not, however, cause the
adsorbate molecules to stick to the adsorbent molecules. As a result, the the gas goes from
three dimensional to effectively two dimensional near the surface of the adsorbent. This
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significantly changes the behavior of the gas, though the change does not occur abruptly.
It was originally Gibbs who realized that it is precisely this fact that can be exploited
to obtain an equilibrium thermodynamic description of the phenomenon without delving
into its microscopic details. Thus, for the purposes of a thermodynamic description of the
process it is sufficient to treat the system as a two dimensional gas phase in equilibrium
with its three dimensional phase.

The spreading pressure is not directly accessible to experiment and must be calculated.
So how many degrees of freedom are required to describe this system? There is one
chemically well defined substance in two phases so, according to the phase rule, (4.5.19),
v = 1. However, the fact that the pressure is not directly measurable modifies the Gibbs
phase rule so that the number of degrees of freedom is actually two.

As we did for the Clausius-Clapeyron equation, we will describe this system in equi-
librium by requiring

µa = µv (5.4.6)

where µa and µv are the chemical potentials of the gas in the adsorbed state and in the
normal three dimensional state. Again, we know from earlier work that

µa = ua + PAa − Tsa, µv = uv + pvv − Tsv (5.4.7)

where we introduced the areal pressure, P, and the surface area, Aa, occupied by the ad-
sorbed gas per molecule. The difference with the case of the Clausius-Clapeyron equation
is that the pressure P remains in principle unknown. Differentiating the relation µa = µv
as before

− sadT +AadP = −svdT + vvdp (5.4.8)

Along a fixed isotherm,
AadP = vvdp (5.4.9)

and applying the ideal gas equation of state, pvv = kT , to eliminate vv, we find

d ln p =
AadP
kT

(5.4.10)

Furthermore, we will take the equation of state in the adsorbed state to be of the form

PAa = zkT (5.4.11)

where z is called the compressibility factor for the adsorbate, then along an isotherm

dPAa = kT (dz − zd lnAa) (5.4.12)

For an ideal two dimensional gas, the compressibility factor would be precisely one. How-
ever, for real gases the compressibility factor will generally depend on the pressure and the
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temperature, increasing with pressure and decreasing with temperature. At high pressures
molecules are colliding more often and at low temperatures they are moving less rapidly.
This allows intermolecular forces to have a significant effect. If Na represents the number
of adsorbed molecules and A the adsorbent surface area, then substituting Aa = A/Na

and dAa = −A/N2
adNa gives

d ln p = dz + z
dNa

Na
(5.4.13)

Subtracting dNa/Na from both sides

d ln
p

Na
= dz + (z − 1)

dNa

Na
(5.4.14)

Now, when p→ 0 and Na → 0 we expect z → 1. Likewise the number of molecules is Na

when the pressure is p. Thus, integrating both sides of this equation

ln
p

Na
− ln lim

Na,p→0

p

Na
=

∫ Na

0
(z − 1)

dNa

Na
+ z − 1 (5.4.15)

Suppose that the limiting value of p/Na above is kH ,2 then

ln
p

kHNa
=

∫ Na

0
(z − 1)

dNa

Na
+ z − 1 (5.4.16)

and

kHNa = p exp

[∫ Na

0
(1− z)dNa

Na
+ 1− z

]
(5.4.17)

If z is approximately constant in a given range of p, T and Na, and if lnNa � 1 then we
may further approximate the above expression by

Na =
p

kH
N1−z
a ⇒ Na =

(
p

kH

)1/z
def
= χ p1/z (5.4.18)

It appears from the above that the number of adsorbed molecules may grow indefinitely
as the pressure is increased without bound. In reality this is not so because z also grows
as p is increased. This reflects the observation that the number of adsorbed molecules has
an asymptotic maximum as p increases. Likewise, as the temperature increases z changes
to reflect the observation that the quantity of adsorbed molecules rises more slowly with
increasing p.

2The constant kH is known as Henry’s constant for adsorption. In general, Henry’s law can be written
as

p = kHc

where c is the concentration of the gas in the affected portion of the gas and p refers to the partial pressure
of the unaffected portion of the gas. For example, in the case of adsorption, c refers to the concentration
of the adsorbed portion of gas on the surface and p to the pressure of the three dimensional gas above the
adsorbed layer; in the case of a solution c would refer to the concentration of the solute in the solution
and p to the partial pressure of the solute in the gas above the solution.
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5.4.3 Equilibrium in Chemical Reactions

The chemical potential is of great importance in the study of the chemical equilibrium be-
tween species when chemical reactions may occur in a mixture of various types of molecules.
In fact, consider a general chemical reaction of the form

n1A1 + n2A2 + ...nrAr → m1B1 +m2B2 + ...msBs, (5.4.19)

occurring in an isolated mixture of chemicals labeled by the A’s and B’s. We can consider
the entire mixture as consisting of several sub-systems, each consisting of one species of
molecule. Assume that the sub-systems are in thermal and mechanical equilibrium with
each other, but not necessarily in chemical equilibrium. During any process that the
system undergoes, the total entropy will either increase or stay the same; therefore

−
∑
s

µsdNs ≥ 0, (5.4.20)

where s is used to label the chemical species. If the reaction proceeds to the right, we lose
nj moles of species Aj (for j ∈ {1, 2, ..., r}) and gain mk moles of Bk (for k ∈ {1, 2, ..., s})
and vice versa if the reaction proceeds to the left. Assuming thermal and mechanical
equilibrium between the species, the above condition requires that

⇒ −
r∑
j=1

µAjdNAj −
s∑

k=1

µBkdNBk ≥ 0

⇒
r∑
j=1

µAjnAj ≥
s∑

k=1

µBkmBk (5.4.21)

where we have used the fact that

dNAj = −nAj

dNBk = +mBk (5.4.22)

which follows from our condition that the equation proceeds to the right so that nAj
moles of Aj are lost and mBk moles of Bk are gained by the system. Equation (5.14) can
be expressed by saying that the total chemical potential of the reagents must be greater
than the total chemical potential of the products if the reaction proceeds to the right. The
chemical potential therefore determines the direction in which a chemical reaction occurs
and hence receives its name.
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5.4.4 Mass Action Revisited

The equation (5.4.21) gives us the condition for the reaction to proceed to the right. The
analogous condition

r∑
j=1

µAjnAj ≤
s∑

k=1

µBkmAk (5.4.23)

is the condition for the reaction to proceed to the left. In equilibrium, the forward rate
must equal the backward rate, so

r∑
j=1

µAjnAj −
s∑

k=1

µBkmAk = 0 (5.4.24)

Now suppose that we wish to describe a gaseous reaction occurring at a constant volume
and temperature and suppose that under the conditions the chemicals behave approxi-
mately as ideal gases. Then the most direct way to obtain the chemical potential under
these conditions is via the Helmholz free energy since(

∂F

∂Ns

)
T,V,Nr,r 6=s

= µs. (5.4.25)

With

F =

∑
j

NAj (uAj − TsAj ) +
∑
k

NBk(uBk − TsAk)

 (5.4.26)

where u and s are the internal energies and entropies per particle respectively. We see
that the equilibrium condition reduces to∑

j

nAj (uAj − TsAj )−
∑
k

nBk(uBk − TsBk) = 0 (5.4.27)

and writing the expression out in extenso using expressions we had earlier for the internal
energy and entropy of ideal gases we have, after multiplying throughout by Avogadro’s
number ∑

j

nAj [CVAjT +WAj − T (CVAj lnT +R ln vAj + aj)]∑
k

nBk [CVBkT +WBk − T (CVBk lnT +R ln vBk + bj)] = 0 (5.4.28)

where v is the specific volume, i.e., in terms of the concentration, c = n/N , we can express
v = V/N = 1/(N0c). Thus

ln vAj + aj = − ln cAj + a′j (5.4.29)
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and we have∑
j

nAj [CVAjT +WAj − T (CVAj lnT −R ln cAj + a′j)]∑
k

nBk [CVBkT +WBk − T (CVBk lnT +R ln cBk + b′j)] = 0 (5.4.30)

which is identical with (4.4.33), given that the constants a′j and b′j are arbitrary and we
can identify a′i with ai +R and b′i with bi +R.

5.5 New Thermodynamic Potentials

We may now extend the range of thermodynamic potentials by a further Legendre trans-
formation, introducing the new functions

ΦU = U −
∑
s

µsNs ⇒ dΦU ≤ TdS − pdV −
∑
s

Nsdµs,

ΦH = H −
∑
s

µsNs ⇒ dΦH ≤ TdS + V dp−
∑
s

Nsdµs,

ΦF = F −
∑
s

µsNs ⇒ dΦF ≤ −SdT − pdV −
∑
s

Nsdµs,

ΦG = G−
∑
s

µsNs ⇒ dΦG ≤ −SdT + V dp−
∑
s

Nsdµs, (5.5.1)

where the equality holds only during quasi static processes. These yield more Maxwell
relations.3 Of the generalized potentials above, the most important is ΦF and was called
by Gibbs the grand potential. The role of the grand potential is similar to that of F ,
i.e., it is the maximum amount of energy available to do external work for a system in
contact with both a heat and a particle reservoir.4

Consider a homogeneous system, i.e., one that has a single or uniform phase. Notice
that with the introduction of the chemical potential, we can imagine building up a ho-
mogeneous system by adding material while always keeping the intensive variables fixed.
Then the above relations are trivially integrated to give

ΦU = TS − pV ⇒ U = TS − pV +
∑
s

µsNs

ΦH = TS ⇒ H = TS +
∑
s

µsNs

3Problem: Determine all the new Maxwell relations.
4Problem: Prove this.
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ΦF = −pV ⇒ F = −pV +
∑
s

µsNs

ΦG = 0⇒ G =
∑
s

µsNs (5.5.2)

so that in a homogeneous system the chemical potential may be thought of as the partial
Gibbs free energy. In such a system then we have the the following relationship between
changes in the chemical potential and the other intensive variables of the system,∑

s

Nsdµs = −SdT + V dp. (5.5.3)

This is known as the Gibbs-Duhem relationship. It shows that in a homogeneous system
the intensive variables are not really independent. When pressure and temperature vary
only n − 1 of n species of substances present (in each phase) have independent chemical
potentials.

If we use the integrated form of the first law, as given by the first equation in (5.5.2)
together with the equation of state and the relationship between the temperature and the
internal energy, T = T (U), then we find that for an ideal gas

S =
U

T
+
pV

T
− µN

T

⇒ µ = − T
N

[
S − U

T
− pV

T

]
(5.5.4)

and therefore

µ = −kT
[
S

Nk
−
(g

2
+ 1
)]
, (5.5.5)

but it remains undetermined to the extent that S in (3.4.11) is undetermined. It should
be compared with the result obtained in (5.3.9) from the integrability conditions.



Chapter 6

The Third Law

6.1 Introduction

We have finally arrived at the third and final law of Thermodynamics. Its objective is
to complete the definition of entropy, although this in and of itself does not turn out to
be so useful in the end. Recall that the second law only gives the change in the entropy
[according to (3.3.20)] when a macroscopic system undergoes a thermodynamic process
that takes it from some initial state to some final state, but it has nothing to say about
the actual value of the entropy in any state even though, as a function of state, the en-
tropy must have a definite value in every state. However, if it were possible to specify
the entropy in any one state then (3.3.20) would allow us to determine its value in any
other state. This is what the third law attempts to do. The statement of the third law,
according to Planck is the following:

The entropy of every system at zero temperature is zero.

It follows that the entropy of any system in any state, A, can be defined as

S(A) =

∫ A

T=0

d−Q

T
(6.1.1)

What is the meaning of this law? It does not have a basis either in classical thermo-
dynamics or in classical statistical mechanics, but in quantum statistical mechanics. To
understand it, let us take a small foray into statistical mechanics, in which the the entropy
of an isolated system is defined, following Boltzmann, as

S(U,N, V, . . .) = k ln Ω(U,N, V, . . .) (6.1.2)

where Ω(U,N, V, . . .) is the number of microstates compatible with a given macrostate
described by the parameters U,N, V, . . .. Planck’s statement of the third law implies that

133



134 CHAPTER 6. THE THIRD LAW

at zero temperature every isolated thermodynamic system has just one state available to
it. This is the state of lowest energy, or the ground state of the system.

6.2 The number of microstates

6.2.1 Classical Microstates

Recall that the initial conditions required to solve Newton’s equation are the positions
and momenta of each particle. A classical microstate of any system would consist of the
positions, ~qi, and momenta, ~pi, of all of its constituents, i.e., a typical microstate would
be represented by the set

{~q1, ~q2, . . . , ~qN , ~p1, ~p2, . . . , ~pN}. (6.2.1)

If each constituent has g degrees of freedom, the microstate has 2gN “phase space” vari-
ables, viz., gN coordinates and gN momenta. Of course there will be a certain number of
conserved integrals of the motion, which we must subtract from the 2gN phase space de-
grees of freedom. Moreover, when the system is subject to some external constraints, not
all positions or momenta would be realized by the constituents, but only those that obey
the external constraints. In other words, not all possible points in the 2gN dimensional
phase space are allowed by the constraints. The constraints and conserved quantities will
determine a 2f dimensional hypersurface in phase space on which the system is allowed to
evolve and each point of this hypersurface would correspond to a microstate of the system.

We now assume that all the allowed microstates are equally likely to occur and we’re
interested in counting them. This is like saying that we want to count the “number of
points” in the hypersurface defined by the constraints and conservation laws. However,
the coordinates and momenta can take on any real value and the set of real numbers
is dense, therefore the number of possible classical microstates of a system are ab initio
uncountable. This unpleasant situation can be corrected by “coarse graining” phase space,
i.e., dividing phase space into cells of fixed area, agreeing that states that have momentum
between ~p and ~p+ δ~p and position between ~q and ~q + δ~q cannot be distinguished. These
“indistinguishable” states may all be specified by a single representative point (~q, ~p) within
a cell of area

δf~pδf~q = δ~q1δ~q2...δ~qfδ~p1δ~p2...δ~pf = hfo , (constant.) (6.2.2)

as shown in figure (7.3). In this way the microstates become countable. Clearly, the
description becomes more accurate as we take the area of each cell to approach zero.
Although we will not be able to take that limit, we will assume that ho is “macroscop-
ically small” but “microscopically large”. What this means is that we assume that any
macroscopic volume in phase-space includes a very large number of fundamental cells of
volume hfo while each cell itself holds a large number of points all of which represent a
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h p q0=d d

p

q

Figure 6.1: Coarse graining classical phase space

single microstate. This is the “continuum” approximation. To find the total number of
microstates, we must then sum over all the cells that lie within the region of phase space
that is defined by our external constraints, in principle taking the limit as ho → 0 in the
end if possible. Thus

Ω(U,N, V, . . .) =
∑
cells

...→ lim
ho→0

1

hfo

∫
R
df~q df~p (6.2.3)

where R is some region of the phase-space defined by U,N, V, . . . Let us consider some
examples.

The simplest example is that of a gas of N non-interacting particles in a box. Suppose
that, besides the number of particles, we also know the total internal energy of the system,
U . Because the energy of the system is simply the kinetic energy of the particles,

U =

N∑
i=1

~p2
i

2mi
(6.2.4)

Assume, for simplicity that we have a system of identical particles, of mass m, then we
could write the equation as ∑

i

~p2
i = 2mU (6.2.5)

which is the equation of a 3N dimensional sphere of radius
√

2mU . The number of states
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of the system can now be written as

Ω(U,N) =
1

h3N
o

∫
V
d3N~r

∫
d3N~p δ

(
N∑
i=1

~p2
i − 2mU

)
(6.2.6)

The δ− function enforces the energy condition, which requires that all the momenta live
on the surface of a 3N − 1 dimensional sphere. Its surface area is1

A3N−1 =
2π(3N−1)/2

Γ[(3N − 1)/2]
(2mU)(3N−1)/2 ∼ BN (m)U3N/2−1 (6.2.7)

Further, each particle may occupy any point in the enclosed volume, V , so the number of
states available to this gas is

Ω(U,N, V ) ∼ 1

h3N
o

BN (m)V NU3N/2 (6.2.8)

1We had obtained the result from the volume of a N − 1 dimensional sphere in momentum space of
radius

√
2mE, where m is the mass of each particle. Now the volume of a d − 1 dimensional sphere of

radius R is Rd−1Ωd−1, where Ωd−1 is the solid angle in d− 1 dimensions. To calculate this solid angle, let
us evaluate the integral

I =

∫ ∞
−∞

dx1dx2....dxde
−r2

where r2 = x2
1 + x2

2 + ...+ x2
d in two different ways. First we simply write the integral as∫

dx1dx2....dxde
−r2 =

∏
i

∫ ∞
−∞

dxie
−x2i = (π)

d
2

Next, let us evaluate the same integral using spherical coordinates, in which

dVold = rd−1drdΩd−1 ⇒ I = Ωd−1

∫ ∞
0

drrd−1e−r
2

=

If we define r2 = t,

I =
1

2
Ωd−1

∫
dtt

d
2
−1e−t = Γ

(
d

2

)
where Γ(x) is the “Gamma” function, which analytically continues the “factorial” function from the original
domain of the natural numbers to the complex numbers:

Γ(n+ 1) = n!, n ∈ N.

Comparing this value of the integral with the previous, we find

Ωd−1 =
2π

d
2

Γ
(
d
2

)
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where we have set 3N/2− 1 ≈ 3N/2N because N is assumed to be very large. According
to Boltzmann, the entropy of this system is given by (6.1.2),

S = Nk ln
U3/2V B

1/N
N (m)

h3N
o

. (6.2.9)

Notice that as T → 0 (or U → 0) this expression does not yield zero, so the classical
entropy does not obey Planck’s statement of the third law. On the contrary, the number
of states seems to approach negative infinity, which is definitely a problem and signals
the inappropriateness of applying classical mechanics concepts at very low temperatures.
However, it does yield the equation of state for an ideal gas,

p

T
=

(
∂S

∂V

)
U

=
Nk

V
⇒ pV = NkT (6.2.10)

and reproduces the relation between the internal energy and the temperature for the ideal
gas,

1

T
=

(
∂S

∂U

)
V

=
3Nk

2U
⇒ U =

3

2
NkT (6.2.11)

giving the heat capacity of an ideal gas as CV = 3Nk/2.
Consider also a system of identical, non-interacting harmonic oscillators. Einstein

proposed that such a collection of oscillators models a solid. If we know the total energy
of the oscillators then

U =
∑
i

(
~p2
i

2m
+

1

2
k~q2
i

)
⇒ 2mU =

∑
i

(
~p2
i + ~ξ2

i

)
(6.2.12)

where we define ~ξ = mk~q. Now we have a 6N − 1 dimensional sphere, so by the same
arguments we made before

Ω(U,N) = B̃N (m)U3N (6.2.13)

where B̃(m) contains all the dimensional factors pertaining to the surface area of a 6N−1
dimensional sphere of radius

√
2mU . Notice that for this idealized solid the entropy is

simply a function of the internal energy,

S = k ln Ω = 3Nk[lnU + ln B̃N (m)] (6.2.14)

and
1

T
=
∂S

∂U
=

3Nk

U
⇒ U = 3NkT (6.2.15)

and gives the heat capacity CV = 3Nk.2 The entropy is ill behaved in the T = 0 limit,
once again showing that classical mechanics concepts break down in this regime.

2The system has two degrees of freedom per oscillator. This is because a harmonic oscillator stores
energy in two ways: as kinetic energy and as potential energy. Thus the result agrees with the prediction
of the equipartition theorem.
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6.2.2 Quantum microstates

The quantum states of particles are usually defined by a small set of quantum numbers
which may or may not have a discrete spectrum. Thus counting the number of quantum
microstates of a macroscopic system must proceed in a way that is compatible with the
principles of quantum mechanics, as the following examples will illustrate. A more detailed
analysis will be deferred until later.

A simple example is that of a paramagnetic system consisting of N non-interacting
spin-1

2 particles, each possessing a magnetic moment ~µ, placed in an external magnetic
field. Each particle has one of two possible orientations, parallel or antiparallel to the
external magnetic field. A particle that is parallel to the magnetic field has energy E− =
−µB and one that is antiparallel to the field has energy E+ = µB. The internal energy
of the N particles will be depend on the orientations of the particles: if m particles are
oriented parallel to the field and n particles are oriented antiparallel to it (n + m = N),
the internal energy will be (n −m)µB. How many states are there in which n out of N
particles are oriented antiparallel to the magnetic field. Assuming that the particles are
identical but distinguishable, the answer is

Ω(n,m) =
N !

n!(N − n)!
(6.2.16)

But since (2n−N)µB = U , we could replace n in the above expression by

n =
1

2

(
N +

U

µB

)
(6.2.17)

and find

Ω(U,N) =
N ![

1
2

(
N + U

µB

)]
!
[

1
2

(
N − U

µB

)]
!

(6.2.18)

One can use Stirling’s formula3 to simplify this expression assuming that N and N ±
U/µB � 1,

S = k

[
N lnN −N − 1

2

(
N +

U

µB

)
ln

1

2

(
N +

U

µB

)
+

1

2

(
N +

U

µB

)
−1

2

(
N − U

µB

)
ln

1

2

(
N − U

µB

)
+

1

2

(
N − U

µB

)]
(6.2.20)

3Stirling’s formula: For any A� 1

lnA! ≈ A lnA−A. (6.2.19)
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This expression can be simplified to

S = Nk

lnN − 1

2
ln

1

4

(
N2 − U2

µ2B2

)
− U

2µNB
ln

(
N + U

µB

)
(
N − U

µB

)
 (6.2.21)

and, taking a derivative with respect to U , one can easily show that

U = −NµB tanh

(
µB

kT

)
(6.2.22)

which is the result we obtained before, where we were given the equation of state. What
is noteworthy about these expressions is the fact that as T approaches zero the internal
energy approaches −NµB, which says that all the spin 1

2 particles align themselves an-
tiparallel to the external magnetic field, as a consequene of which there is just one state.
We can check that the entropy approaches zero in this limit.

Another interesting system is the Einstein model of a solid, which consists of a set of
ideal, non-interacting harmonic oscillators. A quantum harmonic oscillator has discrete
energy levels given by

En =

(
n+

1

2

)
~ω (6.2.23)

where n is an integer which counts the number of “quanta” of energy exciting the oscillator
and ~ω/2 represents its ground state energy. Suppose that we know the total energy
of N oscillators. This energy may be achieved in many different ways by the system
and each way corresponds to a particular distribution of the available quanta among the
oscillators. Each distribution of the quanta among the oscillators is a microstate and we
want to count the number of microstates, so we imagine that the quanta and the oscillators
are distributed along a line with the rule that every oscillator is excited by the quanta
immediately to its left. Since every quantum must be associated with one oscillator the
last object must be an oscilator and we can rearrange only N − 1 of the N oscillators.
Suppose that there are Q quanta distributed among the oscillators, i.e.,

U =

(
Q+

N

2

)
~ω ⇒ Q =

U

~ω
− N

2
(6.2.24)

then the number of possible arrangements of Q objects of one type (quanta) and N − 1
objects of another type (the oscillators) gives the total number of states having energy U ,

Ω(Q,N) =
(N +Q− 1)!

Q!(N − 1)!
(6.2.25)

and so

S(U,N) = k[(Q+N − 1) ln(Q+N − 1)−Q lnQ− (N − 1) ln(N − 1)]
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≈ k

[(
U

~ω
+
N

2

)
ln

(
U

~ω
+
N

2

)
−
(
U

~ω
− N

2

)
ln

(
U

~ω
− N

2

)
−N lnN

]
(6.2.26)

upon applying Stirling’s formula and setting N − 1 ≈ N . Now rearranging terms we find
that

S(U,N) ≈ k

[
N

2
ln

(
U2

~2ω2
− N2

4

)
+

U

~ω
ln

(
U
~ω + N

2

)(
U
~ω −

N
2

) −N lnN

]
(6.2.27)

which means that

U =
N~ω

2
coth

(
~ω

2kT

)
. (6.2.28)

Now we notice that

U
T→∞
≈ NkT, U

T→0
≈ 1

2
N~ω (6.2.29)

The first limit is expected for one dimensional oscillators. The low temperature limit says
that as T → 0 all the oscillators tend to be their ground states. As a consequence, as
T → 0 there is, once again, just one microstate available to the system and again it is not
difficult to check that S approaches zero in this limit.4

Now although the examples of quantum microstates presented above have zero entropy
in the limit as T approaches zero, this is not necessarily always the case. If, for example,
the quantum mechanical ground state of the constituents is degenerate the number of
states available to the system will be larger than one. The resulting non-zero entropy at
T = 0 is then called the residual entropy of the system. If the ground state has a p−fold
degeneracy then at T = 0 there will be pN available states for the system and the residual
entropy will be Sres = Nk ln p. An example is Carbon Monoxide which has a two fold
degenerate ground state, so its residual entropy is Nk ln 2.

6.3 Nernst’s Statement

The third law of thermodynamics was originally postulated by the chemist Walther Nernst
between 1906 and 1912 and is sometimes referred to as Nernst’s “theorem”. Although we
called the previous statement the “Planck” statement, it was first proposed by Nernst,
who required that:

4Problem: Show that
lim
T→0

S(U,N) = 0

where U is given as a function of T by (6.2.28).
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At T = 0 all substances have the same value of the entropy.

Planck then recognized that this value could be chosen to be zero. However this statement
is too strong because the ground states of all substances cannot be required to possess
the same degeneracy. Thus both statements must be modified and a more appropriate
statement of the third law would be:

At T = 0 the specific entropy (entropy per particle) is a constant, independent of all the
extensive properties of the system.

Later, in 1917, Nernst proposed another form of the law, today known as the unattain-
ability statement of the Third Law, but which we will refer to as Nernst’s statement

It is impossible by any procedure, no matter how idealised, to reduce any system to the
absolute zero of temperature in a finite number of operations.

This statement is not equivalent to the previous statement(s). There are thermodynamic
systems (black holes, for example) that obey Nernst’s statement of the third law but not
Planck’s.

6.4 Applications

Consider the implications of the thermodynamic definition of entropy

S(T ) =

∫ T

0

d−Q

T
=

∫ T

0

C(T )dT

T
, (6.4.1)

where C(T ) is the heat capacity of the system. We have determined that the heat ca-
pacities, CV and Cp of an ideal gas are constant and since one can always cook up two
quasi-static processes, one isovolumetric and another isobaric, to get from any thermody-
namic state to any other we immediately see that the integral is ill defined at T = 0 unless
C(T ) approaches zero “fast enough” as T approaches zero. What is “fast enough”? For
the integral to converge, C(T ) should behave as some positive power of T near absolute
zero. Thus the third law says that the classical theory of heat capacities breaks down at
low temperatures and requires a more complete theory which yields a C(T ) ∼ T ν , near
T = 0, where ν > 0.

6.4.1 Heat Capacities

We have seen in a few examples that the quantum theory satisfies this criterion for a “more
complete theory”. Why can we ignore quantum effects at high temperatures but not at low
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Figure 6.2: Heat capacity of a solid as a function of the Temperature

temperatures, and what might these effects be? Quantum effects in a macroscopic system
can usually be neglected when the wave-functions of the constituents do not overlap,
so there is no quantum interference. For an ideal gas this is the condition that the mean
distance between the molecules is greater than twice the mean wavelengths of the particles.
Applying de Broglie’s hypothesis, λ = h/p, this requirement translates to

h

mvrms
� n−1/3 (6.4.2)

Using the ideal gas equation of state and expressing the rms speed in terms of the tem-
perature we find

h√
3mkT

�
(
kT

p

)1/3

(6.4.3)

(the left hand side is called the thermal de Broglie wavelength of the molecules) so
that

p� (3m)3/2(kT )5/2

h3
(6.4.4)

which gives a lower bound for the temperature below which quantum effects become
unavoidable. The lower bound decreases with increasing particle mass, and it is indeed
quite low for ordinary molecules at standard pressure. However, it is high for an electron
gas at standard pressure (≈ 1405 K), so free electrons in a metal will behave quantum
mechanically at STP. At temperatures below the lower bound, the heat capacity of an
ideal gas will depend on the statistics obeyed by its molecules, a purely quantum effect.
While this will be discussed in detail later, let us mention that although we have implicitly
assumed that all the molecules are identical in the sense that they have the same physical
properties, we have not taken into account that if they have the same physical properties
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they must also be indistinguishable. Indistinguishability requires us to modify our
counting of microstates for classical systems and quantum systems and it will play a
particularly special role in quantum systems. To understand its implications, consider the
wave function of two particles, labeled “1” and “2”. Suppose one of these particles is in
state “|α〉” and the other is in state “|β〉”. If the particles are distinguishable then the
two states

ψαβ12 = ψα1ψ
β
2 (6.4.5)

and

ψαβ21 = ψα2ψ
β
1 , (6.4.6)

which are obtained from the one another by interchanging “1” and “2”, are distinct states
because the first represents a situation in which “1” is in state |α〉 and “2” is in state |β〉
while the second represents the situation in which “2” is in state |α〉 and “1” is in state
|β〉. However, if they are indistinguishable then it is impossible to tell which particle is
in which particular state, so the wave function for the two particles should be given by a
linear combination of states in which “1” is in “|α〉” and “2” in “|β〉” and “2” is in “|α〉”
and “1” in “|β〉”. We can only have one of the two following possibilities:

ψαβ12 =
1√
2

[ψα1ψ
β
2 ± ψ

α
2ψ

β
1 ] (6.4.7)

The wave function with the negative sign will then vanish if the states |α〉 and |β〉 are the
same, whereas the wave function with the positive sign will be enhanced. Thus, either
no two particles may exist in the same quantum state or the particles “prefer” to exist in
the same state and these are the only two possibilities. This leads, in the first case, to a
Fermi gas and in the second to a Bose gas. The particles of a Fermi gas are described
by a completely antisymmetric wave function while those of a Bose gas are described by
a completely symmetric wave function.

The heat capacity of a Bose gas below a certain critical temperature, Tc, which de-
pends on the fundamental constants, the molecular parameters and the number density
of particles, behaves as

CV ∼ Nk
(
T

Tc

)3/2

(6.4.8)

and rises above its classical value. At the critical temperature there is a λ−shaped cusp
in CV and above the critical temperature CV falls to its clasical value. There is no cusp
in CV for Fermi gases. Their specific heat rises smoothly from zero to the classical value,
behaving near T = 0 as

CV ∼
π2

2

T

TF

[
1− 3π2

10

(
T

TF

)2

+ . . .

]
(6.4.9)
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where TF is the “Fermi Temperature” and kTF is the Fermi energy, the highest energy
quantum state that may be accessed by a particle of the system at absolute zero.

Apart from taking the quantum theory into account, one must also be careful to
account for all degrees of freedom. We see how important this is, for example, in the
description of solids. In the previous section we obtained the internal energy of our sim-
plified solid as a function of the temperature in (6.2.28). Taking a derivative with respect
to the temperature we find

CV =
N~2ω2

4kT 2
csch2

(
~ω

2kT

)
, (6.4.10)

which approaches Nk at high temperatures (kT � ~ω) and at very low temperatures
approximates to

CV ≈
N~2ω2

kT 2
e−~ω/kT . (6.4.11)

This was the model originally proposed by Einstein, who suggested that the frequency
ω had to be determined experimentally for each solid. However, although CV in (6.4.10)
does have the correct high temperature behavior and vanishes faster even than any positive
power of T near absolute zero, its low temperature behavior does not agree experiment.
The model was refined by Peter Debye in 1912. He pointed out that the problem lies in
assuming that all the oscillators have the same frequency. Atomic vibrations in crystalline
solids give rise to lattice vibrations which propagate through the solid. These waves,
called phonons, propagate with well defined wavelengths and frequencies called normal
modes. In determining the specific heat of such solids, the lattice vibrations must also be
counted because they also cost the system some energy. Taking into account the lattice
vibrations, Debye showed that the constant volume heat capacity of a crystalline solid
behaves as

CV (T ) = 9Nk

(
T

Θ

)3 ∫ Θ/T

0
dx x4csch2x (6.4.12)

where Θ is the so-called Debye temperature. At low temperatures, T � Θ, the heat
capacity is dominated by the phonons: the upper limit in the integral can be taken to be
effectively infinite and the heat capacity will behave as T 3. At high temperatures, T � Θ,
x must be small and we can replace cschx by 1/x to find that the heat capacity is constant.
The change from its cubic behavior near absolute zero to its classical, constant value at
high temperatures occurs smoothly as shown in figure 6.2.

6.4.2 Sublimation

Some substances pass directly from the solid phase to the gas phase in a process known as
sublimation. Sublimation occurs at a fixed temperature, as does any phase transforma-
tion, and there is a latent heat, L, associated with the process. Since there is no ambiguity
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in the definition of the entropy associated with a particular state, we know that

Svapor − Ssolid =
ML

T
(6.4.13)

where T is the temperature of sublimation. We can compute the entropy of the vapor
at high temperatures as follows. Starting with the number of states in (6.2.9) and using
(6.2.11) we can estimate the entropy as a function at high temperatures via

S = k ln
Ω

N !
(6.4.14)

where we divided the number of states calculated before by the number of interchanges be-
tween particles to account for indistinguishability, since every interchange of two particles
will lead to the same state. We easily find

Svapor =
g

2
Nk ln

[
2πmkeγT

h2
o

(
V

N

)2/g
]

(6.4.15)

where m is the molecular mass, g the number of degrees of freedom per molecule and γ
is the ratio of specific heats, γ = Cp/CV . We have used the expression for the number
of states that is derived from classical statistical mechanics, which is only good at high
temperatures. That is acceptable provided we also take into account the indistinguisha-
bility of the gas particles and any possible degeneracy they may have in the ground state.
We have already done the first by dividing the number of states by N !. To account for a
possible degeneracy of the ground state, let us also add

gNk lnωv (6.4.16)

where ω represents the said degeneracy. Thus we get

Svapor =
g

2
Nk ln

[
2πmkeγω2

vT

h2
o

(
V

N

)2/g
]

(6.4.17)

On the other hand, the entropy of a solid at high temperatures in three dimensions is
given by the formula in (6.2.14)

Ssolid = 3Nk ln

[
ωsT

Θ

]
(6.4.18)

where we introduced ωs to account for the degeneracy per degree of freedom just as we
did for the ideal gas.
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For definiteness, we’ll now assume that the molecules are monatomic and point like,
having only translational degress of freedom. Then we have, for the gas

Svapor =
3

2
Nk ln

[
2πmke5/3ω2

vT

h2
o

(
V

N

)2/3
]

(6.4.19)

and putting it together with the entropy for the solid, we find that (6.4.13) reads

Nk

[
−1

2
lnT − ln p+

3

2
ln

(
ω2
vσ

2Θ2

ω2
s

)]
=
ML

T
(6.4.20)

where

σ2 =
2πmk5/3e5/3

h2
0

.

Therefore

p =

(
ωvσΘ

ωs

)3 1√
T
e−

ML
NkT (6.4.21)

This solution should be compared with (3.5.36), since it describes essentially the same
phenomenon. There is an extra factor of T−1/2 in the expression here, which originates
in the difference between the number of degrees of freedom of the solid and vapor phases.
From a thermodynamic point of view we must think of (6.4.21) as a solution of the
Clausius-Clapeyron equation in which there is a temperature dependence of the latent
heat of vaporization. Notice also that the constant p0 in (3.5.36) has here been determined
by the third law.

6.4.3 Allotropic Forms

Some elements can exist in the same phase but different forms, called allotropes of that
element. Two allotropes differ from each other in the manner in which the atoms bind
to one another, i.e., in their crystal structures, just as isomers are chemical compounds
whose molecules bind to one another differently although they share the same chemical
formula. Carbon atoms, for example, have three different allotropes, viz., (i) diamond, (ii)
graphite and (iii) fullerenes. In diamond, the carbon atoms are bound in a tetraherdral
lattice, in graphite they are bound together in sheets of a hexagonal lattice and in fullerenes
they are bonded in spherical, tubular or ellipsoidal formations.

We will consider the case of tin, which can exist in two forms: white tin and grey tin.
White tin is unstable below a certain temperature, T0, and grey tin is unstable above T0.
However, the transformation from white to grey tin is very slow below T0 and it is possible
to work with white tin even at very low temperatures. Now as T → 0 the entropy of white
tin should approach a constant, which counts the number of degrees of freedom associated
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with its ground state. The same statement is true of grey tin. These degrees of freedom
count the number of possible orientations of their nuclear spins, but since they are the
same nuclei and we deal with the same number of nuclei in each case we can conclude
that the entropy as T → 0 must be the same for both. Thus the entropy of each at the
temperature T0 will be

Swt = S(0) +

∫ T0

0

Cwt(T
′)

T ′
dT ′ (6.4.22)

and likewise

Sgt = S(0) +

∫ T0

0

Cgt(T
′)

T ′
dT ′ (6.4.23)

where we have used the same value S0 for the entropy at T0 for both forms. Now imagine
taking a sample of grey tin and transforming it quasi-statically at T0 to white tin (which
is stable above T0). We will need to suppy an amount of energy Q0 to the grey tin for this
purpose and entropy of the resulting sample of white tin will be

Swt = S(0) +

∫ T0

0

Cgt(T
′)

T ′
dT ′ +

Q0

T0
(6.4.24)

But S can only depend on the state and therefore comparing (6.4.24) with (6.4.22) we
find that

Q0

T0
=

∫ T0

0

Cwt(T
′)

T ′
dT ′ −

∫ T0

0

Cgt(T
′)

T ′
dT ′ (6.4.25)

from which we can determine the latent heat of the transformation. In fact, by using the
experimental specific heat measurements and performing the integrations numerically one
can compare the theoretical result for Q0 with the experimental result. One finds that
they compare very favorably.



Chapter 7

Foundations of Equilibrium
Statistcal Mechanics

7.1 Brief Review of Thermodynamics

Thermodynamics is a completely self-contained, phenomenological theory of matter. It
is concerned with the properties of a macroscopic system (a system that is extremely
large on the molecular scale and consisting of about 1024 molecules in equilibrium with
the environment. Matter in equilibrium is defined by its equilibrium macrostate, which
is a set of variables that adequately describe all the measurable properties of the system.
These “macroscopic” or “thermodynamic” variables need not be the mechanical variables
of the system but they are, eventually, related to them. Equilibrium macrostates do not
change significantly with time. Thermodynamics is also concerned with processes that
take a macroscopic system from some initial equilibrium state to a finalequilibrium state,
but generally it has little to say about the system during the process itself, unless the
process happens to take place very “slowly” compared to the characteristic relaxation
time scale of the system. Transformations between equilibrium states come about by
relaxing one or more external constraints, thereby letting the system evolve and achieve
a new equilibrium state. If the constraints are relaxed slowly, in the sense mentioned,
then the system effectively stays in equilibrium at all times and the process is said to
be quasi-static. On the other hand, if the constraints are relaxed suddenly, so that the
transformation occurs rapidly compared with the relaxation time of the system, the system
is out of equilibrium during the transformation process and the process is not quasi-static.
In this case, while thermodynamics is unable to describe the process itself, it is able to give
us some general conditions under which one equilibrium state may evolve into another. It
is based upon four fundamental laws, which we briefly review below.

148
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1. Zeroeth Law: The law introduces a new variable, called the Temperature. It
says that there exists a variable of the macroscopic state (a state variable) called
the Temperature, which determines thermal equilibrium between two systems. Two
thermodynamics systems having the same temperature will not exchange energy by
thermal interactions on the average if their temperatures are the same.

2. First Law: The law introduces a new variable, called the internal energy. It says
that there exists a function of state called the internal energy and asserts that the
total energy is conserved:

d−Q = dU + d−W (7.1.1)

where d−Q is the heat exchanged between the system and its environment the system,
and d−W is the work done by (on) the system on (by) the environment, with the
sign conventions:

d−Q > 0 if heat is absorbed by the system

d−W > 0 if work is done by the system (7.1.2)

and negative (or zero) otherwise.

Neither d−Q nor d−W are “exact differentials”, which means that their integrals
depend on the precise process taking the system from the initial to the final state.
This is why we represent these differential by d− instead of the usual d. However,
U being a function of state, dU is indeed an exact differential (its integral depends
only on the initial and final states of the process). The experimental justification for
the 1st law is Joule’s experiment which demonstrates the equivalence between heat
and energy.

3. Second Law: In as much as the first law is concerned only with the overall conser-
vation of energy in the universe, it does not tell when a given process may or may
not occur. Consider the example of a lake on a hot summer’s day: it has never been
observed to suddenly give up all its heat to the atmosphere around it and freeze.
Even though this process in principle obeys the 1st law of thermodynamics, somehow
nature forbids it from actually happening. The second law deals with the problem
of determining when a given process may or may not occur. It introduces a new
function of state, called the entropy, S, defined such that the change in entropy from
initial some state i to some final state, f is given by

∆ifS = Sf − Si =

∫ f

i,(q.s.)

d−Q

T
(7.1.3)
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where the subscript “(q.s.)” refers to any quasi-static process taking the system
from an initial state to a final state. A given thermodynamic process can occur if
and only if

∆ifS ≥ 0 (7.1.4)

for the corresponding closed or isolated system. It can be shown that the integral in
(7.1.3) depends only on the initial and final states, therefore entropy is a function of
state and dS is and exact differential. A reversible process is one in which ∆S = 0;
if ∆S > 0, the process is irreversible. A reversible process is quasi-static but the
converse is not necessarily true.

Equation (7.1.3) gives only the change in entropy during a process, therefore the
second law does not serve as a complete definition of entropy. It gives only changes
in entropy between initial and final states.

4. Third Law: This law completes the thermodynamic definition of entropy by stating
its canonical value at a given temperature. It states that the entropy of any system
at T = 0 is just k times the natural logarithm of the degeneracy of its ground state:

S(T = 0) = S0 (7.1.5)

so that the entropy function in any state f can be calculated directly from (7.1.3) as

S(f) = S(T = 0) +

∫ f

T=0,(q.s.)

d−Q

T
(7.1.6)

We will now be interested in the molecular foundations of thermodynamics. Specifically,
we will ask ourselves the following question: if mechanics (classical or quantum) provides
the fundamental description of the dynamics of particles, atoms and molecules, and if
macroscopic systems are indeed built up of these particles, then is it possible to recover a
description of macroscopic systems starting with the microscopic dynamics? We want to
obtain the macroscopic dynamics from the microscopic dynamics. With the ensuing theory
we will be able to analyze the natural fluctuations about equilibrium and, putting it side
by side with thermodynamics, we will have a comprehensive mathematical theory that
is capable of describing the stability or instability of macroscopic systems. In everything
that follows we assume, unless otherwise stated, that the center of mass of the macroscopic
system under consideration is at rest in the laboratory frame and that the individual
atoms or molecules are not energetic enough to be relativistic. That is, when we speak of
mechanics we will mean Newtonian mechanics or Schroedinger’s quantum mechanics.
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7.2 Equilibrium Statistical Mechanics

Why do we need something as limited as thermodynamics when we have at our disposal
all the tools for a complete mechanical description of any system? We can answer this
question by asking precisely what such a detailed description would entail.

• First of all we need to know the initial state of the system. If we are working within
classical mechanics this means that we must know the initial positions and momenta
of each and every particle within the system. This “state” would be defined by a set
of variables of the form

{S} = {~r1, ~r2....~rN ; ~p1, ~p2....~pN} (7.2.1)

where N is the number of particles, all obtained (experimentally) at the initial time,
say t = 0. One can easily count the number of variables in this set: there are 6N
of them, three positions and three momenta for each particle. Now consider that
a mole of any material would contain 6.02 × 1023 molecules, so we would need to
measure roughly 3.6 × 1024 variables to determine completely the initial classical
state.1 To know the quantum state, on the other hand, we would need to know
the Schroedinger wave function at some initial time (to), which involves f quantum
numbers, where f is the number of degrees of the system.

• We would need to know the detailed interactions between all the particles of the
system. Thus, for a system of N particles, we should know all the interaction
potentials of the form Uij ,∀i 6= j ∈ {1, 2, ..., N}. There are N(N−1)/2 distinct pairs
of N particles, so therefore there are that approximately 1048 interaction potentials
to be determined for every mole of any material.

• Lastly we need to solve the equations of motion (Newton’s equations in a classical
treatment, or Schroedinger’s equation in a quantum), subject to satisfactory bound-
ary conditions. These are generally f coupled equations, because of the interactions
between the particles.

It should need no convincing that all three steps in the list above are impossible to
carry out in practice. It is impossible to know the precise initial state, very difficult
to model all the intermolecular interactions and again practically impossible to solve ∼

1In this example, f = 3N is the number of degrees of freedom of the system. A degree of freedom is
roughly a way in which the system can store energy. The number of degrees of freedom is the number of
independent ways in which the system can store energy. Thus, for example, for an ideal gas of point-like
molecules, each molecule can move in three independent directions, storing kinetic energy. Therefore each
molecule has 3 independent ways to store energy, or three degrees of freedom. The gas of N molecules
would have f = 3N degrees of freedom
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1024 coupled equations even with our fastest computers. However, let us consider what
such a description would give us if it were possible: in principle it would predict the
precise trajectories of each particle in the system, something that we could not hope to
measure in the laboratory anyway. Happily, therefore, a precise mechanical or quantum
mechanical description is too detailed to be of any practical use. Nonetheless, we can
measure certain properties of a macroscopic system. For example, its energy, temperature,
pressure, volume, etc. This is a relatively small set compared with the huge set of variables
required to measure the microscopic state of the system, indeed it is only a small part of
the total detailed information that is, in principle, available. We must keep in mind that
the choice of this small subset of thermodynamic variables depends on the nature of the
system and the kind of experiments being performed. We shall call the variables that are
measured and controlled in the laboratory the “macroscopic variables”. A macroscopic
variable is said to be extensive if it depends on the total amount of substance in the
system and intensive if it does not.

