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“An electrical transient is an outward
manifestation of a sudden change in circuit
conditions, as when a switch opens or closes
. . . The transient period is usually very short
. . . yet these transient periods are extremely
important, for it is at such times that the
circuit components are subjected to the
greatest stresses from excessive currents or
voltages . . . it is unfortunate that many
electrical engineers have only the haziest
conception of what is happening in the circuit
at such times. Indeed, some appear to view the
subject as bordering on the occult.”

and

“The study of electrical transients is an
investigation of one of the less obvious aspects
of Nature. They possess that fleeting quality
which appeals to the aesthetic sense. Their
study treats of the borderland between the
broad fields of uniformly flowing events . . .
only to be sensed by those who are especially
attentive.”

—words from two older books1 on electrical
transients, expressing views that are valid today.

1The first quotation is from Allen Greenwood, Electrical Transients in Power Systems, Wiley-
Interscience 1971, and the second is from L. A. Ware and G. R. Town, Electrical Transients,
Macmillan 1954.



In support of many of the theoretical calculations performed in this book,
software packages developed by The MathWorks, Inc. of Natick, MA, were
used (specifically, MATLAB® 8.1 Release 2013a and Symbolic Math
Toolbox 5.10), running on a Windows 7 PC. This software is now several
releases old, but all the commands used in this book work with the newer
versions and are likely to continue to work for newer versions for several years
more. The MathWorks, Inc., does not warrant the accuracy of the text of this
book. This book’s use or discussions of MATLAB do not constitute an
endorsement or sponsorship by The MathWorks, Inc., of a particular
pedagogical approach or particular use of MATLAB, or of the Symbolic
Math Toolbox software.



To the Memory of
Sidney Darlington (1906–1997)
a pioneer in electrical/electronic circuit
analysis,2 who was a colleague and friend for
twenty years at the University of New
Hampshire. Sidney’s long and creative life
spanned the eras of slide rules to electronic
computers, and he was pretty darn good at
using both.

2Sidney received the 1945 Presidential Medal of Freedom for his contributions to military technol-
ogy during World War II, and the 1981 I.E. Medal of Honor. One of his minor inventions is the
famous, now ubiquitous Darlington pair (the connection of two “ordinary” transistors to make a
“super” transistor). When I once asked him how he came to discover his circuit, he just laughed and
said, “Well, it wasn’t that hard—each transistor has just three leads, and so there really aren’t a lot of
different ways to hook two transistors together!” I’m still not sure if he was simply joking.



Foreword

Day and night, year after year, all over the world electrical devices are being
switched “on” and “off” (either manually or automatically) or plugged in and
unplugged. Examples include houselights, streetlights, kitchen appliances, refriger-
ators, fans, air conditioners, various types of motors, and (hopefully not very often)
part of the electrical grid. Usually, we are only interested in whether these devices
are either “on” or “off” and are not concerned with the fact that switching from one
state to the other often results in the occurrence of an effect (called a transient)
between the time the switch is thrown and the desired condition of “on” or “off” (the
steady state) is reached. Unless the devices are designed to suppress or withstand
them, these transients can cause damage to the device or even destroy it.

Take the case of an incandescent light bulb. The filament is cold (its resistance is
low) before the switch is turned on and becomes hot (its resistance is much higher) a
short time after the switch is turned on. Assuming the voltage is constant the filament
current has an initial surge, called the inrush current, which can be more than ten
times the steady state current after the filament becomes hot. Significant inrush
current can also occur in LED bulbs depending on the design of the circuitry that
converts the alternating voltage and current from the building wiring to the much
lower direct voltage and current required by the LED. Due to the compressor motor,
a refrigerator or air conditioner has an inrush current during startup that can be
several times the steady state current when the motor is up to speed and the rotating
armature produces the back EMF. It’s very important to take this into account when
purchasing an emergency generator. The inrush current of the starter motor in an
automobile explains why it may run properly with a weak battery but requires
booster cables from another battery to get it started.

In this book, Paul Nahin focuses on electrical transients starting with circuits
consisting of resistors, capacitors, inductors, and transformers and culminating with
transmission lines. He shows how to model and analyze them using differential
equations and how to solve these equations in the time domain or the Laplace
transform domain. Along the way, he identifies and resolves some interesting
apparent paradoxes.
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Readers are assumed to have some familiarity with solving differential equations
in the time domain but those who don’t can learn a good deal from the examples that
are worked out in detail. On the other hand, the book contains a careful development
of the Laplace transform, its properties, derivations of a number of transform pairs,
and its use in solving both ordinary and partial differential equations. The “touch of
Matlab” shows how modern computer software in conjunction with the Laplace
transform makes it easy to solve and visualize the solution of even complicated
equations. Of course, a clear understanding of the fundamental principles is required
to use it correctly.

As in his other books, in addition to the technical material Nahin includes the
fascinating history of its development, including the key people involved. In the case
of the Trans-Atlantic telegraph cable, you will also learn how they were able to solve
the transmission line equations without the benefit of the Laplace transform.

While the focus of the book is on electrical transients and electrical engineers, the
tools and techniques are useful in many other disciplines including signal
processing, mechanical and thermal systems, feedback control systems, and com-
munication systems. Students will find that this book provides a solid foundation for
their further studies in these and other areas. Professionals will also learn some
things. I certainly did!

Harvey Mudd College, Claremont,
CA, USA
January 2018

John I. Molinder
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Preface

“There are three kinds of people. Those who like math and those who don’t.”
—if you laughed when you read this, good (if you didn’t, well . . . .)

We’ve all seen it before, numerous times, and the most recent viewing is always
just as impressive as was the first. When you pull the power plug of a toaster or a
vacuum cleaner out of a wall outlet, a brief but most spectacular display of what
appears to be fire comes out along with the plug. (This is very hard to miss in a dark
room!) That’s an electrical transient and, while I had been aware of the effect since
about the age of five, it wasn’t until I was in college that I really understood the
mathematical physics of it.

During my undergraduate college years at Stanford (1958–1962), as an electrical
engineering major, I took all the courses you might expect of such a major:
electronics, solid-state physics, advanced applied math (calculus, ordinary and
partial differential equations, and complex variables through contour integration3),
Boolean algebra and sequential digital circuit design, electrical circuits and trans-
mission lines, electromagnetic field theory, and more. Even assembly language
computer programming (on an IBM650, with its amazing rotating magnetic drum
memory storing a grand total of ten thousand bytes or so4) was in the mix. They were
all great courses, but the very best one of all was a little two-unit course I took in my
junior year, meeting just twice a week, on electrical transients (EE116). That’s when
I learned what that ‘fire out of a wall outlet’ was all about.

Toasters are, basically, just coils of high-resistance wire specifically designed to
get red-hot, and the motors of vacuum cleaners inherently contain coils of wire that
generate the magnetic fields that spin the suction blades that swoop up the dirt out of

3Today we also like to see matrix algebra and probability theory in that undergraduate math work
for an EE major, but back when I was a student such “advanced” stuff had to wait until graduate
school.
4A modern student, used to walking around with dozens of gigabytes on a flash-drive in a shirt
pocket, can hardly believe that memories used to be that small. How, they wonder, did anybody do
anything useful with such pitifully little memory?
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your rug. Those coils are inductors, and inductors have the property that the current
through them can’t change instantly (I’ll show you why this is so later; just accept it
for now). So, just before you pull the toaster plug out of the wall outlet there is a
pretty hefty current into the toaster, and so that same current “wants” to still be going
into the toaster after you pull the plug. And, by gosh, just because the plug is out of
the outlet isn’t going to stop that current—it just keeps going and arcs across the air
gap between the prongs of the plug and the outlet (that arc is the “fire” you see). In
dry air, it takes a voltage drop of about 75,000 volts to jump an inch, and so you can
see we are talking about impressive voltage levels.

The formation of transient arcs in electrical circuits is, generally, something to be
avoided. That’s because arcs are very hot (temperatures in the thousands of degrees
are not uncommon), hot enough to quickly (in milliseconds or even microseconds)
melt switch and relay contacts. Such melting creates puddles of molten metal that
sputter, splatter, and burn holes through the contacts and, over a period of time, result
in utterly destroying the contacts. In addition, if electrical equipment with switched
contacts operates in certain volatile environments, the presence of a hot transient
switching arc could result in an explosion. In homes that use natural or propane gas,
for instance, you should never actuate an electrical switch of any kind (a light switch,
or one operating a garage door electrical motor) if you smell gas, or even if only a gas
leak detector alarm sounds. A transient arc (which might be just a tiny spark) may
well cause the house to blow-up!

However, not all arcs are “bad.” They are the basis for arc welders, as well as for
the antiaircraft searchlights you often see in World War II movies (and now and then
even today at Hollywood events). They were used, too, in early radio transmitters,
before the development of powerful vacuum tubes,5 and for intense theater stage
lighting (the “arc lights of Broadway”). Automotive ignition systems (think spark
plugs) are essentially systems in a continuous state of transient behavior. And the
high-voltage impulse generator invented in 1924 by the German electrical engineer
Erwin Marx (1893–1980)—still used today—depends on sparking. You can find
numerous YouTube videos of homemade Marx generators on the Web.

The fact that the current in an inductor can’t change instantly was one of the
fundamental concepts I learned to use in EE116. Another was that the voltage drop
across a capacitor can’t change instantly, either (again, I’ll show you why this is so
later). With just these two ideas, I was suddenly able to analyze all sorts of
previously puzzling transient situations, and it was the suddenness (how appropriate
for a course in transients!) of how I and my fellow students acquired that ability that
so impressed me. To illustrate why I felt that way, here’s an example of the sort of
problem that EE116 treated.

In the circuit of Fig. 1, the three resistors are equal (each is R), and the two equal
capacitors (C) are both uncharged. This is the situation up until the switch is closed at
time t ¼ 0, which suddenly connects the battery to the RC section of the circuit. The
problem is to show that the current in the horizontal R first flows from right-to-left,

5For how arcs were used in early radio, see my book The Science of Radio, Springer 2001.

xii Preface



then gradually reduces to zero, and then reverses direction to flow left-to-right. Also,
what is the time t ¼ T when that current goes through zero?6 Before EE116 I didn’t
have the slightest idea on how to tackle such a problem, and then, suddenly, I did.
That’s why I remember EE116 with such fondness.

EE116 also cleared-up some perplexing questions that went beyond mere math-
ematical calculations. To illustrate what I mean by that, consider the circuit of Fig. 2,
where the closing of the switch suddenly connects a previously charged capacitor C1

in parallel with an uncharged capacitor, C2. The two capacitors have different
voltage drops across their terminals (just before the switch is closed, C1’s drop
6¼0 and C2’s drop is 0), voltage drops that I just told you can’t change instantly. And
yet, since the two capacitors are now in parallel, they must have the same voltage
drop! This is, you might think, a paradox. In fact, however, we can avoid the
apparent paradox if we invoke conservation of electric charge (the charge stored
in C1), one of the fundamental laws of physics. I’ll show you how that is done, later.

Figure 3 shows another apparently paradoxical circuit that is a bit more difficult to
resolve than is the capacitor circuit (but we will resolve it). In this new circuit, the
switch has been closed for a long time, thus allowing the circuit to be in what
electrical engineers call the steady state. Then at time t ¼ 0, the switch is opened.
The problem is to calculate the battery current i at just before and just after t ¼ 0
(times typically written as t ¼ 0� and t ¼ 0+, respectively).

For t < 0, the steady-state current i is the constant V
R because there is no voltage

drop across L1 and, of course, there is certainly no voltage drop across the parallel L2/
switch combination.7 So, the entire battery voltage V is across R, and Ohm’s law tells
us that the current in L1 is the current in Rwhich is VR. This is for t < 0. But what is the

−

+

t = 0

R

R

RC

C

Fig. 1 A typical EE116
circuit

6The answer is T ¼ RC2
3 ln 2ð Þ, and I’ll show you later in the book how to calculate this. So, for

example, if R ¼ 1,000 ohms and C ¼ 0.001 μfd, then T ¼ 462 nanoseconds.
7The voltage-current law for an inductor L is vL ¼ L diL

dt and so, if iL is constant, vL ¼ 0. Also, all
switches in this book are modeled as perfect short-circuits when closed, and so have zero voltage
drop across their terminals when closed.
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current in L2 for t < 0? We don’t know because, in this highly idealized circuit, that
current is undefined. You might be tempted to say it’s zero because L2 is short-
circuited by the switch, but you could just as well argue that there is no current in the
switch because it’s short-circuited by L2!

This isn’t actually all that hard a puzzle to wiggle free of in “real life,” however,
using the following argument. Any real inductor and real switch will have some
nonzero resistance associated with it, even if very small. That is, we can imagine
Fig. 3 redrawn as Fig. 4. Resistor r1 we can imagine absorbed into R, and so r1 is of
no impact. On the other hand, resistors r2 and r3 (no matter how small, just that r2 > 0
and r3 > 0) tell us how the current in L1 splits between L2 and the switch. The current
in the switch is r2

r2þr3
V
R and the current in L2 is

r3
r2þr3

V
R .

However, once we open the switch we have two inductors in series, which means
they have the same current—but how can that be because, at t < 0, they generally
have different currents (even in “real life”) and inductor currents can’t change
instantly? The method of charge conservation, the method that will save the day in
Fig. 2, won’t work with Figs. 3 and 4; after all, what charge? What will save the day
is the conservation of yet a different physical quantity, one that is a bit more subtle
than is electric charge. What we’ll do (at the end of Chap. 1) is derive the conser-
vation of total magnetic flux linking the inductors during the switching event. When
that is done, all will be resolved.

C2C1

t = 0

R

Fig. 2 A paradoxical
circuit?

−

−
+

+

L2
L1 Ri

VL1V

t = 0Fig. 3 Another paradoxical
circuit?
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So, in addition to elementary circuit-theory,8 that’s the sort of physics this book
will discuss. How about the math? Electrical circuits are mathematically described
by differential equations, and so we’ll be solving a lot of them in the pages that
follow. If you look at older (pre-1950) electrical engineering books you’ll almost
invariably see that the methods used are based on something called the Heaviside
operational calculus. This is a mathematical approach used by the famously eccen-
tric English electrical engineer Oliver Heaviside (1850–1925), who was guided more
by intuition than by formal, logical rigor. While a powerful tool in the hands of an
experienced analyst who “knows how electricity works” (as did Heaviside, who
early in his adult life was a professional telegraph operator), the operational method
could easily lead neophytes astray.

That included many professional mathematicians who, while highly skilled in
symbol manipulation, had little intuition about electrical matters. So, the operational
calculus was greeted with great skepticism by many mathematicians, even though
Heaviside’s techniques often did succeed in answering questions about electrical
circuits in situations where traditional mathematics had far less success. The result
was that mathematicians continued to be suspicious of the operational calculus
through the 1920s, and electrical engineers generally viewed it as something very
deep, akin (almost) to Einstein’s theory of general relativity that only a small, select
elite could really master. Both views are romantic, fanciful myths.9

−
+

L1 L2r1 r2

r3

Ri

V

t = 0Fig. 4 A more realistic, but
still paradoxical circuit

8The elementary circuit theory that I will be assuming really is elementary. I will expect, as you start
this book, that you know and are comfortable with the voltage/current laws for resistors, capacitors,
and inductors, with Kirchhoff’s laws (in particular, loop current analysis), that an ideal battery has
zero internal resistance, and that an ideal switch is a short circuit when closed and presents infinite
resistance when open. I will repeat all these things again in the text as we proceed, but mostly for
continuity’s sake, and not because I expect you to suddenly be learning something you didn’t
already know. This assumed background should certainly be that of a mid-second-year major in
electrical engineering or physics. As for the math, both freshman calculus and a first or second order
linear differential equation should not cause panic.
9You can find the story of Heaviside’s astonishing life (which at times seems to have been taken
from a Hollywood movie) in my biography of him, Oliver Heaviside: The Life, Work, and Times of
an Electrical Genius of the Victorian Age, The Johns Hopkins University Press 2002 (originally
published by the IEEE Press in 1987). The story of the operational calculus, in particular, is told on
pages 217–240. Heaviside will appear again, in the final section of this book, when we study
transients in transmission lines, problems electrical engineers and physicists were confronted with
in the mid-nineteenth century with the operation of the trans-Atlantic undersea cables (about which
you can read in the Heaviside book, on pages 29–42).
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Up until the mid-1940s electrical engineering texts dealing with transients
generally used the operational calculus, and opened with words chosen to calm
nervous readers who might be worried about using Heaviside’s unconventional
mathematics.10 For example, in one such book we read this in the Preface: “The
Heaviside method has its own subtle difficulties, especially when it is applied to
circuits which are not ‘dead’ to start with [that is, when there are charged capacitors
and/or inductors carrying current at t ¼ 0]. I have not always found these difficulties
dealt with very clearly in the literature of the subject, so I have tried to ensure that the
exposition of them is as simple and methodical as I could make it.”11

The “difficulties” of Heaviside’s mathematics was specifically and pointedly
addressed in an influential book by two mathematicians (using the Laplace transform
years before electrical engineering educators generally adopted it), who wrote “It is
doubtless because of the obscurity, not to say inadequacy, of the mathematical
treatment in many of his papers that the importance of his contributions to the theory
and practice of the transmission of electric signals by telegraphy and telephony was
not recognized in his lifetime and that his real greatness was not then understood.”12

One book, published 4 years before Carter’s, stated that “the Heaviside opera-
tional methods [are] now widely used in [the engineering] technical literature.”13 In
less than 10 years, however, that book (and all others like it14) was obsolete. That’s
because by 1949 the Laplace transform, a mathematically sound version of

10An important exception was the influential graduate level textbook (two volumes) by Murray
Gardner and John Barnes, Transients in Linear Systems: Studied by the Laplace Transformation,
John Wiley & Sons 1942. Gardner (1897–1979) was a professor of electrical engineering at MIT,
and Barnes (1906–1976) was a professor of engineering at UCLA. Another exception was a book
discussing the Laplace transform (using complex variables and contour integration) written by a
mathematician for advanced engineers: R. V. Churchill, Modern Operational Mathematics in
Engineering, McGraw-Hill 1944. Ruel Vance Churchill (1899–1987) was a professor of mathe-
matics at the University of Michigan, who wrote several very influential books on engineering
mathematics.
11G. W. Carter, The Simple Calculation of Electrical Transients: An Elementary Treatment of
Transient Problems in Electrical Circuits by Heaviside’s Operational Methods, Cambridge 1945.
Geoffrey William Carter (1909–1989) was a British electrical engineer who based his book on
lectures he gave to working engineers at an electrical equipment manufacturing facility.
12H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics, Oxford University
Press 1941 (2nd edition in 1948). Horatio Scott Carslaw (1870–1954) and John Conrad Jaeger
(1907–1979) were Australian professors of mathematics at, respectively, the University of Sydney
and the University of Tasmania.
13W. B. Coulthard, Transients in Electric Circuits Using the Heaviside Operational Calculus, Sir
Isaac Pitman & Sons 1941. William Barwise Coulthard (1893–1958) was a professor of electrical
engineering at the University of British Columbia.
14Such books (now of only historical interest but very successful in their day) include: J. R. Carson,
Electric Circuit Theory and Operational Calculus, McGraw-Hill 1926; V. Bush, Operational
Circuit Analysis, Wiley & Sons 1929; H. Jeffreys, Operational Methods in Mathematical Physics,
Cambridge University Press 1931. John Carson (1886–1940) and Vannevar Bush (1890–1974)
were well-known American electrical engineers, while Harold Jeffreys (1891–1989) was an
eminent British mathematician.
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Heaviside’s operational calculus, was available in textbook form for engineering
students.15 By the mid-1950s, the Laplace transform was firmly established as a rite
of passage for electrical engineering undergraduates, and it is the central mathemat-
ical tool we’ll use in this book. (When Professor Goldman’s book was reprinted
some years later, the words Transformation Calculus were dropped from the title
and replaced with Laplace Transform Theory.)

The great attraction of the Laplace transform is the ease with which it handles
circuits which are, initially, not “dead” (to use the term of Carter, note 11). That is,
circuits in which the initial voltages and currents are other than zero. As another
book told its readers in the 1930s, “A large number of Heaviside’s electric circuit
problems were carried out under the assumptions of initial rest and unit voltage
applied at t¼ 0. These requirements are sometimes called the Heaviside condition. It
should be recognized, however, that with proper manipulation, operational methods
can be employed when various other circuit conditions exist.”16 With the Laplace
transform, on the other hand, there is no need to think of nonzero initial conditions as
requiring any special methods. The Laplace transform method of analysis is
unaltered by, and is independent of, the initial circuit conditions.

When I took EE116 nearly 60 years ago, the instructor had to use mimeographed
handouts for the class readings because there was no book available on transients at
the introductory, undergraduate level of a first course. One notable exception might
be the book Electrical Transients (Macmillan 1954) by G. R. Town (1905–1978)
and L. A. Ware (1901–1984), who were (respectively) professors of electrical
engineering at Iowa State College and the State University of Iowa. That book—
which Town and Ware wrote for seniors (although they thought juniors might
perhaps be able to handle much of the material, too)—does employ the Laplace
transform, but specifically avoids discussing both transmission lines and the impulse
function (without which much interesting transient analysis simply isn’t possible),
while also including analyses of then common electronic vacuum-tube circuits.17

15Stanford Goldman, Transformation Calculus and Electrical Transients, Prentice-Hall 1949.
When Goldman (1907–2000), a professor of electrical engineering at Syracuse University, wrote
his book it was a pioneering one for advanced undergraduates, but the transform itself had already
been around in mathematics for a very long time, with the French mathematician P. S. Laplace
(1749–1827) using it before 1800. However, despite being named after Laplace, Euler (see
Appendix 1) had used the transform before Laplace was born (see M. A. B. Deakin, “Euler’s
Version of the Laplace Transform,” American Mathematical Monthly, April 1980, pp. 264–269, for
more on what Euler did).
16E. B. Kurtz and G. F. Corcoran, Introduction to Electric Transients, John Wiley & Sons 1935,
p. 276. Edwin Kurtz (1894–1978) and George Corcoran (1900–1964) were professors of electrical
engineering, respectively, at the State University of Iowa and the University of Maryland.
17Vacuum tubes are still used today, but mostly in specialized environments (highly radioactive
areas in which the crystalline structure of solid-state devices would literally be ripped apart by
atomic particle bombardment; or in high-power weather, aircraft, and missile-tracking radars; or in
circuits subject to nuclear explosion electromagnetic pulse—EMP—attack, such as electric power-
grid electronics), but you’d have to look hard to find a vacuum tube in any everyday consumer
product (and certainly not in modern radio and television receivers, gadgets in which the soft glow
of red/yellow-hot filaments was once the very signature of electronic circuit mystery).
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I will say a lot more about the impulse function later in the book, but for now let
me just point out that even after its popularization among physicists in the late 1920s
by the great English mathematical quantum physicist Paul Dirac (1902–1984)18—it
is often called the Dirac delta function—it was still viewed with not just a little
suspicion by both mathematicians and engineers until the early 1950s.19 For that
reason, perhaps, Town and Ware avoided its use. Nonetheless, their book was, in my
opinion, a very good one for its time, but it would be considered dated for use in a
modern, first course. Finally, in addition to the book by Town and Ware, there is one
other book I want to mention because it was so close to my personal experience at
Stanford.

Hugh H. Skilling (1905–1990) was a member of the electrical engineering faculty
at Stanford for decades and, by the time I arrived there, he was the well-known
author of electrical engineering textbooks in circuit theory, transmission lines, and
electromagnetic theory. Indeed, at one time or another, during my 4 years at
Stanford, I took classes using those books and they were excellent treatments. A
puzzle in this, however, is that in 1937 Skilling also wrote another book called
Transient Electric Currents (McGraw-Hill), which came out in a second edition in
1952. The reason given for the new edition was that the use of Heaviside’s opera-
tional calculus in the first edition needed to be replaced with the Laplace transform.
That was, of course, well and good, as I mentioned earlier—so why wasn’t the new
1952 edition of Skilling’s book used in my EE116 course? It was obviously
available when I took EE116 8 years later but, nonetheless, was passed over.
Why? Alas, it’s too late now to ask my instructor from nearly 60 years ago—
Laurence A. Manning (1923–2015)20—but here’s my guess.

Through the little-picture eyes of a 20-year-old student, I thought Professor
Manning was writing an introductory book on electrical transients, one built around
the fundamental ideas of how current and voltage behave in suddenly switched
circuits built from resistors, capacitors, and inductors. I thought it was going to be a
book making use of the so-called singular impulse function and, perhaps, too, an
elementary treatment of the Laplace transform would be part of the book. Well, I was
wrong about all that.

But I didn’t realize that until many years later, when I finally took a look at the
book he did write and publish 4 years after I had left Stanford: Electrical Circuits
(McGraw-Hill 1966). This is a very broad (over 550 pages long) work that discusses
the steady-state AC behavior of circuits, as well as nonelectrical (that is,

18Dirac, who had a PhD in mathematics and was the Lucasian Professor of Mathematics at
Cambridge University (a position held, centuries earlier, by Isaac Newton), received a share of
the 1933 Nobel Prize in physics. Before all that, however, Dirac had received first-class honors at
the University of Bristol as a 1921 graduate in electrical engineering.
19This suspicion was finally removed with the publication by the French mathematician Laurent
Schwartz (1915–2002) of his Theory of Distributions, for which he received the 1950 Fields Medal,
the so-called “Nobel Prize of mathematics.”
20Professor Manning literally spent his entire life at Stanford, having been born there, on the
campus where his father was a professor of mathematics.
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mechanically analogous) systems. There are several chapters dealing with transients,
yes, but lots of other stuff, too, and that other material accounts for the majority of
those 550 pages. The development of the Laplace transform is, for example, taken up
to the level of the inverse transform contour integral evaluated in the complex plane.

In the big-picture eyes that I think I have now, Professor Manning’s idea of the
book he was writing was far more extensive than “just” one on transients for EE116.
As he wrote in his Preface, “The earlier chapters have been used with engineering
students of all branches at the sophomore level,”21 while “The later chapters
continue the development of circuit concepts through [the] junior-year [EE116, for
example].” The more advanced contour integration stuff, in support of the Laplace
transform, was aimed at seniors and first-year graduate students. All those
mimeographed handouts I remember were simply for individual chapters in his
eventual book.

Skilling’s book was simply too narrow, I think, for Professor Manning
(in particular, its lack of discussion on impulse functions), and that’s why he passed
it by for use in EE116—and, of course, he wanted to “student test” the transient
chapter material he was writing for his own book. But, take Skilling’s transient book,
add Manning’s impulse function material, along with a non-contour integration
presentation of the Laplace transform, all the while keeping it short (under
200 pages), then that would have been a neat little book for EE116. I’ve written
this book as that missing little book, the book I wish had been available all those
years ago.

So, with that goal in mind, this book is aimed at mid to end-of-year sophomore or
beginning junior-year electrical engineering students. While it has been written
under the assumption that readers are encountering transient electrical analysis for
the first time, the mathematical and physical theory is not “watered-down.” That is,
the analysis of both lumped and continuous (transmission line) parameter circuits is
performed with the use of differential equations (both ordinary and partial) in the
time domain and in the Laplace transform domain. The transform is fully developed
(short of invoking complex variable analysis) in the book for readers who are not
assumed to have seen the transform before.22 The use of singular time functions (the
unit step and impulse) is addressed and illustrated through detailed examples.

21I think Professor Manning is referring here to non-electrical engineering students (civil and
mechanical, mostly) who needed an electrical engineering elective, and so had selected the
sophomore circuits course that the Stanford EE Department offered to non-majors (a common
practice at all engineering schools).
22The way complex variables usually come into play in transient analysis is during the inversion of
a Laplace transform back to a time function. This typical way of encountering transform theory has
resulted in the common belief that it is necessarily the case that transform inversion must be done
via contour integration in the complex plane: see C. L. Bohn and R. W. Flynn, “Real Variable
Inversion of Laplace Transforms: An Application in Plasma Physics,” American Journal of Physics,
December 1978, pp. 1250–1254. In this book, all transform operations will be carried out as real
operations on real functions of a real variable, making all that we do here mathematically
completely accessible to lower-division undergraduates.
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One feature of this book, that the authors of yesteryear could only have thought of
as science fiction, or even as being sheer fantasy, is the near-instantaneous electronic
evaluation of complicated mathematics, like solving numerous simultaneous equa-
tions with all the coefficients having ten (or more) decimal digits. Even after the
Heaviside operational calculus was replaced by the Laplace transform, there often is
still much tedious algebra to wade through for any circuit using more than a handful
of components. With a modern scientific computing language, however, much of the
horrible symbol-pushing and slide-rule gymnastics of the mid-twentieth century has
been replaced at the start of the twenty-first century with the typing of a single
command. In this book I’ll show you how to do that algebra, but often one can avoid
the worst of the miserable, grubby arithmetic with the aid of computer software (or,
at least, one can check the accuracy of the brain-mushing hand-arithmetic). In this
book I use MATLAB, a language now commonly taught worldwide to electrical
engineering undergraduates, often in their freshman year. Its use here will mostly be
invisible to you—I use it to generate all the plots in the book, for the inversion of
matrices, and to do the checking of some particularly messy Laplace transforms.
This last item doesn’t happen much, but it does ease concern over stupid mistakes
caused by one’s eyes glazing over at all the number-crunching.

The appearance of paradoxical circuit situations, often ignored in many textbooks
(because they are, perhaps, considered “too advanced” or “confusing” to explain to
undergraduates in a first course) is fully embraced as an opportunity to challenge
readers. In addition, historical commentary is included throughout the book, to
combat the common assumption among undergraduates that all the stuff they read
in engineering textbooks was found engraved on Biblical stones, rather than pain-
fully discovered by people of genius who often first went down a lot of false rabbit
holes before they found the right one.

Durham, NH, USA Paul J. Nahin
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Chapter 1
Basic Circuit Concepts

1.1 The Hardware of Circuits

There are three fundamental components commonly used in electrical/electronic
circuitry: resistors, capacitors, and inductors (although this last component will get
some qualifying remarks in just a bit). Another component commonly encountered is
the transformer and it will get some discussion, too, later. All of these components
are passive. That is, they do not generate electrical energy, but either dissipate energy
as heat (resistors) or temporarily store energy in an electric field (capacitors) or in a
magnetic field (inductors). Transformers involve magnetic fields, as do inductors,
but do not store energy. We’ll return to transformers later in the book. The first three
components have two-terminals (the transformer in its simplest form has four), as
shown in Fig. 1.1.

There are, of course, other more complex, multi-terminal components used in
electrical/electronic circuits (most obviously, transistors), as well as such things as
constant voltage, and constant current, sources,1 but for our introductory treatment
of transients, these three will be where we’ll concentrate our attention. We can
formally define each of the three passive, two-terminal components by the relation-
ship that connects the current (i) through them to the voltage drop (v) across them. If
we denote the values of these components by R (ohms), C (farads), and L (henrys),
and if v and i have the unit of volts and amperes, named after the Italian scientist
Alessandro Volta (1745–1827) and the French mathematical physicist André Marie
Ampere (1775–1836), respectively, and if time (t) is in units of seconds, then the

1Sources are not passive, as they are the origins of energy in an electrical circuit. A constant voltage
source maintains a fixed voltage drop across its terminals, independent of the current in it (think of
the common battery). Constant current sources maintain a fixed current in themselves, independent
of the voltage drop across their terminals, and are not something you can buy in the local drugstore
like a battery. You have to construct them. In Chap. 4 I’ll show you how to make a theoretically
perfect (after the transients have died away) a-c constant current generator out of just inductors,
capacitors, and a sinusoidal voltage source.

© Springer International Publishing AG, part of Springer Nature 2019
P. J. Nahin, Transients for Electrical Engineers,
https://doi.org/10.1007/978-3-319-77598-2_1
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mathematical definitions of the components are as shown in Fig. 1.1. Of course,
v ¼ iR is the famous Ohm’s law, named after the German Georg Ohm (1787–1854).
The other two relationships don’t have commonly used names, but the units of
capacitance and inductance are named, respectively, after the English experimenter
Michael Faraday (1791–1867) and the American physicist Joseph Henry
(1799–1878). As a general guide, 1 ohm is a small resistance, 1 farad is very large
capacitance, and 1 henry is a fairly large inductance. The possible ranges on voltages
and currents is enormous, ranging from micro-volts/micro-amps to mega-volts/
mega-amps.

The current-voltage laws of the resistor and the capacitor are sufficient in
themselves for what we’ll do in this book (that is, we don’t need to delve more
deeply into ‘how they work’), but for the inductor we do need to say just a bit more.
So, imagine that a coil of wire, with n turns, is carrying a current i(t), as shown in
Fig. 1.2. The current creates a magnetic field of closed (no ends) flux lines that
encircle or thread through the turns of the coil. (More on flux, later in this chapter.)
Ampere’s law says that the flux produced by each turn of the coil is proportional to i,
that is, the contribution by each turn to the total flux ϕ is Ki, where K is some
constant depending on the size of the coil and the nature of the matter inside the coil.

R C

i
v v v

i i

L

−+ −+ −+

v = iR dv
dt

i = C div = L 
dt

Fig. 1.1 The three
standard, passive,
two-terminal components

a

i

b
−

+

ϕ

vab 

Fig. 1.2 A current-carrying
coil, with magnetic flux ϕ
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Since the flux contributions add, then the total flux produced by the n turns is ϕ¼nKi.
Now, from Faraday’s law of induction, a change in the flux through a turn of the coil
produces a potential difference in each turn of the coil of magnitude dϕ/dt. Since
there are n turns in series, then the total potential difference that appears across the
ends of the coil has magnitude

vab ¼ n
dϕ
dt

¼ n
d nKið Þ
dt

¼ Kn2
di

dt
¼ L

di

dt
ð1:1Þ

where L ¼ Kn2 is the so-called self-inductance of an n-turn coil (notice that L varies
as the square of the number of turns). If we define flux linkage as the product of the
number of turns in a coil and the flux linking (passing through) each turn, that is as

ϕL ¼ nϕ,

then (1.1) can be written as

vab ¼ d nϕð Þ
dt

¼ dϕL

dt
¼ d Lið Þ

dt
:

Thus, to within a constant (which we’ll take as zero since ϕL(i¼ 0)¼ 0), we have

ϕL ¼ Li: ð1:2Þ
This result, as you’ll see at the end of this chapter, is the key to resolving the

paradox mentioned in the Preface in connection with Fig. 3.
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Fig. 1.3 Kirchhoff’s two circuit laws
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1.2 The Physics of Circuits

In all of our analyses, we will routinely use two ‘laws’ (dating from 1845) named
after the German physicist Gustav Robert Kirchhoff (1824–1887). These two laws,
illustrated in Fig. 1.3, are in fact actually the fundamental physical laws of the
conservation of energy and the conservation of electric charge.

Kirchhoff’s voltage law The sum of the voltage (or electric potential) drops around
any closed path (loop) in a circuit is zero. Voltage is defined to be energy per unit
charge, and the voltage drop is the energy expended in transporting a unit charge
through the electric field that exists inside the component. The law, then, says that
the net energy change for a unit charge transported around a closed path is zero. If it
were not zero, then we could repeatedly transport charge around the closed path in
the direction in which the net energy change is positive and so become rich selling
the energy gained to the local power company. Conservation of energy, however,
says we can’t do that. (Since the sum of the drops is zero, then one can also set the
sum of the voltage rises around any closed loop to zero.)

Kirchhoff’s current law The sum of the currents into any point in a circuit is zero.
This says that if we construct a tiny, closed surface around any point in a circuit then
the charge enclosed by that surface remains constant. That is, whatever charge is
transported into the enclosed volume by one current is transported out of the volume
by other currents; current is the motion of electric charge. Mathematically, the
current i at any point in a circuit is defined to be the rate at which charge is moving
through that point, that is, i ¼ dQ/dt. Q is measured in coulombs — named after the
French physicist Charles Coulomb (1736–1806) — where the charge on an electron
is 1.6 � 10�19 coulombs. One ampere is one coulomb per second.

As an illustration of the use of Kirchhoff’s laws, and as our first transient analysis
in the time domain, consider the circuit shown in Fig. 1.4. At first the switch is open,
and the current in the inductor and the voltage drop across the capacitor are both
zero. Then, at time t ¼ 0, the switch is closed and the 1-volt battery is suddenly
connected to the rest of the circuit. If we call the resulting battery current i(t), we can
calculate i(t) for t > 0 using Kirchhoff’s two laws.

R

1 v.

u(t)

t = 0

R

C

L

i

i2
i1

−

−

+

+

Fig. 1.4 A circuit with a
switched input and a
transient response
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Using the notation of Fig. 1.4, and the two laws, we can write the following set of
equations:

i ¼ i1 þ i2, ð1:3Þ
u ¼ iRþ v, ð1:4Þ
v ¼ L

di1
dt

, ð1:5Þ

v ¼ i2Rþ 1
C

Z t

0
i2 xð Þdx: ð1:6Þ

These four equations completely describe the behavior of i(t) for all t > 0.2 If we
differentiate3 (1.6) with respect to time, then we can also write

dv

dt
¼ R

di2
dt

þ 1
C
i2: ð1:7Þ

We can manipulate and combine these equations to eliminate the variables i1 and
i2, to arrive at the following second-order, linear differential equation relating u(t),
the applied voltage, to the resulting current i(t).

d2u

dt2
þ R

L

� �
du

dt
þ 1

LC

� �
u ¼ 2R

d2i

dt2
þ R2

L
þ 1
C

� �
di

dt
þ R

LC

� �
i: ð1:8Þ

When I say “we can manipulate and combine” the equations of the circuit in
Fig. 1.4, I don’t mean doing that is necessarily easy to do, at least not as the equations
stand (in the time domain). You should try to confirm (1.8) for yourself, and later
you’ll see (and greatly appreciate!) just how much easier it will be when we get to
the Laplace transform.

2The last term in (1.6) comes from integrating the equation i2 ¼ C dvC
dt , where vC is the voltage drop

across the capacitor. If V0 is the voltage drop across the capacitor at time t¼ 0 (the so-called initial
voltage), then we have the voltage drop across the capacitor for any time t � 0 as

vC tð Þ ¼ 1
C

Z t

0
i2 xð Þdxþ V0 where x is a so-called dummy variable of integration. For the circuit

in Fig. 1.4, we are given that V0 ¼ 0.
3To differentiate an integral, all electrical engineers should know Leibniz’s formula, named after the
German mathematician Gottfried Wilhelm Leibniz (1646–1716). I won’t derive it here, but you can

find a proof in any good book in advanced calculus: If g yð Þ ¼
Z u yð Þ

v yð Þ
f x; yð Þdx, then

dg

dy
¼
Z u yð Þ

v yð Þ

∂ f

∂y
dxþ f u yð Þ; yf gdu

dy
� f v yð Þ; yf gdv

dy
, where ∂ f

∂y is the partial derivative of f(x, y) with

respect to y. For the special case where u( y) and v( y) are constants, then the last two terms are each
zero and the derivative of the integral is the integral of the derivative (this is called differentiating
under the integral sign).We’ll use this when we get to the Laplace transform.
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Since u(t) ¼ 1 for t > 0, we have

du

dt
¼ d2u

dt2
¼ 0, t > 0

and so, for t > 0, the differential equation for i(t) reduces to

2R
d2i

dt2
þ R2

L
þ 1
C

� �
di

dt
þ R

LC

� �
i ¼ 1

LC
: ð1:9Þ

We can solve (1.9) using the standard technique of writing i(t) as the sum
(because the differential equation is linear) of the solutions for the homogeneous
case (set the right-hand-side of (1.9) equal to zero), and the ‘obvious’ solution of
i equal to the constant 1

R. (Mathematicians call this the particular solution.) The
particular solution is ‘obvious’ because, with i equal to a constant, we clearly have

di

dt
¼ d2i

dt2
¼ 0

and (1.9) reduces to

R

LC

� �
i ¼ 1

LC
:

That is, (1.9) reduces to i ¼ 1
R
.

To solve the homogeneous case, we have to do a bit more work. Again, the
standard technique is to assume a solution of the form

i tð Þ ¼ Iest

where I and s are both constants (perhaps complex). This immensely clever idea (the
origin of which is buried in the history of mathematics) works because every time
derivative of est is simply a power of smultiplied by est, and so all the est factors will
cancel away. To see this, substitute the assumed solution into the homogeneous
differential equation to get

2Rs2Iest þ R2

L
þ 1
C

� �
sIest þ R

LC

� �
Iest ¼ 0:

Dividing through by the common factor of Iest, we are left with simply a
quadratic, algebraic (not differential) equation in s:

s2 þ R2C þ L

2RLC
sþ 1

2LC
¼ 0: ð1:10Þ

Let’s call the two roots (perhaps complex-valued) of this quadratic s1 and s2, the
values of which we see are completely determined by the circuit component values.
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Then, the general solution for the current i(t) is the sum of the particular solution and
the two homogeneous solutions:

i tð Þ ¼ 1
R
þ I1e

s1t þ I2e
s2t ð1:11Þ

where I1 and I2 are constants yet to be determined. To find them, we need to step
away from (1.11) for just a bit, and discover (at last) the way currents in inductors,
and voltage drops across capacitors, can (or cannot) change in zero time (that is,
instantaneously).

1.3 Power, Energy, and Paradoxes

The instantaneous power p(t) is the rate at which energy is delivered to a component,
and is given by

p tð Þ ¼ v tð Þi tð Þ ð1:12Þ
where p(t) has the units of watts (1 watt¼ 1 joule/second), v (the voltage drop across
the component) is in volts, and i (the current in the component) is in amperes.4 To see
that this is dimensionally correct, first note that power is energy per unit time. Then,
recall that voltage is energy per unit charge, and that current is charge per unit time.
Thus, the product vi has units (energy/charge) times (charge/time) ¼ energy/time,
the unit of power. If we integrate power over an interval of time, the result is the total
energy (W ) delivered to that component during that time interval.

