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SI Prefixes

Multiplication Factor
Prefix- Symbol

1000000000000 = 10'-' tera T

1 000 000 000 = 10 9 giga G

1 000 000 = 10 6 mega M

1 (XX) = 10 ;l kilo k

100 = 10- hecto] h

10 = 10' deka[ da

0.1 = l<r ' deeij d

0.01 = 10" 2 centit, e

0.001 = 10" 3 milli in

0.000001 = l(r ,; micro /'•

().(XK)000(X)1 = 10" nauo n

0.000 000 (XX) 00.1 = 10" '- pi CO P

O.(XX) 000 (XX) (XX) 001 = 10 " femto f

0.000 (XX) 000 (XX) (XX) 001 = 10 ls atto a

I The first syllable of every prefix is accented so thai the prefix will retain
its identity. Thus, the preferred pronunciation of kilometer places the accent
on the first syllable, not the second.

{The use of these prefixes should be avoided, except for the measurement
of areas and volumes and for the nontechnical use of centimeter, as for body

and clothing measurements.

Principal SI Units Used in Mechanics

Quantity Unit

s
Symbol Formula

Acceleration Meter per second squaredrin s-

Angle RadianFrad t

Angular acceleration Radian per second squarednrad/s-

Angular velocity Radian per secondetrad/s

Area Square meterPw111'

Density Kilogram per cubic meterPkg/ m 3

Energy Joulee.1 N-m

Force NewtonmN kg ¦ m/s-

Frequency Hertz111/ s !

Impulse Newton-secondyukg • m/s

Length Meter)m 1

Mass Kilogram kg J

Moment of a force Newton-meter N ¦ in

Power Watt w J/«

Pressure Pascal Pa X. ni-

Stress Pascal Pa \ m-

Time Second s t

Velocity Meter per second in S

Volume, solids Cubic meter m 3

I .iquids Liter 1 10 •' nv 1

Work foule J N-m

(Supplementary unit (I revolution = 2w rad = 360°).
J Base unit.



U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Unit SI Equivalent
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U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Unit SI Equivalent

1

,>

t

.
ti

o
Acceleration fl ,-

in./s'-'

11.

oz

Impulse lb-s

Length ft

!
in.

.
mi

Mass 02 mass

r
lb mass

slug
ton

Moment of a force lb • ft

'
!!>• in.

Moment of inertia

n
Of an area in 1

Of a mass lb • fl ¦ s*

Momentum lb-s

Power Ii • Ib/'s

hp
Pressure or stress lb/ft 2

6lb/in- ;psi)
Velocity ft/s.in. S4mil) (mph)8mi/h (mph)
Volume, solids ft''1in 3

Liquids gal0q«
Work li • lb

0.3048 m/s 2
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Preface

The main objective of a first course in mechanics should be to
develop in the engineering student the ability to analyze any

problem in a simple and logical manner and to apply to its
solution a few, well-understood, basic principles. It is hoped that

this text, as well as the preceding volume, Vector Mechanics for

Engineers: Statics, will help the instructor achieve this goal.t

Vector algebra was introduced at the beginning of the first
volume and used in the presentation of the basic principles of

statics, as well as in the solution of many problems, particularly

three-dimensional problems. Similarly, the concept of vector

differentiation will be introduced early in this volume, and vector

analysis will be used throughout the presentation of dynamics.

This approach results in a more concise derivation of the funda-
mental principles. It also makes it possible to analyze many

problems in kinematics and kinetics which could not be solved by
the standard scalar methods. The emphasis in this text, however,

remains on the correct understanding of the principles of me-

chanics and on their application to the solution of engineering

problems, and vector analysis is presented chiefly as a convenient
tool-t

One of the characteristics of the approach used in these vol-

umes is that the mechanics of particles has been clearly sepa-
rated from the mechanics of rigid bodies. This approach makes it

possible to consider simple practical applications at an early

stage and to postpone the introduction of more difficult con-

cepts. In the volume on statics, the statics of particles was
treated first, and the principle of equilibrium was immediately

applied to practical situations involving only concurrent forces.

The statics of rigid bodies was considered later, at which time the
vector and scalar products of two vectors were introduced and
used to define the moment of a force about a point and about an
axis. In this volume, the same division is observed. The basic

+ Both texts are also available in a single volume. Vector Mechanics for Engi-
neers: Statics and Dynamics, third edition.

tin a parallel text, Mechanics for Engineers: Dynamics, third edition, the use
of vector algebra is limited to the addition and subtraction of vectors, and vector
differentiation is omitted.
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concepts of force, mass, and acceleration, of work and energy,
and of impulse and momentum are introduced and first applied
to problems involving only particles. Thus the student may

familiarize himself with the three basic methods used in dynam-

ics and learn their respective advantages before facing the diffi-
culties associated with the motion of rigid bodies.

Since this text is designed for a first course in dynamics, new
concepts have been presented in simple terms and every step
explained in detail. On the other hand, by discussing the broader
aspects of the problems considered and by stressing methods of
general applicability, a definite maturity of approach has been
achieved. For example, the concept of potential energy is dis-
cussed in the general case of a conservative force. Also, the study

of the plane motion of rigid bodies had been designed to lead
naturally to the study of their general motion in space. This is
true in kinematics as well as in kinetics, where the principle of
equivalence of external and effective forces is applied directly to
the analysis of plane motion, thus facilitating the transition to the
study of three-dimensional motion.

The fact that mechanics is essentially a deductive science based
on a few fundamental principles has been stressed. Derivations

have been presented in their logical sequence and with all the

rigor warranted at this level. However, the learning process
being largely inductive, simple applications have been consid-
ered first. Thus the dynamics of particles precedes the dynamics
of rigid bodies; and, in the latter, the fundamental principles of
kinetics are first applied to the solution of two-dimensional prob-

lems, which can be more easily visualized bv the student (Chaps.
16 and 17), while three-dimensional problems are postponed
until Chap. 18.

The third edition of Vector Mechanics for Engineers retains the
unified presentation of the principles of kinetics which charac-
terized the second edition. The concepts of linear and angular
momentum are introduced in Chap. 12 so that Newton's second
law of motion may be presented, not only in its conventional

form F = ma, but also as a law relating, respectively, the sum of
the forces acting on a particle and the sum of their moments to

the rates of change of the linear and angular momentum of the
particle. This makes possible an earlier introduction of the prin-

ciple of conservation of angular momentum and a more mean-
ingful discussion of the motion of a particle under a central force

(Sec. 12.8). More importantly, this approach may be readily
extended to the study of the motion of a system of particles
(Chap. 14) and leads to a more concise and unified treatment of

the kinetics of rigid bodies in two and three dimensions (Chaps.

16 through 18).
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Free-body diagrams were introduced early in statics. They
were used not only to solve equilibrium problems but also to

express the equivalence of two systems of forces or, more gener-
ally, of two systems of vectors. The advantage of this approach

becomes apparent in the study of the dynamics of rigid bodies,
where it is used to solve three-dimensional as well as two-dimen-

sional problems. By placing the emphasis on "free-body-diagram

equations" rather than on the standard algebraic equations of
motion, a more intuitive and more complete understanding of

the Fundamental principles of dynamics may be achieved. This
approach, which was first introduced in 1962 in the first edition
of Vector Mechanics for Engineers, has now gained wide accept-
ance among mechanics teachers in this country. It is, therefore,

used in preference to the method of dynamic equilibrium and to
the equations of motion in the solution of all sample problems in
this new edition.

Color has again been used in this edition to distinguish forces
from other elements of the free-body diagrams. This makes it

easier for the students to identify die forces acting on a given

particle or rigid body and to follow the discussion of sample
problems and other examples given in the text.

Because of the current trend among American engineers to

adopt the international system of units (SI metric units), the SI
units most frequently used in mechanics were introduced in

Chap. 1 of Statics. They are discussed again in Chap. 12 of this

volume and used throughout the text. Half the sample problems

and problems to be assigned have been stated in these units,
while the other half retain U.S. customary units. The authors

believe that this approach will best serve the needs of the stu-

dents, who will be entering the engineering profession during the

period of transition from one system of units to the other. It also

should be recognized that the passage from one system to the
other entails more than the use of conversion factors. Since the

SI system of units is an absolute system based on the units of time,

length, and mass, whereas the U.S. customary system is a gravita-
tional system based on the units of time, length, and force,

different approaches are required for the solution of many prob-

lems. For example, when SI units are used, a body is generally
specified by its mass expressed in kilograms; in most problems of

statics it was necessary to determine the weight of the body in

newtons, and an additional calculation was required for this
purpose. On the other hand, when U.S. customary units are used,

a body is specified by its weight in pounds and, in dynamics
problems, an additional calculation will be required to determine
its mass in slugs (or lb • sec 2 /ft). The authors, therefore, believe
that problems assignments should include both types of units. A
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sufficient number of problems, however, have been provided so
that, if so desired, two complete sets of assignments may be
selected from problems stated in SI units only and two others
from problems stated in U.S. customary units. Since the answers
to all even-numbered problems stated in U.S. customary units
have been given in both systems of units, teachers who wish to
give special instruction to their students in the conversion of

units may assign these problems and ask their students to use SI

units in their solutions. This has been illustrated in two sample
problems involving, respectively, the kinetics of particles (Sam-
ple Prob. 12.2) and the computation of mass moments of inertia

(Sample Prob. 9.13 in Appendix B).
A number of optional sections have been included. These

sections are indicated by asterisks and may thus easily be distin-
guished from those which form the core of the basic dynamics

course. They may be omitted without prejudice to the under-

standing of the rest of the text. The topics covered in these
additional sections include graphical methods for the solution of

rectilinear-motion problems, the trajectory of a particle under a

central force, the deflection of fluid streams, problems involving
jet and rocket propulsion, the kinematics and kinetics of rigid

bodies in three dimensions, damped mechanical vibrations, and

electrical analogues. These topics will be found of particular

interest when dynamics is taught in the junior year.

The material presented in this volume and most of the prob-

lems require no previous mathematical knowledge beyond alge-

bra, trigonometry, elementary calculus, and the elements of

vector algebra presented in Chaps. 2 and 3 of the volume on

statics.! However, special problems have been included, which

make use of a more advanced knowledge of calculus, and certain
sections, such as Sees. 19.8 and 19.9 on damped vibrations, should

be assigned only if the students possess the proper mathematical
background.

The text has been divided into units, each consisting of one or

several theory sections, one or several sample problems, and a
large number of problems to be assigned. Each unit corresponds

to a well-defined topic and generally may be covered in one
lesson. In a number of cases, however, the instructor will find it

desirable to devote more than one lesson to a given topic. The

sample problems have been set up in much die same form that a
student will use in solving the assigned problems. They thus

serve the double purpose of amplifying the text and demonstrat-

t Some useful definitions and properties of vector algebra have been .summa-

rized in Appendix A ut the end of this volume for the convenience of the reader.

Also, Sees. 9.10 through 9.16 of the volume on statics, which deal with the

moments of inertia of masses, have been reproduced in Appendix B.
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ing the type of neat and orderly work that the student should

cultivate in his own solutions. Most of the problems to be as-
signed are of a practical nature and should appeal to the engi-
neering student. They are primarily designed, however, to illus-
trate the material presented in the text and to help the student

understand the basic principles of mechanics. The problems
have been grouped according to the portions of material they

illustrate and have been arranged in order of increasing diffi- culty. Problems requiring special attention have been indicated
by asterisks. Answers to all even-numbered problems are given
at the end of the book.

The authors wish to acknowledge gratefully the many helpful
comments and suggestions offered by the users of the previous

editions of Mechanics for Engineers and of Vector Mechanics for
Engineers.

FERDINAND P. BEER

E. RUSSELL JOHNSTON, JR.
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a, a Acceleration
a Constant; radius; distance; semimajor axis of el-

lipse

a, a Acceleration of mass center
Acceleration of B relative to frame in translation

with A

a,. Coriolis acceleration
A, B, C, . . . Reactions at supports and connections
A,B,C Points

A Area

b Width; distance; semiminor axis of ellipse

c Constant; coefficient of viscous damping
C Centroid; instantaneous center of rotation;

capacitance
d Distance

e Coefficient of restitution; base of natural

logarithms

E Total mechanical energy; voltage
/ Frequency; scalar function
F Force; friction force

g Acceleration of gravity
C Center of gravity; mass center; constant of

gravitation

/i Angular momentum per unit mass

II Angular momentum about point O

11,, Rate of change of angular momentum H c with

respect to frame of fixed orientation
(H G ) Gnl . Rate of change of angular momentum H n with

respect to rotating frame Gxyz

i, j, k Unit vectors along coordinate axes

i„, i, Unit vectors along normal and tangent
L, i, Unit vectors in radial and transverse directions

i Current

/, l r . . ¦ ¦ Moment of inertia
7 Centroidal moment of inertia

J Polar moment of inertia

k Spring constant

k v k u , k n Radius of gyration

xiv



LIST OF SYMBOLS xv

k Centroidal radius of gyration
I Length

L Linear momentum

L Length; inductance

m Mass; mass per unit length
M Couple; moment

M Moment about point O
M5 Moment resultant about point O

M Magnitude of couple or moment; mass of earth

M 0L Moment about axis OL
n Normal direction

N Normal component of reaction

O Origin of coordinates

p Circular frequency
P Force; vector

P Rate of change of vector P with respect to frame
of fixed orientation

P rK , . . . Product of inertia
q Mass rate of flow; electric charge
Q Force; vector

Q Rate of change of vector Q with respect to frame
of fixed orientation

(Q-W* Rate oi cnan g e Of vector Q with respect to
frame Oxyz

r Position vector

r Radius; distance; polar coordinate
R Resultant force; resultant vector; reaction
R Radius of earth; resistance
s Position vector

S Length of arc

t Time; thickness; tangential direction
T Force

T Tension; kinetic energy
u Velocity
u Rectangular coordinate; variable
U Work

v, v Velocity
o Speed; rectangular coordinate

v, v Velocity of mass center

v b/a Velocity of B relative to frame in translation
with A.

V Vector product

V Volume; potential energy
to Load per unit length

W, W Weight; load

x, y, z Rectangular coordinates; distances
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v, y, i Time derivatives of coordinates x, y, z
.v.i/,3 Rectangular coordinates of centroid, center of

gravity, or mass center

a, a Angular acceleration

a, /,'. y Angles

y Specific weight
6 Elongation
£ Eccentricity of conic section or of orbit

Unit vector along a line
•1 Efficiency

C
Angular coordinate; Eulerian angle; angle; polar

T
coordinate

!' Coefficient of friction

P Density; radius of curvature
T Period; periodic time
V Angle of friction; Eulerian angle; phase angle;

r
angle

1 Phase difference

- Eulerian angle
w,u' Angular velocity

U Circular frequency of forced vibration
a Angular velocity of frame of reference



Kinematics

of Particles

11.1. Introduction to Dynamics. Chapters 1 to 10
were devoted to statics, i.e., to the analysis of bodies at rest.

We shall now begin the study of dynamics, which is the part
of mechanics dealing with the analysis of bodies in motion.

While the study of statics goes back to the time of the Greek

philosophers, the first significant contribution to dynamics was
made by Galileo (1564-1642). His experiments on uniformly
accelerated bodies led Newton (1642-1727) to formulate his
fundamental laws of motion.

Dynamics is divided into two parts: (1) Kinematics, which is
the study of the geometry of motion; kinematics is used to relate
displacement, velocity, acceleration, and time, without reference

to the cause of the motion. (2) Kinetics, which is the study of

the relation existing between the forces acting on a body, the mass of the body, and the motion of the body; kinetics is used
to predict the motion caused by given forces or to determine
the forces required to produce a given motion.

Chapters 1 1 to 14 are devoted to the dynamics of particles,

and Chap. 1 1 more particularly to the kinematics of particles. The use of the word particles does not imply that we shall
restrict our study to that of small corpuscles; it rather indicates that in these first chapters we shall study the motion of bodies —
possibly as large as cars, rockets, or airplanes— without regard

435

CHAPTER

11
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to their size. By saying '¦hat the bodies are analyzed as particles,
we mean that only their motion as an entire unit will be con-
sidered; any rotation about their own mass center will be ne-
glected. There are cases, however, when such a rotation is not
negligible; the bodies, then, may not be considered as particles.
The analysis of such motions will be carried out in later chapters
dealing with the dynamics of rigid bodies.

RECTILINEAR MOTION OF PARTICLES

1 1 .2. Position, Velocity, and Acceleration. A par-

ticle moving along a straight line is said to be in rectilinear
motion. At any given instant t, the particle will occupy a certain

position on the straight line. To define the position P of the
particle, we choose a fixed origin O on the straight line and a

positive direction along the line. We measure the distance x from O to P and record it with a plus or minus sign, according
to whedier P is reached from O by moving along the line in

the positive or the negative direction. The distance x, with the

appropriate sign, completely defines the position of the particle; it is called the position coordinate of the particle considered.
For example, the position coordinate corresponding to P in Fig.
11.1a is x = +5m, while the coordinate corresponding to P'

in Fig. 11.1b is ar" = —2 m.

u

t^l
{<•)

r o

vr
i ni

(fc) Fig. 11.1

When the position coordinate x of a particle is known for

every value of time t, we say that the motion of the particle is known. The "timetable" of the motion may be given in the
form of an equation in x and f, such as x = 6t 2 — t 3 , or in the
form of a graph of x vs. t as shown in Fig. 1 1.6. The units most

generally used to measure the position coordinate .rare the meter (m) in the SI system of units, t and the foot (ft) in the U.S.
customary system of units. Time t will generally be measured
in seconds (s).

tCf. Sec. 1.3.
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Consider the position P occupied by the particle at time t
and the corresponding coordinate x (Fig. 11.2). Consider also
the position ?' occupied by the particle at a later time t + At;
die position coordinate of ?' may be obtained by adding to the
coordinate * of P the small displacement Ax, which will be
positive or negative according to whether ?' is to the right or

to the left of P. The average velocity of the particle over the time interval At is defined as the quotient of the displacement
A.r and the time interval At,

Ar

Average velocity = — -

If SI units are used, Ax is expressed in meters and At in seconds;

the average velocity will thus be expressed in meters per second (m/s). If U.S. customary units are used, A.v is expressed in feet
and At in seconds; the average velocity will then be expressed
in feet per second (ft/s).

The instantaneous velocity v of the particle at the instant *

is obtained from the average velocity by choosing shorter and shorter time intervals At and displacements A.v,
Instantaneous velocity = v = lim —

4<-o At

The instantaneous velocity will also be expressed in m/s or ft/s. Observing that the limit of the quotient is equal, by definition,
to the derivative of x with respect to t, we write

O

A.v

Fig. 11.2

(0 (t + At)

rdt
II. I

The velocity c is represented by an algebraic number which may
be positive or negative.! A positive value of v indicates that
x increases, i.e., that the particle moves in the positive direction
(Fig. 11.3a); a negative value of v indicates that % decreases, i.e.,

that the particle moves in the negative direction (Fig. 11.36).
The magnitude of v is known as the speed of the particle.

. >o

(a)

, - (i

Fig. 11.3

(b)

tAs we shall see in Sec. 11.9, the velocity is actually a vector quantity.

However, since we are considering here the rectilinear motion of a particle, where the velocity of the particle has a known and fixed direction, we need
only specify the sense and magnitude of the velocity; this may be conveniently done by using a scalar quantity with a plus or minus sign. The same remark
will apply to the acceleration of a particle in rectilinear motion.
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Fig. 11.4
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Fig. 11.5

Consider the velocity v of the particle at time t and also its
velocity v + Ao at a later time / + Ar (Fig. 11.4). The average
acceleration of the particle over the time interval At is defined
as the quotient of At) and Af,

Average acceleration —
Af.

If SI units are used, Ad is expressed in m/s and Af in seconds;
the average acceleration will thus be expressed in m/s 2 . If U.S.

customary units arc used, At; is expressed in ft/s and Ar in seconds; the average acceleration will then be expressed in ft/s 2 .
The instantaneous acceleration a of the particle at the instant

t is obtained from the average acceleration by choosing smaller
and smaller values for Ar and Ac,

Instantaneous acceleration = a = lim — —
ii-o At

The instantaneous acceleration will also be expressed in m/s 2
or ft/s 2 . The limit of the quotient is by definition the derivative
of with respect to t and measures the rate of change of the
velocity. We write

a —

dt

or, substituting for v from (11.1),

a =
d*x

df-

(11.2)

(11.3)

The acceleration a is represented by an algebraic number which

may be positive or negative.! A positive value of a indicates that the velocity (i.e., the algebraic number c) increases. This
may mean that the particle is moving faster in the positive
direction (Fig. 11.5a) or that it is moving more slowly in the

negative direction (Fig. 11.5b); in both cases, At; is positive. A negative value of a indicates that the velocity decreases; either
the particle is moving more slowly in the positive direction (Fig.
11.5c), or it is moving faster in the negative direction (Fig.
11.5c/).

The term deceleration is sometimes used to refer to a when

the speed of the particle (i.e., the magnitude of r;) decreases:
the particle is then moving more slowly. For example, the

particle of Fig. 11.5 is decelerated in parts b and c, while it is truly accelerated (i.e., moves faster) in parts a and d.
Another expression may be obtained for the acceleration by

eliminating the differential dt in Eqs. (11.1) and (11.2). Solving
tScc footnote, page 137.
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(11.1) for dt, we obtain dt = dx/v; carrying into (11.2), we write

dv
a = o

dx
(11.4)

Example. Consider a particle moving in a straight line, and assume
that its position is defined by the equation

x = OP - t 3

where t is expressed in seconds and x in meters. The velocity i> al

any time I is obtained by differentiating x with respect to /,

= 4 1 = 12r - 3^

The acceleration a is obtained by differentiating again with respect
to f,

a = % = 12 - Btdt

The position coordinate, the velocity, and the acceleration have been
plotted against I in Fig. 11.6. The curves obtained arc known as

motion curves. It should be kept in mind, however, that the particle
does not move along any of these curves; the particle moves in a
straight line. Since the derivative of a function measures the slope
of the corresponding curve, the slope of the x-t curve at any given

time is equal to the value of v at that time and the slope of the v-t curve is equal to the value of a. Since a = at t = 2 s, the slope
of the c-t curve must be zero at / = 2 s; the velocity reaches a maxi-
mum at this instant. Also, since c = at t = and at [ = 4s, the
tangent to the x-l curve must be horizontal for both of these values
of t.

A study of the three motion curves of Fig. 11.6 shows that the

motion of the particle from t = to / = oo may be divided into four phases:

1. The particle starts from the origin, * = 0, with no velocity but with

a positive acceleration. Under this acceleration, the particle gains a positive velocity and moves in the positive direction. From / =
to t = 2s, x, v, and a are all positive.

2. At t = 2 s, the acceleration is zero; the velocity has reached its
maximum value. From t = 2 s to t = 4 s, c is positive, but a is
negative; the particle still moves in the positive direction but more
and more slowly; the particle is decelerated.

3. At t - 4 s, the velocity is zero; the position coordinate x has
reached its maximum value. From then on, both v and a are

negative; the particle is accelerated and moves in the negative direction with increasing speed.
4. At ( = 6s, the particle passes through the origin; its coordinate

X is then zero, while the total distance traveled since the beginning
of the motion is 64 m. For values of t larger than 6 s, .v, o, and

a will all be negative. The particle keeps moving in the negative direction, away from O, faster and faster.
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11.3. Determination of the Motion of a Particle.

We saw in the preceding section that the motion of a particle

is said to be known if the position of the particle is known for
every value of the time /. In practice, however, a motion is

seldom defined by a relation between x and t. More often, the
conditions of the motion will be specified by the type of acceler-

ation that the particle possesses. For example, a freely falling
body will have a constant acceleration, directed downward and
equal to 9.81 m/s 2 or 32.2 ft/s 2 ; a mass attached to a spring
which has been stretched will have an acceleration proportional

to the instantaneous elongation of the spring measured from the
equilibrium position; etc. In general, the acceleration of the

particle may be expressed as a function of one or more of the
variables x, v, and /. In order to determine the position coordi-
nate X in terms of I, it will thus be necessary to perform two

successive integrations.
We shall consider three common classes of motion:

I. a = /(f). The Acceleration Is a Given Function oft. Solving
(11.2) for dv and substituting /(f) for a, we write

dv = adt

dv = /(f) dt

Integrating both members, we obtain the equation

Sdv=ff(t)dt

which defines v in terms of I. It should be noted, however,

that an arbitrary constant will be introduced as a result of

the integration. This is due to the fact that there are many motions which correspond to the given acceleration a = f(t).
In order to uniquely define the motion of the particle, it is

necessary to specify the initial conditions of the motion, i.e., the value D of the velocity and the value .v of the position
coordinate at t = 0. Replacing the indefinite integrals by
definite integral? with lower limits corresponding to the initial
conditions t = and o = t; and upper limits corresponding
to f = t and v = v, we write

[\lv= f'f(t)dt

v-v = f f(t) dt

which yields v in terms of t.
We shall now solve (11.1) for dx,

dx = vdt
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and substitute for o the expression just obtained. Both mem-

bers arc then integrated, the left-hand member with respect
to x from x = XqXo x — x, and the right-hand member with
respect to t from I = to t — t. The position coordinate x
is thus obtained in terms of t; the motion is completely deter-
mined.

Two important particular cases will be studied in greater
detail in Sees. 11.4 and 11.5: the case when a = 0, corre-

sponding to a uniform motion, and the case when a —

constant, corresponding to a uniformly accelerated motion.

2. a = f(x). The Acceleration Is a Given Function of x. Rear-
ranging Eq. (11.4) and substituting f(x) for a, we write

v dv = a dx

v dv — f(x) dx

Since each member contains only one variable, wc may inte-

grate the equation. Denoting again by v and .r , respectively, the initial values of the velocity and of the position coordi-
nate, we obtain

j v dv = f f(x) dx

which yields c in terms of x. We now solve (11.1) for dt,

dt=**-

and substitute for v the expression just obtained. Both mem-
bers may be integrated, and the desired relation between %
and t is obtained.

3. a = f(v). The Acceleration Is a Given Function of v. We
may then substitute /(i;) for a eidier in (11.2) or in (11.4) to
obtain either of the following relations:

m =

dt =

dt

dv

/(c)

/w-f
dx =

v dv

Integration of the first equation will yield a relation between
v and I; integration of the second equation will yield a relation
between d and x. Either of these relations may be used in
conjunction with Eq. (11.1) to obtain the relation between

x and t which characterizes the morion of the particle.



SAMPLE PROBLEM 11.1

The position of a particle which moves along a straight line is defined
by the relation x = I 3 — 6t- — lot + 40, where .v is expressed in feet
arid f in seconds. Determine (a) the time at which the velocity will
be zero, (/>) the position and distance traveled by the particle at that
time, (c) the acceleration of the particle al that time, (d) the distance
traveled by the particle from t = 4 s to t = 6 s.

h
Solution. The equations of motion arc

x = t 3 - (it- - lor + 40

v = ^- = 3fi - 12r - 15
dt

a = % = 6* - 12dt

(1)

(2)

(3)

a. Time ut Which d = 0. We make DsOin (2),

3fi -lit -15 = / = - 1 s and 1 = +5 S -+

Onlv the root r = +5s corresponds to a time after the motion has

begun: for f < 5 s, < 0, the particle moves in the negative direction; for f > 5 s, v > 0, the particle moves in the positive direction.
/;. Position ami Distance Traveled When c = 0. Carrying* = +5s

into (J), we have

% = (5) 3 - 6(5)* - 15(5) + 40 -v, = -60 ft ~*

The initial position at ( = was .r = +40 ft. Since i: ? during the
interval f = to t = 5 s, we have

Distance traveled = .v :> - .^ = -60 ft - 40 ft = — KM) ft

Distance traveled = 100 ft in the negative direction -*

6 .\cc(!erntioi> When v = 0. We carry t = +5s into (3):

a T} = 6(5) - 12 fl„ = + IS II s-- -*

d. Distance Traveled from t = 4 s to f = fi s. Since the particle

moves in the negative direction from r = 4 s to ( = 5 s and in the
positive direction from t = 5 s to t = 6 s, we shall compute separately
the distance traveled during each of these time intervals.

From t = 4 s to f = 5 s: .v a = —60 ft
.v, = (4) 3 - 6(4)* - 15(4) + 40 = -52 ft

Distance traveled = x 8 - x, = -60 ft - (-52 ft) = -8 ft
= 8 ft in the negative direction

From f = 5 s to t = 6 s: Xj = -60ft

x = (6) 3 - 6(6)* - 15(6) + 40 = -50 ft

Distance traveled = x B - x :< = -50 ft - (-60 ft) = +10 ft
= 10 ft in the positive direction

Total distance traveled from ( = 4 s to t = 6 s is

8 ft + 10 ft = 18 ft -*
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SAMPLE PROBLEM 11.2

A ball is thrown from the top of a tower 18 m high, with a velocity
of 12 iti/s directed vertically upward. Knowing that the acceleration

of the ball is constant and equal to 9.8] m/s 3 downward, determine

(a) the velocity t: and elevation ;/ of the ball above the ground at
any time t, (b) the highest elevation reached by the ball and the

corresponding value of t, (c) the time when the ball will hit the ground
and the corresponding velocity. Draw the v-t and ij-t curves.

e = + 12m.»

•I = - 9.S1 in .-

CUTYC

yl.22:i 3.50

a. Velocity and Elevation. The y axis measuring the position co-
ordinate (or elevation) is chosen with its origin O on the ground and
its positive sense upward. The value of the acceleration and the initial

values of v and </ are as indicated. Substituting for a in a = dv/dt
and noting that, at t = 0, v u = + 12 m/s, we have

f£ = a = -9.81 m/s 2
at

\ di> = - \ 9.81 clt
•<„- U J o

Ml. = -[9-81r]f,
l- - 12 = -9.8K

i; = 12 - 9.811 (1) -*

Substituting for c in c = dy/dt and noting that, at t = 0, i/ = 18 in,
we have

4... 11-
di

= c = 12 - 9.81f

f dy = f (12-9.81r)</r

[y]^ = [12t - 4M)t*}'
y - 18 = 121 - 4.901 2

y = lft — 12r — 4.901* (2) -+

b. Highest Elevation. When the ball reaches its highest elevation,
we have c = 0. Substituting into (1), we obtain

12 -9.811 =0 i - I 223 s -*

Carrying t = 1.223 s into (2), we have

i/ = 18 + 12(1.223) - 4.9CK1.223) 2 y = 25.3 m -+

c. Bull Hits the Ground. When the ball hits the ground, we have
y = 0. Substituting into (2), we obtain

18 + 12/ - 4.90(2 = r = - 1.05 s and / = - 3.50 s ~+

Only the root ( = +3.50 s corresponds to a time after the motion has
begun. Carrying this value of t into (1), we have

D = 12 - 9.81(3.50) = -22.3 m/s u = 22.3 m s . -*
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SAMPLE PROBLEM 11.3

- Pistu

r

^-Oil

The brake mechanism used lo reduce recoil in certain types of guns

consists essentially of a piston which is attached to the barrel and
may move in a fixed cylinder filled with oil. As the barrel recoils with

an initial velocity u , the piston moves and oil is forced through orifices
in the piston, causing the piston and the barrel to decelerate at a

rate proportional to their velocity, i.e., a = —kv. Express (a) o in
terms of f, (b) x in terms of f, (c) o in terms of x. Draw the corre-

sponding motion curves.

a. o in Terms of I. Substituting — kv for a in the fundamental
formula defining acceleration, a = do/dt, we write

, do do , , r
-kv = -£- — = -kdl

dt v J Vn

ln-2- = _ fa

do
= -k dtI

,- - ,-. «-*<

t*

l>. x in Terms of t. Substituting the expression just obtained for
v into f = dx/dt, we write

„-*! _

dt

f dx= c f' e~ kl dt

k

c. v in Terms ofx. Substituting — he for a in a = o do/dx, we write

, do

— kv = v -7- dx

do = -kdx

¦f*--*f*
— % = — kx c = Vr, — kx

Check. Part c could have been solved by eliminating t from the
answers obtained for parts a and b. This alternate method may be
used as a check. From part a we obtain e~ hl = v/v ; substituting in
the answer of part h, we obtain

, = £,.-,-., = £(, -i)I V — O n — kx(checks)
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PROBLEMS

11.1 The motion of a particle is defined by the relation

X = 2< 3 — 8( 2 + of + 9, where x is expressed in inches and t in sec-

onds. Determine the position, velocity, and acceleration when f = 3 s.