We would like to give the “macroscopic” variables some mechanical meaning, how-
ever. We would also be interested in attempting a more detailed description of macro-
scopic systems than is afforded by thermodynamics, though not as detailed as a purely
mechanical treatment would afford. This is the objective of Statistical Mechanics: we
seek a description of the equilibrium properties of macroscopic systems by applying the
laws of mechanics and combining them with general statistical principles, thus “deriving”
thermodynamics from more fundamental laws and giving mechanical meaning to the ther-
modynamic variables. Mechanics provides the general physical framework, such as the
laws of conservation, and statistics replaces the rigorous detail that mechanics requires
by general, reasonable, statistical assumptions whose validity can only be measured by
experiment. Naturally, the questions we may ask of the resulting theory will be far less
detailed than those we might ask of pure mechanics, but that is the price we must pay
for avoiding the impossible task (and useless detail) of a purely mechanical treatment. It
should be noted finally that statistical mechanics has nothing whatever to say about the
actual approach to equilibrium, or even if the equilibrium is reached. One assumes that,
if we wait long enough, an equilibrium state is achieved and goes from there.

7.3 Formulation of the Statistical Problem

The state of the system is a set of values of all the variables one needs to describe that
system at any given time. These are of two kinds, depending on the kind of description
we are after:

• A macrostate of a system is a set of values of all its macroscopic variables, i.e.,
variables that are actually measured in an experiment, such as the total energy, the
pressure, the volume, the temperature, etc.
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• A microstate of a system is a set of values of the microscopic variables required
for a complete [quantum] mechanical description of the system. These are the posi-
tions and momenta of each particle in the system (for a classical description) or the
quantum state of the system as a whole.

Generally speaking, a given macrostate will correspond to a huge number of allowable
microstates. For example, if a macrostate is described only by the total energy and total
number of particles of the system, there are a large number of ways in which this energy
may be distributed between the particles to give the same total energy. Each of the ways
corresponds to a given microstate. Let’s see how this works in some simple systems.

7.3.1 Quantum Systems

We begin with quantum systems. A microstate of a system is completely given once its
wavefunction is known and the wavefunction is specified by f “quantum numbers”, where
f is the number of degrees of freedom of the system,

ψ = ψα1,α2,α3...,αf (t, x1, ...xN ) (7.3.1)

where we assume N particles.

1. A single spin 1
2 particle: It’s quantum state is specified by giving the value of one

component of the spin, say sz, which can take values±1/2. The quantum microstates
are therefore represented by the set {sz}, and there are two of them.

2. N relatively fixed, non-interacting, spin 1
2 particles: here the quantum state is spec-

ified by giving N quantum numbers (one component of the spin of each particle)

{S} = {s1z, s2z, ...sNz} (7.3.2)

There are now therefore 2N possible distinct microstates.

3. A single harmonic oscillator: Its quantum state is determined by the “energy” quan-
tum number, {n}, where En = (n+ 1/2)~ω. There are a countably infinite number
of possible quantum states.

4. N non-interacting harmonic oscillators: The quantum state is defined by N integers,
the excitation levels of each of the oscillators,

{S} = {n1, n2, n3, ...nN} (7.3.3)

each of which is the “energy” quantum number of some oscillator. Again there are
a countably infinite number of possible quantum states.
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Figure 7.1: The spin 1
2 particles

More information than just the number of particles in the system is generally available.
For example, suppose we know the total energy as well.

1. Consider, first, the case of N non-interacting spin 1
2 particles in a magnetic field,

which we’ll orient along the z axis. If the particles do not interact appreciably with
each other, but only with the magnetic field, the energy of the system will depend
on the orientation of the spins of each particle according to

E = −
∑
n

~µn · ~B = −
∑
n

µnzB (7.3.4)

where ~µ = gs|e|~s/2m is the magnetic moment of each particle, gs is its spin g-factor
(gs = 2). Each particle with spin up contributes −µzB to the total energy of the
system and each particle with spin down contributes +µzB to the total energy.
Clearly therefore the total energy will be

E = (n−m)µzB (7.3.5)

where n is the number of particles with spin down and m is the number with spin
up. Moreover, we know that N = (m + n). Now suppose we know only the total
energy of the system, say E, and the total number of particles, N . These are fixed
and the set {E,N} constitutes the macrostate of the system. Knowing E and N
allows us to determine the total number of spin up particles and the total number of
spin down particles, but not their arrangement (see figure (7.1). Each arrangement
will correspond to a given microstate! Thus to calculate the number of microstates
corresponding to one macrostate of fixed energy and particle number, we need only
to calculate the number of distinct arrangements of n particles of one kind and m
particles of another kind. The n particles are identical and so are the m particles.
Therefore, the number of microstates is just

Ω(n,m) =
(m+ n)!

m!n!
=

N !

m!n!
(7.3.6)

with

n =
1

2

(
N +

E

µzB

)
, m =

1

2

(
N − E

µzB

)
(7.3.7)
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oscillator

quantum

Figure 7.2: The Oscillator Problem

For a system of three spin 1
2 particles with total energy −µzB, n = 1 and m = 2,

so that the number of possible microstates is just 3. If, instead we had 50 spin 1
2

particles and, knowing the total energy, we determined that 40 of them are spin up
and 10 are spin down, there would be ∼ 1010 microstates corresponding to this single
macrostate.

2. Again, consider N non-interacting harmonic oscillators. Each oscillator has a mini-
mum energy (the ground state energy), E = ~ω/2, so the minimum energy of the N
oscillators would be N~ω/2. If the macrostate is given by {E,N}, its total energy
E must be greater than or equal to N~ω/2 and E − N~ω/2 = Q~ω where Q is
some (non-negative) integer because the energy of each oscillator can go up only
by an integer multiple of ~ω. Now the question is: how many microstates of the
system correspond to any given macrostate {E,N}? Each microstate corresponds to
a particular distribution of the Q quanta between the N oscillators, so the question
can be reformulated as follows: in how many ways can N integers be added to get
another integer Q? This is a particular so-called “partition” of Q. A more pictorial
way of formulating the problem would be: in how many ways can Q identical objects
(the quanta) be distributed into N (identical) “boxes” (the oscillators) with no limit
on the number of objects that can be put into each box (see figure (7.2; the rule is
that every quantum is attached to the oscillator immediately to its right)? Notice
that each quantum must end up in an oscillator, so clearly the last object of the
distribution must be an oscillator – we have no freedom about this. Therefore the
problem is rephrased as follows: In how many ways can we arrange Q identical ob-
jects of one type and N − 1 (because the last object must be an oscillator) identical
objects of another. The answer is:

Ω =
(N − 1 +Q)!

(N − 1)!Q!
(7.3.8)

which is the number of microscopic states available subject to the constraints of fixed
energy and oscillator number given by the macrostate {E,N}.
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For example, of there were only one quantum, it would have to go into some oscillator
and there are N possibilities (put Q = 1 in the above formula) corresponding to the
number of ways in which the quantum is distributed between the oscillators. On
the other hand if there were N = 100 oscillators and Q = 4 quanta then there are
4,424,275 possible microstates corresponding to this macrostate! Here we have only
a hundred oscillators and fifty quanta. In a normal solid, which can be thought of as
a collection of oscillators (the molecules of the solid): each mole has on the order of
1023 oscillators, so there are generally a huge number of microstates that correspond
to any given macrostate of fixed energy and size.

In these examples, we have seen that fixing the macroscopic parameters by the application
of some external constraints is only a very loose control over a system, i.e., the system
can be in a huge number of distinct microstates, all subject to the constraints. Indeed,
this is precisely what allows us to do statistics so successfully.

7.3.2 Classical Systems

Classical microstates have a very different description. Recall that the initial conditions
required to solve Newton’s equation are the positions and momenta of each particle. Thus,
in order to fully describe the classical microstate of a system of particles, we need to
specify all the coordinates and momenta (tangents to the trajectories) of the particles
of the system. For example, if the system has f degrees of freedom, we must specify
2f “phase space” variables: f coordinates and f momenta. Now the coordinates and
momenta can take on any real value and the set of real numbers is dense, therefore the
number of possible classical microstates of a system are ab initio uncountably infinite.
This unpleasant situation can be corrected by “coarse graining” phase space, i.e., divide
phase space into cells of fixed area, agreeing that the state of the system is to be specified
by saying that its momentum lies between ~p and ~p + δ~p and its position between ~q and
~q + δ~q where the representative point (~q, ~p) is within a cell of area

δf~pδf~q = δ~q1δ~q2...δ~qfδ~p1δ~p2...δ~pf = hfo , (constant.) (7.3.9)

as shown in figure (7.3). The microstates thus defined are then all countable. Clearly,
the description becomes more accurate as we take the area of each cell to approach zero.
Although we will not be able to take that limit, we will assume that ho is “macroscopically
small” but “microscopically large”. What this means is that we assume that any macro-
scopic volume in phase-space includes a very large number of fundamental cells of volume
hfo , while each cell itself contains a very large number of points. This is the “continuum”
approximation.

Very often we will need to sum over all microstates. For example, if we want to find
average values of mechanical variables we will need to sum over values of the variables
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Figure 7.3: Coarse graining classical phase space

describing the microstates. Sums over quantum microstates are discrete,∑
r

... (7.3.10)

where r represents the distinct quantum states available to the system. To sum over
classical states we must sum over the phase space cells of volume hfo , in principle taking
the limit as ho → 0 in the end if possible. Thus∑

cells

...→ lim
ho→0

1

hfo

∫
R
df~qdf~p... (7.3.11)

where R is some relevant region of phase-space.

7.4 Statistical Ensembles

Although it is true that for a given macrostate there generally exist a large number of
possible microstates, all obeying the constraints that define the macrostate, the system
itself of course can be in only one of these microstates at any given time. We have, however,
no way of knowing precisely which one of the possible microstates it “occupies” because
we only know the value of the macroscopic variables. We could speak about this in terms
of probabilities: with what probability does the system find itself in a given microstate
at any given time? How would we answer such questions of probability? The concept of
probability is basically an experimental one and we must therefore imagine that we have
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a very large number of identical systems at our disposal to perform the same experiment
simultaneously on each one of the systems. By identical we mean systems with the same
number of degrees of freedom, governed by the same Hamiltonian and subject to the
same boundary conditions. Such an imaginary collection of identical systems is called an
ensemble. How large should our collection of identical systems be? At least as large as
the number of states available to the system subject to the initial constraints. We then
perform the same experiment or set of experiments on each member of the ensemble to
determine the microscopic state of that member. If there are N such identical systems
and state r is found Nr times, then the probability that state r occurs in any experiment
is Pr = Nr/N . For example, imagine that we know the total energy of the system only.
An ensemble of identical systems would then consist of a large number of systems having
the same energy. Now suppose that we want to know something more about the system,
for example about some property Y. The property will not generally be the same in every
microstate because the allowed microstates must only have the same energy. So it will
obviously depend on the particular microstate the system is in. Because we cannot know
the precise microstate the system is in, we ask for the average value of the property Y. In
other words, if we know that the variable Y has the value Yr in state r and the probability
of finding a system in the state r is

Pr =
Nr

N
,
∑
r

Pr = 1 (7.4.1)

then the average value of Y is

〈Y〉 =
∑
r

PrYr. (7.4.2)

Of course, Y may never actually take the value 〈Y〉 and will in general fluctuate about
this average value. The statistical dispersion of the observable, defined by

∆Y =
√
〈(Y − 〈Y〉)2 =

√
〈Y2〉 − 〈Y 〉2, (7.4.3)

measures how much the observable fluctuates in the ensemble. For the average value of
any macroscopic variable to have experimental significance its statistical fluctuations must
be small compared with its average value,

∆Y
〈Y〉
� 1. (7.4.4)

As we will see, this is generically true when the system is “sufficiently” large.

Now, Pr is a probability distribution over the states of the system. When the states are
continuous, Pr → P (q, p) is a density in phase space and is called the probability density
function. In quantum mechanics, the density function turns into the density matrix, which
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will be defined and treated in some detail later, when we begin a formal study of quantum
systems. In a classical system, the formal sum over states that we have used goes over to
an integral over phase space and the normalization condition for the probability density
reads

1

hfo

∫
dfqdfp P (q, p) = 1, (7.4.5)

where we have used the abbreviation, (q, p) = {~r1, ..., ~rN , ~p1, ..., ~pN} and the integral is
over all the degrees of freedom of the system. With this normalization we say that
dfqdfp P (q, p) represents the probability of finding a member of the ensemble whose
phase-space lies between (~q, ~p) and (~q + d~q, ~p + d~p). The average value of the variable Y
is then

〈Y〉 =
1

hfo

∫
dfqdfp P (q, p)Y(q, p) (7.4.6)

etc. The probability density function, P (q, p), may be replaced with a density func-
tion, ρ(q, p), obtained from P (q, p) by a different normalization. We could, for example,
normalize to the total number of members in the ensemble, then dfqdfp ρ(q, p) would rep-
resent the number of members in the ensemble whose phase space lies between (~q, ~p) and
(~q+d~q, ~p+d~p). Equivalently, we could normalize to the total number of states available to
the system, then dfqdfp ρ(q, p) represents the number of states lying between (~q, ~p) and
(~q+d~q, ~p+d~p), or the number of representative points in this phase space volume. (In
a classical system dfqdfp is taken to be macroscopically small by microscopically large, in
particular much larger than say hfo .) Whatever the preferred normalization of the density
function, the average value of any observable would be

〈Y〉 =

∫
dfqdfp ρ(q, p)Y(q, p)∫

dfqdfp ρ(q, p)
(7.4.7)

where we have explicitly included the normalization factor.

7.5 Liouville’s Theorem

Liouville’s theorem states simply that the density function (however one chooses to nor-
malize it) is conserved along the phase space trajectory of freely evolving Hamiltonian
systems, so long as the systems in the ensemble do not interact significantly with the
environment, i.e.,

dρ

dt
= 0 (7.5.1)

along phase space trajectories. The physical content of the theorem is illustrated in figure
(7.4). On the left is a region in phase space, occupied by the systems in the ensemble at
an initial time ti, on the right is the region after a certain time interval has elapsed and
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Figure 7.4: Liouville’s Theorem

each of the systems have evolved according to Hamilton’s equations. Liouville’s theorem
says that the volume of the region, or the number of representative points in the region,
defined by V =

∫
R d

fqdfp ρ(q, p), remains constant. The proof of this theorem is based on
the conservation of the probability current. Since the systems in our ensemble do not have
significant interactions with the rest of the universe and no systems in the ensemble are
created or destroyed, the probability current must be conserved. Let the index i represent
the coordinates, ξi, of phase space such that ξi = qi, i ∈ {1, ..., 3N} and ξi = pi i ∈
{3N + 1, ..., 6N}. Conservation of the probability current implies that,

∂ρ

∂t
+

∂

∂ξi
(ξ̇iρ) = 0 (7.5.2)

Expanding, we find

∂ρ

∂t
+

[
ξ̇i
∂ρ

∂ξi
+ ρ

∂ξ̇i

∂ξi

]
= 0 (7.5.3)

Now we recall that Hamilton’s equations require that

ξ̇i = {ξi,H}P.B. = ωij
∂H
∂ξj

(7.5.4)

where ω̂ is the symplectic form in the 6N dimensional phase-space. Because ω̂ is antisym-
metric it follows immediately that

∂ξ̇i

∂ξi
= ωij

∂2H
∂ξi∂ξj

≡ 0 (7.5.5)

Therefore the conservation of the probability current gives simply

∂ρ

∂t
+ ξ̇i

∂ρ

∂ξi
=
∂ρ

∂t
+ ωij

∂ρ

∂ξi
∂H
∂ξj

=
∂ρ

∂t
+ {ρ,H}P.B. = 0 =

dρ

dt
(7.5.6)
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where we have used (7.5.4) in the second step.
In equilibrium, we must restrict ourselves to density functions that do not depend

explicitly on time. This implies that the Poisson brackets of the probability density with
the Hamiltonian should vanish identically, which is possible if and only if it is either a
numerical constant or some function of only the conserved quantities, such as the energy.
Other commonly occurring conserved quantities are obviously the angular momentum, the
charge, the number of particles, etc.

A quantum mechanical version of Liouville’s theorem exists and we will pursue this
further when we examine quantum statistics in greater detail. Here we simply state the
result: the density function, ρ(q, p) turns into the density matrix (operator), ρ̂, which
obeys the analogue of (7.5.6):

i~
∂ρ̂

∂t
+ [ρ̂, Ĥ] = 0 (7.5.7)

Again, in equilibrium there should be no explicit dependence on time in ρ̂, implying that
ρ̂ commutes with the Hamiltonian and therefore is a function only of those observables
that are diagonal in the Hamiltonian basis.

7.6 Isolated Systems

In discussing statistical ensembles, we had to perform experiments on each member of
the ensemble in order to determine the probabilities Pr. We cannot do this in practice,
of course, and in order to make theoretical progress, we must make further assumptions
about these probabilities. Such assumptions would have to be quite complex indeed if they
were to attempt to describe general thermodynamic states and/or processes. However, we
expect that they would greatly simplify for equilibrium states of isolated systems. This
hope has proved to be justified for, as we shall see, a relatively simple assumption for such
systems provides incredible insights and makes superb predictions for a wide variety of
thermodynamic systems and processes. This is the fundamental postulate of statistical
mechanics which states that

• an isolated system in equilibrium is equally likely to be found in any one of its
accessible states, that is Pr = Ps for any two accessible states r and s.

A collection of identical isolated systems in equilibrium constitutes the first of three
“canonical” ensembles, and is called the microcanonical ensemble. It is easy to calcu-
late probabilities in the microcanonical ensemble. Suppose that the macrostate is fixed
by some set (of macroscopic variables) including, say, the energy, E, and that we are
interested in finding the average value of some quantity Y which is not constrained by
the macrostate. Corresponding to this macrostate, there is a huge number of possible
microstates of course, and each one of these microstates is occupied with the same proba-
bility. Let Ω(E,α) be the total number of microstates for a given energy, where α denotes
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Figure 7.5: States and transitions

all the other macrovariables defining the macrostate. The probability of finding the system
in any accessible state, r, is then

Pr =
1

Ω(E,α)
. (7.6.1)

Now let the number of states in which Y has value Yk be Ω(E,α;Yk). Clearly, Ω(E,α;Yk) <
Ω(E,α) and

∑
k Ω(E,α;Yk) = Ω(E,α) where the sum is over all possible values Yk of Y.

The probability of finding value Yk is then

Pk =
Ω(E,α;Yk)

Ω(E,α)
(7.6.2)

and the average value of Y is

〈Y〉 =
∑
k

PkYk =
∑
k

Ω(E,α;Yk)
Ω(E,α)

Yk (7.6.3)

Thus the fundamental principle has allowed us to write the above expression for Pk in the
microcanonical ensemble. Ω(E,α) is called the density of states.

7.7 Approach to equilibrium: the “H” Theorem

We now consider the approach to equilibrium, but only briefly as this topic falls outside
of the scope of these notes. Equilibrium states are macrostates that do not change appre-
ciably in time. If a system is not in equilibrium, the probability of finding it in any one of
its accessible states cannot be equal for all states because, after all, the system is evolving.
In fact, the probability distribution will depend explicitly on time.
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Consider an ensemble of identical isolated systems that are not in equilibrium and let
{r, s...} label all the possible states of the systems.2 To the state r, associate a probability
Pr i.e., Pr is the probability of finding a member of the ensemble in the state r. Pr will
have some explicit dependence on time. As the ensemble evolves, some of the systems will
make transitions to the state r and others will make transitions out of this state. The
probability of finding a given system in state r therefore increases due to transitions into
state r and decreases due to transitions out of state r. Let Wrs be the probability of
transition from state r to state s per unit time and Wsr the probability of transition from
s to r per unit time. They are called the transition or jump rates from r to s and s to
r respectively. We will make the following three assumptions:

• Fermi’s Master equation: The time rate of change of the probability for the
system to occupy state r is given by3

∂Pr
∂t

=
∑
s 6=r

[WsrPs −WrsPr] (7.7.1)

• Symmetry of the jump rates: The transition or jump rates Wsr and Wrs are
symmetric,4 Wrs = Wsr, and

• The system is ergodic: For any two states, Wrs 6= 0.5 This is called the ergodic
hypothesis because it implies that the system will always jump from one state to
another, so that over a very long time (an infinite time) the system will have occupied
all of its accessible states.

Then
∂Pr
∂t

=
∑
s 6=r

Wrs(Ps − Pr). (7.7.2)

Let us define the following quantity,

H =
∑
r

Pr lnPr (7.7.3)

2It is most transparent to prove the “H” theorem in the abstract labelling of states by r, s, .... To
describe continuous systems, replace the suffix r, .. with the phase space variables (q, p) and the sum over
states by the corresponding integral over phase space.

3There is no proof of this equation.
4While there is no rigorous proof of this assumption in general, it is reasonable to expect this behavior

from the quantum theory.
5This assumption is very strong and probably not strictly correct. However, most isolated systems are

expected to be ergodic to an excellent approximation. In this course we will build from the microcanonical
ensemble despite the questions surrounding the ergodic hypothesis (and Fermi’s Master equation) because
its assumptions are clear. Therefore, it should also be clear how modifications arise when the hypotheses
are no longer valid.
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and study its behavior in time. Taking the derivative of (7.7.3) gives,

∂H

∂t
=

∑
r

(
∂Pr
∂t

lnPr +
∂Pr
∂t

)
=

∑
r,s 6=r

Wrs [(Ps − Pr) lnPr + (Ps − Pr)] (7.7.4)

Interchanging r and s (which we can, because these are summed over)

∂H

∂t
=
∑
r,s6=r

Wrs [(Pr − Ps) lnPs + (Pr − Ps)] (7.7.5)

and adding (7.7.4) and (7.7.5) gives

∂H

∂t
=

1

2

∑
r,s 6=r

Wrs(Pr − Ps)(lnPs − lnPr). (7.7.6)

Now, Wrs is non-negative (it is a probability) and (Pr−Ps)(lnPs− lnPr) is never positive,
so that

∂H

∂t
≤ 0. (7.7.7)

Thus H is a monotonically decreasing function of time. Now the ergodic assumption
implies that if H achieves a minimum, then at this time ∂H/∂t = 0→ Pr = Ps. The state
in which H achieves a local minimum is an equilibrium state. Therefore, if the system is
isolated and in equilibrium, the probabilities, Pr,are all equal and we must have Pr = Ω−1,
which is precisely the distribution postulated in the previous section. For such systems it
follows that

H = − ln Ω (7.7.8)

As H is minimized in equilibrium, Ω must be maximized in the microcanonical ensemble.

The fundamental postulate is precisely equivalent to the statement that Wrs = Wsr (which
agrees with the rules of quantum mechanics.) Furthermore, we have seen that in equi-
librium Pr = Ps, which was the fundamental postulate of statistical mechanics. One can
either begin from the fundamental postulate or replace it with the three assumptions made
in this sub-section.

Combined with the fact that the jump rate for any transition is equal to the jump rate
for the reverse transition, this means that: the average rate at which an isolated system in
equilibrium actually jumps from r to s is the same as the average rate of the reverse jump.
This is known as the principle of detailed balance. The conclusion in (7.7.7) is commonly
referred to as the H−theorem. Notice the similarity between the quantity H and the
entropy S in thermodynamics: during any thermodynamic process both are monotonic
functions of time. Equilibrium states minimize H and maximize S.



Chapter 8

The Microcanonical Ensemble

A microcanonical ensemble is a collection of identical isolated systems that have achieved
equilibrium in the same macrostate. A system is isolated from its environment if it ex-
changes neither particles nor energy with it by heat and therefore microcanoncial en-
sembles are defined by the number of particles they contain, their total energy and the
external constraints. According to the fundamental postulate of statistical mechanics, the
probability of finding a member of the ensemble in a given microstate r is

Pr =


1/Ω(E,N,Xα) Er = E, Nr = N

0 otherwise
(8.0.1)

where Ω(E,N,Xα) is the number of states1 accessible to the systems and Xα are other
extensive parameters possibly defining the system, such as the volume. We see that all
configurations that are consistent with the energy and number of particles occur with
equal probability.

For isolated systems, it is thus a knowledge of Ω(E,N,Xα) that allows us to proceed
in statistical physics and so it is worth spending a little time analyzing its behavior. In the
previous examples we have explicitly calculated Ω(E,N,Xα), for a few isolated systems.
Here we will attempt to get some feeling for the way it behaves during thermodynamic
processes in which the systems remain isolated. Again, by the H−theorem we know that
Ω(E,N,Xα) is related to the entropy. This will allow us to make the connection between
the number of states and the temperature, pressure and other “generalized forces” of
isolated systems.

1In practice one is not really able to measure the energy of a macroscopic system with infinite precision.
It is therefore sometimes more useful to speak in terms of the number of states that have energy lying
between E and E + ∆E. In that case, evidently, Ω(E,N,Xα) =

∑
r,Er∈[E,E+∆E] Ω(Er, Nr, Xα); in most

cases we can write Ω(E,N,Xα) = ω(E,N,Xα)∆E, where ω(E,N,Xα) is the density of states.

165
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8.1 Behavior of the Number of Microstates

The examples worked out so far have shown that if we had a system in a well defined
macrostate, defined by extensive parameters X1, ...XN , the number of these microstates
will be a function of all the external parameters, X1, ...XN , the number, N , of constituents
and the internal energy, E,

Ω = Ω(E,N,X1, ...XN ). (8.1.1)

The system is kept in a definite macrostate by the imposition of external constraints. For
example, consider a gas in an isolated cylinder with a piston at one end. The macrostate
is defined by giving the number of particles, the internal energy and the volume of the gas
in the cylinder. The volume of the cylinder is maintained by keeping the position of the
piston fixed.

If some of the constraints are removed, the external parameters change accordingly.
The system is not in equilibrium immediately after the constraint is removed because
the release of one constraint has allowed the system to access a much larger number of
states, yet at the instant the constraint is removed it occupies only a fraction of them.
Let’s see how this works for the number of states occupied by the ideal gas. Imagine that
the gas is allowed to freely expand to some final volume Vf . We know from experience
that the final volume will be larger than the initial volume (experimentally, an isolated
gas never spontaneously contracts) but, because the expansion is free and the system is
isolated, the internal energy stays the same. Again, because the gas expands the number
of states accessible to it according to (6.2.9) clearly increases. On the other hand, what
happens during a quasi-static process? Imagine a quasi-static, adiabatic process in which
the volume is changed by an infinitesimal quantity dV . If the number of particles is held

fixed, the change in the number of states, dΩ(E, V ) is just proportional to d(E
f
2 V

f
3 ). For

an adiabatic process, the equation of state, pV γ = α (const.), implies by the first law of
thermodynamics that dE = −αV −γdV . Using the fact that E = 3

2NkT and that the
equation of state for the adiabatic process can also be put in the form TV γ−1 = α

Nk , it
is easy to see that dΩ(E, V ) ≡ 0. Therefore, the number of states remains constant in a
quasi-static process.

What happens to the number of microstates available to an isolated system when a new
equilibrium is reached after any thermodynamic process? The H−theorem guarantess that
the number of states will either increase or stay the same but never decrease. If the process
resulted from the release of a constraint, let the constraint which keeps the macroscopic
variable Xα constant be released so that the value of Xα changes. Corresponding to
this new equilibrium there will be either the same or a larger number of states than the
initial macrostate allowed, and each state, say r, will correspond to a certain value of the
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Figure 8.1: A box with a partition and a cylinder with a piston

parameter Xα, say Xαr . In other words, Xα will have a certain average value

〈Xα〉 =

∑
r Ω(X1, ..., X̂α, ..., XN ;Xαr)Xαr

Ω(X1, ...X̂α, ..., XN )
(8.1.2)

where Ω(X1, ...X̂α, ..., XN ;Xαr) is the number of accessible states when the macrostate
is defined by X1, ...XN excluding Xα and in which Xα admits the value Xαr . Evidently,
Ω(X1, ...X̂α, ..., XN ;Xαr) must be peaked at the average value, 〈Xα〉 of Xα. If it is not,
then the statistical dispersion of Xα would be large, and every time we performed a mea-
surement we would be likely to find a significantly different value of Xα, but experimentally
we find that the dispersion about the mean value is in fact very small compared to the
mean value itself. In other words, when one or more constraints on an isolated system are
removed, the system evolves to a new equilibrium in which

• the number of accessible microstates has either increased or stayed the same,

Ωf (X1, ...X̂α, ..., XN ) ≥ Ωi(X1, ..., XN ), (8.1.3)

and

• ifXα represents the constraint that has been removed, the new number of microstates
is sharply peaked about the new average value of Xα.

If Ωf > Ωi, simply reimposing the constraints on the isolated system will not in general
reduce the number of states to the original value Ωi. Two examples will illustrate this:

1. Imagine a gas in an isolated box with a partition in it as shown in figure 8.1, so that
the gas occupies only one half of the box. The partition is a constraint that keeps
the volume occupied by the gas fixed. Removing this constraint allows the gas to
occupy the entire box which increases the number of accessible states by essentially
allowing it to double its volume. Replacing the partition does not cause the gas to
return to its original state.

2. Consider a gas in an insulated cylinder with a piston at one end, again as shown in
figure 8.1. At some initial time, let the macrostate be given by the total energy and
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the volume of the gas. The volume of the gas is maintained fixed by holding the
position of the piston secure. Releasing the piston will obviously change its volume,
its macrostate and the number of accessible states. Again, simply compressing the
gas will not return it to its original state.

Of course, in each case, the gas can be returned to its original state, but the steps involved
include interactions with the environment and the systems are no longer isolated. In
the second example, for instance, we would have to place the cylinder in contact with a
heat reservoir at a fixed temperature (equal to the initial temperature of the gas in the
cylinder) and compress the piston till the gas achieves its original volume. Compression
will tend to increase the internal energy of the gas, but it will give up this energy to the
heat reservoir in order to maintain its temperature. The system consisting only of the gas
in the cylinder has been returned to its initial state, but the larger system which includes
the heat reservoir has received heat from the gas, and external work has been done on the
gas, so the entire system has indeed changed. In fact the final number of states of the gas
and its environment taken together (this is the isolated system during the process) has
either increased or stayed the same.

A similar process can be carried out to return the first system to its initial state (place
a thin piston against the wall of the box on the right hand side and slowly compress the gas
keeping it in contact with a heat reservoir). Again, the remarks made earlier in connection
with the second system are applicable.

8.2 The Absolute Temperature

Consider now two systems, A and B, and the system obtained by placing A and B in
thermal contact with each other so that energy can be exchanged between them but only
by heat. We will refer to this system as A+B. Since A and B interact thermally they are
individually not isolated, but we will assume that A+B is isolated. At the moment they
are brought into thermal contact with each other, if they are not already in equilibrium
then they will exchange energy until they eventually achieve equilibrium. Furthermore,
the process of heat exchange is a transformation that will, in general, increase the number
of states available to the system as a whole. Equilibrium will be reached when the number
of states is maximized.

Consider the final equilibrium situation. The total energy of A + B will be E(0) =
EA + EB where EA and EB are the energies respectively of A and B (not necessarily
known). E(0) is a fixed by the fact that A + B is isolated, so if A has energy EA then
B will have energy E(0) − EA and the number of states of A+ B in which system A has
energy EA is

Ω(E(0), EA) = ΩA(EA)ΩB(E(0) − EA). (8.2.1)
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A B

thermal

contact

Figure 8.2: Two isolated systems making thermal contact

However, because only the total energy is fixed and not the energy of A by itself, the total
number of states accessible to the system will be a sum over all the possible values of EA

Ω(E(0)) =
∑
EA

ΩA(EA)ΩB(E(0) − EA) (8.2.2)

What, then, is the probability of finding a given value, say E, for the energy of A? This
is simply the ratio of the number of states of A+B in which A has energy E divided by
the total number of states available to A+B,

P (E) =
ΩA(E)ΩB(E(0) − E)∑

EA
ΩA(EA)ΩB(E(0) − EA)

(8.2.3)

The denominator is some constant representing the total number of states available to
A+B, which we call C−1, so that we may write the expression (8.2.3) above as

P (E) = CΩA(E)ΩB(E(0) − E) (8.2.4)

Taking logarithms on both sides, we have

lnP (E) = ln C + ln ΩA(E) + ln ΩB(E(0) − E). (8.2.5)

Now, in equilibrium, the number of states of A + B must be a maximum. At this stage
the energy of one of the systems, say A, will be Ẽ and the other (B) will have energy Ẽ′ =
E(0)− Ẽ. We therefore want P (Ẽ) to be maximum, which implies that ∂P (E)/∂E|

Ẽ
= 0.

Therefore,
∂ ln ΩA(E)

∂E
|
Ẽ

+
∂ ln ΩB(E(0) − E)

∂E
|
Ẽ

= 0 (8.2.6)
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Call E′ the energy of B, so that E′ = E(0) − E, then

∂ ln ΩA(E)

∂E
|
Ẽ

=
∂ ln ΩB(E′)

∂E′
|
Ẽ′ (8.2.7)

If we define

β(E) =
∂ ln Ω(E)

∂E
(8.2.8)

then, in equilibrium,
βA(Ẽ) = βB(Ẽ′) (8.2.9)

The quantity β has dimension [J−1]. Introducing a constant k, we write

β(E) =
1

kT (E)
(8.2.10)

then T (E) is called the absolute temperature of the system and is measured in Kelvin.
The constant we introduced, k, is Boltzmann’s constant. It has dimension [J/◦K]. We have
therefore seen that for two systems to be in equilibrium their absolute temperatures must
be the same and so justified the thermodynamic concept of temperature, which asserts
that temperature is that variable which determines whether or not two systems will be in
thermal equilibrium (the zeroeth law of thermodynamics).

The absolute temperature also determines the direction of heat flow when two or more
systems are brought into thermal contact. Consider two systems, A and B, which are
initially isolated and in equilibrium. Let them now be brought into thermal contact in
such a way that A + B is isolated. Heat will therefore flow from A to B (or vice versa)
but no heat will leave the combined system A + B. During the exchange process, the
number of states of A+B will increase. At the initial instant, let Ei be the energy of the
system A and E′i = E(0)−Ei be the energy of B, where E(0) is the total energy of A+B.
Therefore, when the systems are brought together, the number of states of A+B is

Ω(Ei) = CΩA(Ei)ΩB(E(0) − Ei) (8.2.11)

Since the number of states is increasing,

δ ln Ω(E) =
∂ ln ΩA

∂E
|Ei(E − Ei) +

∂ ln ΩB

∂E′
|E′i(E

′ − E′i) ≥ 0 (8.2.12)

Or, in terms of the temperatures of A and B

βA(Ei)(E − Ei) + βB(E′i)(E
′ − E′i) ≥ 0 (8.2.13)

Now, since the system A + B is isolated, the total energy must stay fixed through any
exchange of heat between A and B. In other words whatever energy is gained (lost) by A
is lost (gained) by B, or, E − Ei = −(E′ − E′i),[

βA(Ei)− βB(E′i)
]

(E − Ei) ≥ 0 (8.2.14)
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It follows that, if βA > βB then E > Ei and vice-versa. Energy flows from B to A. On
the other hand, if βA < βB then E < Ei and heat flows from A to B. Since β is inversely
proportional to the absolute temperature, it follows that energy flows from the body at a
higher temperature to the one with the lower temperature.

The condition of being a maximum at Ẽ is also a statement of the behavior of the
absolute temperature with energy, because

λ = −∂
2 ln Ω(E)

∂E2
|
Ẽ
≥ 0

⇒ ∂β

∂E
|
Ẽ
≤ 0

⇒ ∂T

∂E
|
Ẽ
≥ 0 (8.2.15)

where we have used β = (kT )−1. The absolute temperature of a system therefore increases
with its energy.

We had shown earlier that, for a classical gas, the number of states Ω(E, V ) behaves
roughly as Ef/2 where f is the number of degrees of freedom of the gas. Thus, if f is very
large,

Ω(E) ≈ Ef/2 ⇒ ln Ω(E) ≈ f

2
lnE

⇒ ∂ ln Ω

∂E
= β(E) ≈ f

2E

⇒ E =
f

2
kT (8.2.16)

Thus, in equilibrium, the temperature is a measure of the internal energy of the classical
gas. The above relation is familiar from the kinetic theory of gasses: every degree of
freedom contributes an amount kT/2 to the total energy of the gas.

As another example, consider the system consisting of N oscillators with Q quanta
distributed among them. We had calculated the number of states to be

ln Ω(Q,N) ≈ Q ln

[
1 +

N

Q

]
+N ln

[
1 +

Q

N

]
(8.2.17)

in the limit of large N and Q. When a single quantum of energy, ~ω is added to the
system the number of states changes approximately by

δ ln Ω = ln Ω(Q+ 1, N)− ln Ω(Q,N) ≈ ln

[
1 +

N

Q

]
(8.2.18)
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so that the temperature of the system as defined in (8.2.10) will be

β =
1

kT
=
δΩ

~ω
=

1

~ω
ln

[
1 +

N

Q

]
(8.2.19)

neglecting terms of order 1/Q and 1/N . We can then write

E =
1

2
N~ω +

N~ω
e

~ω
kT − 1

=
N~ω

2
coth

(
~ω

2kT

)
(8.2.20)

Finally take the system of N spin 1/2 particles that we had also studied earlier. If n
of the particles have spin down, the number of states was

ln Ω(n,N) ≈ N ln

[
N

N − n

]
− n ln

[
n

N − n

]
(8.2.21)

Now imagine that the energy of the system were increased by increasing the number of
particles with spins anti-parallel to the magnetic field (while keeping the total number of
particles, N , fixed). Evidently the energy will increase by µzB and the number of states
by approximately ln[(N − n)/n]. The temperature of the system is therefore

β =
1

kT
=

1

µB
ln

[
N − n
n

]
(8.2.22)

Interestingly this temperature can be negative if n > N/2.

8.3 Generalized forces, Work and Energy

In our discussion of temperature we examined the behavior of the number of states in
systems with thermal interactions so that we could concentrate only on changes in the
internal energy of the systems due to energy transfer by heat. More general interactions
involve changes in the external parameters as well.

Consider a macroscopic system undergoing an arbitrary process and label all the pos-
sible macrostates available to the system by r. Call the probability with which microstate
r is occupied Pr. If some states are not accessible in the initial state, the occupation
probabilities corresponding to those microstates will be identically zero. During the
process, the states have characteristic energies, Er, which will depend on the external
parameters X1, ...XN . In other words, there will be a functional relation of the form
Er = Er(X1, ...XN ). If some or all of these macroscopic parameters, Xα, change during
the process, the energy corresponding to the state r will change accordingly. Likewise,
the probability that the system will be in state r will in general change. Because of these
changes, the average energy

E = 〈E〉 =
∑
r

ErPr (8.3.1)
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of the system will also change according to

dE = d〈E〉 =
∑
r

dErPr +
∑
r

ErdPr (8.3.2)

If the system is isolated during the quasi-static process, it will always obey the fundamental
postulate because it never goes out of equilibrium. Therefore Pr = Ω−1 will remain
constant throughout the process and the second term on the right hand side will vanish.
The first term on the right hand side is thus associated with the external work done by
the system

d−W = −
∑
r

dErPr (8.3.3)

Of course, if the system is not isolated during the process, the second term is non-vanishing
and can be associated with energy transfer by “heat”

d−Q =
∑
r

ErdPr (8.3.4)

From (8.3.2), (8.3.3) and (8.3.4) we have the formal result

dE = −d−W + d−Q (8.3.5)

which is simply the First Law of thermodynamics. But now, statistical mechanics has
given a microscopic meaning to the quantities that appear: macroscopic work is a related
to changes in the state energies and heat is related to changes in the occupation probability
distribution.

What (8.3.3) says is that if the system does an amount of work d−Wr, always staying
in the state r, then the external work done by the system must be equal to the loss in
energy of the state r. The change in the energy of the state r is

dEr =
∑
α

∂Er(X1, ...XN )

∂Xα
dXα (8.3.6)

and so

dWr = −dEr = −
∑
α

∂Er
∂Xα

dXα =
∑
α

Fα,rdXα (8.3.7)

where Fα,r = ∂Er/∂Xα. The macroscopic external work done is the average of the above,

d−W =
∑
α

(∑
r

Fα,rPr

)
dXα =

∑
α

〈Fα〉dXα (8.3.8)

The quantity 〈Fα〉 is called the generalized force conjugate to Xα.
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We can obtain a relationship between the generalized forces and the number of states
if we consider an infinitesimal quasi-static process during which dΩ(E,X1, ..., XN ) = 0.
Because the number of states does not change,

∂ ln Ω

∂E
dE +

∑
α

∂ ln Ω

∂Xα
dXα = 0

⇒ ∂ ln Ω

∂E
dE = −

∑
α

∂ ln Ω

∂Xα
dXα

⇒ βdE = −
∑
α

∂ ln Ω

∂Xα
dXα (8.3.9)

Furthermore because no energy is exchanged by heat, dE = −d−W = −〈Fα〉dXα according
to (8.3.7). Comparison yields the relation

〈Fα〉 =
1

β

∂ ln Ω

∂Xα
(8.3.10)

As an application of the above, lets us calculate the equation of state for an ideal gas. We
had earlier determined the number of states to be

Ω(E, V ) ≈ B(N)V NE3N/2. (8.3.11)

The external parameter of interest is the volume and the generalized force corresponding
to this parameter is just the pressure

p =
1

β

∂ ln Ω(E, V )

∂E
=

N

βV
=
NkT

V
, (8.3.12)

from which we derive

pV = NkT (8.3.13)

(the equation of state) and the commonly used expression

d−W = pdV (8.3.14)

for the work done by the gas.

8.4 Entropy

The thermodynamic entropy has the remarkable property that S of an isolated system can
only increase or stay the same in any thermodynamic process. We have already discovered
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a quantity, H, which satisfies an analogous property according to the general proof of the
H theorem. It makes sense therefore to simply adopt the following definition of entropy:

S = −kH = −k
∑
r

Pr lnPr (8.4.1)

where the sum is over all accessible states. Boltzmann’s constant appears above only for
convenience. The quantity H was introduced into gas kinetics by Boltzmann and later
applied to general systems by Gibbs. Since S = −kH, it is called the Boltzmann-Gibbs
entropy. For systems belonging to the microcanonical ensemble, we know that H = − ln Ω
therefore

S = k ln Ω (8.4.2)

where Ω is the number of states. Equation (8.4.2) is the original statistical definition of
entropy due to Boltzmann. It satisfies the requirement that ∆S ≥ 0 during any process.
Now consider a system initially belonging to the microcanonical ensemble and undergoing
an arbitrary quasi-static process. For a small transformation immediately after the process
begins, we can write,

dS = kd ln Ω ≈ k∂ ln Ω

∂E
dE + k

∑
α

∂ ln Ω

∂Xα
dXα (8.4.3)

Using the relations we derived earlier in the microcanonical ensemble, we write therefore

dS = kβ
(
dE + d−W

)
TdS = dE + d−W (8.4.4)

which, comparing with expression (8.3.5), gives the thermodynamic definition of the en-
tropy

dS =
d−Q

T
(8.4.5)

The left hand side of (8.4.5) is an exact differential, therefore

∆ifS = S(f)− S(i) =

∫ f

i,(q.s.)

d−Q

T
(8.4.6)

It follows that, for a thermally isolated system, quasi-static processes are reversible.
In summary, we have succeeded not only in obtaining the thermodynamic laws but

also in acquiring a sense of the microscopic significance of some important everyday ther-
modynamic variables. Before proceeding to describe other interesting ensembles let us
first collect the important relations we have derived for the microcanonical ensemble:
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Temperature, T : β = 1
kT = ∂ ln Ω(E)

∂E

Generalized force, 〈Fα〉: 〈Fα〉 = 1
β
∂ ln Ω
∂Xα

Work, d−W : d−W =
∑

α〈Fα〉dXα

(Boltzmann) Entropy, S: S = −k ln Ω

Gibbs Entropy, SG: SG = −k
∑

r Pr lnPr

8.5 Fluctuations

Let us return to our considerations concerning two isolated systems A and B that are
brought into thermal contact with one another to form a new (isolated) system A + B.
By placing the two systems in thermal contact we have relaxed the constraints that keep
the energy of each system fixed. As the new equilibrium situation is reached, however, we
expect that the probability distribution will be sharply peaked about the (new) average
energy of A. We will now check that both these expectations: (a) that the peak is about
the average value of the energy of A, and (b) that the peak is sharp, are justified. Let the
maximum of P (E) lie at Ẽ, then expanding about Ẽ we get

lnP (E) = lnP (Ẽ) +

[
∂ lnP (E)

∂E

]
Ẽ

(E − Ẽ) +
1

2

[
∂2 lnP (E)

∂E2

]
Ẽ

(E − Ẽ)2 ... (8.5.1)

Now P (E) is a maximum at Ẽ ⇒ ∂ lnP (E)/∂E|
Ẽ

= 0. Call ∂2 lnP (E)/∂E2|
Ẽ

= −λ,

then, again because P (E) is maximum at Ẽ, it should be clear that λ is positive. Neglecting
all the higher order terms, we get

P (E) ≈ P (Ẽ)e−
λ
2

(E−Ẽ)2
(8.5.2)

This is a “gaussian” distribution which immediately proves (a) because, for a gaussian
distribution, the average is indeed the peak. The sharpness of the peak will be determined
by the dispersion in the energy

∆E =

√
〈(E − Ẽ)2〉 (8.5.3)

This is easy to calculate, of course, given the probability distribution in (8.5.2), the answer
being2:

∆E ≈ λ−1/2 (8.5.4)

Now, using the rough behavior of the number of states, Ω(E) ≈ Ef , where f is the number
of degrees of freedom, one finds that

λ ≈ f

Ẽ2
, or ∆E =

Ẽ√
f

(8.5.5)

2Problem: Prove this.
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Thus,
∆E

Ẽ
=

1√
f

(8.5.6)

which decreases with increasing number of degrees of freedom. Recall that f ∼ 1024, so
that ∆E/Ẽ ≈ 10−12 which is small indeed. We conclude that the peak is very sharp and
we have justified, by example, the claim made earlier that in large systems the number of
states attains a maximum about the average value of the external macroscopic parameter
relaxed.