For example, for a resistor we have v ¼ iR and so

p ¼ vi ¼ iRð Þi ¼ i2R ð1:13Þ
or, in the time interval 0 to T, the total energy delivered to the resistor is

W ¼
Z T

0
p tð Þdt ¼

Z T

0
i2
� �

Rdt ¼ R

Z T

0
i2 tð Þdt: ð1:14Þ

Since the integrand is always nonnegative (you can’t get anything negative by
squaring a real quantity) we conclude, independent of the time behavior of the
current, that W > 0 if i(t) 6¼ 0. The electrical energy delivered to a resistor is totally
converted to heat energy, that is, the temperature of a resistor carrying current
increases.

4The units of watts and joules are named after, respectively, the Scottish engineer James Watt
(1736–1819) and the English physicist James Joule (1818–1889). Like the ampere, volt, and ohm,
watts and joules are units in the MKS (meter/kilogram/second) metric system. To give you an idea
of what a joule is, burning a gallon of gasoline releases about 100 mega-joules of chemical energy.
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For inductors and capacitors, however, the situation is remarkably different. For
an inductor, for example,

p ¼ vi ¼ L
di

dt

� �
i ¼ 1

2
L
d i2
� �
dt

ð1:15Þ

and so

W ¼ 1
2
L

Z T

0

d i2
� �
dt

dt ¼ 1
2
L

Z T

0
d i2
� �

: ð1:16Þ

The limits on the last integral are in units of time, while the variable of integration
is i. It is thus perhaps clearer to write W as

W ¼ 1
2
L

Z i2 Tð Þ

i2 0ð Þ
d i2
� � ¼ 1

2
L i2 Tð Þ � i2 0ð Þ� � ð1:17Þ

where i(0) and i(T ) are the inductor currents at times t ¼ 0 and t ¼ T, respectively.
Thus, i(t) can have any physically possible behavior over the time interval from 0 to
T and yet, if i(0) ¼ i(T ) then W ¼ 0. What happens, physically, is that as i(t) varies
from its initial value at time t ¼ 0, energy is stored in the magnetic field around the
inductor and then, as the current returns to its initial value at time t ¼ T, the stored
energy is returned to the circuit (that is, to the original source of the energy) as the
field ‘collapses.’5 Inductors do not dissipate electrical energy by converting it into
heat energy and so, unlike resistors, ideal inductors don’t get warm when carrying
current.

We can do a similar analysis for capacitors. The power to a capacitor is

p ¼ vi ¼ vC
dv

dt
¼ 1

2
C
d v2ð Þ
dt

ð1:18Þ

and so the energy over the time interval 0 to T

W ¼ 1
2
C

Z T

0

d v2ð Þ
dt

dt ¼ 1
2
C

Z T

0
d v2
� �

: ð1:19Þ

Again, the limits on the last integral are in units of time, while the variable of
integration is v2. It is thus perhaps clearer to write W as

5This is all very picturesque language, but you shouldn’t confuse it with actual knowledge. Just how
energy is stored in what appears to be empty space, in an invisible magnetic field, is a very
mysterious thing, and I think any honest physicist and electrical engineer would admit that. In the
same way, while the imagery of magnetic flux lines is ‘suggested’ by looking at how iron filings
line-up on a piece of paper held over a magnet, I think anybody who believes simply saying the
words magnetic flux line represents actual understanding is fooling themselves.
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W ¼ 1
2
C

Z v2 Tð Þ

v2 0ð Þ
d v2
� � ¼ 1

2
C v2 Tð Þ � v2 0ð Þ� �

: ð1:20Þ

This tells is that W ¼ 0 if v(0) ¼ v(T ), and the energy (now stored in an electric
field, and see note 5 again) Is returned from temporary storage to the circuit.

These power and energy concepts may appear to be quite elementary to you, but
if you consider the following two little puzzles I think you might rethink that
impression. First, suppose we have two equal capacitors that can be connected
together by a switch, as shown in Fig. 1.5. Before the switch is closed at time
t ¼ 0, C1 is charged to V1 volts and C2 is charged to V2 volts, where V1 6¼ V2. Thus,
for t < 0 the total charge is

CV1 þ CV2 ¼ C V1 þ V2ð Þ
and the total, initial energy is

1
2
CV2

1 þ
1
2
CV2

2 ¼
1
2
C V2

1 þ V2
2

� � ¼ Wi:

When the switch is closed, the charge (which is conserved) will redistribute itself
(via the current i(t)) between the two capacitors so that the capacitors will have the
same voltage drop V. So, for t > 0, the total charge is

CV þ CV ¼ 2CV

and, because charge is conserved, we have

2CV ¼ C V1 þ V2ð Þ
or,

V ¼ V1 þ V2

2
:

V1 C

t = 0

i (t) C V2
−

+

−

+

Fig. 1.5 A famous
two-capacitor puzzle
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This means that the total, final energy is

1
2
CV2 þ 1

2
CV2 ¼ CV2 ¼ C

V1 þ V2

2

� �2

¼ 1
2
C

V1 þ V2ð Þ2
2

¼ W f :

Now, notice that

Wi�W f ¼ 1
2
C V2

1 þ V2
2

� �� 1
2
C

V1 þ V2ð Þ2
2

¼ 1
2
C V2

1 þ V2
2 �

V2
1 þ 2V1V2 þ V2

2

2

� 	
1
2
C

2V2
1 þ 2V2

2 � V2
1 � 2V1V2 � V2

2

2

� 	
¼ 1

4
C V2

1 � 2V1V2 þ V2
2

� �
¼ 1

4
C V1 � V2ð Þ2 > 0

because any real number squared is never negative (and is zero only if V1 ¼ V2).
Thus, Wi 6¼ Wf and energy has not been conserved. The final energy is less than the
initial energy. Where did the missing energy go? Think about all this as you continue
to read, and I’ll show you a way out of the puzzle in Sect. 1.5.

For a second, even more puzzling quandary, suppose we have a resistor R with
current i(t) in it. Then, as before in (1.14),

W ¼
Z 1

�1
p tð Þdt ¼ R

Z 1

�1
i2 tð Þdt

as the total energy dissipated as heat by the resistor over all time (notice the limits of
integration). Also, as current is the time derivative of electric charge, we have

Q ¼
Z 1

�1
i tð Þdt

as the total charge that passes through the resistor. Consider now the following
specific i(t): for c some positive finite constant, let

i tð Þ ¼
0, t < 0
c�4=5, 0 < t < c

0, t > c

8<
: :

That is, i(t) is a finite-valued pulse of current that is non-zero over a finite period
of time. The total charge transported through the resistor is

Q ¼
Z c

0
c�4=5dt ¼ c�4=5c ¼ c1=5:

If we pick the constant c to be ever smaller, that is, if we let c! 0, then the pulse-
like current obviously does something a bit odd — it becomes ever briefer in
duration but ever larger in amplitude in such a way that lim

c!0
Q ¼ 0. That is, even

though the amplitude of the current pulse blows-up, the pulse duration becomes
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shorter ‘even faster’ so that the total charge transported through the resistor goes to
zero. Now, what’s the puzzle in all this?

We have, over the duration of the current pulse,

i2 tð Þ ¼ c�8=5

and so

W ¼ R

Z c

0
c�8=5dt ¼ Rc�8=5c ¼ Rc�3=5:

So,

lim
c!0

W ¼ 1

which means the resistor will instantly vaporize because all that infinite energy is
delivered in zero time. But how can that be, as we just showed in the limit of c ! 0
there is no charge transported through the resistor? Think about this as you continue
to read and, at the end of Chap. 3, after we’ve developed the Laplace transform, I’ll
show you a way out of the fog.

Now, to finish this section, let’s look (finally!) at how currents in inductors and
voltage drops across capacitors can (or cannot) change. The instantaneous power in
each is given, respectively, by

pL ¼ vi ¼ L
di

dt
i

and

pC ¼ vi ¼ vC
dv

dt
:

If the current in an inductor, or the voltage drop across a capacitor, could change
instantaneously, then we would have

di

dt
¼ 1,

dv

dt
¼ 1

which give infinite power. But electrical engineers and physicists reject the idea of
any physical quantity, in any circuit we could actually build, having an infinite value.
So, inductor currents and capacitor voltage drops cannot change instantaneously.

As an immediate (and important) corollary to this (since the magnetic flux ϕ of an
inductor is directly proportional to the current in the inductor) is that if an inductor
current cannot change instantly then neither can the flux: inductor magnetic flux is a
continuous function of time. Note, however, that since the power in a resistor does
not include a time derivative, both the voltage drop across, and the current in, a
resistor can change instantly.
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1.4 A Mathematical Illustration

With the final result of the previous section, we can now return to (1.11) and solve
for I1 and I2. Repeating (1.11) as (1.21),

i tð Þ ¼ 1
R
þ I1e

s1t þ I2e
s2t ð1:21Þ

where s1 and s2 are the roots of the quadratic equation (1.10). That is,

s1,2 ¼ 1
2

�R2C þ L

2RCL
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2C þ L

2RCL

� �2

� 2
LC

s2
4

3
5 ð1:22Þ

where we use the plus sign for one of the s-values and the minus sign for the other
(the choice is arbitrary — whichever way we choose, the values of I1 and I2 will
adjust to give, in the end, the same final expression for i(t)). Depending on the sign of
the quantity under the square-root in (1.22), s1, 2 are either real or complex.

Since the complex roots to any algebraic equation with real coefficients always
appear as conjugate pairs (this is a very deep theorem in algebra), the two roots to a
quadratic are either a complex conjugate pair or both roots are real (it is impossible
for one root to be real and the other to be complex). It should be obvious by
inspection of (1.22) that, if both roots are real then both are negative, and that if
the roots are a conjugate pair then their real parts are negative. That is, if s1, 2 are a
complex conjugate pair then for our circuit we can always write6

s1,2 ¼ σ þ iω,

or if s1, 2 are real

s1,2 ¼ σ,

where σ < 0 and ω > 0. Negative real roots are associated with decaying exponential
behavior, while complex roots are associated with exponentially damped oscillatory
(at a frequency determined by the imaginary part of the roots) behavior. (I’ll do a
detailed example of this second case near the end of this section.) In either case, this
means that, even without yet knowing I1 and I2, we can conclude

lim
t!1 i tð Þ ¼ 1

R

6Notice that i is being used here to denote
ffiffiffiffiffiffiffi�1

p
, as well as current. To avoid this double-use, some

writers use j to denote
ffiffiffiffiffiffiffi�1

p
, but I am going to assume that if you’re smart enough to be reading this

book, then you’re smart enough to know when i is current and when it is
ffiffiffiffiffiffiffi�1

p
.
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as both exponential terms in i(t) will vanish in the limit (they are transient). That is,
in the limit of t!1 the battery current is a constant (this is called the steady-state).

Since we have two constants to determine, we will need to find two equations for
I1 and I2. One equation is easy to find. Just before the switch is closed in Fig. 1.4 the
voltage drop across C was given as zero, and the current in L was also given as zero.
Since neither of these quantities can change instantly, they must both still be zero just
after the switch is closed. (If the switch is closed at time t ¼ 0, it is standard in
electrical engineering to write ‘just before’ and ‘just after’ as t ¼ 0� and t ¼ 0+,
respectively.) Thus, at t ¼ 0+ the battery current flows entirely through the two
resistors (which are in series), with no voltage drop across the C, and so we have

i 0þð Þ ¼ 1
2R

¼ 1
R
þ I1 þ I2

or

I1 þ I2 ¼ � 1
2R

: ð1:23Þ

To get our second equation, we need to do a bit more work.
Looking back at (1.3) through (1.6), and setting u ¼ 1 for t > 0 (which certainly

includes t ¼ 0+), we have

1 ¼ iRþ L
di1
dt

ð1:24Þ

L
di1
dt

¼ i2Rþ 1
C

Z t

0
i2 xð Þdx ð1:25Þ

i ¼ i1 þ i2: ð1:26Þ
If we evaluate (1.24) at t ¼ 0+, we get

1 ¼ i 0þð ÞRþ L
di1
dt

│t¼0þ ¼ 1
2R

Rþ L
di1
dt

│t¼0þ

or,

di1
dt

│t¼0þ ¼ 1
2L

: ð1:27Þ

From (1.26) evaluated at t ¼ 0+ we get

i 0þð Þ ¼ i1 0þð Þ þ i2 0þð Þ
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which, because i1(0+) ¼ 0 (it’s the inductor current at t ¼ 0+), becomes

i2 0þð Þ ¼ i 0þð Þ ¼ 1
2R

: ð1:28Þ

If we differentiate (1.24) and (1.25) we get

0 ¼ R
di

dt
þ L

d2i1
dt2

and

L
d2i1
dt2

¼ R
di2
dt

þ 1
C
i2

which, when combined, gives

0 ¼ R
di

dt
þ R

di2
dt

þ 1
C
i2:

But since

di

dt
¼ di1

dt
þ di2

dt

then

di2
dt

¼ di

dt
� di1

dt

and so

0 ¼ R
di

dt
þ R

di

dt
� R

di1
dt

þ 1
C
i2

or,

0 ¼ 2R
di

dt
� R

di1
dt

þ 1
C
i2:

If we now evaluate this last expression at t ¼ 0+, and recall our earlier results for
di1
dt │t¼0þ and i2(0+) in (1.27) and (1.28), respectively, we have

0 ¼ 2R
di

dt
│t¼0þ � R

1
2L

� �
þ 1
C

1
2R

� �

14 1 Basic Circuit Concepts



or,

di

dt
│t¼0þ ¼

R
2L � 1

2RC

2R
¼ 1

4
1
L
� 1

R2C

� �
:

But since

di

dt
¼ I1s1e

s1t þ I2s2e
s2t

we have, for our second equation in I1 and I2,

I1s1 þ I2s2 ¼ 1
4

1
L
� 1

R2C

� �
: ð1:29Þ

With these two equations in two unknowns— (1.23) and (1.29)— it is clear that
we can solve for I1 and I2 in terms of the circuit component values R, L, and C, and
the two values of s in (1.22) which are also completely determined by R, L, and C. To
be specific, let’s assume some particular values for the components (‘sort of’ picked
at random, but also with the goal of keeping the arithmetic easy for hand calculation,
a consideration that will cease to be important once we have access to a computer):
R ¼ 1000 ohms, L ¼ 10 millihenrys, and C ¼ 0.01 microfarads. A little ‘trick of the
transient analyst,’ one often useful to keep in mind when working with lots of
numbers with exponents, is that if you express resistance in ohms, inductance in
microhenrys, and capacitance in microfarads, then time is expressed in microsec-
onds.7 That is, if we write R ¼ 103, L ¼ 104, and C¼ 10�2, then t¼ 6 (for example)
means t ¼ 6 microseconds. With these numbers for R, L, and C, we have

2
LC

¼ 2

104
� �

10�2
� � ¼ 0:02,

R2C þ L

2RCL
¼ 106
� �

10�2
� �þ 104

2 103
� �

10�2
� �

104
� � ¼ 0:1

s1,2 ¼ 1
2

�0:1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01� 0:02

p� �
¼ 1

2
�0:1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:01

p� �
¼ 0:5 �0:1� i0:1ð Þ

¼ 0:05 �1� ið Þ
and so

s1 ¼ 0:05 �1þ ið Þ, s2 ¼ 0:05 �1� ið Þ:

7Similarly, using ohms, henrys, and farads gives time in seconds, and using ohms, millihenrys, and
millifarads gives time in milliseconds.
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Finally,

1
4

1
L
� 1

R2C

� �
¼ 1

4
1

104
� 1

106
� �

10�2
� �

 !
¼ 0:

With these numbers, (1.23) and (1.29) become

I1 þ I2 ¼ �5� 10�4 ð1:30Þ
I1s1 þ I2s2 ¼ 0: ð1:31Þ

For such a simple system of equations we can solve the first for I2 in terms of I1
(or vice versa) and then substitute into the other equation. Much more systematic
(especially when there are more than two unknowns), however, is Cramer’s rule,
from the theory of determinants.8 We’ll use that approach later in the book, but for
now I’ll let you confirm (in any way you wish) that

I1 ¼ 25� 10�5 �1þ ið Þ, I2 ¼ �25� 10�5 1þ ið Þ:
or, using Euler’s identity (see Appendix 1), we finally have

i tð Þ ¼ 10�3 1� 0:5e�0:05t cos 0:05tð Þ þ sin 0:05tð Þf g� � ð1:32Þ
where the units for i(t) are amperes and the units for t are microseconds.

Figure 1.6 shows a plot of i(t) for the first 150 μsec after the switch closes in the
circuit of Fig. 1.4, and we see that i(t) starts at 0.5 mA at t¼ 0+, rises to slightly more
than 1 mA at about t ¼ 60 μsec, and then declines to a steady-state value of 1 mA.

I’ll end this section on an historical note. All that you’ve read here is standard lore
(for electrical engineers, at least) these days, but not so long ago it was cutting-edge
science. It was just 165 years ago that the great Irish-born Scottish engineer and
mathematical physicist of the nineteenth century British Empire, William Thomson
(1824–1907), later Lord Kelvin, gave a talk to the Glasgow Philosophical Society in
which the nature of the roots to an equation essentially our (1.22) was of central
interest.9 So struck was Thomson by the dramatic change in the nature of the
transient behavior of a circuit, as a function of whether the roots are real or complex,
that he offered the following speculation about one of Nature’s most spectacular
displays of transient electrical fireworks:

8Named after the Swiss mathematician Gabriel Cramer (1704–1752), who published it in 1750, but
in fact it had appeared in print two years earlier, in the posthumous Treatise of Algebra by the
Scottish mathematician Colin MacLaurin (1698–1746).
9Thomson’s remarks in January 1853 to the Society were reprinted a few months later with the title
“On Transient Electric Currents” in the June 1853 issue of The London, Edinburgh and Dublin
Philosophical Magazine and Journal of Science (pp. 393–405). I believe this may have been the
very first scientific paper to deal specifically with electrical transients.
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“It is probable that many remarkable phenomena which have been observed in
connection with electrical discharges are due to the oscillatory character which we
have thus found to be possessed when the condition [for complex roots] is fulfilled.
Thus if the interval of time . . . at which the successive instants when the strength of
the current is a maximum follow one another, be sufficiently great, and if the
evolution of heat in any part of the circuit by the current during several of its
alternations in direction be sufficiently intense to produce visible light, a succession
of flashes diminishing in intensity and following one another rapidly at equal
intervals will be seen. It appears to me not improbable that double, triple, and
quadruple flashes of lightning which I have frequently seen on the continent of
Europe, and sometimes, though not so frequently in this country [a reference to
Scotland], lasting generally long enough to allow an observer, after his attention is
drawn by the first light of the flash, to turn his head round and see distinctly the
course of the lightning in the sky, result from the discharge possessing this oscilla-
tory character.”

We’ll encounter Thomson again, in Chap. 5, when we get to transmission lines in
general, and the famous nineteenth century Trans-Atlantic Submarine Telegraph
Cable in particular.

Fig. 1.6 The battery current after switching for the circuit of Fig. 1.4
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1.5 Puzzle Solution

Have you come-up with an answer to the puzzle question posed Sect. 1.3,
concerning the two equal capacitors (with unequal charges) suddenly connected in
parallel, resulting in what appears to be a failure of the conservation of energy? This
is a classic problem, with one solution of long-standing (the one I’m about to show
you), as well as some more recent, purely mathematical explanations10 that are
dependent on subtle details of the impulse function (which we’ll get to later). For
us, the following physical explanation is a satisfactory one.

The failure of energy conservation disappears once we realize that the circuit of
Fig. 1.5 is highly idealized. In particular, in any circuit that we could actually
construct, there would be some resistance present. In Fig. 1.7 Fig. 1.5 has been
redrawn to show the presence of the resistance r, which we’ll take to be arbitrarily
small but not zero. For t < 0 (before the switch is closed) v1 ¼ V1 and v2 ¼ V2.

Once the switch is closed, the current i(t) flows (let’s assume that V1 > V2, but that
assumption is arbitrary and we could just as well assume the opposite). The equation
for this circuit is

v1 tð Þ ¼ i tð Þr þ v2 tð Þ
where, as the voltage drop across the left capacitor is decreasing,

v1 tð Þ ¼ V1 � 1
C

Z t

0
i xð Þdx

and, as the voltage drop across the right capacitor is increasing,

v2 tð Þ ¼ 1
C

Z t

0
i xð Þdxþ V2:

−

+

−

+
V1(t) V2(t)C C

r

i(t)

t = 0Fig. 1.7 A more realistic
Fig. 1.5

10If you are interested in pursuing this (we won’t in this book), see K. Mita and M. Boufaida, “Ideal
Capacitor Circuits and Energy Conservation,” American Journal of Physics, August 1999,
pp. 737–739.
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So,

V1 � 1
C

Z t

0
i xð Þdx ¼ ir þ 1

C

Z t

0
i xð Þdxþ V2:

That is,

2
C

Z t

0
i xð Þdxþ ir ¼ V1 � V2:

Differentiating with respect to time,

2
C
iþ r

di

dt
¼ 0

or, separating variables,

di

i
¼ � 2

rC
dt:

Integrating indefinitely, and writing K as an arbitrary constant,

ln ið Þ ¼ � 2
rC

t þ K

or,

i tð Þ ¼ e�
2
rCtþK ¼ eKe�

2
rCt ¼ Ae�

2
rCt

where A ¼ eK is a constant. Since

i 0ð Þ ¼ V1 � V2

r
¼ A,

then we see that the charge redistribution current is the exponentially decaying
transient11

i tð Þ ¼ V1 � V2

r
e�

2
rCt:

11This is the generic behavior we’ll see over and over whenever we have a capacitor discharging
(or charging) through a resistance. Do you see why the rC product has the units of time? That
product is called the time constant of the transient.
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This current will heat r, and that requires energy. How much energy? The
answer is

Z 1

0
i2 tð Þrdt ¼

Z 1

0

V1 � V2ð Þ2
r2

e�
4
rCtrdt ¼ V1 � V2ð Þ2

r
�rC

4
e�

4
rCt

 �
│1

0 ¼ C
V1 � V2ð Þ2

4
,

which you’ll recall is exactly the ‘missing’ energy. Notice that r, itself, has
completely vanished from the analysis, and so our result holds for any value of
r (except for the ‘idealized’ case of r ¼ 0, which is precisely the case that does not
occur in ‘real-life’).

Let’s turn next to the deeper puzzle of Fig. 3. In the earlier discussion of that
circuit in the Preface, I claimed that the current in L2, for t < 0, is undefined, but for
discussion here let’s specifically say it is zero. (This isn’t a crucial point, but it helps
keep things simple.) That is, all the battery current that is in L1 (¼ V

R ) flows through
the switch that shunts L1. When the switch is opened at t¼ 0, the current in L1 begins
to decrease and the current in L2 begins to increase.

The result is to produce a di
dt so large as to create an arc across the switch contacts,

an arc which we’ll assume extinguishes very quickly by t¼ 0+. Now, at t¼ 0�, that
is at just before the switch is opened, the total magnetic flux linkage (look back at the
end of Sect. 1.1) in both inductors is

ϕL 0�ð Þ ¼ ϕL1 0�ð Þ þ ϕL2 0�ð Þ ¼ L1i 0�ð Þ þ L2 0ð Þ ¼ L1i 0�ð Þ:
What we’ll prove next is that the total flux linkage is conserved during the

switching. That is,

ϕL 0þð Þ ¼ ϕL 0�ð Þ:
The equation for the circuit of Fig. 3 is

V ¼ iRþ d Lið Þ
dt

,

where, you’ll note carefully, that the inductor voltage drop is written as d Lið Þ
dt and not

as Ldi
dt because now we are not assuming L is a constant. In fact,

L ¼ L1, t < 0
L ¼ L1 þ L2, t > 0:

So,

V � iR ¼ d Lið Þ
dt

:

Let Δt be the time interval from t ¼ 0� to t ¼ 0+ and so, if ia is in some sense an
average value of the current during that tiny interval of time, we can write
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V � iaRð ÞΔt ¼
Z 0þ

0�

d Lið Þ
dt

dt:

Assuming only that, whatever ia is it is finite, then as Δt! 0 (that is, the switching
is fast), the left-hand side goes to zero and so

lim
Δt!0

Z 0þ

0�
d Lið Þ ¼ Li 0þð Þ � Li 0�ð Þ ¼ 0:

That is,

ϕL 0þð Þ � ϕL 0�ð Þ ¼ 0,

as claimed.
Using the values for L at t ¼ 0� and at t ¼ 0+, we have

L1 þ L2ð Þi 0þð Þ ¼ L1i 0�ð Þ
and so the current in both inductors at t ¼ 0+ is

i 0þð Þ ¼ L1
L1 þ L2

i 0�ð Þ ¼ L1
L1 þ L2

V

R

� �
:

Because of the fast switching operation, the currents in both inductors have
suddenly changed, but this requires what we’ll call (later in this book) an impulsive
voltage drop across the switch which will, as you’ll see, be the mathematical
explanation for the arc.

1.6 Magnetic Coupling, Part 1

The coupling between two inductors L1 and L2 (which denote each inductor’s
so-called self-inductance) is represented by M, the mutual inductance of the two
inductors. 0 � M � ffiffiffiffiffiffiffiffiffiffi

L1L2
p

is a measure of how much the magnetic flux of each
inductor links with the coils of the other inductor, there-by inducing an additional
voltage drop in the linked inductor. The voltage drop in either one of the coupled
inductors therefore depends not only on the current in that inductor, but also on the
current in the other inductor. I’ll say more on the impact of coupling in the next
chapter, and when we get to applying the Laplace transform to transient analysis in
Chap. 4, but for now let me show you an interesting, non-intuitive result that we can
derive using the trick I showed you in Sect. 1.2, that of assuming current/voltage
solutions of the form est.

Imagine an isolated, series R, L, C circuit with initial stored energy (for example,
the C is charged). Then, the capacitor is allowed to discharge through the R and L.
The equation for the circuit is, with i as the discharge current,
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iRþ L
di

dt
þ 1
C

Z t

0
i xð Þdx ¼ V0 ð1:33Þ

where V0 is the initial capacitor voltage drop. Then, differentiating,

R
di

dt
þ L

d2i

dt2
þ i

C
¼ 0:

Assuming i(t) ¼ Aest, where A is the amplitude, we have

RAsest þ LAs2est þ Aest

C
¼ 0

or, cancelling the Aest in each term,

Rsþ Ls2 þ 1
C
¼ 0:

Solving for s (and remembering my comment in note 6),

s ¼ � R

2L
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2
:

s

That is, s is complex if

R < 2

ffiffiffiffi
L

C

r
:

In this case Euler’s identity tells us that the discharge current i(t), for the initially
stored energy, will be an exponentially damped (because of the energy loss mech-
anism of the R) sinusoidal oscillation with the so-called natural frequency of12

f n ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2
hertz:

s

Now, suppose we have two R, L, C series circuits that are magnetically coupled.
What influence does the coupling have on the natural frequency of the circuit? This
is, in general, not an easy problem to tackle, but it does have a very pretty answer if
the two circuits have the same natural frequency when isolated from each other.
When coupled, such a pair of circuits is said to form a tuned circuit, and it is easy to

12The unit of frequency used to be the natural, obvious cycles per second but, deciding that the great
German mathematical physicist Heinrich Hertz (1857–1894) had not been suitably honored, the cps
was declared by an international committee to be the hertz (Hz) in 1960.
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show that the coupling results in each of the two series circuits having two natural
frequencies, one higher and one lower than the single natural frequency fn each
circuit has when isolated. That is, the magnetic coupling causes the single natural
frequency of each lone circuit to split into two possible frequencies.

If we call the currents in the individual (but otherwise identical) R, L, C circuits i1
and i2, then, analogous to (1.33), we mathematically write the description of the
coupled pair as

i1Rþ L
di1
dt

þ 1
C

Z t

0
i1 xð Þdx�M

di2
dt

¼ V0 ð1:34Þ

and

i2Rþ L
di2
dt

þ 1
C

Z t

0
i2 xð Þdx�M

di1
dt

¼ 0, ð1:35Þ

where the � indicates that the coupling may be of either sign. A positive rate-of-
change of current in one circuit could produce either a positive or negative voltage in
the other circuit, depending on the relative sense of the windings of each inductor
coil. As long as we use the same sign in both equations, the solution will be the same.
For the sake of a specific analysis, let’s assume the minus sign in both (1.34) and
(1.35). Differentiating, we therefore have

R
di1
dt

þ L
d2i1
dt2

þ i1
C
�M

d2i2
dt2

¼ 0 ð1:36Þ

and

R
di2
dt

þ L
d2i2
dt2

þ i2
C
�M

d2i1
dt2

¼ 0: ð1:37Þ

Now, assume i1 ¼ Aest and i2 ¼ Best. That is, we’ll take the currents in the two
circuits as having the same frequency (whatever it is) but not necessarily the same
amplitude (A and B are each arbitrary). Then, substituting these assumed currents
into (1.36) and (1.37) and making the obvious cancellations,

Rsþ Ls2 þ 1
C
� B

A
Ms2 ¼ 0 ð1:38Þ

and

Rsþ Ls2 þ 1
C
� A

B
Ms2 ¼ 0: ð1:39Þ
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Thus,

B

A
Ms2 ¼ Rsþ Ls2 þ 1

C

� �

and

A

B
Ms2 ¼ Rsþ Ls2 þ 1

C

� �
:

Multiplying these last two results together, we see the arbitrary A and B vanish, to
give

M2s4 ¼ Ls2 þ Rsþ 1
C

� �2

: ð1:40Þ

Writing (1.40) as the difference of two squares, we then arrive at

Ls2 þ Rsþ 1
C

� �2

�M2s4 ¼ 0

¼ Ls2 þ Rsþ 1
C

� �
�Ms2

� 	
Ls2 þ Rsþ 1

C

� �
þMs2

� 	
:

Therefore, either

L�Mð Þs2 þ Rsþ 1
C
¼ 0

or

LþMð Þs2 þ Rsþ 1
C
¼ 0:

Solving each of these two quadratics for s, we find there are two possibilities for
the natural frequency of the magnetically coupled pair of circuits:

f n1 ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L�Mð ÞC � R2

4 L�Mð Þ2
s

and

f n2 ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LþMð ÞC � R2

4 LþMð Þ2:
s

One of these two frequencies will always be greater than fn, while the other will be
smaller. Which is which, however, depends on the values of the circuit components
(see Problem 1.8). When transients exist in magnetically coupled circuits, both
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frequencies will generally be present, and you’ll see examples of that situation in
Chaps. 2 and 4. Notice that as M ! 0 (the two circuits become uncoupled) both fn1
and fn2 approach fn.

Problems

1.1 In Fig. 1.8 the switch has been closed for a long time. At time t¼ 0 it is opened.

(a) Just before that (at time t ¼ 0�), what are the currents in the two equal-
valued inductors, and what is the voltage drop across the capacitor?

(b) For t > 0, determine under what condition the circuit will oscillate.

1.2 In the circuit shown in Fig. 1.9, the capacitor is charged to V0 volts. At time t¼ 0
the switch is closed and the capacitor begins to discharge. Show that the circuit
will oscillate only if the value of R is at least some minimum value which is a
function of the values of L and C. Hint: with v(t) as the voltage drop across the
parallel R and C, show that

LC
d2v

dt2
þ L

R

� �
dv

dt
þ v ¼ 0

and assume v is of the form est. Underwhat conditions does shave an imaginary part?

R

R

C

L

L−

+
1 v.

Fig. 1.8 Problem 1.1

R

C

L

Fig. 1.9 Problem 1.2
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1.3 In the circuit shown in Fig. 1.10 the switch is closed at t ¼ 0. If the battery
voltage is 1 volt, what is the voltage drop across each capacitor after a long time
has passed?

1.4 Using the discussion in the text on the conservation of magnetic flux linkage for
two inductors suddenly switched into a series connection as a guide, construct a
derivation of the conservation of electric charge for two capacitors suddenly
switched into a parallel connection.

1.5 As pointed out in note 10, the discharge of a capacitor through a resistance will
be, in general, an exponential decay of the form e�t/τ, where τ is the product of
the resistance and the capacitance. Since the exponent must be dimensionless
(see the next problem) it follows that that product must have the dimensions of
time. Show that this is so, using the fundamental relations of (a) current has the
units of charge/time, (b) resistance has the units of voltage/current, and
(c) voltage has the units of charge/capacitance.

1.6 Why must the power of an exponential be dimensionless? Hint: suppose the
exponent did have dimensions, and then consider the power series expansion of
the exponential. See any difficulties?

1.7 In Fig. 1.11 the switch has been closed for a long time, and the circuit is in its
steady-state. Then, at t¼ 0, the switch is opened. What is the voltage drop across
the switch contacts at t ¼ 0� and at t ¼ 0+? Consider three cases:
(1) R1 ¼ R2 ¼ R3 ¼ R4 ¼ R, (2) R1 ¼ R, R2 ¼ 2R, R3 ¼ 3R, R4 ¼ 4R, and
(3) R1 ¼ R, R2 ¼ 1

2R, R3 ¼ 1
3R, R4 ¼ 1

4R.

−
+

t = 0

1 v

R1

C1 C2

R2

L2

L1Fig. 1.10 Problem 1.3
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1.8 For a magnetically coupled tuned circuit, it is obvious that for the case of R ¼ 0
we have

f n1 > f n > f n2:

What is the required condition for this to still hold in the case of ¼
ffiffiffi
L
C

q
?

−

+

R3

R2

C1 C2V2 V3

t = 0

R4

R1

V1

E
L

Fig. 1.11 Problem 1.7
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Chapter 2
Transients in the Time Domain

2.1 Sometimes You Don’t Need a Lot of Math

The circuit in Fig. 2.1 has had the switch closed for a long time, and then it is opened
(as shown) at time t ¼ 0. What is the capacitor voltage vc (at point a) for time t � 0?
We could start to answer this question by writing down Kirchhoff’s equations and
then doing some (maybe more than a little) algebra, but instead let’s see if we can use
the ideas from Chap. 1 to arrive at the solution without doing a lot of algebra.

To start, pay particular attention to how the battery is positioned. Its positive
terminal is connected directly to ground which, by definition, is always at zero
potential. Thus, the negative terminal (point c) is at potential –E. That is, point c is
at E volts below ground. So, just before the switch is opened the capacitor is charged
to E

2 volts, with point a below ground, i.e., vc 0�ð Þ ¼ �E
2 . That’s because the middle

R1 is shorted by the closed switch and, as there is no current in R2 and the C when the
switch has been closed for a long time, then point b is the mid-point of a voltage
divider formed by the other two R1 resistors which puts point b midway between –E
volts and ground.

Now, since a capacitor voltage drop can’t change instantly, we have vc 0þð Þ ¼ �
E
2 . Then, with the switch open, a long time later all will be as before except that point
b is now part of a voltage divider made from three R1 resistors and so point b’s
potential will be at E

3 volts below ground when t ¼ 1. That is, vc 1ð Þ ¼ �E
3 . So,

C discharges from ¼ �E
2 to �E

3, and the discharge will be exponential (look back at
note 10 in Chap. 1) with some time constant τ ¼ RC where R is a resistance
determined by the values of R1 and R2 (will figure-out what R is in just a moment).
That is,

vc tð Þ ¼ �E

3
1þ 1

2
e�

t
τ

� �
:
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Okay, what’s τ (that is, what’s R)? Once the switch is closed, the circuit ‘looks’ as
shown in Fig. 2.2 where the ideal battery has been replaced with its internal
resistance (zero).

That is, C discharges through R2 in series with the combination of 2R1 in parallel
with R1. Thus,

R ¼ R2 þ 2R2
1

2R1 þ R1
¼ R2 þ 2R1

3
¼ 3R2 þ 2R1

3

and so

τ ¼ 3R2 þ 2R1

3
C

and thus, just like that, we have

R1 R1

C

vc
E

−

+ −
+

a

b
c t = 0

R1

R2

Fig. 2.1 What is vc(t) at point a for t � 0?

2 R1

R2

C
R1−

+
vc

Fig. 2.2 The discharge
circuit for t � 0
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vc tð Þ ¼ �E

3
1þ 1

2
e
� 3t

3R2þ2R1ð ÞC
� �

, t � 0: ð2:1Þ

Is the physical reasoning I’ve just taken you through to arrive at (2.1) correct?
Perhaps (you might wonder) there could be some subtle error somewhere? Well, the
result is correct, as a formal mathematical analysis would show. It’s easier to do that
formal analysis in the transform domain than it is to do in the time domain, and so
you might want to come back to this problem again, later, when we get to the
Laplace transform.

2.2 An Interesting Switch-Current Calculation

In the circuit of Fig. 2.3 the switch has been open (as shown) for a long time. At time
t¼ 0 the switch is closed. What is is(t), the switch current, for t� 0? Notice that there
is no need to be concerned about a switching arc in this problem, as the switch is not
interrupting an inductor current. Now, before we write any mathematics at all, we
can immediately make the following observation: is(0+) ¼ is(1).

To see that this is so, notice that at t ¼ 0� (just before we close the switch) C is
charged to E volts1 and so there is zero current in the inductor. This last point means
that at time t ¼ 0+ (just after we close the switch) the inductor current will still be
zero. So, the only source of current in the switch at the instant the switch closes is
from the discharge of C. Since the capacitor voltage drop at t¼ 0� is E, then at t¼ 0
+ the capacitor voltage drop is still E and, since the capacitor discharge current at
t¼ 0+ is ER then is(0+) is

E
R. Next, after a long time has passed the only current flowing

is that of the battery, i1, through the series L and R and the switch (the closed switch,
of course, completely short-circuits the series R and C). The battery current is then
clearly E

R, and so is 1ð Þ ¼ E
R. Thus, as claimed,

E

L R R

t=0
i2

is

i1 C−
+

−
+

Fig. 2.3 What is the switch
current for t � 0?

1Since the bottom terminal of C is connected to ground, the potential of the top terminal of C is the
voltage drop across C.
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is 0þð Þ ¼ is 1ð Þ ¼ E

R
: ð2:2Þ

To find is(t) in general, let’s write Kirchhoff’s voltage laws around each of the two
loops formed once the switch has closed:

�E þ L
di1
dt

þ i1R ¼ 0, i1 0þð Þ ¼ 0 ð2:3Þ

and

�E þ 1
C

Z t

0
i2 uð Þduþ i2R ¼ 0, i2 0þð Þ ¼ E

R
ð2:4Þ

where the –E in (2.3) is the voltage rise (going clockwise) through the battery, and
the –E in (2.4) is the voltage rise (going counter-clockwise) due to the initial charge
on the capacitor. Thus, differentiating (2.4) with respect to t,

1
C
i2 tð Þ þ R

di2
dt

¼ 0

or,

di2
dt

þ 1
RC

i2 tð Þ ¼ 0: ð2:5Þ

Mathematicians call (2.5) a separable equation because we can separate the
variables i2 and t to opposite sides of the equality to write

di2
i2

¼ � 1
RC

dt

which immediately integrates to

ln i2ð Þ ¼ � t

RC
þ k

where k is some constant. Since

i2 0þð Þ ¼ E

R

we have

ln
E

R

� �
¼ k:
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Thus,

ln i2ð Þ ¼ � t

RC
þ ln

E

R

� �

or

ln i2ð Þ � ln
E

R

� �
¼ � t

RC
¼ ln

i2
E=R

� �

or

i2 ¼ E

R
e�t=RC ð2:6Þ

which you may have already anticipated, using the same argument we used in the
previous section. Also, from (2.3) we have

di1
dt

þ R

L
i1 ¼ E

L
: ð2:7Þ

To solve (2.7), we use the idea of combining its constant solution (constant
means di1

dt ¼ 0) to the time varying solution of the homogeneous version of (2.7):

di1
dt

þ R

L
i1 ¼ 0: ð2:8Þ

That constant solution of (2.7) is seen, by inspection, to be i1 ¼ E
R . The time-

varying solution to (2.8) follows immediately from our earlier solution for the same
equation for i2 (where now R

L plays the role of 1
RC ). That is, the time-varying

component of i2 is E
R e

�R
Lt, and so the complete i2(t) is

i2 tð Þ ¼ E

R
� E

R
e�

R
Lt ð2:9Þ

where we subtract the two individual solutions because i1(0+) ¼ 0. Since the switch
current is, from Kirchhoff’s node law for currents, is(t) ¼ i1(t) + i2(t), we have

is tð Þ ¼ E

R
e�t=RC þ E

R
� E

R
e�

R
Lt

or,

is tð Þ ¼ E

R
1þ e�t=RC � e�

R
Lt

h i
, t � 0: ð2:10Þ

Notice that (2.10) says that is 0þð Þ ¼ is 1ð Þ ¼ E
R, just we argued physically at the

start. The mathematical treatment does tell us something else quite interesting,
however, that we didn’t know before:
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is tð Þ ¼ E

R
, for all t,

if RL ¼ 1
RC . That is, under the particular condition of R ¼

ffiffiffi
L
C

q
the switch current will

be unvarying, even though elsewhere in the circuit the i1 and i2 currents are
individually continually changing.

You can tell from (2.10) that, depending on which exponential term goes to zero
faster as t!1, is(t) will have either a maximum or a minimum value. For example,
if 1

RC > R
L then the e�t/RC term will be dominated by the �e�

R
Lt term, and so is(t) will

decrease from its initial ER value before it ends-up back at its final ER value. That is, if
1
RC > R

L then is(t) should have a minimum value at some time t ¼ Tmin. Similarly, if
1
RC < R

L then is(t) should have a maximum value at some time t ¼ Tmax.
To find the extrema of is(t) set

dis
dt ¼ 0, getting

dis
dt

¼ E

R

R

L
e�

R
Lt � 1

RC
e�t=RC

� �

and this is zero if

R

Le
R
Lt
¼ 1

RCet=RC

or

et=RC

e
R
Lt

¼ L

R2C
¼ e

t
RC� R

Lt:

This is quickly solved for t to give

t ¼
ln 1=RC

R=L

� �
1
RC � R

L

:

Notice that if 1
RC > R

L then both numerator and denominator are positive and the
time Tmin is

Tmin ¼
ln 1=RC

R=L

� �
1
RC � R

L

Just to see how the numbers go, suppose E ¼ 100 volts, L ¼ 100 mH, and
C ¼ 0.01 microfarads. Then
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1
RC

¼ 1

103
	 


10�8
	 
 ¼ 1

10�5 ¼ 105

and

R

L
¼ 103

10�1 ¼ 104

and so 1
RC > R

L and is(t) will have a minimum at

Tmin ¼
ln 105

104

� �
105 � 104

¼ ln 10ð Þ
90; 000

¼ 25:58 μsec:

The switch current at t ¼ Tmin is

is Tminð Þ ¼ 100
1; 000

1þ e�25:58x10�6x105 � e�25:58x10�6x104
h i

¼ 100mA 1þ e�2:558 � e�0:2558
� � ¼ 100ma 1þ 0:077� 0:774½ � ¼ 30:3 mA:

Figure 2.4 shows the switch current, given by (2.10), for the first 150 microsec-
onds after the switch is closed, and we see that the minimum is a rather deep one,
with a relatively slow recovery compared to how quickly the minimum is achieved.