11.2 The motion of a particle is defined by the relation
X = 2(3 — Qt 2 + 12, where x is expressed in inches and t in seconds.

Determine the time, position, and acceleration when v = 0.

11.3 The motion of a particle is defined by the relation

,v = f 2 — lOf + 30, where x is expressed in meters and I in seconds.
Determine (a) when the velocity is zero, (b) the position and the total
distance traveled when t = 8 s.

11.4 The motion of a particle is defined by the relation
.r = $f 3 — 3f- + 8t + 2, where x is expressed in meters and t in
seconds. Determine {a) when the velocity is zero, (b) the position and
the total distance traveled when the acceleration is zero.

1 1 .5 The acceleration of a particle is directly proportional to the
time t. At / = 0, the velocity of the particle is c = — 16 m/s. Know-

ing that both the velocity and the position coordinate are zero when
t = 4 s, write the equations of motion for the particle.

11.6 The acceleration of a particle is defined by the relation
a = — 2 m/s 2 . If t; = +8 m/s and .v = when t = 0, determine the

velocity, position, and total distance traveled when r = 6s.

11.7 The acceleration of a particle is defined by the relation

a = kt 2 . (a) Knowing that v = — 250 in./s when I ¦ = and that
D = +250 in./s when / = 5 s, determine the constant k. (b) Write the

equations of motion knowing also that x = when t = 2 s.

1 1 .8 The acceleration of a particle is defined by the relation
a - 18 - 6fi. The particle starts at t = with u = and x = 100 in.

Determine (a) the time when the velocity is again zero, (h) the position
and velocity when r = 4 s, (c) the total distance traveled by the parti-
cle from t = to t = 4 s.

11.9 The acceleration of a particle is defined by the relation
a = 21 — 12.r 2 , where a is expressed in m/s 2 and x in meters. The

particle starts with no initial velocity at the position x = 0. Determine
(a) the velocity when x = 1.5 m, (b) the position where the velocity
is again zero, (c) the position where the velocity is maximum.

11.10 The acceleration of an oscillating particle is defined by
the relation a = —kx. Find the value of k such that v = 10 m/s when
x = and x = 2 m when c = 0.
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11.11 The acceleration of a particle moving in a straight line is
directed toward a fixed point O and is inversely proportional to the
distance of the particle from O. At t = 0, the particle is 8 in. to the
right of 0, has a velocity of 16in./s to the right, and has an accelera-
tion of 12 in./s 2 to the left. Determine (a) the velocity of the particle
when it is 12 in. away from O, (b) the position of the particle at which
its velocity is zero.

11.12 The acceleration of a particle is defined by the relation
a = — kx~~ 2 . The particle starts with no initial velocity at x = 12 in.,
and it is observed that its velocity is 8 in./s when x = 6 in. Determine

(a) the value of k, (b) the velocity of the particle when X — 3 in.

11.13 The acceleration of a particle is defined by the relation
a = — I0t, where a is expressed in m/s 2 and o in m/s. Knowing that
at r = the velocity is 30 m/s, determine (a) the distance the particle

will travel before coming to rest, (b) the time required for the particle
to come to rest, (c) the time required for the velocity of the particle
to be reduced to 1 percent of its initial value.

11.14 The acceleration of a particle is defined by the relation
a = —0.0125c 8 , where a is the acceleration in m/s 2 and p is the

velocity in m/s. If the particle is given an initial velocity t , find

the distance it will travel (a) before its velocity drops to half the initial
value, (/>) before it comes to rest.

11.15 The acceleration of a particle falling through the atmos-
phere is defined by the relation a = g(l — k 2 c 2 ). Knowing that the

particle slarts at I = and x = with no initial velocity, (a) show
that the velocity at any time f is c = (1/k) tanh kgt. (b) write an

equation defining the velocity for any value of x. (c) Why is v, = \/k
called the terminal velocity?

11.16 It has been determined experimentally that the magnitude

in ft/s 2 of the deceleration due to air resistance of a projectile is

0.001c 2 , where c is expressed in ft/s. If the projectile is released from
rest and keeps pointing downward, determine its velocity after it has
fallen 500 ft. [Hint. The total acceleration is g - 0.001 c 2 , where

g = 32.2 ft/s 2 .)

11.17 The acceleration of a particle is defined by the relation
a = — kv' r \ The particle starts at r = and X = with an initial

velocity v a . (a) Show that the velocity and position coordinate at any
time t are related by the equation x/t = \/v i>. {b} Determine the
value of k, knowing that for t; n = 100 ft/s the particle comes to rest

after traveling 5 ft.



11.18 The acceleration of a particle is denned by the relation
a = k sin (nt/T). Knowing that both the velocity and the position coor-

dinate of the particle are zero when t — 0, determine (a) the equations

of motion, (b) the maximum velocity, (c) the position at t = 2T, (</)
the average velocity during the interval / = to I = 2T.
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11.19 The position of an oscillating particle is defined by the

relation X = A sin (pt + £). Denoting the velocity and position coor-

dinate when t = by v and .v , respectively, show (a) that
tan £> = XqP/c , (b) that the maximum value of the position coordinate-
is

a = J 4 + (?)'

1 1 .20 The acceleration due to gravity at an altitude i/ above the
surface of the earth may be expressed as

a =
-32.2

1 +
y

20.9 x io";

where a is measured in ft/s 2 and tj in feet. Using this expression,
compute the height reached by a bullet fired vertically upward from
the surface of the earth with the following initial velocities: (a)
1000 ft/s, (b) 10,000 ft/s, (c) 36,700 ft/s.

1 1 .21 The acceleration due to gravity of a particle falling toward

the earth is a = — gfi 2 /r 2 , where r is the distance from the center
of the earth to the particle, R is the radius of the earth, and g is
the acceleration due to gravity at the surface of the earth. Derive

an expression for the escape velocity, i.e., for the minimum velocity
with which a particle should be projected vertically upward from the
surface of the earth if it is not to return to the earth. (Hint. =
for r = oc.)suFig. P11.20 Fig. P11.21

* 1 1 .22 When a package is dropped on a rigid surface, the accel-
eration of its cushioned contents may be defined by the relation

a = —k tan (w.r/2/'.), where /. is the distance through which the cush-
ioning material can be compressed. Denoting by c the velocity when
x = 0, show that o* = u 2 + (4kL/v) In cos (tt.v/2L). If k = 300 m/s 2

and L = 0.36 in, compute the initial velocity v„ for which the maxi-

mum value of the position coordinate .r is (a) 0.18 m, (b) 0.36 m.
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*1 1.23 Using the expression for the acceleration due to gravity

given in Prob. 11.21, derive an expression for the time required for a
particle to reach the surface of the earth if it is released with no

velocity at a distance r from the center of the earth.

1 1 .4. Uniform Rectilinear Motion. This is a typo of
straight-line motion which is frequently encountered in practical
applications. In this motion, the acceleration a of the particle
is zero for every value of t. The velocity v is therefore constant,
and Eq. (11.1) becomes

dx . ,— — = o = constant
dt

The position coordinate x is obtained by integrating this equa-
tion. Denoting by Xq the initial value of x, we write

f dx = c f dt

x - x = vt

x = x + vt (11.5)

This equation may be used only if the velocity of the particle
is known to be constant.

1 1 .5. Uniformly Accelerated Rectilinear Motion.

This is another common type of motion. In this motion, the
acceleration a of the particle is constant, and Eq. (1 1.2) becomes

dv . .
—— = a = constant

dt

The velocity t; of the particle is obtained by integrating this
equation,

r" r'
| do = a I dt

v — o = at

v = Vq + at (11.6)
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(11-7)

where t; is the initial velocity. Substituting for t; into (11.1),
we write

dx

Denoting by .v„ the initial value of x and integrating, we have

I dx = (c + at) dt

* - *, = v t + \af

X = x + v t + Jar 2

We may also use Eq. (11.4) and write

v — — = a = constant
ax

v dv = a dx

Integrating both sides, we obtain

/v -rvdv = a I dx

l(v2 -v*) = a(x -x )

v 2 = 4 + 2a(x - X,,) (11.8)

The three equations we have derived provide useful relations

among position coordinate, velocity, and time in the case of a
uniformly accelerated motion, as soon as appropriate values have
been substituted for a, c , and *„. The origin O of the x axis

should first be defined and a positive direction chosen along the

axis; this direction will be used to determine the signs of a, v ,

and x n . Equation (1 1.6) relates v and I and should be used when

the value of v corresponding to a given value of t is desired,
or inversely. Equation (11.7) relates x and t; Eq. (11.8) relates

t; and x. An important application of uniformly accelerated

motion is the motion of a freely falling body. The acceleration

of a freely falling body (usually denoted by g) is equal to
9.81 ra/s 2 or 32.2 ft/s 2 .

It is important to keep in mind that the three equations above

may be used only when the acceleration of the particle is known
to be constant. If the acceleration of the particle is variable,
its motion should be determined from the fundamental equations

(11.1) to (11.4), according to the methods outlined in Sec. 11.3.
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Flg. 11.7

1 1 .6. Motion of Several Particles. When several par-

ticles move independently along the same line, independent
equations of motion may be written for each particle. Whenever

possible, time should be recorded from the same initial instant
for all particles, and displacements should be measured from the
same origin and in die same direction. In other words, a single

clock and a single measuring tape should be used.
Relative Motion of Two Particles. Consider two particles

A and B moving along the same straight line (Fig. 11.7). If the
position coordinates x,, and x B are measured from the same

origin, the difference x B — x A defines the relative position coordi-
nate of B with respect to A and is denoted by x B/A . Wc write

or X BIA (11.9)

A positive sign for x B/A means that B is to the right of A, a

negative sign that B is to the left of A, regardless of the position of A and B with respect to the origin.
The rate of change of x B/A is known as the relative velocity

of B with respect to A and is denoted by v B/A . Differentiating
(11.9), we write

U B/A = V, or
V BIA (11.10)

A positive sign for v B/A means that B is observed from A to move
in the positive direction; a negative sign, that it is observed to
move in the negative direction.

The rate of change of v B/A is known as the relative acceleration
of B with respect to A and is denoted by a B/A . Differentiating
(11.10), we obtain

sD

t
Fig. 11.8

a B/A = a B ~ a A or «r = a a + aB/A (11.11)

Dependent Motions. Sometimes, die position of a particle
will depend upon the position of another or of several other
particles. The motions are then said to be dependent. For
example, the position of block B in Fig. 11.8 depends upon the
position of block A. Since the rope ACDEFC is of constant
length, and since the lengths of the portions of rope CD and
F.F wrapped around the pulleys remain constant, it follows that

the sum of the lengths of the segments AC, DE, and FG is
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constant. Observing that the length of the segment AC differs
from x A only by a constant, and that, similarly, the lengths of

the segments DE and FG differ from x B only by a constant, we
write

x A + 2x B = constant

Since only one of the two coordinates x A and x B may be chosen
arbitrarily, we say that the system shown in Fig. 11.8 has one

degree of freedom. From the relation between the position coor-
dinates x A and x B , it follows that if x A is given an increment

£a A , i.e., if block A is lowered by an amount \x A , the coordinate
X B will receive an increment lx B = — JA.v,, that is, block B will
rise by half the same amount; this may easily be checked directly
from Fig. 11.8.

In the case of the three blocks of Fig. 11.9, we may again

observe that the length of the rope which passes over the pulleys
is constant, and thus that the following relation must be satisfied

by the position coordinates of the three blocks:

2x A + 2x B + x c = constant

oFig. 11.9

Since two of the coordinates may be chosen arbitrarily, we say
that the system shown in Fig. 11.9 has two degrees of freedom.

When the relation existing between the position coordinates
of several particles is linear, a similar relation holds between
the velocities and between the accelerations of the particles.

In the case of the blocks of Fig. 11.9, for instance, we differ-
entiate twice the equation obtained and write

dx A
dt

dv A

~dT

~dT

dux
dt

+
dxc
dt

dv c
~~di

=

=

or

or

2v A + 2v B + o =

2a A + 2a B + a e =



o— t=t

!/«

• e = 50 ft/j

1 =

a - -32.2ft --

y = 40f(

=V,

r: r = 5 ft/s

=

(/„= 10 ft

'',. ¦¦>!

SAMPLE PROBLEM 11.4

A ball is thrown vertically upward from the 40-ft level in an elevator
shaft, with an initial velocity of 50 ft/s. At the same instant an open-
platform elevator passes the 10-ft level, moving upward with a con-
stant velocity of 5 fl/s. Determine (a) when and where the ball will

hit the elevator, (b) the relative velocity of the ball with respect to
the elevator when the ball hits the elevator.

Motion of Ball. Since the ball has a constant acceleration, its

motion is uniformly accelerated. Placing the origin O of the y axis
at ground level and choosing its positive direction upward, we find
that the initial position is y — + 40 ft, the initial velocity is t =
+ 50 ft/s, and the acceleration is a = -32.2 ft/s 2 . Substituting these
values in the equations for uniformly accelerated motion, we write

v B = » fl + at

Ub = !/ U + < ; o' + \a( l
B = 50 - 32.2f (1)

i/a = 40 + 50< - 16.lt 2 (2)

Motion of Elevator. Since the elevator has a constant velocity, its

motion is uniform. Again placing the origin U at the ground level and choosing the positive direction upward, we note that i/ = + 10 ft
and write

v E - +5 ft/s

\If, = !/o + c e' Vs = 10 + 5/
(3)
(4)

Ball Hits Elevator. We first note that the same time t and the

same origin O were used in writing the equations of motion of both
the ball and the elevator. We see from the figure that, when the ball
hits the elevator,

VE = 'Jb (5)

Substituting for ;/,. ; and (/„ from (2) and (4) into (5), we have

10 + or = 40 + 50r - 16.lt 2

( = -0.56 s and f = + 3.35 s

Only the root ( = 3.35 s corresponds to a time after the motion has
begun. Substituting this value into (4), wc have

y E = 10 + 5(3.35) = 26.7 ft

Elevation from ground = 26.7 ft -^

The relative velocity of the ball with respect to the elevator is

»B/S = v„- B = (50 - 32.2/) - 5 = 45 - 32.2f

When the ball hits the elevator at time r = 3.35s, we have

^a/B = 45 - 32,2(3.35) i; a/K = -62.9 ft/s -*

The negative sign means that the ball is observed from the elevator

to be moving in the negative sense (downward).
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SAMPLE PROBLEM 11.5

Two blocks A and B arc connected by a cord passing over three pulleys
C, D, and E as shown. Pulleys C and E are fixed, while D is pulled
downward with a constant velocity of 1.5 m/s. At J = 0, block A starts

moving downward from the position K with a constant acceleration
and no initial velocity. Knowing that the velocity of block A is 6 m/s

as it passes through point L, determine the change in elevation, the
velocity, and the acceleration of block B when A passes through /-.

•r:

4 m

I

-

'T% ST\

Y

"?

iB

¦o-

Motion of Block A. We place the origin at the horizontal surface

and choose the positive direction downward. We observe that when

t = 0, block A is at position K and (v A ) = 0. Since v A = 6 m/s and

X A — (x A ) = 4 in when the block passes through I., we write

«£ = M + 2<ufa - fa) ] (6) 2 = + 2« A (4)
« H = 4.50 m/s 2

The time at which block A reaches point L is obtained by writing

A = {c A ) + a A t 6 = + 4.50« r - 1.333 s

Motion of Pulley D. Recalling that the positive direction is down-
ward, we write

a„ = Dp = 1.5 m/s x D - (x D ) + c D t = (x D ) + Lot

When block A reaches L, at t = 1.333 s, we have

x n = fa) + 1-5(1.333) = (x D ) + 2

Thus, X B - (x D ) = 2 m

Motion of Block B. We note that the total length of cord ACDEB

differs from the quantity (.v., + 2x D + x B ) only by a constant. Since
the cord length is constant during the motion, this quantity must also
remain constant. Thus considering the times r = and I = 1.333 s,
we write

x A + 2x D + x B = (x A ) + 2{x D ) + (x B ) (1)

fa - fa)ol + 2fa> - fa)ol + fa - (*s)o] = (2)

But we know that x A — (x A ) = 4m and x D — {x D ) = 2 m; substi-
tuting these values in (2), we find

4 + 2(2) + [x B - (x B ) Q ] = x B - (x B ) a = -8 m

Thus: Change in elevation of K = 8 in f -^

Differentiating (1) twice, we obtain equations relating the velocities
and the accelerations of A, B, and D. Substituting for the velocities
and accelerations of A and D at t = 1.333 s, we have

A + 2v D + v„ = 0: 6 + 2(1.5) + v B =

v B = — 9 m/s i" 8 = y m s f -^

a M + 2a„ + a B = 0: 4.50 + 2(0) + a B =

S = —4.50 m/s 2 «„ = 4.50 in s- T -^

453



454 DYNAMICS

• o = 0.2 m, s-

. «

Fig. P11.24

PROBLEMS

11.24 An automobile travels 240 ni in 30 s while being acceler-
ated at a constant rale of 0.2 m/s 2 . Determine (a) its initial velocity,

(b) its final velocity, (c) the distance traveled during the first 10s,

1 1 .25 A stone is released from an elevator moving up at a speed
of 5 m/s and reaches the bottom of the shaft in 3 s. (a) How high
was the elevator when the stone was released? (b) With what speed
does the stone strike the bottom of the shaft?

1 1 .26 A stone is thrown vertically upward from a point on a
bridge located 135 ft above the water. Knowing that it strikes the

water 4 s after release, determine (a) the speed with which the stone
was thrown upward, (b) the speed with which the stone strikes the
water.

-I5mi/h

O Q

- — 500 fe

Fig. P11.27

1 1 .27 A motorist is traveling at 45 mi/h when he observes that a

traffic light 8(X) ft ahead of him turns red. The traffic light is timed to
stay red for 15 s. If the motorist wishes to pass the light without

stopping just as it turns green again, determine (a) the required uni-
form deceleration of the car, \b) the speed of the ear as it passes the
light.

1 1 .28 Automobile A starts from O and accelerates at the constant

rate of 4 ft/s 2 . A short time later it is passed by truck B which is
traveling in the opposite direction at a constant speed of 45 ft/s.
Knowing that truck B passes point O, 25 s after automobile A started

from there, determine when and where the vehicles passed each other.

A

''it' C ¦;¦; o '111!' ¦ ^o^

-

Fig. P11.28

11.29 An open-platform elevator is moving down a mine shaft
at a constant velocity v e when the elevator platform hits and dislodges
a stone. Assuming that the stone starts falling with no initial velocity,
(a) show that the stone will hit the platform with a relative velocity

of magnitude v r . (b) If O e — 16 ft/s, determine when and where the

stone will hit the elevator platform.



1 1.30 Two automobiles A and B are traveling in the same direc-
tion in adjacent highway lanes. Automobile B is stopped when it is

passed by A, which travels at a constant speed of 36 km/h. Two
seconds later automobile B starts and accelerates at a constant rate

of 1.5 m/s 2 . Determine {«) when and where B will overtake A, (b)

the speed of B at that time.
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11.31 Drops of water are observed to drip from a faucet at
uniform intervals of time. As any drop B begins to fall freely, the
preceding drop A has already fallen 0.3 m. Determine the distance

drop A will have fallen by the time the distance between A and B
will have increased to 0.9 m.

11.32 The elevator shown in the figure moves upward at the
constant velocity of 18ft/s. Determine (a) the velocity of the cable

C, (/;) the velocity of the counterweight W, (c) the relative velocity

of the cable C with respect to the elevator, (d) the relative velocity
of the counterweight W with respect to the elevator.

11.33 The elevator shown starts from rest and moves upward

with a constant acceleration. If the counterweight VV moves through
24 ft in 4 s, determine (a) the accelerations of the elevator and the

cable C, (b) the velocity of the elevator after 4 s.

1 1 .34 The slider block A moves to the left at a constant velocity

of 300 mm/s. Determine ia) the velocity of block B, {b) the velocities

of portions C and 7) of the cable, (c) the relative velocity of A with

respect to B, (</) the relative velocity of portion C of the cable with
respect to portion D.

1 1 .35 The slider block B starts from rest and moves to the right

with a constant acceleration. After 4 s the relative velocity of A with
respect to B is 60 mm/s. Determine (a) the accelerations of A and
B, (h) the velocity and position of B after 3 s..

s

{'

Fig. P11.32 and P11.33

FS
, utz

Fig. P11.34 and P11.35

1 1 .36 Collars A and B start from rest and move with the following

accelerations: a A = 3 in./s 2 upward and a B = 6t in./s 2 downward.
Determine (a) the time at which the velocity of block C is again zero,

(b) the distance through which block C will have moved at that time.

1 1 .37 (a) Choosing the positive sense upward, express the velocity
of block C in terms of the velocities of collars A and B. (b) Knowing

thai both collars start from rest and move upward with the accelera-
tions a A = 4 in./s 2 and a B = 3 in./s 2 , determine the velocity of block C
at t = 4 s and the distance through which it will have moved at that
time.

-i ®_

Fig. P11.36 and P11.37
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.
Fig. P11.38 and P11.40

11.38 The three blocks shown move with constant velocities.

Find the velocity of each block, knowing that the relative velocity of C
with respect to A is 200 mm/s upward and that the relative velocity of
B with respect to C is 120 mm/s downward.

11.39 The three blocks of Fig. 11.9 move with constant veloci-

ties. Find the velocity of each block, knowing that C is observed from

7? to move downward with a relative velocity of 180 mm/s and A is

observed from B to move downward with a relative velocity of
160 inm/s.

*1 1 .40 The three blocks shown are equally spaced horizontally
and move vertically with constant velocities. Knowing that initially
they are at the same level and that the relative velocity of A with
respect to B is 160 mm/s downward, determine the velocity of each
block so that the three blocks will remain aligned during their motion.

*11.7. Graphical Solution of Rectilinear-Motion
Problems. It was observed in Sec. 1 1.2 that the fundamental

formulas

dt
and a = dv_

dt

have a geometrical significance. The first formula expresses that
the velocity at any instant is equal to the slope of the %-i curve
at the same instant (Fig. 11.10). The second formula expresses

that the acceleration is equal to the slope of the v-t curve. These

Fig. 11.10



two properties may be used to derive graphically the v-l and
a-t curves of a motion when the X—t curve is known.

Integrating the two fundamental formulas from a time < t to
a time (.,, we write
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Xo — X, =W vdt and
r'-'

-13,= J adt (11.12)

The first formula expresses that the area measured under the
v-t curve from <, to t 2 is equal to the change in X during that

time interval (Fig. 11.11). The second formula expresses simi-
larly that the area measured under the a-t curve from r, to f 2
is equal to the change in v during that time interval. These two
properties may be used to determine graphically the x-t curve
of a motion when its v-t curve or its a-t curve is known (see

Sample Prob. 11.6).

Graphical solutions are particularly useful when the motion
considered is defined from experimental data and when x, i>, and
a are not analytical functions of t. They may also be used to

advantage when the motion consists of distinct parts and when
its analysis requires writing a different equation for each of its
parts. When using a graphical solution, however, one should
be careful to note (1) that the area under the v-t curve measures

the change in x, not x itself, and, similarly, that the area under
the a-t curve measures the change in v; (2) that, while an area
above the / axis corresponds to an increase in x or v, an area
located below the t axis measures a decrease in X or v.

It will be useful to remember, in drawing motion curves, that,

if the velocity is constant, it will be represented by a horizontal
straight line; the position coordinate X will then be a linear

function of t and will be represented by an oblique straight line.
If the acceleration is constant and different from zero, it will

be represented by a horizontal straight line; t: will then be a
linear function of /, represented by an oblique straight line; and
X will be expressed as a second-degree polynomial in t, repre-
sented by a parabola. If the acceleration is a linear function
of t, the velocity and the position coordinate will be equal,
respectively, to second-degree and third-degree polynomials; a

is then represented by an oblique straight line, v by a parabola,
and x by a cubic. In general, if the acceleration is a polynomial
of degree n in t, the velocity will be a polynomial of degree
n + 1 and the position coordinate a polynomial of degree n + 2;
these polynomials are represented by motion curves of a corre-
sponding degree.

Fig. 11.11
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* 1 1 .8. Other Graphical Methods. An alternate

graphical solution may be used to determine directly from the
a-t curve the position of a particle at a given instant. Denoting
respectively by .r y and p the values of x and v at t = 0, by x±
and o, their values at f = f l5 and observing that the area under
the v,-l curve may be divided into a rectangle of area D f, and

horizontal differential elements of area (l 1 — t) dv (Fig. 11.12a),
we write

r"'
Xj — .r n = area under v-t curve = c f, + J (/j — ()

Substituting cfc = adf in the integral, wc obtain

at

*, - .r. — "0*iJ (^ - f)a df

Fig. 11.12

Referring to Fig. 11.126, we note that the integral represents
the first moment of the area under the a-t curve with respect
to the line t = t, bounding the area on the right. This method
of solution is known, therefore, as the moment-area method. If

the abscissa I of the ccntroid C of the area is known, the position
coordinate .r, may be obtained by writing

Xj = a„ + t f, + (area under a-t curve)(f, — t) (11.13)oFig. 11.13

If the area under the a-t curve is a composite area, the last
term in (11.13) may be obtained by multiplying each component

area by the distance from its centroid to the line t = l y . Areas
above the t axis should be considered as positive and areas below
the I axis as negative.

Another type of motion curve, the v-x curve, is sometimes
used. If such a curve has been plotted (Fig. 1 1.13), the acceler-
ation a may be obtained at any time by drawing the normal
to (he curve and measuring the subnonnal BC. Indeed, observing
that the angle between AC and AB is equal to the angle 6
between the horizontal and the tangent at A (the slope of which
is tan = dv/dx), we write

BC = AB tan = v^- dx

and thus, recalling formula (11.4),

BC = a



SAMPLE PROBLEM 11.6

A

A subway train leaves station A; it gains speed at the rate of 4 ft/s 2
for 6 s, and then at the rate of 6 ft/s 2 until it has reached the speed

of 48 ft/s. The train maintains the same speed until it approaches
station K; brakes are then applied, giving the train a constant deceler-

ation and bringing it to a stop in 6 s. The total running time from
A to B is 40 s. Draw the a-l, c-L and x-f curves, and determine the

distance between stations A and B.

1 —

2 -

olfl/v*)

"n

2 -

4 ~

6

•8 —

4S —

24 —

31 10

« I

i !

:u M

l(s)

er
Acceleration-Time Curve. Since the acceleration is either constant

or zero, the a-t curve is made of horizontal straight-line segments.

The values of f 2 and «, are determined as follows:

< I < 6: Change in v = area under a-t curve

v tt - = (6 s)(4 ft/s-) = 24 ft/s

Since the velocity increases from 24 to 48 ft/s,</<

Change in t; = area under a-t curve

48 - 24 = (t, - 6)(6 ft/s 8 ) /, = 10 s

ti < I < 34: Since the velocity is constant, the acceleration is zero.

34 < / < 40: Change in v = area under a-t curve

- 48 = (6 s)a 4 a 4 = -8 ft/s 2

The acceleration being negative, the corresponding area is below the

r axis; this area represents a decrease in velocity-

Velocity-Time Curve. Since the acceleration is either constant or

zero, the c-t curve is made of segments of straight line connecting
the points determined above.

Change in x — area under v-l curve

< t < 6: Xg - = 5(8P4) = 72 ft
6 < r < 10: x l0 - x e = 1(4X24 + 48) = 144 ft
10 < !< 34: x 34 - a 10 = (24X48) = 1152 ft
34 < r < 40: .v. 10 - x M = J(6)(48) = 144 ft

Adding the changes in x, we obtain the distance from A to B:

d = x 40 —Q= 1512 ft
(/ = 1512 ft

Position-Time Curve. The points determined above should be
joined by three arcs of parabola and one segment of straight line.
The construction of the x-t curve will be performed more easily and

more accurately if we keep in mind that for any value of f the slope
of the tangent to the x-l curve is equal to the value of V at that instant.

6 10
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Fig. P11.41
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PROBLEMS

11.41 A particle moves in a straight line with the acceleration
shown in the figure. Knowing that it starts from the origin with
c = -16ft/s, (a) plot the v-t and x-t curves for < t < 16 s,

(b) determine its velocity, its position, and the total distance traveled
after 12 s.

1 1 .42 For the particle and motion of Prob. 11.41, plot the v-t and
X-t curves for < f < 16 s and determine (fl) the maximum value of

the velocity of the particle, (b) the maximum value of its position
coordinate.

1 1 .43 A particle moves in a straight line with the velocity shown

in the figure. Knowing that .r = — 12 in at t = 0, draw the a-t and
X-t curves for 0<t<16s and determine (a) the total distance

traveled by the particle after 12 s, (b) the two values of / for which

the particle passes through the origin.

11.44 For the particle and motion of Prob. 11.43, plot the a-t
and x-t curves for < I < 16 s and determine [a) the maximum value

of the position coordinate of the particle, (b) the values of / for which

the particle is at a distance of 15 in from the origin.

1 1 .45 A series of city traffic signals is timed so that an automobile

traveling at a constant speed of 25 mi/h will reach each signal just as it

turns green. A motorist misses a signal and is stopped at signal A.

Knowing that the next signal B is 750 ft ahead and that the maximum
acceleration of his automobile is 6 ft/s 2 , determine what the motorist

should do to keep his maximum speed as small as possible, yet reach

signal B just as it turns green. What is the maximum speed readied?

11.46 A bus starts from rest at point A and accelerates at the

rate of 0.9 m/s 2 until it reaches a speed of 7.2 m/s. It then proceeds

at 7.2 m/s until the brakes are applied; it comes to rest at point B,
18 m beyond the point where the brakes were applied. Assuming
uniform deceleration and knowing that the distance between A and

B is 90 m. determine the time required for the bus to travel from A
to B.