Chapter 9

The Canonical and Grand
Canonical Ensembles

A statistical ensemble is a collection of identical systems in the same equilibrium state.
What kinds of systems and what equilibrium states we consider will, of course, depend
upon the physical system and the processes that are of interest. We have already de-
scribed the microcanonical ensemble, which is a collection of isolated systems. Often we
are interested in describing systems that interact with other systems. Here we want to
describe systems that are in contact with reservoirs of energy and/or particles, able freely
to exchange energy by heat and/or particles with it.

9.1 The Canonical Ensemble

Let us begin by describing an ensemble of systems that are able to freely exchange energy
but not particles with a heat reservoir. The energy of any member of the ensemble is
therefore not fixed but, in thermal equilibrium, its temperature will be the temperature of
the reservoir. Therefore, just as the members of a microcanonical ensemble are character-
ized by their internal energy and the number of particles they contain, such an ensemble
will be characterized by the temperature of the reservoir and the particle number. It is
called a canonical ensemble.

Recall that a heat reservoir is any system that is very large (in terms of its number of
degrees of freedom) compared with the system of interest that is in thermal contact with
it. Because the energy of the system is not fixed, we might ask the following question:
what is the probability of finding a member of the ensemble in a given state r with energy
Er? To answer this question, consider a system A in equilibrium with a heat reservoir, R,
so that the combined system A+R is isolated (therefore a member of the micro canonical

178
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ensemble. For any energy E of A the total number of states available to A+R is

Ω(E) = ΩA(E)ΩR(E(0) − E) (9.1.1)

where E(0) is the energy of the combined system. The total number of states available to
the system is (as before) the sum over all possible values of the energy of A, i.e.,

Ω(E(0)) =
∑
E

ΩA(E)ΩR(E(0) − E) (9.1.2)

Since the combined system belongs to a microcanonical ensemble, the probability of finding
our system with energy E is

P (E) =
ΩA(E)ΩR(E(0) − E)∑
E ΩA(E)ΩR(E(0) − E)

= CΩA(E)ΩR(E(0) − E). (9.1.3)

Now since the reservoir is very large compared with our system, E � E(0). So let’s expand
ΩR(E(0) − E) in a Taylor series about E(0). We get

lnP (E) = lnC + ln ΩR(E(0)) + ln ΩA(E)− E∂ ln ΩR(E′)

∂E′
|E′=E(0) + . . . , (9.1.4)

where we have set E′ = E(0) − E. Since the temperature of heat reservoir is

β =
∂ ln ΩR(E′)

∂E′
|E′=E(0) , (9.1.5)

we could rewrite the probability of finding A with energy E as

lnP (E) ≈ lnC + ln ΩR(E(0)) + ln ΩA(E)− βE (9.1.6)

which, upon exponentiating both sides, gives

P (E) = CΩR(E(0))ΩA(E)e−βE

= C̄ΩA(E)e−βE (9.1.7)

where C̄ = CΩR(E(0)) is some constant and ΩA(E) is the number of states available to the
system A if all we know is that it has energy E. The factor ΩA(E) counts the number of
states of energy E available to A and is called the degeneracy of the energy level E. But
now, because the combined system is in the microcanonical ensemble, we can interpret
(9.1.7) as asserting that the probability of finding A in any one state, r, of energy E = Er
is

Pr(Er) = const. × e−βEr (9.1.8)
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(thus the probability of being in any of the states is just the above times the number of
states of the same energy, which is equation (9.1.7)). The constant is to be determined by
normalization, i.e., ∑

r

Pr = const.×
∑
r

e−βEr = 1. (9.1.9)

This is the Boltzamann distribution and it characterizes the canonical ensemble. Notice
that nothing has been said about A except that it must be small relative to R and that
it must be in thermal equilibrium with it. This is required only to ensure that A is at
a fixed temperature. Thus, we could, for example, take A to be a single microscopic
component of R itself. For example, we could take A to be a single molecule of a gas at
a fixed temperature, T , so that the rest of the gas then acts as the heat reservoir. Then
the probability of finding the molecule with energy E is given precisely by (9.1.7).

Given any distribution, we can calculate the average values of interesting quantities as
explained earlier. Let the quantity Xtake the value Xr in state r, then the average value
(or the expectation value) of X is just

〈X〉 =

∑
rXrPr∑
r Pr

(9.1.10)

where the denominator is unity if the distribution is normalized. For a classical system,
the sum in (9.1.10) should be replaced by the phase-space integral:

〈X〉 =

∫ ∏
i d

3~ri
∏
i d

3~pi ρ(~ri, ~pi)X(~ri, ~pi)∫ ∏
i d

3~ri
∏
i d

3~pi ρ(~ri, ~pi)
(9.1.11)

over all accessible values of ~r and ~p for each particle of the system A. ρ(~ri, ~pi) is the density
function,

ρ(~ri, ~pi) = Ω(E(~ri, ~pi))e
−βE(~ri,~pi) (9.1.12)

which is a function of the internal energy of A and agrees with Liouville’s theorem. The
statistical dispersion of X,

∆X =
√
〈(X − 〈X〉)2〉 =

√
〈X2〉 − 〈X〉2 (9.1.13)

gives the sharpness of the distribution about the average value of X.

9.2 Examples

9.2.1 The Ideal gas

Let us now derive some of the results of the elementary kinetic theory of gases with the
machinery we have so far developed. As we have noted before, for a single molecule the
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rest of the gas acts as a heat reservoir and, applying the Boltzmann distribution, the
probability of finding a molecule with energy E is

P (E) = const.× e−βE (9.2.1)

We first want the normalized probability, that is we want to evaluate the constant, which
we’ll henceforth call N , appearing on the right hand side above. Obviously, the probability
of the molecule having any energy is one, so

N
h3
o

∫
d3~rd3~pe−βE = 1 (9.2.2)

where the integration is carried out over the volume of the container and all possible
momenta. The energy of a molecule belonging to an ideal gas is purely kinetic because,
by definition, we ignore any interactions between the molecules of the gas. In other words,
E = p2/2m where m is the mass of the molecule. Since the energy does not depend on the
position of the molecule we can immediately perform the integration over ~r to get simply
the volume of the container. Therefore,

NV
h3
o

∫
d3~pe−βE = 1

⇒ NV
h3
o

∫
p2 sin θdpdθdφe−

βp2

2m = 1 (9.2.3)

where we have used spherical coordinates in momentum space. Performing the integration
over the solid angle, we get 4π and

4πNV
h3
o

∫
dpp2e−

p2

2mkT = 1 (9.2.4)

The integral can be evaluated to give

N =
h3
o

(2πmkT )3/2V
(9.2.5)

and therefore

P (E) =
h3
o

(2πmkT )3/2V
e−

p2

2mkT (9.2.6)

for the normalized probability distribution.

You may easily convince yourself that the average velocity of the molecule is zero, i.e.,

〈vx〉 = 〈vy〉 = 〈vz〉 = 0, (9.2.7)
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which says that the molecule random walks through the gas. On the other hand, the
average energy of a molecule is

〈E〉 =
〈p2〉
2m

=
1

2m

∫
d3xd3p2pe−

p2

2πmkT∫
d3xd3pe−

p2

2πmkT

=
3

2
kT, (9.2.8)

which is the classic result we had derived earlier in a completely different way. Therefore
we also find

〈v2〉 =
2〈E〉
m

=
3kT

m

⇒ vr.m.s =
√
〈v2〉 =

√
3kT

m
(9.2.9)

vr.m.s. is the root-mean-square velocity of the molecule.

9.2.2 Ideal gas in an external gravitational field

Complicate the problem a little by taking into account the influence of the gravitational
field on the molecules of the gas. Consider a gas in a cylindrical container of height H.
Because of its potential energy, the total energy of a molecule in the container at height
z ≤ H is

E =
p2

2m
+mgz (9.2.10)

where the last term on the right hand side is its potential energy if z << R the radius of
the earth. Boltzmann’s distribution then gives the probability of finding a molecule with
this energy:

P (E) = const.× e−β( p
2

2m
+mgz) (9.2.11)

As a simple exercise, shows that the normalized distribution is

P (E) =
mgh3

o

(2πmkT )3/2A
e−β( p

2

2m
+mgz) (9.2.12)

where A is the cross-sectional area of the cylinder and, by integrating over all possible
momentum values as well as over x and y, that the probability of finding a molecule at
height z is

P (z) =
mg

kT
e−

mgz
kT (9.2.13)
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9.2.3 Spin 1
2

Paramagnetism

Consider our previous example of a system of charged, weakly interacting spin 1
2 particles,

but suppose that the system, instead of being isolated, is kept in contact with a heat
reservoir at a fixed temperature, T . Imagine that the system is placed in an external,
constant, magnetic field, B, which defines, say, the z direction.

The “particles” could be charged atoms, for example, whose total angular momentum
is due to an extra electron or due to lack of one electron in its outermost shell. Physically
we expect the following: Due to the presence of the field, the atoms will tend to align
themselves with the field in order to reduce the total energy of the system (recall that
each atom contributes

E = −~µ · ~B (9.2.14)

to the total energy, where ~µ is its magnetic moment, ~µ = g~e~s/2m). This tendency to
alignment corresponds to an attempt by the system to develop “order” within itself in
the presence of an external field. However, due to thermal energy, this alignment will not
be complete in the sense that not all the atoms will align themselves. Thermal energy
introduces disorder within the system. The degree to which alignment occurs will depend
on the magnitude of the energy due to the magnetic field compared with its thermal
energy.

Let µ be the magnitude of the magnetic moment, µ = |g~e/2m|, and let the atoms
be positively charged. As we are working within the canonical ensemble, the probability
of finding an atom with energy E is just given by the Boltzmann factor. Moreover, since
they have spin 1

2 , for any atom there are two possibilities depending on the orientation of
its magnetic moment: either the latter aligns itself with the field, in which case its energy
is E− = −µB, or it anti-aligns itself in which case its energy is E+ = +µB. According
to the Boltzmann distribution, the probabilities of finding a single aligned or anti-aligned
atom are therefore, respectively

P (E+) = N e−βµB

P (E−) = N eβµB (9.2.15)

where N is the normalization,

N =

(∑
r

e−βEr

)−1

=
(
e−βµB + eβµB

)−1

=
1

2
sech(βµB) (9.2.16)
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In other words, the normalized probabilities are

P (E±) =
e∓βµB

2 cosh(βµB)
(9.2.17)

so the average energy of each atom is

〈E〉 =

∑
r Ere

−βEr∑
r e
−βEr

= −µβB tanh(µβB) (9.2.18)

and the average magnetic moment is

〈µ〉 =
µe−βE+ − µe−βE−∑

r e
−βEr

= µ tanh(µβB). (9.2.19)

Because the atoms do not interact among themselves, the average total magnetization is
〈M〉 = N〈µ〉 = Nµ tanh(µβB).

Now let us consider the behavior of the total magnetization in two limits: (a) when
the thermal energy (kT ) of the atoms is much larger than their energy due to the presence
of the external magnetic field (µB), and (b) when kT is much less than µB.

When kT � µB, or βµB � 1, we expect that, due to their thermal energy there will
be a high degree of randomness or lack of order in the system. In other words, not all the
atoms will align, or anti-align themselves with the field. A measure of this lack of order is
the total magnetic moment, 〈M〉. In the limit βµB � 1, tanh(βµB) ≈ βµB and

〈M〉 ≈ µ2NB

kT
(9.2.20)

or the magnetic susceptibility per atom

χ =
1

N

∂〈M〉
∂B

≈ µ2

kT
(9.2.21)

which is Curie’s law: it is inversely proportional to the temperature. On the other hand,
if βµB � 1, the randomness in the orientation of spins induced by the thermal energy of
the atoms is small compared with the order induced by the magnetic field and we expect
that all the atoms will be aligned in such a way as to minimize the total magnetic energy
of the system. Indeed, in this limit tanh(µβB) ≈ 1 giving

〈M〉 ≈ Nµ (9.2.22)

What we have just described is the phenomenon of “paramagnetism”. Paramagnetism is
defined as the bulk magnetization of a material, upon application of an external magnetic
field, which appears as a consequence of its atoms possessing a net angular momentum (in
this special case, spin 1

2) from unpaired electrons.
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9.2.4 Harmonic oscillators

Consider a system of N harmonic oscillators, all of the same natural frequency, in contact
with a heat reservoir at a fixed temperature T . The probability of finding a single oscillator
with energy E = (n+ 1

2)~ω is evidently

P (E) = N e−β(n+ 1
2

)~ω (9.2.23)

where N is, as usual, the normalization. Of course, the probability of finding any number
of quanta in the oscillator is simply unity, and this determines the normalization according
to

N e−β~ω/2
∞∑
n=0

e−βn~ω = 1 (9.2.24)

The sum is just an infinite geometric series in e−β~ω, so it can be directly evaluated to
find,

N = 2 sinh

[
β~ω

2

]
(9.2.25)

Show, then, that the average energy per oscillator is

〈E〉 = N
∞∑
n=0

(
n+

1

2

)
~ωe−β(n+ 1

2
)~ω

=
1

2
~ω coth

(
β~ω

2

)
(9.2.26)

If the energy of the ground state, ~ω/2, is ignored in the calculation of the mean energy,
one obtains the formula used by Planck in his treatment of black-body radiation. The
entire system, consisting of N weakly interacting oscillators will obviously have energy
= N〈E〉. It is instructive to compare the results for all the systems above with their
analogues in the microcanonical ensemble.

9.3 The Partition Function

A more direct way to perform calculations in the canonical ensemble uses the partition
function. If the energy levels are all discrete, let r label the microstates then the partition
function is defined by the sum over all configurations

Z(β, ~X) =
∑
r

e−βEr (9.3.1)
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or by the sum over all microstates with distinct energies

Z(β, ~X) =
∑
k

gke
−βEk (9.3.2)

where we have used “k” to indicate all states of distinct energies and gk labels the degen-
eracy of the state k. The partition function for a classical system with continuous energy
levels would be

Z(β, ~X) =

∫ ∏
i

d~rid~piρ(~ri, ~pi)

The partition function does not depend explicitly on the energy but on the temperature. It
plays a role analogous to that of the number of microstates in the microcanonical ensemble
and, as we will now show, all the thermodynamic functions can be expressed directly it
terms of it and its derivatives, so that a knowledge of the partition function is sufficient for
a complete treatment of systems in the canonical ensemble. Simple algebra should easily
convince you of the following expressions:

• The average energy is

〈E〉 = − ∂

∂β
lnZ =

∑
r grEre

−βEr∑
r gre

−βEr (9.3.3)

• The mean square energy is

〈E2〉 =
1

Z

∂2Z

∂β2
=

∑
r grE

2
r e
−βEr∑

r gre
−βEr (9.3.4)

• the energy dispersion is

∆E2 =
∂2 lnZ

∂β2
= 〈E2〉 − 〈E〉2, (9.3.5)

and,

• The generalized forces are

〈Fα〉 =
1

β

∂ lnZ

∂Xα
= −

∑
r gr

∂Er
∂Xα

e−βEr∑
r gre

−βEr (9.3.6)

• From these we also derive an expression for the entropy as follows: consider an
isothermal quasi-static process in which the partition function undergoes a change
dZ. Notice that Z = Z(β,Xα) and one has

d lnZ =
∂ lnZ

∂β
dβ +

∑
α

∂ lnZ

∂Xα
dXα
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= −〈E〉dβ + β
∑
α

〈Fα〉dXα

= −d(〈E〉β) + βd〈E〉+ β
∑
α

d−Wα

⇒ β−1d(lnZ + β〈E〉) = d〈E〉+
∑
α

d−Wα (9.3.7)

which, comparing the last expression with the first law of thermodynamics, means
that the left hand side must be associated with the entropy according to

TdS = β−1d(lnZ + β〈E〉)

⇒ S = k(lnZ + β〈E〉) (9.3.8)

We have seen that the Gibbs definition of the entropy

SG = −k
∑
r

Pr lnPr (9.3.9)

reduces in the microcanonical ensemble to the original Boltzmann definition. To see
that it reduces to the definition we had in (3.38), which followed from the first law
of thermodynamics, simply notice that in the canonical ensemble the normalized
probability has the form

Pr =
e−βEr∑
s e
−βEs =

e−βEr

Z

⇒ lnPr = −βEr − lnZ (9.3.10)

which, when substituted into Gibbs’ expression, gives

SG = −k
∑
r

e−βEr

Z
[−βEr − lnZ]

= k [lnZ + β〈E〉] = S (9.3.11)

as we expected. We see that indeed the Gibbs definition is the more general, under
appropriate conditions giving the expressions in the microcanonical ensemble and in
the canonical ensemble.

The other thermodynamic functions also have expressions in terms of Z and its derivatives:

• The enthalpy is

H = 〈E〉+ pV = − 1

β

(
β
∂ lnZ

∂β
− V ∂ lnZ

∂V

)
, (9.3.12)
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• The Helmholtz free energy is

F = 〈E〉 − TS = − 1

β
lnZ, (9.3.13)

and

• The Gibbs free energy (or thermodynamic potential) is

G = 〈E〉 − TS + pV = − 1

β

(
lnZ + V

∂ lnZ

∂V

)
(9.3.14)

The partition functions for the systems we treated earlier can be written down directly.
They are just the inverses of the probability normalizations we have already calculated:

• for a single molecule in a classical ideal gas:

Z = V

(
2πm

βh2
o

)3/2

(9.3.15)

• for a single spin 1
2 particle in an external magnetic field:

Z = 2 cosh(βµB) (9.3.16)

and

• for a single harmonic oscillator:

Z =
1

2 sinh(β~ω/2)
(9.3.17)

9.4 Properties of the Partition Function

9.4.1 Weakly interacting sub-systems.

Consider a system C consisting of two parts, A and B, (C = A+B), which do not interact,
or interact weakly but are in contact with the same heat reservoir at inverse temperature
β. The microstates of the combined system, C, will be labelled by the pair (r, s) where r
is a state of A and s a state of B. Let A be in state r and B in state s, so that the energy
of C is just Ers = Er + Es as there is no interaction between A and B. The partition
function for C is therefore

ZC =
∑
r,s

e−β(Er+Es) =
∑
r,s

e−βEre−βEs (9.4.1)
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Now, since r and s are independent summations, we can write the above as

ZC =
∑
r

e−βEr
∑
s

e−βEs = ZAZB (9.4.2)

By induction we may generalize the above result to a system, C, consisting of N sub-
systems none of which interact. We will have

ZC =
N∏
j=1

Zj (9.4.3)

which is the powerful result that the partition function of a system consisting of n non-
interacting sub-systems is just the product over all partition functions of the individual
sub-systems. It is easy to see now that the average energy is extensive, i.e., the average
energy of C will just be the sum over the average energies of each sub-system,

〈E〉 = −∂ lnZ

∂β
= − ∂

∂β

N∑
j=1

lnZj =
N∑
j=1

〈Ej〉 (9.4.4)

where we have made use of the properties of the logarithm. Indeed, because the logarithm
of a product is the sum of logarithms, we see immediately that the following variables are
extensive: the mean energy, the energy dispersion, the entropy and all the thermodynamic
potentials.

The systems we have studied so far consisted of atoms or molecules which did not in-
teract with each other. Each atom or molecule can then be thought of as a non-interacting
sub-system and the partition functions for the entire system written as the product over
the partition functions for each atom or molecule. Thus, for example, the partition func-
tion

• for a classical ideal gas of N particles is

ZN = V N

(
2πm

βh2
o

)3N/2

(9.4.5)

• for the system of N spin 1
2 particles in an external magnetic field is

ZN = 2N coshN (βµB) (9.4.6)

and

• for the system of N oscillators is

ZN =
1

2N sinhN (β~ω/2)
(9.4.7)
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With these expressions it is possible to compute all the thermodynamic quantities of
interest1

9.4.2 Change of zero-point energy.

What happens to the partition function if the zero of energy is changed? This will only
change the energy of each state by a constant and, as you know, the only differences in
energy have physical consequences. Suppose that, by changing the zero of energy, the
energy of each state is changed by the addition of a constant εo i.e.,

Er → E′r = Er + εo (9.4.8)

The partition function changes accordingly:

Z ′ =
∑
r

e−βE
′
r = e−βεo

∑
r

e−βEr = e−βεoZ (9.4.9)

Thus,

lnZ ′ = lnZ − βεo (9.4.10)

and

〈E′〉 = −∂ lnZ ′

∂β
= 〈E〉+ εo (9.4.11)

that is, the average energy is just modified by the addition of the same constant, as one
would expect. In the same way, it is easy to see that

∆E′ =
∂2 lnZ ′

∂β2
= ∆E

〈F ′α〉 =
1

β

∂ lnZ ′

∂Xα
= 〈Fα〉

S′ = k(lnZ ′ + β〈E′〉) = k(lnZ − βεo + β〈E〉+ βεo) = S

H ′ = H + εo, F ′ = F + εo, G′ = G+ εo (9.4.12)

9.4.3 The Equipartition Theorem

The Equipartition Theorem can be a useful way to quickly write down the total average
kinetic and potential energies for a system at a given temperature. In its simplest form, it
states that the mean value of each independent, quadratic term in the classical mechanical

1Problem: In each case, compute the entropy and the thermodynamic potentials. Compute also the
energy dispersion and examine its behavior for large N .
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energy is 1
2kT . The proof of this form of the theorem is straightforward. The classical

mechanical energy of any system is given as a function of phase space E = E(~ri, ~pi) and,
generally, the dependence on momenta and coordinates separates into a “kinetic” piece,
K and a “potential” piece, V ,

E = K(pi) + V (qi). (9.4.13)

The kinetic energy is generally quadratic in momenta whereas the potential energy depends
only on the relative positions of the constituents. Since K is almost always quadratic in
the momenta,

K(pi) =
∑
i

bip
2
i

def
=

∑
i

Ki (9.4.14)

where the sum is over all the degrees of freedom, let us find the its mean value. Using the
properties of the exponential function this can be written as by

〈Kj〉 =

∫ ∏
i dpiKje

−βbip2
i ×

∫ ∏
i dqie

−βV (qi)∫ ∏
i dpie

−βbip2
i ×

∫ ∏
i dqie

−βV (qi)
(9.4.15)

and therefore, after canceling common factors we find

〈Kj〉 =

∫
dpj(bjp

2
j )e
−βbjp2

j∫
dpje

−βbjp2
j

≡ 1

2
kT, (9.4.16)

which is the equipartition theorem for the kinetic energy. Likewise, a potential energy
function that is a sum of quadratic terms in the configuration space variables would yield
1
2kT for each independent quadratic term.

We now prove a more general form of the equipartition theorem, which can be stated
as follows: for any physical system with Hamiltonian energy function, E = E(~ri, ~pi), the
following holds under conditions that will become apparent later in the proof:

〈qi
∂E

∂qj
〉 = δijkT

〈pi
∂E

∂pj
〉 = δijkT (9.4.17)

Let’s prove the first form. Consider the fact that∫ ∏
l

dpldql

[
qi
∂E

∂qj

]
e−βE =

1

β

∫ ∏
l

dpl
∏
m 6=j

dqm

∫
dqj

{
− ∂

∂qj

[
qie
−βE

]
+ δije

−βE
}

(9.4.18)
and concentrate on the integral over qj :∫ b

a
dqj

{
− ∂

∂qj

[
qie
−βE

]
+ δije

−βE
}

= −
[
e−βEqi

]b
a

+ δij

∫ b

a
dqje

−βE (9.4.19)



192 CHAPTER 9. THE CANONICAL AND GRAND CANONICAL ENSEMBLES

where we have explicitly introduced the integration limits. Now suppose that the energy
function, E(~ri, ~pi), becomes unboundedly large at the limits a and b of the integration
(this would be the case, for example, if a and b are ∓∞ respectively and E ∼ q2

j as we
considered for the simplified form above). Then the first term on the right hand side
vanishes and we find ∫ ∏

l

dpldql

[
qi
∂E

∂qj

]
e−βE =

δij
β

∫ b

a
dqje

−βE (9.4.20)

from which it follows that

〈qi
∂E

∂qj
〉 =

∫ ∏
l dpldql

[
qi
∂E
∂qj

]
e−βE∫ ∏

l dpldqle
−βE =

δij
β

= δijkT (9.4.21)

It should be obvious that the second form would hold under the same conditions on pi.
Similarly, one can prove

〈pi
∂E

∂qj
〉 = 0 = 〈qi

∂E

∂pj
〉 (9.4.22)

and, moreover, it follows from the Hamilton equations of motion that

〈qiṗj〉 = −〈piq̇j〉 = −δijkT (9.4.23)

Below are some examples of the use of this generalized form.
According to (9.4.23),

〈qiFj〉 = −δijkT (9.4.24)

so let us consider the ideal gas, for which the energy function is just E =
∑

l p
2
l /2m. Let

i and j represent the coordinate directions for a single particle, then according to (9.4.23)
we will have

〈~q · ~F 〉 = −3kT (9.4.25)

where ~F is the force on this particle. The force on the particle is exerted by the wall, so
by Newton’s third law, the force on the wall due to the single particle will be −~F . With
N particles, we could write

N∑
n=1

〈~qn · ~Fn,wall〉 = 3NkT. (9.4.26)

In the continuum limit,

p

∮
S
~q · d~S = 3NkT, (9.4.27)

where we have expressed the force on the wall in terms of the pressure. In this limit, using
Gauss’ theorem,

p

∮
S
~q · d~S = p

∫
V

(~∇ · ~q)dV = 3pV (9.4.28)
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we derive the ideal gas law, pV = NkT .
Consider another example in which the Hamiltonian separates into a kinetic piece

depending only on the momenta and a potential piece of the form V (q) =
∑

l alq
s
l , where

s is any positive real number. According to (9.4.17),∑
i

〈qi
∂V

∂qi
〉 = s〈V 〉 = fkT (9.4.29)

where f is the number of degrees of freedom. Thus 〈V 〉 = (f/s)kT , which generalizes the
formula for harmonic oscillators (s = 2).

When applying the equipartition theorem it should be remembered that the theorem is
valid only in classical statistical mechanics. Classical statistical mechanics is an excellent
approximation so long as the separation between successive energy levels is small compared
with the thermal energy or, more precisely, when ∆E � kT . In this case the relevant
“quantum effect”, namely the separation between the energy levels, can be ignored. In
most quantum systems the spacing between successive energy levels decreases with in-
creasing energy and the equipartition theorem becomes a good approximation at high
temperatures. On the other hand, the spacing between the energy levels lying close to the
ground state can be large and equipartition will fail at low temperatures as a consequence.

9.4.4 Galilean Boosts

Until now we have considered only systems that are at rest relative to the observer. One
should also be able to consider systems that are in motion with the observer. Of course
we already have a description of such systems in the rest frame, so it remains to transform
this description to arbitrary frames related to the rest frame by Galilean boosts.

9.5 The Grand Canonical Ensemble

In the canonical ensemble, if we relax the condition that no matter is exchanged between
the system and its reservoir,we obtain the grand canonical ensemble. In this ensemble,
therefore, the systems are all in thermal equilibrium with a heat reservoir at some fixed
temperature, T , but they are also able to exchange particles with this reservoir. Such
systems are said to be open.

Assume that the system, A, is in thermal equilibrium with a reservoir, R, and that
together they form an isolated system with total energy E(0) and total number of particles
N (0). Both E(0) and N (0) are fixed. Assume also that A is tiny compared to R. Then we
might ask: what is the probability of finding A in a given state, r, with energy Er and
containing Nr particles? If A has energy E,

Ω(E,N) = ΩA(E,N)ΩR(E(0) − E,N (0) −N) (9.5.1)
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In the ensemble we are considering, each system is in contact with a heat reservoir at
a fixed temperature, T , and each is able to exchange particles with the reservoir. This
implies that the probability of finding a system obeying these conditions is

P (E) = CΩA(E,N)ΩR(E(0) − E,N (0) −N)

lnP (E) = lnC + ln ΩA(E,N) + ln ΩR(E(0) − E,N (0) −N)

≈ lnC + ln ΩA(E,N) + ln ΩR(E(0), N (0))

+ E
∂ ln ΩR(E′, N ′)

∂E′
|E(0),N(0) −N

∂ ln ΩR(E′, N ′)

∂N ′
|E(0),N(0) + . . . , (9.5.2)

where we have put N ′ = N (0) −N and E′ = E(0) − E. Again,

β =
∂ ln ΩR(E′, N ′)

∂E′
|E(0),N(0) (9.5.3)

is the temperature of the reservoir and we shall call

µ = − 1

β

∂ ln ΩR(E′, N ′)

∂N ′
|E(0),N(0) (9.5.4)

the “chemical potential” of the reservoir. Then

P (E,N) = CΩA(E,N)e−β(E−µN) (9.5.5)

is the required probability. Ω(E,N) is the number of states available to A at a fixed E
and N , the degeneracy. Therefore, the probability of finding A in one of the allowed states
is just

P (E,N) = Ce−β(E−µN) (9.5.6)

It is called the grand canonical distribution.
Systems belonging to the grand canonical ensemble have variable contents. This occurs

often in many physically interesting situations. For instance, consider the diffusion of
molecules across a semi-permeable membrane that separates two containers, A and B.
We can adjust the intermolecular separation of the partition is such that only molecules of
one type may pass through. If we wish to speak of A and B individually as thermodynamic
systems, we must take into account the fact that their contents vary as one of the gases
diffuses across the membrane. Another situation in which we may wish to treat systems
with varying contents as thermodynamic systems is when we consider changes of phase.
Consider the melting of ice or the boiling of water. In either of these processes, the
substance (ice or water) is changing phase from solid to liquid or liquid to gas. If we
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want to treat the ice and water (or water and water vapor) as separate thermodynamic
systems we must account for the fact that the amount of matter contained in each system
is continuously changing. Other examples of systems with varying contents include a
mixture of chemical reagents, for example H2 and O2 which will react according to

2H2 + O2 ⇔ 2H2O (9.5.7)

so that the numbers of hydrogen, oxygen and water molecules are constantly changing, or a
plasma in which the proportion of ionized and unionized atoms is continuously changing,
One of the more interesting applications that we shall encounter in these notes is in
phenomena associated with quantum statistics.

The partition function is therefore

Ξ =
∑
r

e−βEr−αNr =
∑
r

e−β(Er−µNr) (9.5.8)

where β and α are independent, α being defined by2,

α =
∂ ln ΩR(E′, N ′)

∂N ′
|E(0),N(0) (9.5.9)

This is the grand partition function and the corresponding distribution

Pr =
1

Ξ
e−βEr−αNr (9.5.10)

is the grand canonical or Gibbs distribution. Let us now study the resulting thermody-
namics.

9.6 Thermodynamics in the Grand Canonical Ensemble

Differentiating the partition function in (9.5.8), we have

〈E〉 = −∂ ln Ξ

∂β

〈N〉 =
1

β

∂ ln Ξ

∂µ
(9.6.1)

and we define the generalized forces, as usual,

〈Fα〉 =
1

β

∂ ln Ξ

∂Xα
(9.6.2)

2As long as derivatives are being taken, it is convenient to write it in terms of the independent quantities
α and β to ensure that derivatives are taken consistently.
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Then, as Ξ = Ξ(β, µ,Xα),

d ln Ξ =
∂ ln Ξ

∂β
dβ +

∑
α

∂ ln Ξ

∂Xα
dXα +

∂ ln Ξ

∂µ
dµ

= −〈E〉dβ + β
∑
α

〈Fα〉dXα − β〈N〉dµ (9.6.3)

or, noting β is held constant that in the last term,

d [ln Ξ + β〈E〉 − βµ〈N〉] = βd〈E〉 − µβd〈N〉+ β
∑
α

〈F 〉dXα

TdS = d〈E〉+
∑
α

〈Fα〉dXα − µd〈N〉 (9.6.4)

where the entropy is now
S = k [ln Ξ + β〈E〉 − βµ〈N〉] (9.6.5)

Thus we have the following thermodynamic relations,(
∂S

∂〈E〉

)
Xα,〈N〉

=
1

T(
∂S

∂Xα

)
〈E〉,〈N〉

=
〈Fα〉
T(

∂S

∂〈N〉

)
〈E〉,Xα

= −µ
T
. (9.6.6)

9.7 Fluctuations

In the canonical ensemble, the fluctuations in the average energy are given by

∆E2 =
∂2 lnZ

∂β2
=
∂〈E〉
∂β

= kT 2CV (9.7.1)

where CV is the heat capacity at constant volume. If we let cV and ε be respectively the
heat capacity per particle and the average energy per particle, we can put this expression
in the form

∆E

〈E〉
=

√
kcV
N

T

ε
(9.7.2)

which displays the same dependence on 1/
√
N that we discovered in (8.5.6) and shows that

the distribution in the canonical ensemble is very sharply peaked about the average energy
for large N . Therefore in the thermodynamic limit the canonical ensemble is equivalent
to the microcanonical ensemble.



9.7. FLUCTUATIONS 197

The particle number fluctuations in the Gibbs ensemble are obtained similarly. One
easily sees that

〈N2〉 =
1

β2

1

Ξ

∂2Ξ

∂µ2
(9.7.3)

and therefore

∆N2 =
1

β2

∂2 ln Ξ

∂µ2
=

1

β

∂〈N〉
∂µ

(9.7.4)

Now note that the Grand Potential, ΦF = 〈E〉 − TS + µ〈N〉 admits a simple expression
in terms of the grand partition function:3

ΦF = − 1

β
ln Ξ. (9.7.5)

Specializing to fluids and using (5.5.2), one finds that −pV = − 1
β ln Ξ. Then, taking a

derivative with respect to µ holding β and V fixed we get

〈N〉 = V
∂p

∂µ
⇒
(
∂〈N〉
∂µ

)
V,T

= V
∂2p

∂µ2
(9.7.6)

and therefore,

∆N2 =
V

β

∂2p

∂µ2
. (9.7.7)

We want to re-express the second derivative above in terms of some recognizable fluid
properties. Now again using (5.5.2)

dΦF = −pdV − SdT −Ndµ = −pdV − V dp (9.7.8)

and dividing by N , we find
dµ = −sdT − vdp (9.7.9)

where s and v are respectively the entropy and volume per particle. The chemical potential
is therefore rightly viewed as a function of (T, p). Furthermore,

v = −
(
∂µ

∂p

)
T

(9.7.10)

shows that v is also a function of (T, p). The number fluctuations can be written in terms
of the specific volume, v,

∆N2 = − V

βv2

(
∂v

∂µ

)
T

= − V

βv2

(
∂v

∂p

)
T

(
∂p

∂µ

)
T

= − V

βv3

(
∂v

∂p

)
T

(9.7.11)

3Problem: Show this.



198 CHAPTER 9. THE CANONICAL AND GRAND CANONICAL ENSEMBLES

and rewritten in terms of the isothermal compressibility of the fluid

κ = −1

v

(
∂v

∂p

)
T

, (9.7.12)

finally giving

∆N

〈N〉
=

√
kTκ

Nv
. (9.7.13)

The result shows that, like the energy fluctuations in the canonical ensemble, the fluctu-
ations in the particle number also drop off as 1/

√
N . We conclude that in the thermody-

namic limit the grand canonical ensemble is equivalent to the microcanonical ensemble.
This leads to the question of which ensemble is appropriate for a given problem. The
answer is that so long as we work in the limit of large N the choice is to be based entirely
on convenience and computability.



Chapter 10

Further Developments

We are now ready to study some simple applications of the canonical ensemble, but first
let us gather together all the formulæ that we will find useful in a table:

Canonical Ensemble

Partition function, Z: Z =
∑

r e
−βEr

Mean Energy, 〈E〉: 〈E〉 = −∂ lnZ
∂β

Mean square energy, 〈E2〉: 〈E2〉 = 1
Z
∂2Z
∂β2

Energy dispersion, ∆E: (∆E)2 = ∂2 lnZ
∂β2

Generalized Force, 〈Fα〉: 〈Fα〉 = 1
β
∂ lnZ
∂Xα

Entropy, S: S = k [lnZ + β〈E〉]
Enthalpy, H: H = −∂ lnZ

∂β + 1
β

∑
α
∂ lnZ
∂Xα

Xα

Free Energy (Helmholtz), F : F = − 1
β lnZ

Gibbs potential, G: G = − 1
β lnZ + 1

β

∑
α
∂ lnZ
∂Xα

Xα

Gibbs Ensemble

Partition function, Ξ: Ξ =
∑

r e
−β(Er−µNr

Mean Energy, 〈E〉: 〈E〉 = −∂ ln Ξ
∂β

Mean square energy, 〈E2〉: 〈E2〉 = 1
Ξ
∂2Ξ
∂β2

Energy dispersion, ∆E: (∆E)2 = ∂2 ln Ξ
∂β2

Generalized Force, 〈Fα〉: 〈Fα〉 = 1
β
∂ ln Ξ
∂Xα

Entropy, S: S = k [ln Ξ + β〈E〉 − βµ〈N〉]
Enthalpy, ΦH : ΦH = −∂ ln Ξ

∂β + 1
β

∑
α
∂ ln Ξ
∂Xα

Xα − µ
β
∂ ln Ξ
∂µ

Free Energy (Helmholtz), ΦF : ΦF = − 1
β ln Ξ

Gibbs potential, ΦG: ΦG = − 1
β ln Ξ + 1

β

∑
α
∂ ln Ξ
∂Xα

Xα

199
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10.1 The Gibbs Paradox

In the previous chapter, we had determined the partition function for the classical ideal
gas of N particles,

ZN = V N

(
2πm

h2
oβ

)3N/2

(10.1.1)

from which one computes the entropy of the ideal gas as follows:

lnZN = N

[
lnV +

3

2
ln

(
2πm

h2
oβ

)]
〈E〉 = −∂ lnZN

∂β
=

3N

2β
=

3

2
NkT

S = k [lnZN + β〈E〉] = kN

[
lnV +

3

2
ln

(
2πm

h2
oβ

)
+

3

2

]
= kN

[
lnV +

3

2
lnT + σ

]
, σ =

3

2
ln

(
2πmk

h2
o

)
+

3

2
(10.1.2)

Unfortunately, the above expression for the entropy suffers from the obvious problem
that it does not possess the limit required by the third law of Thermodynamics. On
the contrary we find limT→0 S(T ) diverges, which is a good indicator that we need to go
beyond the classical approximation of an ideal gas and look to the quantum theory to
correct this problem. At low temperatures this becomes important because the molecules
are moving “slowly” so their momentum is low and therefore their de-Broglie wave-lengths
can get larger than the average spacing between them, implying that at low temperatures
quantum interference of the wave-functions will play an important role. Still, at high
temperatures, we expect the classical theory to yield a very good approximation because
the molecules have large average momenta and small wavelengths and interference of the
particle wave-functions can be ignored.

For an ideal gas of N molecules in a volume V the condition for the validity of the
classical approximation is given in (6.4.3)(

kT

p

)1/3

� h√
3mkT

. (10.1.3)

Notice what an important role the molecular mass plays: lighter particles are less likely
to satisfy the condition at a given temperature and pressure. Consider, for example,
Hydrogen at room STP. We have T = 300◦K, 〈p〉 = 1.013× 105 N/m2 and mH2 = 2mp ≈
3.34× 10−27 kg, which gives (

kT

p

)1/3

≈ 3.4× 10−9m
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h√
3mkT

≈ 0.1× 10−9m (10.1.4)

so the condition for the validity of the classical approximation is met by molecular Hydro-
gen at STP. The situation changes for a gas of free electrons, again at STP. The relevant
difference is that the mass of an electron, me = 9×10−31 kg, is about four thousand times
less than that of a Hydrogen molecule, which makes the right hand side of (10.1.3) about
61 times larger than it is for the Hydrogen molecule or about 1.8 times the left hand side.
The classical approximation breaks down for the free electron gas at STP.

To treat a gas of identical (but distinguishable) particles quantum mechanically, we
consider for convenience a cubical box of length L. The Schroedinger wavefunction of
a spinless point-like particle in this box is determined by three quantum numbers (the
energy quantum numbers), one for each degree of freedom

ψn,m,r(x, y, z) =

(
2

L

)3/2

sin
(nπx
L

)
sin
(mπy

L

)
sin
(rπz
L

)
(10.1.5)

where n,m, and r ∈ Z, and the energy and momentum of the particle are respectively

En,m,r =
(n2 +m2 + r2)π2~2

2mL2

px =
nπ~
L

, py =
mπ~
L

, pz =
rπ~
L

(10.1.6)

The partition function is therefore the sum

ZN =

(∑
n,m,r

e−β(n2+m2+r2)π2~2/2mL2

)N

=

(∑
n

e−βn
2π2~2/2mL2

)3N

(10.1.7)

where the last step follows because all summations are the same and independent. The
sums above are difficult to actually carry out, but we can see how the classical limit
emerges as follows: consider, for instance,∑

n

e−βn
2π2~2/2mL2

(10.1.8)

For large values of n, the energy, En = n2π2~2/2mL2, and momentum, px = nπ~/L, of
the particle increase slowly with n. Because

∆En
En

=
En+1 − En

En
=

2n+ 1

n2
� 1
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∆pn
pn

=
1

n
� 1 (10.1.9)

at large n, successive terms in the sum in (10.1.8) differ by a very small amount. Therefore
we can approximate the sum in (10.1.8) by grouping together all terms in the momentum
range px and px+∆px, corresponding to the integer values n and n+∆n where n = Lpx/π~
(∆n = L∆px/π~). In this group,

n+∆n∑
n

e−βn
2π2~2/2mL2 ≈ e−βn2π2~2/2mL2 ×∆n = e−βp

2
x/2m ×

(
L

π~

)
∆px (10.1.10)

This sort of approximation is called a “ladder” approximation. We find

∞∑
n=−∞

e−βEn ≈
(
L

π~

)∑
px

e−βp
2
x/2m ×∆px

→
(
L

π~

)∫ ∞
−∞

e−βp
2
x/2mdpx =

1

ho

∫
dxdpxe

−βp2
x/2m, (10.1.11)

which is simply the one dimensional partition function for a single point-like molecule
in an ideal gas. Putting all the molecules together and taking three dimensions into
account gives us the usual classical partition functions. This approximation is good only
in the limit of large quantum numbers or very high average energies. At low energies, the
“ladder” approximation fails and quantum effects will dominate. We will treat quantum
gases separately.

There is yet another problem with the expressions in (10.1.2). We had shown earlier
that the entropy of a gas of non-interacting particles is extensive. This means that the
entropy should, for example, double if the volume of the gas doubles. But this is not true
of the entropy in (10.1.2). To see this consider an ideal gas confined in a partitioned box
and let the gas molecules not be able to pass through the partition. If there are NL,R

molecules of the gas in the left and right sections respectively, and if the sections have
volumes VL,R respectively, then the entropies of the portions of the gas in the left and
right sections are

SL = kNL

(
lnVL +

3

2
lnT + σL

)
SR = kNR

(
lnVR +

3

2
lnT + σR

)
(10.1.12)

Because the gas on each side of the partition is the same, the constants σL = σR = σ
(say). Let us arrange things so that VL = VR = V/2 and NL = NR = N/2, then

SL + SR = kN

(
ln
V

2
+

3

2
lnT + σ

)
(10.1.13)
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However, if the partition were removed isentropically the entropy would be

S = kN

(
lnV +

3

2
lnT + σ

)
(10.1.14)

which differs from SL + SR, the entropy is extensive therefore S must be SL + SR and
our expression for S must be wrong. This is the Gibbs paradox. The Gibbs paradox
exists at any temperature, even in the “classical” regime, unlike the problem with its zero
temperature limit that we discussed in the beginning of this chapter. It arises because we
have completely ignored the fact that the molecules, which can freely occupy any position
within the box, are indistinguishable. To take indistinguishability into account, Gibbs
proposed dividing the partition function by N !, the number of possible rearrangements of
N objects between themselves, so

Zcorrect =
Z

N !
(10.1.15)

Thus, the entropy of the gas on either side of the partition is

SL,R =
1

2
Nk

(
ln
V

2
+

3

2
lnT + σ

)
− 1

2
Nk ln

N

2
+

1

2
Nk

=
1

2
Nk

(
ln
V

N
+

3

2
lnT + σ′

)
⇒ SL + SR = kN

(
ln
V

N
+

3

2
lnT + σ′

)
(10.1.16)

where

σ′ = σ + 1 =
3

2
ln

(
2πmk

h2
o

)
+

5

2
(10.1.17)

Furthermore, the entropy of the gas upon removal of the partition is

S = kN

(
lnV +

3

2
lnT + σ

)
− kN lnN + kN

= kN

(
ln
V

N
+

3

2
lnT + σ′

)
= SL + SR (10.1.18)

which is the sum of the individual entropies as required. Indistinguishability of the el-
ementary constituents of a thermodynamic system must be thought of as an additional
property they may or may not satisfy.1

1Problem: Argue that the paradox is resolved in the same way even when the partition is placed so
that VL,R and NL,R are arbitrary.
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10.2 Maxwell’s Distribution of Speeds

In a classical system, the probability distribution can be replaced by distribution functions
obtained from the probability distribution by a different normalization, for instance to the
number of particles in the system. For a classical fluid

P (~r, ~p)d3~rd3~p = Ce−β( p
2

2m
+Eint)d3~rd3~p (10.2.1)

represents the probability of finding a molecule in the gas within the interval (~r, ~p;~r +
d~r, ~p+d~p) of phase space. Equivalently, if f(~r,~v)d3~rd3~v represents the number of particles
in this interval, it is clear that f is related to P because the probability of finding a
molecule in any interval must be proportional to the number of molecules in that interval.
Indeed, the two can differ at most by a normalization. While P (~r, ~p)d3~rd3~p is normalized
to unity, the number distribution must be normalized to the total number of molecules
present, i.e.,

f(~r,~v)d3~rd3~v = C′e−β(mv2/2+Eint)d3~rd3~v∫
f(~r,~v)d3~rd3~v = N (10.2.2)

The normalization constant C′ is easily evaluated for an ideal gas (of non-interacting point-
like particles, Eint = 0),

C′ = n

(
βm

2π

) 3
2

, (10.2.3)

where n = N/V is the number density of particles, so that

f(~r,~v)d3~rd3~v = n

(
βm

2π

) 3
2

e−βmv
2/2d3~rd3~v. (10.2.4)

The exponent above does not depend on the positions of the molecules and we can define
the number of molecules per unit volume with velocities between ~v and ~v + d~v,

f(~v)d3~v = n

(
βm

2π

) 3
2

e−βmv
2/2d3~v (10.2.5)

Moreover the exponent in (10.2.4) depends only on the the speed because there are no
preferred directions within an ideal gas in equilibrium. Information about directions is
contained in the measure d3~v. If we agree to ask questions related only to the speed of
molecules, we can write d3~v in spherical coordinates, d3~v = v2 sin θdθdφ, and perform the
integration over the solid angle to get

f(~v)d3~v = 4πn

(
βm

2π

) 3
2

e−βmv
2/2v2dv = F (v)dv (10.2.6)
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The distribution F (v)dv is the Maxwell distribution of speeds. It represents the number
of molecules of the gas per unit volume with speeds between v and v + dv

Maxwell’s distribution also allows us to calculate some significant average values. The
mean speed of a molecule in the gas is given by

〈v〉 =
1

n

∫ ∞
0

F (v)dv

= 4π

(
βm

2π

) 3
2
∫ ∞

0
v3e−βmv

2/2dv (10.2.7)

The integral is easily evaluated2 to give

〈v〉 =

√
8kT

πm
(10.2.8)

Likewise, the mean square velocity is

〈v2〉 =
1

n

∫
v2F (v)dv

= 4π

(
βm

2π

) 3
2
∫ ∞

0
v4e−βmv

2/2dv

=
3kT

m

⇒ vr.m.s =

√
3kT

m
(10.2.9)

and the most probable velocity, ṽ, is obtained by maximizing F (v),

dF (v)

dv
= 0, ⇒ ṽ =

√
2kT

m
(10.2.10)

which can be checked to be a maximum of F (v).