Suppose that C is changed to 1 microfarad. Then

Fig. 2.4 When the switch current has a minimum
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1
RC

¼ 1

103
	 


10�6
	 
 ¼ 1

10�3 ¼ 103

and

1
RC

<
R

L

and so the switch current will have a maximum at

Tmax ¼
ln 103

104

� �
103 � 104

¼ ln 0:1ð Þ
�9; 000

¼ ln 10ð Þ
9; 000

¼ 255:8 μsec:

The switch current at t ¼ Tmax is

is Tmaxð Þ ¼ 100mA 1þ e�255:8x10�6x103 � e�255:8x10�6x104
h i

¼ 100mA 1þ e�:2558 � e�2:558
� � ¼ 100ma 1þ 0:774� 0:077½ � ¼ 169:7 mA:

Figure 2.5 shows the switch current, given by (2.10), for the first 700 microsec-
onds after the switch is closed. The maximum is a very broad one.

Fig. 2.5 When the switch current has a maximum
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2.3 Suppressing a Switching Arc

For our next time domain example, let’s return to the issue that inspired this book:
the arc that tends to form when an inductive circuit is mechanically interrupted, such
as by a circuit-breaker. One common way to attempt to suppress such an arc is to
place a capacitor C across the switch contacts, as shown in Fig. 2.6.

It’s easy to see, physically, what C does. With the switch closed, C is ‘shorted’ by
the switch and so will have zero charge when the switch is opened at t ¼ 0; C then
presents a path for the inductor’s current, and so, with zero voltage drop across the
switch at t ¼ 0+ (the voltage drop across the uncharged capacitor), there is (at least
initially) no arc. The inductor current will, of course, cause the capacitor voltage
drop, e(t), to move away from zero, perhaps in an oscillatory way (depending on the
particular values of R, L, and C), and so the question of interest for us is: just what is
e(t) for t > 0?

It’s physically clear that, after a long time, the final capacitor voltage drop will be
V. That is,

limt!1e tð Þ ¼ V : ð2:11Þ
When the circuit has been in operation as shown in the figure for a long time,

before we open the switch, the steady-state current is the constant tð Þ ¼ V
R, as the

inductor would have no voltage drop. The capacitor has zero voltage drop, too, of
course, as it is by-passed by the closed switch. Then, at time t ¼ 0, the switch is
opened. Without the C there would indeed be an arc because the inductor ‘resists’ a
change in the current. But with the C in the circuit by-passing the open switch,
matters are now quite different. The C gives the inductor current an alternative path
to that of ‘jumping the switch,’ a path that keeps the initial voltage drop across the
switch at zero.

The Kirchhoff voltage loop equation of the circuit is

1
C

Z t

0
i xð Þdxþ L

di

dt
þ iR ¼ V , i 0þð Þ ¼ V

R
: ð2:12Þ

V

e (t)

t = 0

i(t)C

L R

−
−

+

+

Fig. 2.6 Will an arc form
when the switch opens?
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At t ¼ 0+ the integral vanishes and

L
di

dt
│t¼0þ þ i 0þð ÞR ¼ V

and so

di

dt
│t¼0þ ¼ V � i 0þð ÞR

L
¼ 0: ð2:13Þ

A second differentiation of the Kirchhoff equation gives

1
C
iþ L

d2i

dt2
þ R

di

dt
¼ 0, i 0þð Þ ¼ V

R
,
di

dt
│t¼0þ ¼ 0:

Next, assume i(t) ¼ Iest. Then

I

C
est þ LIs2est þ RsIest ¼ 0

or,

1
C
þ Ls2 þ Rs ¼ 0

or,

s2 þ R

L
sþ 1

LC
¼ 0

and so

s ¼
�R

L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L

	 
2 � 4
LC

q
2

¼ � R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

� 1
LC

:

s

Thus,

i tð Þ ¼ I1e
s1t þ I2e

s2t ð2:14Þ
where

s1 ¼ � R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

� 1
LC

s
, s2 ¼ � R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

� 1
LC

:

s

Using i(0+) from (2.12), we have

I1 þ I2 ¼ V

R
: ð2:15Þ
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And since

di

dt
¼ I1s1e

s1t þ I2s2e
s2t,

then from (2.13) we have

I1s1 þ I2s2 ¼ 0: ð2:16Þ
Using Cramer’s rule on the simultaneous equations of (2.15) and (2.16), the

system determinant is

D ¼ 1 1
s1 s2


 ¼ s2 � s1

and so we can therefore immediately write

I1 ¼

V

R
1

0 s2




D
¼

V
R s2
D

ð2:17Þ

and

I2 ¼
1

V

R
s1 0




D
¼ �

V
R s1
D

: ð2:18Þ

So,

i tð Þ ¼
V
R s2
D

es1t �
V
R s1
D

es2t

or,

i tð Þ ¼ V

RD
s2e

s1t � s1e
s2t½ �: ð2:19Þ

The voltage drop across the open switch is

e tð Þ ¼ 1
C

Z t

0
i xð Þdx ¼ V

RDC
s2

Z t

0
es1xdx� s1

Z t

0
es2xdx

� �

which, after doing the easy integrals, gives

e tð Þ ¼ V

RDC

s2
s1
es1t � s2

s1
� s1
s2
es2t þ s1

s2

� �
: ð2:20Þ

2.3 Suppressing a Switching Arc 39



To see what (2.20) ‘looks like’ when plotted, there are two distinct cases to
consider: when s1 and s2 are real, and when they are complex. I’ll discuss each case
in turn.

When R
2L

	 
2
> 1

LC then both s1 and s2 are real. And, it’s important to note, negative,
which means the transient exponential terms decay with time, rather than grow
(which is physically impossible). For example, suppose R ¼ 400 ohms,
L ¼ 100 μH, and C ¼ 0.01 μF. Then,

1
LC

¼ 1

10�4
	 


10�8
	 
 ¼ 1012

while

R

2L

� �2

¼ 400

2� 10�4

� �2

¼ 4� 1012:

Figure 2.7 shows e(t) for the first 20 microseconds after the switch is closed, for a
battery voltage of V ¼ 100 volts.

Next, keep L and C the same but reduce R to 100 ohms. Then

Fig. 2.7 The switch voltage for real values of s
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R

2L

� �2

¼ 100

2� 10�4

� �2

¼ 0:25� 1012

and now we’ll have complex values for s1 and s2. In particular,

s1 ¼ � R

2L
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R

2L

� �2

¼ �α� iω

s

and

s2 ¼ � R

2L
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R

2L

� �2

¼ �αþ iω

s

where

α ¼ R

2L
,ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R

2L

� �2

:

s

Also,

D ¼ s2 � s1 ¼ i2ω:

Thus, (2.20) becomes

e tð Þ ¼ 100
RCi2ω

�αþ iω

�α� iω
e �α�iωð Þt ��αþ iω

�α� iω
��α� iω

�αþ iω
e �αþiωð Þt þ�α� iω

�αþ iω

� �

which, with a bit of algebra and Euler’s identity, reduces to

e tð Þ ¼ 100
RCω α2 þ ω2ð Þ 2αω� e�αt α2 � ω2

	 

sin ωtð Þ þ 2αω cos ωtð Þ� �� �

: ð2:21Þ

As partial checks on (2.21), notice that e(0+)¼ 0, and that e(1)¼ 100, which are
correct.

Figure 2.8 shows e(t) for the first 20 microseconds after the switch is closed, and it
looks much different from before (in Fig. 2.7). Besides being oscillatory, notice that
the peak value of e(t) now exceeds the battery voltage of 100 volts.

2.4 Magnetic Coupling, Part 2

In Chap. 1 we examined a special case of magnetically coupled circuits: that of the
two circuits being tuned, with each having the same isolated natural frequency. In
this section we’ll treat a different special case. Now each of the two circuits can have
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any natural frequency desired (not necessarily the same for each circuit) but, to keep
the analysis mathematically under control, we’ll assume (unlike in Chap. 1) the
resistance in each circuit is zero, as shown in Fig. 2.9. This is not physically possible
in real circuits, of course, but for coupled circuits that have ‘low’ resistances it may
be a reasonable first approximation, at least for an initial period.

When we get to Chap. 4, after having developed the Laplace transform in
Chap. 3, we’ll be able to handle the general case where energy loss is present in
both circuits, but for now our problem here is to calculate i1(t) and i2(t) — the
so-called primary and secondary currents, respectively — for t � 0 with no energy
loss. As in Sect. 1.6, C1 has an initial charge (stored energy).

Is it ‘obvious’ to you what i1(t) and i2(t) are? It would seem that both would
oscillate, and that those oscillations should not decay with time since there is no
energy dissipation mechanism present. What I think will surprise you, however, is
just how complicated (because of the magnetic coupling) the calculation of those

Fig. 2.8 The switch voltage for complex values of s

M
C1

i1(t) i2(t)
L1 L2

C2

− +

t = 0Fig. 2.9 Magnetic coupling
with zero energy loss
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oscillations can be. The reason for this complication is actually pretty easy to
understand: when the charged capacitor C1 begins to discharge and create i1(t),
that current induces a voltage in L2 which starts i2(t) which then induces a voltage
back in L1 which of course influences i1(t); that influence is then coupled back into L2
and . . . on and on it goes, with energy exchanged back-and-forth between the two
circuits in a mutually interacting manner that almost instantly becomes impossible
for a human mind to intuitively follow. But our mathematics isn’t so easily
overwhelmed, and it can follow — if we are careful — the evolution of the two
currents. This calculation will, however, be an illustration of just about the limit of
our willingness to do a pure time domain analysis.

Looking back at (1.38) and (1.39), if we set R ¼ 0, and write L1 and L2, and C1

and C2, for the inductors and capacitors in the two circuits, we have

L1s
2 þ 1

C1
� B

A
Ms2 ¼ 0

and

L2s
2 þ 1

C2
� A

B
Ms2 ¼ 0

or,

B

A
Ms2 ¼ L1s

2 þ 1
C1

and

A

B
Ms2 ¼ L2s

2 þ 1
C2

:

Thus,

M2s4 ¼ L1s
2 þ 1

C1

� �
L2s

2 þ 1
C2

� �
¼ L1L2s

4 þ L1
C2

þ L2
C1

� �
s2 þ 1

C1C2

or,

L1L2 �M2
	 


s4 þ L1
C2

þ L2
C1

� �
s2 þ 1

C1C2
¼ 0:

This is a quadratic in s2, and so we can write by inspection that

s ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� L1

C2
þ L2

C1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1
C2

þ L2
C1

� �2
� 4 L1L2�M2

C1C2

r
2 L1L2 �M2
	 


vuuut
:
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There are four values of s, corresponding to the four ways of specifying the plus/
minus signs. Notice, carefully, that all four values are pure imaginary, as the quantity
under the inner square-root is positive because, first,

L1
C2

þ L2
C1

� �2

� 4
L1L2 �M2

C1C2
¼ L12

C2
2 þ 2

L1L2
C1C2

þ L22

C1
2 � 4

L1L2
C1C2

þ 4
M2

C1C2

¼ L12

C2
2 � 2

L1L2
C1C2

þ L22

C1
2 þ 4

M2

C1C2
¼ L1

C2
� L2
C1

� �2

þ 4
M2

C1C2
> 0:

In addition, the quantity under the outer square-root is negative because

L1
C2

þ L2
C1

� �
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1
C2

þ L2
C1

� �2

� 4
L1L2 �M2

C1C2

s

since 0 � M � ffiffiffiffiffiffiffiffiffiffi
L1L2

p
. These four values of s are, of course, in the form of two

conjugate pairs, and so we have

s1 ¼ iω1, s2 ¼ �iω1, s3 ¼ iω2, s4 ¼ �iω2

where

ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1
C2

þ L2
C1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1
C2

þ L2
C1

� �2
� 4 L1L2�M2

C1C2

r
2 L1L2 �M2
	 


vuuut ð2:22Þ

and

ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1
C2

þ L2
C1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1
C2

þ L2
C1

� �2
� 4 L1L2�M2

C1C2

r
2 L1L2 �M2
	 


vuuut
: ð2:23Þ

These results tell us that

i1 tð Þ ¼ K1e
iω1t þ K2e

�iω1t þ K3e
iω2t þ K4e

�iω2t

and

i2 tð Þ ¼ K5e
iω1t þ K6e

�iω1t þ K7e
iω2t þ K8e

�iω2t
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where the K’s are constants determined by the initial conditions. Of course, we
physically expect those complex-valued exponentials to combine, via Euler’s iden-
tity, into real-valued sinusoidal terms (actual, physical quantities that we can
measure with instruments are not complex-valued!). Since both circuits, primary
(circuit 1) and secondary (circuit 2), have zero current before the switch is closed
(because of the inductors), we expect those currents to still be zero just after the
switch is closed and so we argue that the K’s must be such that

i1 tð Þ ¼ A1 sin ω1tð Þ þ A2 sin ω2tð Þ ð2:24Þ
and

i2 tð Þ ¼ A3 sin ω1tð Þ þ A4 sin ω2tð Þ ð2:25Þ
where the A’s (obviously related to the K’s) are determined by the initial conditions.
Notice that (2.24) and (2.25) do, indeed, give i1(0+) ¼ i2(0+) ¼ 0.

The time domain equation of circuit 1 is (look back at (1.36)), with R ¼ 0 and
using the minus sign for M,

L1
di1
dt

þ 1
C1

Z t

0
i1 xð Þdx�M

di2
dt

¼ V0 ð2:26Þ

and, similarly for circuit 2 (look back at (1.37)),

L2
di2
dt

þ 1
C2

Z t

0
i2 xð Þdx�M

di1
dt

¼ 0: ð2:27Þ

So, for t ¼ 0+ we have

L1
di1
dt

│t¼0þ �M
di2
dt

│t¼0þ ¼ V0

and

L2
di2
dt

│t¼0þ �M
di1
dt

│t¼0þ ¼ 0:

These two expressions are two equations in two unknowns, di1
dt │t¼0þ and

di2
dt │t¼0þ, and they are easily solved for with Cramer’s rule. The system determinant
is

D ¼ L1 �M
�M L2


 ¼ L1L2 �M2
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and so

di1
dt

│t¼0þ ¼
V0 �M
0 L2




D
¼ V0L2

D
¼ V0

L2
L1L2 �M2 ¼ X1 ð2:28Þ

and

di2
dt

│t¼0þ ¼
L1 V0

�M 0




D
¼ MV0

D
¼ V0

M

L1L2 �M2 ¼ X2: ð2:29Þ

You’ll see, in just a bit, why X1 and X2 have been introduced (they will help keep
the algebra from overwhelming us).

Next, let’s differentiate (2.26) and (2.27) to get

L1
d2i1
dt2

þ i1 tð Þ
C1

�M
d2i2
dt2

¼ 0

and

L2
d2i2
dt2

þ i2 tð Þ
C2

�M
d2i1
dt2

¼ 0

which, since i1(0+) ¼ i2(0+) ¼ 0, says

L1
d2i1
dt2

│t¼0þ �M
d2i2
dt2

│t¼0þ ¼ 0

and

L2
d2i2
dt2

│t¼0þ �M
d2i1
dt2

│t¼0þ ¼ 0:

Again, we have two equations in two unknowns (that is, d
2i1
dt2 │t¼0þ and d2i2

dt2 │t¼0þ)
and you should be able to see, by inspection, that the solutions are

d2i1
dt2

│t¼0þ ¼ 0 ð2:30Þ

and

d2i2
dt2

│t¼0þ ¼ 0: ð2:31Þ
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Now, let’s apply (2.28)/(2.29) and (2.30)/(2.31) to (2.24) and (2.25). Doing that
for (2.28)/(2.29) gives us

A1ω1 þ A2ω2 ¼ V0
L2

L1L2 �M2 ¼ X1 ð2:32Þ

and

A3ω1 þ A4ω2 ¼ V0
M

L1L2 �M2 ¼ X2 ð2:33Þ

But, alas, (2.30)/(2.31) gives us only 0 ¼ 0. Certainly true, but of no help in
finding the four A’s. For that we need four equations, and not just the two of (2.32)
and (2.33). So, let’s push-on and differentiate yet again (look back at the equations
immediately following (2.29)):

L1
d3i1
dt3

þ 1
C1

di1
dt

�M
d3i2
dt3

¼ 0

and

L2
d3i2
dt3

þ 1
C2

di2
dt

�M
d3i1
dt3

¼ 0

which, using (2.28) and (2.29) become (and now I’ll use the X1 and X2 mentioned
earlier) at t ¼ 0+

L1
d3i1
dt3

│t¼0þ þ 1
C1

X1 �M
d3i2
dt3

│t¼0þ ¼ 0

and

L2
d3i2
dt3

│t¼0þ þ 1
C2

X2 �M
d3i1
dt3

│t¼0þ ¼ 0:

Thus, rearranging for Cramer’s rule,

L1
d3i1
dt3

│t¼0þ �M
d3i2
dt3

│t¼0þ ¼ � 1
C1

X1

and

�M
d3i1
dt3

│t¼0þ þ L2
d3i2
dt3

│t¼0þ ¼ � 1
C2

X2:
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The solutions are (after a bit of easy algebra),

d3i1
dt3

│t¼0þ ¼ �V0
C2L22 þ C1M2

C1C2 L1L2 �M2
	 
2 ¼ Y1 ð2:34Þ

and

d3i2
dt3

│t¼0þ ¼ �V0M
C1L1 þ L2C2

C1C2 L1L2 �M2
	 
2 ¼ Y2: ð2:35Þ

Applying (2.34) and (2.35) to (2.24) and (2.25), we get

�A1ω
3
1 � A2ω

3
2 ¼ Y1 ð2:36Þ

and

�A3ω
3
1 � A4ω

3
2 ¼ Y2: ð2:37Þ

With (2.32), (2.33), (2.36), and (2.37), we at last have four equations for the four
A’s. That is,

(a) A1ω1 + A2ω2 ¼ X1

(b) A3ω1 + A4ω2 ¼ X2

(c) �A1ω
3
1 � A2ω

3
2 ¼ Y1

(d) �A3ω
3
1 � A4ω

3
2 ¼ Y2.

From the structure of these equations we can obviously solve (a) and (c) together
to get A1 and A2, and (b) and (d) together to get A3 and A4. Doing that, we arrive at

A1 ¼ �X1ω3
2 � Y1ω2

ω2ω3
1 � ω1ω3

2

,A2 ¼ X1ω3
1 þ Y1ω1

ω2ω3
1 � ω1ω3

2

,A3 ¼ �X2ω3
2 � Y2ω2

ω2ω3
1 � ω1ω3

2

,

A4 ¼ X2ω3
1 þ Y2ω1

ω2ω3
1 � ω1ω3

2

:

The ω’s are given by (2.22) and (2.23), the X’s by (2.32) and (2.33), and the Y’s
by (2.34) and (2.35). That’s a lot of number-crunching, yes, but for a computer it’s
all just wood-chips to pulverize, and so it’s duck soup to generate curves for i1(t) and
i2(t) from (2.24) and (2.25). For example, Fig. 2.10 shows such curves for the values
V0 ¼ 1 volt, L1 ¼ 93 mH, C1 ¼ 150 μF, L2 ¼ 11 mH, and C2 ¼ 168 μF, for the two
cases of ‘loose’ magnetic coupling (M ¼ 0:1

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
) and ‘tight’ magnetic coupling (

M ¼ 0:7
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
).
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Problems

2.1 Show that (2.20) has the property given in (2.11).

Fig. 2.10 The primary (left) and secondary (right) currents for ‘loose’ coupling (top) and ‘tight’
coupling (bottom). The current is in amperes and time is in milliseconds
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Chapter 3
The Laplace Transform

3.1 The Transform, and Why It’s Useful

As you’ve seen in the first two chapters, the time domain analysis of electrical
circuits results in equations containing time derivatives. Often a lot of derivatives.
This doesn’t necessarily make progress impossible, but time derivatives do add
significantly to the horrors of calculation. The Laplace transformation allows us to
get rid of differentiations.

The transform can do this because it has the wonderful property of converting the
operation of differentiation into the far simpler one of multiplication. That is, it
transforms a differential equation into an algebraic equation. This process is anal-
ogous to how logarithms transform multiplication into the simpler operation of
addition (because log(xy) ¼ log (x) + log (y)).

If f(t) is a time function, then we write the Laplace transform of f(t) as F(s), where1

F sð Þ ¼ L f tð Þf g ¼
Z 1

0
f tð Þe�stdt ð3:1Þ

where s is a complex quantity written as s¼ σ + iω. The role of σ (which always has
a finite positive value) is to make the decaying, oscillatory e�st ¼ e�σte�iωt factor go
to zero fast enough that the integral in (3.1) actually exists. It turns out, you should
understand, that there are some easy-to-write time functions which blow-up so fast
(as t!1) that it is impossible to find such a σ, functions like tt and et

2
. This isn’t of

any practical concern, however, because such explosive time functions simply don’t

1When I took my first course in ordinary differential equations at Stanford (Math 130, Autumn
1959), and the transform was introduced, I stuck my hand up in class that day and innocently asked
the instructor ‘How did Laplace know to do this?’ The instructor just smiled and said ‘Because he
was a really smart guy.’We all laughed, but he really should have said ‘Because he had read Euler’
(see note 15 in the Preface). Okay, you say, so how did Euler know to do this? What can I say:
because he was a really smart guy.
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occur in actual circuits. Certainly all of the time functions of interest in the transient
analyses we do here will have a Laplace transform. Do notice, carefully, that (3.1)
ignores what f(t) was ‘doing’ for t < 0. It is only the behavior of f(t) for t � 0 that
determines F(s). I’ll say more on this issue in the next section.

The Laplace transform is a unique operation, which means different f(t)‘s have
different F(s)‘s. The two functions, f(t) and F(s), are often written, in fact, as

f tð Þ $ F sð Þ
and called a transform pair. The double-headed arrow indicates there is a one-to-one
correspondence between a time function and its transform.

What makes the definition of (3.1) useful is the following result:

L df

dt

� �
¼
Z 1

0
e�stdf

dt
dt ¼ sF sð Þ � f 0þð Þ ð3:2Þ

where f(0+) is the value of f(t) just after some switching event at t¼ 0 for f(t). When f
(t) is continuous at t¼ 0 then, of course, f(0)¼ f(0+). We write f(0+)— the value of f
(t) as t! 0 from positive values— instead of f(0), in anticipation of the possibility f
(t) might have a discontinuity at t ¼ 0. That is, differentiation in the time domain
becomes multiplication by s in the transform domain. In addition, you see in (3.2)
how the initial condition f(0+) comes into play and, while you might think this is a
complication, it is not. This, in fact, is precisely what Heaviside’s operational
calculus failed to do (and, as a result, Heaviside always had to assume f(0+) ¼ 0,
as you’ll recall was mentioned in Carter’s book: see note 11 in the Preface).

The proof of (3.2) follows easily by doing the integral by-parts. That is, in the
traditional notation used by all calculus textbooks,2

Z 1

0
u dv ¼ uvð Þ│1

0 �
Z 1

0
v du ð3:3Þ

where we write dv ¼ df
dt dt ¼ df (and so v¼ f ), and u¼ e�st (and so du¼ � se�stdt).

Thus,

L df

dt

� �
¼ f tð Þe�stf g│1

0 �
Z 1

0
f tð Þ �se�stdtð Þ

¼ f tð Þe�stf g│1
0 þ s

Z 1

0
f tð Þe�stdt:

2This formula follows immediately from the integration of the freshman calculus formula for the
differential of a product: d(uv) ¼ udv + vdu.
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That is,

L df

dt

� �
¼ f tð Þe�stf g│1

0 þ sF sð Þ: ð3:4Þ

We next argue that the first term on the right in (3.4) is

f tð Þe�stf g│1
0þ ¼ �f 0þð Þ

because, for the transform to exist, we must have σ sufficiently positive that

limt!1f tð Þe� σþiωð Þt ¼ 0:

This requires only that f(1) not be ‘too large.’ Certainly, assuming f(1) is finite
works, and this is a pretty safe assumption for the voltages and currents in any circuit
we can actually build. Thus, (3.4) becomes (3.2). You can repeat these same
arguments, over and over, to show that

L d2f

dt2

� �
¼ s2F sð Þ � sf 0þð Þ � f 0 0þð Þ ð3:5Þ

L d3f

dt3

� �
¼ s3F sð Þ � s2f 0þð Þ � sf 0 0þð Þ � f

0 0
0þð Þ, ð3:6Þ

and so on, where f
0
(0+) and f

0 0
(0+) are the values at t ¼ 0+ of the first and second

derivatives of f(t).
If multiplication by s is associated with time differentiation, then a natural

question to ask is ‘what time operation is division by s associated with in the time
domain?’ Could it be, just as a wild guess, integration? The answer is yes, and here’s
how to see that. Given that F(s) is the Laplace transform of f(t), let’s develop the
transform of the time function (notice the upper limit)

Z t

0
f xð Þdx

where x is simply a so-called ‘dummy variable of integration.’3 That is, let’s
calculate

L
Z t

0
f xð Þdx

� �
¼
Z 1

0

Z t

0
f xð Þdx

� �
e�stdt:

3You’ll occasionally see in textbooks such things as
Z t

0
f tð Þdtwhich is one of those expressions that

falls into the category of ‘everybody knows what is meant even though it is badly stated.’ I say that
because such an expression is saying t varies from 0 to t, which is meaningless. The same symbol
cannot represent both an integration variable and an integration limit.
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Integrating by-parts, define4

u ¼
Z t

0
f xð Þdx and so du ¼ f tð Þdt

dt
dt ¼ f tð Þdt

and

dv ¼ e�stdt and so v ¼ �1
s
e�st:

Then,

L
Z t

0
f xð Þdx

� �
¼ �1

s
e�st

Z t

0
f xð Þdx

� �
│1

0 �
Z 1

0
�1
s
e�st f tð Þdt

and so

L
Z t

0
f xð Þdx

� �
¼ 1

s

Z 1

0
e�stf tð Þdt ¼ F sð Þ

s
ð3:7Þ

because e�st
Z t

0
f xð Þdx vanishes at both t ¼ 0 (if

Z 0

0
f xð Þdx ¼ 0) and at t ¼ 1 (ifZ t

0
f xð Þdx doesn’t ‘blow-up’ too fast as t ! 1). So, as we might have anticipated

from (3.2), integrating in the time domain results in dividing (by s) in the transform
domain.

We can find another useful result by, instead of integrating f(t) as in (3.7),
differentiating (with respect to s) the Laplace transform definition in (3.1):

dF

ds
¼ d

ds

Z 1

0
f tð Þe�stdt ¼

Z 1

0
f tð Þ �tð Þe�stdt

or,

Z 1

0
tf tð Þe�stdt ¼ �dF

ds
:

That is, given the pair f(t) $ F(s), then another pair is

tf tð Þ $ �dF

ds
: ð3:8Þ

4To calculate du
dt , use Leibniz’s formula (see note 3 in Chap. 1).
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Finally, a mirror-image to (3.8) is: given the pair f(t) $ F(s), then

f tð Þ
t

$
Z 1

s
F xð Þdx, ð3:9Þ

which we can prove by simply evaluating the integral. Thus,

Z 1

s
F xð Þdx ¼

Z 1

s

Z 1

0
f tð Þe�xtdt

� �
dx

or, assuming (as engineers do at the drop of a hat) that we can reverse the order of
integration,

Z 1

s
F xð Þdx ¼

Z 1

0
f tð Þ

Z 1

s
e�xtdx

� �
dt ¼

Z 1

0
f tð Þ �e�xt

t

� �
│1

s dt

¼
Z 1

0

f tð Þ
t

e�stdt

¼ L f tð Þ
t

� �
:

3.2 The Step, Exponential, and Sinusoid Functions of Time

In the rest of this chapter we’ll develop the Laplace transform further, finding both
some additional general theorems that will prove useful and the transforms of some
specific, common time functions. One such time function plays a role so central to
transient analysis, however, that there can be no further delay in introducing it. This
is the unit step function, often called the Heaviside step because Oliver Heaviside
made such enormous use of it in his operational calculus; it is the mathematical
description of a time function that is suddenly switched-on at time t¼ 0. Written as u
(t), it is

u tð Þ ¼ 1, t > 0
0, t < 0

: ð3:10Þ

Note, carefully, that u(0) is not defined. An often-made ‘natural’ proposal is that
u 0ð Þ ¼ 1

2 and, with a somewhat more mathematically elevated level than used in this
book, we can actually lend some strength to that idea.5 The specific value of u(0) is
not important here, but we will revisit the nature of u(t)— and specifically the value
of u(0) — in Problem 3.13.

5See, for example, my book Dr. Euler’s Fabulous Formula, Princeton 2017, pp. 209–211.
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The Laplace transform of u(t) is easy to calculate:

L u tð Þf g ¼
Z 1

0
u tð Þe�stdt ¼

Z 1

0
e�stdt ¼ �1

s
e�st

� �
│1

0

and so

L u tð Þf g ¼ 1
s
: ð3:11Þ

The exponential function e�at, where a is some constant, is just about as easy to
transform:

L e�atf g ¼
Z 1

0
e�ate�stdt ¼

Z 1

0
e� sþað Þtdt ¼ � 1

sþ a
e� sþað Þt

� �
│1

0

or,

L e�atf g ¼ 1
sþ a

: ð3:12Þ

Notice that if a ¼ 0 the exponential time function reduces to the unit step in time,
and the transform in (3.12) does indeed become the transform in (3.11).

A generalization of (3.12) is the theorem

L e�atf tð Þf g ¼ F sþ að Þ ð3:13Þ
which follows from

L e�atf tð Þf g ¼
Z 1

0
e�atf tð Þe�stdt ¼

Z 1

0
f tð Þe� sþað Þtdt

which, if we change variable to p ¼ s + a, becomes

L e�atf tð Þf g ¼
Z 1

0
f tð Þe�ptdt ¼ F pð Þ ¼ F sþ að Þ:

The Laplace transform pair f(t) $ F(s) is independent of what f(t) may have
been doing for t < 0. That earlier behavior may influence the values of f(0), f 0

(0) and so on, but that’s the only impact that earlier behavior has on F(s). It is
therefore understood that when we calculate F(s) for a particular f(t), what is
actually being calculated is the transform of f(t)u(t) and that the transform pair
is f(t)u(t) $ F(s).
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Another highly useful result in transform theory, one involving the step that looks
a bit like (3.13) but is actually quite different, is the so-called shifting theorem:

L f t � t0ð Þu t � t0ð Þf g ¼ e�st0F sð Þ: ð3:14Þ
That is, if we shift the time function f(t)u(t) by t0 (to > 0 corresponds to a delay)6

then we multiply the transform of f(t)u(t) by e�st0 . This follows easily:

L f t � t0ð Þu t � t0ð Þf g ¼
Z 1

0
f t � t0ð Þu t � t0ð Þe�stdt ¼

Z 1

t0

f t � t0ð Þe�stdt

because u(t � t0) ¼ 0 for t < t0. Now, let p ¼ t � t0 (and so t ¼ p + t0 and dt ¼ dp).
Then our integral becomes ( p is, of course, simply a dummy variable of integration)

Z 1

0
f pð Þe�s pþt0ð Þdp ¼ e�st0

Z 1

0
f pð Þe�spdp ¼ e�st0F sð Þ:

To compute the transforms of the sinusoidal time functions sin(ω0t) and cos(ω0t),
we can use Euler’s identity, along with (3.12), as follows. As shown in Appendix 1,

cos ω0tð Þ ¼ eiω0t þ e�iω0t

2
:

Thus, associating s with iω0 or with �iω0, and using (3.12), we see that7

L cos ω0tð Þf g ¼ 1
2

1
s� iω0

þ 1
sþ iω0

� �
¼ 1

2
sþ iω0 þ s� iω0

s2 þ ω2
0

� �

and so

L cos ω0tð Þf g ¼ s

s2 þ ω2
0

: ð3:15Þ

In the same way, since

sin ω0tð Þ ¼ eiω0t � e�iω0t

2i

then

L sin ω0tð Þf g ¼ 1
2i

1
s� iω0

� 1
sþ iω0

� �
¼ 1

2i
sþ iω0 � sþ iω0

s2 þ ω2
0

� �

6Notice that f(t � t0)u(t � t0)¼ 0 for t < to, while f(t � t0) by itself is not in general identically zero.
7Also used isL{f(t) + g(t)}¼F(s) +G(s), which is a statement that the integral of a sum is the sum of
the integrals.
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and so

L sin ω0tð Þf g ¼ ω0

s2 þ ω2
0

: ð3:16Þ

To state the obvious, sin(ω0t) and cos(ω0t) are particular examples of the class of
functions called periodic. That is, of functions for which there is a value T (called the
period, which is the duration of a cycle) such that

f tð Þ ¼ f t þ Tð Þ:
The sinusoids have long been associated with electrical engineering as they are

available out of every household wall plug in the civilized world,8 but there are other
important possibilities. A non-sinusoidal example (a square-wave) is shown in
Fig. 3.1.

We can express the Laplace transform of such a function in terms of the Laplace
transform of the first cycle alone. If we call that first cycle f1(t), and its transform
F1(s), then

F1 sð Þ ¼
Z T

0
f 1 tð Þe�stdt

and the transform F(s) of the complete, periodic f(t) is

F sð Þ ¼ F1 sð Þ
1� e�Ts

: ð3:17Þ

This is easily proved as follows, with the aid of the step function. Observing that f
(t) can be written as f1(t) plus an endless number of increasingly delayed versions of
that first cycle; that is, as the first cycle, plus the second cycle, plus the third cycle,
plus . . ., we have

T0

–E

E

ƒ(t)

2T 3T
t

Fig. 3.1 A square-wave

8Have you ever wondered why the very first water-powered electrical generators of alternating
voltage/current were sinusoidal generators, and not some other function (like square-waves)? It was
all a fortuitous accident: rotate a coil of wire at uniform speed in the uniform magnetic field of a
permanent magnet (as would happen, for example, if the coil is being rotated by the shaft of a
paddlewheel of a hydro-power station next to a river flowing at constant speed) and the resulting
voltage and current are automatically sinusoidal, along with all the nice mathematical properties of
sinusoids that nobody was thinking about until much later.
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f tð Þ ¼ f 1 tð Þ þ f 2 tð Þ þ f 3 tð Þ þ . . . :

Recognizing that f2(t) is f1(t) shifted by T, that f3(t) is f1(t) shifted by 2T, and so
on, we have

f tð Þ ¼ f 1 tð Þ þ f 1 t � Tð Þu t � Tð Þ þ f 1 t � 2Tð Þu t � 2Tð Þ þ . . . :

Now, recalling the shifting theorem of (3.14), we see that

F sð Þ ¼ F1 sð Þ þ e�sTF1 sð Þ þ e�s2TF1 sð Þ þ . . .

or,

F sð Þ ¼ F1 sð Þ 1þ e�sT þ e�2sT þ . . .
� �

:

The quantity in the square brackets is an easily summed geometric series and, as
claimed,

F sð Þ ¼ F1 sð Þ
1� e�Ts

:

As an example of (3.17), let’s calculate the transform of the square-wave in
Fig. 3.1. The first cycle is

f 1 tð Þ ¼
E, 0 < t <

T

2

�E,
T

2
< t < T

and so

F1 sð Þ ¼
Z T=2

0
Ee�stdt �

Z T

T=2
Ee�stdt ¼ E �e�st

s

� �
│T=2

0 � �e�st

s

� �
│T

T=2

� 	

¼ E
1� e�sT2

s
� e�sT2 � e�sT

s

" #
¼ E

1� 2e�sT2 þ e�sT

s

" #
¼ E

1� e�sT2


 �2
s

:

Thus, by (3.17), we have the Laplace transform of the square-wave in Fig. 3.1 as

E
1� e�sT2


 �2
s 1� e�Tsð Þ ¼ E

1� e�sT2


 �
1� e�sT2


 �
s 1� e�sT2
� 

1þ e�sT2
�  ¼ E

s

1� e�sT2

1þ e�sT2
¼ E

s

e�
T
4s e

T
4s � e�

T
4s


 �
e�T

4s e
T
4s þ e�T

4s
� 

¼ E

s

e
T
4s � e�

T
4s

e
T
4s þ e�T

4s
:
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Recalling the definitions of the hyperbolic sine and cosine,

sinh xð Þ ¼ ex � e�x

2

and

cosh xð Þ ¼ ex þ e�x

2
,

we see that the transform of the square-wave in Fig. 3.1 is a hyperbolic tangent:

E

s

sinh T
4s
� 

cosh T
4s
�  ¼ E

s
tanh

T

4
s

� �
:

Now, as long as we are proving general theorems, let me end this section with two
more. To repeat (3.2) and then adding a bit more,

L df

dt

� �
¼ sF sð Þ � f 0þð Þ ¼

Z 1

0

df

dt
e�stdt ¼

Z f 1ð Þ

f 0ð Þ
e�stdf :

So, taking the limit as s! 0, we have (assuming f(t) is continuous and so f(0) ¼ f
(0+))

lims!0sF sð Þ � f 0þð Þ ¼ lim
s!0

Zf 1ð Þ

f 0þð Þ

e�stdf ¼
Zf 1ð Þ

f 0þð Þ

lim
s!0

e�stdf ¼
Zf 1ð Þ

f 0þð Þ

df

¼ f 1ð Þ � f 0þð Þ,
assuming (of course) that it’s legitimate to interchange the order of the limiting and
the integration operations (and being engineers, we will so assume). Then, cancelling
the two f(0+) terms, we have what is called the final value theorem:

lim
t!1 f tð Þ ¼ f 1ð Þ ¼ lims!0sF sð Þ: ð3:18Þ

An important exception to keep in mind about the final value theorem is that it
does not apply to periodic functions, simply because such functions don’t have
‘final’ values!

As you might expect (or at least hope) there is an initial value theorem, too:

lim
t!0

f tð Þ ¼ f 0þð Þ ¼ lims!1sF sð Þ: ð3:19Þ

The proof goes through almost the same way as did the demonstration of the final
value theorem. We write, as before,
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L df

dt

� �
¼
Z 1

0

df

dt
e�stdt ¼ sF sð Þ � f 0þð Þ

but now, when we let s ! 1 in the integral, we see that lim
s!1 e�st ¼ 0, the integral

vanishes, and so

lim
s!1 sF sð Þ � f 0þð Þ ¼ 0

and we are done.

3.3 Two Examples of the Transform in Action

Now, at last, with no further delay, let’s address the question that has surely been
ticking away in your brain: how do we use the Laplace transform to answer questions
about transients in electrical circuits? In the next chapter I’ll show you some detailed
examples of doing just that but, for right now, here are a couple of simpler yet still
quite illuminating examples that are, if attacked strictly in the time domain, not at all
trivial. In the s-domain, however, matters are significantly easier.

For the first example, consider the circuit of Fig. 3.2, which shows the application
(at time t¼ 0) of the voltage source sin(ω0t + θ) to a resistor and capacitor connected
in series. The problem is to show that, if the capacitor has no initial charge, then there
is a value to the phase angle θ (determined by the values of R, C, and ω0) that results
in a current that has no transient. That is, we are to show that there is a θ such that
when the switch is closed at t ¼ 0 the current i(t) instantly takes-on its steady-state
form as a pure, undamped sinusoidal oscillation.

Writing Kirchhoff’s voltage law around the loop,

v tð Þ ¼ i tð ÞRþ 1
C

Z t

0
i uð Þdu

or, differentiating,

−

+

R

C
v(t) = sin (ω0t+θ)

t = 0

i(t)

Fig. 3.2 What is θ for a
non-transient i(t)?
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dv

dt
¼ R

di

dt
þ 1
C
i

and so, transforming,

sV sð Þ � v 0þð Þ ¼ R sI sð Þ � i 0þð Þ½ � þ 1
C
I sð Þ: ð3:20Þ

Now, since the voltage drop across the capacitor is initially zero, and since that
drop can’t change instantly, we see that

i 0þð Þ ¼ v 0þð Þ
R

:

So,

sV sð Þ � v 0þð Þ ¼ RsI sð Þ � Ri 0þð Þ þ 1
C
I sð Þ

or,

sV sð Þ � v 0þð Þ ¼ RsI sð Þ � R
v 0þð Þ
R

þ 1
C
I sð Þ

or,

sV sð Þ ¼ RsI sð Þ þ 1
C
I sð Þ ¼ I sð Þ Rsþ 1

C

� 	

and so (3.20) becomes

I sð Þ ¼ sV sð Þ
Rsþ 1

C

¼ 1
R

sV sð Þ
sþ 1

RC

 !
: ð3:21Þ

Our plan of attack is now straightforward. First, we’ll insert V(s) into (3.21), and
then see if the resulting expression for I(s) ‘looks-like’ any of the transforms we’ve
already calculated (if so, those transforms will give us the time behavior i(t) that goes
with I(s)). For the given V(s), it is not difficult (see Problem 3.1) to show that

L sin ω0t þ θð Þf g ¼ s sin θð Þ þ ω0 cos θð Þ
s2 þ ω2

0

, ð3:22Þ

and you see that (3.22) reduces to the special cases we’ve already worked out for
θ ¼ 0 and θ ¼ π

2 (look back at (3.15) and (3.16)). So,
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I sð Þ ¼ 1
R

s s sin θð Þþω0 cos θð Þ
s2þω2

0

h i
sþ 1

RC

¼ sin θð Þ
R

s sþ ω0 cos θð Þ
sin θð Þ

h i
s2 þ ω2

0

� 
sþ 1

RC

�  :
Notice that if

ω0 cos θð Þ
sin θð Þ ¼ 1

RC
¼ ω0

tan θð Þ
then common factors in the numerator and denominator of I(s) cancel and the
transform collapses to

I sð Þ ¼ sin θð Þ
R

s

s2 þ ω2
0

� 
which is the transform of a pure sinusoid time function; in other words, there is no
transient in i(t) if θ ¼ tan�1(ω0RC).