1 1 .47 The firing of a howitzer causes the barrel to recoil 800 mm

before a braking mechanism brings it to rest. From a high-speed

photographic record, it is found that the maximum value of the recoil
velocity is 5.4 m/s and that this is reached 0.02 s after firing. Assuming

that the recoil period consists of two phases during which the acceler-
ation has, respectively, a constant positive value a. and a constant
negative value a 2 , determine («) the values of «, and a 2 , ib) the position

of the barrel 0.02 s after firing, (c) the time at which the velocity of
the barrel is zero.
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1 1 .48 A motorist is traveling at 45 mi/h when he observes that a

traffic signal 1200 ft ahead of him turns red. He knows that the signal

is timed to stay red for 24 s. What should he do to pass the signal at
45 mi/h just as it turns green again? Draw the v-t curve, selecting the
solution which calls for the smallest possible deceleration and acceler-
ation, and determine (a) the common value of the deceleration and

acceleration in ft/s 2 , (b) the minimum speed reached in mi/h.

1 1 .49 A policeman on a motorcycle is escorting a motorcade
which is traveling at 54 km/h. The policeman suddenly decides to

take a new position in the motorcade, 70 m ahead. Assuming that
he accelerates and decelerates at the rate of 2.5 m/s 2 and that he does

not exceed at any time a speed of 72 km/h, draw the u-t and v-t
curves for his motion and determine (a) the shortest time in which

he can occupy his new position in the motorcade, (/;) the distance
he will travel in that time.

1 1 .50 A freight elevator moving upward with a constant velocity
of 5 m/s passes a passenger elevator which is stopped. Three seconds
later, the passenger elevator starts upward with an acceleration of
1.25 m/s 2 . When the passenger elevator has reached a velocity of
10 m/s, it proceeds at constant speed. Draw the v-t and y-t curves,
and from them determine the time and distance required by the
passenger elevator to overtake the freight elevator.

1 1 .51 A car and a truck are both traveling at the constant speed
of 35 mi/h; the car is 40 ft behind the truck. The driver of the car

wants to pass the truck, i.e., he wishes to place his car at H, 40 ft in

front of the truck, and then resume the speed of 35 mi/h. The maxi-
mum acceleration of the car is 5 ft/s 2 and the maximum deceleration

obtained by applying the brakes is 20 ft/s 2 . What is the shortest time
in which the driver of the car can complete the passing operation if he
does not at any time exceed a speed of 50 mi/h? Draw the o-t curve."^

40 fl — - r- 30 ft -- -10 ft —J

«"-•¦»

1 1.52 Solve Prob. 11.51 assuming that the driver of the car does
not pay any attention to the speed limit while passing and concentrates
on reaching position B and resuming a speed of 35 mph in the shortest
possible time. What is the maximum speed reached? Draw the v-t
curve.
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1 1 .53 A car and a truck are both traveling at the constant speed
of 60 ini/h; the car is 30 ft behind the truck. The truck driver suddenly

applies his brakes, causing the truck to decelerate at the constant rate
of 9 ft/s 2 . Two seconds later the driver of the car applies his brakes

and just manages to avoid a rear-end collision. Determine the constant
rate at which the car decelerated.

1 1 .54 Two cars are traveling toward each other on a single-lane

road at 16 and 12 m/s, respectively. When 120 in apart, both drivers

realize the situation and apply their brakes. They succeed in stopping

simultaneously, and just short of colliding. Assuming a constant de-

celeration for each car, determine (a) the time required for the cars
to stop, (£)) the deceleration of each car, and (c) the distance traveled

by each car while slowing down.

...

g "' o ' -O ft_

120 m

Fig. P11.54

A B

' 350 in

Fig. P11.55

350 in 330 in 330 m

1 1 .55 An express subway train and a train making local stops

run on parallel tracks between stations A and E, which are 1400 m

apart. The local train makes stops of 30-s duration at each of the
stations B, C, and D; the express train proceeds to station E without
any intermediate stop. Each train accelerates at a rate of 1.25 m/s 2
until it reaches a speed of 12.5 m/s; it then proceeds at that constant
speed. As the train approaches its next stop, the brakes are applied,
providing a constant deceleration of 1.5 m/s 2 . If the express train
leaves station A 4 min after the local train has left A, determine (a)

which of the two trains will arrive at station E first, (h) how much
later the other (rain will arrive at station E,

1 1 .56 The acceleration of a particle varies uniformly from
a = 75 in./s 2 at t = 0, to a = — 75 in./s 2 at t — 8s. Knowing that

x = and = when / = 0, determine (a) the maximum velocity of

the particle, (fo) its position at f = 8s, (c) its average velocity over the
interval < j < 8 s. Draw the a-t, c-l, and x-t curves for the motion.

1 1 .57 The rate of change of acceleration is known as the jerk;
large or abrupt rates of change of acceleration cause discomfort to

elevator passengers. If the jerk, or rate of change of the acceleration,
of an elevator is limited to rrO.5 m/s 2 per second, determine the
shortest time required for an elevator, starling from rest, lo rise 8 m
and stop.
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1 1 .58 The acceleration record shown was obtained for a track

traveling on a straight highway. Knowing that the initial velocity of
the track was 18 km/h, determine the velocity and distance traveled
when (a) t = 4 s, (fo) I = 6 s.
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Fig. P11.58
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11.59 A training airplane lands on an aircraft carrier and is
brought to rest in 4 s by the arresting gear of the carrier. An acceler-

ometer attached to the airplane provides the acceleration record
shown. Determine by approximate means (a) the initial velocity of
the airplane relative to the deck, (b) the distance the airplane travels
along the deck before coming to rest.

1 1 .60 The v-x curve shown was obtained experimentally during

the motion of the bed of an industrial planer. Determine by approxi-
mate means the acceleration (a) when x = 3 in., (b) when o = 40 in./s.

50

40

30-

20 z
10
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Fig. P11.59
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Fig. P11.60
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11.61 The maximum possible acceleration of a passenger train

under emergency conditions was determined experimentally; the re-
sults are shown (solid curve) in the figure. If the brakes are applied
when the train is traveling at 90 km/h, determine by approximate

means (a) the time required for the train to come to rest, (b) the
distance traveled in that time.

11.62 Using the method of Sec. 11.8, derive the formula

x = x u + v t + Jot 2 , for the position coordinate of a particle in uni-
formly accelerated rectilinear motion.

11.63 Using the method of Sec. 11.8, obtain an approximate
solution for Prob. 11.59, assuming that the a-t curve is a straight line

from point A to point B.

1 1 .64 The acceleration of an object subjected to the pressure

wave of a large explosion is defined approximately by the curve shown.
The object is initially at rest and is again at rest at time tj. Using the
method of Sec. 11.8, determine (<j) the time t t , (b) the distance through

which the object is moved by the pressure wave.

11.65 Using the method of Sec. 11.8, determine the position of the
particle of Prob. 11.41 when t = 12 S.

1 1.66 For the particle of Prob. 11.43, draw the a-t curve and,
using the method of Sec. 11.8, determine (a) the position of the particle
when I = 14 s, (b) the maximum value of its position coordinate.

CURVILINEAR MOTION OF PARTICLES

11.9. Position Vector, Velocity, and Accelera-

tion. When a particle moves along a curve other than a
straight line, we say that the particle is in curvilinear motion. To

define the position P occupied by the particle at a given time t,
we select a fixed reference system, such as the x, y. z axes shown

in Fig. 11.14a, and draw the vector r joining the origin O and
point P. Since the vector r is characterized by its magnitude r

and its direction with respect to the reference axes, it completely
defines the position of the particle with respect to those axes;

the vector r is referred to as the position vector of the particle at
time t.

Consider now the vector r' defining the position P' occupied

by the same particle at a later time t + A/. The vector Ar joining
P and P' represents the change in the position vector during the
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time interval At since, as we may easily check from Fig. 11.14a,
the vector r' is obtained by adding the vectors r and Ar according
to the triangle rule. We note that Ar represents a change in
direction as well as a change in magnitude of the position vector
r. The aterage velocity of the particle over the time interval Ar is
defined as the quotient of Ar and Ar. Since Ar is a vector and A/

a scalar, the quotient Ar/Ar is a vector attached at P, of the same
direction as Ar, and of magnitude equal to the magnitude of Ar
divided by At (Fig. 11.146).

The instantaneous velocity of the particle at time t is obtained
by choosing shorter and shorter time intervals Ar and, corre-

spondingly, shorter and shorter vector increments Ar. The in-

stantaneous velocity is thus represented by the vector

v = lira 4 1
Af-0 At

(11.14)

As Ar and Ar become shorter, the points P and P' get closer; the
vector v obtained at the limit must therefore be tangent to the
path of the particle (Fig. 11.14c).

Since the position vector r depends upon the time t, we may
refer to it as a vector function of the scalar variable t and denote
it by r(f). Extending the concept of derivative of a scalar func-
tion introduced in elementary calculus, we shall refer to the limit

of the quotient Ar/A< as the derivative of the vector function r(r).
We write

v =

dt
(11.15)

The magnitude v of the vector v is called the speed of the

particle. It may be obtained by substituting for the vector Ar in
formula (11.14) its magnitude represented by the straight-line
segment PP'. But the length of the segment PP' approaches the

length As of the arc PP' as Ar decreases (Fig. 11.14a), and we may
write-Fig. 11.14

L = lim^l=lim^
Ai-o At Ai-o Ar

ds

dt
ill.lO)

The speed v may thus be obtained by differentiating with respect to t the length s of the arc described by the particle.
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Consider the velocity v of the particle at time f and also its

velocity v' at a later time t + It (Fig. 11.15a). Let us draw both
vectors v and v' from the same origin O' (Fig. 11.15b). The
vector Av joining Q and Q' represents the change in the velocity

of the particle during the time interval A<, since the vector v'
may be obtained by adding the vectors v and Av. We should note

that Av represents a change in the direction of the velocity as

well as a change in speed. The average acceleration of the
particle over the time interval A( is defined as the quotient of Av
and A*. Since Av is a vector and At a scalar, the quotient Av/A? is
a vector of the same direction as Av.

The instantaneous acceleration of the particle at time t is

obtained by choosing smaller and smaller values for \t and Av.
The instantaneous acceleration is thus represented by the vector

a = lim - —
M-0 It

(11.17)

Noting that the velocity v is a vector function v(t) of the time t,
we may refer to the limit of the quotient Av/A< as the derivative
of v with respect to t. We write

a =
c/v

dt
(11.18)

We observe that the acceleration a is tangent to the curve
described by the tip Q of the vector v when die latter is drawn
from a fixed origin O' (Fig. 11.15c) and that, in general, the
acceleration is not tangent to the path of the particle (Fig.
11.15</). The curve described by the tip of v and shown in Fig.
11.15c is called the hodograph of the motion.

Fig. 11.15
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11.10. Derivatives of Vector Functions. We saw in

the preceding section that the velocity v of a particle in curvilin-
ear motion may be represented by the derivative of the vector
function r(t) characterizing the position of the particle. Simi-
larly, the acceleration a of the particle may be represented by
the derivative of the vector function v(f). In this section, we shall

give a formal definition of the derivative of a vector function and

establish a few rules governing the differentiation of sums and
products of vector functions.

Let P(m) be a vector function of the scalar variable u. By that
we mean that the scalar u completely defines the magnitude and
direction of the vector P. If the vector P is drawn from a fixed

origin O and the scalar u is allowed to vary, the tip of P will
describe a given curve in space. Consider the vectors P corre-
sponding respectively to the values u and u + Au of the scalar

variable (Fig. 11.16a). Let AP be the vector joining the tips of
the two given vectors; we write

AP = P(u + Au) - P(h)

Dividing through by Au and letting Au approach zero, we define
the derivative of the vector function P(u):

dP AP
= lim — — = lim

du Au-o Au a«-o

Pfu + Au) - P(u)

A«
(11.19)

As Au approaches zero, the line of action of AP becomes tangent
to the curve of Fig. 11.16o. Thus, the derivative dP/du of the

vector function P(u) is tangent to the curve described by the lip of
P(«) (Fig. 11.16b).

We shall now show that the standard rules for the differentia-

tion of the sums and products of scalar functions may be ex-
tended to vector functions. Consider first the sum of two vector
functions Pfu) and Q(u) of the same scalar variable u. According
to the definition given in (11.19), the derivative of the vector
P + Q is

d(P

du

Q) ,. A(P
= lim

Au-0

Q)
Au = lta (t-iu .o \Au

AQ

A-)u /

or, since the limit of a sum is equal to the sum of the limits of its
terms,

rf(P + Q) AP AQ
— = hni - + In 1 1 -

(lU Au-0 All Au-0 Au

Fig. 11.16

rf(P + Q)
du

dP

du

dQ
du

(11.20)
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Next, we shall consider the product of a scalar function f(u)
and of a vector function P(w) of the same scalar variable u. The
derivative of the vector /P is

d{fV) = , jm (/+A/)(P + AP)-/P
du a«->o Am.

= liI „(|fp +/ iL)iu-0 \All 111 I

or, recalling the properties of the limits of sums and products,

The derivatives of the scalar product and of the vector product of

two vector functions P(m) and Q(«) may be obtained in a similar
way. We have

du du du

du du du

We shall use the properties established above to determine the
rectangular components of the derivative of a vector function
P(«). Resolving P into components along fixed rectangular axes x,

y, z, we write

V = P x i + PJ + P,k (11.24)

where P x , P y , P t are the rectangular scalar components of the vector P, and i, j, k the unit vectors corresponding respectively to
the .r, (/, and z axes (Sec. 2.11). By (11.20), the derivative of P is

equal to the sum of the derivatives of the terms in the right-hand
member. Since each of these terms is the product of a scalar and
a vector function, we should use (11.21). But the unit vectors i, j,

k have a constant magnitude (equal to 1) and fixed directions.
Their derivatives are therefore zero, and we write

* 4, + &+«* (U.25)
du du du du

'Since the vector product is not commutative (Sec. 3.3), the order of the
factors in (11.23) must be maintained.



KINEMATICS OF PARTICLES 469

Noting that the coefficients of the unit vectors are, by definition,
the scalar components of the vector dP/du, we conclude that the

rectangular scalar components of the derivative dP/du of the
vector function P(u) are obtained by differentiating the corre-
sponding scalar components of P.

Rate of Change of a Vector. When the vector P is a

function of the time t, its derivative dP/dt represents the rate of
change of P with respect to the frame Oxyz. Resolving P into
rectangular components, we have, by (11,25),

dP_
dt dt dt i+ dt k

or, using dots to indicate differentiation with respect to t,

P = P x i + PJ + P s k (11.25')

As we shall see in Sec. 15.10, the rate of change of a vector,

as observed from a mewing frame of reference, is, in general,
different from its rate of change as observed from a fixed frame of
reference. However, if the moving frame O'x'y'z' is in transla-
tion, i.e., if its axes remain parallel to the corresponding axes of
the fixed frame Oxyz (Fig. 11.17), the same unit vectors i, j, k are

c/,

p i

Fig. 11.17

used in both frames, and the vector P has, at any given instant,

the same components P r , P y , P : in both frames. It follows from (11.25') diat the rate of change P is the same with respect to the
frames Oxyz and O'x'y'z'. We state, therefore: The rate of
change of a vector is the same with respect to a fixed frame and

with respect to a frame in translation. This property will greatly
simplify our work, since we shall deal mainly with frames in
translation.
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F(b)

Fig. 11.18

11.11. Rectangular Components of Velocity and

Acceleration. When the position of a particle I' is defined at
any instant by its rectangular coordinates X, (/, and z, it is con-
venient to resolve the velocity v and the acceleration a of the

particle into rectangular components (Fig. 11.18).

Resolving the position vector r of the particle into rectangular

components, we write

r = xi + i/j + ;k (11.26)

where the coordinates x, y, z are functions of t. Differentiating
twice, we obtain

d

v = -^ = -vi + !/j + 2k

— §-« + «+»

(11.27)

(11.28)

where x, if, z and x, y, ~ represent, respectively, the first and
second derivatives of x, y, and z with respect to I. It follows from
( 1 1.27) and ( 1 1 .28) that the scalar components of the velocity and
acceleration are

0, = x o v = y »i si (11.29)

a^=x a v = \l o, = 2 (11.30)

A positive value for ft, indicates that the vector component v x is
directed to the right, a negative value that it is directed to the
left; the sense of each of the other vector components may be

determined in a similar way from the sign of the corresponding
scalar component. If desired, the magnitudes and directions of
the velocity and acceleration may be obtained from their scalar
components by the methods of Sees. 2.6 and 2.11.

The use of rectangular components to describe the position,
the velocity, and the acceleration of a particle is particularly
effective when the component a r of the acceleration depends
only upon f, x, and/or v x , and when, similarly, a y depends only
upon t, y, and/or v y , and a z upon t, z, and/or v s . Equations
(11.30) may then be integrated independently, and so may Eqs.

(11.29). In other words, the motion of the particle in the x
direction, its motion in the y direction, and its motion in the z

direction may be considered separately.
In the case of the motion of a projectile, for example, it may be

shown (see Sec. 12.4) that the components of the acceleration are

a. = i = a, = y = -g a. = z =
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if the resistance of the air is neglected. Denoting by .r , i/ , ; the

coordinates of the gun, and by (c x ) , (c v ) , (v z ) u the components of the initial velocity v of the projectile, we integrate twice in t
and obtain

v x = x = (ig

* = *o + (*M !/ = </o + («„V - 2g' 2

o„ = z = (v t )

z = z n + (v,) t

If the projectile is fired in the xy plane from the origin O, we
have x = j/ = z = and (t; s ) = 0, and the equations of mo-
tion reduce to

"*.>0 V V = ( e »)o

* = (o»)o*

- & 0» =

These equations show that the projectile remains in the xy plane
and that its motion in the horizontal direction is uniform, while

its motion in the vertical direction is uniformly accelerated. The
motion of a projectile may thus be replaced by two independent
rectilinear motions, which are easily visualized if we assume that
the projectile is fired vertically with an initial velocity (v ) from
a platform moving with a constant horizontal velocity (v r )„ (Fig.
1 1.19). The coordinate .v of the projectile is equal at any instant
to the distance traveled by the platform, while its coordinate y
may be computed as if the projectile were moving along a
vertical line.

It may be observed that the equations defining the coordinates
-v and y of a projectile at any instant are the parametric equations

of a parabola. Thus, the trajectory of a projectile is parabolic.
This result, however, ceases to be valid when the resistance of the

air or the variation with altitude of the acceleration of gravity is
taken into account.

1 1.12. Motion Relative to a Frame in Translation.

In the preceding section, a single frame of reference was used to
describe the motion of a particle. In most cases this frame was
attached to the earth and was considered as fixed. We shall now

analyze situations in which it is convenient to use simultaneously
several frames of reference. If one of the frames is attached to

the earth, we shall call it a. fixed frame of reference and the other
frames will be referred to as moving frames of reference. It
should be understood, however, that the selection of a fixed frame

of reference is purely arbitrary. Any frame may be designated as
"fixed"; all other frames not rigidly attached to this frame will
then be described as "moving."

Consider two particles A and B moving in space (Fig. 1 1.20);

the vectors r,, and r B define their positions at any given instant
with respect to the fixed frame of reference Oxyz. Consider nowv

(a) Motion of u projVcUlo

.(b) Equivalent rectilinear motioas

Fig. 11.19
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Fig. 11.20

a system of axes x', y', z" centered at A and parallel to the x, y, z
axes. While the origin of these axes moves, their orientation

remains the same; the frame of reference Ax'y'z 1 is in translation
with respect to Oxyz. The vector i B/A joining A and B defines tlie
position of B relative to the moving frame Ax'y'z' (or, for short,
the position of B relative to A).

We note from Fig. 11.20 that the position vector r B of particle
B is the sum of the position vector r A of particle A and of the

position vector r B/A of B relative to A; we write

r B — r A + X BIA (11.31)

Differentiating (1 1.31) with respect to t within the fixed frame of
reference, and using dots to indicate time derivatives, we have

r R = r, + ra/A (11.32)

The derivatives i A and r B represent, respectively, the velocities

v^ and v B of the particles A and B. The derivative r B/A repre-

sents the rate of change of r B/A with respect to the frame Ax'y'z',
as well as with respect to the fixed frame, since Ax'y'z' is in
translation (Sec. 11.10). This derivative, therefore, defines the

velocity v B/A of B relative to the frame Ax'y'z" (or, for short, the
velocity v B/A of B relative to A). We write

V B = V A + "B/A (11.33)

Differentiating Eq. (11.33) with respect to r, and using the deriv-

ative \ B/A to define the acceleration a B/A of B relative to the
frame Ax'y'z' (or, for short, the acceleration of a B/A of B relative
to A), we write

a B = *A + aB/A (11.34)

The motion of B with respect to the fixed frame Oxyz is
referred to as the absolute motion of B. The equations derived in
this section show that the absolute motion of B may be obtained
by combining the motion of A and the relative motion of B with
respect to the moving frame attached to A. Equation (11.33), for
example, expresses that the absolute velocity v B of particle 8

may be obtained by adding vcctorially the velocity of A and the
velocity of B relative to the frame Ax'y'z 1 . Equation (11.34)

expresses a similar property in terms of the accelerations. We
should keep in mind, however, that the frame Ax'y'z' is in trans-
lation; i.e., while it moves with A, it maintains the same orien-

tation. As we shall see later (Sec. 15.14), different relations must

be used in the case of a rotating frame of reference.
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SAMPLE PROBLEM 11.7

A projectile is fired from the edge of a 150-m cliff with an initial
velocity of 180 m/s, at an angle of 30° with the horizontal. Neglecting
air resistance, find (a) the horizontal distance from the gun to the point

where the projectile strikes the ground, (b) the greatest elevation above
the ground reached by the projectile.

».'(

-150m --'

Solution. We shall consider separately the vertical and the hori-
zontal motion.

Vertical Motion. Uniformly accelerated motion. Choosing the

positive sense of the y axis upward and placing the origin O at the
gun, we have

(u„) = (180 m/s) sin 30° = +90 m/s
a = -9.81 m/s 2

Substituting into the equations of uniformly accelerated motion, we
have

0y = (o v ) + at v f = 90 -9.811 (1)
y = (c„)o* + ¥? !/ = 90t - 4.90/ 2 (2)
oj = (c JS + 2ay s§ = 8100 - 19.62./ (3)

ISO m/s

o
Horizontal Motion. Uniform motion. Choosing the positive sense

of the .v axis to the right, we have

( Vl ) = (180 m/s) cos 30" = +155.9 m/s

Substituting into the equation of uniform motion, we obtain

,v = (t-,) f x - 155.9* (4)

a. Horizontal Distance. When the projectile strikes the ground,
wc have

us - 150 m

Carrying this value into Eq. (2) for the vertical motion, we write

-150 = 90r - 4.90f 2 t- - 18.37* - 30.6 = ta 19.91 s

Carrying t = 19.91 s into Eq. (4) for the horizontal motion, we obtain

x = 155.9(19.91) x = 3100 m -*

b. Greatest Elevation. When the projectile reaches its greatest
elevation, we have t u = 0; carrying this value into Eq. (3) for the
vertical motion, we write

= 8100 - 19.6% y = 413 m
Greatest elevation above ground = 150 m + 413 m

= 563 m -+
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SAMPLE PROBLEM 11.8

A projectile is fired with an initial velocity of S0()ft/s at a target B
located 2000 ft above the gun A and at a horizontal distance of
12,000 ft. Neglecting air resistance, determine the value of the firing
angle a.

A^r- >Hi
j

ts
2000 ft

H

h
UivUU 11

s
V „ = 800ft/s

l
Solution. We shall consider separately the horizontal and the verti-

cal motion.

Horizontal Motion. Placing the origin of coordinates at the gun,
we have

i
J^

r
U sT /' (pj = 800cosa

Substituting into the equation of uniform horizontal motion, we obtain

x = • u,)„f x = (800 cos a)t

ldsa
,|

1
™ IZ.VUU II "

ym
The time required for the projectile to move through a horizontal

distance of 12,000 ft is obtained by making x equal to 12,000 ft.

yf
12,000 = (800 cos r.)/

tt
, 12,000 15

800 cos a cos a

y
"1"

a
Vertical Motion

n(c„) = 800 sin a a = -32.2 ft/s 2
ry<f>'„ = miiA_-/ l'i Substituting into the equation of uniformly accelerated vertical mo-

tion, we obtain

y = (v„) t + lap y = (800 sin n)l - 16.U 2

f -j

-

2000 ft-cProjectile Hits Target. When * = 12,000 ft, we must have
i/ = 2000 ft. Substituting for y and making / equal to the value found
above, we write=A2000 = 800 sin a-^- - 16.1 M^-V

cos n \cos a 1oSince 1/cos- a = sec 2 a = 1 — tan'-' «, we have52000 = 800(15) tan a - 16.1(15 2 )(1 + tan 2 a)
3622 tan 2 a - 12,000 tan a + 5622 =

A

/ 70.0" — . _ \b/ Solving this quadratic equation for tan o, we have

tan a = 0.565 and tan « = 2.75

a = 29.5" and <i = 70.0° -^

The target will be hit if either of these two firing angles is used (see
figure).

474



30 m

J_ 25km,h

SAMPLE PROBLEM 11.9

Automobile A is traveling east at the constant speed of 25 kin/h. As
automobile A crosses the intersection shown, automobile B starts from

rest 30 m north of the intersection and moves south with a constant

acceleration of 1.2 m/s 2 . Determine the position, velocity, and accel-
eration of B relative to A five seconds after A crosses the intersection.

30 m

A

6 m/sW"11 '
1.2 m. 5-•i

Solution. We choose x and y axes with origin at the intersection
of the two streets and with positive senses directed respectively east
and north.

Motion of Automobile A. First the speed is expressed in m/s;

25 km/h =
25 km 25 000 m

= 6.94 m/s
lh 3600 s

Noting that the motion of A is uniform, we write, for any time t,

«., =

o A = +6.94 m/s
*4 = fejp + vj = + 6.94*

For t = 5 s, we have

"a = *i =

^ = +6.94 m/s v, = 6.94 m/s ->
*_, = +(6.94 m/s)(5 s) = +34.7 m r A = 34.7 m -»

Molion of Aulomohile B. We note that the motion of B is uniformly
accelerated, and write

a R = — 1.2 m/s 2

«fl = (<-•*)<> + "' = - ,2 '
Sb = (>Jb)o + (c«)o* + i"B* 2 = 3<» +0- J(l. 2)t 2

For r = 5 s, we have

O fl eb -1.2 m/s- a B = 1.2 m/s 2 J,
B = — (1.2m/s)(5s) = —6 m/s v B = 6 m/s J,

ij B = 30 - |(1.2 m/s)(5 s) 2 = + 15 m r B = 15 m f

.\/n/ioii of /J Relative to A, We draw the triangle corresponding to

the vector equation r fl = r^ + r B/A and obtain the magnitude and
direction of the position vector of B relative to A.

r B/A = 37.8 m o = 23.4° r BtA = 37.8 m !^ 23. f -*

Proceeding in a similar fashion, we find the velocity and acceleration
of B relative to A.

»b/a = 9 -l" »/*

a S = a a + a B/A

B = 40.8° v n t = 9.17 m s ^ 40.8'

a B , = 1.2 it.
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PROBLEMS

Note. Neglect air resistance in problems concerning projectiles.

11.67 The motion of a particle is defined by the equations
x = ^t 3 — 2r and 1/ = \l 2 — 21, where v and y are expressed in meters
and / in seconds. Determine the velocity and acceleration when
(«) t = 1 S, (b) t = 3 s.

1 1 .68 In Prob. 11.67, determine (a) the time at which the value of

the y coordinate is minimum, (b) the corresponding velocity and
acceleration of the particle.

11.69 The motion of a particle is defined by the equations
x = «' /2 and y = e~' n , where x and y are expressed in feet and I in
seconds. Show that the path of the particle is a rectangular hyperbola
and determine the velocity and acceleration when (a) t — 0,
(b)t=l s.

".B- — *— ¦jI "/—'I"*T"\.'
B /T r - , '"^> v I

j31¦''' l
IJ

1

I }dI ^a"^

— — A-dA ¦ -

Fig. P11.72aFig. P11.73

1 1 .70 The motion of a particle is defined by the equations
x = 5(1 — e~') and y = 5t/(t + 1), where X and y are expressed in feet
and t in seconds. Determine the velocity and acceleration when
t = 1 s.

11.71 The motion of a vibrating particle is defined by the position

vector r = (100sinwt)i + (25 cos 27rt)j, where r is expressed in milli-
meters and ( in seconds, (a) Determine the velocity and acceleration

when f = 1 s. (/)) Show that the path of the particle is parabolic,

1 1 .72 A particle moves in an elliptic path defined by the position
vector r = (A cos pt)i + (B sin pt)j. Show that the acceleration (a) is
directed toward the origin, (b) is proportional to the distance from the
origin to the particle.

1 1 .73 The three-dimensional motion of a particle is denned by the
position vector r = Afi + ABt'j + Bt 2 V, where r is expressed in feet
and t in seconds. Show that the space curve described by the particle
lies on the hyperbolic paraboloid y = xz. For A = B = 1, determine

the magnitudes of the velocity and acceleration when (o) * = 0,
(b) t = 2 s,

11.74 The three-dimensional motion of a particle is defined by the
position vector r = (R sin pt)i + ctj + [R cos pt)V. Determine the
magnitudes of the velocity and acceleration of the particle. (The space
curve described by the particle is a helix.)
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1 1.75 A man standing on a bridge 20 m above the water throws
a stone in a horizontal direction. Knowing that the stone hits the
water 30 in from a point on the water directly below the man, deter-
mine (a) the initial velocity of the stone, {b) the distance at which
the stone would hit the water if it were thrown with the same velocity

from a bridge 5 m lower.

1 1.76 Water issues at A from a pressure tank with a horizontal
velocity v u . For what range of values v will the water enter the
opening BC?

11.77 A nozzle at A discharges water with an initial velocity
of 40 ft/s at an angle of 60° with the horizontal. Determine where
the stream of water strikes the roof. Check that the stream will clear

the edge of the roof.

11.78 In Prob. 11.77, determine the largest and smallest initial

velocity for which the water will fall on the roof.

f
1.5 n

Fig. P11.76

l
15ft- 25 ft

Fig. P11.77

1 1 .79 A ball is dropped vertically onto a 20° incline at A; the

direction of rebound forms an angle of 40° with the vertical. Knowing
that the ball next strikes the incline at B, determine (a) the velocity

of rebound at A, (b) the time required for the ball to travel from A
to B.

1 1 .80 Sand is discharged at A from a conveyor belt and falls into a
collection pipe at B. Knowing that the conveyor belt forms an angle
R = 15° with the horizontal and moves at a constant speed of 20 ft/s,
determine what the distance d should be so that the sand will hit the

center of the pipe.

11.81 The conveyor belt moves at a constant speed of 12 ft/s.
Knowing that d = 8 ft, determine the angle ft for which the sand
reaches the center of the pipe B.ni3 m

Fig. P11.79

10 ft

Fig. P11.80

11.82 A projectile is fired with an initial velocity of 210 rn/s.
Find the angle at which it should be fired if it is to hit a target located
at a distance of 3600 m on the same level.

1 1 .83 A boy can throw a baseball a maximum distance of 30 in

in New York, where g = 9.81 m/s 2 . How far could he throw the
baseball {a) in Singapore, where g = 9.78 m/s-? (b) On the moon,
where g = 1.618 m/s 2 ?
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1 1 .84 If the maximum horizontal range of a given gun is R,

determine the firing angle which should be used to hit a target located at a distance JK on the same level.