The flux, Φ, across any surface is the number of particles crossing the surface per
unit time. Fluxes are extremely important in flow problems but a knowledge of the flux
can be important even in equilibrium situations. For example, the flux per unit area,
called the current, of photons out of a tiny hole in a black body cavity in equilibrium
at temperature T is the spectral radiancy of the black body and is related to the number
density of photons within the cavity. Here we will derive an expression for the flux of
an ideal gas in equilibrium at temperature T , showing explicitly its relationship with the

2
∫∞

0
dxx2n+1e−px

2

= n!
2pn+1 and

∫∞
0
dxx2ne−px

2

=
(
− ∂
∂p

)n ∫∞
0
dxe−px

2
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number density of molecules. Consider, first, the simple case of a stream of molecules,
all having the same velocity striking a surface such that the velocity of the molecules is
parallel to the surface. The number of molecules striking an element, dS, of the surface
in time dt will obviously be all the molecules which exist in a cylindrical volume of length
vdt and base area, dS, i.e.,

dN = nvdtdS (10.2.11)

where n is the number density of the molecules in the gas. On the other hand, if the angle
of incidence is θ 6= 0, then

dN = ndtvdS cos θ = ndt~v · d~S (10.2.12)

and the number of molecules striking the surface per unit time (the flux) is

dΦ =
dN

dt
= n~v · d~S (10.2.13)

The quantity ~j = n~v is the number of particles crossing a unit area of the surface per unit
time and is called the “current”. Now, in general, one cannot expect that all the molecules
have the same velocity. What is relevant is therefore the average flux

〈dΦ〉 = 〈jz〉dS (10.2.14)

where, for convenience we let the normal to d~S define the z axis. We want to calculate
〈jz〉 = n〈vz〉, or

〈vz〉 =

∫
vz>0

d3~vv cos θf(~v) (10.2.15)

where we have used vz = v cos θ and restricted the integration to velocities with positive
z−components to ensure that we count only those molecules that will cross the surface
from left to right. Thus we have

〈vz〉 = n

(
βm

2π

) 3
2
∫ ∞

0
v2dv

∫ 2π

0
dφ

∫ π/2

0
sin θdθv cos θe−βmv

2/2 (10.2.16)

using spherical coordinates in velocity space. The φ (azimuthal) integration is straight-
forward and gives 2π. The θ integration is taken from 0 to π/2 so as to account only for
the right hemisphere (remember that we’re interested only in the molecules that cross the
surface from left to right) instead of the whole sphere. Let us separate the integrations

〈vz〉 = 4πn

(
βm

2π

)[∫ ∞
0

v3e−βmv
2/2

]
× 1

2
×

[∫ π/2

0
sin θ cos θdθ

]
(10.2.17)
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The first part of the above is just 〈v〉. The second integral (over θ) gives simply 1
2 . Putting

it all together and inserting the value of 〈v〉 calculated in (10.2.8), we finally get

〈jz〉 =
n

4
〈v〉 =

n

4

√
8kT

mπ
(10.2.18)

which gives the average current in any one direction and thence the average flux according
to (10.2.14).

10.3 Osmosis

Osmosis is the motion of molecules across a semi-permeable membrane from a region of
higher potential to a region of lower potential. Here we will consider a toy model of
osmosis in which a box of N non-interacting particles is divided into two parts by a semi-
permeable membrane through which the molecules may flow and which divides the box
into two parts, “1” and “2” of volumes V1 and V2. All particles may exist in one of two
states: in state A the molecules have only kinetic energy, but molecules in state B have in
addition a certain potential energy, ε0. Particles in region V1 always exist in state A but
particles in V2 may be either in state A or in state B. This means that a molecule in state
B may not pass through the semi-permeable membrane from V2 into V1 but a molecule in
A can pass from V1 to V2 and vice-versa.

Let NA be the number of molecules in state A, then NB = N −NA is the number of
molecules in state B . The partition function of the system will be

Z =
(V1 + V2)NAV NB

2

NA!NB!

(
2mπ

βh2
o

) 3
2

(NA+NB)

e−βNBε0 (10.3.1)

and its Free Energy, F = − 1
β lnZ, is

F = − 1

β

[
NA ln

(
V

NA

)
+NB ln

(
V

NB

)
+

3

2
(NA +NB) ln

(
2mπ

βh2
o

)
− βNBε0 + (NA +NB)

]
.

(10.3.2)
From this we compute the chemical potential of the molecules in state A:

µA =

(
∂F

∂NA

)
V,T

= − 1

β

[
ln

(
V

NA

)
+

3

2
ln

(
2mπ

βh2
o

)]
(10.3.3)

and that of the molecules in state B,

µB =

(
∂F

∂NB

)
V2,T

= − 1

β

[
ln

(
V2

NB

)
+

3

2
ln

(
2mπ

βh2
o

)
− βε0

]
(10.3.4)
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Since the two must be equal in equilibrium

ln

(
V

NA

)
= ln

(
V2

NB

)
− βε0 (10.3.5)

which means that, using NB = N −NA

NA =
N(V1 + V2)eβε0

V2 + (V1 + V2)eβε0

NB =
NV2

V2 + (V1 + V2)eβε0
(10.3.6)

The pressure in volume V1 is also calculated directly,

p1 = −
(
∂F

∂V1

)
T,V2,NA,NB

=
NA

βV
=

NkTeβε0

V2 + V eβε0
(10.3.7)

as well as the pressure in V2,

p2 = −
(
∂F

∂V2

)
T,V2,NA,NB

=
1

β

[
NA

V
+
NB

V2

]
=
NkT (1 + eβε0)

V2 + V eβε0
. (10.3.8)

We find the osmotic pressure, i.e., the excess pressure

∆p = p2 − p1 =
NkT

V2 + V eβε0
(10.3.9)

in region “2” over region “1”. This excess pressure exists because only molecules in state
A may freely flow across the semi-permeable membrane. Osmosis is vital to biological
life forms as most cell membranes are semi-permeable. Generally these membranes are
not permeable to large molecules but to small molecules like water and small solutes.
Osmosis provides the primary means by which water is transported into and out of cells.
Solute concentration in water lowers the potential energy of water molecules. Thus water
molecules pass through a cell membrane from a region of low solute concentration outside
the cell to a region of high solute concentration inside the cell.

10.4 Real Gases

If we relax the assumptions that make a gas “ideal”, i.e., if we take into account the
non-zero molecular size as well as the electromagnetic interaction between molecules we
get the ‘real” gas. The energy of the system of molecules can always be written as

E = T + U =
∑
i

~p2
i

2mi
+ U(~r1, ~r2, . . . , ~rN ) (10.4.1)
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Figure 10.1: The Lennard-Jones Potential

where i labels the molecules and ~ri is the position vector of the molecule labeled by i. The
form of U is of interest. We can think of it as a sum over the potential energies of the
interactions between pairs of molecules,

U(~r1, ~r2, . . . , ~rN ) =
∑
i<j

uij(rij) (10.4.2)

where rij = |~ri − ~rj | and we have made sure not to overcount the pairs by requiring
i < j in the sum. The intermolecular interaction is roughly speaking such as to prevent
the molecules from actually coming into contact with one another – it is repulsive at very
short distances, on the order of the molecular size – and it is attractive when the molecular
separation is greater than the molecular size. Phenomenologically, the Lennard-Jones
potential represents this situation well in terms of two adjustable parameters. It is shown
in figure 10.4.3 and given by

uij(~rij) = u0

[(
a

rij

)12

− 2

(
b

rij

)6
]

(10.4.3)

where ~rij = ~rj − ~ri is the position of molecule j with respect to molecule i. The potential
will admit a minimum of umin = −u0(b/a)12 at rij = a2/b. The total energy of the
molecules will be

E =
∑
i

p2
i

2mi
+
∑
i<j

uij(rij) (10.4.4)



210 CHAPTER 10. FURTHER DEVELOPMENTS

where we have taken care not to sum over potential energies more than once per pair.
This can also be written as

E =
∑
i

p2
i

2mi
+

1

2

∑
i 6=j

uij(rij) (10.4.5)

and therefore the partition function will be

ZN =
1

h3N
0 N !

∫
d3~r1 . . . d

3~rNd
3~p1 . . . d

3~pNe
−β
(∑

i

p2i
2mi

+ 1
2

∑
i 6=j uij(rij)

)
(10.4.6)

Performing the momentum integrals we are left with

ZN =
1

N !

(
2πm

h2
oβ

)3N/2 ∫
d3~r1 . . . d

3~rNe
−β

2

∑
i6=j uij(rij) (10.4.7)

As one can easily see the difficulty is in evaluating the spatial integrals. Let us therefore
concentrate on

ZU
def
=

∫
d3~r1 . . . d

3~rNe
−β

2

∑
i 6=j uij(rij) (10.4.8)

If both a and b are zero, so that the pairwise interaction potentials vanish, then the integral
will just give ZU = V N . The same result is obtained at very high temperatures, as β → 0.
On the other hand,

〈U〉 = −∂ lnZU
∂β

(10.4.9)

where U =
∑

i<j uij(rij) is the total potential energy of the molecules, so we can write

lnZU = N lnV −
∫ β

0
〈U(β′)〉 dβ′ (10.4.10)

Now there are N(N − 1)/2 terms in the sum defining U and it is reasonable to assume
that each term contributes equally, say 〈u〉 to the sum in the mean, so

〈U〉 ≈ 1

2
N(N − 1)〈u〉 ≈ N2

2
〈u〉 (10.4.11)

This is the mean field approximation. We can now write

lnZU ≈ N lnV − N2

2

∫ β

0
〈u〉 dβ′ (10.4.12)

and calculate the mean pair interaction potential from

〈u〉 =

∫
V d

3~ru(r)e−βu(r)∫
V d

3~re−βu(r)
= − ∂

∂β
ln

∫
V
d3~re−βu(r) (10.4.13)
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The integral is over all possible mean separation of the molecular pairs, i.e., over the entire
volume of the gas. It is most convenient to rewrite the integral above as follows:∫

V
d3~re−βu(r) =

∫
V
d3~r[1 + (e−βu(r) − 1)]

def
= V + I(β) (10.4.14)

and

〈u〉 = − ∂

∂β
ln

(
1 +

I(β)

V

)
= − ∂

∂β

[
I(β)

V
+O

(
I(β)

V

)2
]

(10.4.15)

If we now integrate w.r.t. β to get ZU , we find

lnZU = N lnV +
N2

2

[
I(β)

V
+O

(
I(β)

V

)2
]

(10.4.16)

and

lnZ =
3N

2
ln

(
2πm

h2
oβ

)
+N +N ln

(
V

N

)
+
N2

2

[
I(β)

V
+O

(
I(β)

V

)2
]
, (10.4.17)

which gives the average internal energy

〈E〉 = −∂ lnZ

∂β
=

3N

2β
− N2

2

∂

∂β

[
I(β)

V
+O

(
I(β)

V

)2
]
, (10.4.18)

and pressure

p =
1

β

∂ lnZ

∂β
=

N

βV
− N2

2

I(β)

V 2
+O(V 3) (10.4.19)

in terms of the integral I(β), which we must now attempt to evaluate.
Notice that the corrections to the ideal gas equation of state are in the form of a Taylor

expansion in the number density, n,

p =
n

β
+B2(T )n2 +B3(T )n3 + . . . (10.4.20)

That is why this approximation is valid at low densities; the temperature dependent
coefficients B2(T ), (B3(T ), etc., are called the second, third, etc., virial coefficients
and it is our task to evaluate them in this mean field approximation. The expansion in
(10.4.20) is called the virial expansion.

It is very difficult to evaluate the integral in (10.4.13) in closed form with the inter-
action potential given by the Lennard-Jones potential. Instead we shall use the following
approximation of it:

u(r) =


∞ r < r0

u0

(
r0
r

)s
r > r0

(10.4.21)
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We will compute the integral∫
V
d3~r[e−βu(r) − 1] = 4π

∫
r2dr[e−βu(r) − 1] (10.4.22)

Now when r < r0 the potential is infinite and e−βu = 0 so we have

4π

∫ r0

0
r2dr[e−βu(r) − 1] ≈ −4π

3
r3

0. (10.4.23)

On the other hand, when r > r0 the temperature is high (β is small) and so is the pair
interaction potential, so

e−βu ≈ 1− βu⇒ 4π

∫ ∞
r0

r2dr[e−βu(r) − 1] ≈ 4πβu0r
s
0

∫ ∞
r0

drr2−s =
4πβu0r

3
0

s− 3
(10.4.24)

where we have assumed that s > 3 so that the integral is convergent.
Now we have an approximation for the second virial coefficient:

B2(T ) = −1

2
I(β) =

2

3
πr3

0

[
1− 3βu0

(s− 3)

]
(10.4.25)

which we will write as

B2(T ) = b′
[
1− a′

kT

]
, (10.4.26)

where b′ = 2πr3
0/3 characterizes the molecular volume and a = 3βu0/(s− 3) characterizes

the interaction strength. To this approximation,

p = nkT + b′
[
kT + a′

]
n2 (10.4.27)

Rearranging terms,

p+ a′b′n2 = nkT (1 + nb′) ≈ nkT

1− nb′
=

kT
1
n − b′

(10.4.28)

assuming nb′ � 1. Therefore

(p+ a′b′n2)

(
1

n
− b′

)
= kT (10.4.29)

and rewriting the number density as the inverse volume per particle,(
p+

a′b′

v2

)
(v − b′) = kT (10.4.30)

This is of course the Van de Waal’s equation of state.
The constant b′ is very obviously the “size” of the molecules. The constant a′b′ depends

on a′ which is connected both to the strength, u0, and the concavity (via s) of the potential
when r > r0. It therefore characterizes the strength and range of the intermolecular forces.
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10.5 Paramagnetism

In a previous section we had studied paramagnetism in a very special system by considering
atoms of spin 1

2 in an external magnetic field. Because of the spin−B coupling, the
material exhibits an overall magnetization which depends on the field strength and on the
temperature of the material. The magnetization disappears of course when the driving
magnetic field is removed.

We begin this section by treating a system of N classical non-interacting atoms, each
having a magnetic moment ~µ, in an external magnetic field, ~B (the Langevin theory of
paramagnetism). The energy of each atom will have the form

E = −~µ · ~B = −µB cos θ (10.5.1)

where θ is the angle between the magnetic moment of the atom and the magnetic field.
Let ~B define the z−axis. Since this treatment will be classical, all orientations of the
magnetic moment are allowed, that is, the angle θ can take on any value between 0 and π
and the azimuthal angle, φ, can take all values between 0 and 2π. The partition function
for a single atom will be the following sum over all the orientations of µ

Z1 =

∫ 2π

0
dφ

∫ π

0
sin θdθeβµB cos θ

=
4π

βµB
sinh(βµB) (10.5.2)

which gives, for the partition function of the entire system,

ZN =

(
4π

βµB

)N
sinhN (βµB) (10.5.3)

The average energy of the system is therefore

〈E〉 = −∂ lnZN
∂β

= NµB

[
1

βµB
coth(βµB)

]
(10.5.4)

and the average magnetization is

〈M〉 = N

∫ 2π
0 dφ

∫ π
0 sin θdθµ cos θeβµB cos θ∫ 2π

0 dφ
∫ π

0 sin θdθeβµB cos θ

=
1

β

∂ lnZN
∂B

=
1

B

∂ lnZN
∂β

= −〈E〉
B
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= Nµ

[
coth(βµB)− 1

βµB

]
(10.5.5)

From the average magnetization, one can calculate the magnetic susceptibility

χ =
∂〈M〉
∂B

= Nβµ2

[(
1

βµB

)2

− csch2(βµB)

]
(10.5.6)

At very high temperatures, such that βµB << 1, the susceptibility obeys Curie’s law,

lim
βµB→0

χ =
Nµ2

3kT
(10.5.7)

while at very low temperatures, βµB >> 1, the magnetization approaches a constant

lim
βµB→∞

〈M〉 = Nµ (10.5.8)

as expected. Let us now calculate the entropy. As we are treating the system classically,
we expect that the third law of thermodynamics will be violated. From the partition
function in (10.5.3) we see that

S = [lnZN + β〈E〉]

= Nk [ln(4π) + ln sinhα− lnα− α cothα+ 1] , α = βµB (10.5.9)

It is clearly extensive. However, in the low temperature limit, βµB →∞ (or α→∞), its
behavior is not in keeping with the 3rd law of thermodynamics. Indeed, using

lim
α→∞

ln sinhα = α− ln 2

lim
α→∞

cothα = 1, (10.5.10)

we find

lim
βµB→∞

S = Nk [lnT + σ] , σ = 1 + ln

(
2πk

µB

)
, (10.5.11)

which, characteristically, diverges as T → 0.

If we treat the atoms quantum mechanically we must account for the fact that their
net angular momentum is quantized. Consider atoms of arbitrary angular momentum, ~J ,
so that the spin−B coupling is

ε = −~µ · ~B, ~µ = gJ
e

2m
~J (10.5.12)
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where gJ is the g−factor. Thus, if ~B defines the z direction, ~B = (0, 0, B), the energy of
each molecule will be

ε = −~µ · ~B = −gJ
e

2m
~J · ~B

= −gJ
e~
2m

Jz
~
B = −µJ

Jz
~
B (10.5.13)

and it is determined by the z component of the angular momentum, which is quantized
according to Jz = mJ~ for mJ = 0,±1,±2, ...,±J where ~J2 = J(J+1)~2 is the magnitude
squared of the angular momentum.

As the molecules do not interact among themselves, the partition function is

ZN =

 J∑
mJ=−J

eβµJmJB

N (10.5.14)

where N is the total number of molecules in the system. The z component of the magnetic
moment of each atom is µz = mJµJ , so the average magnetization is

〈MJ〉 = N〈µz〉 = N

∑J
mJ=−J mJµJe

βµJmJB∑J
mJ=−J e

βµJmJB

=
1

β

∂ lnZN
∂B

=
1

B

∂ lnZN
∂β

= −〈E〉
B

(10.5.15)

So, we need to evaluate ZN . Consider

Z1 =
J∑

mJ=−J
eβµJmJB (10.5.16)

and let
x = eβµJB (10.5.17)

so that

Z1 =
J∑

mJ=−J
xmJ = x−J + x−J+1 + ...xJ−1 + xJ

= x−J
[
1 + x+ x2 + ...x2J

]
=
x−J

(
1− x2J+1

)
(1− x)

=

(
x−J−1/2 − xJ+1/2

)(
x−1/2 − x1/2

)
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=
sinh[(J + 1/2)βµJB]

sinh[βµJB/2]
(10.5.18)

The full partition function for the system of N particles is therefore

ZN =
sinhN [(J + 1/2)βµJB]

sinhN [βµJB/2]
(10.5.19)

which reduces, for J = 1/2 to the expression we had before. We can now easily calculate
the average magnetization:

lnZN = N {ln sinh[(J + 1/2)βµJB]− ln sinh[βµJB/2]}

∂ lnZN
∂B

= NβµJ

{
(J + 1/2) coth[(J + 1/2)βµJB]− 1

2
coth[βµJB/2]

}
〈MJ〉 = NµJ

{
(J + 1/2) coth[(J + 1/2)βµJB]− 1

2
coth[βµJB/2]

}
(10.5.20)

The term in parenthesis, divided by J , is called the Brillouin function. The magnetic
susceptibility is

χ =
∂〈M〉
∂B

(10.5.21)

Let us now study the limiting behavior of the magnetization.

At high temperatures, when βµJB << 1, we apply the limiting behavior

cothα =
coshα

sinhα
=

1

α
+

1

3
α+O(α2) (10.5.22)

of the hyperbolic cotangent to (4.29) to get (at high temperatures)

lim
βµJB→0

〈MJ〉 =
Nµ2

JB

3kT
J(J + 1)

lim
βµJB→0

χ =
Nµ2

J

3kT
J(J + 1) (10.5.23)

which you should recognize as Curie’s law and agrees with the result obtained from the
classical treatment. This is not surprising as we are in the classical regime. Moreover, in
the limit of low temperatures, or more correctly when βµJB >> 1,

lim
βµJB→∞

〈MJ〉 = NJµJ (10.5.24)
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as expected. It is worth comparing the above two expressions with the results in (10.5.7)
and (10.5.8). Why do they make sense?

Turning to the entropy, we will now see that quantization leads to a verification of the
3rd law. By straightforward differentiation, we find the average energy of the system

〈E〉 = −∂ lnZN
∂β

= −NµJB
[(
J +

1

2

)
coth ((J + 1/2)βµJB)− 1

2
coth(βµJB/2)

]
(10.5.25)

and its entropy

S = [lnZN + β〈E〉]

= kN

[
ln sinh

(
(J +

1

2
)βµJB

)
− ln sinh

(
βµJB

2

)
−βµJB

{(
J +

1

2

)
coth

(
(J +

1

2
)βµJB

)
− 1

2
coth

(
βµJB

2

)}]
(10.5.26)

To check that the 3rd law is indeed obeyed, take the limit βµJB →∞ above, using

lim
α→∞

ln sinhα = α− ln 2

lim
α→∞

cothα = 1, (10.5.27)

to get
lim
T→0

S(T ) = 0 (10.5.28)

as required.

10.6 Harmonic Oscillators

Finally, let us consider the system of non-interacting harmonic oscillators. It is instructive
to first treat them classically. Thus, the energy of each oscillator is

E =
~p2

2m
+

1

2
mω2~r2 (10.6.1)

and the partition function for each oscillator is

Z1 =
1

h3
o

∫
d3~rd3~pe−βE(~r,~p)
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=

(
4π2

ω2h2
oβ

2

) 3
2

(10.6.2)

where we have performed the two three dimensional gaussian integrations to arrive at
the second equation above. The partition function of the system of N non-interacting
oscillators is therefore

ZN =

(
4π2

ω2h2
oβ

2

)3N/2

(10.6.3)

whence follow the average energy and the entropy as usual

〈E〉 = −∂ lnZN
∂β

= 3NkT

S = [lnZ + β〈E〉] = 3kN [lnT + σ] (10.6.4)

where

σ = 1 + ln

(
2πk

ωho

)
(10.6.5)

A few things about the above formulæ are notable: first note that the energy could be
deduced directly from the equipartition theorem that says that each gaussian integration
in the partition function contributes kT/2 to the mean energy of the system. There
are in all six gaussian integrations involved, three over the momenta and three over the
coordinates because the harmonic oscillator potential is gaussian. Next note that the
entropy is extensive – there is no Gibbs paradox here. Finally, the entropy does not
satisfy the third law of thermodynamics because we are using the classical theory.

The states of quantum oscillators, on the other hand, are determined by three integers,
n,m and r, one for each degree of freedom, having energy

En,m,r =

(
n+m+ r +

3

2

)
~ω (10.6.6)

The partition function for the system of N oscillators was given before,

ZN =

[ ∞∑
n=0

e−β(n+1/2)~ω

]3N

= 2−3Ncsch3N

(
~ω

2kT

)
(10.6.7)

Thus, the average energy of the system is

〈E〉 = −∂ lnZN
∂β

=
3

2
N~ω coth

(
~ω

2kT

)
(10.6.8)
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We see that in the limit β~ω << 1, 〈E〉 takes the value dictated by the classical equipar-
tition theorem

lim
β~ω→0

〈E〉 = 3NkT (10.6.9)

while, in the limit β~ω >> 1, the average energy is the sum of the zero-point energies of
the oscillators,

lim
β~ω→∞

〈E〉 =
3

2
N~ω (10.6.10)

The first limit above is the classical limit. Likewise, let us study the behavior of the
entropy:

S = k [lnZN + β〈E〉]

= 3Nk

[
β~ω

2

(
coth

(
β~ω

2

)
− 1

)
− ln

(
1− e−β~ω

)]
(10.6.11)

It obeys the third law, S(T → 0)→ 0, while at high temperatures, β~ω → 0,

lim
β~ω→0

S → 3Nk [lnT + σ]

σ = 1 + ln

(
2πk

hω

)
(10.6.12)

which is precisely the value derived earlier from the classical approximation. Once again,
the quantum theory agrees with the classical theory in the limit βε� 1 and also gives the
correct limit, in agreement with the third law, as T → 0.

10.7 Debye’s Theory of Specific Heats

If we treat a solid as a collection of molecules held firmly to one another by relatively strong
forces of electromagnetic origin derivable from complicated potentials then, provided that
the potentials admit minima, the atoms of the solid will oscillate, each about its own
equilibrium point. Let us begin with the following general expression for the energy of the
system of molecules:

E = T + U =
1

2

∑
α

mα~̇r
2
α + U(~r1, ~r2, . . . , . . .) (10.7.1)

where α labels the molecules and ~rα is the position vector of the molecule labeled by α.
The precise form of the potential energy will not interest us. Since we assume that the
molecules will all oscillate about equilibrium positions in a solid, we simply expand the
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function in a Taylor polynomial about the equilibrium positions, which we label by ~rα,0.

Call ~ξα = (~rα − ~rα,0) then

U(~r1, ~r2, . . . , . . .) = U0 +
∑
α,i

(∂xαiU |~rα0
)ξαi +

1

2!

∑
αi,βj

(∂xαi∂xβjU |~rα,0)ξαiξβj + . . . (10.7.2)

Ignoring higher order terms and noting that because ~rα0 is the equilibrium position of
each molecule the first term must vanish we have

U(~r1, ~r2, . . . , . . .) ≈ U0 +
∑
α,β,i,j

Aαi,βjξαiξβj (10.7.3)

and the energy function becomes

E ≈ 1

2

∑
αi

mαξ̇
2
αi +

∑
αi,βj

ξαiAαi,βjξβj + U0 (10.7.4)

Now Â is a 3N × 3N matrix (N coordinates, α, and three coordinates, i), which can be
diagonalized by an orthogonal transformation. If we collectively label the pairs (αi) by k
then k ∈ {1, 2, . . . , 3N}

ξk → qk =
∑
l

Skl ξl

Akl → κ2
D,kl (10.7.5)

where κ̂2
D is a diaginal matrix of positive elements. The new variables, qk, obtained from

the original displacements by an orthogonal transformation, are generalized coordinates
and the elements of κ̂D are related to the normal mode angular frequencies, ωk in the
usual way. The energy may be put in the form

E =

3N∑
k=1

1

2

[
q̇2
k + ω2

kq
2
k

]
+ V0 (10.7.6)

The angular frequencies are clearly the normal frequencies. The overall constant will not
affect the heat capacity and will now be dropped. What we have then is a system of
oscillators, whose partition function we therefore already know to be

Z =
∏
k

(
(2 sinh

β~ωk
2

)−1

(10.7.7)

The central problem is now determining the distribution over normal modes in the sum

lnZ = −
∑
k

ln

(
2 sinh

β~ωk
2

)
(10.7.8)
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We assume that the normal modes are very closely spaced in a solid and replace the sum
over normal modes by the integral

lnZ = −
∫
dωσ(ω) ln

(
2 sinh

β~ωk
2

)
(10.7.9)

so that σ(ω)dω represents the number of normal modes available to the solid between ω
and ω + dω. What can we say about σ(ω)? The average energy of the solid becomes

〈E〉 = −∂ lnZ

∂β
=

~
2

∫
dωσ(ω)ω coth

(
β~ω

2

)
(10.7.10)

and so at high temperatures

〈E〉 → β−1

∫
dωσ(ω) (10.7.11)

gives, for the heat capacity at constant volume

CV =
d〈E〉
dT

= −kβ2d〈E〉
dβ

= k

∫
dωσ(ω), (10.7.12)

which we know from the Dulong and Petit law must be 3Nk. Therefore at high tempera-
tures all 3N normal modes are available to the system.

Determining the number of normal modes at low temperature is more difficult. The
Debye approximation consists in treating the solid as a continuous medium and neglecting
the discreteness of the atomic structure. This is valid under certain conditions: waves in
the solid must satisfy the condition that wavelenths are much larger than the intermolec-
ular spacing, λ� a. In this case atoms are all displaced by roughly the same amount, the
underlying discreteness is hardly relevant and the number of modes of the effective elastic
medium in the interval between λ and λ + dλ should be a good approximation to the
actual number of normal modes in the solid. On the other hand, when λ ≤ a then atomic
displacements are irregular and the microscopic structure of the solid becomes important.
So let us write the condition for the Debye approximation as

λ� a =

(
V

N

) 1
3

or ω � 2πvs

(
N

V

) 1
3

(10.7.13)

where vs is the speed of sound in the solid. The approximationbreaks down at high
frequencies but we expect that the number of normal modes with very high frequencies at
low temperatures is small, so the Debye approximation should be a good one in the low
temperature limit.

The number of states available to scalar waves

ψ = ψ0e
i~k·~r−ωt (10.7.14)
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with wavelengths between k and k+ dk in a volume V is given by the phase space volume

σ̃(k)dk =

(∫
V
d3~r

)
d3~k

(2π)3
=

4πV

(2π)3
k2dk. (10.7.15)

It can be used to directly obtain σ(ω)dω upon employing the dispersion relation vs = ω/k
where vs is the speed of sound in the solid. One finds

σ(ω)dω =
V

2π2v3
s

ω2dω (10.7.16)

According to elasticity theory, both longitudinal waves, ~ul, and transverse waves, ~ut, will
propagate through the solid, each obeying the wave equation

1

v2

∂2~u

∂t2
= ~∇2~u (10.7.17)

and respectively satisfying the constraints

~∇ · ~ul = 0 = ~∇× ~ut. (10.7.18)

The lattice displacements can be written as the sum of them, ~u = ~ul + ~ut. Longitudinal
waves have one degree of freedom and transverse waves have two degrees of freedom, so

σl(ω) =
V

2π2v3
l

ω2dω

σt(ω) =
2V

2π2v3
l

ω2dω (10.7.19)

and we can write the density of states for the phonons as

σ(ω)dω =
V

2π2

[
1

v3
l

+
2

v3
t

]
ω2dω

def
=

3V

2π2v3
s

ω2dω. (10.7.20)

In the Debye approximation, we now set

σD(ω) =


σ(ω) ω < ωD

0 ω > ωD

(10.7.21)

where σD(ω) is chosen so that∫ ωD

0
dωσD(ω) = 3N ⇒ ωD = vs

(
6π2N

V

)1/3

(10.7.22)
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Our approximate expression for the internal energy is therefore

〈E〉 ≈
(

3V ~
4π2v3

s

)∫ ωD

0
dω ω3 coth

(
β~ω

2

)
(10.7.23)

and therefore

CV = −kβ2∂〈E〉
∂β

=

(
3V ~2kβ2

8π2v3
s

)∫ ωD

0
dω ω4csch2

(
β~ω

2

)
. (10.7.24)

We may extract all the β dependence from the integrand by defining the dimensionless
quantity x = β~ω/2 so that, calling Θ = ~ωD/2k, we have

CV = 9Nk

(
T

Θ

)3 ∫ ΘD/T

0
dx x4csch2x. (10.7.25)

In this way it is easier to extract the temperature dependence of the heat capacity in the
limits of interest. At high temperatures, approximate “cschx” by 1/x and perform the
integral to get

CV
T→∞−→ 3Nk, (10.7.26)

which is the Dulong and Petit law. At low temperatures, the first order (in T ) contribution
to the integral is obtained by replacing the upper limit by ∞ and using∫ ∞

0
dx x4csch2x =

π2

30
. (10.7.27)

To this order then the heat capacity behaves as T 3 near absolute zero

CV
T→0−→ 3π2

10
Nk

(
T

Θ

)3

. (10.7.28)

Beginning with a T 3 dependence very close to absolute zero, it smoothly approaches its
asymptotic value of 3Nk as shown in figure (6.2) as the temperature rises.

10.8 Linear Expansion in Solids

Let us now address the mean molecular separation in a solid in the simplified model
in which two molecules interact with each other by a force that is derivable from some
potential U(x) that depends only on their separation. Imagine that the two molecules
are in thermal contact with a heat bath whose temperature is high enough that classical
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statistical mechanics is applicable. The average separation between the molecules will be
given by

〈x〉 =

∫
dx
∫
dp x e−β[p2/2m+U(x)]∫

dx
∫
dp e−β[p2/2m+U(x)]

(10.8.1)

Evidently, the p− integral cancels and we have

〈x〉 =

∫
dx x e−βU(x)∫
dx e−βU(x)

(10.8.2)

Expand U(x) in a Taylor series about its minimum, x = a,

U(x) ≈ U0 +
1

2!
U ′′(a)(x− a)2 +

1

3!
U ′′′(a)(x− a)3 + . . . (10.8.3)

then the denominator in (10.8.2) is just∫
dx e−βU(x) ≈ e−βU0

∫
dy e−

β
2
U ′′(a)y2

= e−βU0

√
2π

βU ′′(a)
. (10.8.4)

whereas the denominator in (10.8.2) can be expanded as

e−βU0

∫
dx x e−

β
2
U ′′(a)(x−x0)2

[
1− β

3!
U ′′′(a)(x− a)3 + . . .

]
= e−βU0

[∫
dy y e−

β
2
U ′′(a)y2

+ a

∫
dye−

β
2
U ′′(a)y2 − β

3!
U ′′′(a)

∫
dy y4 e−

β
2
U ′′(a)y2

+ . . .

]
(10.8.5)

But, since the integrals are over all possible separations, y = x − a, the first will vanish.
Up to the fourth order in y, we find that the numerator is

≈ e−βU0
√
π

a√ 2

βU ′′(a)
− βU ′′′(a)

8

(√
2

βU ′′(a)

)5
 (10.8.6)

and so, to the same order,

〈x〉 ≈ a− kU ′′′(a)

2U ′′2(a)
T. (10.8.7)

This is the linear expansion law and it follows that the coefficient of linear expansion is
given by the constant

α =
〈x〉 − a
a

= − kU ′′′(a)

2aU ′′2(a)
, (10.8.8)
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which depends on the third derivative of the potential at its minimum. Experience tells
us that the coefficient of linear expansion for most solids is positive, which means that
the third derivative of the potential must be negative at a. Thus U ′′(a), which is positive
at a must decrease with increasing separation, i.e., the potential must tend to “flatten”.
This behavior is seen in the Lennard-Jones potential of (10.4.3), which changes concavity
as the molecular separation increases beyond the minimum.

10.9 Adsorption

Recall from Chapter 5 that certain solid surfaces attract molecules from an adjacent gas
or liquid by weak, long range forces that initiate the process and strong short range
forces between the molecular electric multipoles that firmly attach fluid molecules to the
solid. The phenomenon is called adsorption. Here we will consider a greatly oversimplified
treatment of adsorption in which the effect is to form two dimensional layers of the gas
or liquid on the solid surface. We will assume that the adsorbent is homogeneous and
that the attractive forces on its surface correspond to a potential energy of −ε0. We are
interested in determining the areal density of adsorbed molecules as a function of the fluid
pressure. To do so we will think of the fluid as made up of two phases, one of which
is three dimensional, surrounding the solid and the other, consisting of the adsorbate, is
effectively two dimensional able to move only along the surface of the adsorbent. We then
proceed to determine the condition for chemical equilibrium between the phases. The
partition function in the canonical ensemble for the two and three dimensional phases are
respectively

lnZN = Na

[
ln

(
A

Na

)
+ ln

(
2πm

βh2
o

)
+ βε0 + 1

]
(10.9.1)

(the compressibility factor here is unity) and

lnZN = N

[
ln

(
V

N

)
+

3

2
ln

(
2πm

βh2
o

)
+ 1

]
. (10.9.2)

and from these one may compute the chemical potentials according to

µ =

(
∂F

∂N

)
V,T

= − 1

β

(
∂ lnZN
∂N

)
V,T

(10.9.3)

For the adsorbed gas we find

µa = − 1

β

[
ln

(
A

N

)
+ ln

(
2πm

βh2
o

)
+ βε0

]
(10.9.4)

and for the portion of the fluid that is not adsorbed

µ = − 1

β

[
ln

(
V

N

)
+

3

2
ln

(
2πm

βh2
o

)]
(10.9.5)
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As the two must be the same in equilibrium, µa = µ⇒

ln

(
A

N

)
= ln

(
V

N

)
+

1

2
ln

(
2πm

βh2
o

)
− βε0 (10.9.6)

Exponentiating both sides and setting pV = NkT for the three dimensional fluid we obtain
the condition following condition for equilibrium,

Na

A
= p

(
2πmβ

h2
o

)1/2

eβε0 , (10.9.7)

which should be compared with (5.4.18). Various models in this two-phase approach to ad-
sorption can be constructed with more realistic potentials than we have used above; models
that take into account interactions between adsorbate molecules themselves, heterogeneity
of the adsorbent, multiple species of adsorbate and the formation of multilayers, in which
some molecules are adsorbed not on the solid but on layers of already adsorbed molecules.
Another approach to adsorption would be to consider the fluid as if it were in an exter-
nal field. This approach, though perhaps more realistic, requires a detailed knowledge of
the adsorbate-adsorbate and adsorbate-adsorbent interactions and is mathematically very
complex. We shall consider alternatives in a later chapter.



Chapter 11

Indistinguishability and Quantum
Statistics

So far we have dealt only superficially with the role of indistinguishability in statistical
mechanics. It first appeared in the resolution of Gibbs’ paradox, where we saw that the
entropy as naively computed from the partition function does not end up being extensive.
Gibbs resolved this problem by assuming that the molecules of an ideal gas are indistin-
guishable. He suggested that because one cannot actually say which molecule of the N
available molecules is in any given interval (~r, ~r + d~r) and (~p, ~p + d~p) of phase space, the
sum over distinct states in the original definition of the partition function overcounted
them by ignoring the fact that interchanges of particles lead to the same state. Gibb’s
resolution was to divide by the number of possible interchanges of particles, i.e.,

Zcorrect =
ZN
N !

. (11.0.1)

With the advent of quantum mechanics, indistinguishability takes on an even more sig-
nificant role, leading to altogether new constraints on our counting of states. Our goal to
examine this rigorously in the present chapter.1

11.1 Quantum Description of an Ideal Gas

The proper quantum description of N non-relativistic particles is given by an N particle
wavefunction,

ψR = ψa1,a2,...,af (~r1, ~r2, ..., ~rN ) (11.1.1)

1We confine ourselves to non-relativistic systems in this book.
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where the aj ∈ R represent a set of quantum numbers characteristic of the system and
the ~rk are the classical “position” variables associated with the particles. We will think of
the coordinates as labeling them. The wave function satisfies Schroedinger’s equation

i~
∂ψR
∂t

= ĤψR (11.1.2)

where Ĥ is the “Hamiltonian” or energy operator of the system and takes the form

Ĥ = −~2
N∑
j=1

~∇2
j

2mj
+ V (~r1, ...~rN ). (11.1.3)

The potential energy function, V (~r1, ..., ~rN ), is generally quite complicated as we have
already seen in the case of the Lennard-Jones potential. However, if we are considering a
gas of non-interacting particles, the potential energy breaks up nicely as a sum over the
individual particle potential energies, which arise due to the presence of some external
field,

V (~r1, ..., ~rN ) =
N∑
j=1

V (~rj)⇒ Ĥ =
N∑
j=1

(
−~2

~∇2
j

2mj
+ V (~rj)

)
, (11.1.4)

and Schroedinger’s equation takes the very simple form

i~
∂ψR
∂t

= −~2
N∑
j=1

~∇2
j

2mj
ψR +

N∑
j=1

V (~rj)ψR (11.1.5)

The equation can be solved by the method of separation of variables and the linearity
of Schroedinger’s equation ensures that every solution will be a linear combination of
solutions of the form

ψR =
N∏
j=1

ψαj (~rj), (11.1.6)

where αj = {aj1, . . . , a
j
f} is the set of quantum numbers associated with particle j and

each function, ψαj (~rj), in the product satisfies the single particle Schroedinger equation.2

If the particles are identical in all their physical properties and the external potentials
have the same form for all the particles, they will share the same set of quantum numbers,
R. Let particle “1” be in state α and particle “2” in β, then the wavefunction of the
system of two particles will be

ψ1,2
α,β = ψ1

αψ
2
β. (11.1.7)

2Problem: Prove this for two particles. Then extend the proof to an arbitrary number of particles by
induction.
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Vice-versa if “1” is in state β an 2 in state α, then

ψ1,2
β,α = ψ1

βψ
2
α (11.1.8)

is now the state of the system. The wave function that describes the two particles will in
general be a linear combination of the two. To say that the particles are distinguishable
is to insist that ψ1,2

α,β 6= ψ1,2
β,α.

However, if the particles are not simply identical but also indistinguishble, then whether
“1” is in α and “2” in β or vice-versa should have no physical outcome. This in turn implies
that the linear combination that makes up the wave function describing the two particles
should satisfy

|ψ1,2
α,β|

2 = |ψ1,2
β,α|

2, (11.1.9)

because |ψ1,2
α,β|

2 represents the probability of finding particle “1” in state α and particle “2”

in state β and vice-versa |ψ1,2
β,α|

2 represents the probability of finding particle “1” in state β
and particle “2” in state α. Thus the correct solution to Schroedinger’s equation satisfying
indistinguishability cannot be either of the states in (11.1.7) and (11.1.8). Indeed, (11.1.9)
implies that

ψ1,2
α,β = eiφψ1,2

β,α. (11.1.10)

and neither solution obeys this condition. What can we say about the phase? The spin-
statistics theorem3 guarantees that only two values for φ are possible, viz., φ = 0 and
φ = π. Thus wave functions describing indistinguishable particles can only satisfy one of
two conditions

ψ1,2
α,β = ±ψ1,2

β,α (11.1.11)

i.e., they must either be symmetric functions or antisymmetric functions under ex-
changes of “1” and “2”,

ψ 1,2
S;α,β =

1√
2

[
ψ1
αψ

2
β + ψ1

βψ
2
α

]
ψ 1,2
A;α,β =

1√
2

[
ψ1
αψ

2
β − ψ1

βψ
2
α

]
. (11.1.12)

Note that it is impossible to find particles described by the antisymmetric wave function
in the same state, since ψ 1,2

A;α,α vanishes identically. On the other hand the probability of
finding particles described by symmetric wavefunctions in the same state is not only von-
vanishing but indeed enhanced over the probability of finding distinguishable (Boltzmann)
particles in the same state because

|ψ 1,2
S;α,α|

2 = 2|ψ1
α|2|ψ2

α|2. (11.1.13)

3The spin-statistics theorem has its origins in relativistic quantum field theory. It was first systemati-
cally derived by W. Pauli and later re-derived by J. Schwinger and R. Feynman.
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We call particles described by symmetric wavefunctions Bosons after Satyendranath Bose
who first proposed statistics in which indistinguishability had to be taken into account.
Particles described by antisymmetric wavefunctions are called Fermions after Enrico
Fermi.

It is evident that the distribution functions of systems of non-interacting particles will
differ depending on whether or not they are distinguishable in the first place and secondly,
if they are indistinguishable, whether they are Bosons or Fermions. But how do we take
indistinguishability into account? This is the question we now address, first heuristically
and then rigorously in two ways: (i) combinatorically and (ii) via the partition function.

11.2 Heuristic Considerations

Let us begin with a heuristic approach, determining the number distribution between states
by comparing the N particle wave functions. For distinguishable (Boltzmann) particles,
the N particle wave function is

ψ(1, . . . , N) = ψ1
α1
ψ2
α2
ψ3
α3
. . . ψNαN , (11.2.1)

where we assume that each single particle wave-function is normalized. Therefore, the
amplitude for finding all N particles in the state α is just

ψ(1, . . . , N) = ψ1
αψ

2
αψ

3
α . . . ψ

N
α . (11.2.2)

On the other hand for Bosons the N particle wave-function should be

ψS(1, . . . , N) =
1√
N !