For a second example of the use of the Laplace transform, consider the circuit of
Fig. 3.3, where switch S2 is open and switch S1 has been closed for a long time. Thus,
capacitor C1 has charged to V volts, while capacitor C2 has a voltage drop of zero.
Then, at time t ¼ 0, S1 is opened and S2 is closed. What is x(t), the voltage drop
across C2, for t � 0? For t > 0, the circuit looks as shown in Fig. 3.4.

−
+

S1
V C1 R1

S2

R2

C2

e
t = 0 t = 0 x

Fig. 3.3 What is x(t) for t � 0?

−

+
C1 i1

i2

R1

R2

xe

i
C2

Fig. 3.4 The circuit of
Fig. 3.4 for t > 0
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The equations describing the circuit of Fig. 3.4 are:

i ¼ �C1
de

dt
, e 0þð Þ ¼ V

i1 ¼ e

R1
, i2 ¼ e� x

R2

i2 ¼ C2
dx

dt
, x 0þð Þ ¼ 0:

Transforming, these equations become

I ¼ �C1 sE � e 0þð Þ½ � ¼ �C1sE þ C1V

I1 ¼ E

R1
, I2 ¼ E � X

R2

I2 ¼ C2sX:

Note, carefully, that the capital letters I, E, and X denote transforms, while V is
simply a number (the initial voltage drop across C1 at t ¼ 0). Since Kirchhoff’s
current law says.

I ¼ I1 þ I2,

we have

�C1sE þ C1V ¼ E

R1
þ E � X

R2
, ð3:23Þ

while equating the two expressions for I2 says

E � X

R2
¼ C2sX:

Thus,

E � X ¼ R2C2sX

and so

E ¼ X 1þ R2C2sð Þ: ð3:24Þ
Inserting (3.24) into (3.23), we arrive at

�C1sX 1þ R2C2sð Þ þ C1V ¼ X 1þ R2C2sð Þ
R1

þ XC2s

or,

�R1C1sX 1þ R2C2sð Þ þ R1C1V ¼ X 1þ R2C2sð Þ þ XR1C2s
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or,

X 1þ R2C2sð Þ þ XR1C2sþ R1C1sX 1þ R2C2sð Þ ¼ C1VR1

or,

X 1þ R2C2sþ R1C2sþ R1C1sþ R1C1R2C2s
2

� � ¼ C1VR1

or,

X sð Þ
V

¼ C1R1

1þ R2C2 þ R1C2 þ R1C1ð Þsþ R1C1R2C2s2
: ð3:25Þ

This is getting a bit clunky to handle symbolically, so let’s continue with some
specific numbers: in particular,

C1 ¼ 0:02 μfd ¼ 2� 10�2 μfd

C2 ¼ 0:001 μfd ¼ 10�3 μfd

R1 ¼ 5; 000 ohms ¼ 5� 103 ohms

R2 ¼ 1; 000 ohms ¼ 103 ohms

where I’ve expressed capacitance in units of microfarads and resistance in units of
ohms to get time in units of microseconds. Then (3.25) becomes

X sð Þ
V

¼ 5�103�2�10�2

5�103�103�2�10�2�10�3s2þ 103�10�3þ5�103�10�3þ5�103�2�10�2
� 

sþ1

or, with some simplification,

X sð Þ
V

¼ 1
s2 þ 1:06sþ 0:01

: ð3:26Þ

Remember, X ¼ X(s) is a transform, while V is simply a number.
To invert X(s) back to x(t), we need to get X(s) into a form resembling one

(or more) of the standard transforms we’ve already worked-out. This process will be
our first example of what is called a partial fraction expansion. In particular, since
we know the quadratic denominator can be expressed as

s2 þ 1:06sþ 0:01 ¼ sþ α1ð Þ sþ α2ð Þ,
then

x tð Þ
V

¼ 1
sþ α1ð Þ sþ α2ð Þ ¼

A

sþ α1
þ B

sþ α2
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where A and B, and α1 and α2, are four constants (to be determined, soon) and so,
using (3.12), we return to the time domain and write

x tð Þ
V

¼ Ae�α1t þ Be�α2t, t � 0: ð3:27Þ

Almost done! All we have left to do is the calculation of the constants α1, α2, A,
and B. (We know, physically, before doing any calculation, that α1 and α2 must both
be positive numbers because x(t) will decay with increasing time.)

For α1 and α2, notice that

s2 þ 1:06sþ 0:01 ¼ s2 þ α1 þ α2ð Þsþ α1α2

and so

α1 þ α2 ¼ 1:06

and

α1α2 ¼ 0:01:

These two equations are easily solved to give α1 ¼ 0.00952 and α2 ¼ 1.05. So,

x tð Þ
V

¼ A

sþ 0:00952
þ B

sþ 1:05
¼ 1

sþ 0:00952ð Þ sþ 1:05ð Þ : ð3:28Þ

Thus, multiplying through (3.28) by (s + 0.00952),

Aþ sþ 0:00952ð Þ B

sþ 1:05
¼ 1

sþ 1:05

or, setting s ¼ � 0.00952,

A ¼ 1
sþ 1:05

│s¼�0:00952 ¼ 0:961:

Similarly, multiplying through (3.28) by (s + 1.05),

sþ 1:05ð Þ A

sþ 0:00952
þ B ¼ 1

sþ 0:00952

or, setting s ¼ � 1.05,

B ¼ 1
sþ 0:00952

│s¼�1:05 ¼ �0:961:
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Therefore, (3.27) becomes

x tð Þ
V

¼ 0:961 e�0:00952t � e�1:05t
� 

, t � 0: ð3:29Þ

Figure 3.5 shows what (3.29) looks like: a very rapid rise to a peak voltage,
followed by a much more gradual decline to zero.

3.4 Powers of Time

In this section we’ll compute the Laplace transforms of f(t) ¼ tn, where n is any
non-negative integer. (The case of n ¼ 0 will reproduce our earlier result for f(t) ¼ u
(t), the unit step function, which will be a partial check on our calculations.) The case
of n ¼ 1, in particular, represents the time function of a linearly increasing ramp, a
function that commonly occurs in electrical engineering. And, perhaps surprisingly,
we’ll get ‘bonus’ results for the curious cases of n ¼ �1

2; that is, we’ll also get the
Laplace transforms for the time functions 1ffiffi

t
p and

ffiffi
t

p
.

We start by writing the formal answer as

L tnf g ¼
Z 1

0
tne�stdt ð3:30Þ

Fig. 3.5 The answer to the question of Fig. 3.3
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and then making the change of variable st ¼ x (and so t ¼ x/s which means dt ¼ dx/
s). Thus,

L tnf g ¼
Z 1

0

x

s


 �n
e�sxs

1
s
dx ¼ 1

snþ1

Z 1

0
xne�xdx: ð3:31Þ

This last integral is intimately related to the gamma function Γ(n), defined by the
integral

Γ nð Þ ¼
Z 1

0
xn�1e�xdx, n > 0 ð3:32Þ

which, of course, means

Γ nþ 1ð Þ ¼
Z 1

0
xne�xdx: ð3:33Þ

If you integrate (3.33) by-parts, then it is easy to show (you should do this) that

Γ nþ 1ð Þ ¼ nΓ nð Þ, n > 0, ð3:34Þ
a result called the functional equation of the gamma function. Since

Γ 1ð Þ ¼
Z 1

0
e�xdx ¼ �e�xð Þ│1

0 ¼ 1,

it then immediately follows that

Γ nþ 1ð Þ ¼ n!, ð3:35Þ
for n any positive integer. Thus, from (3.31), (3.33), and (3.35), we have

L tnf g ¼ n!

snþ1
¼ Γ nþ 1ð Þ

snþ1
: ð3:36Þ

Notice that for n ¼ 0 (3.36) becomes

L t0
� � ¼ L u tð Þf g ¼ 1

s
,

a result we’ve already calculated directly in (3.21). The gamma function is due to
Euler (are you surprised?— you shouldn’t be, as he is everywhere in mathematics!),
and he introduced it as a way to generalize the factorial function n!, from where n is a
positive integer9 to n being any real number.10

9n ! ¼ n(n � 1)(n � 2). . .(2)(1) when n is a positive integer. For n ¼ 0, write
n ! ¼ (n)(n� 1)! and set n¼ 1. Then, 1 ! ¼ (1)0! and so 0! ¼ 1!

1 ¼ 1
1 ¼ 1. To be emphatic about

this, 0 ! 6¼ 0 (!!!).
10The history of this can be found in Philip J. Davis, “Leonhard Euler’s Integral: a historical profile
of the gamma function,” American Mathematical Monthly, December 1959, pp. 849–869.
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What if n is not a positive integer? What if, for example, n ¼ �1
2? That is, what is

L 1ffiffi
t

p
� �

¼ Γ 1
2

� 
ffiffi
s

p ?

Setting n ¼ �1
2 in (3.32) we have

Γ
1
2

� �
¼
Z 1

0
x�

1
2e�xdx:

Then, change variable to x¼ y2 and so dx¼ 2ydy. Thus, as y¼ 0 when x¼ 0 and
y ¼ 1 when x ¼ 1, we have

Γ
1
2

� �
¼
Z 1

0
y2
� �1

2e�y22ydy ¼ 2
Z 1

0

1
y
e�y2ydy

or,

Γ
1
2

� �
¼ 2

Z 1

0
e�y2dy: ð3:37Þ

The integral in (3.37) is famous in science and engineering, one that all electrical
engineers should really know how to do, if only as a ‘badge of culture.’ A more
immediate reason, however, is that we’ll encounter this integral, in the form of what
is called the error function, when we get to transients in transmission lines. There we
will need a transform pair that we haven’t yet encountered. But, before we do that,
we need to look more closely at the integral in (3.37). Instead of simply sending you
off to the library to look in some pure math book (the usual engineering textbook
practice), let me show you a spectacularly beautiful evaluation (due to some genius
in the past unknown to me). The arguments are clever, and every electrical engineer
should go through them at least once.

If we rewrite (3.37) using the dummy variable of integration x instead of y, we
change nothing, and so it is certainly true that

Γ
1
2

� �
¼ 2

Z 1

0
e�x2dx: ð3:38Þ

Now, multiply (3.37) and (3.38) together. Yes, an unexpected thing to do, I admit,
but certainly if we think of doing it we can do it to get

Γ2 1
2

� �
¼ 4

Z 1

0
e�x2dx

Z 1

0
e�y2dy ¼ 4

Z 1

0

Z 1

0
e� x2þy2ð Þdxdy: ð3:39Þ

Well, we do seem to be going in the wrong direction, don’t we, from a
one-dimensional definite integral that we can’t do to a double definite integral that
appears to be even worse.
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But it’s notworse! As I’ll show you next, multiplying two ‘undoable’ expressions
together has, in fact, given us a ‘doable’ entity. Where else but in math does
something like that happen?

If you stare at that double integral in (3.39) long enough, perhaps the x2 + y2 in the
exponent will remind you of the physical interpretation of x and y being the
coordinates of the point in the plane that is distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
from the origin.

So, what (3.39) is physically doing is integrating e�r2over the entire first quadrant of
the plane (that’s what 0 � x �1 and 0 � y � 1 covers). But what about that dxdy
in the integrand? Well, that’s the differential area in Cartesian coordinates. But since
r is the radius vector in polar coordinates, we should be using the differential area in
polar coordinates, which you’ll recall from freshman calculus is rdrdθ, where θ is the
angle the radius vector makes with the x-axis.11 To integrate over the entire first
quadrant we should use 0 � r � 1 and 0 � θ � π

2 . So, with all this in mind, we
rewrite the two-dimensional integral of e�r2 over the entire first quadrant as

Γ2 1
2

� �
¼ 4

Z π=2

0

Z 1

0
e�r2rdrdθ ¼ 4

Z π=2

0

Z 1

0
e�r2rdr

� �
dθ: ð3:40Þ

The θ-integral is easy, as there is no θ-dependency at all in the integrand. So,

Γ2 1
2

� �
¼ 4

π

2

Z 1

0
e�r2rdr ¼ 2π

Z 1

0
e�r2rdr: ð3:41Þ

And the r-integral in (3.41) is almost as easy to do, giving

Γ2 1
2

� �
¼ 2π �1

2
e�r2

� �
│1

0 ¼ 2π
1
2

� �
¼ π ð3:42Þ

and so, just like that, we have

Γ
1
2

� �
¼ ffiffiffi

π
p

: ð3:43Þ

Looking back at what started us on this line of analysis, we have

L 1ffiffi
t

p
� �

¼
ffiffiffi
π

p ffiffi
s

p : ð3:44Þ

We’ll see this transform pair again, when we get to transmission lines.

11The more general way to handle such coordinate conversions in multi-dimensional integrals is to
use what mathematicians call Jacobians, and for that I will send you off to the math library.
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We can use (3.44), together with our earlier result in (3.7) that says

if f tð Þ $ F sð Þ
then

Z t

0
f xð Þdx $ 1

s
F sð Þ

to find the Laplace transform of
ffiffi
t

p
. That is, since (3.44) says

1ffiffiffiffiffi
πt

p $ 1ffiffi
s

p

then

Z t

0

1ffiffiffiffiffi
πx

p dx $ 1
s
ffiffi
s

p ;

doing the integral gives us the pair

ffiffi
t

p $
ffiffiffi
π

p
2s

ffiffi
s

p : ð3:45Þ

Alternatively, we could just as easily use (3.8) which says since

1ffiffiffiffiffi
πt

p $ 1ffiffi
s

p

then

t
1ffiffiffiffiffi
πt

p ¼
ffiffi
t

pffiffiffi
π

p $ � d

ds

1ffiffi
s

p
� �

¼ � d

ds
s�1=2

 �

or

ffiffi
t

pffiffiffi
π

p $ � �1
2
s�

3
2

� �
¼ 1

2s
ffiffi
s

p

or

ffiffi
t

p $
ffiffiffi
π

p
2s

ffiffi
s

p

and so again we have (3.45).
Our result in (3.36), for the transforms of the powers of time, is very useful in

establishing yet another transform pair that we’ll need when we get to transmission
lines. Unlike the pair I mentioned earlier, involving the error function (which I’ll
delay developing until the end of this chapter), I’ll end this section with the
determination of the time function f(t) that pairs with the transform
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F sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p :

The key idea is to recall the generalized form of the binomial theorem, which
wasn’t rigorously proven until as recently as 1826 by the Norwegian mathematician
Niels Henrik Abel (1802–1829):

1þ xð Þm ¼ 1þ mxþ m m� 1ð Þ
2!

x2 þ m m� 1ð Þ m� 2ð Þ
3!

x3 þ . . . ,

which holds for arbitrary m and │x │ < 1.
Writing

F sð Þ ¼ 1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

s

� 2q ¼ 1
s

1þ a

s


 �2� 	�1=2

,

then with x ¼ a
s

� 2
and m ¼ �1

2 we have

F sð Þ ¼ 1
s

1� 1
2

a

s


 �2
þ �1

2

�  �3
2

� 
2!

a

s


 �4
þ �1

2

�  �3
2

�  �5
2

� 
3!

a

s


 �6
þ . . .

� 	
:

The general term in this series for F(s) is, for ¼0, 1, 2, 3, . . .,

1
s

�1ð Þk
1ð Þ 3ð Þ 5ð Þ... 2k�1ð Þ

2k

k!

a

s


 �2k" #
¼ �1ð Þk 1ð Þ 3ð Þ 5ð Þ . . . 2k � 1ð Þ

2kk!
a2k

1
s2kþ1

:

From (3.36) we have

tn

n!
$ 1

snþ1

and so, if n + 1 ¼ 2k + 1 (n ¼ 2k), then

t2k

2kð Þ! $
1

s2kþ1
:

Thus, the time function that pairs with the general term in F(s) is

�1ð Þk 1ð Þ 3ð Þ 5ð Þ . . . 2k � 1ð Þ
2kk!

a2k
t2k

2kð Þ!
¼ �1ð Þk 1ð Þ 3ð Þ 5ð Þ . . . 2k � 1ð Þ½ � 2ð Þ 4ð Þ . . . 2kð Þ½ �

2kk! 2ð Þ 4ð Þ . . . 2kð Þ½ �
atð Þ2k
2kð Þ!

¼ �1ð Þk 2kð Þ!
2kk! 2kk!

� � atð Þ2k
2kð Þ! ¼ �1ð Þk atð Þ2k

22k k!ð Þ2 ¼ �1ð Þk
at
2

� 2k
k!ð Þ2
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and so

f tð Þ ¼
X1

k¼0
�1ð Þk

at
2

� 2k
k!ð Þ2 $ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p , t � 0: ð3:46Þ

Now, astonishingly, there is actually a mathematical name for the perhaps scary-
looking (3.46). In advanced electrical engineering one soon encounters Bessel’s
differential equation12

x2
d2y

dx2
þ x

dy

dx
þ x2 � n2
� 

y ¼ 0,

the solutions of which are called Bessel functions (there is a different one for every
value of n). Their importance in applied mathematics is right behind that of the
trigonometric and exponential functions.

In particular, a Bessel function of the first kind of order n has the power series
expansion

Jn xð Þ ¼
X1

k¼0
�1ð Þk

x
2

� nþ2k

k! nþ kð Þ!
and so we see that the f(t) in (3.46) is J0(at), the Bessel function of the first kind of
order zero. In fact, our analysis has given us a bonus, in that if we imagine that a is
imaginary (that is, a ¼ b

ffiffiffiffiffiffiffi�1
p

), then

J0 bt
ffiffiffiffiffiffiffi
�1

p
 �
$ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � b2
p :

Instead of writing J0 bt
ffiffiffiffiffiffiffi�1

p� 
, however, the practice is to write I0(at) and to call

this the modified Bessel function of the first kind of order zero. (Notice that since at
2

� 
is raised to only even powers in the series of (3.46), then I0(at) is still purely real even
though a is imaginary.) So,

J0 atð Þ $ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p ð3:47Þ

and

I0 atð Þ $ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

p : ð3:48Þ

Both J0(x) and I0(x) are tabulated functions in printed tables, as well as available
as callable functions in modern scientific software (like MATLAB).

12Named after the German mathematical astronomer Friedrich Wilhelm Bessel (1784–1846).
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Fig. 3.6 Bessel function of the first kind of order zero

Fig. 3.7 Modified Bessel function of the first kind of order zero
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Figures 3.6 and 3.7 show what J0(x) and I0(x) look like for x > 0, and they are
clearly quite different. J0(x) is a decaying oscillation, while I0(x) is monotonic
increasing.

3.5 Impulse Functions

In this section we encounter the strangest time function we’ll deal with in this book,
one that also (with no little irony) has the simplest Laplace transform: this is the
impulse (or Dirac delta) function (see note 18 in the Preface). An impulse represents
something that occurs ‘all at once,’ like a lightning strike near a transmission power
line. To approximate such a thing, we can think of an impulse as the limiting case of
a sequence of ever-narrower (in time) pulses of ever-increasing amplitude until, in
the end, we have a pulse of zero duration and infinite amplitude. Think, for example,
of the pulse shown in Fig. 3.8, which shows a narrow pulse of duration α and
amplitude 1/α. The area bounded by this pulse is always 1, even as α ! 0, and this
observation will have important physical implications; for now, just tuck that fact
away for later reference. To make explicit the role of α, the pulse is named fα(t), and
it is a perfectly ordinary, well-behaved function.

Now, imagine that we multiply fα(t) with some continuous function ϕ(t), and then
integrate the product over all t. That is, let’s define the integral

I ¼
Z 1

�1
f α tð Þϕ tð Þdt ¼

Z α

0

1
α
ϕ tð Þdt: ð3:49Þ

Then, suppose we let α! 0. In particular, the interval of integration (the duration
of fα(t)) becomes arbitrarily small and, since ϕ(t) is continuous, then physically ϕ(t)
cannot change by very much from the start of the integration interval to the end of
that interval. Indeed, as α! 0 we can essentially treat ϕ(t) as constant over the entire
interval, equal to ϕ(0), and so be able to pull it outside of the integral. So, in the limit
α ! 0 we see (3.49) becoming

o α

α

t

area = 1

ƒα(t)

1

Fig. 3.8 As α ! 0, the fα(t)
pulse becomes the unit
impulse
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limα!0I ¼ lim
α!0

1
α
ϕ 0ð Þ

Zα
0

dt ¼ ϕ 0ð Þ, ð3:50Þ

and the pulse in Fig. 3.8 becomes an infinitely high spike at t ¼ 0+ that bounds unit
area. Writing the impulse as

δ tð Þ ¼ lim
α!0

f α tð Þ,

we have what is called the sampling property of the impulse:

Z 1

�1
δ tð Þϕ tð Þdt ¼ ϕ 0ð Þ: ð3:51Þ

From (3.51) we immediately have the Laplace transform of δ(t):

L δ tð Þf g ¼
Z 1

0
δ tð Þe�stdt ¼ 1 ð3:52Þ

because ϕ(t) ¼ e�st and so ϕ(0) ¼ 1. This result is consistent with thinking of δ(t) as
the derivative of the step u(t), as the transform of δ(t) (that is, 1) is the transform of
the step (that is, 1s) multiplied by s (an operation associated with time differentiation).
This makes some intuitive sense, too, as u(t) is a constant everywhere except at time
t¼ 0, where it makes a jump of one in zero time (and now recall the definition of the
derivative) — but see Problem 3.13 for more on this subtle point. This imagery,
relating the step and the impulse was almost certainly suggested to Dirac when he
first encountered the step function from the books on electrical circuits and electro-
magnetic wave theory by Oliver Heaviside. Equivalently, the step is the integral of
the impulse:

u tð Þ ¼
Z t

�1
δ xð Þdx ¼ 1, t > 0

0, t < 0
ð3:53Þ

which, you’ll notice, avoids the issue of what the impulse is at t ¼ 0.
Dirac knew he was being non-rigorous with arguments like the ones I’ve given

here. As he wrote in a pioneering 1927 paper, published when he was still only
25 years old, “Strictly, of course, δ(x) is not a proper function of x, but can be
regarded only as a limit of a certain sequence of functions. All the same one can use
δ(x) as though it were a proper function . . .One can also use the [derivatives] of δ(x),
namely δ

0
(x), δ

0 0
(x), . . ., which are ever more discontinuous and less ‘proper’ than

δ(x) itself.”13

13Paul Dirac, “The Physical Interpretation of Quantum Mechanics,” Proceedings of the Royal
Society of London (A113), January 1, 1927, pp. 621–641.
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One mathematician who almost certainly had Dirac’s impulses and (3.53) in mind
was Edward McShane (1904–1989) who, in his Presidential Address at the 1963
annual meeting of the American Mathematical Society, stated “There are in this
world optimists who feel that any symbol that starts off with an integral sign must
necessarily denote something that will have every property that they would like an
integral to possess. This of course is quite annoying to us rigorous mathematicians:
what is even more annoying is that by doing so they often come up with the right
answer.”14 Like Dirac, McShane (who was a professor of mathematics at the
University of Virginia) had an undergraduate degree in engineering, a background
that allowed him to be willing to get his feet out of the ‘cement of unrelenting rigor’
before it completely hardened.15 None of that, of course, is to shove sleazy mathe-
matics under the rug, as the mathematics of impulses has been placed on a firm
foundation since Dirac’s use of them, through the work of the Russian mathemati-
cian Sergei Sobolev (1908–1988) and the French mathematician Laurent Schwartz
(see note 19 in the Preface). We will here after use impulses without apology.

One of the concerns early analysts had with impulses is that they have infinite
energy (see Problem 3.6) and, as you’ll recall from Sect. 1.3, infinities in electrical
circuits are generally considered to be red flags signaling that ‘something is amiss.’
Despite that, however, impulses do offer us explanations for what would otherwise
be perplexing questions. Consider, for example, the circuit of Fig. 3.9 which shows a
charged capacitor C1 suddenly switched into a parallel connection with the
uncharged C2. The switch closing at t ¼ 0 puts C1 (with initial voltage drop V ) in
conflict with the initial zero voltage drop of C2. This is a problem because we have
argued that capacitor voltage drops cannot change instantly and so the two capacitors
are clearly in conflict. The Laplace transform automatically shows us what happens
(in particular, what the current i1(t) is in the initially charged capacitor) if we accept
impulses.

C1

i1 i2

C2V

R

t = 0

−

+

Fig. 3.9 What is i1(t) for
t � 0?

14McShane’s complete address, “Integrals Devised for Special Purposes,” is in the Bulletin of the
American Mathematical Society, September 1963, pp. 597–627.
15At the risk of enraging my more theoretical friends, let me quote (from an unknown source) this
provocative thought: “Without engineering, physics and math are just philosophy.”
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Writing Kirchhoff’s voltage law around the two loops16 in the circuit, we have
(starting with the voltage rise through C1) as we go around each loop in a clockwise
way

�V þ 1
C1

Z t

0
i1 xð Þdxþ 1

C2

Z t

0
i1 xð Þ � i2 xð Þ½ �dx ¼ 0 ð3:54Þ

and

1
C2

Z t

0
i2 xð Þ � i1 xð Þ½ �dxþ i2R ¼ 0: ð3:55Þ

Laplace transforming (3.54) and (3.55), using our results in (3.7) and (3.11) and
remembering that our mathematics is specifically restricted to t > 0,

�V

s
þ I1 sð Þ

C1s
þ I1 sð Þ � I2 sð Þ

C2s
¼ 0 ð3:56Þ

and

I2 sð Þ � I1 sð Þ
C2s

þ I2 sð ÞR ¼ 0: ð3:57Þ

With just a little bit of easy algebra, (3.56) and (3.57) can be solved for I1(s):

I1 sð Þ ¼ C1C2

C1 þ C2

� �
sþ 1

RC2

sþ 1
R C1þC2ð Þ

: ð3:58Þ

Now, perform the long-division (which isn’t really very long) of the ratio of
polynomials of s in (3.58) to get

I1 sð Þ ¼ C1C2

C1 þ C2

� � 1þ C1
RC2 C1þC2ð Þ

sþ 1
R C1þC2ð Þ

" #
: ð3:59Þ

We can now immediately write-down what i1(t) is, using our results in (3.12) and
(3.52):

i1 tð Þ ¼ C1C2

C1 þ C2
V δ tð Þ þ C1

RC2 C1 þ C2ð Þe
� t

R C1þC2ð Þf gu tð Þ
� 	

:

When the switch is closed in the circuit of Fig. 3.9 the voltage drops across C1 and
C2 do become equal, instantly, because there is an impulsive current in C1 that

16The use of loop currents in circuit analysis is due to the great Scottish mathematical physicist
James Clerk Maxwell (1831–1879), who introduced the technique in his 1873 Treatise on Elec-
tricity and Magnetism.
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transfers charge in the amount C1C2
C1þC2

V instantly into C2, followed by an exponen-

tially decaying current.

3.6 The Problem of the Reversing Current

In this section I’ll show you how to solve the problem I teased you with in the
Preface, concerning the circuit of Figure F1 (which I’ve reproduced, with some
additional notation, in Fig. 3.10). I’ve assumed the battery voltage is 1 volt. I claimed
in the Preface that after the switch is closed the current in the horizontal resistor first
flows from right-to-left, declines to zero, and then reverses direction to flow left-to-
right. We can show that much without writing even a single line of mathematics, but
to find when the current reverses direction will take some math.

Here’s why the current reverses. Both capacitors are initially uncharged, and so
we have zero voltage drop across each C at t ¼ 0�. Since the voltage drop across a
capacitor cannot change instantly (unless the charging current is impulsive), then the
voltage drop across each C must still be zero at t ¼ 0+. Clearly, x(0+) ¼ u(0+) ¼ 1,
and so b(0�) ¼ 0 instantly jumps to b(0+) ¼ 1 to keep the drop across the upper-
vertical C at zero volts.17 Since the lower-vertical C has its bottom-end directly
connected to ground (0 volts), then its upper-end must also be at zero volts at t ¼ 0+
to keep the drop at zero volts. Thus, a(0+) ¼ 0. So, at t¼ 0+ the voltage drop across
the horizontal resistor is

a 0þð Þ � b 0þð Þ ¼ 0� 1 ¼ �1 volt ð3:60Þ
and the current in that resistor flows right-to-left.

−

+ R

R

R

C

C

x(t) = u(t)

t = 0

a(t) b(t)

i(t)

Fig. 3.10 When is i(t) ¼ 0?

17The voltage at each end of a capacitor can change instantly, as long as both ends change by the
same amount, thereby keeping the difference (the drop) unchanged.
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After a long time, when the circuit has passed through its transient behavior and
entered its d-c steady-state (and so no voltages or currents are changing), the only
current path is through the series connection of the three R’s, and therefore a 1ð Þ
¼ 2

3 and b 1ð Þ ¼ 1
3 . Thus, at t ¼ 1, the voltage drop across the horizontal R is

a 1ð Þ � b 1ð Þ ¼ 2
3
� 1
3
¼ 1

3
volt ð3:61Þ

and the current in that resistor flows left-to-right. The resistor current has reversed
direction. Assuming the resistor current is a continuous function of time, then at
some time after t¼ 0+ the current must equal zero. Here’s how to calculate that time.

The plan of attack is straightforward: we’ll simply calculate the voltage drop
a(t) � b(t) across the horizontal R and set it equal to zero. To that end, the Kirchhoff
current law equations at the a(t) and b(t) nodes are

u tð Þ � a tð Þ
R

¼ a tð Þ � b tð Þ
R

þ C
da

dt
ð3:62Þ

and

a tð Þ � b tð Þ
R

þ C
d

dt
u tð Þ � b tð Þf g ¼ b tð Þ

R
: ð3:63Þ

Laplace transforming (3.62) and (3.63) gives

1
s � A

R
¼ A� B

R
þ CsA ð3:64Þ

and

A� B

R
þ Cs

1
s
� B

� �
¼ B

R
, ð3:65Þ

where A ¼ A sð Þ ¼ L a tð Þf g and B ¼ B sð Þ ¼ L b tð Þf g. With just a bit of simple
algebra, (3.64) and (3.65) become

A RCsþ 2ð Þ � B ¼ 1
s

ð3:66Þ

and

A� B RCsþ 2ð Þ ¼ �RC ð3:67Þ
where (3.66) and (3.67) have been written in the standard form for solution by
Cramer’s rule (determinants).

The system determinant of (3.66) and (3.67) is

D ¼ RCsþ 2 �1
1 � RCsþ 2ð Þ

����
���� ¼ � RCsþ 2ð Þ2 þ 1
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which, with just a touch of algebra, reduces to

D ¼ � RCð Þ2 sþ 3
RC

� �
sþ 1

RC

� �
: ð3:68Þ

Therefore,

A ¼

1
s

�1

�RC � RCsþ 2ð Þ

�����
�����

D
¼ � 2RC þ 2

s

D

and

B ¼
RCsþ 2

1
s

1 �RC

�����
�����

D
¼ �RC RCsþ 2ð Þ þ 1

s

D

and so

A� B ¼ �2RC � 2
s

� þ RC RCsþ 2ð Þ þ 1
s

D

which, again with a bit of algebra, becomes

A� B ¼ 1

RCð Þ2
1

s sþ 3
RC

� 
sþ 1

RC

� � s

sþ 3
RC

� 
sþ 1

RC

�  : ð3:69Þ

Notice that (3.69) gives the correct values for a(t)� b(t) when the initial and final
value theorems are invoked:

a 0þð Þ � b 0þð Þ ¼ lims!1s A� Bð Þ
¼ 1

RCð Þ2 lim
s!1

1

sþ 3
RC

� �
sþ 1

RC

� �

� lim
s!1

s2

sþ 3
RC

� �
sþ 1

RC

� � ¼ 0� 1 ¼ �1,

in agreement with (3.60), and

a 1ð Þ � b 1ð Þ ¼ lims!0s A� Bð Þ
¼ 1

RCð Þ2 lims!0

1

sþ 3
RC

� �
sþ 1

RC

� �

� lim
s!0

s2

sþ 3
RC

� �
sþ 1

RC

� � ¼ 1

RCð Þ2
RCð Þ2
3

� 0 ¼ 1
3
,

in agreement with (3.61).
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To return to the time domain, we need to make partial fraction expansions of

s

sþ 3
RC

� 
sþ 1

RC

�  ¼ k1
sþ 3

RC

� þ k2
sþ 1

RC

�  ð3:70Þ

and

1

s sþ 3
RC

� 
sþ 1

RC

�  ¼ k3
s
þ k4

sþ 3
RC

� þ k5
sþ 1

RC

�  : ð3:71Þ

We’ll use the same method on both expansions to get the k’s. So, for (3.70),
notice that multiplying through by sþ 3

RC

� 
and then letting s ¼ � 3

RC gives

s

sþ 1
RC

� │s¼� 3
RC
¼ k1 þ k2

sþ 3
RC

sþ 1
RC

│s¼� 3
RC
¼ k1 ¼ � 3

RC

� �
�RC

2

� �
¼ 3

2
:

Also, multiplying through by sþ 1
RC

� 
and then letting s ¼ � 1

RC gives

s

sþ 3
RC

� │s¼� 1
RC
¼ k1

sþ 1
RC

sþ 3
RC

│s¼� 1
RC
þ k2 ¼ k2 ¼ � 1

RC

� �
RC

2

� �
¼ �1

2
:

Repeating this procedure on (3.71), except now letting s ¼ 0, s ¼ � 3
RC, and s

¼ � 1
RC we get

k3 ¼ 1

sþ 3
RC

� 
sþ 1

RC

� │s¼0 ¼ RCð Þ2
3

,

k4 ¼ 1

s sþ 1
RC

� │s¼� 3
RC
¼ 1

� 3
RC

�  � 2
RC

�  ¼ RCð Þ2
6

,

k5 ¼ 1

s sþ 3
RC

� │s¼� 1
RC
¼ 1

� 1
RC

� 
2
RC

�  ¼ � RCð Þ2
2

:

Putting these k’s into (3.70) and (3.71), and the results into (3.69), we arrive at

A� B ¼ 1

RCð Þ2
RCð Þ2
3
s þ RCð Þ2

6

sþ 3
RC� RCð Þ2

2

sþ 1
RC

2
64

3
75�

3
2

sþ 3
RC

þ
1
2

sþ 1
RC

¼
1
3

s
þ

1
6

sþ 3
RC

�
1
2

sþ 1
RC

�
3
2

sþ 3
RC

þ
1
2

sþ 1
RC

or,

A� B ¼
1
3

s
�

8
6

sþ 3
RC

! 1
3
� 4
3
e�

3
RCt

� 	
u tð Þ: ð3:72Þ
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Notice that (3.72) says

a 0þð Þ � b 0þð Þ ¼ 1
3
� 4
3
¼ �1

and

a 1ð Þ � b 1ð Þ ¼ 1
3
� 0 ¼ 1

3

in agreement with (3.60) and (3.61).
Now, to answer the question of when the current in the horizontal resistor equals

zero, simply call the answer t ¼ T where

1
3
� 4
3
e�

3
RCT ¼ 0

and solve for T: that calculation is easily done to give

T ¼ 1
3
RCln 4ð Þ ¼ 1

3
RCln 22

� 
or, at last,

T ¼ RC
2
3
ln 2ð Þ,

the answer given in note 6 of the Preface.

3.7 An Example of the Power of the Modern Electronic
Computer

In this section of the chapter we’ll work through the circuit in Fig. 3.11, using the
Laplace transform. There are no initial currents or charges in the circuit and then, at
time t ¼ 0, a voltage pulse v(t) with duration τ occurs with amplitude a (modeled by

−

+

i2
i1

x(t)

i
v(t)

t = 0

l

C L

t = τFig. 3.11 What is x(t) for a
pulsed v(t)?
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the switch closing at t ¼ 0 and then opening at t ¼ τ > 0). Our problem is to
determine the voltage x(t) that appears across the parallel L, C combination.

From the given conditions, we know that i(0+) ¼ i1(0+) ¼ i2(0+) ¼ 0, and that
x(0+) ¼ 0. The time-domain equations describing this circuit are:

v� x ¼ l
di

dt
,

i ¼ i1 þ i2,

i1 ¼ C
dx

dt
,

x ¼ L
di2
dt

:

Transforming, these equations in time become the following in s:

V � X ¼ slI,
I ¼ I1 þ I2,
I1 ¼ sCX,
X ¼ sLI2:

Next, some simple algebra:

I2 ¼ X

sL

and so

I ¼ sCX þ X

sL
¼ X sC þ 1

sL

� �

and therefore

V � X ¼ slX sC þ 1
sL

� �

or,

V ¼ X þ slX sC þ 1
sL

� �
¼ X 1þ sl sC þ 1

sL

� �� 	
:

Thus,

X sð Þ ¼ V sð Þ
1þ s2lC þ l

L

¼ V sð Þ
lC s2 þ lþL

LlC

�  : ð3:73Þ
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The next obvious step is to determine V(s). Figure 3.12 shows v(t), a pulse of
duration τ and amplitude a. We can write v(t) as the difference between two step
functions as follows:

v tð Þ ¼ a u tð Þ � u t � τð Þ½ �
and so, using (3.11) and (3.14),

V sð Þ ¼ a
1
s
� e�τs

s

� 	
: ð3:74Þ

Putting (3.74) into (3.73) gives

X sð Þ ¼ a 1
s � e�τs

s

� �
lC s2 þ lþL

LlC

� 
or, if we define

ω2
0 ¼

lþ L

LlC
, ð3:75Þ

we have

X sð Þ ¼ a

lC

1

s s2 þ ω2
0

� � e�τs

s s2 þ ω2
0

� 
" #

: ð3:76Þ

If we can determine the time function that pairs with the first term in the square
brackets, then the time function that goes with the second term is simply the first time
function shifted (delayed) by τ. The first term is the result of the start of the pulse,
and the second term is (of course) caused by the end of the pulse.

To determine these time functions, we’ll make a partial fraction expansion: if
A and B are some constants (to be determined next), then

1

s s2 þ ω2
0

�  ¼ A

s
þ Bs

s2 þ ω2
0

¼ As2 þ Aω2
0 þ Bs2

s s2 þ ω2
0

� 

v(t)

a

t0 τ

Fig. 3.12 The voltage pulse
v(t)
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from which it follows that

Aþ B ¼ 0

and

Aω2
0 ¼ 1:

Thus,

A ¼ 1

ω2
0

,B ¼ �A ¼ � 1

ω2
0

and so

1

s s2 þ ω2
0

�  ¼ 1
ω2
0

s
�

1
ω2
0
s

s2 þ ω2
0

:

The time functions that pair with these two transforms are, from (3.11) and (3.15),

1
ω2
0

u tð Þ � 1
ω2
0

cos ω0tð Þu tð Þ ¼ 1
ω2
0

1� cos ω0tð Þ½ �u tð Þ

and so we have our answer:

x tð Þ ¼ a

lC

1
ω2
0

1� cos ω0tð Þ½ �u tð Þ � 1
ω2
0

1� cos ω0 t � τð Þf g½ �u t � τð Þ
� �

or, as

a

lCω2
0

¼ a

lC lþL
LlC

¼ aL

Lþ l
,

x tð Þ
a

¼ L

Lþ l
1� cos ω0tð Þ½ �u tð Þ � 1� cos ω0 t � τð Þf g½ �u t � τð Þf g: ð3:77Þ

Before plotting (3.77), let’s put in some numbers: L ¼ 5 mH ¼ 5,000 μH,
l ¼ 40 mH ¼ 40,000 μH, and C ¼ 0.01 μF . Expressing the component units this
way gives, you’ll recall, time in units of microseconds. Finally,

ω2
0 ¼

lþ L

LlC
¼ 40; 000þ 5; 000

5� 103 � 4� 104 � 10�2 ¼ 2:25� 10�2

and so ω0 ¼ 0.15. To understand what this physically means, ω0 is the frequency at
which the circuit will oscillate when the voltage pulse hits: if T is the period of the
oscillation,
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ω0 ¼ 2π
T

and so

T ¼ 2π
ω0

¼ 2π
0:15

¼ 41:9 μsec about 23:9 kHzð Þ:

Now, let me explain the significance of the title of this section. We could just take
all of these numbers, plug them into (3.77) and, after picking a value for τ, plot x(t)
versus t. Modern computer software allows us to do something rather remarkable
instead, something analysts when I was a student could only fantasize about.
Imagine that we haven’t derived (3.77), but only have gotten as far as (3.76). That
is, we have X(s), but haven’t yet gathered the will and the strength to push on and
simplify it by a partial fraction expansion (the grubby part, generally, of a transient
analysis). Instead, wouldn’t it be neat if we could just type X(s) into a computer and
let it do all that awful arithmetic work, including generating the final plot? Sure it
would, and today we can!

Different software packages will of course work differently, but the following
code pulse.m shows one way to do it in MATLAB, using its powerful ilaplace
command for performing inverse Laplace transforming. The result generated by
pulse.m is Fig. 3.13 (for a τ ¼ 43 μsec voltage pulse, picked to be a bit larger than
T but otherwise arbitrarily), showing a peak transformer voltage of about 22% of the
pulse amplitude. The details of the code are unimportant for us (this is not a book on

Fig. 3.13 The response of the circuit in Fig. 3.11
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MATLAB programming!), and the only thing I want you to appreciate is how brief is
the code, and its generality. Just change the circuit element values and the argument
of the ilaplace command (and the time span in the linspace command) and the same
code ‘solves’ just about any other transient problem involving a transform in the
form of the ratio of two polynomials in s. In the next chapter I’ll show you a few
more examples of essentially the same code in action, with circuits more compli-
cated than the one in Fig. 3.11, and how using a computer can save you from tidal
waves of brain-crushing arithmetic.