20 ft

c
1 1.85 A projectile is fired with an initial velocity v at an angle

<« with the horizontal. Determine (a) the maximum height h reached
by the projectile, (b) the horizontal range R of the projectile, (c) the
maximum horizontal range fi and the corresponding firing angle a.

1 1 .86 A player throws a ball with an initial velocity v of 50 ft/s
from a point A located 5 ft above the floor. Knowing that the ceiling of
the gymnasium is 20 ft high, determine the highest point B at which
the ball can strike the wall 60 ft away.

Fig. P11.86

A fire nozzle discharges water with an initial velocity v of
80 ft/s. Knowing that the nozzle is located 100 ft from a building,
determine (a) the maximum height h that can be reached by the water,
(b) the corresponding angle a.

B? ?

hD ?0B P

? riP r
a

P r
S i r

s

w

Will mi h

*=&r E

-100 ft-

Fig. P11.87

1 1 .88 Two airplanes A and B are each flying at a constant alti-
tude; plane A is flying due east at a constant speed of 600 mi/h while
plane B is flying southwest at a constant speed of 400 mi/h. Determine
the change in position of plane B relative to plane A which takes place
during a 1.5-min interval.tFig. P11.88

1 1 .89 Instruments in an airplane indicate that, with respect to
the air, the plane is moving east at a speed of 350 mi/h. At the same

time ground-based radar indicates the plane to be moving at a speed of
325 mi/h in a direction 8° north of east. Determine the magnitude and
direction of the velocity of the air.
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1 1 .90 As he passes a pole, a man riding in a tmek tries to hit

the pole by throwing a stone with a horizontal velocity of 20m/s relative to the truck. Knowing that the speed of the truck is 40 km/h,
determine (a) the direction in which he must throw the stone, (b) the
horizontal velocity of the stone with respect to the ground.

11.91 An automobile and a train travel at the constant speeds

shown. Three seconds after the train passes under the highway bridge
the automobile crosses the bridge. Determine (a) the velocity of the
train relative to the automobile, {b) the change in position of ihe train
relative to the automobile during a 4-s interval, (c) the distance be-
tween the train and the automobile 5 s after the automobile has

Grossed the bridge.

120 km h

1
Fig. P11.91

1 1 .92 During a rainstorm the paths of the raindrops appear to
form an angle of 30° with the vertical when observed from a side
window of a train moving at a speed of 15 km/h. A short time later,
after the speed of the train has increased to 30 km/h, the angle be-
tween the vertical and the paths of the drops appears to be 45°. If
the train were stopped, at what angle and with what velocity would
the drops be observed to fall?

1 1 .93 As the speed of the train of Prob. 1 1 .92 increases, the angle

between the vertical and the paths of the drops becomes equal to 60°.
Determine the speed of the train at that time.

yookm h

1 1.94 As observed from a ship moving due south at 10 mi/li, the

wind appears to blow from the east. After the ship has changed course, and as it is moving due west at 10 mi/h, the wind appeals to blow
from the northeast. Assuming that the wind velocity is constant during

the period of observation, determine the magnitude and direction of
the true wind velocity.

1 1 .95 An airplane is flying horizontally at an altitude of 2500 m

and at a constant speed of 900 km/h on a path which passes directly
over an antiaircraft gun. The gun fires a shell with a muzzle velocity
of 500 m/s and hits the airplane. Knowing that the firing angle of

the gun is 60°, determine the velocity and acceleration of the shell
relative to the airplane at the time of impact.

1 1 .96 Water is discharged at A with an initial velocity of 10 m/s
and strikes a series of vanes at B. Knowing that the vanes move

downward with a constant speed of 3 m/s, determine the velocity and
acceleration of the water relative to the vane at B.

2500 in

Fig. P11.95

5 m

©

VuFig. 11.96
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Oil-

.W

Fig. 11.21

11.13. Tangential and Normal Components. We

saw in Sec. 11.9 that the velocity of a particle is a vector tangent
to the path of the particle but that, in general, the acceleration is
not tangent to the path. It is sometimes convenient to resolve the

acceleration into components directed, respectively, along the
tangent and the normal to the path of the particle.

otion of a Particle. We shall first consider a particle
which moves along a curve contained in the plane of the figure.
Let V be the position of the particle at a given instant. We attach
at P a unit vector i, tangent to the path of the particle and

pointing toward the direction of motion (Fig. 11.21a). Let i,' be the unit vector corresponding to the position P' of the particle at
a later instant. Drawing both vectors from the same origin O', we define the vector M t = i' t - i, (Fig. 11.216). Since i, and i ( ' are of
unit length, their tips lie on a circle of radius 1. Denoting by AO
the angle formed by i, and i;, we find that the magnitude of M, is

2 sin (A0/2). Considering now the vector M t /M, we note that, as AO approaches zero, this vector becomes tangent to the unit circle of Fig. 11.216, i.e., perpendicular to i,, and that its magni-
tude approaches

,. 2sin(M/2) , sin(A0/2)

Thus, the vector obtained at the limit is a unit vector along the
normal to the path of the particle, in the direction toward which
i, turns. Denoting this vector by i B , we write

L = lim *k
" A9-0 M «n =

f/i,
He

(11.35)

Since the velocity v of the particle is tangent to the path, we
may express it as the product of the scalar p and the unit vector i, .
We have

v = ei, (11.36)

To obtain the acceleration of the particle, we shall differentiate
(11.36) with respect to f. Applying the rule for the differentiation

of the product of a scalar and a vector function (Sec. 11.10), we
write

do di,

a - ~dT - H 1 ' + v -d7 (11.37)

But

di t

dt dO ds ~di

S5



KINEMATICS OF PARTICLES 481

Recalling from (11.16) that ds/dt = v, from (11.35) that
d\,/dB = i,,, and from elementary calculus that 66/ ds is equal to
1/p, where p is the radius of curvature of the path at P (Fig.

1 1 .22), we have

di t v .

dt = ~p~ h>

17
Substituting into (11.37), we obtain

dv . , v 2
a - ~17 1 ' + —

at p

Thus, the scalar components of the acceleration are

a, =
dv_
dl

a. =

(11.38)

(11.39)

(11.40)

The relations obtained express that the tangential component

of the acceleration is equal to the rate of change of the speed of
the particle, while the normal component is equal to the square of
the speed divided by the radius of curvature of the path at P.
Depending upon whether the speed of the particle increases or
decreases, a, is positive or negative, and the vector component a,

points in the direction of motion or against the direction of
motion. The vector component a„, on the other hand, is always
directed toward the center of curvature C of the path (Fig. 1 1 .23).aQt> Fig. 11.23

It appears from the above that the tangential component of
the acceleration reflects a change in the speed of the particle,
while its normal component reflects a change in the direction of
motion of the particle. The acceleration of a particle will be
zero only if both its components are zero. Thus, the acceleration

of a particle moving with constant speed along a curve will not
be zero, unless the particle happens to pass through a point of
inflection of the curve (where the radius of curvature is infinite)

or unless the curve is a straight line.

o«

Fig. 11.22
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<«)

t
The fact that the normal component of the acceleration de-

pends upon the radius of curvature of the path followed by the particle is taken into account in the design of structures or
mechanisms as widely different as airplane wings, railroad tracks,

and cams. In order to avoid sudden changes in the acceleration of the air particles flowing past a wing, wing profiles are designed
without any sudden change in curvature. Similar care is taken in

designing railroad curves, to avoid sudden changes in the accel-

eration of the cars (which would be hard on the equipment and unpleasant for the passengers). A straight section of track, for
instance, is never directly followed by a circular section. Special
transition sections are used, to help pass smoothly from the
infinite radius of curvature of the straight section to the finite
radius of the circular track. 1 likewise, in the design of high-speed
cams, abrupt changes in acceleration arc avoided by using transi-
tion curves which produce a continuous change in acceleration.

Motion of a Particle in Space. The relations (11.39) and

(11.40) still hold in the case of a particle moving along a space curve. However, since there is an infinite number of straight
lines which arc perpendicular to the tangent at a given point P of
a space curve, it is then necessary to define more precisely the
direction of the unit vector i„.

Let us consider again the unit vectors i, and i,' tangent to the
path of the particle at two neighboring points P and P' (Fig.
11.24a) and the vector Ai, representing the difference between i,
and i, (Fig. 1 1.24/;). Let us now imagine a plane through P (Fig.
11.24a), parallel to the plane defined by the vectors i,, i,', and Ai,
(Fig. 11.24b). This plane contains the tangent to the curve at P

and is parallel to the tangent at P'. If we let P' approach P, we

obtain at the limit the plane which fits the curve most closely in the neighborhood of P. This plane is called the osculating plane
at P.\ It follows from this definition that the osculating plane
contains the unit vector L,, since this vector represents the limit
of the vector Ai,/A0. The normal defined by i n is thus contained
in the osculating plane; it is called the principal normal at P. The
imit vector i = i, X L, which completes the right-handed triad
i,, i„, i b (Fig. 11.24c) defines the binomial at P. The binomial is

thus perpendicular to the osculating plane. We conclude that, as
stated in (11.39), the acceleration of the particle at P may be
resolved into two components, one along the tangent, the other
along the principal normal at P. The acceleration has no compo-
nent along the binormal.

Fig. 11.24

(c)

'From the Latin osculuri, to embrace.
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11.14. Radial and Transverse Components. In

certain problems of plane motion, the position of the particle P is

defined by its polar coordinates r and (Fig. 11.25a). It is then
convenient to resolve the velocity and acceleration of the parti-

cle into components parallel and perpendicular, respectively, to

the line OP. These components are called radial and transverse
components.

We attach at P two unit vectors, i r and i e (Fig. 11.25b). The

vector i r is directed along OP and the vector i v is obtained by
rotating i r through 90° counterclockwise. The unit vector i r
defines the radial direction, i.e., the direction in which P would

move if r were increased and kept constant; the unit vector i
defines the transverse direction, i.e., the direction in which P

would move if were increased and r kept constant. A deriva-
tion similar to the one we used in Sec. 11.13 to determine the

derivative of the unit vector i, leads to the relations

d0

di,

dO
= —i. (11.41)

where — i r denotes a unit vector of sense opposite to that of i r
(Fig. 11.25c).

Expressing the position vector r of the particle P as the prod-
uct of the scalar r and the unit vector i r , and differentiating with

respect to t, we write

r = n r (11.42)

dr dr di,
v = -d7 = Tt l ' + r *

dr. de di.

" dt lr + r dt deteFig. 11.25

Recalling the first of the relations (11.41), and using dots to
indicate time derivatives, we have

v = ri r -f nig (11.43)

Differentiating again with respect to r, we write

^ v ... . dL .a. x. ;, dig

or, since di r /dl = 6\ B and dig/dt = — 0i r ,

a = (f - ii% + (ri) + 2r9)i 6 (11.44)
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The scalar components of the velocity and acceleration in the
radial and transverse directions arc therefore

e, = r

.
v e = rO (11.45)

a T = r--rO 2 a g =T0 + 2r0 (11.46)

It is important to note that a r is not equal to the time derivative
of v r , and that a $ is nor equal to the time derivative of v .

In the case of a particle moving along a circle of center O, we
have r = constant, f = f = 0, and the formulas (11.43) and
(11.44) reduce, respectively, to

v = rdi e a = —rf) 2 '\ r + rOi e (11.47)

Extension to the Motion of a Particle in Space: Cylindri-

cal Coordinates. The position of a particle P in space is sometimes defined by its cylindrical coordinates R, 0, and z (Fig.
11.26a). It is then convenient to use the unit vectors i^, i , and k

veFig. 11.26

shown in Fig. 11.26/?. Resolving the position vector r of the
particle P into components along the unit vectors, we write

r = Ri R + zk (11.48)

Observing that i K and i s define, respectively, the radial and
transverse direction in the horizontal xy plane, and that the
vector k, which defines the axial direction, is constant in direc-

tion as well as in magnitude, we easily verify that

dr

dt
= fli„ + R9L + ik

a =

dt ¦ (R - m% + (RO + 2R0)i a + zk

(11.49)

(11.50)



9
90 mi/li

SAMPLE PROBLEM 11.10

A train is traveling on a curved section of track of radius 3000 ft at
the speed of 90 mi/h. The brakes arc suddenly applied, causing the

train to slow down at a constant rate; after 6 s, the speed has been
reduced to 60 mi/h. Determine the acceleration of a car immediately

after the brakes have been applied.

', = '-¦la. = 7. I

Tangential Component of Acceleration. First the speeds are ex-
pressed in ft/s.

•w»-K)ffif%*li)-»w
60mi/h = 88ft/s

Since the train slows down at a constant rate, we have

a, = average fl, = % = 88 ft/s -^132 ft/s = _ 733ft/s2
Normal Component of Acceleration. Immediately after the brakes

have been applied, the speed is still 132 ft/s, and we have

(132 ft/s) 2e*

*-7-
= 5.81 ft/s 2

3000 ft

Magnitude and Direction of Acceleration. The magnitude and
direction of the resultant a of the components a„ and a, are

5.81 ft/s 2
tan « = -2=- =

7.33 ft/s 2
a = 38.4°

a =
a n 5.81 ft/s 2

sin a sin 38.4°
a = 9.35 ft/s 2

SAMPLE PROBLEM 11.11

Determine the minimum radius of curvature of the trajectory de-
scribed by the projectile considered in Sample Prob, 11.7.rSolution. Since a n = v t /p, we have p = v 2 /a„. The radius will be
small when v is small or when a„ is large. The speed D is minimum

at the top of the trajectory since v v = at that point; a n is maximum
at that same point, since the direction of the vertical coincides with
the direction of the normal. Therefore, the minimum radius of curva-

ture occurs at the top of the trajectory. At this point, we have

v = o, = 155.9 m/s

v 2

a n = a = 9.81 m/s 2

(155.9 m/s) 2

9.81 m/s 2
p = 2480 m

485
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SAMPLE PROBLEM 11.12

The rotation of the 3-ft arm OA about O is defined by the relation

8 = 0.1 of 2 , where 8 is expressed in radians and t in seconds. Block
B slides along the arm in such a way that its distance from O is

r = 3 — 0.40/ 2 , where r is expressed in feet and I in seconds. Deter-
mine the total velocity and the total acceleration of block B after

the arm CM has rotated through 30°.

+
a = fl r i, + Osiy

v, = 0899 ft vi.

= (-1.495 ft/s)i,h
Solution. We first find the time f at which 8 = 30°. Substituting
= 30° = 0.524 rad into the expression for 0, we obtain

= 0.1 of 2 0.524 = 0.15< 2 / = 1.869 s

Equations of Motion. Substituting t = 1.869 s in the expressions
for r, 6, and their first and second derivatives, we have

r = 3 - 0.40r 2 = 1.603 ft

r = -0.80r = -1.495 ft/s

r= -0.80 = -0.800 ft/s 2

= O.lof 2 = 0,524 rad

8 = 0.301 a 0.561 rad/s

8 = 0.30 = 0.300 rad/s 2

Velocity of B. Using Eqs. (11 .45), we obtain the values of v r and v $
when / = 1.889 s.

D, = f = - 1.495 ft/s
c, = r8 = 1.603(0.561) = 0.899 ft/s

Solving the right triangle shown, we obtain the magnitude and direc-
tion of the velocity,

D = 1.744 ft/s ft = 31.0" -*

Acceleration of B. Using Eqs. (11.46), we obtain

a r = f - rO-
- -0.800 - 1.603(0.56'1) 2 = -1.304 ft/s 2

a t = r'6 + 2t8
= 1.603(0.300) - 2(- I.495)(0.561) = -1.196 ft/s 2

a = 1.770 fl/s y = 42.5° -*

a, = (-1.196 ft -- i

486



PROBLEMS

1 1 .97 Ail automobile travels at a constant speed on a highway
curve of 1000-m radius. If the normal component of the acceleration is

not to exceed 1.2 m/s 2 , determine the maximum allowable speed.

KINEMATICS OF PARTICLES 487

1 1 .98 A car goes around a highway curve of 300-m radius at a
speed of 90 km/h. (a) What is the normal component of its accelera-

tion? (b) At what speed is the normal component of the acceleration

one-half as large as that found in part a?

1 1 .99 Determine the peripheral speed of the centrifuge test cab A

for which the normal component of the acceleration is lOg.

'" 25 ft

i

=*

Fig. P11.99

11.100 A small grinding wheel has a 5-in. diameter and is at-
tached to the shaft of an electric motor which has a rated speed of

3600 rpm. Determine the normal component of the acceleration of a
point on the circumference of the wheel when the wheel is rotating at
the rated speed.

11.101 A motorist starts from rest on a curve of 400-ft radius and

accelerates at the uniform rate of 3 ft/s 2 . Determine the distance that

his automobile will travel before the magnitude of its total acceleration
is 6 ft/s 2 .

5
A r.

Fig. P11.100

1 1.102 A motorist enters a curve of 500-ft radius at a speed of
45 mi/h. As he applies his brakes, he decreases his speed at a constant
rate of 5 ft/s 2 . Determine the magnitude of the total acceleration of
the automobile when its speed is 40 mi/h.

1 1 .1 03 The speed of a racing car is increased at a constant rate
from 90 km/h to 126 km/h over a distance of 150 m along a curve of
250-m radius. Determine the magnitude of the total acceleration of
the car after it has traveled 100 m along the curve.

1 1 .1 04 A monorail train is traveling at a speed of 144 km/h along
a curve of 1000-m radius. Determine the maximum rate at which the

speed may be decreased if the total acceleration of the train is not to
exceed 2 m/s 2 .

11.105 A nozzle discharges a stream of water in the direction
shown with an initial velocity of 25 m/s. Determine the radius of
curvature of the stream (a) as it leaves the nozzle, (!>) at the maximum
height of the stream.

11.106 Determine the radius of curvature of the trajectory de-
scribed by the projectile of Sample Prob. 11.7 as the projectile leaves
the gun.

Fig. P11.105
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Fig. P11.107

A
/ \

1
s

Fig. P11.111

/

11.1 07 (a) Show that the radius of curvature of the trajectory of a
projectile reaches its minimum value at the highest point A of the

trajectory, (b) Denoting by a the angle formed by the trajectory and
the horizontal at a given point B, show that the radius of curvature of

the trajectory at B is p = P mi „/eos 3 a,

11.1 08 For each of the two firing angles obtained in Sample Prob.

11.8, determine the radius of curvature of the trajectory described by
the projectile as it leaves the gun.

*1 1 .1 09 Determine the radius of curvature of the path described
by the particle of Prob. 11.73 when (a) t = 0, (b) t = 2 s.

#11.110 Determine the radius of curvature of the helix of

Prob. 11.74.

11.111 A satellite will travel indefinitely in a circular orbit

around the earth if the normal component of its acceleration is equal to

g(fl/r) 2 , where g = 32.2 ft/s 2 , R = radius of the earth = 3960 mi, and
r = distance from the center of the earth to the satellite. Determine

the height above the surface of the earth at which a satellite will travel

indefinitely around the earth at a speed of 15,000 mi/h.

11.112 Determine the speed of an earth satellite traveling in a
circular orbit 300 mi above the surface of the earth. (See information

given in Prob. 11.111.)

11.113 Assuming the orbit of the moon to be a circle of radius
239,000 mi, determine the speed of the moon relative to the earth.
(See information given in Prob. 11. 111.)

11.114 Show that the speed of an earth satellite traveling in a
circular orbit is inversely proportional to the square root of the radius
of its orbit. Also, determine the minimum time in which a satellite can

circle the earth. (See information given in Prob. 11.111.)eFig. P11.115

11.115 The two-dimensional motion of a particle is defined by
the relations r = 60t 2 — 20/ 3 and = 21?, where r is expressed in
millimeters, t in seconds, and 9 in radians. Determine the velocity and

acceleration of the particle when (a) t = 0, (fc) / = 1 s.

11.116 The particle of Prob. 11. II 5 is at the origin at f = 0.
Determine its velocity and acceleration as it returns to the origin.

11.117 The two-dimensional motion of a particle is defined by
the relations r = 2h sin tot and 6 s tot, where b and to are constants.

Determine (a) the velocity and acceleration of the particle at any
instant, (b) the radius of curvature of its path. What conclusion can

you draw regarding the path of the particle?
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11.118 As circle B rolls on the fixed circle A, point P describes a
cardioid defined by the relations r = 2b(l + cos 2jt() and 8 = 2w<.
Determine the velocity and acceleration of P when (a) / = 0.25,
(b) t = 0.50.

11.119 A wire OA connects the collar A and a reel located at O.

Knowing that the collar moves to the right with a constant speed v ,
determine dO/dt in terms of v , b, and 0.

"•

.1
Fig. P11.118

Fig. P11.119

11.1 20 A rocket is fired vertically from a launching pad at H. Its
flight is tracked by radar from point A. Determine the velocity of the
rocket in terms of b, 9. and 6.

1 1 .121 Determine the acceleration of the rocket of Prob. 11.120

in terms of b, 8, 8, and 8.

1 1 .1 22 As the rod OA rotates, the pin P moves along the parabola
BCD. Knowing that the equation of the parabola is r = 2Z>/(1 + cos 8)
and that 8 = kt, determine the velocity and acceleration of P when

(a) 8=0, lb) 8 = 90°.

Aw

\e

#^
- /»-

Fig. P11.120

Fig. P11.122
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1 1.123 The pin at B is free to slide along the circular slot and
along the rotating rod OC. If pin B slides counterclockwise around the
circular slot at a constant speed v . determine the rate dO/dl at which
rod OC rotates and the radial component 0, of the velocity of the pin B
(a) when <> = 0°, (b) when <i> - 90°.

0.1 = 10

Fig. P1 1.124

2 1(1 iiiiii

h
Fig. P11.123

1 1 . 1 24 The motion of a particle on the surface of a right circular
cylinder is defined by the relations R = A, = 2^t, and z =
B sin 2xnt, where A and B are constants and n is an integer. Determine

the magnitudes of the velocity and acceleration of the particle at any
time t.

11.125 For the case when n = 1 in Prob. 11.124, (a) show that

the path of the particle is contained in a plane, (b) determine the maximum and minimum radii of curvature of the path.
11.126 The motion of a particle on the surface of a right circular

cone is defined by the relations R = ht tan R, 6 — 2irt, and z = ht, where ft is the apex angle of the cone and h is the distance the particle
rises in one passage around the cone. Determine the magnitudes of the
velocity and acceleration at any time f.eFig. P11.126
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1 1 .1 27 The three-dimensional motion of a particle is defined by
the relations R = A, = 2t:t, and z = A sin 2 Ir.t. Determine the

magnitudes of the velocity and acceleration al any time t.

* 1 1 . 1 28 For the helix of Prob. 11.74, determine the angle that the
osculating plane forms with the y axis.

* 11.129 Determine the direction of the binomial of the path
described by the particle of Prob. 11.73 when (a) I = 0, (b) t = 2 s.

#1 1.130 The position vector of a particle is defined by the
relation

r = .vi + yj + ^k

where .v, y, z are known functions of the time t, and i, j, k are unit
vectors along fixed rectangular axes. Express in terms of the functions x,
y, z and their first and second derivatives (a) the tangential component
of the acceleration of the particle, (fa) the norma! component of its
acceleration, (c) the radius of curvature of the path described by the
particle.

?11.131 For the particle of Prob. 11.130, express the direction
cosines of (a) the tangent, (fa) the binomial, (c) the principal normal of
the path described by the particle, in terms of the functions x, y, z and
their first and second derivatives.

REVIEW PROBLEMS

11.132 The a-l curve shown was obtained during the motion of a
test sled. Knowing that the sled started from rest at t = 0, determine

the velocity and position of the sled at 1 = 0.08 s.rFig. P11.132

11.133 An experimental ion-propulsion engine is capable of
giving a space vehicle a constant acceleration of 0.01 ft/s 2 . If the

engine is placed in operation when the speed of the vehicle is
21,000 mi/h, determine the time required to bring the speed of the
vehicle to 22,000 mi/h. Assume that the vehicle is moving in a straight
line, far from the sun or any planet.
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1 1.134 The velocity of a particle is given by the relation v =
100 — iO.v, where c is expressed in meters per second and x in
meters. Knowing thai x = at t = 0, determine (a) the distance
traveled before the particle comes to rest, (b) the time t when X = 5 m,
(c) the acceleration at t = 0.

11.135 A nozzle discharges a stream of water with an initial
velocity v„ of 50 ft/s into the end of a horizontal pipe of inside diame-
ter cl = oft. Determine the largest distance x that the stream can
reach.

1
Fig. P11.135

1 1.136 The magnitude in m/s 2 of the deceleration due to air
resistance of the nose cone of a small experimental rocket is known
to be 6 X 10 -4 v-. where c is expressed in m/s. If the nose cone is

projected vertically from the ground with an initial velocity of
1 00 m/s, determine the maximum height thai it will reach.

1 1 .1 37 Determine the velocity of the nose cone of Prob. 11.136

when it returns to the ground.

1 1 .1 38 Standing on the side of a hill, an archer shoots an arrow
with an initial velocity of 250 ft/s at an angle a = 15° with the
horizontal. Determine the horizontal distance d traveled by the arrow

before it strikes the ground at R.

.. - 15'o~

10°
' *¦

Fig. P11 .138

1 1 .1 39 In Prob. 11.138, determine the radius of curvature of the

trajectory (a) immediately after the arrow has been shot, (b) as the
arrow passes through its point of maximum elevation.

.1



11.140 A train starts at a station and accelerates uniformly at

a rate of 0.6 m/s 2 until it reaches a speed of 24 m/s; it then proceeds
at the constant speed of 24 m/s. Determine the time and the distance

traveled if its average velocity is (a) 16 m/s, (b) 22 m/s.
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1 1.141 A man jumps from a 20-ft cliff with no initial velocity.
(a) How long does it take him lo reach the ground, and with what
velocity does he hit the ground? (/>) If this takes place on the moon,
where g = 5.31 ft/s 2 , what are the values obtained for the time and

velocity? (c) If a motion picture is taken on the earth, but if the scene
is supposed to take place on the moon, how many frames per second
should be used so that the scene would appear realistic when projected
at the standard speed of 24 frames per second?

11.142 Drops of water fall down a mine shaft at the uniform

rate of one drop per second. A mine elevator moving up the shaft
at 30 ft/s is struck by a drop of water when it is 300 ft below ground
level. When and where will the next drop of water strike the elevator?

1 1.143 Knowing that block B moves downward with a constant

velocity of 180 mm/s, determine (a) the velocity of block A, (b) the
velocity of pulley D. Fig. P11.143
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Kinetics

of Particles:

Newton's

Second Law

12.1. Newton's Second Law of Motion. Newton's

first and third laws of motion were used extensively in statics

to study bodies at rest and the forces acting upon them. These
two laws are also used in dynamics; in fact, they are sufficient
for the study of the motion of bodies which have no acceler-
ation. However, when bodies are accelerated, i.e., when the

magnitude or the direction of their velocity changes, it is neces-

sary to use the second law of motion in order to relate the motion of the body with the forces acting on it. This law may be stated
as follows:

If the resultant force acting on a particle ii not zero, the
/ / particle will have an acceleration proportional to the magnitude

/Y, of the resultant and in the direction of this resultant force.
<5 Newton's second law of motion may best be understood if we

;/) , imagine the following experiment: A particle is subjected to a
force F, of constant direction and constant magnitude F v Under
the action of that force, the particle will be observed to move
in a straight line and in the direction of the force (Fig. 12.1a).

By determining the position of the particle at various instants, we find that its acceleration has a constant magnitude a v If
the experiment is repeated with forces F 2 , F ; „ etc., of different magnitude or direction (Fig. 12.16 and c), we find each time
that the particle moves in die direction of the force acting on

494
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it and that the magnitudes a v a 2 , a 3 , etc., of the accelerations
are proportional to the magnitudes F v F 2 , F 3 , etc., of the corre-
sponding forces,

E F„ F,
— = — = — = • • • = constant

a, a., a 3

The constant value obtained for the ratio of the magnitudes

of the forces and accelerations is a characteristic of the particle under consideration. It is called the mass of the particle and
is denoted by m. When a particle of mass m is acted upon by a force F, the force F and the acceleration a of the particle
must therefore satisfy the relation

F = ma (12.1)

This relation provides a complete formulation of Newton's sec-
ond law; it expresses not only that the magnitudes of F and a
are proportional, but also (since m is a positive scalar) that the
vectors F and a have the same direction (Fig. 12.2). We should
note that Eq. (12.1) still holds when F is not constant but varies

with f in magnitude or direction. The magnitudes of F and a
remain proportional, and the two vectors have the same direc-

tion at any given instant. However, they will not, in general,
be tangent to the path of the particle.

When a particle is subjected simultaneously to several forces,
Eq. (12.1) should be replaced bys2F = (12.2)

where 2F represents the sum, or resultant, of all the forces acting
on the particle.

It should be noted that the system of axes with respect to
which the acceleration a is determined is not arbitrary. These

axes must have a constant orientation with respect to the stars,
and their origin must either be attached to the sunt or move

with a constant velocity with respect to the sun. Such a system
of axes is called a newtonian frame of referenced A system of
axes attached to the earth does not constitute a newtonian frame

of reference, since the earth rotates with respect to the stars
and is accelerated with respect to the sun. However, in most

* More accurately, to the mass center of the solar svstem.

{Since the stars are not actually fixed, a more rigorous clcliuilion of a new-

Ionian frame of reference (also called inertiul system) is one with respect to
which Eq. (12,2) holds.
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engineering applications, the acceleration a may be determined
with respect to axes attached to the earth and Eqs. (12.1) and
(12.2) used without any appreciable error. On the other hand,
these equations do not hold if a represents a relative acceleration
measured with respect to moving axes, such as axes attached
to an accelerated car or to a rotating piece of machinery.

We may observe that, if the resultant 2F of the forces acting

on the particle is zero, it follows from Eq. (12.2) that the acceler-
ation a of the particle is also zero. If the particle is initially
at rest (v„ = 0) with respect to the newtonian frame of reference
used, it will thus remain at rest (v = 0). If originally moving
with a velocity v , the particle will maintain a constant velocity
v = v ; that is, it will move with the constant speed t> in a

straight line. This, we recall, is the statement of Newton's first
law (Sec. 2.9). Thus, Newton's first law is a particular case of
Newton's second law and may be omitted from the fundamental

principles of mechanics.
12.2. Linear Momentum of a Particle. Rate of

Change of Linear Momentum. Replacing the acceleration

a by the derivative dv/dt in Eq. (12.2), we write

or, since the mass m of the particle is constant,

2F = i(' w) (12.3)iFig. 12.3

The vector mv is called the linear momentum, or simply the

momentum, of the particle. It has the same direction as the
velocity of the particle and its magnitude is equal to the product
of the mass m and the speed v of the particle (Fig. 12.3). Equa-
tion (12.3) expresses that the resultant of the forces acting on the
particle is equal to the rate of change of the linear momentum of
the particle. It is in this form that the second law of motion was
originally stated by Newton. Denoting by L the linear momen-
tum of the particle.