∑
{σ}

ψσ1
α1
ψσ2
α2
. . . ψσNαN (11.2.3)

where {σ} is the set of all permutations of {1, 2, . . . , N} and ~σ is a particular permutation,
~σ = (σ1, σ2, . . . , σN ). Since there are N ! permutations of N particles, the amplitude for
finding all the particles in the same state,

ψ(1, . . . , N) =
√
N ! ψ1

αψ
2
α . . . ψ

N
α , (11.2.4)

is enhanced over the Boltzmann case by a factor of
√
N ! . Comparing the two amplitudes,

we conclude that the probability of finding a state α of energy Eα containing nα Bosons
will be

PBα (nα) = nα!(PMα )nα , (11.2.5)

where (PMα )nα is the probability of finding nα distinguishable particles in the state α.
Likewise

PBα (nα + 1) = (nα + 1)!(PMα )nα+1 = [(nα + 1)PMα ](PBα (nα)) (11.2.6)
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is the probability of finding the same state containing nα+ 1 Bosons. We can say that the
probability of adding a boson to a state α which already contains nα bosons is

PBα = (nα + 1)PMα (11.2.7)

and depends on nα. But, since PMα = Ce−βEα ,

PBα = (n+ 1)Ce−βEα (11.2.8)

Now consider particles distributed in two states, α and β. In equilibrium we require
detailed balance, i.e., the number of Bosons leaving state α should be equal to the number
of Bosons entering it, or nαPBα→β = nβPBβ→α. This means that

nα
nβ

=
PBβ→α
PBα→β

(11.2.9)

and therefore, using (11.2.8),

nα
nβ

=
(nα + 1)e−Eα/kT

(nβ + 1)e−Eβ/kT
. (11.2.10)

Gathering factors, this can be re-expressed as

nαe
Eα/kT

(nα + 1)
=
nβe

Eβ/kT

(nβ + 1)
(11.2.11)

but, because the states α and β were arbitrary to begin with, the above statement can be
true only if each side of the equation is equal to the same constant so we can say that

nαe
Eα/kT

(nα + 1)
= e−a, (11.2.12)

for some a that does not depend on the states. Solving for nα, we obtain a distribution of
particles appropriate for Bosonic particles,

nα =
1

ea+Eα/kT − 1
. (11.2.13)

Notice that when βEα � −a, the exponential term in the denominator dominates and

nα ≈ e−a−Eα/kT (11.2.14)

which is the Maxwell-Boltzmann distribution. Therefore the Bosonic number distribution
approaches the Maxwell-Boltzmann distribution and Bosons will behave more or less like
distinguishable particles at high enough temperatures.
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Wave functions describing Fermions must be totally antisymmetric, of the form

ψA(1, . . . , N) =
1√
N !

∑
{σ}

(−)σψσ1
α1
ψσ2
α2
. . . ψσNαN , (11.2.15)

where (−)σ = +1 if the permutation is even and (−)σ = −1 if it is odd. Since no two
particles can be in the same state, the probability to add a Fermion to a state α which
already contains nα Fermions must be zero unless nα = 0. We can express this as

PFα = (1− nα)PMα (11.2.16)

and detailed balance will now require that

nα
nβ

=
PBβ→α
PBα→β

=
(1− nα)e−Eα/kT

(1− nβ)e−Eβ/kT
. (11.2.17)

or that
nαe

−Eα/kT

1− nα
= e−a (11.2.18)

for some constant, a. This can be simplified to give the Fermi-Dirac distribution,

nα =
1

ea+Eα/kT + 1
, (11.2.19)

and again, when βEα � −a, the exponential term in the denominator dominates giving

nα ≈ e−a−Eα/kT . (11.2.20)

This shows that Fermions also behave as distinguishable (Maxwell-Boltzmann) particles
when the temperature is sufficiently high.

11.3 Combinatoric Derivation of the Distribution Functions

The number distributions derived above can be obtained more rigorously via a combina-
toric analysis. To introduce the approach we begin by examining the following experiment.
Balls are thrown into a box at random so that no part of the box is favored. Suppose that
the box is divided into K cells, of volume v1, v2,. . ., vK . If, after throwing N balls we find
that there are n1 balls in v1, n2 balls in v2 and so on, we will say that the system is in
the state {n1, n2, n3, . . . , nK}, i.e., a state of the system is a particular distribution of the
N balls among the K cells. We want to answer the following question: what is the most
likely distribution of the balls within the cells, subject to the constraints

K∑
j=1

nj = N,
K∑
j=1

vj = V (11.3.1)
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Assuming that the balls are thrown randomly, the à priori probability that a ball will fall
into cell vj is just

pj =
vj
V

(11.3.2)

Since every ball is thrown independently of the other the probability of finding nj balls
in volume vj at the end of the experiment is p

nj
j and the à priori probability of having

precisely n1 balls in v1, n2 balls in v2, etc., i.e., the state {n1, n2, . . . , nK}, will be

p =

K∏
j=1

p
nj
j (11.3.3)

Now because the N balls are distinguishable, there are actually

W =
N !

n1!n2! . . . nK !
(11.3.4)

ways in which the state {n1, n2, . . . , nK} may be formed. Therefore the probability of
finding the state {n1, n2, . . . , nK} will be

P{n1,n2,...,nK} =
N !

n1!n2! . . . nK !
pn1

1 pn2
2 . . . pnKK (11.3.5)

We should check this result by verifying that the probability for any state is unity. Sum-
ming over all possible distributions,∑

n1,n2,...,nK

P{n1,n2,...,nK} =
∑

n1,n2,...,nK

N !

n1!n2! . . . nK !
pn1

1 pn2
2 . . . pnKK

= (p1 + p2 + . . .+ pK)N = 1 (11.3.6)

where we have used the multinomial theorem in writing the second equality. Now we
might ask: what is the most probable distribution of balls? This is given by the variation
of P{n1,n2,...,nK} with respect to the occupation numbers n1, n2, etc., holding the total
number of balls, N , fixed. It’s more convenient to vary the natural logarithm of the
probability P{n1,n2,...,nK}. Since

lnP{n1,n2,...,nK} = N lnN −N +
K∑
j=1

(nj ln pj − nj lnnj + nj)

= N lnN +
K∑
j=1

(nj ln pj − nj lnnj) (11.3.7)
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the variation gives

δ lnP{n1,n2,...,nK} =

K∑
j=1

[ln pj − lnnj − 1]δnj =

K∑
j=1

[ln pj − lnnj ]δnj (11.3.8)

when N is held fixed (therefore the variations are not all independent and must satisfy∑
j δnj = 0). This implies that for every cell

ln pj − lnnj + α = 0, (11.3.9)

where α is a constant, the same for all cells. Exponentiation gives

nj = pje
α (11.3.10)

and α is determined by summing over all cells. Since
∑

j nj = N and
∑

j pj = 1 we find
N = eα and thus

nj = Npj (11.3.11)

is the most probable distribution.
Let us now use this reasoning for a situation of greater physical interest. Consider a

gas of N distinguishable particles with fixed total energy E and think of the cells in the
previous example as cells in phase space, each corresponding to an energy uj . Let the N
particles be distributed among the cells so that n1 particles are in cell “1”, n2 in cell “2”
etc., forming the state {n1, n2, . . . , nK} as before and require that∑

j

nj = N ⇒
∑
j

δnj = 0∑
j

njuj = E ⇒
∑
j

δnjuj = 0. (11.3.12)

Since the particles are distinguishable there are

W =
N !

n1!n2! . . . nK !
(11.3.13)

possible ways to form the state {n1, n2, . . . , nK}. Allow each cell to have an additional
degeneracy. This is reasonable because, for example, two particles can have different
momenta and yet possess the same total energy. But if we allow for an extra degeneracy
within each cell then we are led to think of each cell as made up of sub-cells such that any
different distribution of the particles in the cell among the sub-cells leads to a different
state. Let cell j have degeneracy gj . Then in cell j the first particle could be in any of
gj states, the second in any of gj states and so on for every one of the nj particles. In
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other words the number of distinguishable states within cell j will be (gj)
nj .4 Therefore

the total number of states becomes

Ω =
N !

n1!n2! . . . nK !
gn1

1 gn2
2 . . . gnKK (11.3.14)

Our aim is to find the distribution that maximizes Ω subject to the constraints in (11.3.12),
so we use the method of Lagrange multipliers. Thus we define the function

f(n1, . . . , nK ;α, β) = ln Ω− α(N −
∑
j

nj) + β(E −
∑
j

njuj)

= N lnN −N −
∑
j

(nj lnnj − nj − nj ln gj)

+α(N −
∑
j

nj) + β(E −
∑
j

njuj),(11.3.15)

where α and β are Lagrange multipliers, and set its variation to zero. This procedure
gives

[lnnj − ln gj + α+ βuj ] = 0⇒ nM
j = gje

−α−βuj (11.3.16)

for each j. What physical meaning do the Lagrange multipliers have? To find out, consider
a classical, ideal gas, for which each cell is simply a volume d3~r d3~p of phase space. The
degeneracy of each cell represents the number of distinguishable phase space sub-cells (of
volume h3

o) that each cell contains,

gj →
1

h3
o

d3~r d3~p (11.3.17)

The energy of each cell is just

uj → u =
~p2
j

2m
(11.3.18)

4Another way to think of this is as follows: there are

nj !

n1
j !n

2
j ! . . . n

gj
j

ways for the nj particles in cell j to be distributed among the gj sub-cells such that n1
j particles are in

sub-cell “1” of j, n2
j particles in sub-cell “2” of j, etc. The total number of ways to distribute the cells is

then the sum over all possible distributions among the sub-cells, i.e.,∑
n1
j ,...,n

gj
j

nj !

n1
j !n

2
j ! . . . n

gj
j

≡ (gj)
nj

by the multinomial theorem.
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and the number of particles must be

nj → dn =
1

h3
o

d3~r d3~p e−α−β~p
2/2m (11.3.19)

It follows that the total number of particles is

N =

∫
dn =

e−α

h3
o

∫
d3~r d3~p e−β~p

2/2m = V e−α
(

2πm

βh2
o

)3/2

(11.3.20)

Solving the above for α and inserting the solution into (11.3.19) we find

dn = 4πN

(
β

2πm

)3/2

p2e−βp
2/2mdp (11.3.21)

assuming isotropy. Another equation may be obtained by computing the energy

E =

∫
udn = 8πNm

(
β

2πm

)3/2 ∫ ∞
0

(
p2

2m

)2

e−βp
2/2mdp =

3N

2β
. (11.3.22)

By comparison with the kinetic theory we now know that β = 1/kT . Further comparison
also shows that α = −βµ, where µ is the chemical potential.

Thus we have recovered the Maxwell Boltzmann distribution. Our only physical inputs
have been the conservation of particle number and total energy. The next question is this:
how can these methods be expanded to describe indistinguishable particles? If we have N
indistinguishable particles then there is only one way to distribute them into energy cells
so that n1 is in cell “1”, n2 in cell “2”, etc. However, care must be taken in accounting
for an additional degeneracy within each cell. We deal with this problem exactly as we
dealt with the harmonic oscillators, by considering distinguishable arrangements of nj
indistinguishable particles among gj possible sub-cells, which will be

Ωj =
(nj + gj − 1)!

nj !(gj − 1)!
(11.3.23)

(compare this with g
nj
j for nj distinguishable particles) and so the total number of states

is

Ω =
∏
j

(nj + gj − 1)!

nj !(gj − 1)!
. (11.3.24)

As before we are interested in the distribution that maximizes Ω subject to (11.3.12), so
we consider the function

f(n1, . . . , nK ;α, β) = ln Ω− α(N −
∑
j

nj) + β(E −
∑
j

njuj)
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=
∑
j

[(nj + gj − 1) ln(nj + gj − 1)− nj lnnj − (gj − 1) ln(gj − 1)]

+α(N −
∑
j

nj) + β(E −
∑
j

njuj) (11.3.25)

instead and set its variation to zero to find

ln(nj + gj − 1)− lnnj − α− βuj = 0⇒ nB
j =

gj

eα+βuj − 1
. (11.3.26)

This is the distribution appropriate for Bosons. When βui � −a the distribution approx-
imates to

nB
i ≈ e−α−βui , (11.3.27)

which compares with the Maxwell-Boltzmann distribution if β = 1/kT and α = −βµ,
where µ is the chemical potential. As before, α can be recovered by summing over all
occupation numbers.

The number distribution appropriate for Fermions can be obtained similarly. The
particles continue to be distinguishable, but this time no more than one particle may
occupy any particular sub-cell. As before the number of ways in which N particles may be
distributed so that n1 particles lie in cell “1”, n2 in cell “2” etc., is still one because they
are indistinguishable, but we must account for the degeneracy within each cell. Since no
state in the cell may have more than a single fermion, the number of particles in any cell
cannot be larger than the degeneracy associated with that cell (nj ≤ gj) and we can think
of the sub-cells as either occupied or empty. In all there will be nj occupied sub-cells and
(gj − nj) empty ones. We determine the number of distinguishable states (within each
cell) by counting all possible arrangements of nj “occupied” sub-cells and (gj −nj) empty
sub-cells,

Ωj =
gj !

nj !(gj − nj)!
(11.3.28)

Performing the same steps as before we find

nF
j =

gj

eα+βuj + 1
. (11.3.29)

Again, when βui � −a, the distribution approximates to

nF
j ≈ e−α−βuj , (11.3.30)

which compares with the Maxwell-Boltzmann distribution if β = 1/kT and α = −βµ,
where µ is the chemical potential. Both the Bose and the Fermi distributions approach
the Maxwell Boltzmann distribution at sufficiently high temperature.
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11.4 The Partition Function

As we saw in the combinatoric analyses above, each state of a gas is a particular distribu-
tion of particles between available energy levels. If we call the energies of these levels εi
then a typical state is of the form {n1, n2, . . . , nj , . . .}, where nj particles have energy εj .
If the particles are distinguishable, then each state has a degeneracy of

g(n1, n2, . . . , nj , . . .) =
N !

n1!n2! . . . nj ! . . .
(11.4.1)

and if they are indistinguishable, then

g(n1, n2, . . . , nj , . . .) = 1. (11.4.2)

We will refer to the set of all states (distinguishable distributions) by ℵ, then the following
relations must be hold

Nℵ =
∑
i

ni

Eℵ =
∑
i

niεi (11.4.3)

and the partition function can be written as

Ξ(β, µ, ~X) =
∑
ℵ
e−β(Eℵ−µNℵ), (11.4.4)

where µ is the chemical potential. Writing this out explicitly,

Ξ(β, µ, ~X) =
∑
N

∑
n1,n2,...,nj ,...

g(n1, n2, . . . , nj , . . .)e
−β
∑
j nj(εj−µ), (11.4.5)

where
∑

j nj = N . Then using a property of the exponential we turn the sum in the
exponent into a product, expressing it in the more useful form

Ξ(β, µ, ~X) =
∑
N

∑
n1,n2,...,nj ,...

g(n1, n2, . . . , nj , . . .)
∏
j

e−βnj(εj−µ). (11.4.6)

To see that this makes sense, we first address the case of distinguishable particles, for
which we have some familiarity. In this case, g(n1, . . .) is given in (11.4.1) and

ΞM(β, µ, ~X) =
∑
N

∑
n1,n2,...,nj ,...

N !

n1!n2! . . . nj ! . . .
e−βn1(ε1−µ)e−βn2(ε2−µ) . . . e−βnj(εj−µ) . . .

(11.4.7)
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By the multinomial theorem this is just

ΞM(β, µ, ~X) =
∑
N

(
e−βn1(ε1−µ) + e−βn2(ε2−µ) + . . .+ e−βnj(εj−µ) + . . .+

)N
=

∑
N

∑
j

e−β(εj−µ)

N

=
∑
N

eβµNZN (11.4.8)

where ZN is the canonical partition function for N particles. Alternatively, since ZN =
ZN1 , where Z1 is the single particle partition function,

ΞM(β, µ, ~X) =
∑
N

(eβµZ1)N =
1

1− eβµZ1
=

1

1−
∑

j e
−β(εj−µ)

(11.4.9)

The answer is somewhat different if we take into account Gibb’s correction, for then

ΞM(β, µ, ~X) =
∑
N

(eβµZ1)N

N !
= exp

(
eβµZ1

)
(11.4.10)

and so

ΞM(β, µ, ~X) = exp

∑
j

e−β(εj−µ)

 =
∏
j

exp
(
e−β(εj−µ)

)
(11.4.11)

when the particles are classically indistinguishable.
For Bosons, g(n1, . . .) = 1 and we end up with

ΞB(β, µ, ~X) =
∑

n1,n2,...,nj ,...

∏
j

e−βnj(εj−µ) ≡
∏
j

∞∑
nj=0

e−βnj(εj−µ). (11.4.12)

We have interchanged the product and sum above and allowed the occupation numbers
to run all the way to infinity. Thus we get

ΞB(β, µ, ~X) =
∏
j

(
1− e−β(εj−µ)

)−1
(11.4.13)

for the partition function for a gas of Bosons.
A Fermi gas can be treated similarly, except that nj in the sum can only take values

zero and one. Thus
ΞF(β, µ, ~X) =

∏
j

(
1 + e−β(εj−µ)

)
(11.4.14)

is the partition function that describes Fermions.
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Let us now check that these partition functions yield the number distributions that
we derived earlier. From the defining equation in (11.4.5) we could obtain the average
distribution from

〈nj〉 = − 1

β

∂ ln Ξ

∂εj
(11.4.15)

in each case. Thus, for particles obeying Maxwell-Boltzmann statistics and (classical or
Gibb’s) indistinguishability,

〈nM
j 〉 = − 1

β

∂

∂εj

∑
i

e−β(εi−µ) =
∑
i

δije
−β(εi−µ) = e−β(εj−µ). (11.4.16)

For Bosons,

〈nB
j 〉 = − 1

β

∂

∂εj

∑
i

ln(1− e−β(εi−µ)) =
∑
i

δije
−β(εi−µ)

1− e−β(εi−µ)
(11.4.17)

and simplifying

〈nB
j 〉 =

1

eβ(εj−µ) − 1
(11.4.18)

as we had before. Finally, for Fermions

〈nF
j 〉 = − 1

β

∂

∂εj

∑
i

ln(1 + e−β(εi−µ)) =
∑
i

δije
−β(εi−µ)

1 + e−β(εi−µ)
(11.4.19)

or

〈nF
j 〉 =

1

eβ(εj−µ) + 1
. (11.4.20)

In each case, we should find that

〈N〉 =
∑
j

〈nj〉 =
1

β

∂ ln Ξ

∂µ
, (11.4.21)

where 〈N〉 refers to the average total number of particles. We now want to discuss some
physical properties of the distributions.

11.5 Physical consequences of the Distributions

Although all distributions asymptotically approach the Maxwell-Boltzmann distribution
in the limit of high temperature, it is worth analyzing their behavior is detail. There are
three possible distributions,

〈nM
i 〉 = gie

−β(εi−µ)
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Μ

<n j> = 0

Ε j

<n j>

Figure 11.1: Maxwell-Boltzmann distribu-
tion at T = 0

Ε j = Μ

Ε j

<n j>

Figure 11.2: Maxwell-Boltzmann distribu-
tion when T > 0

〈nB
i 〉 =

gi

eβ(εi−µ) − 1

〈nF
i 〉 =

gi

eβ(εi−µ) + 1
, (11.5.1)

written in terms of the chemical potential, a = −βµ, which we wish to compare and
contrast.

11.5.1 Maxwell-Boltzmann distribution

At low temperatures, as T → 0, the number of Maxwell-Boltzmann particles in energy
levels for which εj < µ approaches infinity,

〈nM
i 〉

T→0−→ ∞ (11.5.2)

whereas it approaches zero in energy levels for which εj > µ,

〈nM
i 〉

T→0−→ 0 (11.5.3)

so that all Maxwell-Boltzmann particles tend to distribute themselves in energy levels with
εj < µ at T = 0. Two distinct cases arise for T > 0:

1. When εj < µ

(a) low temperature: |εj − µ| � kT ⇒ 〈nM
i 〉 ∼ e−β(εj−µ) →∞
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Ε j = Μ
Ε j

<n j>

Figure 11.3: Bose-Einstein distribution for T > 0

(b) high temperature: |εj − µ| � kT ⇒ 〈nM
i 〉 ∼ e−β(εj−µ) → 1

2. When εj > µ

(a) low temperature: |εj − µ| � kT ⇒ 〈nM
i 〉 ∼ e−β(εj−µ) → 0

(b) high temperature: |εj − µ| � kT ⇒ 〈nM
i 〉 ∼ e−β(εj−µ) → 1

Thus we get the following picture: as T → 0 all particles tend to occupy only energy levels
below the chemical potential. When T > 0 the the level occupancy of a state exponentially
decreases with its energy. This behavior is shown in figures 11.1 and 11.2.

11.5.2 Bose-Einstein distribution

Particles in the Bose-Einstein distribution may never occupy energy levels below the chem-
ical potential because for them 〈nj〉 < 0, which is nonsense. So we consider only states
with εj ≥ µ and note that for any temperature 〈nj〉 → ∞ as εj → µ. Furthermore, at
T = 0 no states may occupy energy levels above the chemical potential since 〈nj〉 → 0,
therefore as T → 0 all Bosons tend to fall into just one energy level, the one with εj = µ.
As the temperature rises two possibilities emerge:

1. low temperature: β(εj − µ)� 1⇒ 〈nB
j 〉 → ∞, and

2. high temperature: β(εj − µ) � 1 ⇒ 〈nB
j 〉 → e−β(εj−µ), which is the Maxwell-

Boltzmann distribution.

We can summarize the behavior of Bosons in the following way: energy levels below the
chemical potential can never be occupied. At zero temperature all Bosons “condense”
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Ε j = Μ

<n j> = 1

Ε j

<n j>

Figure 11.4: Fermi-Dirac distribution at
T = 0

Ε j = Μ

<n j> =
1

2

Ε j

<n j>

Figure 11.5: Fermi-Dirac distribution
when T > 0

into the level whose energy is precisely the chemical potential. As the temperature rises
energy levels above the chemical potential begin to be occupied, with the distribution
approaching the Maxwell-Boltzmann distribution as β|εj −µ| gets smaller. This behavior
is shown in figure 11.3.

11.5.3 Fermi-Dirac distribution

The Fermi-Dirac distribution behaves somewhat differently from both of the distributions
described above. For T = 0,

1. if εj < µ⇒ 〈nF
j 〉 → 1, and

2. if εj > µ⇒ 〈nF
j 〉 → 0,

so at very low temperature Fermions will distribute themselves in the energy levels below
the chemical potential, no two Fermions occupying a single particle state, and all the levels
above µ are empty. At temperatures above absolute zero,

1. If εj < µ then

(a) low temperature: β|εj − µ| � 1⇒ 〈nF
j 〉 ≈ 1, and

(b) high temperature: β|εj − µ| � 1⇒ 〈nF
j 〉 ≈ 1

2

2. If εj > µ then
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(a) low temperature: β|εj − µ| � 1 ⇒ 〈nF
j 〉 ≈ e−β(εj−µ), i.e., the Maxwell-

Boltzmann distribution, and

(b) high temperature: β|εj − µ| � 1⇒ 〈nF
j 〉 ≈ 1

2

and so we get the following picture: at very low temperatures, only energy levels below
the chemical potential will be occupied. As the temperature rises, energy levels above the
chemical potential begin to be occupied, with the distribution approaching the Maxwell-
Boltzmann distribution as β|εj − µ| gets smaller (see figures 11.4 and 11.5).

In all cases, the chemical potential will depend on the total number of particles, the
temperature and other thermodynamic properties of the system and should be computed
first. We will now embark upon a study of some elementary applications of these distri-
butions and the new statistics implied by them.



Chapter 12

Quantum Gases

We will now consider some simple applications of quantum statistics, paying special atten-
tion to the central role played by indistinguishability. We begin by treating the simplest
of all quantum systems, but an important one, the photon gas. Then we turn to the
Bose and Fermi gases of massive particles and examine some consequences of quantum
statistics.

12.1 The Photon Gas

A photon gas is a gas-like collection of photons and can be described by the same ther-
modynamic variables as an ordinary gas of particles, such as pressure, temperature and
entropy. Because the energy of a photon, E = hf , where h is Planck’s constant, is a func-
tion of the frequency and because the frequency itself varies smoothly from zero, photons
of arbitrary small energy it can be created and added to the gas. As a consequence the
chemical potential is identically zero and the photon number is not conserved. We think
of f as labeling the energy level of a photon. In an ordinary gas, equilibrium is achieved
by particle collisions with one another. Photons do not, however, interact so equilibrium
is achieved by other means, i.e., by the interaction of the photons with the matter in the
bounding container or cavity, so the equilibriation time will be on the order of τ = L/c,
where L is the characteristic length dimension of the container. The thermodynamics of a
photon gas in equilibrium at a temperature T is obtained via the Bose partition function
in (11.4.12)

Zph(T, V ) =
∏
f

(1− e−βhf )−1 (12.1.1)

245
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where the product is over all frequencies. Photons obey Bose statistics and the number of
photons of frequency f is given by the distribution function

〈nph〉 =
1

eβhf − 1
(12.1.2)

and we may compute the internal energy of the gas from the sum (dropping the superscript
“ph” from now on)

〈E〉 =
∑
f

hf

eβhf − 1
. (12.1.3)

The sum over the number of states goes over to an integral in phase space

∑
f

· · · → g

h3

(∫
V
d3~r

)∫
d3~p . . . =

4πgV

h3

∫
dp p2 . . . (12.1.4)

where g is the degeneracy associated with each phase-space cell. This can be re-written
in terms of an integral over frequencies by using the dispersion relation E = pc. The
degeneracy, g, counts the two polarizations of the photon and we find

8πV

h3

∫
dp p2 . . . =

8πV

c3

∫
df f2 . . . (12.1.5)

and the internal energy at temperature T is

〈E〉 =
8πhV

c3

∫ ∞
0

f3df

eβhf − 1
. (12.1.6)

Transforming to the dimensionless variable x = βhf , allows us to extract the temperature
dependence of the internal energy

〈E〉 =
8πhV

c3(βh)4

∫ ∞
0

x3dx

ex − 1
, (12.1.7)

which evidently goes as T 4. Indeed, calling the integral (which is just a number) I1 we
have

〈E〉 =
8πhV

c3

(
kT

h

)4

I1, (12.1.8)

where

I1 =

∫ ∞
0

x3dx

ex − 1
=
π2

15
. (12.1.9)
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From these expressions we can derive Stefan’s and Wien’s laws of black body radiation
quite easily. Define the spectral energy density as the energy density of photons (of both
polarizations) with frequency between f and f + df as

E(f)df =
8πh

c3

f3df

eβhf − 1
(12.1.10)

and let d~S represent an infinitesimal opening in a cavity, pointing (for convenience) in the
z−direction. According to (10.2.13) and (12.1.10), the average radiation energy passing
through the opening per unit time per unit area, with frequency between f and f + df ,
will be

F(f)df =
〈dΦ〉
dS

= 〈cz〉E(f)df =
8πh

c3
〈cz〉

f3df

eβhf − 1
, (12.1.11)

where 〈cz〉 is the average value of the z−component of the photon velocity (in the positive
z−direction). It is given by1

〈cz〉 = c〈cos θ〉 =
c

4π

∫ 2π

0
dφ

∫ π/2

0
dθ sin θ cos θ =

c

4
, (12.1.12)

so the radiation flux at frequencies lying between f and f + df is

F(f)df =
2πh

c2

f3df

eβhf − 1
. (12.1.13)

The function F(f) is called the spectral radiancy and is shown in figure 12.1 Several
things are noteworthy about the curves shown: (i) they all have the same “shape”, (ii)
each peaks at a frequency characteristic only of the temperature and (iii) the area under
each curve depends only on the temperature. Characteristics (ii) and (iii) are qualitative
statements of Wien’s displacement law and Stefan’s law respectively. To see that the
spectral radiancy peaks at a frequency that depends only on the temperature we note
that the maximum of F(f) occurs at

fmax =
3 +W(−3e−3)

hβ
(12.1.14)

where W(x) is the Lambert “W” function, defined as the solution to the equation,2

x =W(x)eW(x) (12.1.15)

1In this integral, θ ∈ [0, π/2] because we are only interested in the radiation flowing out of the cavity,
which is assumed to open in the positive z−direction, so we count only half the solid angle.

2The Lambert function is single valued only when x ≥ 0. Although it is real in the interval x ∈
[−1/e,∞), it is double valued when x ∈ [−1/e, 0).
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Figure 12.1: The photon radiation spectrum for temperatures T1 > T2 > T3.

Numerically, we find
fmax ≈ 5.87× 1010 T Hz/K. (12.1.16)

The area under each spectral radiancy curve represents the total energy flux, which is

F =

∫ ∞
0
F(f)df =

2πh

c2

∫ ∞
0

f3df

eβhf − 1
(12.1.17)

and we could extract the temperature dependence by defining the dimensionless variable
x = βhf , as before, but we already know the value of the integral so we determine Stefan’s
constant σ,

F = σT 4, σ =
2π5k4

15c2h3
, (12.1.18)

in terms of the fundamental constants. Numerically, Stefan’s constant evaluates to σ ≈
5.67× 10−8 W ·m−2 ·K−4.

The entropy of the photon gas is calculated from the relation

S = k(lnZ + β〈E〉) = k
∑
f

[
ln(1− e−βhf )−1 +

βhf

eβhf − 1

]
=

8πkV

c3

∫ ∞
0

dff2

[
− ln(1− eβhf ) +

βhf

eβhf − 1

]
.

While both integrals can be evaluated exactly, it is possible to extract the temperature
dependence of the entropy from both integrals by the same substitution we made earlier
i.e., x = βhf , without evaluating them. We find

S =
8πkV

c3

(
kT

h

)3

(I2 − I1) (12.1.19)
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where

I1 =

∫ ∞
0

dx x2 ln(1− e−x) = −π
4

45

I2 =

∫ ∞
0

x3dx

ex − 1
=
π4

15

It has the behavior that is expected by the third law as T → 0. Further, using the
expression for the internal energy in (12.1.8) we determine the free energy

F =
8πhV

c3

(
kT

h

)4

I1 (12.1.20)

and the pressure exerted by the gas of photons,

p = −
(
∂F

∂V

)
T

= −8πh

c3

(
kT

h

)4

I1 = −I2

I1

〈E〉
V
≡ 1

3

〈E〉
V
, (12.1.21)

which is seen to be positive and proportional to the energy density.

12.2 Non-relativistic Bose Gas

Except for photons it is a good practice to first determine the chemical potential in terms
of the number of particles and the temperature. This can be done from the defining
equation, ∑

j

〈nj〉 = N =
∑
j

1

eβ(εj−µ) − 1
. (12.2.1)

Let us first consider a gas of bosonic particles in a cubic box of side L. The energy levels
of a gas of free, non-relativistic particles, are quantized according to elementary quantum
mechanics,

ε~n =
π2~2

2mL2
(n2
x + n2

y + n2
z) (12.2.2)

where nx, ny and nz are independent integers, each representing the quantization of mo-
mentum in one dimension. The two equations of interest,

N =
∑
~n

1

eβ(ε~n−µ) − 1

〈E〉 =
∑
~n

ε~n
eβ(ε~n−µ) − 1

(12.2.3)
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are difficult to solve. Let us simplify the problem by restricting our attention to a one-
dimensional box, say in the x−direction, and drop the suffix x, then we have

N =

∞∑
n=0

1

eβ(qn2−µ) − 1
(12.2.4)

where q = π2~2/2mL2. We now introduce the fugacity, λ = eβµ (if the ground state
energy were not zero, but ε0, then we would define the fugacity as λ = eβ(µ−ε0)) and
re-express N in terms of λ as

N =
λ

1− λ
+

∞∑
n=1

λ

eβqn2 − λ
(12.2.5)

The second term represents all the particles in “excited” energy levels (n ≥ 1) so the first
term must represent the number of particles in the ground state. We call it N0,

N0 =
λ

1− λ
(12.2.6)

and the remaining particles we call Nex (for “excited”)

Nex =

∞∑
n=1

λ

eβqn2 − λ
(12.2.7)

so N = N0 +Nex and we try to evaluate Nex first. Clearly the fugacity must be less than
one (µ < 0), othewise (12.2.6) would make no sense. Therefore let us write

∞∑
n=1

λ

eβqn2 − λ
=
∞∑
n=1

e−βqn
2 λ

1− λe−βqn2 (12.2.8)

and expand in a Maclaurin series to get

Nex =
∞∑
n=1

∞∑
r=1

λre−βqn
2r (12.2.9)

The best way to evaluate sums of this type is via the Mellin-Barnes representation of the
exponential function by a integration in the complex plane (see the appendix)

e−α =
1

2πi

∫ τ+i∞

τ−i∞
dt Γ(t)α−t (12.2.10)

where <(α) > 0 and the integral is over a line lying parallel with the imaginary axis and
such that <(τ) > 0. This formula is easily proved by closing the path in the left half of the
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plane. (Since there is no contribution from the part of the contour that lies at infinity, the
integral is determined only by the poles of the Γ−function, which lie at {0,−1,−2, . . .}.)

With this representation, our sums can be written as

Nex =

∞∑
n=1

∞∑
r=1

1

2πi

∫ τ+i∞

τ−i∞
dt

Γ(t)λr

(βqn2r)t
(12.2.11)

and then, after interchanging them with the integral, re-expressed in terms of the Riemann
ζ−function and the Polylogarithm function,

ζ(s) =

∞∑
n=1

1

ns

Lit(x) =

∞∑
r=1

xr

rt
. (12.2.12)

This is only possible if the sums are absolutely convergent, which can be achieved by
taking τ to lie sufficiently to the right. We find Nex as an integral in the complex plane

Nex =
1

2πi

∫ τ+i∞

τ−i∞
dt

Γ(t)ζ(2t)Lit(λ)

(βq)t
(12.2.13)

instead of the double infinite sum, provided that τ > 1/2. The integral may be closed
in the left half plane; as before there will be no contribution from the portion of the
contour that lies at infinity. The advantage in this integral representation lies in the fact
that, assuming βq � 1, the integral is dominated by the simple pole in the ζ−function at
t = 1/2. All other poles (of the Γ−function) would contribute non-negative powers of βq,
which are negligible in comparison. So we get

Nex ≈
Γ(1

2)Li1/2(λ)

2(βq)1/2
=

√
π

4βq
Li1/2(λ) (12.2.14)

and therefore

N =
λ

1− λ
+

√
π

4βq
Li1/2(λ) (12.2.15)

which, at least in principle, can be solved for λ to find it as a function of (N, β). The
behavior of the fugacity as a function of the inverse temperature β is shown in figure
12.2. Notice that as β → 0 (T → ∞) the fugacity approaches zero i.e., the chemical
potential becomes large and negative. As β →∞ (T → 0) the fugacity approaches unity
and the chemical potential approaches zero. We can still consider this limit (of very low



252 CHAPTER 12. QUANTUM GASES

N1

N2

N3

••

0.02 0.04 0.06 0.08 0.10
Βq0.3

0.4

0.5

0.6

0.7

0.8

0.9

Λ

Figure 12.2: The fugacity as a function of β for N1 < N2 < N3 < . . .

temperatures) within our approximation so long as the condition that βq � 1 continues
to hold.3

A significant number of particles can exist in the ground state only if λ ≈ 1, so put
λ = 1− y (y > 0) and expand the expression for N about y = 0. The Polylogarithm has
the Maclaurin expansion

Li1/2(1− y) =

√
π
√
y

+ ζ(1/2) +O(
√
y) (12.2.16)

so retaining only the first term, letting N + 1 ≈ N and calling a = π/
√

4qβ we get

1
√
y

=
1

2

[
−a+

√
a2 + 4N

]
. (12.2.17)

The only way for y to be small is for

a2 � 4N ⇒ π2

4qβ
� 4N ⇒ β � π2

16qN
=
mπ2L2

2h2N
(12.2.18)

3With q = π2~2/2mL2, taking m ∼ mp and L ∼ 1, gives the condition T � 10−18 K for the validity
of our approximation (βq � 1). The lower bound of 10−18 K is very far below what is achievable in any
experimental setting.



12.2. NON-RELATIVISTIC BOSE GAS 253

then y ≈ N−1 and

λ ≈ 1− 1

N
(12.2.19)

This is evidently the low temperature behavior, since there is a lower bound on the inverse
temperature determined by Planck’s constant, the size of the box and the number of
particles.

On the other hand, most of the molecules occupy the excited states when λ ≈ 0, for
then N0 ≈ 0. In this case

Li1/2(λ) = λ+
λ2

√
2

+O(λ3), (12.2.20)

so, ignoring terms of order λ2 and higher, we have

λ ≈ N

1 + a
(12.2.21)

For this to be small a� N , so putting a+ 1 ≈ a we get

λ ≈ N
√

4qβ

π
=

Nh

L(2πmkT )1/2
(12.2.22)

and the condition for smallness translates into

β � π

4qN2
=

mL2

h2N2
, (12.2.23)

which means that this is a high temperature behavior since the validity of our expansion
requires an upper bound on the inverse temperature.

We define the critical temperature to be that temperature at which λ ≈ 1 and
N ≈ Nex. If we compare this definition with the expression (12.2.13) for the number of
excited moelcules, it would mean that at the critical temperature, Tc, is given by

N =
1

2πi

∫ τ+i∞

τ−i∞
dt

Γ(t)ζ(2t)ζ(t)

(βcq)t
(12.2.24)

where we replace Lit(λ ≈ 1) by ζ(t) according to the definition of the polylogarithm in
(12.2.12) and β by βc = 1/kTc. The integral is dominated by two simple poles, one at
t = 1

2 and the other at t = 1 (as before we will ignore all the poles at t ≤ 0) and so we get

N ≈
Γ(1

2)ζ(1
2)

(βcq)1/2
+

Γ(1)ζ(2)

βcq
=

√
πζ(1/2)

(βcq)1/2
+

π2

6βcq
(12.2.25)

Now ζ(1/2) ≈ −1.46 (is negative) so βc should satisfy

βc .
π3

36|ζ(1/2)|2q
. (12.2.26)



254 CHAPTER 12. QUANTUM GASES

because the left hand side cannot be less than zero. For large N , the last term on the
right hand side of (12.2.25) will dominate and to leading order we find,

βc ≈
π2

6qN
(12.2.27)

and therefore the critical temperature increases with increasing number of bosons. More-
over, the thermal de Broglie wavelength given in (6.4.3) at the critical temperature is of
the same order of magnitude as the average spacing between the molecules, which is the
length of the box divided by the number of molecules, d = L/N . If we also define the
condensate fraction to be the ratio of molecules in the ground state to the total number
of molecules

fC =
N0

N
= 1− Nex

N
(12.2.28)

then a significant fraction of the molecules will be found in the ground state and fC
approaches unity at temperatures below the critical temperature. The gas is then said
to be in a condensed state. In fact, putting together the expression for the number of
excited molecules in (12.2.14) together with the expression in (12.2.27) for the critical
temperature, we see that the condensate fraction behaves as

fC ≈ 1−
√
T

Tc
(12.2.29)

for temperatures below Tc. Naturally, above the critical temperature, most molecules are
in excited states and the condensate fraction rapidly approaches zero.

What can be said about the average energy of the system? This is given by the second
equation in (12.2.3),

〈E〉 =
π2~2

2mL2

∞∑
n=1

n2

eβ(qn2−µ) − 1
. (12.2.30)

Expanding as we did before and using the Mellin-Barnes representation of the exponential
function, we are able to write the following integral expression for the internal energy

〈E〉 =
π2~2

2mL2

1

2πi

∫
dt

Γ(t)Lit(λ)ζ(2t− 2)

(βq)t
(12.2.31)

which has a simple pole at t = 3/2 and we find

〈E〉 =
π2~2

2mL2

Γ(3/2)Li3/2(λ)

2(βq)3/2
=

1

2

√
π

4βq

1

β
Li3/2(λ) (12.2.32)

Let us examine this expression at temperatures well above the critical temperature, for
which λ� 1. In this case, the Pologarithm has the following expansion in λ

Li3/2(λ) ≈ λ+
λ2

23/2
+

λ3

33/2
+ . . .+ (12.2.33)
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Also recall the expression for the number of molecules in (12.2.15). Neglecting the first
term because we are interested in high temperatures, we have

N ≈
√

π

4βq
Li1/2(λ) ≈

√
π

4βq

(
λ+

λ2

21/2
+

λ2

31/2
+ . . .+

)
(12.2.34)

and the energy per particle becomes

〈E〉
N

≈
√
π

4
√
β3q

√
4βq

π

(
λ+

λ2

23/2
+ . . .+

)(
λ+

λ2

21/2
+ . . .+

)−1

≈ 1

2
kT

(
1 +

λ

23/2
+ . . .+

)(
1− λ

21/2
+ . . .+

)
≈ 1

2
kT

(
1− λ

23/2
+ . . .+

)
≈ 1

2
kT

(
1− Nh

4L(πmkT )1/2
+ . . .+

)
(12.2.35)

Notice that the average energy per molecule is less than the average energy of molecules
obeying Boltzmann statistics and that the extent to which this energy is less depends
on the number of particles. This corresponds to the fact that the probability of the
molecules being in the same state is enhanced over the probability of two molecules obeying
Boltzmann statistics doing the same. The degree of enhancement depends on the number
of particles, as we have seen before.

At temperatures well below the critical temperature, λ ≈ 1 −N−1 and the polyloga-
rithm has the expansion

Li3/2(1− x) ≈ ζ(3/2)− 2
√
πx1/2 − ζ(1/2)x+ · · ·+, (12.2.36)

so to leading order

〈E〉 =

√
π ζ(3/2)

4
√
β3q

(12.2.37)

The (constant volume) heat capacity at low temperatures is then

CL = −kβ2 d

dβ
〈E〉 =

3k
√
π ζ(3/2)

8
√
q

β−1/2 (12.2.38)

and satisfies the condition required by the third law. At any temperature, the constant
volume heat capacity is given by

CL = −kβ2 d

dβ
〈E〉 =

1

4
kβ−1/2

√
π

q

[
3

2
Li3/2(λ)− β Li1/2(λ)

d lnλ

dλ

]
(12.2.39)
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where we used the following property of the Polylogarithm function4

d

dx
Lit(x) =

1

x
Lit−1(x) (12.2.40)

One can solve this equation in conjunction with (12.2.15) numerically to obtain the heat
capacity as a function of temperature everywhere.

Let us turn to the entropy and free energy. For this we must compute the partition
function,

ln Ξ = −
∞∑
n=1

ln
(

1− λe−βqn2
)

=

∞∑
n=1

∞∑
r=1

λr

r
e−βqn

2r (12.2.41)

and again, employing the Mellin-Barnes representation of the exponential function,

ln Ξ =
1

2πi

∫ τ+i∞

τ−i∞

∫
dt

Γ(t)ζ(2t)Lit+1(λ)

(βq)t
(12.2.42)

and the integral has a simple pole at t = 1
2 . Therefore

ln Ξ =
Γ
(

1
2

)
Li3/2(λ)

2
√
βq

=

√
π Li3/2(λ)

2
√
βq

(12.2.43)

and the free energy is

F = − 1

β
ln Ξ = −

√
π Li3/2(λ)

2
√
β3q

. (12.2.44)

Combining this with the result for the average energy in (12.2.37) and simplifying, first in
the limit of high temperature, λ� 1, we have

S ≈ k(ln Ξ + β〈E〉 − βµ〈N〉) = kN

[
ln
L

N
+

1

2
lnT +

1

2
ln

2πmke3

h2

]
(12.2.45)

which should be compared with (6.4.17), taking into account that our box is one dimen-
sional, that g = 1 and that the ground state is not degenerate. On the other hand, in the
limit of low temperatures, when T � Tc and λ ≈ 1, we will get

S(T ) ≈ 3
√

3

2
√

2

ζ(3/2)√
π

k
√
N

(
T

Tc

)1/2

≈ 2.707k
√
N

(
T

Tc

)1/2

. (12.2.46)

This is precisely

S(T ) =

∫ T

0

CL(T )

T
dT (12.2.47)

4Problem: Verify this identity using the definition of the Polylogarithm in (12.2.12)
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where CL(T ) is given in (12.2.38).
The generalization to a three dimensional box is now straightforward. A similar ex-

pansion to the one performed for the one dimensional system will lead to

N =
λ

1− λ
+

(
π

4βq

)3/2

Li3/2(λ) (12.2.48)

and

〈E〉 =
3

2

(
π

4βq

)3/2 1

β
Li5/2(λ) (12.2.49)

The critical temperature is a bit more tricky to compute, so we shall do so explicitly.
Recall that the condition for β = βc is N = Nex and λ ≈ 1, so

N =

∞∑
~n=1

1

eβc~n2 − 1
=

∞∑
~n=1

∞∑
r=1

e−βc~n
2r (12.2.50)

where we have used the short-hand ~n = 1 to signify that each of nx, ny and nz begin at
unity. Then according to the Mellin Barnes representation of each of the three exponential
functions in the sum, we should have

N =
1

(2πi)3

∫
ds

∫
dt

∫
du

Γ(s)Γ(t)Γ(u)ζ(2s)ζ(2t)ζ(2u)ζ(s+ t+ u)

(βcq)s+t+u
, (12.2.51)

where each integral runs from τ−i∞ to τ+i∞. Performing the s integration, we recognize
that there are two simple poles, one at s = 1

2 and the other at s = 1− t− u, so

N =
1

(2πi)2

∫
dt

∫
du

Γ(1/2)Γ(t)Γ(u)ζ(2t)ζ(2u)ζ(1/2 + t+ u)

2(βcq)1/2+t+u

+
1

(2πi)2

∫
dt

∫
du

Γ(1− t− u)Γ(t)Γ(u)ζ(2[1− t− u])ζ(2t)ζ(2u)

2(βcq)
(12.2.52)

The t integration also involves two simple poles, one at t = 1
2 and the other at t = 1

2 − u,
therefore

N =
1

2πi

∫
du

Γ2(1/2)Γ(u)ζ(2u)ζ(1 + u)

4(βcq)1+u

+
1

2πi

∫
du

Γ(1/2− u)Γ(1/2)Γ(u)ζ(1− 2u)ζ(2u)

4(βcq)

+
1

2πi

∫
du

Γ(1/2)Γ(1/2− u)Γ(u)ζ(1− 2u)ζ(2u)

4(βcq)
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+
1

2πi

∫
du

Γ(1/2)Γ(1/2− u)Γ(u)ζ(1− 2u)ζ(2u)

4(βcq)
(12.2.53)

The first integral has a single pole at u = 1
2 , its value is

Γ3(1/2)ζ(3/2)

(4βcq)3/2
=

(
π

4βcq

)3/2

Li3/2(λ ≈ 1). (12.2.54)

The last three integrals are all the same, having a double pole at u = 1
2 . Their contribution

is therefore

3

(
Γ(1/2)Γ(u)ζ(1− 2u)

4(βq)

)′
u= 1

2

=
3

βq

[
π ln 2π − π

2
ψ(1/2)

]
(12.2.55)

where ψ(z) is the digamma function. The dominant contribution to N therefore comes
from the first integral and we compute βc from

N ≈
(

π

4βcq

)3/2

ζ(3/2)⇒ βc ≈
π

4q

(
ζ(3/2)

N

)2/3

(12.2.56)

showing clearly that the critical temperature rises with the number of Bosons present.
This result could have been directly obtained from (12.2.48) by setting N = Nex and
λ ≈ 1. It is now not difficult to see that, in three dimensions, the condensate fraction
behaves for T � Tc as

fC = 1−
(
T

Tc

)3/2

(12.2.57)

Let us now turn to the heat internal energy, heat capacity and entropy of the gas at low
temperature.5

At very low temperatures, T � Tc and λ ≈ 1−N−1, the Polylogarithm function has
the expansion

Li5/2(1− x) ≈ ζ(5/2)− ζ(3/2)x+
4

3
πx3/2 + . . .+ (12.2.58)

so retaining only the first term we get

〈E〉 ≈ 3

2

(
π

4βq

)3/2 1

β
ζ(5/2) (12.2.59)

and the heat capacity is

CV = −kβ2d〈E〉
dβ

=
15

4

ζ(5/2)

ζ(3/2)
Nk

(
T

Tc

)3/2

≈ 1.93Nk

(
T

Tc

)3/2

. (12.2.60)

5Problem: Show that at high temperature the internal energy is 〈E〉 ≈ 3
2
N
β

and that the entropy is
given by the standard expression from thermodynamics in (6.4.17).
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Similar calculations should also yield the entropy of the Bose gas

S =
5

2
k

(
π

4βq

)3/2

Li5/2(λ)−Nk lnλ (12.2.61)

whose low temperature behavior (T � Tc and λ ≈ 1−N−1) is

S ≈ 5

2

Nk

ζ(3/2)

(
T

Tc

)3/2

≈ 0.96Nk

(
T

Tc

)3/2

(12.2.62)

At low temperatures the last term’s contribution to the entropy is negligible because λ ≈ 1.
On the contrary, at high temperatures the dominant contribution comes from the last term
because λ rapidly approaches zero.