%pulse.m/created by PJNahin for Electrical Transients (7/8/
2017)
L=5000;l=40000;C=0.01;
f=1/(l*C);
d=input('What is tau?');
w02=(l+L)/(L*l*C);
syms s t
h=ilaplace((1/(s*(s^2+w02)))*(1-exp(-d*s)));
h=h*f;
t=linspace(0,150,250);
y=subs(h);
v=vpa(y);
plot(t,v,'-k')
xlabel('time in microseconds')
ylabel('voltage/a')

3.8 Puzzle Solution

Have you been thinking hard about the second puzzle I described in Sect. 1.3? Just to
remind you (and to generalize it a bit), here it is again. Imagine that we apply a
voltage pulse v(t) to the terminals of a one-ohm resistor, where

v tð Þ ¼
0, t < 0

cm�1, 0 < t < c
0, t > c

where c is any positive finite constant and 0 < m < 1
2 (in Sect. 1.3 I used m ¼ 1

5).
From Ohm’s law we have the current i(t) in the resistor given by v(t) ¼ i(t)R or, as
R ¼ 1,

i tð Þ ¼
0, t < 0

cm�1, 0 < t < c
0, t > c

:
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That is, i(t) is a finite-valued pulse that is non-zero only for a finite length of time.
Now, the total energy dissipated as heat by the resistor due to this current pulse is

W ¼
Z 1

�1
i2 tð Þdt ¼

Z c

0
c2m�2dt ¼ c2m�2c

or,

W ¼ c2m�1:

Also, the total electric charge that passes through the resistor is

Q ¼
Z 1

�1
i tð Þdt ¼

Z c

0
cm�1dt ¼ cm�1c

or,

Q ¼ cm:

So, for m in the interval 0 < m < 1
2 we have

limc!0W ¼ 1
and

limc!0Q ¼ 0:

These last two limits are quite strange. As c ! 0, the pulse-like current becomes
ever briefer in duration but ever larger in amplitude. Since Q ! 0 as c ! 0 then,
even though the current amplitude blows-up the pulse duration becomes shorter
‘even faster’ and so the total charge transported through the resistor goes to zero.
And yet, the total dissipated energy blows-up. Indeed, since W ! 1 as c ! 0 the
resistor will instantly vaporize because all that infinite energy is delivered in zero
time. But how can that be when, as c ! 0, there is no charge transported? Paradox!

The way to escape from this quandary is essentially the same as that for the
two-capacitor/missing energy paradox we treated earlier in Chap. 1. There we
argued that our original circuit of two capacitors was unrealistically simple. We
addressed that issue by adding a vanishingly small resistance. To remove this new
paradox, we again need to add something more to our minimal circuit of a single
resistor; this time the addition is the self-inductance of the very wire that forms the
circuit itself. That is, the equation describing our circuit is not v ¼ iR but rather, for
some L > 0,

v ¼ iRþ L
di

dt
:
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The reason for the additional term is that the current i(t) generates a magnetic flux
field that threads through the closed circuit loop, generating a so-called back emf18

(electromotive force, or voltage), as described by Faraday’s law of induction. As
c! 0 the current becomes ever more impulse-like, which means the magnetic flux is
changing ever more rapidly, and the new self-induction term becomes
non-negligible.

The Laplace transform of this modified equation is

V sð Þ ¼ I sð Þ þ L sI sð Þ � i 0þð Þ½ � ¼ I sð Þ þ LsI sð Þ
and so19

I sð Þ ¼ V sð Þ
1þ sL

¼ 1
L

V sð Þ
sþ 1

L

:

Since

v tð Þ ¼ cm�1 u tð Þ � u t � cð Þ½ �
then

V sð Þ ¼ cm�1

s
1� e�sc½ �

and so

I sð Þ ¼ cm�1

L

1� e�sc

s sþ 1
L

�  ¼ cm�1

L

1

s sþ 1
L

� � e�sc

s sþ 1
L

� 
" #

:

The second term in the square brackets on the right is just a time-shifted version
of the first term in the square brackets. So, for that first term,

1

s sþ 1
L

�  ¼ L
1
s
� 1

s þ 1
L

" #

18The term comes from Lenz’s law – after the Estonian physicist Heinrich Lenz (1804–1865) —
who observed that Faraday’s induced voltage is always such as to oppose the changing flux that
created the induced voltage. Lenz’s law is actually a manifestation of the conservation of energy
(what would be the consequence if the induced voltage enhanced the changing flux?).
19i(0+), the current in the circuit just after the current starts, is zero because the current in the
‘inductor’ cannot change instantly and i(0�), the current just before the voltage pulse starts, is zero.
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or,

1

s sþ 1
L

� $ L 1� e�
t
L

h i
u tð Þ:

Thus,

cm�1

L

1

s sþ 1
L

� $ cm�1 1� e�
t
L

h i
u tð Þ

and so the resistor current is

i tð Þ ¼ cm�1 1� e�
t
L

h i
u tð Þ � cm�1 1� e�

t�cð Þ
L

h i
u t � cð Þ:

The voltage pulse is limited to a finite interval of time, but the resulting current
exists for all t > 0.

Clearly, and by inspection, lim
c!0

i tð Þ ¼ 0 and so lim
c!0

Q ¼ 0. But what of W? We

have during the voltage pulse (pay close attention to the step functions), when
0 < t < c,

i tð Þ ¼ cm�1 1� e�
t
L

h i
and so the energy dissipated during the voltage pulse is

Wp ¼
Z c

0
i2 tð Þdt ¼ c2m�2

Z c

0
1� e�

t
L

h i2
dt

which is, if you’re careful doing the integral,

Wp ¼ c2m�1 � 2Lc2m�2 1� e�
c
L

� þ 1
2
Lc2m�2 1� e�

2c
L


 �
:

The current continues to exist after the voltage pulse, too, of course, and is given
by, when t > c,

i tð Þ ¼ cm�1 e�
t�c
L � e�

t
L

h i
and so the energy dissipated after the voltage pulse is

Wap ¼
Z 1

c
i2 tð Þdt ¼ c2m�2

Z 1

c
e�

t�c
L � e�

t
L

h i2
dt
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which is

Wap ¼ c2m�2L
1
2
� e�

c
L þ 1

2
e�

2c
L

� 	
:

The total energy dissipated is therefore

W ¼ Wp þWap ¼ c2m�1 � Lc2m�2 1� e�
c
L

�  ¼ c2m�1 � T ,

where

T ¼ Lc2m�2 1� e�
c
L

� 
:

Notice that T ¼ 0 if L ¼ 0 and soW ¼ c2m � 1 if L ¼ 0, which blows-up as c! 0
for 0 < m < 1

2 and we again have our paradox. It is clear then that T > 0 for L > 0 will
be the origin of our salvation (if there is salvation to be had).

To see what happens to T as c ! 0, expand the exponential in its infinite power
series to get

T ¼ Lc2m�2 1� 1þ �c
L

� 
1!

þ �c
L

� 2
2!

þ �c
L

� 3
3!

þ �c
L

� 4
4!

þ . . .

( )" #

¼ Lc2m�2 c

L
� 1
2

c

L


 �2
þ 1
6

c

L


 �3
� 1
24

c

L


 �4
þ . . .

� 	

¼ c2m�1 � Lc2m�2 1
2

c

L


 �2
� 1
6

c

L


 �3
þ 1
24

c

L


 �4
� . . .

� 	

and so

W ¼ Lc2m�2 1
2

c

L


 �2
� 1
6

c

L


 �3
þ 1
24

c

L


 �4
� . . .

� 	

¼ Lc2m
1
2
1

L2
� 1
6
c

L3
þ 1
24

c2

L4
� . . .

� 	

¼ c2m

L

1
2
� 1
6
c

L
þ 1
24

c2

L2
� . . .

� 	

which clearly goes to zero as c ! 0 for any L > 0 and any m in the interval
0 < m < 1

2. (If this isn’t ‘clear,’ get hold of any freshman calculus book and look-
up the convergence behavior for an infinite series in powers of c

L

� 
with alternating

signs). Paradox removed!
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3.9 The Error Function and the Convolution Theorem

To end this chapter, I’ll next show you two additional results in Laplace transform
theory. For our first result, you’ll see how the integral of (3.37) helps us find a
particularly important transform pair, one we’ll find invaluable when we get to
transients in transmission lines. Specifically, if we define

erf tð Þ ¼ 2ffiffiffi
π

p
Z t

0
e�u2du ð3:78Þ

then we’ll derive the pair

1� erf
a

2
ffiffi
t

p
� �

$ 1
s
e�a

ffiffi
s

p
ð3:79Þ

where erf is the error function I mentioned back in Sect. 3.4. It’s clear that erf(0)¼ 0,
and also that the 2ffiffi

π
p factor in front of the integral in (3.78) makes erf(1)¼ 1 (because

of (3.38) and (3.43)). This range of values is attractive because the error function
plays a very big role in probability theory (and, of course, all probabilities are from
0 to 1) and, while our transient analyses here have nothing to do with probability,
that’s why erf(t) is what it is. Now, to derive (3.79), I’ll start by computing the
Laplace transform of

f tð Þ ¼ e�a2=4tffiffiffiffiffiffi
πt3

p ð3:80Þ

which is, admittedly, probably not an obvious thing to do! So, how do I know to do
this?

The answer is that once, long ago, I read the famous 1822 book Analytical Theory
of Heat by the French mathematical physicist Joseph Fourier (1768–1830), the same
man who gave electrical engineers their beloved Fourier series (and Fourier trans-
forms, too, which are closely related to Laplace transforms). That masterpiece works
out, all in the time domain, how heat flows in solids, with the fundamental physics
behind it all called the diffusion (or heat) equation. In its simplest form, that equation
is a partial differential equation in two variables (one-dimension of space, and one of
time) and, by some wondrous good fortune, it is also the underlying physics of the
first (1855) transient analysis made of a transmission line (a submarine telegraph
cable). Heat and electricity, both (under the right circumstances) obey the same
equation, and that curious time function in (3.80) appeared in Fourier’s book
decades before William Thomson (look back at Sect. 1.4) remembered his reading
of Fourier’s book and used it to guide his analysis of what eventually resulted in the
famous Atlantic Cable Project of 1866, a topic we’ll take-up in detail in Chap. 5. So,
please understand that I have not just pulled (3.80) out of thin air.
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In any case, what we have is

F sð Þ ¼
Z 1

0
f tð Þe�st dt ¼

Z 1

0

e�a2=4tffiffiffiffiffiffi
πt3

p e�st dt: ð3:81Þ

Next, let’s make the change of variable

τ2 ¼ a2

4t

and so

τ ¼ a

2t1=2

which says

dt ¼ �
ffiffiffiffiffi
t3

p 4
a
dτ:

With this, (3.81) becomes

F sð Þ ¼
Z 0

1

e�τ2ffiffiffiffiffiffi
πt3

p e�s a
2

4τ2 �
ffiffiffiffiffi
t3

p 4
a
dτ

� �
¼ � 4

a
ffiffiffi
π

p
Z 0

1
e� τ2þs a

2

4τ2

� �
dτ

¼ 4
a
ffiffiffi
π

p
Z 1

0
e� τ2þs a

2

4τ2
þa
ffiffi
s

p �a
ffiffi
s

p� �
dτ ¼ 4

a
ffiffiffi
π

p e�a
ffiffi
s

p Z 1

0
e
� τ2 �a

ffiffi
s

p þ sa
ffi
s

p
2τ

� 2h i
dτ

¼ 4
a
ffiffiffi
π

p e�a
ffiffi
s

p Z 1

0
e� τ�a

ffi
s

p
2τ

� �2
dτ

or,

F sð Þ ¼ 4
a
ffiffiffi
π

p e�a
ffiffi
s

p Z 1

0
e� τ�b

τ½ �2dτ ð3:82Þ

where

b ¼ a
ffiffi
s

p
2

:

Now, concentrate on the integral, alone, in (3.82). Multiplying out the exponent
of the integrand, we have

Z 1

0
e� τ2�2bþb2

τ2

� 
dτ ¼ e2b

Z 1

0
e� τ2þ b2

τ2

� 
dτ ¼ e2bI bð Þ ð3:83Þ
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where

I bð Þ ¼
Z 1

0
e� τ2þ b2

τ2

� 
dτ: ð3:84Þ

The integral I(b), despite its perhaps complicated appearance, can be evaluated as
follows.

Differentiating (3.84) with respect to b (using Leibniz’s formula, as in note 3 of
Chap. 1),

dI

db
¼
Z 1

0
� 2b

τ2

� �
e� τ2þ b2

τ2

� 
dτ:

Now, make the change of variable

τ ¼ b

u

which says

dτ ¼ � b

u2
du

and so

dI

db
¼
Z 0

1
� 2u2

b

� �
e�

b2

u2
þu2

� 
� b

u2
du

� �
¼ �2

Z 1

0
e�

b2

u2
þu2

� 
du ¼ �2I bð Þ:

Thus,

dI

I
¼ �2db

which immediately integrates to

I bð Þ ¼ Ce�2b

where C is some constant. In fact,

I 0ð Þ ¼ C ¼
Z 1

0
e�τ2dτ ¼

ffiffiffi
π

p
2

because, from (3.38) and (3.43), we know

2
Z 1

0
e�x2dx ¼ Γ

1
2

� �
¼ ffiffiffi

π
p

:
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So,

I bð Þ ¼
ffiffiffi
π

p
2

e�2b

and putting that into (3.83) — which is, in fact, the integral in (3.82) — we have

Z 1

0
e� τ�b

τ½ �2dτ ¼
ffiffiffi
π

p
2

a result (perhaps surprisingly) independent of b.
In any case, and just like that, we have the F(s) of (3.82) for the f(t) in (3.80):

F sð Þ ¼ 4e�a
ffiffi
s

p

a
ffiffiffi
π

p
ffiffiffi
π

p
2

� �
¼ 2

a
e�a

ffiffi
s

p

which gives us the pair

e�a2=4tffiffiffiffiffiffi
πt3

p $ 2
a
e�a

ffiffi
s

p

which is equivalent to

ae�a2=4t

2
ffiffiffiffiffiffi
πt3

p $ e�a
ffiffi
s

p
: ð3:85Þ

Finally, recall (3.7) which says given the pair f(t) $ F(s) then

Z 1

0
f xð Þdx ¼ F sð Þ

s
:

Thus,

a

2
ffiffiffi
π

p
Z 1

0

e�a2=4xffiffiffiffiffi
x3

p dx $ e�a
ffiffi
s

p

s
: ð3:86Þ

In the integral of (3.86) make the change of variable

u ¼ a

2
ffiffiffi
x

p

which says

dx ¼ � 4
ffiffiffiffiffi
x3

p

a
du
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and so

a

2
ffiffiffi
π

p
Z a

2
ffi
t

p

1

e�u2ffiffiffiffiffi
x3

p � 4
ffiffiffiffiffi
x3

p

a
du

 !
¼ 2ffiffiffi

π
p
Z 1

a
2
ffi
t

p
e�u2du

¼ 2ffiffiffi
π

p
Z 1

0
e�u2du�

Z a
2
ffi
t

p

0
e�u2du

� 	

or, recalling (3.78), we have

2ffiffiffi
π

p
ffiffiffi
π

p
2

�
ffiffiffi
π

p
2

erf
a

2
ffiffi
t

p
� �� 	

$ e�a
ffiffi
s

p

s

and so, at last, we have the claimed pair of (3.79):

1� erf
a

2
ffiffi
t

p
� �

$ 1
s
e�a

ffiffi
s

p
:

As a quick partial check, since erf(0) ¼ 0 then, if a ¼ 0, this pair reduces to

1 ¼ u tð Þ $ 1
s

which is our earlier result of (3.11) for the unit step function.
For the second result of this section, suppose we have two time functions, f(t) and

g(t), with Laplace transforms F(s) and G(s), respectively. What time function pairs
with the product F(s)G(s)? The answer is what is called the convolution of f(t) and g
(t), written as f(t) ∗ g(t). That is,

f tð Þ∗g tð Þ ¼
Z t

0
f t � pð Þg pð Þdp $ F sð ÞG sð Þ: ð3:87Þ

To prove (3.87), called the convolution theorem, we’ll simply directly calculate
the Laplace transform of the convolution integral. Before we start, however, we’ll
make one extremely helpful modification. The integration range on p runs from 0 to
t. If p should run beyond t, then f(t � p) would have a negative argument, and you’ll
recall that we are interested only in the behavior of time functions with positive
arguments. So, if we replace f(t� p) with f(t� p)u(t� p) we change nothing because
u(t� p)¼ 0 for p > t. But with that change we can now let p run from 0 to1. That is,

Z t

0
f t � pð Þg pð Þdp ¼

Z 1

0
f t � pð Þu t � pð Þg pð Þdp
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and what we are going to compute is

L
Z 1

0
f t � pð Þu t � pð Þg pð Þdp

� �
¼
Z 1

0

Z 1

0
f t � pð Þu t � pð Þg pð Þdp

� �
e�stdt:

This looks pretty scary, but much less so if we reverse the order of integration and
write

L
Z 1

0
f t � pð Þu t � pð Þg pð Þdp

� �
¼
Z 1

0
g pð Þ

Z 1

0
f t � pð Þu t � pð Þe�stdt

� �
dp:

That is, everything with a t in it has to stay in the inner integral (which is with
respect to t), while everything with only p in it can come out to the outer integral. For
pure mathematicians, this step of reversing the order of integration demands justi-
fication, which means showing that the integrals involved are uniformly convergent.
As engineers we are going to skip that step (all the while realizing we are making a
big assumption) and instead carry-out what is called a formal analysis (a euphemism
admitting we are not being pure).

Now, in the inner integral make the change of variable t� p¼ z (and so dt ¼ dz).
Thus,

L
Z 1

0
f t � pð Þu t � pð Þg pð Þdp

� �
¼
Z 1

�p
g pð Þ

Z 1

�p
f zð Þu zð Þe�s pþzð Þdz

� �
dp:

The inner integral in this last result can be written as

Z 1

�p
f zð Þu zð Þe�s pþzð Þdz ¼ e�sp

Z 1

0
f zð Þe�szdz ¼ e�spF sð Þ:

Note, carefully, that we can bring the lower integration limit up from –p to 0 in the
integral because of the u(z) in the integrand. So,

L
Z 1

0
f t � pð Þu t � pð Þg pð Þdp

� �
¼
Z 1

0
g pð Þe�spF sð Þdp ¼ F sð Þ

Z 1

0
g pð Þe�spdp

or, just like that,

L
Z 1

0
f t � pð Þg pð Þdp

� �
¼ F sð ÞG sð Þ

and (3.87) is established.
As an example to illustrate the power of the convolution theorem, let’s use it to

find the time function that pairs with

1
s� 1ð Þ ffiffi

s
p ¼ 1

s� 1

� �
1ffiffi
s

p
� �

¼ F sð ÞG sð Þ ð3:88Þ
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where

F sð Þ ¼ 1
s� 1

, G sð Þ ¼ 1ffiffi
s

p :

We know from (3.12) that

f tð Þ ¼ etu tð Þ
and from (3.44) that

g tð Þ ¼ 1ffiffiffiffiffi
πt

p u tð Þ,

where I’ve explicitly included a step function u(t) in each time function to remind us
that time functions have meaning for us only for t > 0.

The convolution theorem tells us that the time function we are after is, from
(3.87),

f tð Þ∗g tð Þ ¼
Z t

0
e t�pð Þu t � pð Þ 1ffiffiffiffiffi

πp
p u pð Þdp ¼ etffiffiffi

π
p

Z t

0

e�pffiffiffi
p

p dp:

I’ve dropped the step functions in the right-most integral because the product u
(t� p)u( p)¼ 1 as p varies from 0 to t in the integration interval, and is zero for p > t.
Now, make the change of variable

v ¼ ffiffiffi
p

p
and so dp ¼ 2vdvð Þ

to get

f tð Þ∗g tð Þ ¼ etffiffiffi
π

p
Z ffiffi

t
p

0

e�v2

v
2vdv ¼ et

2ffiffiffi
π

p
Z ffiffi

t
p

0
e�v2dv

and so, from (3.78), we have our answer:

f tð Þ∗g tð Þ ¼ eterf
ffiffi
t

p� $ 1
s� 1ð Þ ffiffi

s
p :

This long chapter has been pretty mathematical, but I hope the circuit examples in it
have justified for you the worth ofmaking the effort to study the Laplace transform. The
mathematician Ruel V. Churchill (see note 10 in the Preface) opened his book on the
operational calculuswith these words: “Since the time of its introduction the operational
calculus of Oliver Heaviside has held a prominent place in the treatment of problems in
electric circuits . . . But in its original form this method rested on rules of procedure that
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had no satisfactory logical justification. Nor were the rules always reliable.20 The
modern form of this operational calculus consists of the use of the Laplace transform
[my emphasis].” The rest of this book is devoted to illustratingwhat Professor Churchill
meant, when the transform is applied to questions on electrical transients.

Problems

3.1 Prove (3.22).
3.2 Consider the following ‘sort of similar-looking’ time functions and show that,

despite that ‘similarity,’ their Laplace transforms are quite different:

(a) e�2tu(t)
(b) e�2tu(t � 1)
(c) e�2(t � 1)u(t)
(d) e�2(t � 1)u(t � 1)

3.3 A time function that often occurs in electrical engineering is the sine-integral,
defined as

Si tð Þ ¼
Z t

0

sin xð Þ
x

dx, t � 0:

Calculate the Laplace transform of Si(t). Hint: Observe that d
dt Si tð Þ ¼ sin tð Þ

t

(by invoking Leibniz’s formula from note 3 in Chap. 1), and then use (3.16),
(3.9), and (3.7).

3.4 For a and b both non-negative, what is the Laplace transform of

e�at � e�bt

t
, t � 0, ?

Assume a < b. Hint: For the special case of a ¼ 0 and b ¼ 1, your answer
should reduce to

L 1 � e�t

t

� �
¼ ln 1þ 1

s

� �
:

Is your answer consistent with the initial and final value theorems? What
happens if a > b?

20In a 1937 book that was the first to introduce the Laplace transform to engineers, the German
mathematician Gustav Doetsch (1892–1977) was significantly less gracious toward Heaviside’s
operational calculus and its practitioners: see the Heaviside biography (note 9 in the Preface),
p. 304. Heaviside had a running battle with academic mathematicians during his entire life. Even
after election as a Fellow of the Royal Society, his submitted papers to the Society’s Proceedings could
be savaged.When that happened in 1894 (with the referee’s report stating that Heaviside was “ignorant
of the modern developments of the theory of linear differential equations”), he replied with these
famous words: “[I admit] the rigorous logic of the matter is not plain!Well, what of that? Shall I refuse
my dinner because I do not fully understand the process of digestion [my emphasis]? No, not if I am
satisfied with the result.” That, of course, failed to win the day with his mathematician critics.
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3.5 Looking back at Fig. 1.1, and the defining voltage-current relations for a resistor,
a capacitor, and an inductor, if we Laplace transform them under the assumption
there is no initial charge or current then we get V(s)¼ I(s)R, I(s)¼ CsV(s), and V
(s) ¼ LsI(s), respectively. That is, in each case I(s) and V(s) are directly related

through a function only of s, called the generalized impedance Z sð Þ ¼ V sð Þ
I sð Þ :

ZR(s) ¼ R, ZC sð Þ ¼ 1
Cs, ZL(s) ¼ sL. This means we can treat all three circuit

component types as ‘generalized resistors,’ and write the relationship between an
applied voltage and a resulting current or voltage elsewhere in a circuit just as if
all the components in the circuit are resistors.21 Using this fact, show that the
circuit of Fig. 3.14, for given values of L and C, behaves as a pure resistance for

any v(t) if R ¼
ffiffiffi
L
C

q
. Further, in the circuit of Fig. 3.15, for any given values of

L and R1, for what values of R2 and C does the circuit behave as a pure resistance
for any v(t)?

−

+

t = 0

v(t)

i(t)

R

C L

R

Fig. 3.14 Problem 3.5

−

+

R1

R2

i(t)

v(t)

t = 0

L

C

Fig. 3.15 Problem 3.5

21This was first explicitly stated by Oliver Heaviside in 1887 (he was using the idea as early as
1881). He called the expressions for ZR, ZC, and ZL resistance operators (he was also the first to use
both the symbol Z and the word impedance for a generalized resistance). For more on this, see the
Heaviside biography (note 9 in the Preface, pp. 230–232). In Appendix 2 you’ll find a discussion on
how Heaviside used resistance operators to derive the required condition for distortionless signaling
on an infinitely long transmission line. We’ll use that condition, in Chap. 5, to find the transient
behavior of such a line in response to a voltage step input.
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3.6 Show that an impulse has infinite energy. Do that by applying the pulse (either
as a voltage drop or as a current) of Fig. 3.8 to a resistor R, compute the energy
delivered to R, and then let α ! 0.

3.7 Using (3.7) and (3.45), what time function pairs with 1
s5=2

? What time function

has the Laplace transform 1
1þ ffiffi

s
p ? Hint: notice first that

1
1þ ffiffi

s
p ¼ 1

1þ ffiffi
s

p :

ffiffi
s

p � 1ffiffi
s

p � 1
¼

ffiffi
s

p � 1
s� 1

:

ffiffi
s

pffiffi
s

p ¼ s� ffiffi
s

pffiffi
s

p
s� 1ð Þ ¼

s� 1� ffiffi
s

p þ 1ffiffi
s

p
s� 1ð Þ

¼ s� 1ffiffi
s

p
s� 1ð Þ �

ffiffi
s

pffiffi
s

p
s� 1ð Þ þ

1ffiffi
s

p
s� 1ð Þ ¼

1ffiffi
s

p � 1
s� 1

þ 1ffiffi
s

p
s� 1ð Þ ,

and then realize that we have already derived the time functions that pair with
each of these three final individual transforms.

3.8 Show, without actually doing an integration, that the convolution of an impulse
with any function f(t) is f(t). Hint: use (3.52) and (3.87).

3.9 You’ll recall from the text that Dirac talked of the derivatives of the impulse as
being meaningful. One often useful result is that if ϕ(t) is a differentiable
function (a requirement more restrictive than simply being continuous), then

Z 1

�1
δ0 tð Þϕ tð Þdt ¼ �ϕ0 0ð Þ:

See if you can develop a formal proof of this (that is, forget about being
rigorous, just as I suspect did Dirac!). Hint: use integration-by-parts.

3.10 When Dirac introduced the impulse function to his readers, he mystified many
with his so-called impulse identities, one of which is the often useful

δ atð Þ ¼ 1

│a│
δ tð Þ,

where a is any non-zero constant (positive or negative). What he meant by this
is that both sides of the identity behave the same way under the integral sign.
That is, if ϕ(t) is any continuous function, then

Z 1

�1
δ atð Þϕ tð Þdt ¼

Z 1

�1

1

│a│
δ tð Þϕ tð Þdt:

See if you can develop a formal proof. Hint: change variable in the integral on
the left, and consider the two cases of a > 0 and a < 0.
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3.11 If you found the previous problem pretty easy, here’s a slightly more myste-
rious identity due to Dirac:

Z 1

�1
δ u� xð Þδ x� vð Þdx ¼ δ u� vð Þ:

Can you show this? Hint: with ϕ(t) as some continuous function, first evaluate
the integral

Z 1

�1
ϕ uð Þ

Z 1

�1
δ u� xð Þδ x� vð Þdx

� �
du

by reversing the order of integration. Next, evaluate the integral

Z 1

�1
ϕ uð Þδ u� vð Þdu:

Notice anything interesting about your two results?

3.12 The convolution theorem tells us that if you multiply two transforms together,
the result pairs with the convolution of the associated time functions. What, do
you suppose, is the transform that pairs with the product of two time functions?
That is, what goes on the right-hand-side of f(t)g(t) $ ? Can you prove your
answer? Hint: look into the Fourier transform, a close relative of the Laplace
transform. We will not discuss the Fourier transform in this book, and so this
problem is intended to be simply an open-ended challenge question for you to
pursue on your own.22

3.13 In the text we developed the transform pairs

(a) df
dt $ sF sð Þ � f 0þð Þ

(b) u tð Þ $ 1
s

(c) δ tð Þ $ d
dt u tð Þ $ 1.

Now, suppose f(t) ¼ u(t), as defined in (3.10). Then, (a) and (b) say

d

dt
u tð Þ ¼ δ tð Þ $ s

1
s

� �
� u 0þð Þ ¼ 1� 1 ¼ 0

22You can find more on Fourier transforms (including the answer to this problem) in my book Dr.
Euler’s Fabulous Formula, Princeton 2006, pp. 188–274.
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which doesn’t agree with (c). Show that we can eliminate this conflict by
re-defining the step function as shown in Fig. 3.16, which is continuous every-
where, even at t¼ 0, for any α 6¼ 0. That is, by defining u tð Þ ¼ lim

α!0
uα tð Þ where

uα tð Þ ¼
0, t � 0

t

α
, 0 � t � α

1, t � α

and so, for any α 6¼ 0, uα(0+) ¼ 0+. Note, carefully, that for the fα(t) shown
earlier in the text in Fig. 3.8, f α tð Þ ¼ d

dt uα tð Þ.

t

uα(t)

0

1

α

Fig. 3.16 Approximating
the step as the limit of a
continuous function
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Chapter 4
Transients in the Transform Domain

4.1 Voltage Surge on a Power Line

In this first example you’ll see the full power of the Laplace transform in doing a
traditional transient analysis. (You’ll also experience its full grubbiness!) Figure 4.1
shows a circuit that is suddenly hit by a unit step voltage v(t)¼ u(t), and our problem
is to determine the resulting voltage e(t). This circuit might, for example, be a simple
model for a power station transformer connected (through the 30 μH inductor) to an
overhead transmission line that has just been hit by a lightning stroke, a potentially
catastrophic event (simply scale our final result up from our assumed one-volt surge
to, say, a more realistic 100,000 volts). Determining e(t) would tell the transformer
designers what sort of ‘safety-factor’ they should consider for the survival of the
transformer when confronted by such a large voltage surge, both in terms of the
magnitude and the duration of the surge.

Going directly to transforms, Kirchhoff’s current law at the e(t) node is (remem-
ber, using microhenrys, microfarads, and ohms gives time in microseconds)

V � E

30s
¼ E

30
þ E 0:05sð Þ þ E

60sþ 1
0:033s

:

With some algebra, this becomes

E ¼ V

30

� �
11:88s2 þ 6

0:594s4 þ 0:396s3 þ 0:894s2 þ 0:2sþ 0:2
: ð4:1Þ

Dividing the two polynomials by 6, and then multiplying through the denomina-
tor polynomial by the 30, (4.1) becomes (after replacing Vwith 1

s, the transform of the
unit step)
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E ¼ 1:98s2 þ 1
s 2:97s4 þ 1:98s3 þ 4:47s2 þ sþ 1ð Þ

or,

E ¼ 1:98s2 þ 1
2:97s s4 þ 0:667s3 þ 1:505s2 þ 0:337sþ 0:337ð Þ : ð4:2Þ

At this point we could simply plug the ratio of polynomials in (4.2) into a suitably
modified pulse.m, the code given at the end of the last chapter— and we will do that
at the end of this analysis — but for now let’s continue-on with the formal,
traditional approach.

Because we know we will have to do a partial fraction expansion of (4.2), we now
need to factor the denominator polynomial, a miserable task once performed in
yesteryears by complicated algebraic techniques. Since this is the twenty-first
century we will instead invoke a computer software package to do that job for us.1

The result is that the roots of

s4 þ 0:667s3 þ 1:505s2 þ 0:337sþ 0:337 ¼ 0

are the two conjugate pairs

�0:083� i0:542 and� 0:25� i1:029:

Thus,

s4 þ 0:667s3 þ 1:505s2 þ 0:337sþ 0:337

−

+
v(t)

t = 0

30 µH

60 µH

30Ω
0.033µF

0.05µF

e(t)Fig. 4.1 Power station
transformer model

1In MATLAB, for example, all that one does is type

solve ‘x^4þ 0:667∗x^3þ 1:505∗x^2þ 0:337∗xþ 0:337’
� �

and the roots almost instantly appear on the computer screen.
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¼ sþ 0:083þ i0:542ð Þ sþ 0:083� i0:542ð Þ sþ 0:25þ i1:1029ð Þ
� sþ 0:25� i1:1029ð Þ

¼ sþ 0:083ð Þ2 þ 0:542ð Þ2
h i

sþ 0:25ð Þ2 þ 1:029ð Þ2
h i

¼ s2 þ 0:166sþ 0:301
� �

s2 þ 0:5sþ 1:121
� �

and so

E ¼ 1:98s2 þ 1
2:97s s2 þ 0:166sþ 0:301ð Þ s2 þ 0:5sþ 1:121ð Þ ð4:3Þ

which we can write as the partial fraction expansion

E ¼ Asþ B

s2 þ 0:5sþ 1:121
þ Csþ D

s2 þ 0:166sþ 0:301
þ F

s
: ð4:4Þ

The value of F is easy to find: set (4.4) equal to (4.3), multiply through by s, and
set s ¼ 0 to get

F ¼ 1
2:97ð Þ 0:301ð Þ 1:121ð Þ ¼ 0:9979:

Actually, we know that F ¼ 1, exactly, since the circuit physics2 tells us that

lim
t!1 e tð Þ ¼ 1,

and the discrepancy of 0.0021 in the value of F (an error of less than 1
4 of 1%) is

simply round-off error in the coefficients of (4.3). We’ll use F ¼ 1, not 0.9979.
To find the other constants in the partial fraction expansion, multiply through

(4.3) set equal to (4.4) by the denominator in (4.3) to get

1:98s2 þ 1 ¼ 2:97s s2 þ 0:166sþ 0:301
� �

Asþ Bð Þ
þ 2:97s s2 þ 0:5sþ 1:121

� �
Csþ Dð Þ

þ 2:97 s2 þ 0:5sþ 1:121
� �

s2 þ 0:166sþ 0:301
� �

F:

Then, equating the coefficients of equal powers of s:

s1 : 0 ¼ 2:97 0:301Bþ 1:121Dþ 0:5ð Þ 0:301ð ÞF þ 1:121ð Þ 0:166ð ÞF½ �
or, using F ¼ 1,

0:301Bþ 1:121F ¼ �0:337: ð4:5Þ

2In the d-c steady state, the inductors have zero voltage drop and the capacitors are open-circuits.
The entire input, as t ! 1, appears across the 30 ohm resistor.
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s2 : 1:98
¼ 2:97 0:166Bþ 0:301Aþ 0:5Dþ 1:121C þ 1:121F þ 0:301F þ 0:5ð Þ 0:166ð ÞF½ �

or, using F ¼ 1,

0:301Aþ 0:166Bþ 1:121C þ 0:5D ¼ �0:838: ð4:6Þ
s3 : 0 ¼ 2:97 0:166Aþ Bþ 0:5C þ Dþ 0:5F þ 0:166F½ �

or, using F ¼ 1,

0:166Aþ Bþ 0:5C þ D ¼ �0:666: ð4:7Þ
s4 : 0 ¼ 2:97 Aþ C þ F½ �

or, using F ¼ 1,

Aþ C ¼ �1: ð4:8Þ
The equations (4.5) through (4.8) are four simultaneous algebraic equations in

four unknowns, and most easily solved by writing them in matrix form as

M

A
B
C
D

2
64

3
75 ¼

�0:337
�0:838
�0:666
�1

2
64

3
75

where

M¼
0

0:301
0:166
1

0:301
0:166
1
0

0
1:121
0:5
1

1:121
0:5
1
0

2
64

3
75:

We easily3 solve for A, B, C, and D by computing

3I’m being just a bit flippant here: I use the word easily because MATLAB did all the work. After

entering M and then the column vector b ¼
�0:337
�0:838
�0:666
�1

2
64

3
75, all I did was type inv(M) ∗ b and the

almost instant result was the solution column vector

�0:531
�0:058
�0:469
�0:285

2
64

3
75.
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A
B
C
D

2
64

3
75 ¼ M�1

�0:337
�0:838
�0:666
�1

2
64

3
75 ¼

�0:531
�0:058
�0:469
�0:285

2
64

3
75:

Thus,

E sð Þ ¼ � 0:531sþ 0:058
s2 þ 0:5sþ 1:121

� 0:469sþ 0:285
s2 þ 0:166sþ 0:301

þ 1
s
: ð4:9Þ

We physically expect to see exponentially damped sinusoidal oscillations (why?),
and so anticipate a need for the following transform pairs (which follow from (3.13),
(3.15), and (3.16)):

e�αt cos ωtð Þ $ sþ α

sþ αð Þ2 þ ω2
ð4:10Þ

and

e�αt sin ωtð Þ
ω

$ 1

sþ αð Þ2 þ ω2
: ð4:11Þ

We can get the quadratic denominators of E(s) in (4.9) into the form of these
transforms by writing

s2 þ asþ b ¼ sþ αð Þ2 þ ω2 ¼ s2 þ 2αsþ α2 þ ω2

and thus

2α ¼ a, or α ¼ 1
2
a

and

α2 þ ω2 ¼ b, or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� α2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� 1

4
a2:

r

So,

s2 þ 0:5sþ 1:121 ¼ sþ 0:25ð Þ2 þ 1:029ð Þ2

and

s2 þ 0:166sþ 0:301 ¼ sþ 0:083ð Þ2 þ 0:542ð Þ2:
Okay, now (finally!) we are in the homestretch. Using these last results in (4.9),

we have
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E sð Þ ¼ � 0:531sþ 0:058

sþ 0:25ð Þ2 þ 1:029ð Þ2 �
0:469sþ 0:285

sþ 0:083ð Þ2 þ 0:542ð Þ2 þ
1
s

¼ �0:531
sþ 0:109

sþ 0:25ð Þ2 þ 1:029ð Þ2
" #

� 0:469
sþ 0:608

sþ 0:083ð Þ2 þ 0:542ð Þ2
" #

þ 1
s

¼ �0:531
sþ 0:25

sþ 0:25ð Þ2 þ 1:029ð Þ2 �
0:25� 0:109

sþ 0:25ð Þ2 þ 1:029ð Þ2
" #

�0:469
sþ 0:083

sþ 0:083ð Þ2 þ 0:542ð Þ2 þ
0:608� 0:083

sþ 0:083ð Þ2 þ 0:542ð Þ2
" #

þ 1
s

¼ �0:531
sþ 0:25

sþ 0:25ð Þ2 þ 1:029ð Þ2 �
0:141

sþ 0:25ð Þ2 þ 1:029ð Þ2
" #

�0:469
sþ 0:083

sþ 0:083ð Þ2 þ 0:542ð Þ2 þ
0:525

sþ 0:083ð Þ2 þ 0:542ð Þ2
" #

þ 1
s

or, at last,

E sð Þ ¼ �0:531
sþ 0:25

sþ 0:25ð Þ2 þ 1:029ð Þ2 þ 0:075
1

sþ 0:25ð Þ2 þ 1:029ð Þ2 ð4:12Þ

�0:469
sþ 0:083

sþ 0:083ð Þ2 þ 0:542ð Þ2 � 0:246
1

sþ 0:083ð Þ2 þ 0:542ð Þ2 þ
1
s
:

Using the transform pairs in (4.10) and (4.11), we can now immediately write
down e(t) from (4.12):

e tð Þ ¼ �0:531e�0:25t cos 1:029tð Þ þ 0:075
e�0:25t sin 1:029tð Þ

1:029

� 0:469e�0:083t cos 0:542tð Þ � 0:246
e�0:083t sin 0:542tð Þ

0:542
þ 1

¼ �0:531e�0:25t cos 1:029tð Þ þ 0:073e�0:25t sin 1:029tð Þ
� 0:469e�0:083t cos 0:542tð Þ � 0:454e�0:083t sin 0:542tð Þ þ 1

or, at last,

e tð Þ ¼
1� e�0:25t 0:531 cos 1:029tð Þ � 0:073 sin 1:029tð Þf g

�e�0:083t 0:469 cos 0:542tð Þ þ 0:454 sin 0:542tð Þf g

2
4

3
5u tð Þ: ð4:13Þ

Wow, what a calculation!
Figure 4.2 shows a plot of (4.13) for the first 30 microseconds of e(t), which

reaches a peak of about 1.35 times the surge amplitude in just under 10 microseconds
after the start of the unit step surge. As expected, the response approaches 1 as
t ! 1.
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Now, suppose the pleasure at having successfully slogged your way through this
analysis is suddenly soaked with a bucket of cold water when you are told that, so
sorry, but somebody mis-read the numbers and accidently reversed the values of the
two inductors and two capacitors. In addition, that 30 ohm resistor should have been
3.0 ohms. Would you mind terribly re-doing the analysis? If it’s your boss asking,
well then, of course you’ll quickly reply ‘Hey, no problem!’ But we all know what
you’ll be thinking! But now, let’s do it the smart way, the modern way, using a
combination of Heaviside’s resistance operators (discussed in Problem 3.5 of the
previous chapter) and a computer.

Fig. 4.2 The surge response of the circuit in Fig. 4.1

−

+ L2

C2 R
C1

Z1

Z2

L1
t = 0 e(t)

v(t)

Fig. 4.3 A generalization
of Fig. 4.1
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Figure 4.3 shows the circuit of Fig. 4.1, but now with symbolic values. In
addition, it has been divided into two sections (each inside a dashed-line box) labeled
Z1 and Z2. These two Z’s are both functions of s, formed by using Heaviside’s
resistor operator insight. From this figure we can write the following two expressions
based on the basic idea of a voltage divider:

Z1 sð Þ ¼ sL1 ð4:14Þ
and

1
Z2 sð Þ ¼

1

sL2 þ 1
sC1

þ sC2 þ 1
R

ð4:15Þ

where

E sð Þ ¼ Z2 sð Þ
Z1 sð Þ þ Z2 sð ÞV sð Þ ¼ V sð Þ1Z1

Z2

þ 1: ð4:16Þ

Plugging (4.14) and (4.15) into (4.16), and doing the three minutes of pretty
straightforward algebra (and, since v(t) ¼ u(t), we have V sð Þ ¼ 1

s ), it is not at all
difficult to arrive at

E sð Þ ¼ s2L2C1 þ 1

s s4L1L2C1C2 þ s3 L1L2C1
R þ s2 L1C1 þ L2C1 þ L1C2ð Þ þ s L1R þ 1

� � : ð4:17Þ

Now, go back to the code pulse.m and make the obvious changes to arrive at
transformer.m:

%transformer.m/created by PJNahin for Electrical Transients
(7/17/2017)
L1=30;L2=60;C1=.033;C2=.05;R=30;
k1=L2*C1;k2=L1*L2*C1*C2;k3=L1*L2*C1/R;k4=L1*C1+L2*C1
+L1*C2;k5=L1/R;
syms s t
h=ilaplace((k1*s^2+1)/(s*(k2*s^4+k3*s^3+k4*s^2+k5*s
+1)));
t=linspace(0,30,250);
y=subs(h);
v=vpa(y);
plot(t,v,'-k')
xlabel('time in microseconds')
ylabel('voltage')

We can partially check (4.17) by first setting the component values to the original
numbers (as is done in transformer.m), and then watch the code produce Fig. 4.4,
which is virtually identical to Fig. 4.2. It is then a task of mere seconds to re-do the
problem with the ‘corrected’ values of L1¼ 60, L2¼ 30, C1¼ 0.05, C2¼ 0.033, and

112 4 Transients in the Transform Domain



R ¼ 3, with the result being Fig. 4.5. Now if the boss comes back with even more
new values for the components, there really isn’t any problem at all (assuming, of
course, that you have access to a computer running the right software).