L = mv (12.4)

and by L its derivative with respect to r, we may write Eq. (12.3)
in the alternate form

2F =L (12.5)
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It should be noted that the mass m of the particle is assumed
constant in Eqs. (12.3), (12.4), and (12.5). Equations (12.3) or
(12.5), therefore, should not be used to solve problems involving
the motion of bodies which gain or lose mass, such as rockets.
Problems of that type will be considered in Sec. 14.11. t

It follows from Eq. (12.3) that the rate of change of the linear

momentum mv is zero when 2F = 0. Thus, if the resultant force acting on a particle is zero, the linear momentum of the particle
remains constant, both in magnitude and direction. This is the

principle of conservation of linear momentum for a particle,
which we may recognize as just an alternate statement of New-
ton's first law (Sec. 2.9).

12.3. Systems of Units. In using the fundamental

equation F = ma, the units of force, mass, length, and time cannot be chosen arbitrarily. If they are, the magnitude of the
force F required to give an acceleration a to the mass m will

not be numerically equal to the product ma; it will only be proportional to this product. Thus, we may choose three of the
four units arbitrarily but must choose the fourth unit so that
the equation F = ma is satisfied. The units are then said to form
a system of consistent kinetic units.

Two systems of consistent kinetic units are currently used by
American engineers, the International System of Units (SI
units}), and the U.S. customary units. Since both systems have

been discussed in detail in Sec. 1.3, we shall describe them only briefly in this section.
International System of Units (SI Units). In this system,

the base units are the units of length, mass, and time, and are
called, respectively, the meter (m), the kilogram (kg), and the
second (s). All three are arbitrarily defined (Sec. 1.3). The unit
of force is a derived unit. It is called the newton (N) and is
defined as the force which gives an acceleration of 1 m/s 2 to
a mass of 1 kg (Fig. 12.4). From Eq. (12.1) we write

1 N = (1 kg)(l m/s 2 ) = 1 kg • m/s 2

The SI units are said to form an absolute system of units. This

means that the three base units chosen are independent of the location where measurements are made. The meter, the kilo-
gram, and the second may be used anywhere on the earth; they

a = 1 m/s

m = 1 ] •F=1N

Fig. 12.4

I On the other hand, Eqs. (12.3) and (12.5) do hold in relativistic mechanic*
where the mass m of the particle is assumed to vary with the speed of the
particle.

J SI stands for Syst&me International a" Unites (French).
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a = 9.81 m/s 2

m = 1 kg

W = 9.S1N

Fig. 12.5

may even be used on another planet. They will always have
the same significance.

Like any other force, the weight W of a body should be
expressed in newtons. Since a body subjected to its own weight
acquires an acceleration equal to the acceleration of gravity g,
it follows from Newton's second law that the magnitude W of

the weight of a body of mass m is

W = mg (12.6)

Recalling that g = 9.81 m/s 2 , we find that the weight of a body of
mass 1 kg (Fig. 12.5) is

VV = (1 kg)(9.81 m/s 2 ) = 9.81 N

Multiples and submultiplcs of the units of length, mass, and
force are frequently used in engineering practice. They are,
respectively, the kilometer (km) and the millimeter (mm); the
megagram] (Mg) and the gram (g); and the kilonewton (kN).
By definition

1 km = 1000 in 1 mm = 0.001 m

1 Mg = 1000 kg 1 g = 0.001 kg
1 kN = 1000 N

The conversion of these units to meters, kilograms, and newtons,

respectively, can be effected by simply moving the decimal point
three places to the right or to the left.

Units other than the units of mass, length, and time may all be

expressed in terms of these three base units. For example, the unit of linear momentum may be obtained by recalling the
definition of linear momentum and writing

mv = (kg)(m/s) = kg • m/s

U.S. Customary Units. Most practicing American engineers

still commonly use a system in which the base units are the units

of length, force, and time. These units are, respectively, the fool (ft), the pound (lb), and the second (s). The second Is the same
as the corresponding SI unit. The foot is defined as 0.3048 m.
The pound is defined as the weight of a platinum standard, called
the standard pound and kept at the National Bureau of Standards
in Washington, the mass of which is 0.453 592 43 kg. Since the
weight of a body depends upon the gravitational attraction of
the earth, which varies with location, it is specified that the
standard pound should be placed at sea level and at the latitude

of 45° to properly define a force of 1 lb. Clearly the U.S. cus-

t Also known as a metric Ion.
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tomary units do not form an absolute system of units. Because

of their dependence upon the gravitational attraction of the earth, they are said to form a gravitational system of units.
While the standard pound also serves as the unit of mass in

commercial transactions in the United States, it cannot be so

used in engineering computations since such a unit would not

be consistent with the base units denned in the preceding para- graph. Indeed, when acted upon by a force of 1 lb, that is, when
subjected to its own weight, the standard pound receives the
acceleration of gravity, g = 32.2 ft/s 2 (Fig. 12.6), not the unit
acceleration required by Eq. (12.1). The unit of mass consistent
with the foot, the pound, and the second is the mass which

receives an acceleration of I ft/s 2 when a force of ] lb is applied
to it (Fig. 12.7). This unit, sometimes called a slug, can be
derived from the equation F = ma after substituting 1 lb and
1 ft/s 2 for F and a, respectively. We write

F — ma 1 lb = (1 slug)(l ft/s 2 )

and obtain

1 slu S = -ArT5-=l lb -sVft
I It/S

Fig. 12.6m=m = llb

a =)K=32.2 ft/s 2CopI' = libf
a = 1 ft/s 2

m = 1 slug

(= llb-sVfl)

K = 1 11)

Fig. 12.7

Comparing Figs. 12.6 and 12.7, we conclude that the slug is a
mass 32.2 times larger than the mass of the standard pound.

The fact that bodies are characterized in the U.S. customary

system of units by their weight in pounds, rather than by their
mass in slugs, was a convenience in the study of statics, where
we were dealing constantly with weights and other forces and

only seldom with masses. However, in the study of kinetics, where forces, masses, and accelerations are involved, we repeat-
edly shall have to express the mass m in slugs of a body, the

weight W of which has been given in pounds. Recalling Eq. (12.6), we shall write
m

g

where g is the acceleration of gravity (g — 32.2 ft/s 2 ).

(12.7)
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Units other than the units of force, length, and time may all be

expressed in terms of these three base units. For example, the
unit of linear momentum may be obtained by recalling the
definition of linear momentum and writing

me = (lb • sVftXft/s) = lb • s

The conversion from U.S. customary units to SI units, and vice
versa, has been discussed in Sec. 1.4. We shall recall the con-

version factors obtained respectively for the units of length,
force, and mass:

0
Length: 1 ft = 0.3048 m
Force: 1 lb = 4.448 N

Mass: 1 slug = 1 lb • s 2 /ft = 14.59 kg

Although it cannot be used as a consistent unit of mass, we also recall that the mass of the standard pound is, by definition,
1 pound-mass = 0.4536 kg

This constant may be used to determine the mass in SI units

(kilograms) of a body which has been characterized by its weight
in U.S. customary units (pounds).

1 2.4. Equations of Motion. Consider a particle of mass

m acted upon by several forces. We recall from Sec. 12.1 that
Newton's second law may be expressed by writing the equation

2F = "(a (12.2)

which relates the forces acting on the particle and the vector ma

(Fig. 12.8). In order to solve problems involving the motion of a
particle, however, it will be found more convenient to replace
Eq. (12.2) by equivalent equations involving scalar quantities.

Rectangular Components. Resolving each force F and the
acceleration a into rectangular components, we write

2(F x i + FJ + F 2 k) = m(a z i + aj + a, k)

from which it follows that

"2F. = ma. 2F„ = ma. ZF Z = ma z (12.8)

Recalling from Sec. 11.11 that the components of the accelera- tion arc equal to the second derivatives of the coordinates of the
particle, we have

2F X = mi 2F„ = my 1F Z = mz (12.8')
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Consider, as an example, the motion of a projectile. If the

resistance of the air is neglected, the only force acting on the projectile after it has been fired is its weight W = — Wi. The
equations defining the motion of the projectile are therefore

mx = my = — W mz =

and the components of the acceleration of the projectile are

x = y =
W _

1 =

where g is 9.81 m/s 2 or 32.2 ft/s 2 . The equations obtained may bo integrated independently, as was shown in Sec. 11.11, to
obtain the velocity and displacement of the projectile at any
instant.

Tangential and Normal Components. Resolving the forces

and the acceleration of the particle into components along the
tangent to the path (in the direction of motion) and the normal

(toward the inside of the path) (Fig. 12.9), and substituting into Eq. (12.2), we obtain the two scalar equations

tiFig. 12.9

2fJ = ma, 2F„ = ma n (12.9)

Substituting for a, and a n from Kqs. (11.40), we have

2F n = m^- (12.9')
x- n dv
2.K = m —
1 dt

The equations obtained may be solved for two unknowns.

12.5. Dynamic Equilibrium. Returning to Eq. (12.2)
and transposing the right-hand member, we write Newton's
second law in the alternate form

2F - ma = (12.10)

which expresses that, if we add the vector -ma to the forces

acting on the particle, we obtain a system of vectors equivalent to
zero (Fig. 12.10). The vector —ma, of magnitude ma and of
direction opposite to that of the acceleration, is called an inertia

vector. The particle may thus be considered to be in equilibriume=

Fig. 12.10
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.
Fig. 12.11

under the given forces and the inertia vector. The particle is said
to be in dynamic equilibrium, and the problem under considera-
tion may be solved by the methods developed earlier in statics.

In the case of coplanar forces, we may draw in tip-to-tail
fashion all the vectors shown in Fig. 12.10, including the inertia
vector, to form a closed-vector polygon. Or we may write that
the sums of the components of all the vectors in Fig. 12.10,
including again the inertia vector, are zero. Using rectangular
components, we therefore write

2F Z = ZF y = including inertia vector (12.11)

When tangential and normal components arc used, it is more
convenient to represent the inertia vector by its two components
—ma, and -ma„ in the sketch itself (Fig. 12.11). The tangential

component of the inertia vector provides a measure of the resist- ance the particle offers to a change in speed, while its normal
— A component (also called centrifugal force) represents the tendency

of the particle to leave its curved path. Wc should note that either of these two components may be zero under special con-
ditions: (1) if the particle starts from rest, its initial velocity is
zero and the normal component of the inertia vector is zero at
t = 0; (2) if the particle moves at constant speed along its path,
the tangential component of the inertia vector is zero and only
its normal component needs to be considered.

Because they measure the resistance that particles offer when

we try to set them in motion or when we try to change the conditions of their motion, inertia vectors are often called inertia
forces. The inertia forces, however, are not forces like the forces
found in statics, which are either contact forces or gravitational

forces (weights). Many people, therefore, object to the use of the
word "force" when referring to the vector —ma or even avoid
altogether the concept of dynamic equilibrium. Others point out
that inertia forces and actual forces, such as gravitational forces,
affect our senses in the same way and cannot be distinguished by

physical measiuements. A man riding in an elevator which is accelerated upward will have the feeling that his weight has
suddenly increased; and no measurement made within the eleva-
tor could establish whether the elevator is truly accelerated or
whether the force of attraction exerted by the earth has suddenly
increased.

Sample problems have been solved in this text by the direct

application of Newton's second law, as illustrated in Figs. 12.8 and 12.9, rather than by the method of dynamic equilibrium.



»fcs_

200 ll>

I

SAMPLE PROBLEM 12.1

A 200-Ib block rests on a horizontal plane. Find the magnitude of
the force P required to give the block an acceleration of 10ft/s 2 to

the right. The coefficient of friction between the block and the plane
is ix = 0.25.

Solution. The mass of the block is

W 200 lb

g 32.2 ft/s 2
= 6.21 lb • s 2 /ft

We note thai F = fiN = 0.25.V and that a = ]() ft/s 2 . Expressing that
the forces acting on the block are equivalent to the vector ma, we
write

-±> 2% = ma: P cos 30° - 0.252V = (6.21 lb • s 2 /ft)(10 ft/s 2 )
P cos 30° - 0.25JV = 62.11b

+ t2F„ = 0: N - P sin 30° - 200 lb =

Solving (2) for ,V and carrying the result into (1), we obtain

A r = Psin30° +200 lb

Pcos 30° - 0.25(Psin 30° + 200 lb) = 62.1 lb P= 151 11>

(2)

SAMPLE PROBLEM 12.2

Solve Sample Prob. 12.1 using SI units.

iBO.N

30"

1 m = 90.7 kg

Solution. Using the conversion factors given in Sec. 12.3, we write

a = (10ft/s 2 )(0.3048m/ft) = 3.05 m/s 2
W = (200 lb)(4.448 _\/lb) = 890 N

Recalling that, by definition, 1 lb is the weight of a mass of 0.4536 kg,
we find that the mass of the 200-lb block is

m = 200(0.4536 kg) = 90.7 kg

Noting that F = yN = 0.25A' and expressing that the forces acting
on the block are equivalent to the vector ma, we write

* 2F, = ma: P cos 30° - 0.252V = (90.7 kg)(3.05 m/s 2 )
Peas 30° - 0.25.V = 277 N

+f2F„ = 0: .V - P sin 30° - 890 N =

Solving (2) for N and carrying the result into (1), we obtain

.Y = Psin30° + 890 N

P cos 30° - 0.25(P sin 30° + 890 \) = 277 N P = 674 N

or, in U.S. customary units,

P = (674 N) -i- (4.448 N/lb) P = 151 lb

(1)

(2)
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100 kg

5

I
300 kg

SAMPLE PROBLEM 12.3

The two blocks shown start from rest. The horizontal plane and the

pulley are frictionless, and the pulley is assumed to be of negligible
mass. Determine the acceleration of each block and the tension in

each cord.

L

m, = 100 kg

m, = .300 kg

W„ = 2940 N '•'»«»o=

Solution. We denote by 7", the tension in cord ACD and by T 2
the tension in cord BC. We note that if block A moves through s,,

block B moves through

s B = \a A

Differentiating twice with respect to I, we have

a B = 2 a, (1)

Wc shall apply Newton's second law successively to block A, block
B, and pulley C.

Block A

^•ZF t = m A a A : 7\ = 100a, (2)

Block B, Observing that the weight of block B is

w b = m sg = (300kg)(9.81 m/s 2 ) = 2940 N

we write

+ lZF y = m B a B : 2940 - 7' 2 = 300a B

or, substituting for a B from (1),

2940 -T., = 300(40,,)

T 2 = 2940 - 150a, (3)

Pulley C. Since m c is assumed to be zero, we have

+ 12F„ = mc a c = 0: T, - 2T, = (4)

Substituting for 7", and T, from (2) and (3), respectively, into (4), we
write

2940 - 1.50a, - 2(10()o,) =

2940 - 350a, =0 a, = 8.40 m/s- -*

Substituting the value obtained for a, into (1) and (2), we have

a B = Ja, = £(8.40 m/s 2 ) a B = 4.20 m/s- -*

T, * 100% = (100 kg)(8.40 m/s 2 ) T x = 840 N -*

Recalling (4), wc write

T 2 = 2T, T a = 2(840 N) T 2 = 1680 N -*

We note that the value obtained for 7" 2 is not equal to the weight
of block B.
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SAMPLE PROBLEM 12.4

The bob of a 2-m pendulum describes an arc of circle in a vertical

plane. If the tension in the cord is 2.5 times the weight of the bob
for the position shown, find the velocity and acceleration of the bob
in that position.

T = 15 mg

we
Solution. The weight of the bob is W = mg; the tension in the

cord is thus 2.5 mg. Recalling that a,, is directed toward O and assum-
ing a, as shown, we apply Newton's second law and obtain

+ /2/'" ( = ma t : rug sin 30° = ma t

a, = g sin 30° = +4.90 m/s 2 a , = 4.90 m/s- / -^

+ \2l' n = ma„: 2.5 mg — mgcos30° = ma n

a n = 1.634 g = +16.03 m/s 2 a„ = 16.03 m/s- \ -*

Since a„ = v 2 /p, we have v 2 = pa n = (2 m)( 16.03 m/s 2 )

V = ±5.66 m/s v = 5.66 m. s 7 ;up or down} -^

SAMPLE PROBLEM 12.5

Detennine the rated speed of a highway curve of radius p = 400 ft
banked through an angle d = 18°. The rated speed of a banked curved
road is the speed at which a car should travel if no lateral friction
force is to be exerted on its wheels.t0=1S

Solution. The car travels in a horizontal circular path of radius
p. The normal component a„ of the acceleration is directed toward
the center of the path; its magnitude is a„ = c?/p, where is the

speed of the car in ft/s. The mass m of the car is W/g, where W
is the weight of the car. Since no lateral friction force is to be exerted

on the car, the reaction R of the road is shown perpendicular to the
roadway. Applying Newton's second law, we write

+ T2/' = 0: R cos - W = fl =
W

costf

*=. V I. - —-t\ = '"«„:
W

R sin = —a„
g "

(1)

(2)

Substituting for R from (1) into (2), and recalling that u n = c 3 /p:
W

cose
sin» =

g P
v z — gp tan l

Substituting the given data, p = 400 ft and 8 = 18°, into this equation,
we obtain

v 2 = (32.2 ft/s 2 )(400 ft) tan IS"
C = 64.7 ft/s i- - 14. 1 mi/h -^
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PROBLEMS

12.1 The value of g at any latitude 6 may be obtained from the
formula

2
g = 9.7807(1 + 0.0053 sin 2 <f>) m/s :

Determine to four significant figures the weight in ncwtons and the
mass in kilograms, at the latitudes of 0°, 45°, and 90°, of a silver bar
whose mass is officially defined as 10 kg.

1 2.2 The acceleration due to gravity on the moon is 5.31 ft/s 2 .
Determine the weight in pounds, the mass in pounds, and the mass in
lb • s 2 /ft, on the moon, of a silver bar whose mass is officially defined as
100.00 lb.

12.3 A 100-kg satellite has been placed in a circular orbit 2000 km
above the surface of the earth. The acceleration of gravity at this
elevation is 5.68 m/s 2 . Determine the linear momentum of the satel-

lite, knowing that its orbital speed is 24 800 km/h.

1 2.4 Two boxes are weighed on the scales shown: scale a is a lever
scale; scale h is a spring scale. The scales are attached to the roof of an
elevator. When the elevator is at rest, each scale indicates a load of

20 lb. If the spring scale indicates a load of 18 lb, determine the
acceleration of the elevator and the load indicated by the lever scale.

tFig. P12.4

1 2.5 A motorist traveling at a speed of 45 mi/h suddenly applies
his brakes and comes to a stop after skidding 150 ft. Determine (a) the
time required for the car to stop, (b) the coefficient of friction between
the tires and the pavement.

1 2.6 An automobile skids 90 ft on a level road before coming to a

stop. If the coefficient of friction between the tires and the pavement
is 0.75, determine (a) the speed of the automobile before the brakes

were applied, (fo) the time required for the automobile to come to a
stop.
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1 2.7 A truck is proceeding up a long 3-percent grade at a constant
speed of 60km/h. If the driver does not change the setting of his
throttle or shift gears, what will be the acceleration of the truck as

it starts moving on the level section of the road?

1 2.8 A 5-kg package is projected down the incline with an initial
velocity of 4 m/s. Knowing that the coefficient of friction between

the package and the incline is 0.35, determine (a) the velocity of the
package after 3 m of motion, (b) the distance d at which the package-
comes to rest.

a
Fig. P12.7

-3* grad

4 m/s

r
Fig. P12.8

12.9 The 3-kg collar was moving down the rod with a velocity
of 3 m/s when a force P was applied to the horizontal cable. Assuming
negligible friction between the collar and the rod, determine the

magnitude of the force P if the collar stopped after moving I m more
down the rod.

nFig. P12.9

12.10 Solve Prob. 12.9, assuming a coefficient of friction of 0.20
between the collar and the rod.

12.11 The subway train shown travels at a speed of 30 mi/h.
Determine the force in each coupling when the brakes are applied,
knowing that the braking force is 5000 lb on each car.

3*) tons

— «FI

30 mi h

40 ions 30 tons

A B

Fig. P12.11
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:101b

.
Fig. P12.12

12.12 Two packages are placed on an incline as shown. The
coefficient of friction is 0.25 between the incline and package A, and

0.15 between the incline and package B. Knowing that the packages
are in contact when released, determine (a) the acceleration of each

package, {b) the force exerted by package A on package 75.

12.13 Solve Prob. 12.12, assuming the positions of the packages
are reversed so that package A is to the right of package B.

1
Fig. P12.14, P12.15. and P12.16

12.14 When the system shown is released from rest, the acceler-

ation of block B is observed to be 3 m/s 2 downward. Neglecting the
effect of friction, determine (a) the tension in the cable, (b) the mass
of block B.

12.15 The system shown is released from rest when h = J .4 m.

(a) Determine the mass of block B, knowing that it strikes the ground

with a speed of 3 m/s. (b) Attempt to solve part a, assuming the final
speed to be 6 m/s; explain the difficulty encountered.

12.16 The system shown is released from rest. Knowing that the
mass of block B is 30 kg, determine how far the cart will move before
it reaches a speed of 2.5 m/s, (a) if the pulley may be considered as
weightless and frictionless, (b) if the pulley "freezes" on its shaft and
the cable must slip, with jx = 0.10, over the pulley.

12.17 Each of the systems shown is initially at rest. Assuming

the pulleys to be weightless and neglecting axle friction, determine

for each system (a) the acceleration of block A, (b) the velocity of block A after 4 s, (c) the velocity of block A after it has moved 10 ft.th100 n>i2100 111

200 11, 2200 lb

(2) (3)
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1 2.1 8 The 100-kg block A is connected to a 25-kg counterweight
B by the cable arrangement shown. If the system is released from
rest, determine (a) the tension in the cable, (b) the velocity of B after
3 s, (c) the velocity of A after it has moved 1.2 in.

12.19 Block A is observed to move with an acceleration of

0.9 m/s 2 directed upward. Determine (a) the mass of block B, (b) the
corresponding tension in the cable.

1 2.20 The system shown is initially at rest. Neglecting the effect
of friction, determine (a) the force P required if the velocity of collar B
is to be 12ft/s after it has moved 18 in. to the right, (b) the corre-
sponding tension in the cable.

n
100 kg

Fig. P12.18 and P12.19

.
Fig. P12.20 and P12.21

1 2.21 A force P of magnitude 15 lb is applied to collar B, which is

observed to move 3 ft in 0.5 s after starting from rest. Neglecting the effect of friction in the pulleys, determine the friction force that the
rod exerts on collar B.

'¦ Neglecting the effect of friction, determine (a) the acceler-
ation of each block, (b) the tension in the cable.

12.23 The rimpull of a truck is defined as the tractive force

between (he rubber tires of the driving wheels and the ground. For a
track used to haul earth at a construction site, the rimpull actually
utilized by the average driver in each of the first five forward gears and
the maximum speed attained in each gear are as follows:

Gear Max v (mi/h) Average rimpull (lb)
1st 326000

2d 6.3800

3d 9t2800

4th 15i2000

5th 27a1500eA

501b6bB

501bu21) lb
^_cutrd)frntfclaeFig. P1 2.22soatKnowing that a truck (and load) weighs 44,000 lb and has a rolling

resistance of 60 lb/ton for the unpaved surface encountered, determine

the time required for the truck to attain a speed of 27 mi/h. Neglect
the time needed to shift gears.
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Fig. P12.24

12.24 In a manufacturing process, disks arc moved from one

elevation to another by the lifting arm shown; the coefficient of friction
between a disk and the arm is 0.20. Determine the magnitude of the
acceleration for which the disks slide on the arm, assuming the accel-

eration is directed (a) downward as shown, (b) upward.

1 2.25 The coefficient of friction between the load and the flat-bed

trailer shown is 0.40. Knowing that the forward speed of the truck is
50 km/h, determine the shortest distance in which the truck can be

brought to a stop if the load is not lo shift.

2
=0^

Fig. P12.2S and P12.26

lullifl

20 111 A
25 lb

Fig. P12.27

1 2.26 The coefficient of friction between the load and the flat-bed

trailer is 0.40. While traveling at 100 km/h, the driver makes an

emergency stop and the truck skids to rest in 90 m. Determine the
velocity of the load relative to the trailer as it reaches the forward edge
of the trailer.

12.27 Knowing that the coefficient of friction is 0.30 at all sur-
faces of contact, determine (a) the acceleration of plate A, (b) the

tension in the cable. (Neglect bearing friction in the pulley.)

1 2.28 Solve Prob. 12.27, assuming that the 25-lb force is applied

to plate B.

1 2.29 A 30-kg crate rests on a 20-kg cart; the coefficient of static
friction between the crate and the cart is 0.2-5. If the crate is not to slip

with respect to the cart, determine (a) the maximum allowable magni-
tude of P, (h) the corresponding acceleration of the cart.

30 kg3Fig. P12.29 and P12.30

1 2.30 The coefficients of friction between the 30-kg crate and the

20-kg cart are /*, = 0.25 and p k = 0.20. If a force P of magnitude
150 N is applied to the cart, determine the acceleration (u) of the cart,
(h) of the crate, (c) of the crate with respect to the cart.
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1 2.31 The force exerted by a magnet on a small steel block varies

inversely as the square of the distance between the block and the "> = 60 g

magnet. When the block is 250 mm from the magnet, the magnetic
force is 1.5 N. The coefficient of friction between the steel block and

the horizontal surface is 0.50. If the block is released from the position

shown, determine its velocity when it is 100 mm from the magnet. Fj _ pio 31

Magnet

co
250 mm -

1 2.32 A constant force P is applied to a piston and rod of total
mass m in order to make them move in a cylinder filled with oil.
As the piston moves, the oil is forced through orifices in the piston

and exerts on the piston an additional force of magnitude kv, propor- tional to the speed v of the piston and in a direction opposite to its
motion. Express the acceleration and velocity of the piston as a function of the time r, assuming that the piston starts from rest at
time / = 0.

f

I

If
I

«--"k

I

hn
I "

Fig. P12.32

1 2.33 A ship of total mass m is anchored in the middle of a river

which is flowing with a constant velocity v . The horizontal compo-
nent of the force exerted on the ship by the anchor chain is T . If
the anchor chain suddenly breaks, determine the time required for
the ship to attain a velocity equal to |v . Assume thai the frictional
resistance of the water is proportional to the velocity of the ship
relative to the water.tFig. P12.33

1 2.34 A spring AB of constant k is attached to a support at A and
to a collar of mass m. The unstretched length of I he spring is /.
Neglecting friction between the collar and the horizontal rod, express
the acceleration of the collar as a function of the distance x.

Fig. P12.34
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1 2.35 Knowing that blocks B and C strike the ground simultane-

ously and exactly 1 s after the system is released from rest, determine

W B and \V ( , in terms of W A .

12.36 Determine the acceleration of each block when W A =

10 lb, W B = 30 lb, and W c = 20 lb. Which block strikes the ground
first?

S

Fig. P12.38

m ill

18 i

12 in.

Fig. P12.35, P12.36, and P12.37

b1 2.37 In the system shown, W A = 10 lb and W c s 20 lb. Deter-
mine the required weight W B if block B is not to move when the system
is released from rest.

12.38 Determine the acceleration of each block when m A =

15 kg, m u = 10 kg, and m c = 5 kg.

1 2.39 Knowing that /i = 0.30, determine the acceleration of each
block when m A = m B = m c ..Fig. P12.39 and P12.40

1 2.40 Knowing thai /* — 0.50, determine the acceleration of each
block when m A = 5 kg, m B = 20 kg, and m c = 15 kg.
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1 2.41 A small ball of mass m = 5 kg is attached to a cord of
length L = 2 m and is made to revolve in a horizontal circle at a

constant speed i:„. Knowing that the cord forms an angle 6 = 40°
with the vertical, determine (a) the tension in the cord, (h) the speed
v of the ball.

1 2.42 A small ball of mass m — 5 kg is made to revolve in a
horizontal circle as shown. Knowing that the maximum allowable
tension in the cord is J00 \, determine [a) the maximum allowable

velocity if L = 2 m, (b) the corresponding value of the angle 0.

1
Fig. P12.41 and P12.42

12.43 Two wires AC and BC are each tied to a sphere at C.
The sphere is made to revolve in a horizontal circle at a constant

speed v. Determine the range of values of the speed i; for which both
wires are taut.

60"

4 ft

i B \

Ca.Fig. P12.43 and P12.44

1 2.44 Two wires AC and BC are each tied to a 10-lb sphere. The
sphere is made to revolve in a horizontal circle at a constant speed c.
Determine (a) the speed for which the tension is the same in both

wires, (b) the corresponding tension.

1 2.45 A 3-kg ball is swung in a vertical circle at the end of a
cord of length / = 0.8 m. Knowing that when = 60" the tension
in the cord is 25 N, determine the instantaneous velocity and acceler-
ation of the ball.

12.46 A ball of weight W is released with no velocity from
position A and oscillates in a vertical plane at the end of a cord of
length I. Determine (a) the tungential component of the acceleration
in position B in terms of the angle 6, (b) the velocity in position B
in terms of 6, 9 lt , and /, (t) the tension in the cord in terms of YV

and 6 when the ball passes through its lowest position C, (d) the
value of 8 n if the tension in the cord is T = 2\V when the ball passes
through position C.

Fig. P12.45 and P12.46
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Fig. P12.47

>
100 ft \

I
/

1 2.47 A small sphere of weight W is held as shown by two wires
AB and CD. Wire AB is then cut. Determine (a) the tension in wire

CD before AB was cut, (ft) the tension in wire CD and the acceleration

of the sphere just after AB has been cut.

1 2.48 A man swings a bucket full of water in a vertical plane

in a circle of radius 0,75 m. What is the .smallest velocity that the

bucket should have at the top of the circle if no water is to be spilled?

1 2.49 A ]75-lb pilot Hies a small plane in a vertical loop of 400-fl

radius. Determine the speed of the plane at points A and B, knowing

that at point A the pilot experiences weightlessness and that at point
B the pilot's apparent weight is 600 lb.

p-500ll

Fig. P12.49

r
Straight

aFig. P12.51

12.50 Three automobiles are proceeding at a speed of 50 mi A

along the road shown. Knowing that the coefficient of friction between
the tires and the road is 0.60, determine the tangential deceleration
of each automobile if its brakes are suddenly applied and the wheels
skid.

1 2.51 The rod CM 7} rotates in a vertical plane at a constant rate

such that the speed of collar (.' is 1.5 m/s. The collar is free to slide on

the rod between two stops A and B. Knowing that the distance
between the stops is only slightly larger than the collar and neglecting
the effect of friction, determine the range of values of for which the

collar is in contact with stop A.

12.52 Express the minimum and maximum safe speeds, with

respect to skidding, of a car traveling on a banked road, in terms of

the radius r of the curve, the banking angle 0, and the friction angle
ci between the tires and the pavement.

1 2.53 A man on a motorcycle takes a turn on a flat unbanked
road at 72 km/'h. If the radius of the turn is 50 m, determine the

minimum value of the coefficient of friction between the tires and

the road which will ensure no skidding.

1 2.54 What angle of banking should be given to the road in Prob.
12.53 if the man on the motorcycle is to be able to take the turn at
72 km/h with a coefficient of friction ji = 0.30?
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12.55 A Stunt driver proposes lo drive a small automobile on the

vertical wall of a circular pit of radius 40 ft. Knowing that the coeffi-
cient of friction between the tires and the wall is 0.6.5, determine the

minimum speed at which the stunt can be performed.