The methods indicated above are quite general and can be applied at any temperature.
However, at high temperatures a simpler formulation is possible if we recall that when
the spacing between energy levels is much less than kT then thermal fluctuations will
effectively turn the discrete spectrum into a continuum. If, for example, we imagine
increasing nx by one keeping ny and nz fixed, then the spacing is

∆ε~n =
(2nx + 1)π2~2

2mL2
(12.2.63)

and T should be high enough that ∆ε~n � kT . Since this means that we can approximate
the sum by the integral ∑

~n

→ 1

h3
0

∫
d3~rd3~p (12.2.64)

and assuming that the gas is isotropic so d3~p = 4πp2dp we can replace the sum by∑
~n

→ 4πV

h3
0

∫
dp p2. (12.2.65)

Again because the energy of a free particle is related to its momentum by ε = p2/2m we
have

p2dp =
1

2
(2m)3/2√εdε (12.2.66)

and therefore

N =
2πV (2m)3/2

h3
0

∫ ∞
0

λ
√
εdε

eβε − λ
(12.2.67)

With x = βε, we can write the expression for N as

N =
2πV (2m/β)3/2

h3
0

∫ ∞
0

λ
√
xdx

ex − λ
(12.2.68)
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where the value of the integral is∫ ∞
0

λ
√
xdx

ex − λ
=

1

2

√
πLi3/2(λ) (12.2.69)

Expanding the polylogarithm in λ,

N =
V (2πm/β)3/2

h3
0

∞∑
n=0

(1 + n)−3/2λn+1 (12.2.70)

or, explicitly,

N =

(
2πm

βh2
0

)3/2

V

[
λ+

λ2

23/2
+

λ3

33/2
+ . . .

]
, (12.2.71)

which is precisely (12.2.48) in the limit in which all the molecules are excited. Since ε� µ,
we can ignore all higher powers of λ and arrive at the approximate fugacity

λ ≈ Nh3
0

(2πmkT )3/2V
(12.2.72)

which is the three dimensional equivalent of (12.2.22). Likewise,

〈E〉 =
2πV (2m)3/2

h3
0

∫ ∞
0

λε3/2dε

eβε − λ

=
2πV (2m/β)3/2

h3
0β

∫ ∞
0

dxλx3/2

ex − λ
def
=

2πV (2m/β)3/2

h3
0β

I1(λ) (12.2.73)

where

I1(λ) =
3

4

√
πLi5/2(λ). (12.2.74)

Thus the energy turns out to be precisely (12.2.49). Expanding the polylogarithm as
before

〈E〉 =

(
2πm

βh2
0

)3/2 3

2β
V

∞∑
n=0

(1 + n)−5/2λn+1 (12.2.75)

or explicitly,

〈E〉 =

(
2πm

βh2
0

)3/2 3

2β
V

[
λ+

λ2

25/2
+

λ3

35/2
+ . . .

]
(12.2.76)
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and the energy per particle is then calculated exactly as we did before (at high tempera-
ture)

〈E〉
N
≈ 3

2
kT

[
1− Nh3

0

(2πmkT )3/2V
+ . . .

]
(12.2.77)

which is the three dimensional equivalent of (12.2.35). The entropy and free energy are
computed as integrals in this limit as well. Note that

ln Ξ→ 2πV (2m)3/2

h3
0

∫
dε
√
ε ln(1− λe−βε) (12.2.78)

can be expressed as

ln Ξ = −2πV (2m/β)3/2

h3
0

∫
dx
√
x ln(1− λe−x)

def
= − 2πV (2m/β)3/2

h3
0

I2(λ) (12.2.79)

and

I2 = −1

2

√
πLi5/2(λ) (12.2.80)

so that the entropy at high temperature can be written in terms of the two integrals, I1(λ)
and I2(λ) as

S =
2πkV (2m/β)3/2

h3
0

[−I2(λ) + I1(λ)]−Nk lnλ

≈ 5

2
k
V (2πm/β)3/2

h3
0

Li5/2(λ)−Nk lnλ (12.2.81)

which is precisely (12.2.61).

12.3 Bosonic Harmonic Oscillators

Let us now consider a system of Bosonic harmonic oscillators, first in one dimension and
next in three dimensions as we have done above. This problem is actually easier to solve
analytically than the previous one. The grand partition function for a one dimensional
system of Bosonic oscillators is

Ξ(β, µ) =
∏
j

(1− e−β(εj−µ))−1 (12.3.1)
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where the energy levels are given by the well-known result from elementary quantum
theory,

εj =

(
j +

1

2

)
~ω, (12.3.2)

ω being the angular frequency, which we take for simplicity to be the same for all oscillators.
ε0 = ~ω/2 is the ground state energy. We will define the fugacity by

λ = eβ(µ−ε0) (12.3.3)

and call ∆εj = εj − ε0 = n~ω, then

Ξ(β, λ) =
∏
j

1

1− λe−β∆εj
(12.3.4)

whereas the level occupation number is given by

〈Nj〉 = − 1

β

∂ ln Ξ

∂∆εj
=

λ

eβ∆εj − λ
(12.3.5)

Therefore the total number of particles, obtained either by summing over all levels or by
differentiation w.r.t. µ, becomes

N =
λ

1− λ
+

∞∑
j=1

λ

eβ∆εj − λ
(12.3.6)

where the first term on the right represents the occupation of the ground state as usual
and the sum represents the number of excited particles, which we called Nex. Let’s follow
the same analysis we used in the case of molecules in a box. Expanding the denominator
of the sum as a power series,

N =
λ

1− λ
+

∞∑
j=1

∞∑
r=1

λre−β~ωjr (12.3.7)

and using the Mellin-Barnes representation of the exponential function we arrive at

N =
λ

1− λ
+

1

2πi

∫ τ+i∞

τ−i∞
dt

Γ(t)ζ(t)Lit(λ)

(β~ω)t
(12.3.8)

For λ < 1 this integral is governed by the simple pole of the ζ−function at t = 1, therefore

N =
λ

1− λ
+

Li1(λ)

β~ω
=

λ

1− λ
− 1

β~ω
ln(1− λ) (12.3.9)
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Figure 12.3: Behavior of the condensate fraction, fC with x for fixed N .

where we used the fact that

Li1(λ) = − ln(1− λ) (12.3.10)

Unlike the situation we encountered for molecules in a box, (12.3.9) can be solved explicitly
for λ and we recover the fugacity as a function of the temperature and number of particles
as

λ(β,N) = 1− β~ω
W(β~ωe(N+1)β~ω)

(12.3.11)

whereW(x) is the Lambert W−function, obviously defined as the solution of the equation
(y = W (x))

x = yey (12.3.12)

The Lambert function is double valued in the interval (−1/e, 0) and single valued for
x ∈ (0,∞), with W (0) = 0 and W (e) = 1.

We can now write down the condensate fraction as

fC =
λ

N(1− λ)
=
W(β~ωe(N+1)β~ω)

Nβ~ω
− 1

N
(12.3.13)

but, as always, it will be much more illuminating to express the condensate fraction not
in terms of the temperature but in terms of the ratio of T to the critical temperature, Tc,
which we recall is defined to be that temperature at which λ ≈ 1 and all the bosons are in
excited, i.e., Nex ≈ N . Once again, the Mellin Barnes representation of the exponential
function will play a key role. We can write

N ≈ Nex =
1

2πi

∫ τ+i∞

τ−i∞
dt

Γ(t)ζ2(t)

(βc~ω)t
(12.3.14)
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and the integral admits a double pole at t = 1 via the zeta function. Therefore

N =

(
Γ(t)

βc~ω)t

)′
= − 1

βc~ω
ln(eγβc~ω) (12.3.15)

where γ is the Euler-Mascheroni constant. Now this equation is solved exactly by

βc~ω =
1

N
W(e−γN) (12.3.16)

and after a little algebra we can express the condensate fraction, fC in terms of the ratio
x = T/Tc as

fC(x,N) =
x

WN
W
(
WN

Nx
e

(N+1)WN
Nx

)
− 1

N
(12.3.17)

where WN = W (e−γN). At temperatures very much above the critical temperature
(x→∞) the condensate fraction behaves as

fC ≈
WN

Nx
+O(x−2) (12.3.18)

and so becomes vanishingly small for large N . On the other hand, at temperatures below
the critical temperature (x→ 0) we will find that

fC ≈ 1− lnN

WN
x+O(x2) (12.3.19)

showing that the condensate fraction approaches unity. This behavior is shown in figure
12.3. The thing to note is that for large enough N the condensate fraction increases slowly
with decreasing x so long as x & 1, but when x . 1 it increases very rapidly until all bosons
are condensed at x = 0.

Let us now turn to the average energy of the system. This is given by

〈E〉 =
∑
j=0

εj〈Nj〉 =
1

2
N~ω +

∑
j=1

j~ω〈Nj〉

=
1

2
N~ω +

~ω
2πi

∫ τ+i∞

τ−i∞
dt

Γ(t)Lit(λ)ζ(t− 1)

(β~ω)t
(12.3.20)

and, for λ < 1 there is only a simple pole coming from the ζ−function at t = 2, so the
average energy can now be given by

〈E〉 =
1

2
N~ω +

Li2(λ)

β2~ω
(12.3.21)
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Figure 12.4: Behavior of the heat capacity per boson with x for fixed N .

so the heat capacity at constant “volume” is

CL(β,N) =
2Li2(λ)

β~ω
− Li′2(λ)

~ω

(
∂λ

∂β

)
N

(12.3.22)

where the prime on the polylogarithm represents a derivative with respect to λ. The
constant volume heat capacity can be expressed in terms of the ratio x as well. We find

CL(x,N) =
2xNLi(λ)

WN
− x2N

λWN
ln(1− λ)

(
∂λ

∂β

)
N

(12.3.23)

The heat capacity per boson is shown in figure 12.4 as a function of x. Now for x � 1
(and λ ≈ 1−N−1) we find

cL =
CL
N
≈ π2kT

3N~ω
(12.3.24)

whereas when x� 1 the heat capacity per boson approaches unity. From the figure it is
clear that there is no phase transition in this system. Similar calculations will also yield
the entropy of the gas

S = ln Ξ + β〈E〉 − µβN =
2xN

WN
Li2(λ)− ln(1− λ) +N lnλ. (12.3.25)

In the limit of vanishing x we find

S ≈ π2

2β~ω
+ lnN + 1 (12.3.26)

which is not vanishing as x→ 0. This is not really a problem because the specific entropy,
S/N does vanish in the thermodynamic limit N →∞ and so the result is consistent with
a generalized version of the third law of thermodynamics.
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All our methods for studying one dimensional oscillators can be easily extended to
higher dimensions as we did for the bosonic gas and we urge the reader to pursue these
calculations to their fullest.

12.4 Phonons and Rotons

Essential to the program of computing the the partition function is a knowledge of the
complete set of eigenstates of the system. In general it is a very difficult problem to list
the energy eigenstates of any interacting many body system. However, it is often possible
to develop the statistical mechanics in terms of a dilute gas of non-interacting elementary
excitations or quasiparticles. These are low energy excitations of the system about some
ground state according to

E = Eg +
∑
k

n~pε~p (12.4.1)

where Eg is the energy of the ground state and the sum represents the contribution by
the excitations: n~p = 0, 1, 2, . . . for Bosonic excitations and n~p = 0, 1 for Fermionic ones.
The energy spectrum in (12.4.1) is not an exact calculation of the energy levels of the
interacting many body system and the quasiparticles are not in general true eigenstates of
the many body problem. Therefore, if we wait a long enough time the particle state will
decay into more complicated states, so the approach only makes sense if the lifetime of the
quasiparticle states is long enough for the energy to be well defined, by the uncertainty
principle τ~p � ~/ε~p. This must be shown either empirically or theoretically but it is often
true at low temperatures simply because there are not many states for the quasiparticles
to decay into. The partition function becomes

Ξ = e−βEg
∑
{n~p}

e−β
∑
~p n~pε~p = e−βEg

∏
~p

∑
n~p

e−βn~pε~p (12.4.2)

The quasiparticle concept is useful in the description of solids and of certain liquids at very
low temperatures. For example, atoms or molecules in solids are packed closely together
and are unable to move freely. Thermal excitations cause the atoms to vibrate about their
mean positions, setting up vibrations in the lattice. The ability of the lattice to store
energy in vibrations contributes to the thermal properties of the material, as we have seen
in Debye’s treatment of the heat capacity of solids. Another example is liquid He II at
very low temperatures. It exhibits superfluid properties and is a candidate for a Bose-
Einstein condensate. In the 1940’s, Landau developed a description of its thermodynamic
properties by treating it as a mixture of two components. One of these components
is a non-interacting gas of quasiparticles, which are elementary excitations about the
other component, a quiescent ground state which in turn represents the superfluid. At
T = 0 there are no excitations and the liquid exists exclusively in the superfluid state.
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Figure 12.5: Energy spectrum of quasiparticles in He II when 0 < T < Tλ.

Between T = 0 and a critical temperature called the λ−point the fluid is an admixture of
the superfluid background and the gas of quasiparticles. Above the λ−point, the liquid
behaves like a normal fluid, known as He I. The thermal properties of liquid He II are
due to the quasiparticles and their spectrum was originally deduced by Landau via careful
fitting to the measured thermodynamic properties of liquid He II. It is shown schematically
in figure 12.5.

The quasiparticles are known as Phonons or Rotons depending on the dispersion
relation that is satisfied. Phonons are the low energy, long wavelength (compared with
the distance between the atoms) excitations and the dispersion relation for them is linear
in the momentum,

ε = pc (12.4.3)

where c is the speed of sound. At short wavelengths the dispersion relation is more com-
plicated and there is a minimum in the dispersion curves caused by atomic interactions.
Elementary excitations around this minimum are the Rotons. The Roton dispersion rela-
tion may be written as

ε = ∆ +
(p− p0)2

2m∗
(12.4.4)

where m∗ is the effective mass of the rotons (∼ 10−27 kg) and ∆ ∼ EF . At low T the
density of these quasiparticles is low and they barely interact.

The grand canonical partition function for phonons is similar to that for photons
(µ = 0) and can be written in the continuum limit as

ln Ξph = −4πV

h3

∫ ∞
0

dp p2 ln(1− e−βpc) =
4π5V

45(hc)3
(kT )3 (12.4.5)
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The case of the roton is similarly directly dealt with, at least around the minimum

ln Ξrot = −4πV

h3

∫ ∞
0

dp p2 ln(1− e−β∆−β(p−p0)2/2m∗)

≈ 4πV

h3

√
2πm∗
β

(
p2

0 +
m∗
β

)
e−β∆ (12.4.6)

and from these expressions we can calculate all the relevant thermodynamical quantities.

12.5 Bulk motion of Phonons

Let’s consider a gas of phonons in bulk motion within a solid. Since the number of
phonons is indefinite we must set the chemical potential, µ, to zero as we did in the case
of photons. However, if the gas is in bulk motion, with a momentum ~p, then we now have
a new constraint on the system, which is that the total momentum is fixed. Thus the
partition function for the phonon gas becomes

Ξ =
∏
j

(
1− e−βεj−~γ·~pj

)−1
(12.5.1)

where the sum is over all states and the vector ~γ is a Lagrange multiplier that enforces the
conservation of momentum. To determine ~γ we must determine the drift velocity of the
bulk motion, but since c is the velocity of sound, the velocity of the individual phonons
will be ~v = cn̂ where n̂ is the direction of their propagation. Each individual phonon’s
motion will make some angle, θ, with the bulk motion, which we can take to be in the z
direction. By symmetry, we require ~γ to be either parallel or antiparallel to the direction
of bulk motion, i.e. we set ~γ · ~p = γp cos θ. Therefore we find

ln Ξ(β, γ) = −
∑
j

ln
(

1− e−βεj−γpj cos θj
)

= −2πgV

h3

∫ ∞
0

dpp2

∫ π

0
dθ sin θ ln

(
1− e−βpc−γp cos θ

)
=

4π5cgV β

45h3(β2c2 − γ2)2
(12.5.2)

provided that βc > γ.

Now, the bulk velocity can be associated with the mean value of the phonon velocities

v = c 〈cos θ〉 (12.5.3)
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To compute the expectation value of cos θ, we write it as

〈cos θ〉 =

∑
j〈nj〉 cos θj∑

j〈nj〉
(12.5.4)

where 〈nj〉 is the distribution function of phonons,

〈nj〉 =
1

eβεj+γpj cos θj − 1
. (12.5.5)

Thus

〈cos θ〉 =

∫∞
0 dpp2

∫ π
0 dθ sin θ cos θ

(
eβpc+γp cos θ − 1

)−1∫∞
0 dpp2

∫ π
0 dθ sin θ (eβε+γp cos θ − 1)

−1 = − γ

βc
(12.5.6)

and we find

v = c 〈cos θ〉 = −γ
β
⇒ ~γ = −β~v (12.5.7)

giving, for the partition function

ln Ξ|γ=−βv =
4π5gV β−3

45c3h3
(

1− v2

c2

)2 , (12.5.8)

First, we note that the bulk velocity cannot be larger than c, as expected. Second, the
average energy and the bulk momentum can be computed directly from the partition
function. They are, respectively,

〈E〉 = − ∂ ln Ξ(β, γ)

∂β

∣∣∣∣
γ,V

=
∑
j

〈nj〉pjc =
4π5gV β−4

15c3h3

1 + 1
3
v2

c2(
1− v2

c2

)3 (12.5.9)

and

〈P 〉 = − ∂ ln Ξ(β, γ)

∂γ

∣∣∣∣
β,V

=
∑
j

〈nj〉pj cos θj =
16π5gV β−4(v/c2)

45h3c3
(

1− v2

c2

)3 (12.5.10)

so one can associate

M =
〈P 〉
v

=
16π5gV β−4

45h3c5
(

1− v2

c2

)3 (12.5.11)

with the “inertial mass” of the phonon gas.
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To understand the extent to which M can be interpreted as an “inertial mass”, let’s get
a closer look at the thermodynamics. Because the partition function is a natural function
of {β, γ, V }, can write

d ln Ξ =

(
∂ ln Ξ

∂β

)
γ,V

dβ +

(
∂ ln Ξ

∂γ

)
β,V

dγ +

(
∂ ln Ξ

∂V

)
β,γ

dV

= −〈E〉dβ − 〈P 〉dγ + βpdV (12.5.12)

where we defined

p =
1

β

(
∂ ln Ξ

∂V

)
β,γ

(12.5.13)

Therefore
d[ln Ξ + β〈E〉+ γ〈P 〉] = βd〈E〉+ γ〈P 〉+ βpdV (12.5.14)

or
TdSph = d〈E〉+ Fd〈P 〉+ pdV (12.5.15)

where F = γ/β and p are generalized forces conjugate to the extensive variables 〈P 〉 and
V respectively and

Sph/k = ln Ξ + β〈E〉+ γ〈P 〉 =
16π5cgV β

45h3 (β2c2 − γ2)2 (12.5.16)

We easily compute

F =
γ

β
= −v, p =

4π5cg

45h3(β2c2 − γ2)2
=

4π5gβ−4

45h3c3
(

1− v2

c2

)2 (12.5.17)

Therefore the work term associated with a change in the bulk momentum of the phonon
gas is (henceforth dropping angular brackets)

d−Wph = −vdP (12.5.18)

It should be interpreted as the the work done by the system, so

d−W = vdP (12.5.19)

is the work that must be done on the system to achieve a change in its bulk momentum.
Note that

d−W = vdP = v
dP

dz
dz = Fzdz (12.5.20)

implies that

Fz = v
dP

dz
=
dP

dt
(12.5.21)

is then the external force applied. This is precisely Newton’s second law of motion, whence
the interpretation of M .
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12.6 Fermi Gases

Noting that the Fermi-Dirac distribution requires all fermions to be distributed in the
levels below µ, there is a simple way to estimate the chemical potential of a Fermi gas at
zero temperature. Consider

N = lim
β→∞

 ∑
εj upto µ

1

eβ(εj−µ) + 1

 (12.6.1)

Consider a quasi-classical situation in which the spacing between energy levels is small
compared with the energies of the levels themselves (for example, imagine that the dimen-
sions of the box are very large), then replace the sum by the density of states we had used
earlier for a non-relativistic gas in (12.2.67)

N = lim
β→∞

2π(2m)3/2

h3
V

∫ µ

0

√
εdε

eβ(ε−µ) + 1
(12.6.2)

Of course, since ε < µ, the limit as β →∞ eliminates the exponential in the denominator
and we have

N =
2π(2m)3/2

h3
V

∫ µ

0

√
εdε =

4π(2m)3/2V

3h3
µ3/2. (12.6.3)

Solving for µ then gives

µ(T = 0) =
h2

2m

(
3n

4π

)2/3

(12.6.4)



272 CHAPTER 12. QUANTUM GASES

where n is the number density of the fermions.6 The chemical potential at zero temperature
is usually called the Fermi energy, EF , of the system. In a typical metal, the number
density of electrons can be estimated via the metal density and atomic mass assuming that
each atom donates a few electrons to the conduction band. For copper, whose density is
ρ = 8920 kg/m3 and atomic mass is 63.5, each atom donates a single electron and we
have n ≈ 8.4× 1028 m−3. This then gives EF = 13.6× 10−19 J or 8.5 eV, which is on the
order of typical atomic binding energies. It corresponds to a Fermi temperature of roughly
105 K, which is well above the metal’s melting point, so we expect the zero temperature
approximation to be excellent for metals i.e., in metals at room temperature, the electrons
are effectively distributed in the energy levels below µ. The total energy of the Fermi gas
at T = 0 is likewise easy to come by since now we will have

〈E〉 =
2π(2m)3/2

h3
V

∫ EF

0
ε3/2dε =

3

5

4π(2m)3/2V

3h3
E

5/2
F =

3

5
NEF . (12.6.5)

But how does the chemical potential depend on the temperature? Let us continue to work
in the continuum approximation, calling λ = eβµ as before, then7

N =
2π(2m)3/2

h3
V

∫ ∞
0

√
εdε

λ−1eβε + 1
= − V

h3

(
2πm

β

)3/2

Li3/2(−λ) (12.6.6)

6It is interesting to realize that this could be obtained directly from the uncertainty principle. Assume
that the average momentum, pi of the fermions is typically zero, then

∆p ≈ ~
∆x

= ~n1/3

where we have used the fact that n−1/3 = (V/N)1/3 provides a good estimate of the distance between the
fermions in the gas. Assuming that ∆p = prms, we find the r.m.s. speed,

prms = mvrms ⇒ vrms =
~n1/3

m

and the pressure exerted by the Fermi gas will be

P =
1

3
mnv2

rms =
~2n5/3

3m

Now, using the ideal gas equation of state, P = nkTF and taking µ = 3
2
kTF , we find

P =
2

3
nµ =

~2n5/3

m
⇒ µ ≈ 3~2n2/3

2m

7A generalization of the integral in (12.6.6) is known as the Fermi-Dirac integral:

Fs(t) =
1

Γ(s+ 1)

∫ ∞
0

xsdx

ex−t + 1
= −Lis+1(−et)

and serves as an alternate definition of the Polylogarithm function.
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Figure 12.6: The low temperature Fermi distribution.

Now

lim
λ→∞

Lis(−λ) = − (lnλ)s

Γ(s+ 1)
, (12.6.7)

provided s is not a negative integer, which returns (12.6.4) when inserted into (12.6.6). In
fact, the polylogarithm has the asymptotic expansion

Lis(−λ) = − (lnλ)s

Γ(s+ 1)

1 +
∑

k=2,4,...

2s(s− 1) . . . (s− k + 1)

(
1− 1

2k−1

)
ζ(k)

(lnλ)k

 (12.6.8)

At low temperatures compared to the Fermi temperature, the polylogarithm may be ap-
proximated by the first few terms in the asymptotic expansion in (12.6.8) and this gives

N = − V
h3

(
2πm

β

)3/2

Li3/2(−λ)

≈ 4π(2m)3/2

3h3
V µ3/2

[
1 +

π2

8

(
kT

µ

)2

+
7π4

640

(
kT

µ

)4

+ . . .

]
, (12.6.9)

which can in principle be inverted to recover the chemical potential, as a function of the
temperature and number of particles. To lowest order in the temperature we find the zero
temperature expression in (12.6.4), but we now want to find a perturbative expansion for
the chemical potential, µ(n, T ). This is not difficult to do. We must expand µ(n, T ) about
its solution at zero temperature, which of course will be meaningful only for small enough
temperatures. What we mean by “small” must be made precise, so we proceed as follows.
If µ0 represents the zero temperature solution then the parameter λ = kT

µ0
is dimensionless

and can serve as an expansion parameter provided that λ� 1 or µ0 � kT . Now replacing
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kT = µ0λ and setting µ =
∑∞

j=0 λ
jµj in (12.6.9) we find

E
3/2
F = µ

3/2
0 +

3λ

2
µ0µ1 +

λ2

8

π2µ2
0 + 3(µ2

1 + 4µ0µ2)
√
µ0

+ . . . (12.6.10)

and this may be solved order by order to find the non-vanishing coefficients

µ0 = EF , µ2 = −π
2µ0

12
, µ4 = −π

4µ0

80
, . . . (12.6.11)

and so on. Therefore, up to fourth order,

µ = EF

[
1− π2

12

(
kT

EF

)2

− π4

80

(
kT

EF

)4

. . .

]
(12.6.12)

and of course one may proceed to as high an order as one pleases.
The average energy will be

〈E〉 =
2π(2m)3/2

h3
V

∫ ∞
0

ε3/2dε

eβ(ε−µ) + 1
= −3

2

V

h3β

(
2πm

β

)3/2

Li5/2(−λ) (12.6.13)

and expanding the polylogarithm according to (12.6.8) gives

〈E〉 =
4π

5

(2m)3/2

h3
V µ5/2

[
1 +

5π2

8

(
kT

µ

)2

− 7π4

384

(
kT

µ

)4

+ . . .

]
(12.6.14)

Combining the expansions of 〈E〉 and N , we can express 〈E〉 as

〈E〉 =
3

5
Nµ

[
1 +

π2

2

(
kT

µ

)2

− 11π4

120

(
kT

µ

)4

+ . . .

]

=
3

5
NEF

[
1 +

5π2

12

(
kT

EF

)2

− π4

16

(
kT

EF

)4

+ . . .

]
(12.6.15)

so that the heat capacity of a Fermi gas is given by the expansion

CV =
∂〈E〉
∂T

∣∣∣∣
N,V

≈ π2

2
Nk

(
kT

EF

)[
1− 3π2

10

(
kT

EF

)2

+ . . .

]
. (12.6.16)

Its leading behavior is seen to be linear in the temperature and so at low temperatures it
is much smaller than the classical heat capacity at constant volume of a monatomic gas,
which is 3Nk/2.
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Consider the entropy of a Fermi gas,

S = k[ln Ξ + β〈E〉 − βµN ]. (12.6.17)

We have already evaluated 〈E〉 and N , so it remains to evaluate the partition function.
In the continuum approximation,

ln Ξ =
2π(2m/β)3/2

h3
V

∫ ∞
0

dx
√
x ln

(
1 + λe−x

)
= − V

h3

(
2πm

β

)3/2

Li5/2(−λ) (12.6.18)

where we have set x = βε. Combining all the results obtained,

S = − kV
2h3

(
2πm

β

)3/2 [
5Li5/2(−λ)− 2βµLi3/2(−λ)

]
=

2k

3

(
2π2m

h2

)3/2

V µ3/2

(
kT

µ

)[
1− 7π2

120

(
kT

µ

)2

+ . . .

]

=
π2

2
Nk

(
kT

EF

)[
1− π2

10

(
kT

EF

)2

+ . . .

]
(12.6.19)

which is consistent with the third law. At high temperatures, compared with the Fermi
temperature, the polylogarithm functions can be directly expanded according to their
definitions in (12.2.12). We leave this as an exercise.

12.7 Electrons in Metals

Atoms in a metal are closely packed, which causes their outer shell electrons to break away
from the parent atoms and move “freely” through the solid. The set of electron energy
levels for which they are more or less “free” to move in the solid is called the conduction
band. Energy levels below the conduction band form the “valence” band and electrons at
energies below that are strongly bound to the atoms. This is shown graphically in figure
12.7. The “work function”, W , is the energy that an electron must acquire to “evaporate”
from the metal. We’ve already seen that at room temperature EF � kT . Now electrons
at energies close to the Fermi energy (∼ 8.5 eV) have a very high velocity. Equating the
Fermi energy to the kinetic energy we have

vF =

√
2EF
me
≈ 1.7× 106 m/s. (12.7.1)

(This is only about 0.6% of the speed of light and justifies the use of the Newtonian
expression for the kinetic energy.) It is nevertheless very fast for material particles. When
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Figure 12.7: Electron states in a metal. EF is the Fermi energy and W is the “work
function”.

an electric potential difference is applied across the metal, the electrons in the conduction
band begin to flow toward the positive terminal, acquiring an average speed that is very
much smaller (for reasonable potential differences, about 2 × 10−4 m/s) than this speed,
so vF refers to the speed between collisions. This difference between the average speed
and the actual speed between collisions clearly implies that the collision rate between the
electrons and the atomic lattice is very high and, indeed it is about 1014 collisions/s. Now
vF is the speed between collisions only of electrons at the Fermi energy. On the average,
an electron carries an energy 〈E〉 ≈ 3

5EF and so its velocity is smaller, but not by much.
The thermal velocity leads to a pressure that will be exerted by the electron gas and from
the kinetic theory we find

P =
1

3
nme〈v2〉 =

2

5
nEF (12.7.2)

where n is their number density. This is called the Fermi or degeneracy pressure. If we
take n ∼ 8.4× 1028 /m3 then we find P ≈ 4.6× 1010 Pa or 4.5× 105 atm! In metals this
enormous pressure is balanced by the Coulomb interaction with the ions.

The heat capacity of the electron gas was shown earlier to grow linearly in the temper-
ature. On the other hand, the phonon heat capacity was shown to grow as the third power
of the temperature and therefore at ordinary temperatures (small, compared to the Fermi
temperature) it is the lattice vibrations that contribute primarily to the specific heat of a
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metal. However, as the temperature decreases the phononic heat capacity decreases more
rapidly than the electronic heat capacity and a temperature is reached when they are both
comparable in value. Below this temperature, at very low temperatures, the electronic
heat capacity will dominate.

12.7.1 DC Conductivity

Let’s consider how we may describe steady state (DC) conduction in metals. As electrons
move through a solid conductor we may safely expect that they undergo collisions. In
principle these collisions will be between the electrons among themselves, or between the
electrons and atoms or between the electrons and defects in the lattice structure or between
the electrons and phonons in the conductor but, as we will later see, the first two options
are wrong. There will be collisions, however, and at each collision a given electron will
experience a force, which we’ll call the “collision force”. Apart from the collision force
there will also be an external force due to an applied electric field. Therefore, applying
Newton’s second law,

d~p

dt
= ~F ext(t) + ~F col(t) (12.7.3)

We will be interested in the average momentum of the electron,

d〈~p〉
dt

= 〈~F ext〉+ 〈~F col〉 (12.7.4)

Suppose an electron enters a particular collision with momentum ~pi and exits with mo-
mentum ~pf then we may say that on the average

〈F col〉 =
〈~pf − ~pi〉

τ
(12.7.5)

where we have introduced the relaxation time, τ , which can be thought of as the mean
time between collisions. Now, if the collisions occur randomly, we can make two approxi-
mations: (a) take 〈pf 〉 = 0 and (b) 〈~pi〉 = 〈~p〉. Then

〈F col〉 = −〈~p〉
τ

(12.7.6)

and so
d〈~p〉
dt

= 〈~F ext〉 − 〈~p〉
τ

(12.7.7)

This is the Drude equation of motion. All the information that survives of the collisions
is contained in the relaxation time. In the steady state, d〈~p〉/dt = 0 so

〈~p〉 = 〈F ext〉τ = −e ~Eτ (12.7.8)
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where −e is the electronic charge and ~E is the electric field within the conductor. Therefore
the drift velocity of the electrons through the conductor will be

~v =
〈~p〉
me

= −e
~Eτ

me
(12.7.9)

which gives a current density that agrees with Ohm’s law,

~j =
ne2τ

me

~E = σ ~E (12.7.10)

where σ is the DC conductivity of the material. The resistivity of the conductor is

ρ =
1

σ
=

me

ne2τ
. (12.7.11)

This is the basic idea behind the Drude model. The number density of electrons can
be estimated directly from the number density of atoms/ions in the metal as each atom
will donate one or two electrons to the conduction band. The relaxation time, τ , is an
undetermined quantity here because no detailed microscopic analysis has been made. Such
an analysis would be required to determine τ . However, the Drude model can be used
to obtain the relaxation time from an experimental determination of the resistivity of
any material. A typical resistivity of 10−8 Ω·m leads to τ ≈ 10−14 s. Now if we take
the average speed of the electrons to be about v ∼ 106 m/s, this would imply a mean
free path of roughly l = vτ ∼ 10−8 m, or 100 Angstroms, which is roughly 50 times the
atomic separation! We can conclude that, in metals, collisions of electrons do not occur
principally between electrons and atoms. In fact it turns out that in a fully quantum
treatment, scattering of electrons by a periodic array of atoms or ions does not occur.
Scattering in pure metals occurs primarily between electrons and ions that are displaced
from their equilibrium position due to thermal vibrations. Such thermal vibrations of the
atomic lattice are phonons and the resistivity of conductors at normal temperatures is due
to electron-phonon scattering. In alloys, scattering may also occur between electrons and
impurities and defects. Below estimate the relaxation time τ for each kind of scattering.

We can re-express the relaxation time by relating it to the mean free path of electrons

τ =
l

vF
=

1

nsΣsvF
(12.7.12)

where ns is the number density of scattering centers and Σs the cross-section of scattering
at each center. We have used the Clausius relation of (2.3.22). It remains therefore to
estimate the number density of scatterers, ns, and the cross-section, Σs. Let us determine
the dependence of τ on the temperature, which can only arise due to the combination
nsΣs.
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Vibrations of the ions may be considered as simple harmonic motion. Then using the
equipartition theorem we can equate the mean potential energy of the vibrations to the
temperature by

1

2
maω

2〈x2〉 =
1

2
kT (12.7.13)

where ω is the angular frequency of the oscillations. This gives an r.m.s. displacement of
any atom from its mean lattice position as

xr.m.s. =

√
kT

maω2
(12.7.14)

If we now take Σs ∼ x2
r.m.s. and take ns to be constant, we find

τ =
C

T
(12.7.15)

where C is a constant. Substituting this into the expression for the resistivity in (12.7.11)
we should find that ρ grows linearly with the temperature, ρ = AT , for constant A. If
we consider scattering by impurities (and defects) then ns should be replaced by nd, the
number density of impurities, and Σs by the cross-section for electron scattering off an
impurity, Σd. Both of these quantities should be independent of the temperature and so
the resistivity will also end up being independent of the temperature, ρ = D. D is called
the residual resistivity.

In general several mechanisms for scattering may be present in any particular sample
and it is worth knowing how the contributions from them add up to an effective resistivity.
This is given by Mathhiessen’s Rule, which states that the effective relaxation time for
multiple scattering processes is

1

τeff
=
∑
k

1

τk
(12.7.16)

Of course, this means that the effective resistivity can be expressed as a sum over resis-
tivities, each originating in one of the scattering processes,

ρeff =
∑
k

ρk (12.7.17)

If only scattering by impurities and vibrations are included, we get ρeff = D + CT . Most
metals and alloys will exhibit different behaviors as different forms of scattering dominate
at different temperatures.
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12.7.2 AC conductivity

If the electric field is oscillating, take

~E = <
[
~Eωe

−iωt
]

(12.7.18)

and assume that the solution of the Drude equation of motion is also oscillatory,

~p = <
[
~pωe
−iωt] (12.7.19)

then the Drude equation reads

− iω~pω = −e ~Eω −
~pω
τ
⇒ ~pω =

eτ

iωτ − 1
~Eω (12.7.20)

where we have dropped the angular brackets. The drift velocity can now be approximated
by

~v =
~p

me
= −<

[
eτ ~Eωe

−iωt

1− iωτ

]
(12.7.21)

If we define the current density as ~j = <(~jωe
−iωt) then ~jω = σ(ω) ~Eω, with the AC

conductivity defined as

σ(ω) =
ne2τ

me(1− iωτ)
=

σ

1− iωτ
(12.7.22)

where σ is the DC conductivity. Notice that when στ � 1 the AC conductivity approaches
the DC conductivity, but when ωτ � 1 (i.e., when the frequency of the electric field
oscillations is much greater than the collision frequency) then σ(ω) becomes independent
of τ .

12.7.3 Hall Effect

12.7.4 Thermionic Emission

While electrons move around more or less freely inside a metal they must still acquire
a certain amount of energy to escape from the metal itself. The energy that must be
acquired by an electron to “evaporate” from the metal is called the work function, Φ.
Only electrons with energy greater than a certain amount, W , may expect to appear
outside the metal and at normal temperatures, electrons that possess this amount of
energy are few. However if the metal is heated the number of electrons possessing enough
energy to escape may become significant and the metal can serve as an electron emitter.
This is the idea behind some older electronic devices, the “valves” used in older amplifiers
and logic circuits. This effect is called the thermionic or Richardson effect.
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Consider then a metallic surface, which for convenience we take to lie in the x − y
plane. The number of electrons emitted per unit time per unit area of the surface will be

R =
∑
j

〈nj〉uz,j →
1

h3

∫ ∞
√

2mW
dpz

∫ ∞
−∞

d2~p⊥
pz/m

eβ(ε(~p)−µ) + 1
(12.7.23)

where the energy of the electrons is given by

ε(~p) =
~p2
⊥

2m
+

p2
z

2m
(12.7.24)

and the momentum in the z−direction is required to be larger than
√

2mW (see figure
12.7) for escape. Thus we get

R =
2π

βh3

∫ ∞
√

2mW
dpz pz ln

[
1 + e−β(p2

z/2m−µ)
]

(12.7.25)

which can be put in a simpler form by simply making the change of variables εz = p2
z/2m,

R =
2πm

βh3

∫ ∞
W

dεz ln
[
1 + e−β(εz−µ)

]
(12.7.26)

Now the temperatures of interest are generally such that the exponential term inside the
logarithm is much smaller than unity. Therefore, we could replace ln(1 + x) ≈ x in the
integral and we find

R ≈ 2πm

β2h3
eβ(µ−W ) (12.7.27)

which gives the thermionic current density as (e is the electronic charge)

J = eR ≈ 2πmek2

h3
T 2λ(n, T )e−βW (12.7.28)

where λ(n, T ) is the fugacity in (12.6.6). In the classical limit, at very high temperature
and low density we have

λ(n, T ) ≈ nh3

(2πmkT )3/2
(12.7.29)

and

J ≈ ne
(
kT

2πm

)1/2

e−βW (12.7.30)

but at high density and low temperature (compared to the Fermi energy) the chemical
potential is almost constant, µ ≈ EF and so λ ≈ eβEF , giving

J ≈ 2πmek2

h3
T 2e−βΦ (12.7.31)

where Φ = W − EF is the work function. The difference between the two formulas for
J is striking. Naturally, for normal metals at normal operating temperatures the second
formula applies.
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12.8 Pauli Paramagnetism

Let us consider a gas of free spin 1
2 particles in the presence of an external magnetic field.

The energy of each particle will be

ε = ε(~k)− ~mB · ~B (12.8.1)

where ε(~k) represents the kinetic energy of the particles, ~mB is their magnetic moment
and −~mB · ~B represents the energy it acquires by interacting with the external magnetic
field. Let n±(~k) represent the particles carrying momentum ~k and which are parallel (+)
and antiparallel (−) with the field. Evidently, n±(~k) = 0, 1 and the partition function can
be written as

Ξ =
∑
n±(~k)

exp

−β∑
±,~k

{
n

+~k
[ε(~k)−mBB − µ+] + n−~k[ε(

~k) +mBB − µ−]
} (12.8.2)

where we have introduced two chemical potentials, one for the particles oriented parallel
to the magnetic field and one for those oriented antiparallel to it. Since the sum over
n±(~k) breaks up, using n±(~k) = 0, 1 we can write

Ξ =
∏
k

(
1 + e−β(ε(~k)−mBB−µ+)

)(
1 + e−β(ε(~k)+mBB−µ−)

)
(12.8.3)

so the system neatly breaks up into two mutually non-interacting pieces and the number
of parallel spins or antiparallel spins will be

N+ =
∑
k

(
eβ(ε(~k)−mBB−µ+) + 1

)−1
, N− =

∑
k

(
eβ(ε(~k)+mBB−µ−) + 1

)−1
(12.8.4)

and the magnetization of the system will be M = m(N+ − N−). Now the parallel and
antiparallel particles will be in equilibrium when µ+ = µ− = µ. Then let us compute the
magnetization, first at zero temperature. We have

N± = lim
β→∞

2π(2m)3/2V

h3

∫ ∞
0

√
εdε

eβ(ε∓mBB−µ) + 1
(12.8.5)

or

N± =
2π(2m)3/2V

h3

∫ µ±mB

0

√
εdε =

4π(2m)3/2V

3h3
(µ±mBB)3/2 (12.8.6)

We will assume that mB � µ, then expanding in powers of mB/µ we find

N = N+ +N− =
8(2m)3/2πV

3h3
µ3/2

[
1 +

3

8

(
mBB

µ

)2

+ . . .

]
, (12.8.7)
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which shows that to lowest order the chemical potential is given by the Fermi energy in
the absence of the external magnetic field. Moreover,

M = m(N+ −N−) =
4π(2m)3/2V

h3
(
√
µ m2

BB)

[
1− 1

3

(
mBB

µ

)2

+ . . .

]
(12.8.8)

and it is easy to see that

M =
3

2
N
m2
BB

µ

[
1− 5

12

(
mBB

µ

)2

+ . . .

]
(12.8.9)

giving the susceptibility per unit volume as

χ = lim
B→0

M

VB
=

3

2

n2

µ
(12.8.10)

at zero temperature, where n is the number density of particles.
It’s worth comparing the result for the susceptibility above with the classical result,

in (9.2.19), which can be stated as M = NmB tanh(βmBB). At low temperatures
tanh(βmBB) → 1 and all spins are aligned. In the quantum case, however, we have
(12.8.9), which is smaller by a factor of 3mBB/2µ � 1. Again, at room temperature,
the corrections in the quantum case become negligible, and the magnetization stays more
or less independent of T , which is not so for the classical result. The quantum result is
smaller than the classical by a factor of 3kT/2µ.

At non-zero temperature, the situation is similar to what we had in he previous sec-
tions. All those results can be applied to this situation with the replacement λ± →
eβ(µ±mB). Thus, for example,

N+ =
∑
k

λ+

eβε(~k) + λ+

= − V
h3

(
2πm

β

)3/2

Li3/2(−λ+) (12.8.11)

and

N− =
∑
k

λ−

eβε(~k) + λ−
= − V

h3

(
2πm

β

)3/2

Li3/2(−λ−) (12.8.12)

give the numbers of particles aligned parallel and antiparallel to the magnetic field respec-
tively. The magnetization is

M = m(N+ −N−) = − V
h3

(
2πm

β

)3/2 [
Li3/2(−λ+)− Li3/2(−λ−)

]
(12.8.13)

from where its low and high temperature behavior can be analyzed as we have done earlier.
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12.9 White Dwarfs and Neutron Stars

A star that has consumed all its nuclear fuel will undergo gravitational collapse, but may
end up in a stable state as a white dwarf or a neutron star provided that the mass that
remains in the core after the outer layers are blown away during its death throes does
not exceed a particular limit, called the Chandrashekar limit. Stars that succeed in
forming such stable remnants owe their existence to the high degeneracy pressure exerted
by electrons in the first case and neutrons in the second.