4.2 Two Hard Problems from Yesteryear

Here’s another example of how the computer has changed transient analysis. Fig-
ure 4.6 shows a circuit I’ve taken from a 1935 textbook (note 16 in the Preface), a
circuit which the authors solved using a hugely laborious process very much like the
first part of the last section — only worse! In particular, the problem is to find the
battery current i(t) after the switch is closed at t ¼ 0, assuming there is no energy
initially stored in the circuit.

The equations describing the circuit are

Z1 sð Þ ¼ Rþ sL, ð4:18Þ
Z2 sð Þ ¼ R1 þ sL1, ð4:19Þ

Fig. 4.4 Compare with Fig. 4.2
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and

Z3 sð Þ ¼ R2 þ sL2 þ 1
sC

: ð4:20Þ

Then, since Z1 is in series with the parallel combination of Z2 and Z3, we have the
transform of the current as

Fig. 4.5 ‘Corrected’ response

−
+

Z2

Z3

R2

R1

L1

L2

Z1

R

C

L

i

t = 0
Fig. 4.6 What is the battery
current i(t)?
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I sð Þ ¼ V sð Þ
Z1 þ Z2Z3

Z2þZ3

or,

I sð Þ ¼ V sð Þ Z2 þ Z3

Z1Z2 þ Z1Z3 þ Z2Z3
: ð4:21Þ

Inserting (4.18), (4.19), and (4.20) into (4.21), and being careful with the algebra,
you should be able to show that

I sð Þ ¼ V sð Þ s
2 L1 þ L2ð ÞC þ s R1 þ R2ð ÞC þ 1

D sð Þ ð4:22Þ

where

D sð Þ ¼ s3 LL1C þ LL2C þ L1L2Cð Þ
þ s2 R1CLþ RCL1 þ L2RC þ R2CLþ R1CL2 þ L1R2Cð Þ
þs RR1C þ RR2C þ Lþ R1R2C þ L1ð Þ þ Rþ R1:

If we put (4.22) into our basic code from the end of Chap. 3, then all we have left
to do is declare the values of the components (along with the actual battery voltage).
I’ll use the values given in the 1935 textbook, values that may look just a bit chaotic
at first: R ¼ 1 ohm, R1 ¼ 17.7 ohms, R2 ¼ 5 ohms, L ¼ 0.011 H, L1 ¼ 0.112 H,
L2 ¼ 0.056 H, and C¼ 28.8 μF, along with a 30.5 volt battery. These are the values4

in the code KC1.m, for the I(s) given in (4.22). (The code’s name is in honor of the
authors of that 1935 textbook, Professors Kurtz and Corcoran.) When run, KC1.m
produced Fig. 4.7, a plot that required the support of five pages in the textbook of
really mind-numbing arithmetic. And every time any of the component values
change, another five pages of agony would be required, while the code only needs
to have its first line retyped.

4With the component values in ohms, millihenrys, and millifarads, time will be measured in
milliseconds. So, L ¼ 11, L1 ¼ 112, L2 ¼ 56, and C ¼ 0.0288. Now, why these curious values?
My guess is that Kurtz and Corcoran just used whatever components were available in a spare-parts
box on a shelf in their lab (they actually built the circuit of Fig. 4.6 and included a strip-chart
recording of i(t) in their book) and measured the values after-the-fact. By the way, their experi-
mental strip-chart recording looks exactly like the computer-generated Fig. 4.7.
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%KC1.m/created by PJNahin for Electrical Transients (7/18/
2017)
R=1;L=11;R1=17.7;L1=112;R2=5;L2=56;C=.0288;
k1=(L1+L2)*C;k2=(R1+R2)*C;k3=L*L1*C+L*L2*C+L1*L2*C;
k4=R1*C*L+R*C*L1+L2*R*C+R2*C*L+R1*C*L2+L1*R2*C;
k5=R*R1*C+R*R2*C+L+R1*R2*C+L1;k6=R+R1;
syms s t
h=ilaplace((k1*s^2+k2*s+1)/(s*(k3*s^3+k4*s^2+k5*s+k6)));
h=30.5*h;
t=linspace(0,50,250);
y=subs(h);
v=vpa(y);
plot(t,v,'-k')
xlabel('time in milliseconds')
ylabel('current in amperes')

The reason the code is called KC1.m is because there is a KC2.m, a code that
solves another problem from that same textbook. That circuit, the one we are going
to study next, is shown in Fig. 4.8, and it involves a subject we touched-on briefly at
the end of Chap. 1 and in Chap. 2— magnetic coupling between different inductors
in the circuit. There we discussed the impact of magnetic coupling on the natural
frequency of a tuned pair of circuits. Our problem here is to find the actual transient
primary and secondary currents i1(t) and i2(t), respectively, for t� 0 when the switch

Fig. 4.7 The battery current for the circuit in Fig. 4.6

116 4 Transients in the Transform Domain



is closed at t¼ 0 when (unlike in Chap. 2) the coupled circuits have energy loss. The
component values are R1 ¼ 3.5 ohms, R2 ¼ 0.8 ohms, L1 ¼ 0.093 H, L2 ¼ 0.011 H,
C1 ¼ 150 μF, and C2 ¼ 168 μF.

The Kirchhoff voltage loop law equations for Fig. 4.8 are

L1
di1
dt

þ R1i1 þ 1
C1

Z t

0
i1 xð Þdx�M

di2
dt

¼ E ð4:23Þ

and

L2
di2
dt

þ 1
C2

Z t

0
i2 xð Þdxþ R2i2 �M

di1
dt

¼ 0 ð4:24Þ

where M is a positive number. Recall from Chap. 1 why the plus-minus signs are in
front of M in (4.23) and (4.24): because the polarity of the induced voltage due the
mutual inductance in both the primary and secondary circuits can indeed have either
sign, depending on the relative sense of the windings of the coils in the individual
inductors. Kurtz and Corcoran used the plus sign in both circuits, and we’ll follow
their lead.

So, transforming (4.23) and (4.24),

L1sI1 þ R1I1 þ 1
sC1

I1 þMsI2 ¼ E

s

and

L2sI2 þ 1
sC2

I2 þ R2I2 þMsI1 ¼ 0:

Re-writing these last two equations in the form for Cramer’s rule,

L1sþ R1 þ 1
sC1

� �
I1 þMsI2 ¼ E

s
ð4:25Þ

−

+

R2

R1 C1

L1 L2

i2i1

C2

E

t=0

M

Fig. 4.8 Magnetically
coupled, un-tuned circuit
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and

MsI1 þ L2sþ R2 þ 1
sC2

� �
I2 ¼ 0: ð4:26Þ

The system determinant, D, is

D ¼
L1sþ R1 þ 1

sC1
Ms

Ms L2sþ R2 þ 1
sC2

							
							

¼ L1sþ R1 þ 1
sC1

� �
L2sþ R2 þ 1

sC2

� �
�M2s2

or,

D ¼ C1L1s2 þ R1C1sþ 1
sC1

� �
C2L2s2 þ R2C2sþ 1

sC2

� �
�M2s2: ð4:27Þ

From Cramer’s rule,

I1 ¼

E

s
Ms

0 L2sþ R2 þ 1
sC2

							
							

D

and

I2 ¼

L1sþ R1 þ 1
sC1

E

s
Ms 0

					
					

D
:

Doing the algebra, we soon have

I1 sð Þ ¼ E
s2L2C1C2 þ sR2C1C2 þ C2

k3s4 þ k4s3 þ k5s2 þ k6sþ 1
ð4:28Þ

where

k3 ¼ C1L1C2L2 �M2C1C2, k4 ¼ C1L1R2C2 þ R1C1C2L2,
k5 ¼ C1L1 þ R1C1R2C2 þ C2L2, k6 ¼ R1C1 þ R2C2:

Also,

I2 sð Þ ¼ �EM
s2C1C2

k3s4 þ k4s3 þ k5s2 þ k6sþ 1
: ð4:29Þ
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The codeKC2.m carries out the inverse transform evaluation of (4.28) and (4.29)
over the first 50 milliseconds after the switch is closed, and generates the plot shown
in Fig. 4.9. In that figure the solid curve is the primary current, while the dashed
curve is the secondary current. As those curves show, both transient currents look
noticeably non-sinusoidal, a feature directly due to the energy loss mechanisms (R1

and R2) in the primary and secondary circuits.

%KC2.m/created by PJNahin for Electrical Transients (7/19/
2017)
E=30;R1=3.5;R2=0.8;L1=93;L2=11;M=26;C1=0.15;C2=0.168;
k1=L2*C1*C2;k2=R2*C1*C2;k3=C1*L1*C2*L2-M*M*C1*C2;
k4=C1*L1*R2*C2+R1*C1*C2*L2;
k5=C1*L1+R1*C1*R2*C2+C2*L2;k6=R1*C1+R2*C2;
syms s t
h=ilaplace((k1*s^2+k2*s+C2)/(k3*s^4+k4*s^3+k5*s^2+k6*s
+1));
h=E*h;
t=linspace(0,50,300);
y=subs(h);
v=vpa(y);

(continued)

Fig. 4.9 Primary (solid) and secondary (dashed) currents in Fig. 4.8. (Again, Kurtz and Corcoran
actually constructed the circuit in Fig. 4.8 and included strip-chart recordings of the primary and
secondary currents in their book. The computer-generated curves in Fig. 4.9 are extremely close to
the experimental recordings.)
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plot(t,v,'-k')
hold on
k7=C1*C2;
h=ilaplace((k7*s^2)/(k3*s^4+k4*s^3+k5*s^2+k6*s+1));
h=-E*M*h;
y=subs(h);
v=vpa(y);
plot(t,v,'--k')
xlabel('time in milliseconds')
ylabel('current in amperes'

4.3 Gas-Tube Oscillators

In this problem we return to a direct use of the Laplace transform, without any
computer involvement, to study a circuit with a new (for this book) type of electrical
component: the neon gas bulb.5 A simple and easy to understand circuit using such a
gas bulb is shown in Fig. 4.10, where we suppose that the bulb is initially ‘off,’ that
is, not conducting current. Then, we close the switch S at time t ¼ 0. What happens
next?

(1) If the bulb voltage drop (v) across the bulb terminals is less than some critical
voltage Vs (and it will be at time t¼ 0 if we assume that C is initially uncharged),
then the gas is a non-conductor and the bulb remains an open circuit.

(2) The capacitor C begins to be charged by the 90-volt battery through the resistor
R and so the capacitor voltage (that is, v) rises.

(3) When the capacitor voltage v reaches Vs the gas ionizes or strikes (that is, the
electric field inside the bulb has become large enough that the valence electrons
in the neon atoms are ripped-free from their orbits and the gas becomes a mix of

−

+
90 volts

S R v

C
NE-2

Neon gas bulb

Fig. 4.10 What does this
circuit do?

5In this section we will be discussing, in particular, the NE-2 gas bulb, which is about the size of a
finger-tip (perhaps a bit smaller), and available today for about 15 cents each if bought in lots of ten
or more. It has been around for decades (I remember building the NE-2 circuits discussed in this
section in the mid-1950s when I was in high school).
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free negative charges and positive ions). The free electrons therefore possess,
temporarily, extra energy. The gas itself is now a very good conductor.

(4) Once ionized, the now highly conductive gas presents a low-resistance path
across the capacitor, and so the capacitor very rapidly dumps some of its charge
through the bulb. The charge dump continues until v drops below some critical
voltage VE < Vs, at which point the gas in the bulb recombines and the bulb
returns to being a non-conductor.

(5) The recombination of the previously ionized gas means that the extra energy
once possessed by the free electrons (now no longer free) is given up as radiation
at a wavelength characteristic of the gas (reddish-yellow for neon: blue if the
bulb gas was argon, instead). That is, the bulb emits a flash of visible light.

(6) The circuit is now back to its original state, and the entire process begins anew.
The visual result is a periodically blinking bulb, at a rate that is easily calculated,
and what follows is how to do that.

After the gas recombines we have v ¼ VE, with the capacitor recharging back
towards 90 volts. When v reaches VS the gas ionizes again . . . now read (3)— (6). In
summary, the bulb is off and the capacitor is recharging during the time it takes for
the capacitor to exponentially charge from v ¼ VE to v ¼ VS with a time constant of
RC and a battery voltage of 90 volts. At v ¼ VS the bulb turns on, v quickly falls to
VE, the bulb flashes, and it all starts over again. The general equation for v while C is
charging is

v ¼ 90 1� e�t=RC

 �

,

and what we want to know is how long it takes v to go from VE to VS. Let t ¼ T1 and
t ¼ T2 be such that

v T1ð Þ ¼ 90 1� e�T1=RC

 �

¼ VE

and

v T2ð Þ ¼ 90 1� e�T2=RC

 �

¼ VS:

The time duration we are interested in, then, is (after a bit of easy algebra) given
by

Δt ¼ T2 � T1 ¼ RCln
90� VE

90� VS

� �
: ð4:30Þ
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No two gas bulbs are identical (it is virtually certain that two randomly picked
bulbs will have different values of VS and VE), but for the NE-2 the values are
typically somewhere in the intervals 70 volts < VS < 80 volts and
50 volts < VE < 55 volts. Suppose, for example, that VE¼ 52 volts and VS¼ 75 volts.
If RC ¼ 1 second (say, R ¼ 1 megohm and C ¼ 1 microfarad) then

Δt ¼ ln
90� 52
90� 75

� �
¼ 0:93 seconds:

That is, the NE-2 bulb in the circuit of Fig. 4.10 would flash about 65 times per
minute. This circuit, called a relaxation oscillator, is in a never-ending state of
transient behavior.

This was all pretty straightforward, but matters are somewhat less obvious for the
NE-2 circuit of Fig. 4.11. Now we have two bulbs, and neither one has a capacitor
directly across it as in Fig. 4.10. The claim is that the pair of bulbs alternately turn
on-and-off at a steady rate; our problem is to show that this is so, as well as to
calculate the on-off rate for each bulb.

To understand the behavior of the pair of bulbs in Fig. 4.11, you need to have a
slightly refined idea on what happens after a gas tube strikes. Once ionized, the gas
doesn’t simply become a low-resistance path (or, in the most extreme version, a
‘short’), but rather it maintains a constant voltage drop of VC (where VE < VC < VS)
across the bulb terminals.6 As long as the external circuitry is capable of providing a
voltage drop of VC across the bulb, then the external circuitry will ‘absorb’ any
excess voltage in whatever way necessary to be consistent with Kirchhoff’s laws. If
the external circuitry cannot support a voltage drop of at least VE across the bulb,
however, then the bulb will turn off and become a non-conductor once again. When
a capacitor is connected directly across a bulb, as in Fig. 4.10, this refinement really

−

+
e2e1

B2B1

90 volts

NE-2 NE-2

R1 = 2.2 MΩ R2 = 2.2MΩ

C = 0.1mfd

SFig. 4.11 What does this
circuit do?

6The constant voltage drop behavior of an ionized gas tube once made it a favorite of designers of
voltage-regulated power supplies, and of other circuitry needing a fixed reference voltage. A battery
could do that, of course, but batteries eventually grow old, die, and need to be replaced. What is
really wanted is an automatic reference voltage source guaranteed to always be available, and the
gas tube filled the bill. It has, however, been replaced in modern circuitry with the solid-state Zener
diode, which can be manufactured to provide just about any reference voltage desired.
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doesn’t come into play, but for Fig. 4.11 it will prove to be central to our analysis.
For what follows, I’ll take VC ¼ 60 volts.

To start, we’ll take C as uncharged, and so initially C has a zero voltage drop
across its terminals, and bulbs B1 and B2 are both off (that is, non-conducting).
Then, we close S. The bulb node voltages e1 and e2 instantly jump to 90 volts but,
because B1 and B2 are not perfectly identical, one will strike before the other.
Suppose it is B1. Then the (constant) voltage drop across B1 is VC ¼ 60 volts (read
the previous paragraph again); e1 is said to be fixed or clamped to 60 volts.

Since the voltage drop across C cannot change instantly, then the B2 voltage
e2 ¼ 60 volts, too, to keep the instantaneous voltage drop across C equal to zero.
Note, carefully, however, that e2 is not clamped (B2 is not conducting) and so can
change. With e1 and e2 now both less than 90 volts, there is current in both R1 and
R2, with both currents entirely flowing through B1 (remember, B2 is off). The
current in R2, in particular, flows through C on its way to B1, and so charges C,
resulting in e2 increasing.

Writing Kirchhoff’s current law at the e2 node (not to be an echo chamber,
remember that B2 is off and so that bulb’s current is zero), and using the fact that
R1 ¼ R2 in Fig. 4.11 and so I’ll call both resistors R, we have

90� e2
R

¼ C
d

dt
e2 � e1ð Þ ¼ C

de2
dt

� C
de1
dt

:

But since e1 is clamped (which means
de1
dt

¼ 0), we then have

90� e2 ¼ RC
de2
dt

: ð4:31Þ

Laplace transforming (4.31) gives

90
s
� E2 ¼ RC sE2 � e2 0þð Þ½ �

or, as e2(0+) ¼ 60,

90
s
� E2 ¼ RCsE2 � 60RC

and so, with a little rearranging,

E2 sð Þ ¼ 90
s RCsþ 1ð Þ þ

60RC
RCsþ 1

: ð4:32Þ

Making a partial fraction expansion of the first term on the right-hand-side of
(4.32), we have (with A and B as constants to be determined)
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90
s RCsþ 1ð Þ ¼

A

s
þ B

RCsþ 1
:

Thus, multiplying through by s,

Aþ sB

RCsþ 1
¼ 90

RCsþ 1ð Þ
and so, setting s ¼ 0, we have A ¼ 90. Also, multiplying through by (RCs + 1),

A RCsþ 1ð Þ
s

þ B ¼ 90
s

and so, setting s ¼ � 1/RC, we have B ¼ � 90RC. Thus, (4.32) becomes

E2 sð Þ ¼ 90
s
� 90RC

RCsþ 1ð Þ þ
60RC

RCsþ 1

or,

E2 sð Þ ¼ 90
s
� 30

1

sþ 1
RC

: ð4:33Þ

Returning to the time domain,

e2 tð Þ ¼ 90� 30e�
t

RC, t � 0,

a result we perhaps should have seen (in retrospect) earlier. In any case, as claimed,
e2 rises from 60 volts (at t ¼ 0) towards 90 volts.

The bulb voltage e2 never gets near 90 volts, however, because when e2 reaches
75 volts B2 strikes and therefore clamps e2 to VC ¼ 60 volts. In other words, e2
instantly drops by 15 volts, and so e1 must instantly drop by 15 volts as well, because
the voltage drop across C cannot change instantly. That is, e1 goes from 60 volts to
45 volts which, being less than VE ¼ 52 volts, causes B1 to turn off. The situation is
now as follows: e1 ¼ 45 volts, B1 is off, e2 is clamped to 60 volts, and B2 is
on. Without any loss in generality in what follows, we can think of this situation as
defining a new t ¼ 0 instant.

Just as before, in our initial calculations, there is current in both R1 and R2 (both
currents flow into B2), with the current in R1 in particular charging C which causes
e1 to increase. (Perhaps now you already see what e1 does, but let’s go through the
formal steps, just to be sure.) Writing Kirchhoff’s current law at the e1 node
(remember that B1 is off and so that bulb’s current is zero), we have

90� e1
R

¼ C
d

dt
e1 � e2ð Þ ¼ C

de1
dt

� C
de2
dt

:

or, since e2 is clamped (which means de2
dt ¼ 0), we then have
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90� e1 ¼ RC
de1
dt

, ð4:34Þ

or, as e1(0+) ¼ 45 volts, taking the Laplace transform of (4.34) says

90
s
� E1 ¼ RC sE1 � e1 0þð Þ½ � ¼ sRCE1 � 45RC:

Going through the partial fraction expansion as before for E2, we arrive at

e1 tð Þ ¼ 90� 45e�
t

RC, t � 0:

So, e1 rises from 45 volts towards 90 volts. But when it reaches 75 volts B1 strikes
and so clamps e1 to 60 volts. That is, e1 drops suddenly by 15 volts, and of course so
must e2 (to keep the voltage drop across C instantaneously unchanged). That is, e2
drops suddenly from 60 volts to 45 volts, and thus B2 turns off. This should all sound
pretty familiar by now.

We now observe that the conditions in the circuit are just as they were at the
previous t ¼ 0 instant, but with the roles of e1 and e2, and of B1 and B2, reversed.

What happens from now on should be clear: the bulbs B1 and B2 alternately turn
on and off at a rate determined by how long it takes the voltage 90� 45e�

t
RC (starting

at t ¼ 0 with a value of 45 volts) to rise to 75 volts. If we call this time T, then

90� 45e�
T
RC ¼ 75,

an equation easily solved to give

T ¼ RCln 3ð Þ:
For the circuit values in Fig. 4.11,

T ¼ 2:2� 106
� �

10�7
� �

ln 3ð Þ ¼ 0:242 seconds:

The neon bulbs in this circuit (called a free-running astable multi-vibrator
oscillator) switch back-and-forth from being on to off to on again like two kids on
a teeter-totter, spending about a quarter second in one state before transitioning to the
other state. The rhythmic, on-off flashes of B1 and B2 are synchronized, but 180

�

out-of-phase.

4.4 A Constant Current Generator

In this final section of the chapter, we’ll combine Heaviside’s generalized impedance
idea, the Laplace transform, and computer processing, to study the circuit of
Fig. 4.12. It appears to be a not overly-complicated one, consisting of just two
identical inductors, three identical capacitors, an a-c voltage source, and a single
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resistor. The frequency of the a-c source is not arbitrary, but rather has been adjusted
(you’ll see why, soon) so that

ω0
2 ¼ 2

LC

where, of course,

ω0 ¼ 2πf 0

and f0 is the frequency in hertz. Before the switch is closed at t¼ 0, there is no stored
energy in the circuit. To understand why I’ve enclosed everything but the resistor
inside the dashed box, let’s calculate the current in the in the resistor: I think you’ll
be (greatly) surprised at what we find.

If we call the transformed current in the voltage source I(s), then

I sð Þ ¼ V sð Þ � X sð Þ
sLþ 1

sC

¼ V sð Þ � X sð Þ½ � sC

s2LC þ 1
: ð4:35Þ

Now, from Kirchhoff’s current law at the x(t) node

I sð Þ ¼ X sð Þ
1
sC

þ X sð Þ
sLþ 1

sC þ R
¼ X sð Þ sC þ sC

s2LC þ sRC þ 1

� 
, ð4:36Þ

and so, expanding (4.35) and using (4.36),

V sð Þ sC

s2LC þ 1
� X sð Þ sC

s2LC þ 1
¼ X sð Þ sC þ sC

s2LC þ sRC þ 1

� 

or,

V sð Þ 1
s2LC þ 1

¼ X sð Þ 1
s2LC þ 1

þ 1þ 1
s2LC þ sRC þ 1

� 

−

+
C

v(t) = U sin(ω0t)

CC

R

LL
x(t)

t = 0 iR

Fig. 4.12 A remarkable
circuit
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or,

V sð Þ ¼ X sð Þ 1þ s2LC þ 1þ s2LC þ 1
s2LC þ sRC þ 1

� 

which becomes, after some algebra,

V sð Þ ¼ X sð Þ s4 LCð Þ2 þ s3RLC2 þ s24LC þ s2RC þ 3
s2LC þ sRC þ 1

" #
: ð4:37Þ

Solving for X(s),

X sð Þ ¼ V sð Þ s2LC þ sRC þ 1

s4 LCð Þ2 þ s3RLC2 þ s24LC þ s2RC þ 3
: ð4:38Þ

The transformed current in the resistor is

IR sð Þ ¼ X sð Þ
sLþ 1

sC þ R
¼ X sð Þ sC

s2LC þ sRC þ 1

or, using (4.38),

IR sð Þ ¼ V sð Þ sC

s4 LCð Þ2 þ s3RLC2 þ s24LC þ s2RC þ 3

where, from the transform pair in (3.16),

V sð Þ ¼ U
ω0

s2 þ ω0
2
:

Thus, looking back at (4.38), we have

IR sð Þ ¼ Uω0C
s

s2 þ ω0
2ð Þ s4 LCð Þ2 þ s3RLC2 þ s24LC þ s2RC þ 3
h i : ð4:39Þ

The next, traditional step in this analysis would be to invert IR(s) back to iR(t) by
doing a partial fraction expansion, a step that looks pretty intimidating because the
denominator in (4.39) is a sixth degree polynomial! Of course it is already partially
factored with that (s2 + ω0

2) factor, but we are still left with the fourth degree
polynomial in the square brackets. Now, before you fall over in a dead faint, let me
tell you we are not going to factor that fourth degree polynomial. Since all the
coefficients are symbolic (except for the 3), that is, the coefficients are in terms of R,
L, and C, such a factoring would be pretty hard to do. But even if we had numerical
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values for the coefficients, factoring a fourth degree polynomial isn’t a trivial task
unless we have a computer handy (look back at note 1).7

You, of course, know what we are going to do instead— we are going to turn our
standard inverse-Laplace transformMATLAB computer code loose on (4.39). Before
I do that, however, let me outline how a traditional analysis would proceed, and that
will make you appreciate the computer code approach even more. Our first step
would be to write

IR sð Þ ¼ Uω0C
Asþ B

s2 þ ω0
2
þ Ds3 þ Es2 þ Fsþ G

s4 LCð Þ2 þ s3RLC2 þ s24LC þ s2RC þ 3

" #
, ð4:40Þ

where A, B, D, E, F, and G are constants to be determined. One way to do that is to
put (4.40) over a single denominator (by cross-multiplying) and then setting the
coefficient of each power of s in the resulting numerator equal to the coefficient of
the corresponding power of s in the numerator of (4.39). This gives six equations in
six unknowns:

s5 : A LCð Þ2 þ D ¼ 0

s4 : A RLC2
� �þ B LCð Þ2 þ E ¼ 0

s3 : A 4LCð Þ þ B RLC2
� �þ F þ Dω0

2 ¼ 0

s2 : A 2RCð Þ þ B 4LCð Þ þ Gþ Eω0
2 ¼ 0

s1 : A 3ð Þ þ B 2RCð Þ þ Fω0
2 ¼ 1

s0 : B 3ð Þ þ Gω0
2 ¼ 0:

This system is, of course, theoretically solvable by Cramer’s rule since the
number of equations equals the number of unknowns but, holy cow, what a job!
To solve for each variable requires doing a separate six-by-six determinant for a
numerator, divided by a common denominator that also requires doing a six-by-six
determinant (the so-called system determinant). If you are lucky enough to stumble
on the idea of solving first for G, you’ll find that G ¼ 0 if ω0

2 ¼ 2
LC (and so here is

where that seemingly out-of-left-field frequency makes its first appearance), which
in turn implies that B¼ 0, which then (after yet more algebra) lets you determine that
A ¼ � 1. (I’ll let you confirm all these claims, if you are so inclined.) But that still
leaves D, E, and F. What are they?

One possible answer is — maybe we don’t care. That no doubt must seem like
heresy in a book on transients, unless you take the position that it is the non-transient
behavior of the circuit that is of real interest, and that all we really want to know
about the transient behavior is: how long does it last? That entire second term in the

7A standard feature in all ‘early’ (that is, pre-MATLAB) electrical engineering textbooks was an
appendix on how to factor polynomials of degree greater than two. Those appendices were (in my
opinion) the ultimate in brain-deadening drudgery to read.
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square brackets of (4.40), where D, E, F, and G appear, might be nothing but
transient terms which will eventually disappear.

To determine if that entire second term is entirely transient, we don’t actually
have to know D, E, F and G. All we have to know is that each of the factors of the
fourth degree denominator polynomial has a negative real part. That will insure, if
we do a partial fraction expansion of the second term, that the time domain term
associated with each factor will exponentially decay.8 And, as a demonstration that
the number gods are not completely malevolent, there is a wonderful algorithm that
determines if a polynomial of any degree has all its factors with negative real parts,
through an examination of nothing but the coefficients of the polynomial. Called the
Routh-Hurwitz algorithm,9 it involves only the easy calculation of a series of two-
by-two determinants.

Okay, with ‘what we would do if we didn’t have a computer’ out of the way,
here’s what a computer can do. The MATLAB code constant.m calculates and plots
iR(t) from (4.39), assuming that the peak amplitude of the voltage source is U ¼ 1
volt, L ¼ 1 mH ¼ 1, 000 μH, C ¼ 0.5 μF (these values for L and C give a value of
f0 ¼ 10.066 kHz), and R ¼ 20 ohms. (All these values have been arbitrarily picked.)
The resistor current is shown, for the first 600 microseconds, in Fig. 4.13 and you see
that, after an initial transient of about 300 microseconds duration, the current settles
down to a steady-state of a pure sinusoid at frequency f0 with a peak amplitude of
about 0.03 A ¼ 30 mA.

%constant.m/created by PJNahin for Electrical Transients
(8/15/2017)
R=20;L=1000;C=0.5;U=1;
w02=2/(L*C);k0=U*C*sqrt(w02);
k1=(L*C)^2;k2=R*L*(C^2);k3=4*L*C;k4=2*R*C;
syms s t
h=ilaplace(k0*s/((s^2+w02)*(k1*s^4+k2*s^3+k3*s^2+k4*s
+3)));
t=linspace(0,600,250);
current=subs(h);
current=vpa(current);
plot(t,current,'-k')
xlabel('time in microseconds')
ylabel('resistor current in amperes')

8Just to be clear, a factor is of the form (s � α), where the real part referred to is the real part of α.
Any factor with a zero real part will be one of a pair of imaginary conjugates that, together, will give
an undamped sinusoid. Of course, there will be no factors with a positive real part because that
would mean iR(t) would have a term that grows with time and, for a circuit made only of passive
components, that is physically impossible.
9Named after the English mathematician Edward Routh (1831–1907) who formulated the algorithm
in 1887, and the German mathematician Adolf Hurwitz (1859–1919) who independently made the
same discovery in 1895. You can find their algorithm in any good book on control theory (there are
several people who have put free-to-use computer codes on the Web that implement the algorithm).
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What makes this really remarkable, however, is what the code produces for other
values of R. Figure 4.14 shows iR(t) for R ¼ 40 ohms, 100 ohms, 200 ohms, and
300 ohms. In each case the current settles down, after an initial transitory interval
(which increases in duration as R increases) to the same peak amplitude sinusoid!
We appear to have a constant a-c current generator (same output current, indepen-
dent of R), and so now you see why the code has the name it does. This is such
‘interesting’ behavior, from such a simple circuit, that it is worth a little time to see if
we can understand it from fundamental, basic, a-c steady-state concepts. For that, I’ll
assume you recall from previous studies that the a-c steady-state impedances for an
inductor L and a capacitor C are iωL and 1

iωC, respectively, where of course i ¼
ffiffiffiffiffiffiffi�1

p
.

Figure 4.15 shows the circuit of Fig. 4.12, with the capital letters U, X, Is, and IR
representing a-c steady-state peak values. That is, they are complex-valued quanti-
ties that electrical engineers call phasors (for phase vectors). The voltage source
current is

Is ¼ U � X

iωLþ 1
iωC

¼ iωC

1� ω2LC
U � Xð Þ: ð4:41Þ

That current flows into the node with voltage X, where it splits along two paths to
ground (with one of those paths being that of the current in R). In such a case the
fraction of the current that flows into one path is the ratio of the impedance of the
other path to the sum of the two path impedances. So,

Fig. 4.13 The resistor current in the circuit of Fig. 4.12 for R ¼ 20 ohms
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IR ¼ X

iωLþ 1
iωC þ R

¼ Is
1

iωC

iωLþ 1
iωC þ Rþ 1

iωC

¼ 1
2� ω2LC þ iωRC

Is:

That is,

IR ¼ iωC

1� ω2LC þ iωRC
X ¼ 1

2� ω2LC þ iωRC
Is: ð4:42Þ

Now, suppose we set 2 � ω2LC ¼ 0. Then, (4.41) and (4.42) become

Fig. 4.14 The resistor current (time in microseconds/current in amperes) for R ¼ 40 (top left),
R ¼ 100 (top right), R ¼ 200 (bottom left), and R ¼ 300 ohms (bottom right)

−

+
C

R

CLL

U

X
C

IR

Is
Fig. 4.15 Figure 4.12 in the
a-c steady-state

4.4 A Constant Current Generator 131



Is ¼ �iωC U � Xð Þ ð4:43Þ
and

IR ¼ iωC

�1þ iωRC
X ¼ 1

iωRC
Is: ð4:44Þ

Putting Is from (4.43) into (4.44),

iωC

�1þ iωRC
X ¼ �iωC U � Xð Þ

iωRC

which, with a bit of algebra, can be solved for X to give

X ¼ 1� iωRCð ÞU: ð4:45Þ
Then, using (4.45) in (4.44), we have

IR ¼ iωC

�1þ iωRC
1� iωRCð ÞU

or, at last,

IR ¼ �iωCU: ð4:46Þ
That is, IR does not depend on R and we do indeed have a constant current

generator with the peak amplitude of the steady-state sinusoidal current10 being
given by ωCU where ω2 ¼ 2

LC. (Look back at the lead factor in (4.39).) Inserting the
values for ω, C, and U used to generate the plots of Figs. 4.13 and 4.14, we see that
the peak current amplitude is

ωCU ¼ 2πf 0CU ¼ 2π 10:066� 103
� �

0:5� 10�6
� �

1ð Þ ¼ 0:0316 amperes
¼ 31:6 mA,

in excellent agreement with Figs. 4.13 and 4.14.

Problems

4.1 The energy dissipated in the load resistor R of the constant current generator of
Fig. 4.15 must (since we believe energy is conserved) come from the voltage
source. Find an expression for the power output of the voltage source and show
it is equal to the power dissipated by R. (Of course, if the voltage source is not
capable of providing the required power, the circuit is no longer a constant
current generator.)

10The physical significance of the –i factor in (4.46) is that there is a 90
�
phase difference between

the source voltage and the load current.
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Chapter 5
Transmission Lines

5.1 The Partial Differential Equations of Transmission
Lines

So far, all of our work has been with circuits made from what are called lumped
components. That is, from inductors, capacitors, and resistors that can be thought of
as each having their behavior concentrated at a point in space. The time domain
analysis of such circuits involves the mathematics of ordinary differential equations,
in which there is but a single independent variable, t for time. In this final chapter of
this introductory book I’ll show you the very elementary beginnings of the theory of
circuits constructed from distributed components; that is, circuits in which induc-
tance, capacitance, and resistance are not located at discrete points, but rather are
smeared out in space along one (or more) spatial directions. Now when we talk of a
current or a voltage in such a circuit, we won’t just specify its value as a function of
time, but also as a function of space, as well. That is, as i(x, t) or v(x, t). The
mathematics of such circuits is that of partial differential equations, because there
are multiple (for us, just two, x and t) independent variables.

In this chapter we’ll only just dip our toes into a discussion of transmission lines,
as the subject is so broad as to require a substantial book of its own. Indeed, back in
my student days at Stanford it was an entirely separate course: the very next term
after EE116 on transients (the experience that inspired this book), I took EE117 on
transmission lines. In this chapter, then, I’ll tell you just enough for you to gain an
appreciation for the richness of the subject, and for you to be able to follow the
historically important transient analyses of the Atlantic Cable, and of Heaviside’s
discovery of the infinitely long distortionless transmission line. We’ll end with a
brief look at how adding the realism of a finite length complicates matters.

The geometry of a two-conductor (this includes coaxial) transmission lines is
given in Fig. 5.1, which shows an arbitrary, very short (Δx) length of the line. The
so-called distributed parameters of the line are
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R ¼ resistance per unit length (ohmic resistance of the conductors)
L ¼ inductance per unit length (self and mutual inductance of the conductors)
G ¼ conductance per unit length (leakage path resistance between the conductors)
C ¼ capacitance per unit length (capacitive coupling between the conductors)

where length is measured along the two conductors (which is why the resistance and
inductance in each wire is 1

2RΔx and 1
2 LΔx, respectively, in Fig. 5.1), while the

capacitance and conductance1 are shunt (parallel) effects between the conductors.
Starting at the upper-left point of Fig. 5.1 (where the current i(x, t)

enters the upper-left 1
2RΔx resistance), and summing voltage drops around the

outer closed loop of the circuit, Kirchhoff’s voltage law says

i x; tð Þ1
2
RΔxþ 1

2
LΔx

∂i xþ Δx; tð Þ
∂t

þ v xþ Δx; tð Þ þ i xþ Δx; tð Þ1
2
RΔx ð5:1Þ

þ1
2
LΔx

∂i x; tð Þ
∂t

� v x; tð Þ ¼ 0,

where partial derivatives are used because we have two independent variables. With
a bit of rearranging, (5.1) becomes

� v xþ Δx; tð Þ � v x; tð Þ½ � ¼ 1
2
RΔx i x; tð Þ þ i xþ Δx; tð Þ½ � ð5:2Þ

þ1
2
LΔx

∂
∂t

i xþ Δx; tð Þ þ i x; tð Þ½ �:

Then, dividing through (5.2) by Δx, we have

−

+

−

+

i(x,t)

i(x,t)

v(x,t)

RΔx

GΔx

i(x+Δx,t)

v(x+Δx,t)

i(x+Δx,t)

CΔx

1
2

RΔx1
2LΔx

Δx

1
2

LΔx1
2

Fig. 5.1 Geometry of a two-conductor transmission line

1Conductance is the reciprocal of resistance, and at one time had the units of mhos (ohms spelled
backward, thus showing that electrical engineers are not entirely without a sense of humor). In 1971,
however, an international committee decided that was a bit too flippant and we now measure
conductance in the units of siemens, named after the German industrialist Ernst Werner Siemens
(1816–1892). (Hard-core electrical engineers still use mhos, however.)
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� v xþ Δx; tð Þ � v x; tð Þ½ �
Δx

¼ 1
2
R i x; tð Þ þ i xþ Δx; tð Þ½ � þ 1

2
L
∂
∂t

i xþ Δx; tð Þ þ i x; tð Þ½ �

and so, if we let Δx ! 0, we have i(x + Δx, t) ! i(x, t) and we arrive at

�∂v
∂x

¼ iRþ L
∂i
∂t

: ð5:3Þ

Once we have (5.3) down on paper we realize (perhaps) that we should have been
able to skip the math and to have argued directly that the loss of voltage (the meaning
of the minus sign) along the line per unit length is equal to the ohmic voltage drop
per unit length plus the inductive voltage drop per unit length. With that physical
insight as inspiration, we can immediately write a similar equation for the loss of
current along the line per unit length as equal to the leakage current between the two
conductors per unit length plus the current needed to charge the line’s capacitance
between the two conductors per unit length. That is,

� ∂i
∂x

¼ Gvþ C
∂v
∂t

: ð5:4Þ

If we differentiate (partially) our two equations, (5.3) with respect to x, and (5.4)
with respect to t, we have

�∂2v

∂x2
¼ R

∂i
∂x

þ L
∂2i

∂x∂t
ð5:5Þ

and

� ∂2i

∂t∂x
¼ G

∂v
∂t

þ C
∂2v

∂t2
: ð5:6Þ

Since x and t are independent, we can safely assume that the order of differenti-
ation doesn’t matter; that is,

∂2i

∂x∂t
¼ ∂2i

∂t∂x
:

Thus, putting (5.4) and (5.6) into (5.5),

�∂2v

∂x2
¼ R �Gv� C

∂v
∂t

� �
þ L �G

∂v
∂t

� C
∂2v

∂t2

" #

which is a second-order partial differential equation called the first telegraphy
equation (because of its obvious connection to the behavior of the wire communi-
cation links at the heart of nineteenth century telegraph land lines):
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∂2v

∂x2
¼ LC

∂2v

∂t2
þ RC þ LGð Þ∂v

∂t
þ RGv: ð5:7Þ

In much the same way, you can alternatively eliminate v to get a second-order
partial differential equation for i, known as the second telegraphy equation:

∂2i

∂x2
¼ LC

∂2i

∂t2
þ RC þ LGð Þ∂i

∂t
þ RGi: ð5:8Þ

The structural simularity of the two telegraphy equations is striking.
There are several special cases of the telegraphy equations that are of particular

interest. One, called the lossless line, assumes R ¼ G ¼ 0. In that case, (5.7) reduces
to

∂2v

∂x2
¼ LC

∂2v

∂t2
¼ 1

c2
∂2v

∂t2
ð5:9Þ

where

c ¼ 1ffiffiffiffiffiffi
LC

p

has the units of speed2: (5.9) is called the wave equation, as it occurs in the theory of
electromagnetic waves where, if the ‘transmission line’ is actually empty space, c is
the speed of light. We will not discuss this case in this book.

A special case we will discuss, a lot, is the historically important one of the Trans-
Atlantic telegraph cable, which is technically an example of the so-called leakage-
free (G ¼ 0), non-inductive (L ¼ 0) case. Under those assumptions (5.7) reduces to

∂2v

∂x2
¼ RC

∂v
∂t

, ð5:10Þ

which is called the diffusion equation because it describes how various physical
quantities diffuse or spread in absorbing mediums (ink in water, or heat in metal, for
example). The diffusion equation was known to mathematical physicists long before
the first transmission line was constructed, and the theoretical methods they devel-
oped before 1800 to solve it were of immense aid to the electrical engineers who later
created the Atlantic Cable.