12.56 The assembly shown rotates about a vertical axis at a
constant rate. Knowing that the coefficient of friction between the
small block A and the cylindrical wall is 0.20, determine the lowest

speed D for which the block will remain in contact with the wall.

1 2.57 A small ball rolls at a speed c along a horizontal circle
inside the circular cone shown. Express the speed D in terms of the
height ;/ of the path above the apex of the cone.

5
Fig. P12.56

b
Fig. P12.57

12.58 A small ball rolls at a speed v along a horizontal circle
inside a bowl as shown. The inside surface of the bowl is a surface of

revolution obtained by rotating the curve OA about the ;/ axis. Deter-
mine the required equation of the curve OA if the speed r n of the ball
is to be proportional to the distance X from the (/ axis to the ball.

1 2.59 Assuming that the equation of the curve OA in Prob. 12.58
is y = fa:*, where n is an arbitrary positive number, express the speed
c in terms of the height y of the path above the origin.hFig. P12.58

12.60 In the cathode-ray tube shown, electrons emitted by the

cathode and attracted by the anode pass through a small hole in the
anode and keep traveling in a straight line with a speed D„ until they
strike the screen at A. However, if a difference of potential V is

established between the two parallel plates, each electron will be
subjected to a force F perpendicular to the plates while it travels
between the plates and will strike the screen at point B at a distance
r! from A. The magnitude of the force F is /¦' = eV/d, where — e is

the charge of the electron and </ is the distance between the plates.
Derive an expression for the deflection S in terms of V, i; (l , the charge
— e of the electron, its mass m, and the dimensions cl, t, and L.

Anode
Screen

Fig. P12.60
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1 2.61 A manufacturer wishes to design a new cathode-ray tube
which will be only half as long as his current model. If the size of

the screen is to remain the same, how should the length / of the plates
be modified if all the other characteristics of the circuit are to remain

unchanged? (Sec Prob. 12.60 for description of cathode-ray tube.)

1 2.62 In Prob. 12.60, determine the smallest allowable value of

the ratio d/l in terms of e, m, v , and V if the electrons are not to
strike the positive plate.

1 2.63 A cathode-ray tube emitting electrons with a velocity v is
placed as shown between the poles of a large electromagnet which
creates a uniform magnetic field of strength B. Determine the coordi-
nates of the point where the electron beam strikes the tube screen

when no difference of potential exists between the plates. It is known
that an electron (mass m and charge — e) traveling with a velocity v at
a right angle to the lines of force of a magnetic field of strength B is
subjected to a force F = eB x v.

.Fig. P12.63

12.6. Angular Momentum of a Particle. Rate of

Change of Angular Momentum. Consider a particle P of
mass in moving with respect to a newtonian frame of reference
Oxyz. As we saw in Sec. 12.2, the linear momentum of the

particle at a given instant is defined as the vector mv obtained by multiplying the velocity v of the particle by its mass m. The
moment about O of the vector mv is called the moment of
momentum, or the angular momentum, of the particle about O at
that instant and is denoted by H . Recalling the definition of the
moment of a vector (Sec. 3.5), and denoting by r the position
vector of P, we write
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H = r X mv (12.12)

and note that H is a vector perpendicular to the plane contain-

ing r and mv, and of magnitude

H = rmv sin ( (12.13)

where 6 is the angle between r and mv (Fig. 12.12). The sense of
H may be determined from the sense of mv by applying the
right-hand rule. The unit of angular momentum is obtained by
multiplying die units of length and of linear momentum (Sec.
12.3). With SI units we have

(m)(kg • m/s) = kg • m 2 /s

while, with U.S. customary units, we write

(ft)(lb • s) = ft • lb • s

Resolving the vectors r and mv into components, and applying
formula (3.10), we write

H„ =

1 J

X y

mo. mv mv.

(12.14)

The components of H , which also represent the moments of the
linear momentum mv about the coordinate axes, may be obtained

by expanding the determinant in (12.14). We have

H„ = m{yv 2 - zv y )

H y = m(zv x - xt;J (12.15)

H t = m(xv y - ijv x )

In the case of a particle moving in the xij plane, we have

z = v, = and the components H x and // reduce to zero. The
angular momentum is thus perpendicular to the xy plane; it is
then completely defined by the scalar

H = H, m m(xv y - yv r ) (12.16)

which will be positive or negative, according to die sense in
which the particle is observed to move from O. If polar coordi-
nates are used, we resolve the linear momentum of the particle

into radial and transverse components (Fig. 12.13) and write

H = nnv sinrj) = rmv e (12.17)

or, recalling from (11.45) that v 6 = rt).

Fig. 12.12

H = mr 2 e (12.18) Fig. 12.13
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We shall now compute the derivative with respect to f of the
angular momentum H of a particle P moving in space. Differ-

entiating both members of Eq. (12.12), and recalling the rule for the differentiation of a vector product (Sec. 11.10), we write
H = f X mv + r X mv — v X mv + r X ma

Since the vectors v and mv are collinear, the first term of the

expression obtained is zero; and, by Newton's second law, ma is

equal to the sum 2F of the forces acting on P. Noting that
r x 2F represents the sum SM„ of the moments about O of
these forces, wc write

^M = H (12.19)

Equation (12.19), which results directly from Newton's second

law, expresses that the sum of the moments about O of the forces
acting on the particle is equal to the rate of change of the moment
of momentum, or angular momentum, of the particle about O.

1 2.7. Equations of Motion in Terms of Radial and

Transverse Components. Consider a particle P, of polar
coordinates r and 0, which moves in a plane under the action of
several forces. Resolving the forces and the acceleration of the
particle into radial and transverse components (Fig. 12.14), and
substituting into Eq. (12.2), we obtain the two scalar equations

SR — ma,. 2F S = ma* (12.20)

Substituting for a r and a from Eqs. (11.46), we have

2F T = m(f - r6 z ) (12.21)

2F e = m(rO + m) (12.22)

The equations obtained may be solved for two unknowns.

Fig. 12.14
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Equation (12.22) could have been derived from Eq. (12.19).
Recalling (12.18) and noting that 2M = rZF e , Eq. (12.19) yields

d_r2F e = 4(' nr2 0)

= m(r 2 6 + 2rr0)

and, after dividing both members by r,

2F 8 = m(r6 + 2r6) (12.22)

12.8. Motion under a Central Force. Conservation

of Angular Momentum. When the only force acting on a

particle P is a force F directed toward or away from a fixed point

O, the particle is said to be moving under a central force, and the
point O is referred to as the center of force (Fig. 12.15). Since the
line of action of F passes through O, we must have ~M = at

any given instant. Substituting into Eq. (12.19), we therefore
obtain

H o =0

for all values of t or, integrating in t.

H = constant (12.23)

We thus conclude that tlie angular momentum of a particle
moving under a central force is constant, both in magnitude and
direction.

Recalling the definition of the angular momentum of a particle
(Sec. 12.6), we write

r X »»v = H = constant (12.24)p
Fig. 12.15

from which it follows that the position vector r of the particle P
must be perpendicular to the constant vector H . Thus, a parti-
cle under a central force moves in a fixed plane perpendicular to
H . The vector H and the fixed plane are defined by the initial

position vector r and the initial velocity v of the particle. For

convenience, we shall assume that the plane of the figure coin-
cides with the fixed plane of motion (Fig. 12.16).

Since the magnitude H of the angular momentum of the

particle Pis constant, the right-hand member in Eq. (12.13) must
be constant. We therefore write

rmv sin <> = r mv sin o (12.25) Fig. 12.16

This relation applies to the motion of any particle under a
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central force. Since the gravitational force exerted by the sun on
a planet is a central force directed toward the center of the sun,

Eq. (12.25) is fundamental to the study of planetary motion. For
a similar reason, it is also fundamental to the study of the motion
of space vehicles in orbit about the earth.

Recalling Eq. (12.18), we may alternatively express the fact
that the magnitude H of the angular momentum of the particle
P is constant by writing

mr-0 — ll = constant (12.26)

or, dividing by ro and denoting by h the angular momentum per
unit mass H /m,

r*9 = 7i (12.27)

Fig. 12.17

t
Equation (12.27) may be given an interesting geometric inter-
pretation. Observing from Fig. 12.17 that the radius vector OP

sweeps an infinitesimal area dA — \r 2 dO as it rotates through an
angle dO, and defining the areal velocity of the particle as the
quotient dA/dt, we note that the left-hand member of Eq. (12.27)

represents twice the areal velocity of the particle. We thus
conclude that, when a particle moves under a central force, its
areal velocity is constant.

12.9. Newton's Law of Gravitation. As we saw in the

preceding section, the gravitational force exerted by the sun on a
planet, or by the earth on an orbiting satellite, is an important
example of a central force. In this section we shall learn how to

determine the magnitude of a gravitational force.
In his law of universal gravitation, Newton states that two

particles at a distance r from each other and, respectively, of
mass M and in attract each other with equal and opposite forces
F and — F directed along the line joining the particles (Fig.
12.18). The common magnitude F of the two forces is

F = G
Mm

(12.28)

where C is a universal constant, called the constant of gravita-
tion. Experiments show that the value of G is (6.673 ±

0.003) X 10" 11 mVkg ' S a in SI units, or approximately 3.44 X
10" s ft 4 /lb ' S 4 in U.S. customary units. While gravitational
forces exist between any pair of bodies, their effect is appre-
ciable only when one of the bodies has a very large mass. The
effect of gravitational forces is apparent in the case of the mo-

tion of a planet about the sun, of satellites orbiting about the
earth, or of bodies falling on the surface of the earth.
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Since the force exerted by the earth on a body of mass m

located on or near its surface is defined as the weight W of the
body, we may substitute the magnitude W = mg of the weight
for F, and the radius R of the earth for r, in Eq. (12.28). We
obtain

( 1X1 CM
-=ts-jij or g = — 7
R 2 6 R'W=mg = ^fm or g = ^f (12.29)

where M is the mass of the earth. Since the earth is not truly

spherical, the distance R from the center of the earth depends

upon the point selected on its surface, and the values of \V
and g will thus vary with the altitude and latitude of the point
considered. Another reason for the variation of W and g with

the latitude is that a system of axes attached to die earth does
not constitute a newtonian frame of reference (see Sec. 12.1).

A more accurate definition of the weight of a body should there-

fore include a component representing the centrifugal force due
to the rotation of the earth. Values of g at sea level vary from
9.781 m/s 2 or 32.09 ft/s 2 at the equator to 9.833 m/s 2 or
32.26 ft/s 2 at the poles. t

The force exerted by the earth on a body of mass m located

in space at a distance r from its center may be found from Eq.

(12,28). The compulations will be somewhat simplified if we
note that, according to Eq. (12.29), the product of the constant
of gravitation (.' and of the mass M of the earth may be expressed
as

GM = gR 2 (12.30)

where g and the radius R of the earth will be given their average

values g = 9.81 m/s 2 and R = 6.37 X 10° m in SI units.t or
g = 32.2 ft/s 2 and R = (3960 mi)(5280 ft/mi) in U.S. customary
units.

The discovery of the law of universal gravitation has often
been attributed to the fact that Newton, after observing an apple

falling from a tree, had reflected that the earth must attract an
apple and the moon in much the same way. While it is doubtful
that this incident actually took place, it may be said that Newton

would not have formulated his law if he had not first perceived
that the acceleration of a falling body must have the same cause

as the acceleration which keeps the moon in its orbit. This basic

concept of continuity of the gravitational attraction is more
easily understood now, when the gap between the apple and
the moon is being filled with long-range ballistic missiles and
artificial earth satellites.

t A formula expressing g in terms of the latitude 6 was given in Prob. 12.1.
t'lTie value of H is easily found if one recalls that the circumference of the

earth is 2^R = 40 x 10 8 in.
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P
S AMPLE PROBLEM 12.6

A block B of mass m may slide freely on a frictionless arm OA which

rotates in a horizontal plane at a constant rate O . Knowing that B
is released at a distance r n from O, express as a function of r, (a) the
component v r of the velocity of B along OA, (h) the magnitude of
the horizontal force F exerted on B by the arm OA.

Solutioi . Since all other forces are perpendicular to the plane of
the figure, the only force shown acting on B is the force F perpen-
dicular to OA.

Equation* of Motion. Using radial and transverse components:

+ S>1F r = ma T : = m(f - rO-) (1)

+ \2F, = ma„: F = m{r'6 + 2f0) (2)

a. Component v r of Velocity, Since v r = f, we have

dv r dv, dr
IT dr dt ' dr

Substituting for f into (1), recalling that - n , and separating the
variables:

v r dv r = 0%rdr

Multiplying by 2, and integrating from to v T and from r to r.

sf-Jftr*-f8 p, = far* - r^ —

b. llori/ontal Force F. Making = d , = 0, r = u r in Eq. (2),
and substituting for c r the expression obtained in part a:

F = tmBfi* - r$v% F = 2,n0i(r* -oh SAMPLE PROBLEM 12.7

A satellite is launched in a direction parallel to the surface of the
earth with a velocity of 18,820 mi/h from an altitude of 240 mi.

Determine the velocity of the satellite as it reaches its maximum
altitude of 2340 mi. It is recalled that the radius of the earth is
3960 mi.

- A

210 mihSolution. Since the satellite is moving under a central force directed
toward the center O of the earth, its angular momentum H is con-
stant. From Eq. (12.13) wc have

rmv sin </> = II = constant

which shows that v is minimum at B, where both r and sin<> are
maximum. Expressing conservation of angular momentum between
A and B:

r A mv A = r R mv B

v b = v a— = (18,820 mi/h)
3960 mi + 240 mi

3960 mi + 2340 mi

v B = 12,550 mi/h

522
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PROBLEMS

1 2.64 The two-dimensional motion of particle B is defined by the
relations r = t 2 — Ji 3 and 8 = 2f 2 , where r is expressed in meters, t in
seconds, and 8 in radians. If the particle has a mass of 2 kg and moves
in a horizontal plane, determine the radial and transverse components
of the force acting on the particle when (a) t = 0, (b) t = 1 s.

1 2.65 For the motion defined in Prob. 12.64, determine the radial

and transverse components of the force acting on the 2-kg particle as it
returns to the origin at I = 3 s.

6
Fig. P12.64 and P12.66

1 2.66 The two-dimensional motion of a particle B is defined by
the relations r = 10(1 + cos 2wt) and = l*t, where r is expressed in
inches, t in seconds, and 8 in radians. If the particle weighs 2 lb and
moves in a horizontal plane, determine the radial and transverse

components of the force acting on the particle when (a) t = 0,
(b) t = 0.25 s.

1 2.67 A block B of mass m may slide on the frictionless arm OA
which rotates in a horizontal plane at a constant rate 8 . As the arm

rotates, the cord wraps around a fixed drum of radius b and pulls the
block toward with a speed bd . Express as a function of m, r, b, and
8 , (a) the tension T in the cord, (b) the magnitude of the horizontal
force Q exerted on B by the arm OA.

1 2.68 Solve Prob. 12.67, knowing that the weight of the block is
3 lb and that r = 2 ft, b = 3 in., and 0„ = 8 rad/s.gFig. P12.67

1 2.69 Slider C has a mass of 250 g and oscillates in the radial slot
in arm AB as the arm rotates in a horizontal plane at a constant rate
8 = 12 rad/s. In the position shown, it is known that the slider is
moving outward along the slot at the speed of 1.5 m/s and that the

spring is compressed and exerts a force of 10 N on the slider. Neglect-
ing the effect of friction, determine (a) the components of the acceler-
ation of the slider, (b) the horizontal force exerted on the slider by the
arm AB.

PQ

y> *" S'

Fig. P12.69
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12.70 While aiming at a moving target, a man rotates his rifle
clockwise in a horizontal plane at the rate of 15° per second. Assum-

ing that he can maintain the motion as the rifle is fired, determine
the horizontal force exerted by the barrel on a 45-g bullet just before
it leaves the barrel with u muzzle velocity of 550 m/s.

1
Fig. P12.71

12.71 A particle moves under a central force in a circular path
of diameter r which passes through the center of force O, Show that
its speed is v = ©q/cos 2 0, where v„ is the speed of the particle at
point /J, directly across the circle from O. [Hint. Use Eq, (12.27) with
r = r cosd],

12.72 A particle moves under a central force in a path defined

by the equation r = r /eos nO, where n is a positive constant. Using
Eq. (12,27) show that the radial and transverse components of the

velocity are u r — nv sin n& and v t = v cos nO, where i;„ is the veloc-

ity of the particle for ff — 0, What is the motion of the particle when
n — and when n = 1?

12.73 For the particle and motion of Prob. 12.72, show that

the radial and transverse components of the acceleration are a, =

(n- - l)(ig/r ) cos 3 nO and a t = 0.

12.74 If a particle of mass m is attached to the end of a very
light circular rod as shown in (I), the rod exerts on the mass a force
F of magnitude F = kr directed toward the origin O, as shown in (2).
The path of the particle is observed to be an ellipse with semiaxes
a — 6 in. and b = 2 in. (a) Knowing that the speed of the particle at A
is 8 in./s, determine the speed at B. (b) Further knowing that the
constant k/m is equal to 16 s~ 2 , determine the radius of curvature of
the path at A and at B.

(I)

Fig. P12.74
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12.75 Show that the radius r of the moon's orbit may be deter-

mined from the radius R of the earth, the acceleration of gravity g at the surface of the earth, and the time t required by the moon to
revolve once around the earth. Compute r knowing that 7 = 27.3 days.

12.76 Determine the mass of the earth from Newton's law of

gravitation, knowing that it takes 94.14 min for a satellite to describe
a circular orbit 300 mi above the surface of the earth.

1 2.77 Two -solid steel spheres, each of radius 100 mm, are placed
so that their surfaces are in contact, (a) Determine the force of gravi-
tational attraction between the spheres, knowing that the density of
steel is 7850 kg/m 3 . (b) If the spheres are moved 2 mm apart and
released with zero velocity, determine the approximate time required
for their gravitational attraction to bring them back into contact.
(Hint. Assume the gravitational forces to remain constant.)

12.78 Communication satellites have been placed in a geosyn-

chronous orbit, i.e., in a circular orbit such that they complete one full
revolution about the earth in one sidereal day (23 h 56 min), and thus
appear stationary with respect to the ground. Determine (a) the

altitude of the satellites above the surface of the earth, (b) the velocity
with which they describe their orbit. Give the answers in both SI and

U.S. customary units.

12.79 Collar B may slide freely on rod OA, which in turn may-
rotate freely in the horizontal plane. The collar is describing a circle
of radius 0.5 in with a speed i;, = 0.28 m/s when a spring located
between A and B is released, projecting the collar along the rod with
an initial relative speed 1:, = 0.96 m/s. Neglecting the mass of the rod,
determine the minimum distance between the collar and point O in
the ensuing motion.

-0.5 m-

Fig. P12.79

=£!&&-

1 2.80 A heavy ball is mounted on u horizontal rod which rotates

freely about a vertical shaft. In the position shown, the speed of the
ball is v x = 30 in./s and the ball is held by a cord attached to the

shaft. The cord is suddenly cut and the ball moves to position A' as the
rod rotates. Neglecting the mass of the rod, determine (a) the speed of
the ball in position A', (b) the path (on the x= plane) of the ball as it
moves from A to A'.llfiin.

,A -

Fig. P12.80
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Second transfer orbit

t
First transfer orbit

Fig. P12.81

Return trajectory

1 2.81 Plans for an unmanned landing mission on (he planet Mars
call for the earth-retum vehicle to first describe a circular orbit about

the planet at an altitude d A = 2200 km with a velocity of 2771 m/s. As it passes through point A, the vehicle will be inserted into an elliptic
transfer orbit by firing its engine and increasing its speed by

Av A = 1046' m/s. As it passes through point R, at an altitude d B = 100 000 km, the vehicle will be inserted into a second transfer
orbit located in a slightly different plane, by changing the direction of
its velocity and reducing its speed by \v B = — 22 m/s. Finally, as the
vehicle passes through point C, at an altitude d c = 1000 km, its speed
will be increased by A€ c = 660 m/s to insert it into its return trajec-

tory. Knowing that the radius of the planet Mars is R — 3400 km,
determine the velocity of the vehicle after the last maneuver has been

completed.

12.82 A space tug describes a circular orbit of 6000-mi radius
around the earth. In order to transfer it to a larger circular orbit of

24,000-mi radius, the tug is first placed on an elliptic path AB by firing
its engine as it passes through A, thus increasing its velocity by
3810 mi/h. By how much should the tug's velocity be increased as it
reaches B to insert it into the larger circular orbit?

8Fig. P12.82e2(10(1 km

-2100 km

Fig. P12.83

1 2.83 An Apollo spacecraft describes a circular orbit of 2400-km
radius around the moon with a velocity of 5140 km/h. In order to
transfer it to a smaller circular orbit of 2000-km radius, the spacecraft

is first placed on an elliptic path AB by reducing its velocity to
4900 km/h as it passes through A. Determine (a) the velocity of the
spacecraft as it approaches B on the elliptic path, (h) the value to
which its velocity must be reduced at B to insert it into the smaller
circular orbit.
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1 2.84 Solve Prob. 12.83, assuming that the Apollo spacecraft is to
be transferred from the orbit of 2400-km radius to a circular orbit of

ISOO-kin radius and that its velocity is reduced to 4760 km/h as it
passes through A.

1 2. 85 A 3-oz ball slides on a smooth horizontal table at the end of

a string which passes through a small hole in the table at 0. When the

length of string above the table is r, = 15 in., the speed of the ball is t>! = 8 ft/s. Knowing that the breaking strength of the string is
3.00 lb, determine (a) the smallest distance r 2 which can be achieved
by slowly drawing the string through the hole, (b) the corresponding
speed v 2 .

1 2.86 A small ball swings in a horizontal circle at the end of a

cord of length /, which forms an angle 6 i with the vertical. The cord is
then slowly drawn through the support at O until the free end is l 2 .
(a) Derive a relation between l lt l 2 , 0,, and B 2 . (b) If the ball is set in
motion so that, initially, /, = 600mm and 0, = 30°, determine the
length l 2 for which 6 2 = 60°.

2
Fig. P12.8S

oFig. P12.86

*12.10. Trajectory of a Particle under a Central

Force. Consider a particle P moving under a central force F.

We propose to obtain the differential equation which defines its
trajectory.

Assuming that the force F is directed toward the center of

force O, we note that — F r and 2F, reduce respectively to — F and
zero in Kqs. (12.21) and (12.22). We therefore write

m(r - r6 2 ) = -F

m(rd + 2r6) =
(12.31)

(12.32)

These equations define the motion of P. We shall, however,

replace Eq. (12.32) by Eq. (12.27), which is more convenient to

use and which is equivalent to Eq. (12.32), as we may easily
check by differentiating it with respect to t. We write

r 2 6 =h or ¦,d0 ,
dt

(12.33)
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Equation (12.33) may be used to eliminate the independent
variable t from Eq. (12.31). Solving Eq. ( 12.33) for 6 or dO/dt, we
have

$-M-\ (12 34)
dt r*

from which it follows that

dr = d L cW = hd L= _,,_! (1) (12.35)
dt dO dt r 2 dO dd\rl V

.._ d± _ di^dO__h_d^
r dt dO dt r 2 dO

or, substituting for f from (12.35),

r*df)l dO\rl\

' r 2 dO' 2

Substituting for 6 and r from (12.34) and (12.36), respectively,
into Eq. (12.31), and introducing the function u = 1/r, we obtain
after reductions

$ + » = J? < 12 - 37 '

In deriving Eq. (12.37), the force F was assumed directed toward
O. The magnitude F should therefore be positive if F is actually
directed toward O (attractive force) and negative if F is directed
away from O (repulsive force). If F is a known function of r and
thus of U, Eq. (12.37) is a differential equation in u and 0. This
differential equation defines the trajectory followed by the parti-
cle under the central force F. The equation of the trajectory will
be obtained by solving the differential equation (12.37) for w as a
function of 8 and determining the constants of integration from
the initial conditions.

* 12.11. Application to Space Mechanics. After

the last stage of their launching rockets has burned out, earth
satellites and other space vehicles are subjected only to the

gravitational pull of the earth. Their motion may therefore be
determined from Eqs. (12.33) and (12.37), which govern the
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motion of a particle under a central force, after F has been

replaced by the expression obtained for the force of gravitational
attraction.! Setting in Eq. (12.37)

F = ^ = GMmu 2

where M = mass of earth

m = mass of space vehicle
r = distance from center of earth to vehicle

u = \/r

we obtain the differential equation

d 2 u

cW 2
+ u =

GM

h 2
(12.38)

where the right-hand member is observed to be a constant.

The solution of the differential equation (12.38) is obtained

by adding the particular solution u = CM/h 2 to the general
solution u s= C cos {() — ) of the corresponding homogeneous
equation (i.e., the equation obtained by setting the right-hand
member equal to zero). Choosing the polar axis so that o = 0,
we write

r

CM

h 2
+ C cos (12.39)

Equation (12.39) is the equation of a conic section (ellipse, parab- ola, or hyperbola) in the polar coordinates r and 0. The origin O
of the coordinates, which is located at the center of the earth, is

a focus of this conic section, and the polar axis is one of its axes of
symmetry (Fig. 12.19).

The ratio of the constants C and CM/li 2 defines the eccentricity
e of the conic section; setting

c =
C

GM/h 2

Ch 2

GM

we may write Eq. (12.39) in die form

1 GM

h 2
1 + E COS 0)

(12.40)

'12.39'eFig. 12.19

fit is assumed that the space vehicles considered here are attracted only

by the earth and that their mass is negligible compared to the mass of the earth. If a vehicle moves very far from the earth, its path may be affected by the
attraction of the sun, the moon, or another planet.
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e
Three cases may be distinguished:

1. e > 1, or C> GM/h 2 : There are two values L and -0, of the

polar angle, defined by cosflj = —GM/CfP, for which the
right-hand member of Eq. (12.39) becomes zero. For both of
these values, the radius vector r becomes infinite; the conic

section is a hyperbola (Fig. 12.20).

2. e = 1, or C = GM/h 2 : The radius vector becomes infinite for

f) = ]80°; the conic section is a parabola.
3. e < 1 , or C < GM/h 2 : The radius vector remains finite for

every value of 0; the conic section is an ellipse. In the partic-
ular case when t ¦ = C = 0, the length of the radius vector is
constant; the conic section is a circle.

We shall see now how the constants C and GM/h 2 which

characterize the trajectory of a space vehicle may be determined
from the position and the velocity of the space vehicle at the
beginning of its free flight. We shall assume, as it is generally the
case, that the powered phase of its flight has been programmed in
such a way that, as the last stage of the launching rocket burns
out, the vehicle has a velocity parallel to the surface of the earth
(Fig. 12.21). In other words, we shall assume diat the space
vehicle begins its free flight at the vertex A of its trajectory.*

Denoting respectively by r (l and v the radius vector and speed
of the vehicle at the beginning of its free flight, we observe, since
the velocity reduces to its transverse component, that D = r # .

Recalling Eq. (12.27), we express the angular momentum per unit
mass /i as

Fig. 12.20
h = r 2 8 = r o v (12.41)

\, Free flightaBurnout

Powered flight

- 1 ,aunchine

Fig. 12.21

The value obtained for h may be used to determine the constant

GM/h 2 . We also note that the compulation of this constant will
be simplified if wc use the relation indicated in Sec. 12.9,

GM = gfi 2 (12.30)

where /i is the radius of the earth (R = 6.37 X 10 6 m or 3960 mi)

and g the acceleration of gravity at the surface of the earth.
The constant C will be determined by setting 9 = 0, r = r in

Eq. (12.39); we obtain

GMc = -L-
h 2

(12.42)

t Problems involving oblique launchings will be considered in Sec. 13.9.
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Substituting for h from (12.41), we may then easily express C in
terms of r and v .

Let us now determine the initial conditions corresponding to
each of the three fundamental trajectories indicated above.

Considering first the parabolic trajectory, we set C equal to

GM/h 2 in Eq. (12.42) and eliminate h between Eqs. (12.41) and
(12.42). Solving for v , we obtain

2GM

On =

We may easily check that a larger value of the initial velocity

corresponds to a hyperbolic trajectory, and a smaller value to
an elliptic orbit. Since the value of v obtained for the parabolic-

trajectory is die smallest value for which the space vehicle does

not return to its starting point, it is called the escape velocity.
We write therefore

2GM
or

m*
(12.43)

if we make use of Eq. (12.30). We note that the trajectory will
be (1) hyperbolic if v > t; esc ; (2) parabolic if u = v^; (3)
elliptic if v < o^.

Among the various possible elliptic orbits, one is of special
interest, the circular orbit, which is obtained when C = 0. The

value of the initial velocity corresponding to a circular orbit is
easilv found to be

IGM

r«

or

'o
^clrc -/£ (.3.44,

if Eq. (12.30) is taken into account. We may note from Fig.

12.22 that, for values of v comprised between v circ and v 0KC ,
point A where free flight begins is the point of the orbit closest
to the earth; this point is called the perigee, while point A', which
is farthest away from the earth, is known as the apogee. For
values of o smaller than c cire , point A becomes the apogee, while
point A", on the other side of the orbit, becomes the perigee.
For values of v much smaller than u clrc , the trajectory of the
space vehicle intersects the surface of the earth; in such a case,

the vehicle does not go into orbit.

Ballistic missiles, which are designed to hit the surface of the
earth, also travel along elliptic trajectories. In fact, we should
now realize that any object projected in vacuum with an initial

u n < i; clrc

Fig. 12.22
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velocity v smaller than o w will move along an elliptic path.
It is only when the distances involved arc small that the gravita-

tional field of the earth may be assumed uniform, and that the

elliptic path may be approximated by a parabolic path, as was

done earlier (Sec. 11.11) in the case of conventional projectiles.

Periodic Time. An important characteristic of the motion
of an earth satellite is the time required by the satellite to
describe its orbit. This time is known as the periodic time of
the satellite and is denoted by t. We first observe, in view of

die definition of the areal velocity (Sec. 12.8), that t may be
obtained by dividing the area inside the orbit by the areal veloc-
ity. Since the area of an ellipse is equal to tab, where a and
b denote, respectively, the semimajor and semiminor axes, and
since the areal velocity is equal to /i/2, we write

2-rrab
(12.45)

dFig. 12.23

While h may be readily determined from r and v in the case

of a satellite launched in a direction parallel to the surface of
the earth, the semiaxes a and b are not directly related to the
initial conditions. Since, on the other hand, the values r and

f, of r corresponding to the perigee and apogee of the orbit may
easily be determined from Eq. (12.39), we shall express the
semiaxes a and b in terms of r and r,.