A typical white dwarf would hold about one solar mass in a volume equal to that of
the earth. Thus it is an object whose density is approximately

ρwd =
3M�

4πR3
earth

≈ 1.8× 109 kg/m3 (12.9.1)

At such densities virtually all the electrons are stripped from their nuclei and form a
degenerate fermi gas in the star. The pressure exerted by this electron gas is given by
(12.7.2),

Pe =

(
3

4π

)2/3 h2n
5/3
e

5me
(12.9.2)

where the number density of electrons is now equal to the number density of protons,
assuming that the core is neutral. Neglecting the electrons because their mass is much
smaller than that of the proton and taking the mass of the neutron to be approximately
that of the proton, the density of the core is ρ = (np + nn)mp, where np and nn refer
respectively to the number density of protons and neutrons in the core. Let Z be the
average atomic number and A the average atomic mass number of the atoms constituting
the core, then np = Zn and nn = (A− Z)n, where n is the density of atoms. Therefore

nn
np

=

(
A

Z
− 1

)
⇒ nn + np =

A

Z
np (12.9.3)

and therefore we have ne = np = (Zρ/Amp).
8 Substituting this in (12.9.2) we get

Pe ≈
(

3

4π

)2/3 h2

5me

(
Zρ

Amp

)5/3

=

(
3

4π

)2/3 h2

5me

(
3ZM

8πAmpR3

)5/3

(12.9.4)

where M is the mass of the white dwarf and R is its radius. At or close to the center of the
core the gravitational component of the pressure may be estimated purely by dimensional
analysis. Since we assume spherical symmetry, the only properties of the star upon which

8For the density in (12.9.1) and taking Z/A ≈ 0.5, the electron density is ne ≈ 5.4× 1035 m−3.
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the gravitational pressure may depend are M and R. Since the pressure is due to the
weight of all the layers of the star, we easily find that at the center

Pg = α
GM2

R4
(12.9.5)

where α is some dimensionless quantity that only a sound numerical calculation can give.
The (outward) electron degeneracy pressure can balance the (inward) gravitational pres-
sure at the center if and only if(

3

4π

)2/3 h2

5me

(
3ZM

8πAmpR3

)5/3

= α
GM2

R4
(12.9.6)

Simplifying, we find the radius of the white dwarf as a function of its mass,

R =
3

40π

(
9

32π2

)2/3 h2M
−1/3
�

αGme

(
Z

Amp

)5/3( M

M�

)−1/3

. (12.9.7)

Thus the larger the mass the smaller the white dwarf gets. This is easy to understand
because larger mass cores require a higher degeneracy pressure to balance the inward pull
of gravity. The star achieves this by making the core smaller to increase the density of
electrons and cause them to acquire higher mean speeds. The process of getting smaller
with increasing mass cannot go on forever; at some point the electrons become relativis-
tic and the relationship between the pressure they exert and their speeds softens.9 For
ultrarelativistic electrons, we can take vrms = c and find

Pe =
1

3
nevrmsprms ≈

c

3
neprms (12.9.8)

But what is the average energy of a Fermi gas in the extreme relativistic limit? We find
this by beginning with the expression for the number density (still at low temperature and
in the continuum limit)

N = lim
β→∞

2πV

h3

∫ µ

0

p2dp

eβ(ε−µ) + 1
(12.9.9)

keeping in mind that in the ultrarelativistic limit the dispersion relation is p = ε/c. Thus

N ≈ 2πV

h3c3

∫ µ

0
ε2dε =

2πV µ3

3h3c3
⇒ µ = hc

(
3n

2π

)1/3

≡ EF (12.9.10)

and the average energy is

〈E〉 =
2πV

h3c3

∫ µ

0
ε3dε =

πV µ4

2h3c3
=

3

4
NEF . (12.9.11)

9Problem: Estimate the density of electrons for which they become relativistic.
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It follows that prms ≈ 3Ef/4c giving

Pe =

(
3

2π

)1/3 hcn
4/3
e

4
=

(
3

2π

)1/3 hc

4

(
3ZM

8πAmpR3

)4/3

(12.9.12)

Once again, equating this to the gravitational pressure and solving for M we find,

MCh =

(
3

4π

)5/2( hc

8αG

)3/2( Z

Amp

)2

(12.9.13)

which is the absolute maximum mass that can be supported by electron degeneracy. Notice
that it depends only on the fundamental constants and that it is independent of the electron
mass. If this mass is exceeded, electron degeneracy is no longer capable of supporting the
star against gravitational collapse and the star continues to collapse. Within a tenth of a
second the electrons combine with the protons to form neutrons according to the reaction

p+ + e− → n+ νe (12.9.14)

The neutrino cross-section is so small that they do not significantly interact with matter
until densities on the order of the nuclear density are achieved. They simply pass through
the core leaving behind the neutrons. The collapsing inner regions send out waves that
rapidly become shock waves and tear the outer layers off. The star goes “supernova”,
leaving behind, if anything, a neutron star.

What would the density of a neutron star be? As a first approximation we could suggest
the density of a neutron. Take the “size” of the neutron to be just its Compton wavelength,
h/mnc, and get ∼ 10−15 m, or 1 Fermi. The neutron packs a mass of ∼ 1.67 × 10−27 kg
in a volume which is about the volume of a sphere of radius 1 Fermi, so its density is on
the order of 4 × 1017 kg/m3. This is eight orders of magnitude greater than the density
of a white dwarf. A neutron star of M� would have a radius of just 10.5 km! As long as
the neutrons remain non-relativistic, the relationship between the radius of the neutron
star and its mass is similar to (12.9.7) with the electron mass replaced by the neutron
mass and Z/A replaced by unity. The neutron possesses roughly 1800 times the electron
mass so the star is now smaller by roughly that factor. However, for sufficiently large
stars the neutrons may also become ultrarelativistic, and the Chandrashekar limit may
be exceeded.10 When this happens, neutron degeneracy pressure is not able to counteract
gravity and we know of no force that can keep the star from collapsing into a black hole.

10Problem‘: Estimate the density at which neutrons become relativistic.



Chapter 13

The Density Matrix

In this chapter we aim to formalize the heuristic considerations of Chapter 12. Quantum
Mechanics as we generally learn it is designed for isolated or “closed” systems, i.e., systems
that do not interact in any significant way with their environment. Such systems are
highly idealized and excellent for demonstrating some of the most intriguing features of
the quantum theory, however most systems that are encountered in the laboratory do
possess some interactions with their environment. We will begin by employing some of
the most basic features of the quantum theory to reformulate it in terms of the so-called
density matrix. Then we’ll argue that the reformulation applies even when the quantum
system that we are considering is not isolated. We will see that the most effective way to
describe an “open” system, i.e., systems that interact with the rest of the universe, is via
a generalization of the density matrix. We’ll examine its properties in some detail.

13.1 Closed Quantum systems

A closed quantum system is one that does not interact with the enviroment. If Ĥ is the
Hamiltonian operator of such a system then the wave function describing it will obey
Schroedinger’s equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (13.1.1)

If, moreover, Ĥ is time independent then the wave function can always be written as a
linear combination of stationary states,

|ψα(t)〉 = e−iEαt|α〉 (13.1.2)

where |α〉 are the (complete set of) eigenstates of the Hamiltonian with eigenvalues Eα.
Writing

|ψ(t)〉 =
∑
α

cαe
−iEαt|α〉 (13.1.3)

287
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and assuming that the eigenstates of the Hamiltonian are normalized we find that |ψ(t)〉
is normalized if and only if the coefficients cα satisfy the constraint∑

α

c∗αcα =
∑
α

|cα|2 = 1. (13.1.4)

In fact these expressions can be extended to any complete set of states, |α〉, even if they
are not eigenstates of the Hamiltonian, for then we write

|ψ(t)〉 =
∑
α

cα(t)|α〉 (13.1.5)

and again assuming that the complete set of states is normalized, we get∑
α

c∗α(t)cα(t) =
∑
α

|cα(t)|2 = 1. (13.1.6)

The expectation value of any operator Â is given by

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 =
∑
α,β

c∗α(t)cβ(t)〈α|Â|β〉 =
∑
α,β

c∗α(t)cβ(t)Aαβ (13.1.7)

so if we introduce the operator ρ̂, with matrix elements defined via its transpose, ρ̂T as

〈α|ρ̂T |β〉 def
= ρTαβ = c∗α(t)cβ(t) (13.1.8)

then it follows from (13.1.6) that ρ̂ is a Hermitean projection operator of unit trace,

ρ̂† = ρ̂, ρ̂2 = ρ̂, Tr(ρ̂) = 1 (13.1.9)

and furthermore, from (13.1.7), that the expectation value of Â is given by

〈Â〉 = Tr(ρ̂A) (13.1.10)

The matrix ρ̂ is called the density matrix.
Now ρ̂ can be diagonalized because it is Hermitean so let |i〉 be a complete, orthonormal

set of eigenvectors of ρ̂ then the operator can be wriiten as

ρ̂ =
∑
i

wi|i〉〈i| (13.1.11)

where wi are the eigenvalues of ρ̂. The average value of any operator Â can be given in
the new basis as well and reads

Tr(ρ̂A) =
∑
i,j

wi〈j|i〉〈i|Â|j〉 =
∑
i

wi〈iÂ|i〉 =
∑
i

wiAii (13.1.12)
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which says that the eigenvalue wi of ρ̂ should be interpreted as the probability that the
system is in the state |i〉, because Aii is the expectation value of the operator Â in that
state. For such an interpretation to be possible, however, one should show in general that∑

j wj = 1 and that wj ≥ 0 for all i. Fortunately, this is quite straightfoward since

Tr(ρ̂) = 1⇒
∑
i

wi = 1 (13.1.13)

and if we take Â = |j〉〈j| then

wj = Tr(ρ̂A) = 〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 = 〈ψ(t)|j〉〈j|ψ(t)〉 = |〈ψ(t)|j〉|2 ≥ 0 (13.1.14)

which says that wj ≥ 0 for every j. But there is yet another important property of the wj ’s
that holds for closed systems: all but one of the wj are exactly zero. This is a consequence
of the fact that ρ̂ is a projection operator, therefore

Trρ̂2 = Trρ̂⇒
∑
j

wj(1− wj) = 0 (13.1.15)

and since the left hand side of the second equation is a sum of non-negative terms, each
term should be identically zero, which is possible if and only if wj = 0 or wj = 1 for every
j. Again, since

∑
j wj = 1 it follows that all wj but one are zero.

13.2 Open Quantum Systems

An open quantum system is one that interacts with another quantum system, generally
called the environment. It can be viewed as a part of a larger closed quantum system,
the other part being the environment. As we will see, most of our discussion above is
valid for open quantum systems as well. However the density operator will not necessarily
be a projection operator and the relaxation of this condition will turn out to have very
important consequences. Let us first see how one describes an open quantum system.

Suppose that “our” system interacts with the environment in such a way that the
quantum state of the entire universe (our system plus the environment) can be written
as the linear superposition of a complete set of normalized eigenstates, each of which is a
tensor product,

|ψ(t)〉 =
∑
α,a

cαa(t)|α〉|a〉 (13.2.1)

where α and a refer to the system we’re interested in (“our” system) and the environment
respectively. The eigenstates are assumed orthonormal, therefore

〈a|〈α|β〉|b〉 = δαβδab (13.2.2)
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and, if we will assume that |ψ(t)〉 is normalized, we will have

〈ψ(t)|ψ(t)〉 = 1⇒
∑
α,a

c∗αacαa =
∑
α,a

|cαa|2 = 1. (13.2.3)

The average value of an operator that acts only on our system will be

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 =
∑
α,a,β,b

c∗αacβb〈a|(〈α|Â|β〉)|b〉 =
∑
α,β,a

c∗αacβaAαβ (13.2.4)

and so, by analogy with our treatment of closed systems we define the density operator
via its transpose

〈α|ρ̂T |β〉 = ρTαβ =
∑
a

c∗αacβa (13.2.5)

so that
〈Â〉 = Tr(ρ̂A) (13.2.6)

in keeping with our desire to have ρ̂ compute averages of operators that act only on the
system.

The density operator as defined above is obviously Hermitean and of unit trace since
by (13.2.3)

Tr(ρ̂) =
∑
a

c∗αacαa = 1 (13.2.7)

but it is not a projection operator as can be seen by simply computing ρ̂2,

ρ̂2 =
∑
γ,a,b

c∗γacαac
∗
βbcγb 6= ρ̂. (13.2.8)

Therefore, two of the three conditions met by the density operator of closed systems
are met also by the density operator of open systems. As before, we may introduce an
eigenbasis for the density operator and express ρ̂ in terms of it

ρ̂ =
∑
i

wi|i〉〈i| (13.2.9)

where wi are the eigenvalues of ρ̂. If Â acts only on our system and not on the environment
then its expectation value

〈Â〉 = Tr(ρ̂A) =
∑
j,i

wi〈j|i〉〈i|Â|j〉 =
∑
i

wiAii (13.2.10)

indicates as before, that the eigenvalue wi of ρ̂ represents the probability of finding the
system in the eigenstate |i〉. To strengthen this interpretation, we note also that

Tr(ρ̂) =
∑
i,j

wi〈j|i〉〈i|j〉 =
∑
i

wi = 1 (13.2.11)
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and if we take Â = |j〉〈j| then

wj = Tr(ρ̂A) = 〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 = 〈ψ(t)|j〉〈j|ψ(t)〉 =
∑
i

|〈ψ(t)|j〉|2 ≥ 0 (13.2.12)

so the two necessary conditions are indeed met.
To summarize, every quantum mechanical system can be described by a density matrix

(operator), ρ̂ satisfying the following four properties:

• ρ̂ is Hermitean

• Tr(ρ̂) = 1

• The expectation value of any operator that acts only on the system can be given by
〈Â〉 = Tr(ρ̂A)

• If the quantum system is closed, i.e., if it does not interact with its environment,
then ρ̂ is a projection operator. Otherwise ρ̂ is not a projection operator.

The distinction between an open system and a closed system is contained in the fourth
statement above. States for which the density operator is a projection operator are called
pure states. States for which the density operator is not a projection operator are called
mixed states. In quantum statistics we are generally concerned with mixed states. While
pure states are excellent for describing peculiarly quantum mechanical phenomena such
as interference, they are idealizations that cannot actually be prepared in the laboratory.

Let’s consider a simple example of pure and mixed states in a two state system. Con-
sider a spin 1

2 particle, whose quantum states may be specified in the ŝz basis of “spin up”
and “spin down” states

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
. (13.2.13)

Suppose that the particle is interacting with the environment, whose states we represent
by |yi〉. The general state of the universe (particle plus its environment) will be a linear
superposition of the form,

|ψ〉 =
∑
i

(c+i|+〉+ c−i|−〉)|yi〉 (13.2.14)

and normalization of this state is equivalent to restriction∑
i

(|c+i|2 + |c−i|2) = 1. (13.2.15)

The average value of any operator acting only on the particle (eg. ŝx) would be

〈Â〉 =
∑
i,j

〈yj |(c∗+j〈+|+ c∗−j〈−|)Â(c+i|+〉+ c−i|−〉)|yi〉
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=
∑
i

(|c+i|2A++ + c∗+ic−iA+− + c+ic
∗
−iA−+ + |c−i|2A−−) (13.2.16)

Therefore, if we call, ∑
i

|c+i|2 = a,
∑
i

c∗+ic−i = b,
∑
i

|c−i|2 = c (13.2.17)

then a+ c = 1 and the density matrix corresponding to this state will be of the form

ρ̂ =

(
a b
b∗ c

)
(13.2.18)

Clearly, ρ̂ is a Hermitean matrix of unit trace. For ρ̂ to be a projection operator as well,
the following conditions should hold

a2 + |b|2 = a, c2 + |b|2 = c (13.2.19)

Of course the equations are not independent: because a + c = 1, the second equation
implies the first and vice-versa. The first equation tells us that |b|2 = a − a2. Since a is
real, we set a = ss∗, for some complex s of magnitude less than or equal to unity. Then
|b|2 = |s|2(1− |s2|) = |sr∗|2, where r is another complex number of magnitude is less than
or equal to unity and such that |s|2 + |r|2 = 1. This gives c = |r|2 and, modulo a phase,
b = sr∗, so ρ̂ has the form

ρ̂ =

(
|s|2 sr∗

s∗r |r|2
)

(13.2.20)

which is precisely the density matrix we would derive from the pure state

|ψ〉 = s|+〉+ r|−〉 (13.2.21)

In general, however, ρ̂ is not a projection operator. For example, the density matrix with
a = cos2 θ, c = sin2 θ and b = 0

ρ̂ =

(
cos2 θ 0

0 sin2 θ

)
(13.2.22)

represents a mixed state, not a pure state, so long as θ is not an integer or half-integer mul-
tiple of π. Its eigenvalues are cos2 θ and sin2 θ, with eigenvectors |+〉 and |−〉 respectively
and it can be written as

ρ̂ = cos2 θ|+〉〈+|+ sin2 θ|−〉〈−| (13.2.23)

This tells us that the probability of finding “spin up” is cos2 θ and “spin down” is sin2 θ.
Furthermore, a little computation shows that both the x and y components of the spin,

ŝx = |+〉〈−|+ |−〉〈+|
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ŝy = i(|+〉〈−| − |−〉〈+|) (13.2.24)

have vanishing expectation values.
On the other hand, the density matrix

ρ̂ =

(
cos2 θ ei∆φ sin θ cos θ

e−i∆φ sin θ cos θ sin2 θ

)
(13.2.25)

represents the pure state

|ψ〉 = cos θ|+〉+ e−i∆φ sin θ|−〉 (13.2.26)

and, as expected, its eigenvalues are 1 and 0 with eigenvectors

|1〉 =

(
cos θ

e−i∆φ sin θ

)
, |0〉 =

(
− sin θ

e−i∆φ cos θ

)
(13.2.27)

respectively. Thus ρ̂ = |1〉〈1| and whereas the expectation values of ŝx and ŝy are non-
vanishing in this pure state,

〈ŝx〉 = sin 2θ cos ∆φ, 〈ŝy〉 = sin 2θ sin ∆φ, (13.2.28)

they are vanishing in the mixed state considered earlier.1,
Thus it is an experiment that measures the x (or y) components of the spin that

distinguishes the mixed state from the pure state and not an experiment that measures
the z component, since in both cases the probability for spin up is cos2 θ and the probability
for spin down is sin2 θ.

13.3 Additional Properties of the Density Matrix

From the definition of the density operator,

ρ̂ =
∑
i

wi|i〉〈i| (13.3.1)

it is easy to see that

ρ̂n =
∑
i

wni |i〉〈i| (13.3.2)

and therefore any analytic function of the density operator can be written as

f(ρ̂) =
∑
i

f(wi)|i〉〈i| (13.3.3)

1Problem: Show this.
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Again, because each wi represents the probability for finding the system in state |i〉, we
can define the Gibbs entropy of the system,

S = −
∑
i

wi lnwi = Tr(ρ̂ ln ρ̂). (13.3.4)

For a pure state the entropy will be identically zero, but it will not be zero for a mixed
state.

What about the time evolution of the density matrix? Starting from the definition of
ρ̂ and taking a time derivative

i~
∂ρ̂

∂t
= i~

∑
i

wi
∂

∂t
(|i〉〈i|) =

∑
i

wi(Ĥ|i〉〈i| − |i〉〈i|Ĥ) = [Ĥ, ρ̂]

⇒ i~
∂ρ̂

∂t
+ [ρ̂, Ĥ] = 0 (13.3.5)

because each state evolves according to Schoredinger’s equation. Note that the equation of
motion for ρ̂ differs from the usual Heisenberg equation by a minus sign. This is because it
is constructed from state vectors, so it is not an observable like other hermitian operators
and there is no reason to expect that its time evolution will be the same. It follows that ρ̂
is independent of time if and only if it commutes with the Hamiltonian. This means that
in equilibrium statistical mechanics we will be interested only in density matrices that are
constant or commute with the Hamiltonian.

Recall how in classical statistical mechanics the microcanonical ensemble was defined
by requiring the probability of finding a member of the ensemble in all available microstates
to be the same. Thus if Ω(E,N,Xα) represents the number of microstates accessible to
the system we write the distribution function as

ρ(~p, ~q) =
1

Ω(E,N,Xα)
δ(H(q, p)− E)δ(N(q, p)−N). (13.3.6)

The normalization of the density function determines Ω(E,N,Xα),

1

hfN !

∫
dfqdfp ρ(p, q) = 1, (13.3.7)

where we have used Gibb’s correction for indistinguishable particles. The average value
of any operator Â is given by

〈Â〉 =
1

hfN !

∫
dfqdfp ρ(q, p)A(q, p) (13.3.8)

Quantum mechanically, the microcanonical ensemble for an isolated system with Hamil-
tonian H(q, p) and energy eigenstates Eα is defined by the density matrix

ρ̂ =
1

Ω

∑
α

δEα,E |α〉〈α| (13.3.9)
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so that all the microstates whose energy equals the the total (fixed) energy E of the system
contribute to the density matrix with equal weights.

In the canonical ensemble the density matrix takes the form

ρ̂ =
∑
α

1

Z
e−βEα |α〉〈α| = 1

Z
e−βĤ (13.3.10)

where Z is obtained by the normalization condition, Tr(ρ̂) = 1, which gives Z = Tr(e−βĤ).
Evidently, then, Z is the partition function we have used in the previous chapters.

In the grand canonical ensemble,

ρ̂ =
∑
α

1

Z
e−β(Eα−µNα)|α〉〈α| = e−β(Ĥ−µN̂)

Tr(e−β(Ĥ−µN̂))
(13.3.11)

where Z is again the partition function, now in the grand canonical ensemble. When the
density matrix in the canonical ensemble is viewed as a function of the temperature, we
find that it satisfies a very simple equation. Let ρ̂U be the unnormalized density matrix,

ρ̂U = e−βĤ, then
∂ρ̂U
∂β

= −Ĥρ̂U (13.3.12)

with the initial condition ρU (0) = 1.

13.4 Density Matrix in the position representation

We will now perform some simple, one dimensional computations of the density matrix.
Our emphasis will be in finding ρ(x, x′;β) and computing the expectation values of simple
operators with it.

13.4.1 One Dimensional Particle

The simplest system is the free particle, so it makes sense to begin with H = p2/2m. In
the position representation, we could write the equation for ρ̂U as

∂

∂β
ρU (x, x′;β) =

~2

2m

∂2

∂x2
ρU (x, x′;β) (13.4.1)

where

ρU (x, x′;β) = 〈x′|e−βĤ|x〉 =
∑
α

e−βEα〈x′|α〉〈α|x〉 =
∑
α

e−βEαψ∗α(x′)ψα(x) (13.4.2)
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where ψα(x) is an energy eigenstate. The equation for ρ(x, x′;β) is a diffusion equation
and we are interested in solving it subject to the boundary condition

lim
β→0

ρU (x, x′;β) = δ(x− x′). (13.4.3)

One way is to take

ρU (x, x′;β) =

∫ ∞
−∞

dk

2π
ρU (k, β)e−ik(x−x′) (13.4.4)

where limβ→0 ρU (k, β) = 1. Then

∂

∂β
ρU (k, β) = −~2k2

2m
ρU (k, β) (13.4.5)

gives

ρU (k, β) = e−
~2k2β

2m (13.4.6)

so, inserting this solution into (13.4.4) gives

ρU (x, x′;β) =

∫ ∞
−∞

dk

2π
e−

~2k2β
2m e−ik(x−x′) =

√
m

2πβ~2
e
− m

2~2β
(x−x′)2

(13.4.7)

Of course we would get the same answer if we exploit (13.4.2), writing

ρU (x, x′;β) =

∫ ∞
−∞

dk

2π
e−

~2k2β
2m ψ∗k(x

′)ψk(x) (13.4.8)

where we have used 〈k′|ρ̂U |k〉 = e−
β~2k2

2m δ(k − k′) together with ψk(x) = 〈x|k〉 = eikx.

If we imagine that the particle is confined in a one dimensional box of length L, then
the trace of the density matrix, which is just the partition function, can be written as

Tr(ρ̂U ) =

∫ L

0
dx ρ(x, x;β) = L

√
m

2πβ~2
, (13.4.9)

and therefore the normalized density matrix is just

ρ(x, x′;β) =
1

L
e
− m

2~2β
(x−x′)2

. (13.4.10)

Let’s first evaluate the expectation values of some typical quantities. For example,

〈x̂〉 = Tr(ρ̂x) =

∫ L

0
dx x ρ(x, x;β) =

L

2
(13.4.11)
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The expectation value of the momentum operator needs only a little more work. The
definition of the expectation value

〈p̂〉 =

∫
dx〈x|p̂ρ|x〉 =

∫
dxdx′〈x|p̂|x′〉〈x′|ρ̂|x〉 (13.4.12)

together with the fact that

〈x|p̂|x′〉 =
~
i

∂

∂x
δ(x− x′) (13.4.13)

imply that

〈p̂〉 =

∫
dxdx′

~
i

[
∂

∂x
δ(x− x′)

]
ρ(x, x′;β) = i~

∫ L

0
dx

[
∂

∂x
ρ(x, x′;β)

]
x=x′

= 0 (13.4.14)

where we have integrated by parts once. What about 〈p̂2〉? We have to use

〈x|p̂2|x′〉 = −~2 ∂
2

∂x2
δ(x− x′) (13.4.15)

so

〈x|p̂2|x′〉 =

∫
dxdx′

{
−~2

[
∂2

∂x2
δ(x− x′)

]
ρ(x, x′;β)

}
= −~2

∫ L

0
dx

[
∂2

∂x2
ρ(x, x′;β)

]
x=x′

=
m

β
(13.4.16)

where we integrated twice in the second step. The average energy of the system is therefore
〈Ĥ〉 = 〈p̂2/2m〉 = 1

2kT .

13.4.2 One Dimensional Harmonic Oscillator

The smallest step up from the free particle is the one dimensional harmonic oscillator with
Hamiltonian

H =
p2

2m
+

1

2
mω2x2 (13.4.17)

which gives the following equation for the density matrix

∂

∂β
ρ(x, x′;β) =

[
~2

2m

∂2

∂x2
− 1

2
mω2x2

]
ρ(x, x′;β) (13.4.18)

This is not easily solved by the method of Green functions. However, we can exploit the
fact that we know the quantum states of the oscillator. Thus, from (13.4.2)

〈x′|ρ̂U |x〉 =

∞∑
n=0

e−βEnϕ∗n(x′)ϕn(x), (13.4.19)
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where ϕn(x) are eigenstates of Ĥ of energy En =
(
n+ 1

2

)
~ω. We have

ϕn(x) =
(α
π

)1/4 1√
2nn!

Hn(
√
αx)e−

αx2

2 (13.4.20)

where α = mω
~ . Therefore

〈x′|ρ̂U |x〉 =
(α
π

)1/2
e−

α
2

(x2+x′2)
∞∑
n=0

1

2nn!
e−β(n+ 1

2
)~ωHn(

√
αx′)Hn(

√
αx) (13.4.21)

This sum is by no means easy to do, but the answer can be obtained in closed form. It is

ρU (x, x′;β) =

√
mω

2π~ sinh(β~ω)
×

exp

[
−mω

4~

{
(x+ x′)2 tanh

(
β~ω

2

)
+ (x− x′)2 coth

(
β~ω

2

)}]
(13.4.22)

The trace of this matrix, or the partition function for this oscillator, is∫ ∞
−∞

dxρU (x, x;β) =

√
mω

2π~ sinh(β~ω)

∫ ∞
−∞

dx exp

[
−mω

~
x2 tanh

(
β~ω

2

)]
=

[
2 sinh

(
β~ω

2

)]−1

(13.4.23)

and now we may write the normalized density matrix as

ρ(x, x′;β) =

√
mω

π~
tanh

β~ω
2
×

exp

[
−mω

4~

{
(x+ x′)2 tanh

(
β~ω

2

)
+ (x− x′)2 coth

(
β~ω

2

)}]
(13.4.24)

Taking expectation values as we did above for the free particle, we should find that the
oscillator is, on the average, at the center, 〈x〉 = 0, but

〈x2〉 =
~

2mω
coth

(
β~ω

2

)
(13.4.25)

and indeed, we see that ρ(x, x;β) is a normalized Gaussian distribution with zero mean
and variance equal to 〈x2〉. Likewise, a simple calculation gives 〈p̂〉 = 0 and

〈p̂2〉 =
1

2
m~ω coth

(
β~ω

2

)
(13.4.26)
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so we see that the mean energy of the oscillator is

〈E〉 =
〈p̂2〉
2m

+
1

2
mω2〈x2〉 =

1

2
~ω coth

(
β~ω

2

)
(13.4.27)

which compares with (9.2.26).

13.4.3 N Free Particles

Let us now turn to a system of N identical free particles. Assuming that the particles are
identical but distinguishable, one could represent the wavefunction of the system by the
product state

ψ(x1, x2, . . . , xN ) =
N∏
i=1

ψki(xi) (13.4.28)

where ki is the wave number associated with the particle i. To compute the matrix
elements of the density matrix we need

ρU (x1, . . . , xN ;x′1, . . . x
′
N ;β) = 〈x′1, x′2, . . . , x′N |ρ̂U |x1, x2, . . . , xN 〉

= 〈x′1, x′2, . . . , x′N |e−βĤ|x1, x2, . . . , xN 〉 (13.4.29)

and, inserting a complete set of energy eigenstates, we get

ρU (~x, ~x′;β) =

∫ ∞
−∞

∏
~k′,~k

d~k′

(2π)N
d~k

(2π)N
〈~x′|~k′〉〈~k′|e−βĤ|~k〉〈~k|~x〉

=

∫ ∞
−∞

∏
~k

d~k

(2π)N
ei
~k·(~x−~x′)e−

β~2~k2

2m (13.4.30)

where we have used ~x = {x1, . . . , xN} and ~k = {k1, . . . , kN}. The integrals are all inde-
pendent and may be evaluated to give

ρU (~x, ~x′;β) =

(
m

2πβ~2

)N/2
e
− m

2β~2 (~x−~x′)2

(13.4.31)

which generalizes the single particle density matrix in a trivial way.
Any interchange of the particles in (13.4.28) leads to a new wave function with phys-

ically different outcomes. If the particles are indistinguishable then (13.4.28) becomes
inappropriate and we must ask for a wave function that remains invariant, or unchanged
under exchanges or permutations of the particles amongst themselves. Of course because
the particles don’t interact and must obey Schroedinger’s equation the wave function must
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end up being constructed as a linear superposition of wave functions of the form (13.4.28).
There are N ! functions of this type and we want to ensure that

|P̂ψ|2 = |ψ|2 (13.4.32)

This is only possible if ψ is either completely symmetric or completely antisymmetric
under the action of the permutation group, i.e.,

ψ(x1, . . . , xN ) =


ψS(x1, . . . , xN ) = 1√

N !

∑
σ

∏
i ψki(xσi)

ψA(x1, . . . , xN ) = 1√
N !

∑
σ(−)σ

∏
i ψki(xσi)

(13.4.33)

where {σ} is the set of all permutations of {1, . . . , N} and ~σ = {σ1, . . . , σN} is a particular
permutation of {1, . . . , N} and

(−)σ =


+1 ~σ is an even permutation

−1 ~σ is an odd permutation
(13.4.34)

Let’s begin by considering two indistinguishable particles. The energy eigenstates are

ψk1,k2(x1, x2) = 〈k1, k2|x1, x2〉 =
1√

2!(2π)

[
ei(k1x1+k2x2) ± ei(k1x2+k2x1)

]
(13.4.35)

where the positive sign applies to Bosons and the negative sign to Fermions. The eigenvalue
of the Hamiltonian is

E =
~2

2m
(k2

1 + k2
2)

so the density matrix is given by

ρU (~x, ~x′;β) =

∫
dk1dk2

4π
e−

β~2

2m
(k2

1+k2
2)
[
ei(k1x1+k2x2) ± ei(k1x2+k2x1)

]
×

×
[
e−i(k1x′1+k2x′2) ± e−i(k1x′2+k2x′1)

]
=

(
m

2πβ~2

)[
e
− m

2β~2 (~x−~x′)2

± e−
m

2β~2 [(x1−x′2)2+(x2−x′1)2]
]

(13.4.36)

and using

(x1 − x′2)2 + (x2 − x′1)2 = (~x− ~x′)2 + 2(x1 − x2)(x′1 − x′2) (13.4.37)

we find that the density matrix can be represented by

ρU (~x, ~x′;β) =

(
m

2πβ~2

)
e
− m

2β~2 (~x−~x′)2 [
1± e−

m
β~2 x12x′12

]
(13.4.38)
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Taking the trace of ρ̂U gives

Tr(ρ̂U ) =

(
m

2πβ~2

)∫
dx1dx2

[
1± e−

m
β~2 x

2
12

]
(13.4.39)

Transform to the variables x = x1 +x2 (the center of mass) and x12 = x1−x2 (the relative
coordinate). The integral over x is simply the volume L to which the two particles are
confined and we are left with

Tr(ρ̂U ) =

(
mL

2πβ~2

)∫ L

0
dx12

[
1± e−

m
β~2 x

2
12

]
=

(
mL2

2πβ~2

)[
1 +

1

2

√
βπ~2

mL2
erf

(√
m

β~2
L

)]
≈
(
mL2

2πβ~2

)
(13.4.40)

where “erf” is the error function, which approaches unity as L → ∞. So the normalized
density matrix is approximately

ρ(~x, ~x′;β) ≈ 1

L2
e
− m

2β~2 (~x−~x′)2 [
1± e−

m
β~2 x12x′12

]
. (13.4.41)

Notice the appearance of two particle correlations in the term in square brackets. These
correlations arise purely out of the statistics. Since

ρ(~x, ~x;β) =
1

L2

[
1± e−

mx2
12

β~2

]
(13.4.42)

represents the probability of finding the two particles at ~x = (x1, x2) respectively, the
probability that x1 → x2 is enhanced for Bosons and diminished for Fermions over the
corresponding probability for distinguishable particles.

We can treat this statistical correlation as an effective statistical interaction between
classical particles. Introduce an effective potential with a pairwise interaction, v(|x12|)
The probability of finding the two particles, one at x1 and the other at x2 at inverse
temperature β is given by

P (x1, x2) =
e−βv(|x12|)∫

dx1dx2e−βv(|x12|)
=

e−βv(|x12|)

L
∫
dx12e−βv(|x12|)

(13.4.43)

where we’ve transformed to the variables x = x1 + x2 and x12 = x1 − x2. For large L and
assuming that v(|x12|)→ 0 as |x12| → ∞ we may set∫

dx12e
−βv(|x12|) ≈ L (13.4.44)
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Figure 13.1: The effective two particle statistical potential.

so

P (x1, x2) =
1

L2
e−βv(|x12|) (13.4.45)

and comparing P (x1, x2) to ρ(~x, ~x;β) we find the effective potential

v(|x12|) ≈ −
1

β
ln

[
1± e−

mx2
12

β~2

]
, (13.4.46)

which is attractive for Bosons, repulsive for Fermions and significant when |x12| .
√
β~2/m.

Let us now turn to an arbitrary number of particles. It should be clear that the integral
expression for ρ(~x, ~x′;β) will be of the form

ρU (~x, ~x′;β) =
∑
σ

(±)σ
∫

d~k

(2π)NN !
e−

β~2~k2

2m eiki(xi−x
′
σi

) (13.4.47)

where the repeated index i is to be summed. The exponent factorizes and each integral
can be evaluated as before

ρU (~x, ~x′;β) =

(
m

2πβ~2

)N/2∑
σ

(±)σe
− m

2β~2 (~x−σ̂~x′)2

(13.4.48)

where σ̂ is the permutation operator that takes x′i → [σ̂~x′]i = x′σi and the sum is over all
permutations. Consider the partition function,

Tr(ρ̂U ) =

(
m

2πβ~2

)N/2∑
σ

(±)σ
∫ L

0
d~x e

− m
2β~2 (~x−σ̂~x)2

(13.4.49)
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The leading contribution comes from the identity permutation and it is just the classical
result

Tr(ρ̂U ) ≈ LN
(

m

2πβ~2

)N/2
(13.4.50)

The next contribution comes from permutations that interchange a pair of particles. These
are odd permutations and there will be N(N − 1)/2 such terms,

± LN−2
∑
i<j

∫ L

0
dxidxje

− m
2β~2 (xi−xj)2

. (13.4.51)

After the two particle interchanges we must consider the three particle interchanges, which
involve two permutations of particles

+ LN−3
∑
i<j<k

∫ L

0
dxidxjdxke

− m
2β~2 [(xi−xj)2+(xj−xk)2+(xk−xi)2]

(13.4.52)

and so on. Thus the partition function has the expansion

Tr(ρ̂U ) =

(
m

2πβ~2

)N/2
LN

1± 1

L2

∑
i<j

∫ L

0
dxidxje

− m
2β~2 (xi−xj)2

+

+
1

L3

∑
i<j<k

∫ L

0
dxidxjdxke

− m
2β~2 [(xi−xj)2+(xj−xk)2+(xk−xi)2]

± . . .] (13.4.53)

Of course, if all one is interested in is the partition function then, as we have seen in earlier
chapters there is a simpler way to going about calculating it: work in the energy basis
since the trace is an invariant.

13.5 Path integral for the Density Matrix

The diffusion equation for the density matrix in (13.3.12) can be formally “solved” to yield
a position representation for ρ̂U with a general Hamiltonian. The solution is only formal
in the sense that it is represented as a “path integral”, which is ambiguously defined.
Nevertheless it is useful because it provides the clearest connection between the classical
dynamics of a system and its statistical dynamics. It is also useful because the result is
expressed in a compact form in terms of c-numbers (commuting numbers) for Bosons or
anticommuting (Grassmann) numbers for Fermions, as opposed to operators. This allows
for the use of many familiar approximation techniques such as the method of steepest
descents or stationary phase.
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Consider a set of N non-interacting particles in contact with a heat reservoir of temper-
ature β, and let x be a collective coordinate representing the positions of the N particles,
i.e., x = {x(1), . . . x(N)}. The density matrix of the system can be expressed as

ρU (x, x′;β) = 〈x′|e−βĤ|x〉 (13.5.1)

where x and x′ are some configurations of the N particles. Write e−βĤ =
∏n
j=1 e

− β
n
Ĥ and,

calling εn = β/n, insert the completeness relation n − 1 times into the expression above
as follows (x′ = x0 and x = xn):

ρU (x, x′;β) =

∫
dx1 . . . dxn−1〈x′|e−εnĤ|x1〉〈x1|e−εnĤ|x2〉 . . . 〈xn−1|e−εnĤ|x〉

=

∫
dx1 . . . dxn−1

n∏
i=1

〈xi−1|e−εnĤ|xi〉 (13.5.2)

We now want to take advantage of the fact that ε is small so we can make some approxi-

mation to 〈xi−1|e−εnĤ|xi〉 so that the limit as n → ∞ gives the correct answer. Suppose
that the Hamiltonian has the form (p is also a collective coordinate, p = {p(1), . . . p(N)}
and p2 =

∑N
j=1 p

(j)2
)

H =
p2

2m
+ V (x) (13.5.3)

(we will take a one dimensional situation for illustrative purposes only, but the entire
discussion is straightforwardly generalized to an arbitrary number of dimensions) then we
insert a complete set of momentum states,

〈xi−1|e−εnĤ|xi〉 =
L

2π~

∫
dpi−1〈xi−1|pi−1〉〈pi−1|e−εnĤ|xi〉 (13.5.4)

Now

〈pi−1|e−εnĤ|xi〉 ≈ 〈pi−1|
(

1− εnĤ
)
|xi〉

= 〈pi−1|
(

1− εn
[
p̂2

2m
+ V (x)

])
|xi〉

= 〈pi−1|xi〉
(

1− εn
[
p2
i−1

2m
+ V (xi)

])
≈ 〈pi−1|xi〉e−εn[p2

i−1/2m+V (xi)] (13.5.5)

and therefore

〈xi−1|e−εnĤ|xi〉 ≈
L

2π~

∫
dpi−1〈xi−1|pi−1〉〈pi−1|xi〉e−εn[p2

i−1/2m+V (xi)] (13.5.6)
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Now, if we use the position representation of the momentum states

〈x|p〉 =
1√
L
eipx/~ (13.5.7)

we find

〈xi−1|e−εnĤ|xi〉 =
1

2π~

∫
dpi−1e

−ipi−1(xi−xi−1)/~e−εn[p2
i−1/2m+V (xi)] (13.5.8)

and the integral expression on the right hand side can be easily evaluated to give

〈xi−1|e−εnĤ|xi〉 =

√
m

2πεn~2
exp

[
−εn

(
m(xi − xi−1)2

2~2ε2
n

+ V (xi)

)]
(13.5.9)

Inserting this into the expression for ρ(x, x′;β),

ρU (x, x′;β) =

(√
m

2πεn~2

)n ∫
dx1 . . . dxn−1

n∏
i=1

exp

[
−εn

(
m(xi − xi−1)2

2~2ε2
n

+ V (xi)

)]
(13.5.10)

Now the product on the right hand side above can be rewritten as a sum in the exponent,

exp

[
−1

~

n∑
i=1

(~εn)

(
m

2

[
xi − xi−1

~εn

]2

+ V (xi)

)]
(13.5.11)

Now ~εn has the dimension of “time” so let’s introduce the variable τ ∈ [0, ~β] and think
of the configuration variables as piecewise continuous functions of τ , so that x = x(τ)
together with the boundary conditions x′ = x(0), x = x(~β). Then

xi − xi−1

~εn
=
dx(τ)

dτ
(13.5.12)

and the exponent in (13.5.11) becomes a Riemann sum, which, in the limit as n → ∞
turns into a definite integral,

exp

[
−1

~

n∑
i=1

(~εn)

(
m

2

[
xi − xi−1

~εn

]2

+ V (xi)

)]
n→∞−→ exp

[
−1

~

∫ ~β

0
dτ
(m

2
ẋ2 + V (x)

)]
(13.5.13)

We also have to integrate over the intermediate xi, which we formally gather together in
one measure: (√

m

2πε~2

)n
dx1 . . . dxn−1 → Dx (13.5.14)
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finally getting the following expression for ρ(x, x′; t)

ρU (x, x′; t) =

∫ x

x′
Dx exp

[
−1

~

∫ ~β

0
dτ
(m

2
ẋ2 + V (x)

)]
(13.5.15)

Some points are worth making:

• The fact that we have to integrate over all possible values of the intermediate points,
xi (except for the initial and final points), indicates that we must account for all
piecewise continuous paths leading from x′ = x(0) to x = x(~β). However, note that
the exponent in the integration will be small for paths that deviate significantly from
the classical path (for which the Lagrangian in minimized) so we can expect that
the contribution from the classical path will dominate.

• We have ignored the possible need to symmetrize or antisymmetrize the wave func-
tions in the above discussion. When the particles are distinguishable the the initial
and final configurations will depend on the locations of each of the particles but when
the particles are indistinguishable the final positions can be occupied by any of the
particles, so the density matrix must satisfy the additional requirement of symmetry
or antisymmetry with respect to the permutation group. The symmetrized or an-
tisymmetrized density matrix can be constructed directly from the unsymmetrized
(distinguishable) case. For Bosons the the symmetrized density matrix will be

ρB(x1, . . . xN ;x′1, . . . x
′
N ) =

1

N !

∑
{σ}

ρ(x1, . . . xN ;x′σ1
, . . . x′σN ) (13.5.16)

and for Fermions

ρF (x1, . . . xN ;x′1, . . . x
′
N ) =

1

N !

∑
{σ}

(−)σρ(x1, . . . xN ;x′σ1
, . . . x′σN ) (13.5.17)

where, as before {σ} is the set of all permutations of {1, 2, . . . N}.

• Finally, one can also obtain an expression in terms of the Hamiltonian if we forgo
the integration over the momentum variable that took us from (13.5.8) to (13.5.9)
above. Then we will find

ρU (x, x′;β) =

∫
DxDp exp

[
−1

~

∫ ~β

0
dτ (ipẋ+H(x, p))

]
. (13.5.18)

where

DxDp =
1

(2π~)n
dx1 . . . dxn−1dp1 . . . dpn−1. (13.5.19)
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This expression is sometimes useful when working with quantum fields for which a
convenient path integral may be developed by using coherent states (eigenstates of
the annihilation operator). For Bosons the commutation relation

[a, a†] = 1 (13.5.20)

plays the same role as the commutation relation between x and p. For Fermions,
however, the algebra involves anti-commutators, which means we must develop the
path integral using anti-commuting, or Grassmann, numbers. This is presently be-
yond the scope of these notes.

13.6 Simple Calculations with the Path Integral

One can imagine that performing actual calculations of the density matrix using the path
integral formulation is hardly straightforward. Nevertheless, the path integral provides an
excellent platform from which approximation methods can be developed. We will examine
them in subsequent chapters. Here let’s look at some very simple systems, which will
indicate how approximation methods may proceed.