At the ‘slow’ signalling speeds of a human-operated telegraph key (a dozen or so
words per minute), inductive effects were negligible in the Atlantic Cable, and
conductance was pretty small, too (that is, the leakage resistance between the
conductors was very large). Thus, only R and C were considered to be the important
parameters for the Atlantic Cable and so we have (5.10). That cable, about 2,000

2Can you show this? Hint: look at the dimensions on each side of (5.9).

136 5 Transmission Lines



nautical miles in length, spanned the Atlantic Ocean to connect the land lines of
Ireland in the Old World with those in Newfoundland in the New World. The Cable
was rightfully considered to be one of the greatest achievements of nineteenth
century engineering and science, and understanding how it worked depends on
being able to solve (5.7) and (5.8).

So, how do we mathematically handle (5.7) and (5.8)? First of all, the fact is that
despite all the work we’ve put into the Laplace transform, the very first transient
analysis of a transmission line was done in the time domain. That pioneering
analysis, done by William Thomson (look back at Sect. 1.4) in 1854 and published
in 1855, was the original theoretical basis for submarine transmission cable lines.3

Thomson based his analysis on the work in thermodynamics done by the French
mathematical physicist Joseph Fourier. Thomson found that Fourier’s so-called heat
equation (the diffusion equation) applies just as well (under certain conditions that
were more or less satisfied by the Atlantic Cable) to electricity4: he found mathe-
matical expressions in Fourier’s book for a number of situations that could be
directly translated into transmission line problems, and he took great advantage of
those existing solutions. The pioneers who found those solutions used classical, time
domain methods (see Appendix 3 for how to do that for the case of a unit step
voltage input), but here we’ll do it the modern way, with the Laplace transform, in
our analyses of the transient behavior of transmission lines in response to the closing
of a telegraph key.

5.2 Solving the Telegraphy Equations

We start by Laplace transforming (5.7), the partial differential equation for the
voltage along a general line (all four line parameters present) where, using various
transform results from Chap. 3,

L v x; tð Þf g ¼
Z 1

0
v x; tð Þe�stdt ¼ V x; sð Þ,

3W. Thomson, “On the Theory of the Electric Telegraph,” Proceedings of the Royal Society of
London, May 1855, pp. 382–399. For his contributions to the Atlantic Cable project, Thomson was
knighted by Queen Victoria in 1866 (becoming Sir William), and later (1892) was elevated to the
peerage to become Baron Kelvin. Lord Kelvin is one of the giants in the world of physics and, at the
end of his life, he was buried in Westminster Abby (an honor reserved by England for her greatest
heroes), to lie forever near the supremely great Isaac Newton.
4Fourier’s 1822 book Analytical Theory of Heat had an enormous influence on Thomson, who had
read it when still a teenager (1839): “In a fortnight I had mastered it— gone right through it” and he
rightfully declared it to be a “mathematical poem.”
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L ∂v
∂t

� �
¼ sV x; sð Þ � v x; 0þð Þ,

L ∂2v

∂t2

( )
¼ s2V x; sð Þ � sv x; 0þð Þ � dv x; tð Þ

dt
│t¼0þ,

L ∂2v

∂x2

( )
¼ ∂2

∂x2
L v x; tð Þf g½ � ¼ ∂2

∂x2
V x; sð Þ ¼ d2

dx2
V x; sð Þ:

The difference between the last two lines — note which variable the derivatives
are with respect to — should be carefully understood. Thus, (5.7) becomes

d2V x; sð Þ
dx2

¼ LC s2V x; sð Þ � sv x; 0þð Þ � dv x; tð Þ
dt

│t¼0þ

� �
þ RC þ LGð Þ sV x; sð Þ � v x; 0þð Þ½ � þ RGV x; sð Þ

or, after a bit of rearranging,

d2V x; sð Þ
dx2

� Lsþ Rð Þ Csþ Gð ÞV x; sð Þ ¼ �L Gv x; 0þð Þ þ C
dv x; tð Þ

dt
│t¼0þ

� �
ð5:11Þ

�C Lsþ R½ �v x; 0þð Þ:
At this point, there is a subtle technical issue that needs to be addressed before

continuing. The value of dv x;tð Þ
dt │t¼0þ, the initial rate of change of the voltage with

respect to time, at an arbitrary location along the line, is usually not obvious. We can
side-step this problem if we work instead with the initial rate of change with respect
to x of the current, that is, with di x;tð Þ

dx │t¼0þ — I’ll elaborate on this claim in just a
moment— and we can get that value from (5.4). So, evaluating (5.4) at t¼ 0+ (note,
carefully, that we are simply substituting t ¼ 0+ and are not Laplace transforming),
we have

� di x; tð Þ
dx

│t¼0þ ¼ Gv x; 0þð Þ þ C
dv x; tð Þ

dt
│t¼0þ

and so

C
dv x; tð Þ

dt
│t¼0þ ¼ � di x; tð Þ

dx
│t¼0þ � Gv x; 0þð Þ:

Putting this into (5.11) we arrive at

d2V x; sð Þ
dx2

� γ2V x; sð Þ ¼ L
di x; tð Þ
dx

│t¼0þ � C Lsþ R½ �v x; 0þð Þ ð5:12Þ
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where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þ

p
:

The reason (5.12) is preferable to (5.11) is that the initial value of di x;tð Þ
dx is, as I

claimed earlier, usually more easily arrived at than is the initial value of dv x;tð Þ
dt .

To see this, consider the problem of calculating v(x, t) on a transmission line
(in response to a given input signal v(0, t)), a line that we are told is ‘initially
relaxed’ (that is, there is no current or stored charge in the line at t ¼ 0). We
can immediately say, for such a line, that

v x; 0þð Þ ¼ 0, x > 0

and

i x; 0þð Þ ¼ 0, x > 0:

As time increases from t ¼ 0+, we obviously expect the cable current at a given
location to change from zero. But suppose we keep time constant, and look at the
cable current as we change x. As long as x > 0 (that is, we are not at the beginning of
the cable) then as we move along the cable with increasing x we will continue to see
i ¼ 0 until some time t > 0+. Thus, we can definitely say

di x; tð Þ
dx

│t¼0þ ¼ 0, x > 0:

Next, consider the case of the cable voltage v(x, t). As time increases from t ¼ 0+
we again obviously expect the cable voltage at a given point to change from zero.
Suppose now that we keep x constant (we observe a fixed point on the cable) and ask
how the voltage there changes with respect to time? That is, what is dv x;tð Þ

dt │t¼0þ?
Alas, knowing that v(x, 0+) ¼ 0 for any x > 0 doesn’t tell us anything about how the
voltage changes with time. It isn’t the distinction between voltage and current that is
important in this consideration, but rather which variable we are differentiating with
respect to (x or t). Differentiating with respect to x, and with respect to t, makes a big
difference.

To complete this section, we’ll calculate v(x, t) and i(x, t) for an initially relaxed,
infinitely long5 transmission line when a unit step voltage is applied to the x¼ 0 end
at t ¼ 0. The general problem (for arbitrary values of R, L, C, and G) was first
attempted by Heaviside, using his operational calculus, but his solution was later
questioned (after his death) by others.6 We’ll work our way towards the general

5To account for a finite length is not conceptually difficult, but it does add considerably to the
mathematics. I’ll say more on this at the end of the chapter.
6See, for example, F. W. Carter, “Note on Surges of Voltage and Current in Transmission Lines,”
Proceedings of the Royal Society, Series A (volume 156), August 1936, pp. 1–5.
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solution using the Laplace transform, with our first discussion dealing with the
Atlantic Cable, then with Heaviside’s distortionless line, and finally we’ll move on
to end with the general cable.

From (5.12), then, we start with

d2V x; sð Þ
dx2

� γ2V x; sð Þ ¼ 0, v 0; tð Þ ¼ u tð Þ: ð5:13Þ

This is an ordinary differential equation that is easily solved. Specifically, assume
a solution of the form

V x; sð Þ ¼ Kepx

where K and p are some constants. Then

Kp2epx � γ2Kepx ¼ 0

and so

p ¼ �γ:

That is,

V x; sð Þ ¼ K1e
γx þ K2e

�γx ð5:14Þ
where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þ

p
:

For an infinite line we demand that K1 ¼ 0 as otherwise V(x, s) would become
unbounded as x ! 1. So,

V x; sð Þ ¼ K2e
�γx: ð5:15Þ

Since at x ¼ 0 we have v(0, t) ¼ u(t), then

V 0; sð Þ ¼ L u tð Þf g ¼ 1
s
¼ K2

and so

V x; sð Þ ¼ 1
s
e�γx: ð5:16Þ
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5.3 The Atlantic Cable

In this case we have L ¼ G ¼ 0, which means

γ ¼
ffiffiffiffiffiffiffiffi
RCs

p
,

and so (5.16) becomes

V x; sð Þ ¼ 1
s
e�x

ffiffiffiffiffiffi
RCs

p
:

Looking back at (3.79), we have the pair

1� erf
a

2
ffiffi
t

p
� �

$ 1
s
e�a

ffiffi
s

p

and so, with

a ¼ x
ffiffiffiffiffiffiffi
RC

p

we see that

v x; tð Þ ¼ 1� erf
x
ffiffiffiffiffiffiffi
RC

p

2
ffiffi
t

p
� �

:

That is, the unit step voltage response is

v x; tð Þ ¼ 1� erf
x

2

ffiffiffiffiffiffiffi
RC

t

r !
volts: ð5:17Þ

To find the current i(x, t) on the Atlantic Cable, look back at (5.3), set L ¼ 0, and
then Laplace transform to get

� dV x; sð Þ
dx

¼ I x; sð ÞR

and so

I x; sð Þ ¼ �1
R

dV x; sð Þ
dx

¼ �1
R

� ffiffiffiffiffiffiffiffi
RCs

p
e�x

ffiffiffiffiffiffi
RCs

p

s

 !

or,

I x; sð Þ ¼
ffiffiffiffiffi
C

Rs

r
e�x

ffiffiffiffiffiffi
RCs

p
: ð5:18Þ
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To get i(x, t) from (5.18), recall two of our results from earlier: (3.8) and (3.85).
That is, repeating them here,

tf tð Þ $ � d

ds
F sð Þ ð5:19Þ

and

ae�a2=4t

2
ffiffiffiffiffiffi
πt3

p $ e�a
ffiffi
s

p
: ð5:20Þ

This last pair is equivalent to

e�a2=4tffiffiffiffiffiffi
πt3

p $ 2
a
e�a

ffiffi
s

p

and so, from (5.19),

t
e�a2=4tffiffiffiffiffiffi

πt3
p $ �2

a
�a

1
2
s�1=2

� �
e�a

ffiffi
s

p

or,

e�a2=4tffiffiffiffiffi
πt

p $ 1ffiffi
s

p e�a
ffiffi
s

p
: ð5:21Þ

Thus, once again setting a ¼ x
ffiffiffiffiffiffiffi
RC

p
, we immediately have

i x; tð Þ ¼
ffiffiffiffiffiffiffi
C

πRt

r
e�x2RC=4t amperes: ð5:22Þ

Figure 5.2 shows the current i(x, t) on the Atlantic Cable at x ¼ 2,000 nautical
miles (nm). The values of R ¼ 3 ohms/nm and C ¼ 0.5 μF/nm are ‘in the ball park’
for that transmission line,7 and the figure shows the current for the first ten seconds
after the start of the unit step input voltage at x¼ 0. There are two features in Fig. 5.2
of practical engineering importance.

First, there is a significant delay of three seconds in the occurrence of the peak
current. That is, closing a telegraph key at time t ¼ 0 doesn’t result in a maximum
current response at x ¼ 2,000 nm until three seconds later. Since the receiver at the
x ¼ 2,000 nautical mile end of the cable, whatever its particular technology may be,

7In his famous book The Theory of Sound (1894), the great English mathematical physicist John
William Strutt (1842–1919), better known in the world of physics as Lord Rayleigh, stated that the
RC product on the Atlantic Cable was about 5� x10�17 in cgs (centimeter-gram-second) units. The
values for R and C that I give in the text are, in fact, in agreement with Lord Rayleigh’s value. Can
you show this (see Problem 5.1)?
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will respond to the received current (more specifically, to the magnetic field of the
current), this delay introduces an upper limit on the speed of transmitting informa-
tion over the cable. Second, the maximum current is a substantial current: Figure 5.2
shows that a one-volt step input produces a maximum current that is slightly in
excess of 80 μA, and so if the actual sending voltage would be, say, 40 volts (typical
of the voltages actually used on the Atlantic Cable), there would be a maximum
current, 2, 000 nm distant, three seconds later, of more than three milliamperes, an
easily detectable current in the mid-nineteenth century.8

We can understand the general behavior of v(x, t) and i(x, t) by simply looking at
the mathematical behavior of (5.17) and (5.22). For any value of x, at t ¼ 0, we see
from (5.17) that v(x, 0) ¼ 0 and that, as t increases, so does v(x, t) because the error
function monotonically increases with increasing argument. Since erf(1) ¼ 1, then
v(x, t) ! 1 as t ! 1, for any x > 0. That is, as time increases the cable voltage

Fig. 5.2 The current at x ¼ 2, 000 nm on the Atlantic Telegraph Cable. Note the time delay until
the current is maximum in response to a unit step voltage input at t ¼ 0

8The detection device used on the Atlantic Cable was the marine (or mirror) galvanometer
(essentially a light beam bounced off a mirror attached to a tiny magnet hanging by a silk thread
inside a coil of wire carrying the received current). The interaction of the magnet’s field with the
current produced a torque that rotated the magnet (and its mirror). This clever gadget was the
invention of the always ingenious William Thomson.
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monotonically increases (as the cable current charges the cable’s distributed capac-
itance) towards the unit step voltage value of 1.

Much more interesting is the behavior of i(x, t). For any given value of x, we see
from (5.22) that i(x, 0) ¼ 0 and that i(x,1) ¼ 0. So, for every x there must be a time
t¼ tmax at which i(x, t) reaches an extreme value, a time that depends on the value of
x. Indeed, if you differentiate (5.22) and set the result to zero, you’ll find that

tmax ¼ 1
2
RCx2: ð5:23Þ

Putting (5.23) into (5.22) gives us

imax tmaxð Þ ¼ 1
Rx

ffiffiffiffiffi
2
πe

r
ð5:24Þ

and, if you substitute R¼ 3 ohms/nm and x¼ 2, 000 nm, you’ll get imax¼ 80.7 μA at
tmax ¼ 3 seconds, values in excellent agreement with Fig. 5.2.

The fact that tmax depends on x squared became known as Thomson’s law of
squares, and it was the source of much controversy among those who invested
money in the laying of really long submarine cables. According to Thomson (see
Fig. 5.3), doubling the length of a cable would quadruple the time delay (thereby

Fig. 5.3 William Thomson,
about March 1859, in the
early years of his
involvement with the
Atlantic Cable project. A
note (dated November
23, 1892) on the photo in his
own hand says the papers he
is reading concerned
experiments on submarine
cables. (Photo courtesy of
the Institution of Electrical
Engineers (London))
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limiting the rate at which a commercial cable could produce revenue). In his 1855
paper (note 3), Thomson mentions that a 200 mile long submarine cable between
Greenwich (England) and Brussels (Belgium) had a 1

10 th second delay, and then used
his law of squares to predict that “the retardation in a cable of [equal construction],
extending half round the world (14,000 miles), would be
14000
200

	 
2 � 1
10 ¼ 490 seconds, or 816 minutes.” That’s a long time to send one Morse

code character!9

5.4 The Distortionless Transmission Line

Suppose we have an infinitely long, initially relaxed cable with distributed param-
eters that satisfy Heaviside’s condition from Appendix 2. If we apply the arbitrary
voltage v(0, t) to the sending end at x ¼ 0, our problem is the determination of the
current i(x, t) at an arbitrary, distant point. We have

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þ

p
¼ Lsþ Rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Csþ G

Lsþ R

r
¼ Lsþ Rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C sþ G

C

	 

L sþ R

L

	 

s

or, using Heaviside’s condition,

γ ¼ Lsþ Rð Þ
ffiffiffiffi
C

L

r
:

Since at x ¼ 0 we have v(0, t) ¼ f(t), then

V 0; sð Þ ¼ L f tð Þf g ¼ F sð Þ:
As we showed in (5.15), for an infinite line

V x; sð Þ ¼ V 0; sð Þe�γx

and so

V x; sð Þ ¼ F sð Þe�γx ¼ F sð Þe�x LsþRð Þ
ffiffi
C
L

p
:

From (5.3) we have, after Laplace transforming,

� dV x; sð Þ
dx

¼ I x; sð ÞRþ L sI x; sð Þ � i x; 0þð Þ½ �

9The Atlantic Telegraph Cable operators didn’t send traditional Morse code as dots and dashes, that
is, as pulses of different durations, but rather used a special key to send equal duration pulses of
opposite polarity — one polarity for a ‘dot,’ and the other polarity for a ‘dash.’
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and so, since i(x, 0+) ¼ 0,

I x; sð Þ ¼ � 1
Lsþ R

dV x; sð Þ
dx

or,

I x; sð Þ ¼
ffiffiffiffi
C

L

r
F sð Þe�x LsþRð Þ

ffiffi
C
L

p

which means

I x; sð Þ ¼
ffiffiffiffi
C

L

r
e�xR

ffiffi
C
L

p
F sð Þe�x

ffiffiffiffiffi
LC

p
s: ð5:25Þ

Using (3.14) on (5.25), with

t0 ¼ x
ffiffiffiffiffiffi
LC

p
,

we can write

i x; tð Þ ¼
ffiffiffiffi
C

L

r
e�xR

ffiffi
C
L

p( )
f t � x

ffiffiffiffiffiffi
LC

p� �
u t � x

ffiffiffiffiffiffi
LC

p� �
: ð5:26Þ

Look carefully at (5.26). It says i(x, t) is simply an attenuated (by the factor in the
curly brackets), time-delayed (but otherwise perfect) replica of f(t). The current at
the point distance x from the sending end of the cable faithfully reproduces the shape
of the input signal, with a time delay of

ffiffiffiffiffiffi
LC

p
. We can think of the input signal as a

wave traveling down the line at the speed 1ffiffiffiffiffi
LC

p . (Look back at (5.9) and the related

discussion there.)
To appreciate the numbers involved, suppose R ¼ 2 ohms/nm, C ¼ 0.5 micro-

farads/nm, and G ¼ 10�7 siemens/nm (that is, the cable leakage resistance is
10 megohms/nm). To satisfy Heaviside’s distortionless condition means

L ¼ RC

G
¼ 2ð Þ 0:5� 10�6

	 

10�7 ¼ 1 henry=nm:

This value of L is almost certainly larger than the inherent distributed inductance
of a cable, and so L must be intentionally enhanced (by, for example, periodically
inserting wire coils in the cable, a technique called inductive loading10). Putting

10In 1889 Thomson served as President of the Institution of Electrical Engineers and, in his
Presidential Address, he heaped praise on Heaviside’s discovery of inductive loading. Loading
was of enormous practical value to the communications industry, and it made a lot of money for a
number of people — but not for Heaviside. For an historical discussion of this sad tale, see the
Heaviside biography (note 9 in the Preface).
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these numbers into (5.26), we see the current at x ¼ 2, 000 nm, due to a step input of
one volt at x ¼ 0, is

ffiffiffiffi
C

L

r
e�xR

ffiffi
C
L

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5� 10�6

p
e�2,000 3ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5�10�6

p
amperes ¼ 101:6 microamperes:

Thus, a 40 volt step input would produce a current at 2, 000 nm in excess of
4 milliamperes. The speed of propagation on the cable is

1ffiffiffiffiffiffi
LC

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5� 10�6

p nm=second ¼ 1, 414 nm=second

and so current would start arriving at x ¼ 2, 000 nm after a delay of about 1.4
seconds.

5.5 The General, Infinite Transmission Line

Now, at last, we are ready to study the problem — first tackled by Heaviside but
whose solution received posthumous skepticism (see note 6) — concerning the
general (that is, arbitrary values for R, L, C, and G), initially relaxed infinite
transmission line with a unit step voltage input. From (5.16), we start with

V x; sð Þ ¼ 1
s
e�γx, ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þ

p
: ð5:27Þ

What we mean by solvingHeaviside’s problem is using (5.27) to find the current i
(x, t) (the physical quantity that is detected at the receiving end of the line) for any
given x. As we’ve done before, Laplace transforming (5.3), and using i(x, 0+) ¼ 0,
gives us

Rþ Lsð ÞI x; sð Þ ¼ � dV x; sð Þ
dx

þ Li x; 0þð Þ

and so

I x; sð Þ ¼ � 1
Rþ Lsð Þ

dV x; sð Þ
dx

¼ � 1
Rþ Lsð Þ �γ

1
s
e�γx

� �
:

That is,

I x; sð Þ ¼ γ

s Rþ Lsð Þ e
�γx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þp
s Rþ Lsð Þ e�γx
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and so

I x; sð Þ ¼ 1
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cs þ G

Lsþ R

r
e�γx: ð5:28Þ

We can get (5.28) into a form we can invert back to the time domain with just a bit
more algebra on the radical, as follows.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cs þ G

Lsþ R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C sþ G

C

	 

L sþ R

L

	 

s

¼
ffiffiffiffi
C

L

r
sþ G

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ R

L

	 

sþ G

C

	 
q ¼
ffiffiffiffi
C

L

r
sþ G

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ R

L þ G
C

	 

sþ RG

LC

q

¼
ffiffiffiffi
C

L

r
sþ G

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q
where, of course,

s2 þ 2asþ a2 � b2 ¼ s2 þ R

L
þ G

C

� �
sþ RG

LC
:

It therefore follows that

2a ¼ R

L
þ G

C

and

a2 � b2 ¼ RG

LC
,

and I’ll let you solve for a and b to confirm that

a ¼ 1
2

R

L
þ G

C

� �
ð5:29Þ

and

b ¼ 1
2

R

L
� G

C

� �
: ð5:30Þ

Thus,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cs þ G

Lsþ R

r
¼

ffiffiffiffi
C

L

r
sþ G

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q
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and so, looking back at (5.28), we have

I x; sð Þ ¼
ffiffiffiffi
C

L

r
1
s

� �
sþ G

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q e�γx: ð5:31Þ

As it stands, we are unable to invert (5.31) because γ, itself, is a function of s and
we haven’t developed a transform pair that can handle an I(x, s) of the complexity of
(5.31). If, on the other hand, we are willing to settle for the input current at x ¼ 0,
then (5.31) reduces to

I 0; sð Þ ¼
ffiffiffiffi
C

L

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ að Þ2 � b2
q þ G

Cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q
2
64

3
75,

and this we can invert. Here’s how, in a two-step process.
First, if we knew the time function that pairs with

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � b2

p

then the time function that pairs with

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q
would be that same time function multiplied by e�at, a general result we derived in
(3.13). And we do know that time function: it’s the modified Bessel function of the
first kind of order zero because, from (3.48), we have

I0 btð Þ $ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � b2

p

and so

e�atI0 btð Þ $ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q :

Second, from (3.7) we have the general pair

Z t

0
f yð Þdy $ F sð Þ

s
,
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which tells us that

Z t

0
e�ayI0 byð Þdy $ 1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q :

Applying these results to (5.31) gives us

i 0; tð Þ ¼
ffiffiffiffi
C

L

r
e�atI0 btð Þ þ G

C

Z t

0
e�ayI0 byð Þdy

� �
ð5:32Þ

where a and b are as given in (5.29) and (5.30), respectively.
(5.32) was easy to get, but your reaction to its calculation is probably not one of

enthusiasm. After all, the whole point to a transmission line is what comes out at the
receiving end, not what goes in at the sending end! So, let’s go back to (5.31) and do
what all engineers do when, for example, they run into an integral they don’t know
how to evaluate: they get hold of a really good table of integrals and look it up. And
that’s just what we’ll do here, too (except, of course, we’ll instead get hold of a really
good table of Laplace transform pairs). If you do that you’ll find the pair

I0 p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � k2

p� �
u t � kð Þ $ e�k

ffiffiffiffiffiffiffiffiffi
s2�p2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � p2

p , ð5:33Þ

where p and k are constants and u(t � k) is a shifted step function that is (of course)
zero for t < k. We’ll use (5.33) as follows.

We have

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þ

p
¼

ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ R

L

� �
sþ G

C

� �s

¼
ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s

R

L
þ G

C

� �
þ RG

LC

s

¼
ffiffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q
and so

I x; sð Þ ¼
ffiffiffiffi
C

L

r
1
s

� �
sþ G

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q e�x
ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþað Þ2�b2

p

or,

I x; sð Þ ¼
ffiffiffiffi
C

L

r
e�x

ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþað Þ2�b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q þ G

C

1
s

� �
e�x

ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþað Þ2�b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q
2
64

3
75: ð5:34Þ

150 5 Transmission Lines



In the notation of (5.33),

k ¼ x
ffiffiffiffiffiffi
LC

p
and p ¼ b:

From (5.33) we have the pair

I0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2LC

p� �
u t � x

ffiffiffiffiffiffi
LC

p� �
$ e�x

ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffi
s2�b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � b2

p

and so it immediately follows that

I0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2LC

p� �
e�atu t � x

ffiffiffiffiffiffi
LC

p� �
$ e�x

ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþað Þ2�b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q :

In addition, the second term in the brackets of (5.34) pairs as

G

C

Z t

0
I0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � x2LC

p� �
e�ayu y� x

ffiffiffiffiffiffi
LC

p� �
dy $ G

C

1
s

� �
e�x

ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþað Þ2�b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ að Þ2 � b2

q :

Thus, finally (!), we have our general result for an initially relaxed, infinite line
with a step input of one volt:

i x; tð Þ ¼
ffiffiffiffi
C

L

r I0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2LC

p� �
e�atu t � x

ffiffiffiffiffiffi
LC

p	 

þG

C

Z t

0
I0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � x2LC

p� �
e�ayu y� x

ffiffiffiffiffiffi
LC

p� �
dy

2
64

3
75 ð5:35Þ

where a and b are given by (5.29) and (5.30), respectively. (Notice that (5.35)
reduces to (5.32) if x ¼ 0.)

The first thing that is obvious, by inspection, is that for a given x

i x; tð Þ ¼ 0, t < x
ffiffiffiffiffiffi
LC

p
,

which simply states the physical fact that there can be no current at distance x until
the current has had enough time to get there (at speed 1ffiffiffiffiffi

LC
p ). Once we’ve said that,

however, the next step of producing a plot of i(x, t) isn’t trivial. Indeed, when I was a
student in the 1950s/60s, producing such a plot would have been a bit of a challenge,
as the numerical work involved would have been fairly tedious. With MATLAB,
however, it’s just a matter of a few minutes to write a computer code that does all of
the grubby work. The result is Fig. 5.4, which shows the first twenty seconds of i
(3,500, t) for a cable with the parameters R ¼ 1.8 ohms/nm, L ¼ 0.1 henrys/nm,
C ¼ 0.4 microfarads/nm, and 1

G ¼ 107 ohms/nm. These numbers were picked for no
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particular reason other than they were used in a paper11 that suggested Heaviside’s
solution was incorrect. The result of (5.35) matches McLachlan’s, but he did not use
the Laplace transform (note the date of his paper). Rather, as you can tell from his
title, he essentially performed a direct inversion in the complex plane of Heaviside’s
operational solution, a calculation that would have left most non-academic electrical
engineers of his day in the dark.

The figure shows that, after a delay of 0.7 seconds (corresponding to traveling
3, 500 nm at a speed of 5, 000 nm/second), the current rises very quickly to about
55 microamperes (remember, for a one volt step input) and then (within two or three
seconds) settles down to a steady value of just slightly less. We can, theoretically,
calculate the precise value of that steady current from (5.35) by letting t ! 1. The
first term in the square brackets clearly goes to zero, but just what the second,
integral term does isn’t quite so clear. Much easier to do is to apply the final value
theorem to I(x, s) in (5.34). That is,

Fig. 5.4 The current at x ¼ 3, 500 nm in a general cable

11N. W. McLachlan, “Submarine Cable Problems Solved By Contour Integration,” The Mathemat-
ical Gazette, February 1938, pp. 37–41. There is no plot of i(x, t) in this paper.
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lim
t!1 i x; tð Þ ¼ lim

s!0
sI x; sð Þ ¼

ffiffiffiffi
C

L

r
G

C

� �
e�x

ffiffiffiffiffi
LC

p ffiffiffiffiffiffiffiffiffi
a2�b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p :

I’ll let you confirm, using the expressions for a and b given in (5.29) and (5.30),
respectively, that

lim
t!1 i x; tð Þ ¼

ffiffiffiffi
G

R

r
e�x

ffiffiffiffiffi
RG

p
ð5:36Þ

and that, if you use x ¼ 3, 500, R ¼ 1.8, and G ¼ 10�7, the result is 53.4
microamperes. This is in excellent agreement with Fig. 5.4.

To show you that we could have easily used any other set of numbers for the
line’s distributed parameters, the MATLAB code that created Fig. 5.4 (general.m) is
as follows, about which I’ll say nothing more because this is not a MATLAB coding
text. The code executes in mere seconds, and is given here mostly to satisfy your
possible curiosity, but I do want to direct your attention to the two appearances in it
of the software step function heaviside, which The MathWorks (creator ofMATLAB)
included in MATLAB to honor Oliver Heaviside. He would almost surely have
preferred money from the commercial cable telegraph companies for his discovery
of the distortionless transmission line and inductive loading, but MATLAB’s post-
humous recognition will have to do.

%general.m/created by PJNahin for Electrical Transients
(9/15/2017)
R=1.8;L=0.1;C=4e-7;G=1e-7;x=3500;
r1=R/L;r2=G/C;a=(r1+r2)/2;b=(r1-r2)/2;
delay=x*x*L*C;f=sqrt(C/L);speed=sqrt(delay);
t=linspace(0,20,1000);
for j=1:999

t1(j)=(t(j)+t(j+1))/2;
end
arg=b*sqrt(t1.^2-delay);
term1=besseli(0,arg).*exp(-a*t1).*heaviside(t1-speed);
for j=1:999

y=linspace(t(j),t(j+1),20);
fun=besseli(0,b*sqrt(y.^2-delay)).*exp(-a*y).*heaviside

(y-speed);
I(j)=trapz(y,fun);

end
I=cumsum(I);
current=f*(term1+r2*I);
plot(t1,current,'-k')
xlabel('time (seconds)')
ylabel('current (amperes)')
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5.6 Transmission Lines of Finite Length

Not all lines are infinitely long. In fact, our assumption of an infinitely long
transmission line is a convenient fiction that makes the math ‘easier’ to handle: in
reality, there are no lines of truly infinite length.12 So, what happens when we
introduce the new restriction of finite length? The answer is that (5.15) is simply
not true. So, let’s back-up one step to (5.14) and rewrite it as

V x; sð Þ ¼ K1e
γx þ K2e

�γx ð5:37Þ
where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsþ Rð Þ Csþ Gð Þ

p
and add recognition of the reality that K1 6¼ 0 (we argued earlier, you’ll recall, that
K1¼ 0 for an infinite line in order to keep V(x, s) finite as x!1). Let’s now suppose
that the line is actually of finite length d, and that the x ¼ 0 end is shorted, as shown
in Fig. 5.5, while at x ¼ d we switch a battery of voltage E in at t ¼ 0. (If you’re
wondering why it is at x¼ d that we apply the battery, rather than at x¼ 0, we could
do that — after all, the result is simply to flip the line over in the reverse direction,
which clearly changes nothing electrically — but the math would be a bit more
awkward.)

Along with (5.37), we have two so-called boundary conditions, where ‘boundary’
refers to spatial constraints, rather than initial conditions which are temporal
constraints:

v 0; tð Þ ¼ 0

and

v d; tð Þ ¼ Eu tð Þ:
These boundary conditions transform as

V 0; sð Þ ¼ 0

and

V d; sð Þ ¼ E

s

12Does this mean that everything we’ve done so far with infinite lines has been a shaggy dog story
(that is, just a big joke)? No. What our introduction of finite reality will do is give us a physical
condition, if satisfied, that will allow us to treat a finite line as if it were actually infinite in length.
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which, when applied to (5.37), give

K1 þ K2 ¼ 0

and

K1e
γd þ K2e

�γd ¼ E

s
:

Clearly K1 ¼ � K2 and substituting this into the last equation says

K1 ¼ E

s eγd � e�γdð Þ ¼
E

2s sinh γdð Þ
and so

K2 ¼ � E

2s sinh γdð Þ :

Substituting K1 and K2 back into (5.37), we thus have

V x; sð Þ ¼ E

2s sinh γdð Þ eγx � e�γxð Þ ¼ E

s

� �
sinh γxð Þ
sinh γdð Þ : ð5:38Þ

Well, (5.38) is a solution, yes, but now you can see what I meant by saying earlier
that the introduction of a finite length complicates the math, as now we have
hyperbolic functions of γ! To go any further with (5.38) we’ll need to start making
some particular, simplifying assumptions, the easiest one of which is to assume that
the line is lossless. That is, let’s say R ¼ G ¼ 0, and so γ ¼ s

ffiffiffiffiffiffi
LC

p
. Then (5.38)

becomes

V x; sð Þ ¼ E

s

� �
ex
ffiffiffiffiffi
LC

p
s � e�x

ffiffiffiffiffi
LC

p
s

ed
ffiffiffiffiffi
LC

p
s � e�d

ffiffiffiffiffi
LC

p
s
¼ E

s

� �
ex
ffiffiffiffiffi
LC

p
s

ed
ffiffiffiffiffi
LC

p
s

1� e�2x
ffiffiffiffiffi
LC

p
s

� �
1� e�2d

ffiffiffiffiffi
LC

p
s

	 

or, if we write the propagation speed on the line as

c ¼ 1ffiffiffiffiffiffi
LC

p ,

−
+

x=0

short

t=0

x=d

E

x=x1

d–x1
Fig. 5.5 A ‘shorted’ line of
finite length
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we then have the voltage on the line as

V x; sð Þ ¼ E

s

� �
e�s d�xð Þ=c

1� e�
2x
c s

� �
1� e�

2d
c s

� � : ð5:39Þ

Further, if we perform the long division to get (you can confirm this by simply
cross-multiplying)

1

1� e�2d
c s

� � ¼ 1þ e�
2d
c s þ e�

4d
c s þ e�

6d
c s þ . . .

then

V x; sð Þ ¼ E

s

� �
e�s d�xð Þ=c 1� e�

2x
c s

� �
1þ e�

2d
c s þ e�

4d
c s þ e�

6d
c s þ . . .

h i
¼ E

s

� �
e�s d�xð Þ=c � e�s dþxð Þ=c

� �
1þ e�

2d
c s þ e�

4d
c s þ e�

6d
c s þ . . .

h i

and so

V x; sð Þ ¼ E

s

� �
e�

s d�xð Þ
c � e�

s dþxð Þ
c

� �

þ e�
s 3d�xð Þ

c � e�
s 3dþxð Þ

c

� �

þ e�
s 5d�xð Þ

c � e�
s 5dþxð Þ

c

� �

þ e�
s 7d�xð Þ

c � e�
s 7dþxð Þ

c

� �
þ . . .

2
6666666666664

3
7777777777775
: ð5:40Þ

At this point, (5.40) probably looks pretty terrifying, but it actually has a
beautifully simple physical interpretation. When we return to the time domain, the
E
s

	 

factor tells us we are going to get step functions, step functions that are ever-more

delayed in time because of the exponentials in the curly brackets (look back at
(3.14)). That is,

v x; tð Þ ¼ E

u
	
t � d � x

c

� �
� u

	
t � d þ x

c

� �

þ u
	
t � 3d � x

c

� �
� u

	
t � 3d þ x

c

� �

þ u
	
t � 5d � x

c

� �
� u

	
t � 5d þ x

c

� �

þ u
	
t � 7d � x

c

� �
� u

	
t � 7d þ x

c

� �
þ . . .

2
6666666666664

3
7777777777775
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and Fig. 5.6 shows what v(x, t) looks like at some arbitrary 0 < x¼ x1 < d. That figure
looks pretty ‘busy’ for a simple step input, and the reason behind that is the short-
circuit at x ¼ d. Here’s why.

When E is applied at t ¼ 0, a wave with that amplitude starts propagating down
the line at speed c, reaching x ¼ x1 at time t ¼ d�x1

c , and so we see the line voltage
jump from zero to E at that instant. The wave continues on down the line, reaching
the short circuit at time¼ d

c . The voltage at a short is, by definition, zero, and so we
seem to have a problem, as the propagating wave has amplitude E. The way out of
this puzzle is to imagine that, just as the wave reaches the short (let’s call this the
incident wave), a reflected wave of amplitude –E is encountered, cancelling the
incident wave and in that way giving the required sum of zero at x ¼ d. This echo
wave travels back up the line towards the battery, reaching x ¼ x1 at time t ¼ dþx1

c ,
thus causing the line voltage at x ¼ x1 to drop back down to zero, just as shown in
Fig. 5.6.

The echo wave with amplitude –E reaches x¼ 0 where it ‘sees’ a voltage of E (the
battery), and so we again have an apparent problem. How do we make the echo wave
of –E compatible with the encountered battery voltage of +E? Why, just as before:
we now imagine a second echo wave, of amplitude E, propagating back down the
line, which gives us the proper voltage of E at x ¼ d. This echo wave reaches x ¼ x1
at t ¼ 3d�x1

c which sends the voltage at x ¼ x1 back up to E. And so it goes, forever,
with reflected echo waves endlessly bouncing off both ends of the line (each bounce
with a sign reversal), adding and subtracting at the times shown in Fig. 5.6. As long
as no reflections have occurred on a transmission line of finite length, we can
consider the line to be of infinite length. Once reflections occur, however, the finite
length must be taken into account.

The voltage behavior as a function of time is indeed quite interesting, but I think
you’ll find what the current does even more non-intuitive. To find the current i(x, t)
for our finite length line, we do just as we’ve done before, using (5.3) with R ¼ 0 to
write (after transforming) and using (5.38),

I x; sð Þ ¼ � 1
Ls

dV x; sð Þ
dx

¼ �Eγ

Ls2
cosh γxð Þ
sinh γdð Þ ,

d – x1
c

c

E

0

v(x,t)

c
2x1 2(d − x1)

c

t

3d + x1

c
3d − x1

c
5d − x1

c
5d + x1

c
4d

c
2d

d

c
+ x1

Fig. 5.6 How the voltage varies on a shorted, finite-length, lossless transmission line at distance x1
from the shorted end
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or, as γ ¼ s
c, we have

I x; sð Þ ¼ � Es
c

Ls2
cosh sx

c

	 

sinh sd

c

	 
 ¼ � E

Lcs

cosh sx
c

	 

sinh sd

c

	 

or, since c ¼ 1ffiffiffiffiffi

LC
p ,

I x; sð Þ ¼ � E

s
ffiffiffi
L
C

q e
sx
c þ e�

sx
c

e
sd
c � e�

sd
c

� �
:

In Appendix 2, the quantity
ffiffiffi
L
C

q
is called the characteristic impedance of the line

(we see it’s purely real, and so is actually a characteristic resistance), which we’ll
call R0. Thus,

I x; sð Þ ¼ � E

sR0

e
sx
c þ e�

sx
c

e
sd
c � e�

sd
c

 !
¼ � E

sR0

e
sx
c þ e�

sx
c

e
sd
c 1� e�2 sd

c

� �
2
664

3
775

¼ � E

sR0

e�s d�x
c þ e�s dþx

c

1� e�2 sd
c

2
4

3
5

and so, recalling our earlier encounter with expanding 1� e�2 sd
c

� ��1
, we have

I x; sð Þ ¼ � E

sR0
e�s d�x

c þ e�sdþx
c

� �
1þ e�2 sd

c þ e�4 sd
c þ e�6 sd

c þ . . .
h i

or,

I x; sð Þ ¼ � E

sR0

e�s d�x
c þ e�s dþx

c

� �
þ

e�s 3d�x
c þ e�s 3dþx

c

� �
þ

e�s 5d�x
c þ e�s 5dþx

c

� �
þ

e�s 7d�x
c þ e�s 7dþx

c

� �
þ . . .

2
66666666666666664

3
77777777777777775

: ð5:41Þ
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I(x, s) inverts back to the time domain to give

i x; tð Þ ¼ � E

R0

u t � d � x

c

� �
þ u t � d þ x

c

� �� �
þ

u t � 3d � x

c

� �
þ u t � 3d þ x

c

� �� �
þ

u t � 5d � x

c

� �
þ u t � 5d þ x

c

� �� �
þ

u t � 7d � x

c

� �
þ u t � 7d þ x

c

� �� �
þ . . .

2
66666666666666664

3
77777777777777775

: ð5:42Þ

As with the voltage, we get reflections for the current at each end of the line but,
unlike the voltage in which these reflections cancel, now the reflections add. The
result is shown in Fig. 5.7, which indicates that the current at x ¼ x1 (the minus sign
in (5.42) appears because the direction of the line current in this analysis is opposite
the positive current direction in Fig. 5.1) grows without bound (no surprise there as,
after all, the line is shorted) with discrete amplitude jumps at discrete instants of time
(this feature is probably not something you anticipated from your experience with
how lumped parameter circuits behave when shorted).

Well, I think you can now appreciate howmany new questions the introduction of
a finite-length to a transmission line has prompted. What if the line is open-circuited?
What if it is terminated in a finite, non-zero impedance? What if the line is not just a
simple lossless line? What if . . .? With those tantalizing questions for you to ponder,
this book has reached its end (or else it wouldn’t be that little book for EE116 I told
you about at the start). I think, however, that you’ve now got all the tools you need to
move on into more advanced writings on these (and other) questions about the
transient, switched behavior of finite lines.

So, off you go!

Problems

5.1 Take-up the challenge of note 7.
5.2 Establish (5.23) and (5.24).
5.3 Is the final value theorem consistent with (5.18) and (5.22)?
5.4 At one point in his 1855 paper (note 3), Thomson wrote of “putting a very

intense battery [one of very high voltage] in communication with the end [of a
submarine cable] from which the signal is sent, for a very short time, and then
instantly putting this end in communication with the ground.” That is, Thomson
was talking of an impulsive voltage input to a transmission line (this was seventy
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years (!) before Dirac).13 Calculate and plot i(x, t) for the Atlantic Cable for v(0,
t) ¼ δ(t).