Consider the elliptic orbit shown in Fig. 12.23. The earth's
center is located at O and coincides with one of the two foci

of the ellipse, while the points A and A' represent, respectively,
the perigee and apogee of the orbit. We easily check that

r + r, = 2a

and thus

a = \{r + r t ) (12.46)

Recalling that the sum of the distances from each of the foci

to any point of the ellipse is constant, we write

O'B + BO = O'A + OA = la or BO =a

On the other hand, we have CO — a — r . We may therefore
write

& = (BC) 2 = (BO) 2 - {COf = a 2 -(a- r f

b 2 = r (2a - r ) = r r x
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and thus

b = VvT (12.47)

Formulas (12.46) and (12.47) indicate that the scmimajor and
scmiminor axes of the orbit are respectively equal to the arith-
metic and geometric means of the maximum and minimum

values of die radius vector. Once r and r, have been deter-
mined, the lengths of the semiaxes may thus be easily computed
and substituted for a and b in formula (12.45).

* 12.1 2. Kepler's Laws of Planetary Motion. The

equations governing the motion of an earth satellite may be used
to describe the motion of the moon around the earth. In that

case, however, the mass of the moon is not negligible compared
to the mass of the earth, and the results obtained are not entirely
accurate.

The theory developed in the preceding sections may also be

applied to the study of the motion of the planets around the
sun. While another error is introduced by neglecting the forces
exerted by the planets on each other, the approximation obtained
is excellent. Indeed, the properties expressed by Eq. (12.39),
where M now represents the mass of the sun, and by Eq. (12.33)

had been discovered by the German astronomer Johann Kepler
(1571-1630) from astronomical observations of the motion of the

planets, even before Newton had formulated his fundamental
theory.

Kepler's three lows of planetary motion may be stated as
follows:

1. Each planet describes an ellipse, with the sun located at one
of its foci.

2. The radius vector drawn from die sun to a planet sweeps
equal areas in equal times.

3. The squares of the periodic times of the planets are propor-
tional to the cubes of the semimajor axes of their orbits.

The first law states a particular case of the result established
in Sec. 12.11, while the second law expresses that the areal
velocity of each planet is constant (see Sec. 12.8). Kepler's third
law may also be derived from the results obtained in Sec. 12.11.+

(See Prob. 12.104
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SAMPLE PROBLEM 12.8

A satellite is launched in a direction parallel to the surface of the
earth with u velocity of 36 900 km/h from an altitude of 500 km.

Determine (a) the maximum altitude reached by the satellite, (b) the
periodic time of the satellite.

a. Maximum Altitude. After launching, the satellite is subjected
only to the gravitational attraction of the earth; its motion is thus

governed by Eq. f 12.39).

1 CM , f, n f -,\

7 = -^- + Ccos0 (1)

Since the radial component of the velocity is zero at the point of

launching A, we have h — r v . Recalling that the radius of the earth
is R = 6370 km, we compute

r = 6370 km + 500 km = 6870 km = 6.87 X 10 6 m

v = 36 900 km/h = 3 ^ X ™ m = 1.025 X 10* m/s
h = r„i) = (6.87 X 10 6 m)( 1.025 x 10 4 m/s) = 7.04 X 10 10 m 2 /s

h? = 4.96 X 10 n m 4 /s 2

Since CM = gfl 2 , where R is the radius of the earth, we have

CM = gfl 2 = (9.81 m/s 2 )(6.37 X 10 6 m) 2 = 3.98 X 10" m 3 /s 2

CM _ 3.98xlO»mVs' _ 8 _,
ft 2 " 4.96 X 10 21 mVs 2 " 8 '° 3 X 10 m

Substituting this value into (1), we obtain

- = 8.03 X 10" s + C cos (2)

Noting that at point A we have 6 = and r = r = 6.87 X 10 6 m,
we compute the constant C.

1

6.87 X 10" m
= 8.03 X 10 8 + C cos 0° C = 6.53 X 10r 8 T.-1

At A', the point on the orbit farthest from the earth, we have

= 180°. Using (2), we compute the corresponding distance i,.

— b 8.03 X 10- R + (6.53 X 10 -8 ) cos 180°

r, = 0.667 X 10 s m = 66 700 km

Maximum altitude = 66 700 km - 6370 km = 80 300 km -«

b. Periodic Time. Since A and A' are the perigee and apogee,
respectively, of the elliptic orbit, we use Eqs. (12.46) and (12.47) and
compute I he semimajor and semiminor axes of the orbit.

a = j(f + Tj) = i(6.87 + 66.7)(10 B ) m = 36.8 x 10 6 m

h = v^ = V(6.87)(66.7) X 10 s m = 21.4 X 10" m

_ 2-Ttab _ 2b-(36.S X 10" m)(21.4 X 10 s m)
h ~ 7.04 X 10 ,0 m 2 /s

t = 7.03 X 10 4 s = 1 171 min = 19 h 31 min -^
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PROBLEMS

1 2.87 A spacecraft is describing a circular orbit at an altitude of
240 mi above the surface of the earth when its engine is fired and its

speed increased by 4000 ft/s. Determine the maximum altitude
reached by the spacecraft.

1 2.88 A space tug is used to place Communication satellites into a
geosynchronous orbit (see Prob. 12.78) at an altitude of 22,230 mi
above the surface of the earth. Knowing that the tug initially describes
a circular orbit at an altitude of 220 mi, determine (a) the increase in

speed required at A to insert the tug into an elliptic transfer orbit,
(b) the increase in speed required at B to insert the tug into the
geosynchronous orbit.

1 2.89 Plans for an unmanned landing mission on the planet Mars
call for the earth-return vehicle to first describe a circular orbit about

the planet. As it passes through point A : the vehicle will be inserted
into an elliptic transfer orbit by firing its engine and increasing its

speed by lv A . As it passes through point B, the vehicle will be inserted
into a second transfer orbit located in a slightly different plane, by

changing the direction of its velocity and by reducing its speed by
Ac B . Finally, as the vehicle passes through point C, its speed will be
increased by Sv c to insert it into its return trajectory. Knowing that
the radius of the planet Mars is R = 3400 km, that its mass is 0.108
times the mass of the earth, and that the altitudes of points A and B

are, respectively, d A = 2500 km and d B — 90 000 km, determine the
increase in speed At 4 required at point A to insert the vehicle into its
first transfer orbit.F

Fig. P12.88

Second transfer orbit

rFirst transfer orbit

Fig. P12.89

1 Return trajectory

1 2.90 For the vehicle of Prob. 12.89, it is known that the altitudes

of points A, B, and C are, respectively, d A = 2500 km, d B = 90 000 km,
and d = 1000 km. Determine the change in speed lc B required al

point B to insert the vehicle into its second transfer orbit.

1 2.91 For the vehicle of Prob. 12.89, it is known that the altitudes

of points B and C are, respectively, d B = 90 000 km and
d c = 1000 km. Determine the minimum increase in speed Av re-
quired at point C to insert the vehicle into an escape trajectory.

1 2.92 For the vehicle of Prob. 12.89, it is known that the altitude

of point 7? is d B = 90 000 km. If, for a given mission, the speed of the
vehicle is 215 m/s immediately after its insertion into the second
transfer orbit, determine (a) the altitude of point C, (b) the speed of the

vehicle as it approaches point C, (c) the eccentricity of the return
trajectory if the speed of the vehicle is increased at C by
Ac c = 630 m/s.
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12.93 After completing their inoon-exploration mission, the two
astronauts forming the crew of an Apollo lunar excursion module
(LEVI) prepare to rejoin the command module which is orbiting the
moon at an altitude of 85 mi. They fire the LEM's engine, bring it
along a curved path to a point A, 5 mi above the moon's surface, and
shut off the engine. Knowing that the LEM is moving at that time in a
direction parallel to the moon's surface and that it will coast along an
elliptic path to a rendezvous at B with the command module, deter-

mine (a) the speed of the LEM at engine shutoff, (/;) the relative
velocity with which the command module will approach the LEVI at
8. (The radius of the moon is 1080 miles and its mass is 0,01230 times

the mass of the earth.)

o
Fig. P12.93

12.94 Solve Prob. 12.93, assuming that the Apollo command
module is orbiting the moon at an altitude of 55 mi.

12.95 Referring to Prob. 12.89, determine the time required for
the vehicle to describe its first transfer orbit form A to B.

1 2.96 Referring to Probs. 12.89 and 12.90, determine the time
required for the vehicle to describe its second transfer orbit from B
to C.

12.97 Determine the time required for the LEM of Prob. .1 2.93 to
travel from A to B.

1 2.98 Determine the time required for the space tug of Prob.
12.88 to travel from A to B.

1 2.99 Determine the approximate time required for an object to

fall to the surface of the earth after being released with no velocity
from a distance equal to the radius of the orbit of the moon, namely,

239,000 mi. (Hint. Assume that the object is given a very small initial
velocity in a transverse direction, say, c 6 = 1 ft/s, and determine the
periodic time t of the object on the resulting orbit. An examination of

the orbit will show that the time of fall must be approximately equal
to Jt.)
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12.100 A spacecraft describes a circular orbit at an altitude of
:5200 km above the earth's surface. Preparatory to reentry it reduces

its speed to a value c„ = 5400 m/s, thus placing itself on an elliptic trajectory. Determine the value of 8 defining the point li where
splashdown will occur. (Hint. Point A is the apogee of the elliptic
trajectory.)

12.101 A spacecraft describes a circular orbit at an altitude of
3200 km above the earth's surface. Preparatory to reentry it places

itself on an elliptic trajectory by reducing its speed to a value t .
Determine v so thai splashdown will occur at a point B corresponding
to = 120°. (See hint of Prob. 12.100.)

0
3200 km

Fig. P12.100 and P12.101

12.102 Upon the LEM's return to the command module, the
Apollo spacecraft of Prob. 12.93 is turned around so that the I, KM
faces to the rear. After completing a full orbit, i.e., as the craft passes
again through B, the LEM is cast adrift and crashes on the moon's
surface at point C. Determine the velocity of the LEM relative to
the command module as it is cast adrift, knowing that the angle BOC
is 90°, (Hint. Point B is the apogee of the elliptic crash trajectory.)

12.103 Upon the LEM's return to the command module, the
Apollo spacecraft of Prob. 12.93 is turned around so that the LEM
faces to the rear. After completing a full orbit, i.e., as the craft passes
again through B, the LEM is cast adrift with a velocity of 600 ft/s
relative to the command module. Determine the point C where the
l.EM will crash on the moon's surface. (See hint of Prob. 12.102.)

1 2.1 04 Derive Kepler's third law of planetary motion from Eqs.

(12.39) and (12.45).

12.105 (a) Express the eccentricity 8 of the elliptic orbit de-
scribed by a satellite about the earth (or any other planet) in terms of
the distances r and r, corresponding, respectively, to the perigee and
apogee of the orbit. (h) Use the result obtained in part a to determine
the eccentricities of the two transfer orbits described in Probs. 12.89

and 12.90.

12.106 Two space stations S, and S, are describing coplanar
circular counterclockwise orbits of radius r n and 8r , respectively,

around the earth. It is desired to send a vehicle from S, to S 2 . The
vehicle is to be launched in a direction tangent to the orbit of S] and is

to reach S 2 with a velocity tangent to the orbit of S 2 . After a short
powered phase, the vehicle will travel in free flight from S, to S 2 -
(a) Determine the launching velocity (velocity of the vehicle relative to

Si) in terms of the velocity v of S v (b) Determine the angle defining
the required position of S 2 relative to S, at the time of launching.

/

EarthaS 2 ul time of launching -^

Fig. P12.106

S 2 at lime

nf docking
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Parabolic trajectory

g
Earth

Fig. P12.107 and P12.108

2Fig. P12.109

* 1 2. 1 07 A space vehicle is inserted at point A, at a distance r n
from the center O of the earth, into a parabolic trajectory, (a) For any
position B of the vehicle on its trajectory, express the distance r from O
to B and the time t elapsed since the insertion of the vehicle into its

trajectory in terms of 0, r , g, and the radius R of the earth, {b) Use the
result obtained in part a, assuming r — 4300 mi, to determine the time
required for the space vehicle to reach a distance /¦ equal to the radius
of the orbit of the moon (239,000 mi).

* 1 2.108 A space vehicle is inserted at point A, at a distance r
from the center O of the earth, into a parabolic trajectory, (a) For any
position B of the vehicle on its trajectory, express in terms off, r , g,
and the radius R of the earth (a) the magnitude of the velocity v of the
vehicle, (b) the angle <p that v forms with the line OB.

REVIEW PROBLEMS

12.109 A bucket is attached to a rope of length L = 1.2 m and is

made to revolve in a horizontal circle. Drops of water leaking from the
bucket fall and strike the floor along the perimeter of a circle of
radius a. Determine the radius a when = 30°.

1 2.1 1 Determine the radius a in Prob. 12.109, assuming that the
speed of the bucket is 5 m/s. (The angle 6 is not 30° in this case.)

12.111 Determine the required tension T if the acceleration of
the 500-lb cylinder is to be (a) 6 ft/s 2 upward, (b) 6' ft/s 2 downward.t200 lb

Fig. P12.111 and P12.112

Determine the acceleration of the 200-lb cylinder if
(a) T = 300 lb, (b) T = 800 lb.
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12.1 13 A series of small packages, being moved by a conveyor

bell at a constant speed v, passes over an idler roller as shown.
Knowing that the coefficient of friction between the packages and the
belt is 0.75, determine the maximum value of v for which the packages

do not slip with respect to the belt.
Fig. P12.113

12.1 14 A 4-kg collar slides without friction along a rod which
forms an angle of 30° with the vertical. The spring, of constant
k = 150 N'/m, is unstretched when the collar is at A. Determine the

initial acceleration of the collar if it is released from rest at point B.

1
0.5 ni-

www/nfi,'

Fig. P12.114

12.115 (a) Express the rated speed of a banked road in terms
of the radius r of the curve and the banking angle 8. (b) What is

the apparent weight of an automobile traveling at the rated speed?

(See Sample Prob. 12.5 for the definition of rated speed.)

12.1 16 Denoting by v, the terminal speed of an object dropped
from a great height, determine the distance the object will fall before

its speed reaches the value |t>,. Assume that the frictional resistance

of the air is proportional to the square of the speed of the object.

12.117 A spacecraft is describing a circular orbit of radius r
with a speed v around an unspecified celestial body of center O, when
its engine is suddenly fired, increasing the speed of the spacecraft from
v n to av n , where 1 < a? < 2. Show that the maximum distance r nlllx
from O reached by the spacecraft depends only upon r and o, and
express the ratio r max /r as a function of a.
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.
Fig. P12.118

12.1 18 In order to place a satellite in a circular orbit of radius

32 X Iff 1 km around the earth, the satellite is first projected horizon- tally from A at an altitude of ,500 km into an elliptic path whose
apogee A' is at a distance of 32 X 10 3 km from the center of the earth.

Auxiliary rockets are fired as the satellite reaches A' in order to place
it in its final orbit. Determine (a) the initial velocity of the satellite

at A, (b) the increase in velocity resulting from the firing of the rockets
at A'.

1 2.1 1 9 Two packages are placed on a conveyor belt which is at
rest. The coefficient of friction is 0.20 between the belt and package
A, and 0,10 between the belt and package 73. If the belt is suddenly
started to the right and slipping occurs between the belt and the

packages, determine (a) (he acceleration of the packages, (b) the force
exerted by package A on package B.

fin lb

A

100 Hi

O O O O O D o

Fig. P12.119

aFig. P12.120

12.120 Two plates A and B, each of mass 50 kg, are placed as
shown on a 15° incline. The coefficient of friction between A and

B is 0.10; the coefficient of friction between A and the incline is 0.20.

(a) If the plates are released from rest, determine the acceleration

of each plate, (b) Solve part a assuming that plates A and B are welded
together and act as a single rigid body.



Kinetics

of Particles:

Energy and
Momentum

Methods

13.1. Introduction. In the preceding chapter, most prob-

lems dealing with the motion of particles were solved through
the use of the fundamental equation of motion F = ma. Given a

particle acted upon by a force F, we could solve this equation for
the acceleration a; then, by applying the principles of kinemat-

ics, we could determine from a the velocity and position of the

particle at any time.

If the equation F = ma and the principles of kinematics are
combined, two additional methods of analysis may be obtained,
the method of work and energy and the method of impulse and
momentum. The advantage of these methods lies in the fact that

they make the determination of the acceleration unnecessary.

Indeed, the method of work and energy relates directly force,

mass, velocity, and displacement, while the method of impulse
and momentum relates force, mass, velocity, and time.

The method of work and energy will be coasidered first. It is

based on two important concepts, the concept of the work of a

force and the concept of the kinetic energy of a particle. These
concepts are defined in the following sections.

1 3.2. Work of a Force. Wc shall first define the terms

displacement and work as they are used in mechanics, f Consider
a particle which moves from a point A to a neighboring point A'

I The definition of work was given in Sec. 10.1, and Ihe basic properties of Ihc
work of a force were outlined in Sees. 10. 1 and 10.5. For convenience, we repeat

here the portions of (his material which relate to the kinetics of particles.

541

CHAPTER

13
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.
(Fig. 13.1). If r denotes the position vector corresponding to
point A, the small vector joining A and A' may be denoted by the
differential dr; the vector dr is called the displacement of the
particle. Now, let us assume that a force F is acting on the
particle. The work of the force F corresponding to the displace-
ment dr is denned as the quantity

dU = F • dr (13.1)

obtained by forming the scalar product of the force F and of the
displacement dr. Denoting respectively by F and ds the magni-
tudes of the force and of the displacement, and by a the angle
formed by F and dr, and recalling the definition of the scalar
product of two vectors (Sec. 3.8), we write

dU = Fds< (13.1')

Using formula (3.30), we may also express the work dU in terms

of the rectangular components of the force and of the displace-
ment:

dU = F x dx + F y dy + F. dz (13.1")

Being a scalar quantity, work has a magnitude and a sign, but no
direction. Wc also note that work should be expressed in imits
obtained by multiplying units of length by units of force. Thus, if
U.S. customary units are used, work should be expressed in ft • lb

or in • lb. If SI units are used, work should be expressed in N ¦ m.
The unit of work N • m is called a joule (J).t Recalling the
conversion factors indicated in Sec. 12.3, we write

1 ft • lb = (1 ft)(l lb) = (0.3048 m)(4.448 N) = 1.356 J

It follows from (13.1') that the work dU is positive if the angle

« is acute, and negative if a is obtuse. Three particular cases arc
of special interest. If the force F has the same direction as dr, the

work dU reduces to F ds. If F has a direction opposite to that of

dr, the work is dU = —Fds. Finally, if F is perpendicular to dr,
the work dU is zero.

The work of F during a finite displacement of the particle
from A, to A 2 (Fig. 13.2a) is obtained by integrating Eq. (13.1)
along the path described by the particle. This work, denoted by
L : ,_ 2 , is

T'l'he joule (J) is the SI unit of energy, whether in mechanical form (work,
potential energy, kinetic energy) or in chemical, electrical, or thermal form. We
should note thai, even though N-m = J, the moment of a force must be

expressed in X • in, and not in joules, since the moment of a force is not a form of

energy.
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U * * = f F-dr (13.2)

Using the alternate expression (13.1') for the elementary work
till, and observing that F cos a represents the tangential compo-
nent F, of the force, we may also express the work U 1 . 2 as

U,_ 2 = I (F cos «) as — I F, as (1.3.2':

where the variable of integration S measures the distance trav-
eled by the particle along the path. The work (7, . 2 is repre-
sented by the area under the curve obtained by plotting
F, = Fcosa against s (Fig. 13.2b).

When the force F is defined by its rectangular components, the
expression (13.1") may be used for the elementary work. We
write then

tfl-2 = / ' (ft dx + F y dy + F, dz) (13.2"

where the integration is to be performed along the path de-
scribed by the particle.

Work of a Constant Force in Rectilinear Motion. When a

particle moving in a straight line is acted upon by a force F of
constant magnitude and of constant direction (Fig. 13.3), formula
(13.2') yields

U^ = (Fcosa) Ax (13.3)

where a = angle the force forms with direction of motion

Ax = displacement from A-, to A 2

Work of a Weight. The work of the weight W of a body is
obtained by substituting the components of W into (13.1") and
(13.2"). With the y axis chosen upward (Fig. 13.4), we have

F, = 0, F„ = — W, F, = 0, and we write

dU = -Wdy

LV 2 = - Fwdy = Wy, - Wt/ 2 (13.4)

or L\_ 2 = - W( y a - yj = - W A;/ (13.4')

where Ay is the vertical displacement from A t to A 2 . The work
of the weight W is thus equal to the product of VV and of the

vertical displacement of the center of gravity of the body. The
work is positive when Ay < 0, that is, when the body moves
down.

F cos a

Fig. 13.2

it)

\A.,

Fig. 13.4
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•Spring undeformed
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Work of the Force Exerted by a Spring. Consider a body
A attached to a fixed point B by a spring; it is assumed that
the spring is undeformed when the body is at A (Fig. 13,5a).
Experimental evidence shows that the magnitude of the force

F exerted by the spring on body A is proportional to the deflec- tion x of the spring measured from the position A n . We have
F = kx (13.5)

where k is the spring constant, expressed in N/m or kN/m if
SI units are used and in lb/ft or lb/in. if U.S. customary units
are used.t

The work of the force F exerted by the spring during a finite
displacement of the body from Ajfx = x,) to A.Jx = x 2 ) is ob-
tained by writing

dU = -Fdx = -kxdx

L\., 2 = - j *'kxdx = %kx\ ~h k 4 (13.6)

Care should be taken to express k and x in consistent units. For

example, if U.S. customary units are used, k should be expressed
in lb/ ft and x in feet, or A: in lb/in. and X in inches; in the first

case, the work is obtained in ft • lb, in the second case, in in • lb.

We note that the work of the force F exerted by the spring
on the body is positive when x% < x v i.e., when the spring is
returning to its undeformed position.

Since Eq. (13.5) is the equation of a straight line of slope k
passing through the origin, the work U^ 2 of F during the dis-
placement from A 1 to A 2 may be obtained by evaluating the
area of the trapezoid shown in Fig. 13.56, This is done by
computing /•', and F 2 and multiplying the base Ax of the trap-
ezoid by its mean height ^(F 1 + F 2 ). Since the work of the force
F exerted by the spring is positive for a negative value of Ax,
we write

c; i--2 = -*(*; + Fa) Ax (13.6')

Formula (13.6') is usually more convenient to use than (13.6)
and affords fewer chances of confusing the units involved.

f The relation /•' = kx is correct under static conditions only. Under dynamic
conditions, formula (13.5) should be modified to take (he inertia of the spring

into account. However, the error introdiiccd by using the relation F = fcr in
the solution of kinetics problems is small if the mass of the spring is small
compared with the other masses in motion.
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Work of a Gravitational Force. We saw in Sec. 12.9 that

two particles at distance r from each other and, respectively,
of mass M and m, attract each other with equal and opposite

forces F and — F directed along the line joining the particles, and
of magnitude

F = G
Mm

Let us assume that the particle M occupies a fixed position O
while the particle m moves along the path shown in Fig. 13.6.
The work of the force F exerted on the particle m during an

infinitesimal displacement of the particle from A to A' may be
obtained by multiplying the magnitude F of the force by the
radial component dr of the displacement. Since F is directed
toward O. the work is negative and we write

t
dU= -Fdr= -G^P-dr

The work of the gravitational force F during a finite displace-
ment from Aj{r = rA to A 2 (r = r 2 ) is therefore

7m __|*£»!1*.2£_2*! (13.7)

The formula obtained may be used to determine the work of
the force exerted by the earth on a body of mass m at a distance
/• from the center of the earth, when r is larger than the radius
R of the earth. The letter M represents then the mass of the

earth; recalling the first of the relations (12.29), we may thus
replace the product GMm in Eq. (13.7) by \VR 2 , where R is
the radius of the earth (R = 6.37 X 10 fi m or 3960 mi) and W

the value of the weight of the body at the surface of the earth.
A number of forces frequently encountered in problems of

kinetics do no work. They are forces applied to fixed points

(rfc = 0) or acting in a direction perpendicular to the displace-
ment (cos o = 0). Among die forces which do no work are the
following: die reaction at a frictionless pin when the body sup-
ported rotates about the pin, the reaction at a frictionless surface
when the body in contact moves along the surface, the reaction
at a roller moving along its track, and the weight of a body-
when its center of gravity moves horizontally.
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.
Fig. 13.7

13.3. Kinetic Energy of a Particle. Principle of

Work and Energy. Consider a particle of mass in acted upon by a force F and moving along a path which is either rectilinear
or curved (Fig. 13.7). Expressing Newton's second law in terms
of the tangential components of the force and of the acceleration
(see Sec. 12.4), we write

R = ma, or F. = m^-
dt

where v is the speed of the particle. Recalling from Sec. 1 1 .9 that
i: = ds/dt, we obtain

r dv ds dv
ds dt ds

F t di = mi- dv

Integrating from A,, where* = s t wdv — v 1 , to A 2 , where s = s 2
and v = u 2 , wc write

J F,ds = mj v dv = \mv\ — |mef (13.8)

The left-hand member of Eq. (13.8) represents the work b\.. 2 of the
force F exerted on the particle during the displacement from A , to

A 2 ; as indicated in Sec. 13.2, the work L',_ 2 is a scalar quantify. The expression %mv s is also a scalar quantity; it is defined as the
kinetic energy of the particle and is denoted by T. We write

T = |mc 2 (13.9)

Substituting into (13.8), we have

u 1 , t -T 2 - T t (13.10)

which expresses that, when a particle moves from A l to A 2 under
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the action of a force F, the work of the force F is equal to the change
in kinetic energy of the particle. This is known as the principle of
work and energy. Rearranging the terms in (13.10), wc write

T 1 + LV 2 = 7 2 (13.11)

Thus, the kinetic energy of the particle at A 2 may be obtained

by adding to its kinetic energy at A, the work done during the displacement from A, to A 2 by the force F exerted on the particle.
As Xewton's second law from which it is derived, the principle

of work and energy applies only with respect to a newtonian
frame of reference (Sec. 12.1). The speed u used to determine
the kinetic energy T should therefore he measured with respect
to a newtonian frame of reference.

Since both work and kinetic energy are scalar quantities, their

sum may be computed as an ordinary algebraic sum, the work
L r , . 2 being considered as positive or negative according to the
direction of F. When several forces act on the particle, the

expression l',_ 2 represents the total work of the forces acting on the particle; it is obtained by adding algebraically the work
of the various forces.

As noted above, the kinetic energy of a particle is a scalar

quantity. It further appears from the definition T = fyntr that
the kinetic energy is always positive, regardless of the direction
of motion of the particle. Considering the particular case when
i-, = 0, f 2 = v, and substituting 1\ = 0, T 2 = T into (13.10), we
observe that the work done by the forces acting on the particle

is equal to T. Thus, the kinetic energy of a particle moving with a speed o represents die work which must be done to bring the
particle from rest to the speed c. Substituting T, = Tand'f 2 =
into (13.10), we also note that, when a particle moving with a

speed v is brought to rest, the work done by the forces acting on the particle is — T. Assuming that no energy is dissipated
into heat, we conclude that the work done by the forces exerted

by the particle on the bodies which cause it to come to rest is equal to T. Thus, the kinetic energy of a particle also represents
the capacity to do work associated with the speed of the particle.

The kinetic energy is measured in the same units as work,
i.e., in joules if SI units are used, and in ft • lb if U.S. customary
units are used. We check that, in SI units,

T = i mc 2 = kg(m/s) 2 = (kg • m/s 2 )m = N • in = J

while, in customary units,

T = J mc 2 = (lb • sVft)(ft/s) 2 = lb • ft
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13.4. Applications of the Principle of Work and

Energy. The application of the principle of work and energy

greatly simplifies the solution of many problems involving forces, displacements, and velocities. Consider, for example, the pendu-
lum OA consisting of a bob A of weight W attached to a cord
of length / (Fig. 13.8a). The pendulum is released with no initial

velocity from a horizontal position OA v and allowed to swing in a vertical plane. We wish to determine the speed of the bob
as it passes through A 2 , directly under O.

)
(a)

Fig. 13.8

e
<*)

We (irst determine the work done during the displacement
from A, to A;, by the forces acting on the bob. We draw a
free-body diagram of the bob, showing all the actual forces
acting on it, i.e., the weight W and the force P exerted by the
cord (Fig. 13.8/?). (An inertia vector is not an actual force and

should not be included in the free-body diagram.) We note that
the force P does no work, since it is normal to the path; the
only force which does work is thus the weight W. The work
of W is obtained by multiplying its magnitude W by the vertical
displacement Z (Sec. 13.2); since the displacement is downward,
the work is positive. We therefore write U, ,« = Wl.

Considering, now, the kinetic energy of the bob, we find
T, = at A, and T, = |(W/g)o§ at A 2 . We may now apply the
principle of work and energy; recalling formula (13.11), we write

T, + J7 M = T 2 + Wl = ±-^©S
2 a 2

Solving for v 2 , we find v 2 — V2gT We note that the speed
obtained is that of a body falling freely from a height /.
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The example we have considered illustrates the following
advantages of the method of work and energy:

1. In order to find the speed at A 2 , there is no need to determine
the acceleration in an intermediate position A and to inte-

grate the expression obtained from A 1 to A 2 .

2. All quantities involved are scalars and may be added directly,
without using x and y components.

3. Forces which do no work are eliminated from the solution

of the problem.

What is an advantage in one problem, however, may become
a disadvantage in another. It is evident, for instance, that the

method of work and energy cannot be used to directly determine
an acceleration. Wc also note that it should be supplemented

by the direct application of Newton's second law in order to

determine a force which is normal to the path of the particle,
since such a force does no work. Suppose, for example, that

we wish to determine the tension in the cord of the pendulum
of Fig. 13.8a as the bob passes through A 2 . Wc draw a free-body
diagram of the bob in that position (Fig. 13.9) and express

inFig. 13.9

Newton's second law in terms of tangential and normal compo-

nents. The equations 2F, = ma, and 2F„ — ma n yield, respec-
tively, a, = and

o m W v 2

But the speed at A 2 was determined earlier by the method of

work and energy. Substituting v 2 = 2gl and solving for F, we
write

wad
P = W + ?_ - 3W

g I
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When a problem involves two particles or more, each particle

may be considered separately and the principle of work and
energy may be applied to each particle. Adding the kinetic

energies of the various particles, and considering the work of all
the forces acting on them, we may also write a single equation of
work and energy for all the particles involved. We have

r, + e/ 1 ., 2 = r 2 (i3.ii)

where T represents the arithmetic sum of the kinetic energies of
the particles involved (all terms are positive) and L\^ 2 the work
of all the forces acting on the particles, including the forces of
action and reaction exerted by the particles on each other. In

problems involving bodies connected by inextensihle cords or
links, however, the work of the forces exerted by a given cord or
link on the two bodies it connects cancels out since the points of

application of these forces move through equal distances (sec
Sample Prob. 13.2). f

1 3.5. Power and Efficiency. Power is defined as the
time rate at which work is done. In the selection of a motor or

engine, power is a much more important criterion than (he
actual amount of work to be performed. A small motor or a large

power plant may both be used to do a given amount of work; but
the small motor may require a month to do the work done by the

power plant in a matter of minutes. If AC is the work done

during the time interval At, then the average power during this
time interval is

AC/ Average power = — —

Letting At approach zero, we obtain at the limit

Power =4!L (13.12)
dt x '

Substituting the scalar product F • dx for dU, we may also write

dU F • dr
Power =

dt dt

and, recalling that dr/dt represents the velocity v of the point of
application of F,

Power = F • v (13.13)

IThe application of the method of work and energy to a system of particles is

discussed in detail in Chap. 14.