13.6.1 Free particle

Let’s begin by evaluating the simplest density matrix of all: that describing a single free
particle in contact with a heat reservoir at inverse temperature β. We want to compute

ρU (x, x′; t) =

∫ x

x′
Dx exp

[
−m

2~

∫ ~β

0
dτẋ2

]
(13.6.1)

We know that the integral will be dominated by the classical path, x(τ), for which the
velocity is constant,

ẋ(τ) = v =
(x− x′)

~β
. (13.6.2)

so consider trajectories that take the form

x(τ) = x(τ) + y(τ) (13.6.3)

where y(τ) is an arbitrary function constrained only to vanish at the boundaries, i.e.,
y(0) = y(~β) = 0. Then

ẋ2 = ẋ
2

+ ẏ2 + 2ẋẏ (13.6.4)

and so

ρU (x, x′; t) = e
−m

2
(x−x′)2

~2β

∫
Dy exp

[
−m

2~

∫ ~β

0
dτ(ẏ2 + 2ẋẏ)

]
(13.6.5)
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The second integral in the exponent vanishes, however, for the simple reason that∫ ~β

0
ẋẏ = (ẋy)

∣∣~β
0
−
∫ ~β

0
ẍydτ (13.6.6)

after integrating by parts. But the first term vanishes because y(τ) is required to vanish
at the boundaries and the second integral vanishes as well because the acceleration of the
classical trajectory is identically zero. Therefore we can write

ρU (x, x′; t) = f(~β) e
− m

2~2β
(x−x′)2

(13.6.7)

where f(~β) is given by the path integral remaining,

f(~β) =

∫
Dy exp

[
−m

2~

∫ ~β

0
dτ ẏ2

]
(13.6.8)

This result agrees with with our earlier answer if

f(~β) =

√
m

2πβ~2
(13.6.9)

Of course, only the normalized density matrix enters into calculations of expectation values
and so f(~β) is more or less irrelevant. Nevertheless, f(~β) = Tr(ρ̂U ) = Z is the partition
function of the system.

13.6.2 Simple Harmonic Oscillator

For a single harmonic oscillator in contact with a heat bath, the density matrix should
read

ρU (x, x′; t) =

∫ x

x′
Dx exp

[
−m

2~

∫ ~β

0
dτ(ẋ2 + ω2x2)

]
(13.6.10)

and, again, let us expand about the classical path

x(τ) = x(τ) + y(τ) (13.6.11)

where the classical equations of motion that govern the evolution of x(τ) are

ẍ = ω2x⇒ x(τ) = A cosh(ωτ) +B sinh(ωτ) (13.6.12)

and where y(τ) vanishes on the boundaries. We find

ẋ2 + ω2x2 = (ẋ+ ẏ)2 + ω2(x+ y)2 = ẋ
2

+ ω2x2 + ẏ2 + ω2y2 + 2(ẋẏ + ω2xy) (13.6.13)
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But ∫ ~β

0
dτ(ẋẏ + ω2xy) = ẋy

∣∣~β
0
−
∫ ~β

0
dτ(ẍ− ω2x)y (13.6.14)

is identically vanishing by the fact that y(0) = y(~β) = 0 and by the equations of motion.
Therefore the integrand in the exponent once again separates nicely into two independent
pieces, ∫ ~β

0
dτ(ẋ

2
+ ω2x2) +

∫ ~β

0
dτ(ẏ2 + ω2y2) (13.6.15)

and we can write

ρU (x, x′; t) = e−
m
2~
∫ ~β
0 dτ(ẋ

2
+ω2x2)

∫
Dy exp

[
−m

2~

∫ ~β

0
dτ(ẏ2 + ω2y2)

]
= f(~β) exp

[
−m

2~

∫ ~β

0
dτ(ẋ

2
+ ω2x2)

]
(13.6.16)

where now

f(~β) =

∫
Dy exp

[
−m

2~

∫ ~β

0
dτ(ẏ2 + ω2y2)

]
(13.6.17)

It remains to evaluate the “euclidean” action in the exponent of (13.6.16) along a classical
path. The first integral of the motion is

ẋ = ±
√
v2

0 + ω2x2 (13.6.18)

where v0 = ẋ(0). Furthermore, the constants A and B in the solution (13.6.12) may be
rewritten in terms of the initial and final positions as

x′ = x(0) = A, v0 = ẋ(0) = ωB (13.6.19)

and so
x = x(~β) = x′ cosh(~βω) +

v0

ω
sinh(~βω) (13.6.20)

which gives

v0 =
ω(x− x′ cosh(~βω))

sinh(~βω)
= ωB (13.6.21)

The integral over τ in the exponent of (13.6.16) may be transformed into an integral over
x using (13.6.18). Then it can be carried out to yield precisely the result in (13.4.24)
modulo the prefactor f(~β).2

2Problem: Reproduce the result in (13.4.24) for the density matrix describing a single harmonic oscil-
lator.



Chapter 14

Order and Disorder

The term order in physics generally refers to the breaking of a symmetry or the presence
of correlations in a many particle system. The affected symmetry concerns one or more
of the translational, rotational or spin degrees of freedom of the system and the order is
represented by an order parameter whose value in the perfectly disordered (symmetric
and uncorrelated) state is zero and whose value is non-zero in an ordered state. A typical
example would be the magnetization in a ferromagnetic system. At very high tempera-
tures, the atomic spins tend to be randomly oriented and the magnetization is zero but,
at temperatures below some critical value, say Tc, there is a preferred and spontaneously
chosen orientation for the atomic spin resulting in a net magnetization which breaks rota-
tional invariance. When symmetries are broken one needs to employ additional variables,
the order parameters, to describe the state of a system. For example, the magnetization,
which is the order parameter of a ferromagnetic system, is an additional variable required
to describe a ferromagnetic system at low temperatures.

Long range order characterizes systems in which remote regions within it exhibit
correlated behavior. Long range order is generally characterized by correlation functions.
An example in a spin system would be the function

G(x, x′) = 〈s(x)s(x′)〉 (14.0.1)

where s(x) is the spin quantum number at position x and 〈. . .〉 represents an expectation
value. The function G(x, x′) characterizes the extent to which the spins at x and x′ are
correlated. If G(x, x′) decays exponentially then the spins are taken to be uncorrelated
and the system is considered to exhibit no long range order, but if it approaches a constant
value as |x− x′| gets large then the system is said to exhibit long range order.

Order arises out of a cooperative behavior between the elementary constituents of
the system, via mutual interactions that cannot be transformed away but instead assume
macroscopic significance below a critical temperature, Tc. Above this critical temper-
ature the thermal energy of the constituents is too large for the cooperative behavior to
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manifest itself and because it is this cooperative behavior that leads to an ordered phase
of the system, ordered and disordered phases of a system are separated by a phase tran-
sition. During such a transition certain properties of the medium change, sometimes
discontinuously, as a result of a change in some external condition, which is often the
temperature. Most obvious examples of a phase transition are the condensation of gases
and the melting of solids, transitions from normal to superconducting materials, ferro-
magnetism and anti-ferromagnetism, and the order-disorder transition in alloys. The set
of external conditions at which the transformation occurs is called the phase transition
point.

Near the critical temperature any thermodynamic quantity can usually be expressed
as the sum of a regular part and a singular part (if it exists) or have singular derivatives.
A basic problem of the theory of phase transitions is to study the behavior of a given
system in the neighborhood of a critical point. It is customary to express the singularities
by a set of power laws characterized by critical exponents. For definiteness, consider
a ferromagnetic system and suppose that M is the magnetization corresponding to an
ordering field h.

• As h→ 0, M →M0 where M0 = 0 for T > Tc and M ∼ (Tc−T )β so long as T . Tc
and β is called the order parameter exponent.

• When T = Tc the magnetization vanishes if h = 0, but increases rapidly with h. For
small h the singular part of M behaves as M ∼ h1/δ where δ > 1. The exponent δ
is called the exponent of the critical isotherm.

• As T approaches Tc from above or below the magnetic susceptibility behaves as
χ ∼ |T − Tc|−γ and γ is called the susceptibility exponent.

• Likewise the specific heat at constant h behaves as ch ∼ |T − Tc|−α when h = 0 and
α is called the specific heat exponent.

• Finally, the spin-spin correlation function can be parametrized as

G(x, x′) ∼ 1

|x− x′|d−2+η
e
− |x−x

′|
ξ (14.0.2)

and ξ ∼ |T −Tc|−ν and ν is called the correlation length exponent while η is the
correlation function exponent at the critical isotherm.

Our objective in this chapter is to give an overview of a subset of models in which
cooperative behavior exists. Since we are interested only in the cooperative behavior,
we will ignore the motion of the constituents, taking them instead to interact with one
another while occupying fixed sites on a spatial lattice.
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14.1 The Models

14.1.1 Spin Models

The Ising model is the prototype for magnetic phase transitions and and the simplest of
the so-called discrete models. It consists of a lattice of spin 1

2 particles in the presence of
a magnetic field, which we take to be oriented in the z direction. Each spin can be either
parallel or antiparallel to the magnetic field and will be represented by the symbol “s”,
which can take on values ±1. Unless otherwise stated a square lattice is taken and letters
i, j, . . . from the middle of the roman alphabet will label lattice sites, so “sj” will refer to
the spin at site “j”. The Hamiltonian of the system can be written as

H = −
∑
〈i,j〉

Jijsisj − h
∑
i

si (14.1.1)

where 〈.〉 indicates that the sum is taken over nearest neighbor sites on the lattice. h
represents the effect of the external magnetic field (the ordering field) and Jij represents
the interaction strength between nearest neighbors, which we will henceforth take to be
the same for all nearest neighbor pairs, Jij = J , so that

H = −J
∑
〈i,j〉

sisj − h
∑
i

si. (14.1.2)

If J > 0 then the interaction energy is lower when the neighboring spins are aligned and
higher if J < 0. Thus at low temperature the spins tend to become aligned if J > 0
and this gives rise to ferromagnetic systems, in which there is a natural tendency for
spontaneous magnetization below a critical temperature. The opposite situation (J < 0)
gives rise to antiferromagnetism. Although their detailed behavior depends sensitively
on the dimensionality of the lattice, all spin models exhibit a phase transition at some
non-zero critical temperature in dimension greater than one. In one dimension, the phase
transition occurs at Tc = 0. The models are named as follows:

• if d = 1 the spin model is called the Ising model and it is exactly solvable,

• if d = 2 then we have the XY model,

• the d = 3 model is called the Heisenberg model,

• the d = 0 model is the polymer model and the d = ∞ model is the spherical
model.

Only the Ising and XY models have been solved exactly. The one dimensional (Ising)
model is relatively easy to solve and we shall do it here. The solution of the two dimensional
(XY ) model is far from easy and was obtained by Onsager in 1944. It is beyond the scope
of this course.
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14.1.2 The Lattice Gas

The Lattice Gas is a collection of particles whose momentum contribution to the total
Hamiltonian can be neglected. Consider a regular lattice (square, unless otherwise stated)
consisting of cells which may be occupied (or not) by the particles. Assume that there
cannot be more than one particle per cell and that the sole contributors to the energy of
the system are the nearest neighbor interactions among the particles,

H =
∑
〈i,j〉

uijpipj − µ
∑
i

pi (14.1.3)

where uij = −u if {i, j} are nearest neighbors and zero otherwise. The pi are cell occu-
pation numbers, pi = 1 if cell “i” is occupied and zero otherwise and µ is the chemical
potential. Although the occupation number is either zero or unity, it is like the spin in
the Spin Models, for if we take

pi =
1

2
(1 + si) (14.1.4)

then

H = −u
4

∑
〈i,j〉

(1 + si)(1 + sj)−
µ

2

∑
i

(1 + si)

= −u
4

∑
〈i,j〉

[1 + (si + sj) + sisj ]−
µ

2

∑
i

[1 + si]

= −u
4

[z + 2z
∑
i

si +
∑
〈i,j〉

sisj ]−
µ

2
[N +

∑
i

si] (14.1.5)

where z is the “coordination number” of the lattice, i.e., the number of nearest neighbors
of any site (eg. 2 for a one dimensional lattice, 4 for a square lattice, 6 for a cubic lattice,
etc.) and N is the number of lattice sites. Collecting terms we see that

H = −u
4

∑
〈i,j〉

sisj −
(µ

2
+
uz

4

)∑
i

si −H0 (14.1.6)

where H0 = (uz + 2µN)/4. Thus the Lattice Gas is identical to the Spin models if we
set J = u/4 and h = (uz + 2µ)/4, apart from a spin independent constant, H0. So long
as u > 0 the atoms will attract and condense at low enough temperatures, whereas when
u < 0 they will repel.

The Lattice Gas in two dimensions is useful for studies of adsorption on metal surfaces,
where the substrate provides discrete lattice sites for the atoms to occupy. Varying the
pressure causes a variation in the number of adsorbed atoms (Nad =

∑
i pi), just as varying

the external magnetic field in the Spin Models changes the number of aligned spin pairs.
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14.1.3 Binary Alloys

A binary alloy is a collection of two types of atoms, say type A and type B, arranged on
a lattice. Let pi and qi represent occupation numbers for the two types of atoms,

(pi, qi) =

{
(1, 0) site i occupied by type A
(0, 1) site i occupied by type B

(14.1.7)

If we assume that every site is occupied by an atom then pi+ qi = 1. We introduce a 2×2
symmetric matrix, û, which encapsulates the three types of nearest neighbor interactions
possible:

û =

(
−uAA −uAB
−uBA −uBB

)
(14.1.8)

with uAB = uBA and call

~ξi =

(
pi
qi

)
,

then the Hamiltonian for the system is given as

H =
∑
〈i,j〉

~ξTi û ~ξj . (14.1.9)

This model can be reduced to the Spin Models as well by writing

pi =
1

2
(1 + Si), qi =

1

2
(1− Si), (14.1.10)

then Si = pi − qi and therefore

Si =

{
+1 if i is occupied by type A
−1 if i is occupied by type B

(14.1.11)

The Hamiltonian can be reexpressed in terms of Si as

H = −J
∑
〈i,j〉

SiSj − h
∑
i

Si −H0 (14.1.12)

with

J =
1

4
(uAA − 2uAB + uBB)

h =
1

2
(uAA − uBB)z

H0 =
1

4
(uAA + 2uAB + uBB)Nz, (14.1.13)

where z is the number of nearest neighbors and N is the number of lattice sites as before.
Let us now consider an approximate solution, in which the nearest neighbor interaction is
replaced by an interaction with the thermal average value of the spin.
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14.2 The Weiss Mean Field Approximation

The partition function for the Spin Models is

Z(β, h) =
∑
{s}

eβ(J
∑
〈i,j〉 sisj+h

∑
i si) (14.2.1)

where the sum is to be taken over all spin configurations, represented by {s}. In the Mean
Field approximation, each spin “sees” only an effective average value of s, which is the
same for all sites,

〈sj〉 =
1

N

∑
k

〈sk〉 = m. (14.2.2)

The quantity m is called the magnetization density. If the nearest neighbor interaction
is replaced by an interaction with the magnetization density,∑

〈i,j〉

sisj ≈
∑
〈i,j〉

si〈sj〉 ≈
mz

2

∑
i

si, (14.2.3)

where we have divided by a factor of two to avoid duplication in the counting of nearest
neighbor pairs, the mean field Hamiltonian of the system becomes

Hm.f. ≈ (−mJz/2− h)
∑
i

si. (14.2.4)

We see that the approximation amounts to an interaction of each atom with an additional
average magnetic field given by mJz/2, which is what gives this approximation its name.
The partition function may now be approximated to

Zm.f. =
∑
{s}

eβ(mJz/2+h)
∑
i si , (14.2.5)

where there are 2N terms in the sum over spin configurations. The sum is easily performed
if we let r and s be the numbers of atoms with spin “up” and spin “down” respectively,
so that r + s = N . There are

NCr =
N !

r!(N − r)!
(14.2.6)

configurations with r atoms oriented “up”, therefore the sum over {s} may be replaced
by a sum over r, taking into account the degeneracy above

Zm.f. =
∑
r

NCre
β(mJz/2+h)(2r−N) = e−β(mJz/2+h)N (1 + e2β(mJz/2+h))N (14.2.7)
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Figure 14.1: m(T/Tc)T with h = 0.
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Figure 14.2: m(kT/Jz) with h 6= 0.

and one finds
Zm.f. = 2N coshN [β (mJz/2 + h)] . (14.2.8)

The magnetization per atom is

m =
1

βN

∂

∂h
lnZm.f. = tanh[β(mJz/2 + h)], (14.2.9)

which is a self-consistent transcendental equation for m, an equation of state. The solution
will depend only on the temperature and the ordering field, h:

• If h = 0 there is a non-zero solution for m, but only if βJz > 1 i.e., at low tempera-
tures and thus there is a critical temperature, Tc, above which the magnetization is
zero. The behavior of m with increasing T is shown in figure 14.1, with kTc = zJ .
The ordered state with m 6= 0 is a state of spontaneously broken symmetry: in
the absence of an external ordering field either the “up” or “down” orientations are
permitted but, when it is non-vanishing, h determines which orientation is possible.

• The behavior of m with kT/Jz when h 6= 0 is shown in figure 14.2.

The internal energy of the spin system can be written as

〈E〉 = −∂ lnZ

∂β
= 〈Hm.f.〉 = −Nm(Jzm/2 + h)⇒ ε = −m(Jzm/2 + h) (14.2.10)

is the energy per particle in the mean field approximation. The entropy per particle is

s = k

[
1

N
lnZ + βε

]
= k[ln 2 + ln coshβ

(
m

βc
+ h

)
− βm

(
m

βc
+ h

)
]
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Figure 14.3: The Gibbs potential per par-
ticle in the MF approximation, T > Tc.
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Figure 14.4: The Gibbs potential per par-
ticle in the MF approximation, T < Tc.

= k[ln 2 + ln cosh tanh−1m−m tanh−1m] (14.2.11)

where we made use of (14.2.9). With h = 0, this can be approximated at high temperatures
using the fact that m ≈ 0 and the asymptotic relations tanh−1m ≈ m and coshm ≈
1 +m2/2. We find

s ≈ k[ln 2− m2

2
+O(m4)] (14.2.12)

so s→ k ln 2, showing that for each atom both possible orientations are equally probable,
i.e., the system is completely disordered. On the other hand, as m→ 1− (β →∞)

s→ k

[
1

2

(
1− ln

δ

2

)
δ +O(δ2)

]
(14.2.13)

where δ = 1−m. When h = 0, the equation of state,

m = tanh

(
β

βc
m

)
, (14.2.14)

can be solved approximately for m if, in addition, β � βc. One finds that

m = 1− 2e−2Tc/T , (14.2.15)

which can be substituted in the expression for s, to give the specific entropy as a function
of the temperature, near absolute zero, as

s→ k

(
1 +

2Tc
T

)
e−2Tc/T +O(e−4Tc/T ). (14.2.16)

It approaches zero as T → 0, but T = 0 is seen to be an essential singularity.
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Since the partition function depends on β and on h, the first law of thermodynamics
for the Spin Models reads

Tds = dε+mdh (14.2.17)

where s, ε are the entropy and average energy per particle, defined respectively by

s = lnZ + βε (14.2.18)

and

ε = −∂ lnZ

∂β
(14.2.19)

Equilibrium at fixed T and m is determined by the minimum of the Gibbs potential per
particle, which is defined by

g = ε− Ts+mh (14.2.20)

and satisfies
dg = −sdT + hdm. (14.2.21)

Using the mean field expression for h from the equation of state (14.2.9),

h =
1

β
tanh−1m− Jzm/2, (14.2.22)

we find

g(m,T ) =

∫
T const.

h(m,T )dm+ g̃(T )

=
1

β

[
− β

2βc
m2 +m tanh−1m+ ln

√
1−m2

]
+ g̃(T ), (14.2.23)

where we have set βcJz/2 = 1 and g̃ is an arbitrary function only of T . At constant T ,
equilibrium is reached at the minimum of the Gibbs potential,

∂g

∂m
= 0⇒ m =

T

Tc
tanh−1m, (14.2.24)

which is the the same as (14.2.14).

When T > Tc, the Gibbs potential per particle is minimized only at m = 0, as shown
in figure 14.3. However, when T < Tc there are two non-vanishing values of m, call them
±m0, at which g is minimized (see figure 14.4). We can understand this as follows: since
the minimization condition, ∂g/∂m = 0, is actually the condition that h = 0, two limits are
possible, viz., (i) as h→ 0+ the magnetization achieves the value +m0 and (ii) it achieves
the value −m0 as h → 0−. But then the picture in 14.4 for T < Tc cannot be valid for
the region between −m0 and +m0 because in this region the magnetic susceptibility turns
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Figure 14.5: h = h(m) when T > Tc.
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Figure 14.6: h = h(m) when T < Tc.

negative as is evident from the behavior of h(m) when T < Tc which is shown in figure 14.6.
The function h(m) when T > Tc is shown in figure 14.5 and it is clear in this case that the
magnetic susceptibility is always positive. A region of negative magnetic susceptibility is
unphysical and must be corrected. This is done by simply joining the points between ∓m0

on the m−axis as shown by the red line. Recall that a similar correction was originally
proposed by Maxwell in connection with the Van der Waals euqation of state and is called
Maxwell’s construction. The resulting picture of the Gibbs potential is shown in 14.8.
With this construction one finds that m is discontinuous at h = 0. The Helmholz free
energy (per atom),

f = g −mh, df = −sdT −mdh⇒ ∂f

∂h
= −m(T, h) (14.2.25)

has a cusp-like maximum at h = 0.

We get a better insight into the reason for the spontaneous breaking of the rotational
symmetry if we expand the Gibbs potential per particle around m = 0. We find

g(T,m) = a(T, Tc)m
2 + b(T, Tc)m

4 +O(m6) (14.2.26)

where

a(T, Tc) =
k

2
(T − Tc), b(T, Tc) =

kT

12
(14.2.27)

The spontaneous symmetry breaking occurs as T falls below the critical temperature,
causing the coefficient a(T, Tc) to become negative.

We are now in a position to calculate the critical exponents of these models in the
mean field approximation:

• The order parameter exponent, β can be calculated from the expression for m in the
limit as h → 0, expanding the hyperbolic tangent about zero. Retaining up to the
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Figure 14.7: Maxwell’s correction to the
function h = h(m), when T < Tc.
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Figure 14.8: The resulting corrected
Gibbs function.

cubic term in the expansion, we get the equation

m = tanh
β

βc
m ≈ β

βc
m− 1

3

(
β

βc

)3

m3 (14.2.28)

which has solutions

m ≈

√
3(Tc − T )

Tc
(14.2.29)

showing that β = 1
2 .

• Expanding the equation for h in (14.2.22) about small m, taking β = βc we find

h ≈ m3

3βc
+O(m5) (14.2.30)

so m ∼ (3βch)1/3, which shows that the exponent of the critical isotherm is δ = 3.

• To compute the susceptibility exponent, γ, we require an equation for the magnetic
susceptibility per particle. This is obtained from the equation of state. Taking a
derivative with respect to h and simplifying, we find

χ =
∂m

∂h
=

β(1−m2)

1− β
βc

(1−m2)
. (14.2.31)

When T → T+
c we can set m = 0 and then we have the Curie-Weiss law

χ+ → 1

k(T − Tc)
(14.2.32)
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but when T → T−c , then we should use m given by (14.2.29). Then we get

χ− → 1

2k(Tc − T )
(14.2.33)

In either case we find that γ = 1, but we also obtain the amplitude ratio

lim
T→Tc

χ+

χ−
= 2. (14.2.34)

Furthermore, as T → 0, the susceptibility is seen to behave as

χ ≈ 4

kT
e−2Tc/T , (14.2.35)

using the asymptotic form for m. So it vanishes at T = 0.

• In the mean field approximation the heat capacity per particle at constant h is
obtained from the expression we had earlier for the internal energy,

ch = −kβ2 ∂ε

∂β
= kβ2

(
2m

βc
+ h

)
∂m

∂β
. (14.2.36)

To compute ∂m/∂β we must use the expression for m in (14.2.9). After some algebra
we get

∂m

∂β
=

1
β tanh−1m

1
1−m2 − β

βc

(14.2.37)

and therefore

ch = kβ

(
2m

βc
+ h

)
tanh−1m

1
1−m2 − β

βc

. (14.2.38)

With h = 0 we take m = 0 as T → T+
c , then

c+
h → 0. (14.2.39)

On the other hand, as T → T−c when h = 0 we find, using (14.2.29), that

c−h → 3k (14.2.40)

so the specific heat exponent is zero but it has a finite jump discontinuity across
T = Tc. The asymptotic expression (T → 0) for ch is

ch ≈ 8k

(
Tc
T

)2

e−2Tc/T (14.2.41)

and so it also vanishes at T = 0.
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1 2 3 4 N-1 N

Figure 14.9: Open boundary conditions.

14.3 Exact Solution: Ising Model

We could go beyond the mean field approximation if we had an exact solution for the
partition function. This is known only in dimensions one and two, so let’s first look at
the exact solution of the one dimensional (Ising) models. Since we have a one dimensional
chain, the first question to ask is whether or not the chain is closed, i.e., if an additional
interaction of the form −JsNs1 between the first element of the chain and the last occurs.
If not, the boundary conditions are said to be open and the Hamiltonian is of the form

H = −J
N−1∑
i=1

sisi+1 − h
N∑
i=1

si (14.3.1)

If the additional interaction −JsNs1 is included then the boundary conditions are said to
be closed. In this case, the Hamiltonian reads

H = −J
N∑
i=1

sisi+1 − h
N∑
i=1

si (14.3.2)

where sN+1 is identified with s1. This Hamiltonian has the advantage that both the sums
appearing in it run upto N , which simplifies the computation of the partition function
considerably as we shall see.

14.3.1 The Partition Function

The partition function, which involves a sum over spin configurations can be written out
in long hand as

Z =
∑
{s}

eβ(J
∑N−1
i=1 sisi+1+h

∑N
i=1 si) (14.3.3)

We want to rewrite the exponent above so that the sums in both terms run to N − 1.
Using

N∑
i=1

si =
1

2

[
s1 + sN +

N−1∑
i=1

(si + si+1)

]
(14.3.4)
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Figure 14.10: Closed boundary conditions.

we have

Z =
∑
{s}

e
βh
2

(s1+sN )eβ
∑N−1
i=1 [Jsisi+1+h

2
(si+si+1)]

=
∑
{s}

e
βh
2

(s1+sN )
N−1∏
i=1

eβ[Jsisi+1+h
2

(si+si+1)] (14.3.5)

To carry out the spin sum we will now introduce a novel method. Let us define the matrix
T̂ , called the transfer matrix, with matrix elements

Tij = 〈si|T̂ |sj〉 = eβ[Jsisj+h(si+sj)/2], (14.3.6)

then our spin sum may be written as

Z =
∑

s1,s2,...,sN

e
βh
2

(s1+sN )〈s1|T̂ |s2〉〈s2|T̂ |s3〉 . . . 〈sN−1|T̂ |sN 〉 (14.3.7)

and we can make use of the completeness of our states, {|si〉}, to reduce it to the form

Z =
∑
s1,sN

e
βh
2

(s1+sN )〈s1|T̂N−1|sN 〉. (14.3.8)

Into this we insert a complete set of eigenstates, {|e〉}, of T̂ to get

Z =
∑

s1,sN ,e,e′

e
βh
2

(s1+sN )〈s1|e〉〈e|T̂N−1|e′〉〈e′|sN 〉
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=
∑
s1,sN

e
βh
2

(s1+sN )
[
λN−1

+ 〈s1|e+〉〈e+|sN 〉+ λN−1
− 〈s1|e−〉〈e−|sN 〉

]
(14.3.9)

where λ± are the eigenvalues of the transfer matrix, T̂ , which has the explicit form

T̂ =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
, (14.3.10)

Its eigenvalues are easily computed; they are

λ± = eβJ
[
coshβh±

√
sinh2 βh+ e−4βJ

]
. (14.3.11)

with normalized eigenvectors

|e±〉 =
1√

1 + x2
+

(
x±
1

)
(14.3.12)

respectively, where

x± = e2βJ(sinhβh±
√
e−4βJ + sinh2 βh). (14.3.13)

A straightforward calculation now reveals that

Z =
(x+e

βh/2 + e−βh/2)2

1 + x2
+

λN−1
+ +

(x−e
βh/2 + e−βh/2)2

1 + x2
−

λN−1
− . (14.3.14)

These complicated expressions simplify nicely when h = 0, for then

λ± = eβJ ± e−βJ , x± = ±1 (14.3.15)

and one easily finds
Zh=0 = 2λN−1

+ = 2(2 coshβJ)N−1. (14.3.16)

Of course, the case h = 0 gives a very simple partition function, which could have been
recovered directly, without recourse to the transfer matrix, but when h 6= 0 it’s best to use
the method described above. It has its limitations: for instance if the spin-spin interaction
strength were to vary across the chain then J would be depend on the spin label and the
method would fail because it relies heavily on the completeness relations.

If one includes an interaction between the first and the last spins in the chain, then
one is effectively changing the topology of the chain to that of a circle. In this case,

H = −J
N∑
i=1

sisi+1 − h
N∑
i=1

si (14.3.17)
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and the N + 1 spin is identified with the first. Then we have the partition function

Z =
∑
{s}

N∏
i=1

eβ(Jsisi+1+h
2

(si+si+1))

=
∑
s1

[
λN+ 〈s1|e+〉〈e+|s1〉+ λN− 〈s1|e−〉〈e−|s1〉

]
= λN+ + λN− , (14.3.18)

Again, in the limit h→ 0, it reduces to

Zh=0 = (2 coshβJ)N [1 + (tanhβJ)N ]. (14.3.19)

The transfer matrix method provides an exceptionally powerful tool in determining Z for
these finite dimensional systems. It was introduced for the first time by Kramers and
Wannier in 1941. Three years later it was employed by Onsager to treat the free field spin
models in two dimensions.

14.3.2 Correlation Functions

Consider the Ising chain, with open boundary conditions. Suppose we want to compute
the correlation function 〈sisj〉. Take the case where there is no external ordering field
(h = 0), then

〈sisj〉 =
1

Z

∑
{s}

sisj

N−1∏
r=1

eβJsrsr+1 (14.3.20)

How can we evaluate this sum? To start with, let j = i + k and imagine that J depends
on the location on the lattice, i.e., J → Jr. In that case

〈sisi+k〉 =
1

Z

∑
{s}

sisi+k

N−1∏
r=1

eβJrsrsr+1 (14.3.21)

Now notice that for any index j

∑
{s}

sjsj+1

N−1∏
r=1

eβJrsrsr+1 =
1

β

∂Z

∂Jj
, (14.3.22)

but we can always write

sisi+k =
︷ ︸︸ ︷
sisi+1

︷ ︸︸ ︷
si+1si+2

︷ ︸︸ ︷
si+2si+3 . . .

︷ ︸︸ ︷
si+k−1si+k (14.3.23)
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since this amounts to simply inserting unity an appropriate number of times and grouping
the spins in a particular way. Therefore

〈sisi+k〉 =
1

βkZ

∂kZ(J1, J2, . . . , JN−1)

∂Ji∂Ji+1 . . . ∂Ji+k−1
. (14.3.24)

and we only need to evaluate the partition function with N − 1 distinct J ’s,

Z =
∑

s1,s2,...,sN

N−1∏
r=1

eβJrsrsr+1 , (14.3.25)

to determine the correlation function. This is easy to do if we recognize that the sr are
random variables, for then calling σr = srsr+1 we have

Z = 2
∑

σ1,...σN−1

N−1∏
i=1

eβJrσr =
∏
r=1

∑
σr

eβJrσr (14.3.26)

and each σr can only take the values ±1, so

Z = 2
N−1∏
r=1

(2 coshβJr) = 2N
N−1∏
r=1

coshβJr (14.3.27)

When we take the k derivatives required, we simply get

〈sisi+k〉 =
i+k−1∏
r=i

tanhβJr → (tanhβJ)k (14.3.28)

where we have reset the Jr to J in the last step. This expression agrees with our definition
in (14.0.2), for we could write it as

〈si, sj〉 = e−|j−i|/ξ (14.3.29)

where the correlation length to be

ξ = − 1

ln tanhβJ
. (14.3.30)

As βJ → 0+, i.e., in the limit of very high temperatures, ξ → 0+ but as βJ → ∞, the
correlation length diverges as

ξ → e2βJ . (14.3.31)

This tells us that there is no long range order at any finite T and that T = 0 is the critical
temperature for the one dimensional Ising chain. This behavior is typical for such systems:
one finds a critical dimension, dc such that Tc = 0 when d ≤ dc and Tc 6= 0 when d > dc.
In other words, dc = 1 is the critical dimension for the spin models.
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Figure 14.11: Entropy per particle for the
Ising chain.

1 2 3 4 5
ΒJ

0.1

0.2

0.3

0.4

C�Nk

Figure 14.12: Magnetic Heat Capacity per
particle for the Ising chain.

14.3.3 Thermodynamics

Continuing with the Ising model with open boundary conditions in the absence of an
external ordering field, h, the partition function can be written as

Z = 2N (coshβJ)N−1 (14.3.32)

In the thermodynamic limit, i.e., as N →∞, N − 1 above can be replaced by N . Again,
for the Ising chain with closed or circular boundary conditions, because λ− < λ+, i.e.,
(λ−/λ+)N → 0 in the thermodynamic limit, only the larger eigenvalue determines the
major thermodynamic properties of the system. In this limit we can take

Z ≈ (λ+)N = (2 coshβJ)N (14.3.33)

Not surprisingly, the difference between the boundary conditions is irrelevant in the ther-
modynamic limit.

The thermodynamic properties follow as usual. The internal energy behaves as

〈E〉 = −NJ tanhβJ (14.3.34)

so the magnetic contribution to the internal energy vanishes as −NJ2β in the limit of
high temperatures (βJ � 1) and approaches its minimum value of −NJ as T → 0. The
entropy,

S = Nk [ln 2 + ln coshβJ − βJ tanhβJ ] (14.3.35)

vanishes as T → 0 according to

S → 2NkβJe−2βJ (14.3.36)
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Figure 14.13: The magnetization as a function of βh for two different values of J : J1 < J2.

therefore the system approaches a perfectly ordered phase as T → 0. On the other hand,
as T →∞,

S → Nk[ln 2− 1

2
(βJ)2 +O((βJ)3)] ≈ Nk ln 2 (14.3.37)

which says that all of the possible 2N states are occupied and the system is in a completely
disordered phase at high temperatures. The magnetic heat capacity of the system (shown
in figure 14.12) is

C = −kβ2∂〈E〉
∂β

= Nkβ2J2sech2βJ, (14.3.38)

which behaves, at high temperatures, as

C ≈ k
(
J

kT

)2

(14.3.39)

and at low temperatures as

C ≈ k
(
J

kT

)2

e−2J/kT (14.3.40)

again showing the essential singularity at T = 0. It achieves its maximum at T = J/(1.2k)
and there is no singularity or phase transition at any non-zero value of T .

Consider closed boundary conditions when h 6= 0. Now

Z ≈ 2eNβJ
[
coshβh+

√
sinh2 βh+ e−4βJ

]N
(14.3.41)

and it follows that

m =
1

Nβ

∂ lnZ

∂h
=

sinhβh√
sinh2 βh+ e−4βJ

(14.3.42)
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from which the susceptibility (per particle) is found to be

χ =
∂m

∂h
=

β coshβh

e4βJ(sinh2 βh+ e−4βJ)3/2
(14.3.43)

Clearly, the magnetization vanishes as h → 0, which rules out the possibility of sponta-
neous magnetization and therefore any phase transition at finite temperatures. However,
as β → ∞, m → 1 for any h, which implies perfect order in the system. This means
that there is a phase transition at the critical temperature Tc = 0. As J → 0 we find
m = tanhβh, which is the result we are familiar with for a paramagnetic system. More-
over, a larger positive value of J enhances magnetization and causes a faster approach to
saturation, as shown in figure 14.13.

14.4 Mean Field Theory: Landau’s Approach

Landau attempted a phenomenological description of all second order phase transitions.
A second order phase transition is one in which the second derivatives of the free energy
(in the case of the ferromagnetic systems these would be the specific heat and magnetic
susceptibility) show either a discontinuity or a divergence while the first derivatives (the
entropy and magnetization for ferromagnetic systems) are continuous at the critical point.
Landau’s description emphasizes the importance of the order parameter and proposes
that the basic features of the critical behavior are encapsulated in the Gibbs free energy,
expanded about m = 0. In the case of the ferromagnetic systems we have been examining
the expansion involves only even powers of m when h = 0 because the Hamiltonian is
invariant under the transformation si → −si. Thus the zero field Gibbs free energy per
particle can be written as

g(m,T ) = a(T ) + b(T )m2 + c(T )m4 +O(m6). (14.4.1)

Ignoring terms of higher than fourth power in the expansion, thermodynamic stability
requires that c(T ) > 0, since g(m,T ) must have a global minimum. The equilibrium value
of the order parameter is then determined by minimizing g(m,T ) with respect to m,

b(T )m0 + 2c(T )m3
0 = 0⇒ m0 = 0 or m0 = ±

√
− b(T )

2c(T )
(14.4.2)

(Recall that this is the condition for vanishing h.) If b(T ) ≥ 0 in the neighborhood
of the critical temperature then the only solution is m0 = 0 and there is no spontaneous
magnetization. If, on the contrary, b(T ) < 0 near the critical point then there are solutions
which describe spontaneous magnetization with values ±

√
−b(T )/2c(T ). Now suppose we
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expand the coefficients in powers of t = (T − Tc) near the critical temperature,

a(T ) =
∑
k=0

akt
k, b(T ) =

∑
k=0

bkt
k, c(T ) =

∑
k=0

ckt
k, (14.4.3)

we find that up to O(t) the non-zero values of m0 will be

m0 = ±

√
− b0

2c0
+

1

2c2
0

(b0c1 − b1c0) t+ . . . (14.4.4)

so physically sensible results are obtained when b0 = 0 and b1 > 0, in which case

m0 ≈ ±
√
− b1

2c0
(T − Tc), T . Tc, (14.4.5)

straight away showing that β = 1
2 . Thus, when T . Tc there are three extrema of which

two are minima at m = ±m0 and one is maximum at m = 0. Now g(m,T ) must be a
convex function everywhere so that the magnetic susceptibility stays positive, but we have
just seen that this is not so between −m0 and +m0 when T < Tc. This means that we
must employ Maxwell’s construction as before and simply join −m0 to m0 by a straight
line along which the susceptibility would be infinite.

When h 6= 0, consider instead the Helmholz free energy,

f(T, h) = g −mh = a(T ) + b(T )m2 + c(T )m4 − hm (14.4.6)

and recall that df = −sdT −mdh, so m = −(∂f/∂h) and therefore

h = 2b(T )m+ 4c(T )m3. (14.4.7)

On the critical isotherm, because b0 = 0, we must have h = 4cm3, showing that the critical
exponent of the critical isotherm has the value δ = 3.

The magnetic susceptibility can be given as

χ =

(
∂h

∂m

)−1

T

=
1

2b(T ) + 12c(T )m2
. (14.4.8)

But we have seen that when h = 0 then m = 0 if T > Tc, so in that case

χ+ =
1

2b(T )
≈ 1

2b1(T − Tc)
. (14.4.9)

On the other hand, the magnetization is not zero when T < Tc but given instead by
(14.4.5), therefore

χ− ≈ 1

4b1(Tc − T )
(14.4.10)
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Both these results show that the susceptibility exponent is unity.

Finally we turn to the heat capacity. Since the specific heat capacity at constant h
can be obtained directly from the Helmholz free energy according to

ch = −T
(
∂2f

∂T 2

)
h

. (14.4.11)

Above the critical temperature, because m = 0 when h = 0, we find

c+
h ≈ −2a2Tc +O(T − Tc) (14.4.12)

but below the critical temperature,

c−h ≈ −2a2Tc +
b21Tc
2c0

+O(T − Tc) (14.4.13)

and so the specific heat exponent, α, is zero, but there is a jump in ch at the critical
temperature. The heat capacity at constant m exhibits no such jump. It can be directly
obtained from

ch − cm =
T

χ

(
∂m

∂T

)2

h

, (14.4.14)

which follows from the first law and Maxwell’s relations.1 Again, because m = 0 above
the critical temperature when h = 0,

cm = ch = −2a2Tc, (14.4.15)

(T & Tc) and when T . Tc we can use (14.4.5) and (14.4.10) to find

ch − cm ≈
b21Tc
2c0
⇒ cm = −2a2Tc. (14.4.16)

However, although there is no jump at Tc, cm possesses a cusp-like singularity there, as
can be shown by examining the expansion up to first order in T − Tc.2

It is a remarkable feature of Landau’s approach that it gives the same critical exponents
as mean field theory. In fact, while it starts with an expression for the free energy of the
system containing a set of unspecified, temperature dependent parameters intended to
describe the structure and interactions within the system in a phenomenological way, it
shows that the critical exponents do not depend on these parameters. This suggests that
the theory is in fact dealing with an entire class of systems, all members of which, despite

1Problem: Derive this relation following the approach in section 4.2.1.
2Problem: Show this.
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their structural differences, display the same critical behavior. Such a class is called a
universality class.

Let us therefore consider any macroscopic system, not necessarily magnetic, for which
there exists an order parameter m averaged over some length scale, say a, characteristic
of atomic distances. Assume, moreover, that m is a classical field, i.e., a function of the
position within the system. Since m(x) is averaged on scales on the order of a there can be
no Fourier components of m with wavelength λ . a. In terms of m, we take the canonical
partition function to be of the form

Z =
∑
m

Ω(m)e−βH(m,h) (14.4.17)

where h is an external field and the sum is over all possible field configurations, i.e., it takes
into account all possible functions m(x). Ω(m) is an additional degeneracy associated
with the fact that m(x) itself is an average over some more fundamental variable (the
spins in spin-models) so there may in fact be many, say Ω(m), configurations of the more
fundamental variables that yield the same m(x). Thus we introduce the “entropy” S =
k ln Ω(m), in analogy with the Boltzmann formula and write the sum over all configurations
of m(x) as

Z =
∑
m

Ω(m)e−βH(m,h) =
∑
m

e−β(H−TS), (14.4.18)

but keep in mind that S does not represent the true entropy of the system but is related to
the number of microscopic states lead to the same m(x) and therefore is a partial entropy.
The quantity F = H− TS is called the Landau free energy.

Now imagine that F(m,h) is given by the most Taylor general expansion, conforming
to the symmetries of the system and up to any desired order in the order parameter and
its derivatives. For example, if the system admits an “up-down” symmetry, the Landau
free energy would be

F =

∫
dx

[
a+ bm2 + cm4 + . . .+

g

2
(∇m)2 + . . .− hm

]
. (14.4.19)

where we have added a spatial gradient term as well. This term gives a free energy cost
for a non-uniform m(x): a positive g would would increase the energy associated with a
non-uniform configuration whereas a negative g would do the opposite. The coefficient of
the highest order polynomial term must alsways be positive, otherwise the system will be
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unstable.3 What we have therefore is,

Z =
∑
m

e−β
∫
dx [ g

2
(∇m)2+bm2+cm4+...−hm]. (14.4.20)

and

P (m,h) =
1

Z
e−β

∫
dx [ g

2
(∇m)2+bm2+cm4+...−hm] (14.4.21)

represents the probability for the configuration m. The greatest contribution to the par-
tition function will come from the minimum of the Landau free energy and fluctuations
about this minimum value can be systematically computed using the well known tools of
path integration that we will study in the forthcoming chapters. The advantage of this
approach is that it allows one to recover the macroscopic behavior of the system knowing
only its symmetries and without having to contend with its microscopic details.

14.5 Fluctuations

Let us now expand the Landau free energy about the mean magnetization and let δm =
m− 〈m〉, then

F = F(〈m〉) +

∫
dx [b1δm

2 +
g

2
(∇δm)2 + . . .] (14.5.1)

where we made use of the fact that 〈m〉 is the minimum of the free energy. Whenever
one has gradients in the probability distribution, as occur for example in (14.4.21), it
is convenient to perform a Fourier expansion. This is because the gradient terms turn
into quadratic terms in the conjugate variable making it easier to take ensemble averages.
Accordingly, Fourier transforming δm(x),

δm(x) =

∫
dp

(2π)d
δm̃(p) eip·x

δm̃(p) =

∫
dx δm(x) e−ip·x (14.5.2)

we find ∫
dx(δm)2 =

∫
dp

(2π)d
δm̃(p)δm̃(−p) =

∫
dp

(2π)d
|δm̃(p)|2 (14.5.3)

3We have neglected to write in a term of the form∫
dx m(a · ∇m)

because, after an integration by parts over the entire volume, it gives the term proportional to (∇m)2

assuming appropriate boundary conditions.
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where, because m(x) is real, we set δm̃(−p) = δm̃∗(p). This gives

F = F(〈m〉) +

∫
dp

(2π)d
(b1 +

g

2
p2)|δm̃(p)|2 (14.5.4)

(neglecting the quartic term) and therefore, if the integral over ~p is replaced by the product,
the probability distribution in (14.4.21) takes the form

P (m,h) ∼ e−β(F(〈m〉)
∏
p

e−β(b1+ g
2
p2)|δm̃(p)|2 . (14.5.5)

It is then straightforward to find the desired ensemble average, 〈|δm̃(p)|2〉, from

〈|δm̃(p)|2〉 =

∫∞
0 d|δm̃(p)| |δm̃(p)|2e−β(a1+ g

2
p2)|δm̃(p)|2∫∞

0 d|δm̃(p)| e−β(a1+ g
2
p2)|δm̃(p)|2

=
kT

2(b1 + g
2p

2)
. (14.5.6)

Define the correlation function

G(x) = 〈m(x),m(0)〉 − 〈m〉2 = 〈δm(x), δm(0)〉, (14.5.7)

with Fourier transform ∫
dp

(2π)d
dp′

(2π)d
〈δm̃(p), δm̃(p′)〉eip·x. (14.5.8)

If we now assume that correlations between different modes are independent and uncor-
related, so that 〈δm̃(p)δm̃(−p′)〉 = δpp′ , then

G(x) =

∫
dp

(2π)d
〈|δm̃(p)|2〉eip·x. (14.5.9)

This approximation, in which the different Fourier modes are considered to be independent
of one another, is called the random phase or Orenstein-Zernicke approximation. We
can now use the expression for 〈|δm̃(p)|2〉 in (14.5.6) and find the expression for G(x) in
any dimension. In particular, for G(x) in three dimensions we find

G(r) =
kT

2(2π)2

∫ ∞
0

dpp2

∫ π

0
dθ sin θ

eipr cos θ

b1 + g
2p

2

=
kT

2πg

1

r
e−
√

2b1/g r, (14.5.10)

which gives both the correlation length exponent

ξ =

√
g

2b1
(14.5.11)

and the correlation function exponent η = 0.
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