5.5 Establish (5.36).
5.6 Look back at (5.16), which assumes a step input to an infinite transmission line. If,

instead, the input is an arbitrary time function f(t), show that V(x, s) ¼ F(s)e�γx.
Then, assuming the Atlantic Cable, find v(x, t). Hint: use the convolution theorem.
If, after some thought, you’re stuck, take a look at the two shaded boxes at the end
of Appendix 3 (but don’t do that unless you’re really stuck).

5.7 Suppose that in Fig. 5.5 the switch and battery are replaced with a short before
the first echo arrives at x ¼ d. That is, both ends of the line are now shorted.
Sketch v(x1, t) and i(x1, t).

E/R0

2E/R0

3E/R0

4E/R0

5E/R0

0
0

i(x1,t)

t

c
3d − x1

c
d − x1

c
3d + x1

c
d + x1

c
5d − x1

Fig. 5.7 How the current
varies on a shorted, finite-
length line at distance x1
from the shorted end

13It is generally not a good idea to apply an impulse to anything. It makes for interesting
mathematical exercises, yes, but in the real world it tends to break stuff. An actual historical
example of this comes from the Atlantic Cable itself: the Chief Electrician on the third attempt to
lay the cable (the first two failed) insisted on using an induction coil producing 2,000 volts, which
resulted in the destruction of the cable’s insulation. That Chief Electrician (who was not Thomson)
was, not surprisingly, soon after dismissed.
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Appendix 1: Euler’s Identity1

eit¼ cos tð Þþi sin tð Þ, i¼
ffiffiffiffiffiffiffiffi
2 1
p

There are numerous ways of establishing this identity, one of immense value to
electrical engineers in the analysis of transients, but here’s one of the easiest to
follow. Suppose a time function f(t) is written in the form of a power series. That is,

f tð Þ ¼ c0 þ c1t þ c2t
2 þ . . .þ cnt

n þ . . . :

It’s a freshman calculus exercise to show that all the coefficients follow from the
general rule

cn ¼ 1
n!

dnf

dtn
│t¼0

� �
, n � 1,

that is, by taking successive derivatives of f(t) and, after each differentiation, setting
t¼ 0. (The n¼ 0 case means, literally, don’t differentiate, just set t¼ 0.) In this way
it is found, for example, that

sin tð Þ ¼ t � 1
3!
t3 þ 1

5!
t5 � . . . ,

cos tð Þ ¼ 1� 1
2!
t2 þ 1

4!
t4 � . . . ,

et ¼ 1þ t þ 1
2!
t2 þ 1

3!
t3 þ 1

4!
t4 þ 1

5!
t5 þ . . . :

1Named after the Swiss-born mathematician Leonhard Euler (1707–1783), who first published
the identity in a 1748 book (although there is evidence he knew it as early as 1740).
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Now, in the last series, set t ¼ ix. Then

eix ¼ 1þ ixþ 1
2!

ixð Þ2 þ 1
3!

ixð Þ3 þ 1
4!

ixð Þ4 þ 1
5!

ixð Þ5 þ . . .

¼ 1þ ix� 1
2!
x2 � i

1
3!
x3 þ 1

4!
x4 þ i

1
5!
x5 þ . . .

¼ 1� 1
2!
x2 þ 1

4!
x4 � . . .

� �
þ i x� 1

3!
x3 þ 1

5!
x5 þ . . .

� �
¼ cos xð Þ þ isin xð Þ:

This is an identity in x, and so continues to hold if we replace every x with a t to
give us our result:

eit ¼ cos tð Þ þ i sin tð Þ:
This result immediately tells us that

e�it ¼ ei �tð Þ ¼ cos �tð Þ þ i sin �tð Þ ¼ cos tð Þ � i sin tð Þ:
Thus,

eit þ e�it ¼ 2 cos tð Þ
and

eit � e�it ¼ 2i sin tð Þ
and so

cos tð Þ ¼ eit þ e�it

2
, sin tð Þ ¼ eit � e�it

2i
:

Euler’s identity tells us that whenever we encounter an exponential raised to
an imaginary power in a transient analysis, we should be on the look-out
for oscillatory (sinusoidal) behavior. (But not always; look at Fig. 1.6, for
example, and the related discussion.) Euler’s identity is the source of many almost
magical results. Here’s just one. If t ¼ π

2 then ei
π
2 ¼ cos π

2

� �þ i sin π
2

� � ¼ i. Thus,

ei
π
2

� �i ¼ ii ¼ ei
2π
2 ¼ e�

π
2 � 0:2078 . . . . That is, an imaginary number raised to

an imaginary power can be a real number. Who would have guessed it!?
That’s pretty marvelous, alright, but in fact the situation is even more marvelous.

Since, for n any integer, positive, negative, or zero, we have

ei2πn ¼ cos 2πnð Þ þ i sin 2πnð Þ ¼ 1,

then

ei
π
2 ei2πn ¼ ið Þ 1ð Þ ¼ i ¼ ei

π
2þ2πnð Þ ¼ eiπ

1
2þ2nð Þ:
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Thus,

ii ¼ eiπ
1
2þ2nð Þn oi

¼ ei
2π 1

2þ2nð Þ ¼ e�π
1
2þ2nð Þ

and so we see that an imaginary number raised to an imaginary power is equal to an
infinity of real numbers! I feel safe in saying that nobody (before Euler) would have
guessed that.

Another important result in mathematics, involving a sum of trigonometric
functions, can be easily derived with Euler’s identity. Consider the sum (which
occurs in theoretical studies of the convergence behavior of Fourier series, a topic
briefly discussed in Appendix 3)

2
XN

n¼1 cos nϕð Þ ¼ 2 cos ϕð Þ þ cos 2ϕð Þ þ . . .þ cos Nϕð Þf g:

This ‘looks’ like it might have a fairly complicated plot and, for the case of N¼ 7
for example,

Figure A1.1 shows that guess isn’t too far off the mark.
Now, from Euler’s identity,

2
XN

n¼1 cos nϕð Þ ¼ 2
XN

n¼1
einϕ þ e�inϕ

2

	 

¼
XN

n¼1 e
inϕ þ

XN

n¼1 e
�inϕ:

Fig. A1.1 The sum 2
X7
n¼1

cos nϕð Þ
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If we write

S ¼
XN

n¼1 e
inϕ ¼ eiϕ þ ei2ϕ þ . . .þ eiNϕ

then

eiϕS ¼ ei2ϕ þ . . .þ eiNϕ þ ei Nþ1ð Þϕ

and so

S� eiϕS ¼ S 1� eiϕ
� � ¼ eiϕ � ei Nþ1ð Þϕ

or,

S ¼
XN

n¼1 e
inϕ ¼ eiϕ � ei Nþ1ð Þϕ

1� eiϕ
:

In the same way,

XN

n¼1 e
�inϕ ¼ e�iϕ � e�i Nþ1ð Þϕ

1� e�iϕ
:

You can see this last result, instantly, by simply recognizing this last sum is the
previous sum with every ϕ replaced with –ϕ.

Thus,

2
PN

n¼1 cos nϕð Þ ¼ eiϕ � ei Nþ1ð Þϕ

1� eiϕ
þ e�iϕ � e�i Nþ1ð Þϕ

1� e�iϕ

¼
ei
1
2ϕ ei

1
2ϕ � ei N þ 1

2ð Þϕ
� �

ei
1
2ϕ e�i

1
2ϕ � ei

1
2ϕ

� � þ
e�i

1
2ϕ e�i

1
2ϕ � e�i N þ 1

2ð Þϕ
� �

e�i
1
2ϕ ei

1
2ϕ � e�i

1
2ϕ

� �

¼ ei N þ 1
2ð Þϕ � ei

1
2ϕ

ei
1
2ϕ � e�i

1
2ϕ

þ e�i
1
2ϕ � e�i N þ 1

2ð Þϕ

ei
1
2ϕ � e�i

1
2ϕ

¼
e�i

1
2ϕ � ei

1
2ϕ

� �
þ ei N þ 1

2ð Þϕ � e�i N þ 1
2ð Þϕh i

ei
1
2ϕ � e�i

1
2ϕ

¼ �1þ
2isin N þ 1

2

� �
ϕ

	 


2isin
1
2
ϕ

� �

or, at last,
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2
XN

n¼1 cos nϕð Þ ¼ �1þ
sin N þ 1

2

� �
ϕ

	 


sin
1
2
ϕ

� � :

The obvious question now is, what does the right-hand-side of this expression
look like, and Fig. A1.2 shows that it looks just like (again, for N¼ 7) Fig. A1.1! The
power of math (and Euler’s identity). The two plots would, for any choice of N, be
identical. Try it and see.

Fig. A1.2 A plot of �1þ sin 7 þ 1
2ð Þϕf g

sin 1
2ϕð Þ
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Appendix 2: Heaviside’s Distortionless
Transmission Line Condition

Heaviside gave, in 1887, a beautiful example of the utility of his resistance operator
idea (look back at Problem 3.5) in his derivation of the condition for distortionless
transmission on an infinitely long line. He imagined the line to be what is called a
periodic structure. That is, as a circuit consisting of a series connection of an infinity
of identical sub-circuits, as shown in Fig. A2.1. If we denote the conductance,
capacitance, resistance, and inductance of the line per unit length by G, C, R, and
L, respectively, then, if each sub-circuit represents a length l of the line, the interiors
of all the sub-circuit boxes are as shown in the left-most box.2

Heaviside’s great insight was that the impedance Z seen ‘looking into’ the line at
the input of the first box is the same as the impedance that would be seen if the first
box were discarded and one ‘looked into’ the input of the second box. As Heaviside
wrote, “Since the circuit [the transmission line] is infinitely long, Z cannot be altered
by cutting-off from the beginning . . . any length.”3 In this way Heaviside reduced
the infinite Fig. A2.1 to the finite Fig. A2.2.

Now, remember that Gl is a conductance and so represents a resistance of 1
Gl , and

the capacitance Cl represents an impedance of 1
sCl. The right-most vertical series

connection of Rl, Ll, and Z has an impedance of Rl + sLl + Z. The three vertical paths
are in parallel, and the overall impedance of the parallel paths is Z. The reciprocal of

2The interior of the first box doesn’t look quite like Figure 5.1.1, which was drawn as it is there for
reasons of symmetry. Heaviside’s arrangement has the same technical content, however, and it is a
bit easier to use in deriving the condition for distortionless transmission.
3This idea is physically plausible and mathematically attractive — but — it has some quite subtle
aspects to it that can lead the unwary astray. See, for example, S. J. van Enk, “Paradoxical Behavior
of an Infinite Ladder Network,” American Journal of Physics, September 2000, pp. 854–856. As for
the unwary, even the great American mathematical physicist and Nobel prize winner Richard
Feynman (1918–1988) may have not fully appreciated the subtleties: see my book Mrs. Perkins’s
Electric Quilt, Princeton 2009, pp. 24–36. These concerns do not cause trouble, fortunately, in
Heaviside’s analysis.
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the total impedance of the parallel paths is found by adding the reciprocals of the
individual path impedances, and so Heaviside wrote

1
Z
¼ 1

1
Gl

þ 1
1
sCl

þ 1
Rlþ sLlþ Z

or

1
Z
¼ Glþ sClþ 1

Rlþ sLlþ Z
:

Thus,

1
Z
� 1
Rlþ sLlþ Z

¼ Glþ sCl

which, with just a couple of lines more of algebra becomes

Z2 þ Z Rþ sLð Þl ¼ Rþ sL

Gþ sC

Now, let l ! 0 which makes the sub-circuit approximation better and better.
Thus,

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ sL

Gþ sC

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L sþ R

L

� �
C sþ G

C

� �
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s þ R

L

s þ G
C

svuut

Z Gl Cl

Rl

Ll

Z

Fig. A2.2 This is Fig. A2.1
because the transmission
line is infinitely long

Z Z

l

∞ditto

l

Rl

Cl

Gl Ll

Fig. A2.1 An infinite transmission line as a series connection of an infinity of sub-circuits
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Heaviside then observed that if

R

L
¼ G

C

then we see the s-dependency vanish because the common factors in the numer-

ator and denominator cancel. Z becomes simply a real number, the resistance
ffiffiffi
L
C

q
which is called the characteristic impedance of the transmission line. In this case the
transmission line treats every frequency component present in the spectrum of a
signal exactly like every other frequency component in the signal, and that’s why the
condition in the box is called the distortionless condition. In Chap. 5 a specific
solution — see (5.26) — of the transmission line differential equations, under the
assumption of RC ¼ GL, elaborates on this claim.
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Appendix 3: How to Solve for the Step Response
of the Atlantic Cable Diffusion Equation Without
the Laplace Transform

In Chap. 5 we studied Thomson’s diffusion equation (5.10) for the leakage-free,
non-inductive cable,

∂2v

∂x2
¼ RC

∂v
∂t

,

or, to put it in the form you’ll find in math text books,

∂v
∂t
¼ k

∂2v

∂x2
, k ¼ 1

RC
ðA3:1Þ

which we solved using the Laplace transform. If you look at the writings of both
Fourier and Thomson, however, you’ll not find anything at all like Chap. 5. Instead,
they used ‘traditional,’ classical mathematics. In this appendix I’ll show you how
that can be done (in addition to being a good history lesson on how the pioneers in
transient analysis didn’t let the lack of transform theory get in their way, what we’ll
do here will really show you why you should appreciate the transform!).

The mathematics involved is not normally encountered by an electrical engineer-
ing student until a first course in partial differential equations, but that’s not actually
an indication of advanced difficulty. Yes, some of the arguments I’ll use here may be
novel to a student who has just finished the freshman year of college, but they are
nonetheless completely accessible to such a student. Those arguments are not
difficult to absorb, they are just new.

We start with an idea that has been traced back to as long ago as 1753, to the
Swiss mathematician Daniel Bernoulli (1700–1782). We’ll assume that the solution
to (A3.1) can be written in the form of

v x; tð Þ ¼ X xð ÞT tð Þ: ðA3:2Þ
That is, we’ll assume that we can separate the variables x and t into the product

of two functions, X(x) and T(t). X(x) has no t-dependence, and T(t) has no
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x-dependence. Why can we assume this? Well, we can assume anything we want in
mathematics— the proof-in-the-pudding is if the assumption leads to a solution that
works! This product assumption will pass that pragmatic test. Well, you ask, how did
Bernoulli know to do this? Well, I answer, I’m not absolutely sure, but see the
following shaded box for a speculation.

Daniel Bernoulli was a member of a celebrated family of mathematicians. In
particular, his father was Jean Bernoulli (1669–1748), often known instead by
the Anglicized form of John (or the German equivalent, Johann). Daniel’s
uncle (Jean’s brother) was Jacques Bernoulli (1654–1705) who was often
called James or Jacob. Here I’ll use John and Jacob. Both men were highly
talented mathematicians, but they were also a jealous, combative pair. In 1697
Jacob had been trying for months, unsuccessfully, to solve the differential
equation dy

dx ¼ y xð Þf xð Þ þ yn xð Þg xð Þwhere f(x) and g(x) are two given, arbitrary
functions. When John learned of his brother’s failure, his spirits soared
(no brotherly love here!): after all, what better way to stick a thumb in his
rival’s eye than to solve what Jacob couldn’t, which John promptly did by
making the substitution y(x) ¼ u(x)v(x). That is, John assumed y(x) is the
product of two (as yet unknown) functions, u(x) and v(x). Substituting this into
the differential equation gives v du

dx

� �þ u dv
dx

� � ¼ v ufð Þ þ u un�1vngð Þ and so,
making the obvious associations across the equals sign, du

dx ¼ uf and
dv
dx ¼ un�1vng. Both of these equations are separable and so can be directly
integrated. That is, duu ¼ fdx and dv

vn ¼ un�1gdx and thus (I’ll let you finish the

details) u xð Þ ¼ e
R x

0
f tð Þdt, v xð Þ ¼ C þ 1� nð Þ

Z x

0
un�1 tð Þg tð Þf tð Þdt

	 
 1
1�n

where C is an arbitrary constant of integration. So clever was this idea that
in August of 1697 the French mathematician Pierre Varignon (1654–1722)
wrote to John to correctly say “In truth, there is nothing more ingenious than
the solution that you give for your brother’s equation, and this solution is so
simple that one is surprised at how difficult the problem appeared to be: this is
indeed what one calls an elegant solution.” Daniel was certainly aware in 1753
of his father’s nearly sixty year old trick, and so perhaps that was the
inspiration for his product assumption. Well, okay, you say, but how did
John know to make his assumption? Sorry, I’m all out of speculations!

Substituting (A3.2) into (A3.1), we get

1
kT

dT

dt
¼ 1

X

d2X

dx2
ðA3:3Þ

The left-hand-side is a function of only t with no x-dependency, and the right-
hand-side is a function of only x with no t-dependency, and this can be true for all
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x and all t only if both sides are equal to the same constant. I’ll write that constant as
�λ2, where λ is arbitrary.4 Setting both sides of (A3.3) equal to �λ2, we then have

dT

dt
þ kλ2T ¼ 0 ðA3:4Þ

and

d2X

dx2
þ λ2X ¼ 0: ðA3:5Þ

The general solutions to (A3.4) and (A3.5) are easily verified to be (by direct
substitution)

X xð Þ ¼ C1 cos λxð Þ þ C2 sin λxð Þ
and

T tð Þ ¼ C3e
�λ2kt

where C1, C2, and C3 are arbitrary constants. Thus,

v x; tð Þ ¼ C3e
�λ2kt C1 cos λxð Þ þ C2 sin λxð Þ½ �

or, combining constants in the obvious way to arrive at the constants A and B,

v x; tð Þ ¼ Ae�λ
2kt cos λxð Þ þ Be�λ

2kt sin λxð Þ: ðA3:6Þ
Now, before going any further, we need to specify the boundary and the initial

conditions we are going to impose on v(x, t). We are going to solve for v(x, t) when a
unit step voltage is applied at the x ¼ 0 end of the cable. That is,

v 0; tð Þ ¼ 1, t > 0: ðA3:7Þ
Further, we’ll suppose the cable is initially without any electrical charge, that is,

v x; 0ð Þ ¼ 0, x > 0: ðA3:8Þ
Alas, if we try to use these two conditions on (A3.6), in an attempt to learn more

about A, B, and λ, we immediately run into difficulties (give it a try).
To get around this difficulty, let me now show you a clever trick.5 What we’ll do

is solve the diffusion equation using a different choice of boundary and initial
conditions, and then I’ll show you the easy connection this solution has to the

4Writing the constant as�λ2 forces the constant to be negative. Now, here’s a little math experiment
for you: write the constant as λ2 (which of course is always positive) and see what happens.
5Just to be sure there is no misunderstanding, this clever trick is not due to me! I should be so clever.
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solution of the problem we are actually interested in. So, instead of (A3.7) and
(A3.8), let’s imagine a cable that has been connected, at x¼ 0, to a unit voltage for a
very long time (so long, in fact, that the cable is fully charged), and then at t ¼ 0 we
ground the x ¼ 0 end. Thus,

v 0; tð Þ ¼ 0, t > 0 ðA3:9Þ
and

v x; 0ð Þ ¼ 1, x > 0 ðA3:10Þ
Keep in mind that (A3.6) is still valid, as it hasn’t yet been constrained by any

boundary or initial conditions.
When we apply (A3.9) to (A3.6) we get

Ae�λ
2kt ¼ 0

which, for this to be true for all t, immediately tells us that A ¼ 0. Thus,

v x; tð Þ ¼ Be�λ
2kt sin λxð Þ: ðA3:11Þ

Since λ is arbitrary, then (A3.11) holds for all possible choices for λ (since λ is
squared, this means 0 < λ <1 since using a negative value for λ adds nothing new).
Thus, since the sum of two solutions to the diffusion equation is also a solution, then
if we add terms like (A3.11) for all possible λ, that is, if we integrate over all
non-negative λ, we will have the most general solution. Further, for each choice of λ,
B itself could be a different constant. (The word constant simply means λ and B do
not depend on either x or t.) That is, B ¼ B(λ). So, the most general solution is

v x; tð Þ ¼
Z 1
0

B λð Þe�λ2kt sin λxð Þdλ: ðA3:12Þ

We can find B(λ) by applying (A3.10), which results in

v x; 0ð Þ ¼ 1 ¼
Z 1
0

B λð Þ sin λxð Þdλ: ðA3:13Þ

The question now is, how do we solve (A3.13) for B(λ), which is inside an
integral? To answer this, using just the mathematics of Fourier’s and Thomson’s
day, let’s take a temporary break from the diffusion equation and indulge in a little
digression into Fourier series. Imagine that f(x) is some (any) periodic function with
period T, that is, f(x) ¼ f(x + T ). Then

f xð Þ ¼ 1
2
a0 þ

X1
n¼1

an cos nω0xð Þ þ bn sin nω0xð Þf g
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where what is called the fundamental frequency is given by

ω0 ¼ 2π
T

The so-called Fourier coefficients are given by

an ¼ 2
T

Z T=2

�T=2
f xð Þ cos nω0xð Þdx, n ¼ 0, 1, 2, 3, . . .

and

bn ¼ 2
T

Z T=2

�T=2
f xð Þ sin nω0xð Þdx, n ¼ 1, 2, 3, . . .

I’m not going to prove any of this (look in any good math book on Fourier
series6), and will simply ask you to accept that the mathematicians have, indeed,
established these statements.

Now, let’s write T ¼ 2l, and so the Fourier coefficients become

an ¼ 1
l

Z l

�l
f xð Þ cos nπx

l

 �
dx, n ¼ 0, 1, 2, 3, . . .

and

bn ¼ 1
l

Z l

�l
f xð Þ sin nπx

l

 �
dx, n ¼ 1, 2, 3, . . . ,

because ω0T ¼ 2π says that, with T ¼ 2l, we have

ω0 ¼ π

l

The Fourier series for f(x) is, then,

f xð Þ ¼ 1
2
a0 þ

X1
n¼1 an cos

nπx

l

 �
þ bn sin

nπx

l

 �n o
:

Inserting our expressions for an and bn, we have (with u as a dummy variable of
integration),

6An excellent choice, in my opinion, is Georgi Tolstov, Fourier Series, Dover 1976. Tolstov
(1911–1981) was a well-known mathematician at Moscow State University, and the author of
numerous acclaimed math books. Fourier Series was one of his best.
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f xð Þ ¼ 1
2l

Z l

�l
f uð Þduþ

X1
n¼1 cos

nπx

l

 �1
l

Z l

�l
f uð Þ cos nπu

l

 �
du

þP1n¼1 sin
nπx

l

 �1
l

Z l

�l
f uð Þ sin nπu

l

 �
du

or,

f xð Þ ¼ 1
2l

Z l

�l
f uð Þdu

þP1n¼1 1l
Z l

�l
f uð Þ cos

nπx

l

 �
cos

nπu

l

 �
þ sin

nπx

l

 �
sin

nπu

l

 �n o
du:

If you now recall the identity

cos αð Þ cos βð Þ þ sin αð Þ sin βð Þ ¼ cos α� βð Þ,
then with

α ¼ nπu

l
, β ¼ nπx

l

we have

f xð Þ ¼ 1
2l

Z l

�l
f uð Þduþ

X1
n¼1

1
l

Z l

�l
f uð Þ cos πn

l
u� xð Þ

n o
du: ðA3:14Þ

Now, let l!1, which means we have a periodic function whose period is the
entire x-axis! In other words, f(x) is now any function we wish.

What happens on the right-hand-side of (A3.14) as l!1? The first thing we can
say is, if f(x) is an integrable function (the only kind that interest engineers studying
real, physically realizable systems), then it bounds finite area and so

lim
l!1

1
2l

Z l

�l
f uð Þdu ¼ 0:

Next, define

λ ¼ π

l

and then write λ1 ¼ λ, λ2 ¼ 2λ ¼ 2π
l , λ3 ¼ 3λ ¼ 3π

l , . . ., λn ¼ nλ ¼ nπ
l , . . . and so on,

forever, as n!1. If we write

Δλn ¼ λnþ1 � λn ¼ π

l
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we have

1
l
¼ Δλn

π

and so (A3.14) becomes (where I’ve dropped the first integral because we’ve agreed
that it vanishes in the limit l!1)

f xð Þ ¼
X1

n¼1
Δλn
π

Z l

�l
f uð Þ cos λn u� xð Þf gdu:

As l!1 we see that Δλn! 0, that is, Δλn becomes ever smaller (ever more like
the differential dλ), λn becomes the continuous variable λ, and the sum becomes an
integral with respect to λ. (Mathematicians will cringe at this sort of talk, but
engineers will at least give it a chance.) Since the definition of λ restricts it to
non-negative values, we thus write the l!1 limit as

f xð Þ ¼ 1
π

Z 1
0

Z 1
�1

f uð Þ cos λ u� xð Þf gdu
� �

dλ

¼ 1
π

Z 1
0

Z 1
�1

f uð Þ cos λuð Þ cos λxð Þ þ sin λuð Þ sin λxð Þf gdu
� �

dλ

where I’ve again used the identity cos(α) cos (β) + sin (α) sin (β) ¼ cos (α � β).
So, if we change notation and write v(x, 0) instead of f(x), just to make things look

as we left (A3.13) when we started this digression, we can write

v x; 0ð Þ ¼ 1
π

Z 1
0

cos λxð Þ
Z 1
�1

v u; 0ð Þ cos λuð Þdu
	 


dλ ðA3:15Þ

þ1
π

Z 1
0

sin λxð Þ
Z 1
�1

v u; 0ð Þ sin λuð Þdu
	 


dλ:

We know v(x, 0)¼ 1 for x > 0, while what v(x, 0) is doing for x < 0 has no physical
significance (the cable doesn’t exist for x < 0). That means we can feel free to specify
v(x, 0) for x < 0 in any way we wish that’s convenient. In particular, suppose we
define v(x, 0) ¼ � 1 for x < 0, that is, v(x, 0) is an odd function of x. Since cos(λu) is
an even function of u, and since sin(λu) is an odd function of u, and since (by our
recent definition) v(u, 0) is an odd function of u, then

Z 1
�1

v u; 0ð Þ cos λuð Þdu ¼ 0

and

Z 1
�1

v u; 0ð Þ sin λuð Þdu ¼ 2
Z 1
0

v u; 0ð Þ sin λuð Þdu:
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Thus, (A3.15) becomes

1 ¼
Z 1
0

sin λxð Þ 2
π

Z 1
0

v u; 0ð Þ sin λuð Þdu
	 


dλ

or, as v(u, 0)¼ 1 in the inner integral as the dummy variable u varies from 0 to1, we
have

1 ¼
Z 1
0

2
π

Z 1
0

sin λuð Þdu
	 


sin λxð Þdλ: ðA3:16Þ

Now, if you haven’t noticed it yet, we have just found B(λ)! To see this, compare
(A3.16) with (A3.13), and now you see it, don’t you?:

B λð Þ ¼ 2
π

Z 1
0

sin λuð Þdu:

Inserting the B(λ) into (A3.12), we have7

v x; tð Þ ¼
Z 1
0

2
π

Z 1
0

sin λuð Þdu
	 


e�λ
2kt sin λxð Þdλ

or, reversing the order of integration,

v x; tð Þ ¼ 2
π

Z 1
0

Z 1
0

sin λuð Þ sin λxð Þe�λ2ktdλ
	 


du: ðA3:17Þ

If you recall the identity

sin αð Þ sin βð Þ ¼ 1
2

cos α� βð Þ � cos αþ βð Þ½ �,

then (A3.17) becomes

v x; tð Þ ¼ 1
π

Z 1
0

Z 1
0

cos λ u� xð Þf ge�λ2ktdλ
	 


du ðA3:18Þ

�1
π

Z 1
0

Z 1
0

cos λ uþ xð Þf ge�λ2ktdλ
	 


du:

7At this point, a perceptive reader might hesitate at the sight of the integral
Z 1
0

sin λuð Þdu. That’s
because for an engineer this integral is the area under the sine curve, over an infinite interval. What’s
that area? Is it zero? Couldn’t it be anything from zero to 2

λ? I think that the best way to think of this
expression for B(λ) is as a symbolic one, and to simply move right along to (A3.17).
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The inner integrals of (A3.18) can be found by the simple expedient of using a
good math table8:

Z 1
0

e�ap
2
cos bpð Þdp ¼ 1

2

ffiffiffi
π

a

r
e�b

2=4a:

So, with p ¼ λ, a ¼ kt, and b ¼ u � x, we have

Z 1
0

cos λ u� xð Þf ge�λ2ktdλ ¼ 1
2

ffiffiffiffi
π

kt

r
e� u�xð Þ2=4kt

and

Z 1
0

cos λ uþ xð Þf ge�λ2ktdλ ¼ 1
2

ffiffiffiffi
π

kt

r
e� uþxð Þ2=4kt

which says (A3.18) becomes

v x; tð Þ ¼ 1
2

1ffiffiffiffiffiffiffi
πkt
p

Z 1
0

e� u�xð Þ2=4ktdu�
Z 1
0

e� uþxð Þ2=4ktdu
� �

: ðA3:19Þ

Next, change variable in the two integrals of (A3.19) to

y ¼ u� x

2
ffiffiffiffi
kt
p

where we use the minus sign in the first integral, and the plus sign in the second
integral. Then,

v x; tð Þ ¼ 1
2

1ffiffiffiffiffiffiffi
πkt
p

Z 1
� x

2
ffiffi
kt
p
e�y

2
2
ffiffiffiffiffi
kt
p

dy�
Z

x
2
ffiffi
kt
p

1
e�y

2
2
ffiffiffiffiffi
kt
p

dy

" #
¼ 1ffiffiffi

π
p

Z x
2
ffiffi
kt
p

� x
2
ffiffi
kt
p

e�y
2
dy

or, as e�y
2
is even about y ¼ 0,

v x; tð Þ ¼ 2ffiffiffi
π
p

Z x
2
ffiffi
kt
p

0
e�y

2
dy ¼ erf

x

2
ffiffiffiffi
kt
p

� �
ðA3:20Þ

as a look back at (3.78), the definition of the error function erf, will confirm.

8This definite integral has been known for centuries. It appears, for example, in Fourier’s Analytical
Theory, along with a derivation. If you are interested in the details of how such an integral can be
attacked, see my book Inside Interesting Integrals, Springer 2015, pp. 77–79.
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Now, remember that the v(x, t) in (A3.20) is not the solution to the problem we are
actually trying to solve. The solution in (A3.20) satisfies the conditions given in
(A3.9) and (A3.10), while what we want is the solution that satisfies the conditions
of (A3.7) and (A3.8). But that’s easy to arrange— just subtract the v(x, t) of (A3.20)
from one! That is, our final answer is, with k ¼ 1/RC,

v x; tð Þ ¼ 1� erf
x

2
ffiffiffiffi
kt
p

� �
¼ 1� erf

x

2

ffiffiffiffiffiffiffi
RC

t

r !
ðA3:21Þ

which is, indeed, the solution we found in (5.17) using the Laplace transform. This
works because 1 is a (trivial9) solution to the diffusion equation, and the difference of
two solutions is also a solution.

Finally, to get the current in the Atlantic cable due to a unit voltage step input at
x¼ 0, simply recall (5.3) with L¼ 0 (the Atlantic cable was, you’ll remember, taken
to be non-inductive):

�∂v
∂x
¼ iR

Thus,

i x; tð Þ ¼ �1
R

∂
∂x

1� 2ffiffiffi
π
p
Z x

2
ffiffi
kt
p

0
e�y

2
dy

� �
, k ¼ 1=RC,

and the integral is easily differentiated with respect to x using Leibniz’s formula
(note 3 in Chap. 1). The result (which you should confirm) is

i x; tð Þ ¼
ffiffiffiffiffiffiffi
C

πRt

r
e�x

2RC=4t,

in agreement with (5.22) that was found with the aid of the Laplace transform.
Doing all of these calculations strictly in the time domain has been a lot of

work. The transform approach, once you’ve gotten over the learning curve, is a lot
easier, and I believe Fourier and Thomson would have loved it. As an illustration for
why I say that, take a look back at Problem 5.6, which asks you to generalize the
analysis for the response of the Atlantic cable to an arbitrary input at x¼ 0, and then
read the following shaded box which uses the transform to make short work of
the task.

9Trivial, because it reduces the diffusion equation to the claim that 0 ¼ 0 which, while undeniably
true, is not of very much use!
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Look back at (5.16), and how we derived there, using the Laplace transform,
the voltage response of the Atlantic cable to a voltage step input. Instead of
0; sð Þ ¼ 1

s, however, let’s write V(0, s)¼ F(s), where F(s) is the transform of an

arbitrary f(t), applied to the x ¼ 0 end of the cable. Then, V x; sð Þ ¼ F sð Þ
e�x

ffiffiffiffiffiffi
RCs
p

and so by a direct application of the convolution theorem— see (3.87)
— we can immediately write

v x; tð Þ ¼ f tð Þ∗L�1 e�x
ffiffiffiffiffiffi
RCs
pn o

where L�1 denotes the inverse transform (that is, a function of time). From
(3.85) we have

ae�
a2
4t

2
ffiffiffiffiffiffi
πt3
p

u tð Þ $ e�a
ffiffi
s
p

and so, with a ¼ x
ffiffiffiffiffiffiffi
RC
p

, we have L�1 e�x
ffiffiffiffiffiffi
RCs
pn o

¼ x
ffiffiffiffiffi
RC
p
2
ffiffiffiffiffi
πt3
p e�x

2RC=4t. Thus,

v x; tð Þ ¼ x

2

ffiffiffiffiffiffiffi
RC

π

r Z t

0

f t � pð Þ
p3=2

e�x
2RC=4pdp:

For given values of R, C, and x, this integral is easily evaluated numerically
(see the MATLAB code accon.m), as a function of t, even for an f(t) so
complicated that being asked to do it analytically would have struck horror
in the throats of Fourier and Thomson.

To back-up the claim made in the final sentence of the previous shaded box, the
code accon.m (for Atlantic Cable CONvolution) shows how to find v(x, t), with
MATLAB, for just about any f(t). (The values of x, R, and C are those used in
Fig. 5.2.) The logic behind the code is as follows:

1. start and stop values of time are specified, along with the number of points desired
in the final plot of v(x, t);

2. from (1), MATLAB creates a vector of time values;
3. for those time values, the input function f(t) is evaluated;

4. for those time values the function h tð Þ ¼ e�x
2RC=4t

t3=2
is evaluated;

5. MATLAB’s built-in conv function performs the convolution of f(t) with h(t), and

scales the result by the factor 1
2 x

ffiffiffiffiffi
RC
π

q
.
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%accon.m/created by PJNahin for Electrical Transients (11/9/
2017)
tstart=1e-6;tstop=10;n=10000;x=2000;
R=3;C=5e-7;deltat=(tstop-tstart)/n;
t=tstart:deltat:tstop;
g1=x*x*R*C/4;g2=0.5*x*sqrt(R*C/pi);
for k=1:length(t)

if t(k)<5
input(k)=1;

else
input(k)=0;

end
end
input=input*deltat;
h=exp(-g1./t)./(t.^1.5);
v=conv(input,h);
v=g2*v;
plot(t,v(1:length(t)),'-k')
xlabel('time (seconds)')
ylabel('volts')

To test the code, an input of all 1’s (to simulate a unit voltage step input) is used.
When run, the code’s result is, to the eye, an exact replica of a plot of the theoretical
result given in (5.17) and (A3.21).

Now, to do a problem that Fourier and Thomson would never have even
attempted analytically, suppose

f tð Þ ¼ sin t sin t2ð Þð Þ, 0 < t < 5
0, t > 5

All that is required in accon.m to handle this f(t) is the replacement of the line.

input(k)=1;

with the lines10

10This sort of function, in which the instantaneous frequency changes with time, is an example of
FM (frequency modulation), used in such important electronic gadgets as radio and pulse com-
pression radar. FM, and its gadgets, would have been magic to Fourier and Thomson.
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if t(k)<5
input(k)=sin(t(k)*sin(t(k)^2));

else
input(k)=0;
end

The result is shown in Fig. A3.1.

Fig. A3.1 The transient response of the Atlantic Cable to the input f(t) ¼ sin (t sin (t2))u(5 � t)
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Appendix 4: A Short Table of Laplace
Transforms and Theorems

Transform pair First discussed at

u(t)$ 1/s (3.11)

e�atu tð Þ $ 1
sþa (3.12)

cos ω0tð Þu tð Þ $ s

s2 þ ω2
0

(3.15)

sin ω0tð Þu tð Þ $ ω0

s2 þ ω2
0

(3.16)

tnu tð Þ $ Γ nþ1ð Þ
snþ1

(3.36)

1ffiffi
t
p u tð Þ $ ffiffi

π
s

p
(3.44)ffiffi

t
p

u tð Þ $ 1
2s

ffiffi
π
s

p
(3.45)

J0 atð Þu tð Þ $ 1ffiffiffiffiffiffiffiffiffi
s2þa2p (3.47)

I0 atð Þu tð Þ $ 1ffiffiffiffiffiffiffiffiffi
s2�a2
p (3.48)

δ(t)$ 1 (3.52)

1� erf a
2
ffiffi
t
p

 �n o
u tð Þ $ 1

s e
�a ffiffisp (3.79)

ae�
a2
4t

2
ffiffiffiffiffi
πt3
p

u tð Þ$e�a
ffi
s
p

(3.85)

I0 p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � k2
p �

u t � kð Þ $ e�k
ffiffiffiffiffiffiffi
s2�p2
pffiffiffiffiffiffiffiffiffi
s2�p2
p (5.33)

f(t)u(t)$ F(s) (3.1)

tf tð Þu tð Þ $ � dF sð Þ
ds

(3.8)

f tð Þ
t

u tð Þ $
Z 1
s

F xð Þdx (3.9)

df tð Þ
dt u tð Þ $ sF sð Þ � f 0þð Þ (3.2)

d2 f tð Þ
dt2 u tð Þ $ s2F sð Þ � sf 0þð Þ � f 0 0þð Þ (3.5)

d3 f tð Þ
dt3 u tð Þ $ s3F sð Þ � s2f 0þð Þ � sf 0 0þð Þ � f

0 0
0þð Þ (3.6)Z t

0
f xð Þdx$ F sð Þ

s

(3.7)

(continued)
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Transform pair First discussed at

e�atf(t)$ F(s + a) (3.13)

f t � t0ð Þu t � t0ð Þ $ e�st0F sð Þ (3.14)

lim
s!0

sF sð Þ ¼ lim
t!1 f tð Þ (3.18)

lim
s!1 sF sð Þ ¼ lim

t!0þ
f tð Þ (3.19)

f(t) ∗ g(t) F(s)G(s) (3.87)
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Index

A
Abel, N.H., 72
Ampere, A.M., 1
Arcs, xii, 20, 21, 31, 37
Atlantic Cable, 93, 133, 136, 137, 140–143,

160, 169–181

B
Bernoulli, D., 169, 170
Bernoulli, J, 171
Bessel function, 73, 74, 149
Bessel, F.W., 73
Binomial theorem, 72

C
Capacitors, xii, xiii, xv, xvi, xviii, 1, 2, 4, 5, 7, 8,

11, 18, 19, 21, 25, 26, 29, 31, 32, 37, 43,
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Churchill, R.V., xvi, 99
Clamping, 123–125
Conductance, 134, 136, 166
Conjugate (complex), 12
Conservation (of electric charge), xiii, 4, 26
Conservation (of energy), 4, 18, 90
Constant current source, 1
Convolution, 93–100, 102, 103,

160, 179
Coulomb, C., 4
Cramer, G., 16

D
Delta function, xviii, 75
Dirac, P., xviii, 76
Doetsch, G., 100
Dummy variable (of integration), 5, 53, 57, 69,

173, 176

E
Equation (algebraic), 12, 51, 108
Equation (differential), xi, xv, xix, 5, 6, 51, 73,

93, 100, 133, 137, 140, 168, 169, 171
Equation (separable), 32
Equation (telegraphy), 135–137
Error function, 69, 71, 93–100, 143, 177
Euler, L., 68, 161
Even function, 175
Exponential functions, 56, 73

F
Factorial function, 68
Faraday, M., 2
Final value theorems, 60, 81, 100, 152, 159
Flux (magnetic), xiv, 2, 8, 9, 11, 20, 21, 26, 90
Fourier, J., 93, 137
Frequency (natural), 22–24, 41, 116
Functions, xviii, xix, 11, 16, 18, 25, 51–53,

55–61, 63, 67, 68, 71, 73–76, 80, 85, 93,
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G
Galvanometer, 143
Gamma function, 68

H
Heaviside, O., xv, 55, 76, 101, 153
Henry, J., 2
Hertz, H., 22
Hurwitz, A., 129
Hyperbolic functions, 155

I
Ilaplace (MATLAB), 87
Impedance, 101, 125, 130, 158, 159, 166, 168
Impulse functions, xvii–xix, 18, 75, 102
Inductance (mutual), 21, 117, 134
Inductance (self), 3, 21, 89
Inductors, xii–xvi, xviii, 1, 2, 4, 7, 8, 11, 14, 20,

21, 25, 31, 37, 43, 45, 90, 101, 105, 107,
111, 116, 117, 125, 130, 133

Initial conditions, xvii, 45, 154, 171
Integration-by-parts, 102

J
Jacobians, 70
Joule, J., 7

K
Kelvin, L., 16, 137
Kirchhoff, G.R., 4

L
Laplace transforms, xvi–xx, 42, 51–105, 120,

125, 128, 137, 138, 140, 141, 147, 150,
152, 169–183

Law of squares, 144
Leibniz, G.W., 5
Lenz, H., 90
Loading (inductive), 146, 153
Loop currents, xv, 78

M
Magnetic coupling, 21, 41–49, 116
Maxwell, J.C., 78
McShane, E., 77
Morse code, 145

N
NE-2 gas bulb, 120
Newton, I., xviii, 137

O
Odd function, 175
Ohm, G., 2
Operator (resistance), 101, 111, 166
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