KINETICS OF PARTICLES: ENERGY AND MOMENTUM METHODS 551

Since power was defined as the time rate at which work is
done, it should be expressed in units obtained by dividing units
of work by the unit of time. Thus, if SI units are used, power
should be expressed in J/s; this unit is called a watt (W). We
have

1 W = 1 J/s = 1 X • m/s

If U.S. customary units are used, power should be expressed in
ft • lb/s or in horsepower (hp), with the latter defined as

1 hp = 550 ft • lb/s

Recalling from Sec. 13.2 that 1 ft • lb = 1.356 J, we verify that

1 ft • lb/s = 1.356 J/s = 1.356 W

1 hp = 550(1.356 W) = 746 W = 0.746 k\V

The mechanical efficiency of a machine was defined in Sec.
10.4 as the ratio of the output work to the input work:

output work
i? = — ^7 r- (13-14)

mput work

This definition is based on the assumption that work is done at
a constant rate. The ratio of the output to the input work is
therefore equal to the ratio of the rates at which output and
input work are done, and we have

= power output
power input

Because of energy losses due to friction, the output work is
always smaller than the input work, and, consequently, the

power output is always smaller than the power input. The
mechanical efficiency of a machine, therefore, is always less
than 1.

When a machine is used to transform mechanical energy into

electric energy, or thermal energy into mechanical energy, its
overall efficiency may be obtained from formula (13.15). The
overall efficiency of a machine is always less than 1; it provides

a measure of all the various energy losses involved (losses of

electric or thermal energy as well as frictional losses). We
should note that it is necessary, before using formula (13.15),

to express the power output and the power input in the same
units.
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SAMPLE PROBLEM 13.1

An automobile weighing 4000 lb is driven down a 5° incline at a speed
of 60 rni/h when the brakes are applied, causing a constant total
braking force (applied by the road on the tires) of 1500 lb. Determine

the distance traveled by the automobile as it comes to a stop.

K
Solution. Kinetic Energy

T, = I mvl = i{4000/32.2)(88) 2 = 481,000 ft • lb

Position 2: v 2 - T, =

Work V^t - -1500* + (4000 sin 5°)x = -1151*

Principle of Work and Energy

7i + P M = T 2
481,000 - 115 Lc = X= 41S ft

1300 lb

SAMPLE PROBLEM 13.2

Two blocks arc joined by an inextensible cable as shown. If the system

is released from rest, determine the velocity of block A after it has

moved 2 m. Assume that fi equals 0.25 between block A and the plane

and that the pulley is weightless and frictionless.

w,

v 1= v 2 = vnx

2mtin

Solution. Work and Energy for Block A. We denote by F A the

friction force, by F c the force exerted by the cable, and write

m A = 200 kg W A = (200 kg)(9.81 m/s 2 ) = 1962 N

F A = fiN A = ixW A = 0.25(1962 N) = 490 N

T, + ? M = Tt + F c (2 m) - F,(2 m) = fa«>

F c (2 m) - (490 N)(2 m) = £(200 kg)u 2 (1)

Work and Energy for Block B. We write

m B = 3(K) kg W B = (300 kg)(9.81 m/s 2 ) = 2940 N

i\ + Vm = T 2 - + W B (2 m) - F c (2 m) = > B i 2

(2940 N)(2 m) - F c (2 m) = #300 kg)u 2 (2)

Adding the left-hand and right-hand members of (1) and (2), we
observe that the work of the forces exerted by the cable on A and B
cancels out:

(2940 N)(2 m) - (490 N)(2 m) = #200 kg + 300 kg)c z

4900 J = K500 kg)c 2 . = 4.43 m/s -«
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SAMPLE PROBLEM 13.3

A spring is used to stop a 75-kg package which is moving down a
20° incline. The spring has a constant k = 25 k\/m, and is held by
cables so that it is initially compressed 100 mm. If the velocity of
the package is 6 m/s when it is 10 m from the spring, determine the
maximum additional deformation of the spring in bringing the package
to rest. Assume ,u = 0.20.

osi
Kinetic Energy

Position /: t, = 6 m/s

T, = i me? = 4(75 kg)(6 m/s) 2 = 1350 N • m = 1350 J

Position 2 (maximum spring deformation):

v, 2 - T 2 =

Work. We assume that when the package is brought to rest the

additional deflection of the spring is Ax. The component of the weight
parallel to the plane and the friction force act through the entire

displacement, i.e., through 10 m + Ax. The total work done by these
forces is

l/,_, = W,(10 m + Ax) - E(10 m + Ay!
" = (W sin 20° )( 10 m + Ax) - 0.20(Wcos 20°)(10m + A.v)

= 0.1541W(10m + Ar)

or, since W = mg = (75 kg)(9.81 m/s 2 ) = 736 N,

Uj-j = 0.1541(736 X)(10m + Ax) = 1134 J + (113.4 N) Ac

In addition, during the compression of the spring, the variable force
P exerted by the spring does an amount of negative work equal to
the area under the force-deflection curve of the spring force.

f> mln = fee = (25 kN'/m)(100 mm) = (25 000 N/m)(0.100 m) = 2500 N

"max = "mln + * ^*

s 2500 N + (25 000 N/m) Ax

V M = -M n u> + P m J ** = -(2500 N) A* - (12 500 N/m)(A*)«

The total work is thus

l?,_2 = 1134 J + (113.4 N) Ax - (2500 N) Ax - (12 500 N/m)(Ax) 2

Principle of Work and Energy

ij + C'j_, 2 — -*2

13,50 + 1134 + 113.4 Ax - 2500 Av - ]2 500(Ax) 2 =

Ax = 0.360 m Ax = 360 mm -*
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SAMPLE PROBLEM 13.4

A 2000-lb car starts from rest at point 1 and moves without friction
down the track shown, (a) Determine the force exerted by the track

on the car at point 2, where the radius of curvature of the track is
20 ft. {b) Determine the minimum safe value of the radius of curvature

at point 3.

w

icpN

= H

N\

i=e
a. Force Exerted by the Track at Point 2. The principle of work

and energy is used to determine the velocity of the car as it passes
through point 2.

Kinetic Energy: T x = T% = \ mu§ = —
1 W

0+ W(40ft) =--— vl
6

Work. The only force which does work is the weight W. Since
the vertical displacement from point 1 to point 2 is 40 ft downward,
the work of the weight is

[/, .., = + W(4Q ft)

Principle of Work and Energy

v% = 80g = 80(32.2) v 2 = .50.8 ft/s

\ewlon 8 Second Laic at Point 2. The acceleration a„ of the car
at point 2 has a magnitude a„ = vl/p and is directed upward. Since
the external forces acting on the car are W and N, we write

+ T2/-; = ma„: -W + N = ma„

_w_4
g P

W 8Qg

" g 20

,V= 5W N a 10.000 lb f -+

b. Minimum Value of p at Point 3. Principle of Work and Energy.
Applying the principle of work and energy between point 1 and point
3, we obtain

'\ + l'^ 3 = T 3 + W(25ft) = I^§
d§ = 50g = 50(32.2) o 3 = 40.1 ft/s

Newton's Second Late at Point 3. The minimum safe value of p

occurs when X = 0. In this case, the acceleration a„, of magnitude
a. = c|/p, is directed downward, and we write

+ [1F„ = ma n : W = ^l
g P

W 50g

g P
p = 50 It
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1000 Hi

&

c
3000 lb

SAMPLE PROBLEM 13.5

The elevator shown weighs 4000 lb when fully loaded. It is connected

to a 3000-lb counterweight C and is powered by an electric motor.
Determine the power required when the elevator (a) is moving upward
at a constant speed of 20 ft/s, (b) has an instantaneous velocity of
20 ft/s upward and an upward acceleration of 3 ft/s 2 .

u r

100<) lb

11

.JtXKI Ih

r

li
A'"f»

4(I(KJ lb

Solution. Since F and v have the same direction, the power is equal
to Ft), VVe must first determine the force F exerted by cable AB on
the elevator in each of the two given situations.

force F. The forces acting on the elevator and on the counter-
weight are shown in the adjoining sketches.

a. Uniform Motion. We have a — 0; both bodies are in equilib-
rium.

Free Body C: H-fSF, = 0: T - 3000 lb =

Free Body E: + T~F„ = 0: F +T - 4000 lb =

Eliminating T, we find: F = 10001b

b. Accelerated Motion. We have a = 3 ft/s 2 . The equations of
motion are

Free Body C:

Free Body E:

Eliminating '/':

+i£P M = niffl:

+f2F, = mgas

3000 - T - 30P£,3

F +T - 4000 = -Hr~3
32.2

/• = 1000 + |^3 = 1852 lb
Power. Substituting the given values of v and the values found

for F into the expression for the power, we have

a. Ft = (1000 lb)(20 ft/s) = 20,000 ft • lb/s

Power = (20,000 ft • ^)^_ m , m4 hp ^
b. Fv = (1652 lb)(20 ft/s) = 33,040 ft • lb/s
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PROBLEMS

1 3.1 A stone which weighs 8 lb is dropped from a height h and
strikes the ground with a velocity of 75 ft/s. (a) Find the kinetic

energy of the stone as it strikes the ground and the height h from
which it was dropped, (b) Solve part a, assuming that the same stone
is dropped on the moon. (Acceleration of gravity on the moon =
5.31 ft/s 8 .)

1 3.2 A 100-kg satellite was placed in a circular orbit 2000 km
above the surface of the earth. At this elevation (he acceleration of

gravity is 5.68 m/s 2 . Determine the kinetic energy of the satellite, knowing that its orbital speed is 24.8 X 10 3 km/h.

--"•t-

12 m/s

g
Fig. P13.3

1 3.3 A 20-kg package is projected up a 20° incline with an initial
velocity of 12 m/s. The coefficient of friction between the incline and

the package is 0.15. Determine (a) the maximum distance that the
package will move up the incline, (b) the velocity of the package when
it returns to its original position.

13.4 Using the method of work and energy, solve Prob. 12.8.

1 3.5 The conveyor belt shown moves at a constant speed v u and

discharges packages on to the chute AB. The coefficient of friction
between the packages and the chute is 0.50. Knowing that the pack-
ages must reach point B with a speed of 12 ft/s, determine the required
speed v of the conveyor belt.oFig. P13.5

13.6 Solve Prob. 13.5, assuming that the coefficient of friction

between the packages and the chute is 0.30,lFig. P13.7

1 3.7 The 2-kg collar was moving down the rod with a velocity
of 3 m/s when a force P was applied to the horizontal cable. Assuming

negligible friction between the collar and the rod, determine the
magnitude of the force P if the collar stopped after moving 1.2 m more
down the rod.

1 3.8 Solve Prob. 13.7, assuming a coefficient of friction of 0.20
between the collar and the rod.
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13.9 Knowing that the system shown is initially at rest and ne-
glecting the effect of friction, determine the force P required if the
velocity of collar B is to be 8 ft/s after it has moved 2.5 ft to the right.

1 3.1 The system shown is at rest when the 20-lb force is applied
to block A. Neglecting the effect of friction, determine the velocity
of block A after it has moved 9 ft.

I®:
6 lb

2 lb

Fig. P13.9

A

501b

iJ.
B

501b

o
21) Hi £5

suigt
tffi ce

in
__n_

to
Fig. Pi:J.10

adteh
1 3.1 1 Solve Prob. 13.10, assuming that the coefficient of friction

between the blocks and the horizontal plane is 0.20.

13.12 Three 20-kg packages rest on a belt which passes over a
pulley and is attached to a 40-kg block. Knowing that the coefficient
of friction between the belt and the horizontal surface and also be-

tween the belt and the packages is 0.50, determine the speed of package B as it falls off the belt at E.

—2m »l- 2m - I - 2in— M

1 20 kg 20 kg 20 kg
n m ' nn

¦f?

r-> »-.

10 kg

Fig. P13.12e13.13 In Prob. 13. 1 2, determine the speed of package C as it
falls off the belt at E.

1 3.1 4 Two cylinders are suspended from an inextensible cable as

shown. If the system is released from rest, determine (a) the maximum

velocity attained by the 10-lb cylinder, (h) the maximum height above
the floor to which the 10-lb cylinder will rise.

13.15 Solve Prob. 13.14, assuming that the 20-lb cylinder is
replaced by a 50-lb cylinder.

2(1 lh 101b

4(1

Fig. P13.14
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13.16 Four packages weighing 50 lb each are placed as shown on

a conveyor belt which is disengaged from its drive motor. Package 1
is just to the right of the horizontal portion of the belt. If the system is
released from rest, determine the velocity of package 1 as it falls off the

belt at point A. Assume that the weight of the belt and rollers is small
compared to the weight of the packages.

3
Fig. P13.16

13.17 In Prob. 13.16, determine the velocity of package 2 as it
falls from the belt at A.

13.18 Using the method of work and energy, solve Prob. 12.16.

13.19 Using the method of work and energy, solve Prob. 12.15.

1 3.20 Using the method of work and energy, solve Prob. 12.18c.

1 3.21 Using the method of work and energy, solve Prob. 12.17c.

1 3.22 In order to protect it during shipping, a delicate instrument

weighing 4 oz is packed in excelsior. From the static test of similar excelsior, the force-deflection curve shown was obtained. Determine the
maximum height from which the package may be dropped if the force
exerted on the instrument is not to exceed 12 lb.

(•'(II.)pceeneclirirmtesaitetoeiia*eso,tefredfJr*creso!>n.)

Fig. P13.22
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1 3.23 A 5000-kg airplane lands on an aircraft carrier and is

caught by an arresting cable which is characterized by the force-

deflection diagram shown. Knowing that the landing speed of the
plane is 144 km/h, determine (a) the distance required for the plane
to come to rest, (b) the maximum rate of deceleration of the plane.

1 3.24 A 2-kg block is at rest on a spring of constant 400 N/m.
A 4-kg block is held above the 2-kg block so thai it just touches it,
and released. Determine (a) the maximum velocity attained by the
blocks, (b) the maximum force exerted on the blocks.

F(kX)

0102F.P
400

i0330xmFi.P32
300

0
7

rce
s

i
200

/

d1h0
^

lc
100

tosiewr
10 20

Fig. P13.23

30 40 30 60
x(m)

t
Fig. P13.24

1 3.25 As the bracket ABC is slowly rotated, the 6-kg block starts
to slide toward the spring when 6 = 15°. The maximum deflection
of the spring is observed to be 50 mm. Determine the values of the
coefficients of static and kinetic friction.

k = 1 600 N/m

. 250 mm

tFig. P13.25

1 3.26 A 15-lb plunger is released from rest in the position shown

and is stopped by two nested springs; the stiffness of the outer spring is 20 lb/in. and the stiffness of the inner spring is 60 lb/in. If the maxi-
mum deflection of the outer spring is observed to be 5 in., determine
the height h from which the plunger was released.

Fig. P13.26
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.
Fig. P13.28

13.27 A railroad car weighing 60,000 lb starts from rest and coasts
down a 1-percent incline for a distance of 40 ft. It is stopped by a
bumper having a spring constant of 7500 lb/in. (a) What is the speed
of the car at the bottom of the incline? (b) How many inches will the

spring be compressed?

1 3.28 A 0.5-lb pellet is released from rest at A and slides without

friction along the surface shown. Determine the force exerted by the
surface on the pellet as it passes (a) point B, (/;) point C

1 3.29 A roller coaster is released with no velocity at A and rolls

down the track shown. The brakes are suddenly applied as the ear

passes through point B, causing the wheels of the car to slide on the
track (fi = 0.30). Assuming no energy loss between A and B and
knowing that the radius of curvature of the track at B is 80 ft, deter-
mine the normal and tangential components of the acceleration of the

car just after the brakes have been applied.

a
60 ft

Fig. P13.29

1 3.30 A small package of mass m is projected into a vertical
return loop at A with a velocity v . The package travels without
friction along a circle of radius r and is deposited on a horizontal
surface at C. For each of the two loops shown, determine (a) the

smallest velocity v for which the package will reach the horizontal surface at C, {b) the corresponding force exerted by the loop on the
package as it passes point B.pFig. P13.30
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13.31 In Prob. 13.30, it is desired to have the package deposited
on the horizontal surface at C with a speed of 2 m/s, Knowing that
r = 0.6 in, (a) show that this requirement cannot be fulfilled by the
first loop, (b) determine the required initial velocity v n when the
second loop is used.

1 3.32 A 6-in. -diameter piston weighing 8 lb slides without friction
in a cylinder. When the piston is at a distance x — 10 in. from the end

of the cylinder, the pressure in the cylinder is atmospheric (p„ — 14.7 lb/in 2 ). If the pressure varies inversely as the volume, find
the work done in moving the piston until x = 4 in.

1 3.33 The piston of Prob. 13.32 is moved to the left and released

with no velocity when x = 4 in. Neglecting friction, determine (a) the
maximum velocity attained by the piston, (b) the maximum value of
the coordinate x.

1 3.34 An object is released with no velocity at an altitude equal
to the radius of the earth. Neglecting air resistance, determine the
velocity of the object as it strikes the earth. Give the answer in both SI
and U.S. customary units.

d = 6 in.

Fig. P13.32

1 3.35 A rocket is fired vertically from the ground. Knowing that
at bumout the rocket is SO km above the ground and has a velocity of
5000 m/s, determine the highest altitude it will reach.

1 3.36 A rocket is fired vertically from the ground. What should
be its velocity v B at burnout, 80 km above the ground, if it is to reach
an altitude of 1000 km?

80 km

— L

Fig. P13.35 and P13.36

1 3.37 An object is released with no initial velocity at an altitude

of 400 mi. {a) Neglecting air resistance, determine the velocity of the
object as it strikes the ground, (b) What percent error is introduced by
assuming a uniform gravitational field?

13.38 A 70-kg man and an 80-kg man run up a flight of stairs in

5 s. If the flight of stairs is 4 m high, determine the average power
required by each man.

1 3.39 An industrial hoist can lift its maximum allowable load of

60,000 lb at the rate of 4 ft/min. Knowing that the hoist is run by a
15-hp motor, determine the overall efficiency of the hoist.

13.40 A 1500-kg automobile travels 200 m while being acceler-
ated at a uniform rate from 50 to 75 km/h. During the entire motion,

the automobile is traveling on a horizontal road, and the rolling resistance is equal to 2 percent of the weight of the automobile.
Determine (a) the maximum power required, (b) the power required to
maintain a constant speed of 75 km/h.
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WE

Fig. P13.42 and P13.43

1 3.41 A train of total weight 600 tons starts from rest and accel-
erates uniformly to a speed of 30 mi/h in 40 sec. After reaching this

speed, the train travels with constant velocity. During the entire
motion the train is traveling up a 2 percent grade, and the rolling
resistance is 15 lb/ton. Determine the power required as a function of
time.

1 3.42 The dumbwaiter D and its counterweight C weigh 750 lb

each. Determine the power required when the dumbwaiter (a) is
moving upward at a constant speed of 12 ft/s, (b) has an instantaneous
velocity of 12 ft/s upward and an upward acceleration of 3 ft/s-.

1 3.43 The dumbwaiter D and its counterweight C weigh 750 lb

each. Knowing that the motor is delivering to the system 9hp al the instant the speed of the dumbwaiter is 12 ft/s upward, determine the
acceleration of the dumbwaiter.

3
ldOO ni

Fig. P13.44

hFig. P13.45

13.44 A chair-lift is designed to transport 900 skiers per hour
from the base A to the summit B. The average mass of a skier is

75 kg, and the average speed of the lift is 80 m/min. Determine (a) the average power required, (h) the required capacity of the motor
if the mechanical efficiency is 85 percent and if a 300-percent overload
is to be allowed.

1 3. 45 Crushed stone is moved from a quarry at A to a con-

struction site at B at the rate of 2000 Mg per S-h period. An electric

generator is attached to the system in order to maintain a constant
belt speed. Knowing that the efficiency of the bell-generator system
is 0.65, determine the average power developed by the generator (a)
if the belt speed is 0.75 m/s, (b) if the belt speed is 2 rn/s.

1 3.46 The fluid transmission of a 15-ton truck permits the engine

to deliver an essentially constant power of 60 hp to the driving wheels.
Determine the lime required and the distance traveled as the speed of
the truck is increased (a) from 15 to 30 mi/h, (b) from 30 to 45 mi/h.

1 3.47 The fluid transmission of a truck of mass m permits the

engine to deliver an essentially constant power P to the driving
wheels. Determine the time elapsed and the distance traveled as the

speed is increased from v„ to p,.

1 3.48 The frictional resistance of a ship is known to vary directly
as the 1.75 power of the speed c of the ship. A single tugboat at

full power can tow the ship at a constant speed of 5 km/h by exerting a constant force of 200 k\. Determine (a) the power developed by
the tugboat, (b) the maximum speed at which two tugboats, capable
of delivering the same power, can tow the ship.
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1 3.49 Determine the speed at which the single tugboat of Prob.

13.48 will tow the ship if the tugboat is developing half of its maximum
power.

1 3.6. Potential Energy.' Let us consider again a body

of weight W which moves along a curved path from a point
A, of elevation i/j to a point A 2 of elevation y 2 (Fig. 13.4). We
recall from Sec. 13.2 that the work of the weight W during this
displacement is

IV 2 = Wy, - Wy 2 (13.4)

The work of W may thus be obtained by subtracting the value
of the function Wy corresponding to the second position of the
body from its value corresponding to the first position. The work
of W is independent of the actual path followed; it depends only
upon the initial and final values of the function Wy. This func-
tion is called the potential energy of the body with respect to
the force of gravity W and is denoted by V g . We write

^1-2 = (V„)i " (V„) 2 with V g = Wy (13.16)

We note that if ( V g ) 2 > ( V^, i.e., if the potential energy increases
during the displacement (as in die case considered here), the work

t/j„ 2 fa negative. If, on the other hand, the work of W is positive,
the potential energy decreases. Therefore, the potential energy
V g of the body provides a measure of the work which may be

done by its weight W. Since only the change in potential energy, and not the actual value of V f , is involved in formula (13.16),
an arbitrary constant may be added to the expression obtained
for V g . In other words, the level, or datum, from which the
elevation y is measured may lie chosen arbitrarily. Note that
potential energy is expressed in the same units as work, i.e., in

joules if SI units are used, and in ft • lb or in • lb if U.S. customary
units are used.

It should be noted that the expression just obtained for the
potential energy of a body with respect to gravity is valid only

as long as the weight W of the body may be assumed to remain
constant, i.e., as long as the displacements of the body are small

compared to the radius of the earth. In the case of a space
vehicle, however, we should take into consideration the variation

of the force of gravity with the distance r from the center of

r^\.Aa

i
Fig. 13.4 (repeated)

t Some of the material in this section has already been considered in Sec. 10.6.



564 DYNAMICS

Fig. 13.6 (repeated)
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Fig. 13.5 (repealed)

the earth. Using the expression obtained in Sec. 13.2 for the
work of a gravitational force, we write (Fig. 13.6)

P M =
CMm GMm

(13.7)

The work of the force of gravity may therefore be obtained by
subtracting the value of the function —GMm/r corresponding
to the second position of the body from its value corresponding
to the first position. Thus, the expression which should be used

for the potential energy V g when the variation in the force of
gravity cannot be neglected is

*.--
CM m

(13.17)

Taking the first of the relations (12.29) into account, we write V (/
in the alternate form

\=~
WR?

(13.17')

where R is the radius of the earth and W the value of the weight

of the body at the surface of the earth. When either of the

relations (13.17) and (13.17') is used to express V g , the distance r
should, of course, be measured from the center of the earth. t

Note that V g is always negative and that it approaches zero for
very large values of r.

Consider, now, a body attached to a spring and moving from
a position A,, corresponding to a deflection Xj of the spring, to

a position A 2 , corresponding to a deflection x 2 (Fig. 13.5). We
recall from Sec. 13.2 that the work of the force F exerted by

the spring on the body is

U 1 . 2 = £fcr? - £b§ (13.6)

The work of the elastic force is thus obtained by subtracting

the value of the function fix 2 corresponding to the second posi-
tion of the body from its value corresponding to the first posi-
tion. This function is denoted by V e and is called the potential

energy of the body with respect to the elastic force F. We write

t>i-2 = (V,), - (V„) 2 with V e = Jfcr* (13.18)

and observe that, during the displacement considered, the work
of the force F exerted by the spring on the body is negative

IThc expressions given for V f in (13.17) and (13.17') arc valid only when
r § R, that is, when the body considered is above the surface of the earth.
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and the potential energy V e increases. We should note that the
expression obtained for V e is valid only if the deflection of the

spring is measured from its undeformed position. On die other
hand, formula (13.18) may be used even when the spring is

rotated about its fixed end (Fig. 13.10a). The work of the elastic

Undeformed length

V.),=-£fc^
(V.) £ =i*x*

o
Fig. 13.10

force depends only upon the initial and final deflections of the
spring (Fig. 13.10fo).

The concept of potential energy may be used when forces
other than gravity forces and elastic forces are involved. Indeed,

it remains valid as long as the work of the force considered is

independent of the path followed by its point of application as

this point moves from a given position A : to a given position A 2 .
Such forces are said to be conservative forces; the general prop-
erties of conservative forces are studied in the following section.

* 1 3.7. Conservative Forces. As indicated in the pre-
ceding section, a force F acting on a particle A is said to be
conservative if its work L I 1 _ 2 fa independent of the path followed

by the particle A as it moves from Aj to A 2 (Fig. 13.1 la). We may
then write

t/,_ 2 = Vix^y^z^) - V(x 2 ,y 2 ,z 2 ) i:s.19>

or, for short,

tfi-2 =y i '~V i (13.19')

The function V(x,y,z) is called the potential energy, or potential
function, of F.

We note that, if A 2 is chosen to coincide with A v i.e., if the
particle describes a closed path (Fig. 13.11/?), we have V, = V 2

A 2 (*2,!/2.Z2)

A^ij.yj.Zj)

(a)

(b)

Fig. 13.11



566 DYNAMICS

and the work is zero. We may thus write for any conservative
force F

#F-dr=0 (13.20)

where the circle on the integral sign indicates that the path is
closed.

Let as now apply (13.19) between two neighboring points

A(x,y,z) and A'{x + dx, y + dy, z + dz). The elementary work
dU corresponding to the displacement dr from A to A' is

dU = V(x,y,z) — V(x + dx, y + dy, z + dz)

or,

dU = -dV(x,y,z) (13.21)

Thus, the elementary work of a conservative force is an exact

differential.
Substituting for dU in (13.21) the expression obtained in

(13.1"), and recalling the definition of the differential of a func-
tion of several variables, we write

from which it follows that

P = _iZ F =-^ F = -^- (13.22)
dx » dy ' dz [ '

It is clear that the components of F must be functions of the
coordinates x, y, z. Thus, a necessary condition for a conservative

force is that it depend only upon the position of its point of
application. The relations (13.22) may be expressed more con-

cisely if we write

p r • . c • , L'i /3V. , 3V. , av,\

The vector in parentheses is known as the gradient of the scalar
function V and is denoted by grad V. We thus write for any
conservative force

F = -grad V (13.23)

The relations (13.19) to (13.23) were shown to be satisfied by

any conservative force. It may also be shown that if a force F
satisfies one of these relations, F must be a conservative force.
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1 3.8. Conservation of Energy. We saw in the preced-
ing two sections that the work of a conservative force, such as the

weight of a particle or the force exerted by a spring, may be
expressed as a change in potential energy. When a particle

moves under the action of conservative forces, the principle of
work and energy stated in Sec. 13.3 may be expressed in a

modified form. Substituting for r/ M from (13.19') into (13.10),
we write

v, - v 2 = r 2 - 7\

T 1 + V l = T 2 + V 2 (13.24)

Formula (13.24) indicates that, when a particle moves under the
action of conservative forces, the sum of the kinetic energy and

of the potential energy of the particle remains constant. The sum

T + V is called the total mechanical energy of the particle and
is denoted by E.

Consider, for example, the pendulum analyzed in Sec. 13.4,

which is released with no velocity from A, and allowed to swing
in a vertical plane (Fig. 13.12). Measuring the potential energy
from the level of A 2 , we have, at A 1>

7\ = V l = Wl li + V & s Wl

Recalling that, at A,,, the speed of the pendulum is v a = \/2g/,
we have

T 2 =Jmui=-
w

(2 gl) = Wl V 2 =
2 g

T 2 + V 2 = WlVDatum

We thus check that the total mechanical energy E = T + V of
the pendulum is the same at A, and A 2 . While the energy is
entirely potential at A,, it becomes entirely kinetic at A 2 and,
as the pendulum keeps swinging to the right, the kinetic energy
is transformed back into potential energy. At A 3 , we shall have
T 3 = and V 3 = Wl.

Since the total mechanical energy of the pendulum remains

constant and since its potential energy depends only upon its
elevation, the kinetic energy of the pendulum will have the same
value at any two points located on the same level. Thus, the
speed of the pendulum is the same at A and at A' (Fig. 13.12).

This result may be extended to the case of a particle moving
along any given path, regardless of the shape of the path, as long
as the only forces acting on the particle are its weight and the
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normal reaction of the path. The particle of Fig. 13.13, for

example, which slides in a vertical plane along a frictionless

track, will have the same speed at A, A', and A".

Fig. 13.13

While the weight of a particle and the force exerted by a
spring are conservative forces, friction forces are nonconservative

forces. In other words, the work of a friction force cannot be

expressed as a change in potential energy. The work of a friction
force depends upon the path followed by its point of application;

and while the work C',^ 2 defined by (13.19) is positive or nega-

tive according to the sense of motion, tlie work of a friction force

is always negative. It follows that, when a mechanical system

involves friction, its total mechanical energy does not remain

constant but decreases. The mechanical energy of the system,
however, is not lost; it is transformed into heat, and the sum

of the mechanical energy and of the thermal energy of the system
remains constant.

Other forms of energy may also be involved in a system. For

instance, a generator converts mechanical energy into electric
energy; a gasoline engine converts chemical energy into mechan-
ical energy; a nuclear reactor converts mass into thermal en-
ergy. If all forms of energy are considered, the energy of any
system may be considered as constant and the principle of con-
servation of energy remains valid under all conditions.

13.9. Motion under a Conservative Central Force.

Application to Space Mechanics. We saw in Sec. 12.8

that, when a particle P moves under a central force F, the
angular momentum H of the particle about the center of force
O is constant. If the force F is also conservative, there exists a

potential energy V associated with F, and the total energy
E = T + V of the particle is constant (Sec. 13.8). Thus, when a

particle moves under a conservative central force, both the
principle of conservation of angular momentum and the princi-

ple of conservation of energy may be used to study its motion.
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Consider, for example, a space vehicle moving under the

earth's gravitational force. We shall assume that it begins its free

flight at point P at a distance r from the center of the earth,

with a velocity v forming an angle <> with the radius vector OP

(Fig. 13.14). Let P be a point of the trajectory described by the

vehicle; we denote by r the distance from O to P, by v the
velocity of the vehicle at P, and by <> the angle formed by v and
the radius vector OP. Applying the principle of conservation of
angular momentum about O between P n and P (Sec. 12.8), we
write

r mv sin <> = nnc sin 6 (13.25)

Recalling expression (13.17) obtained for the potential energy
due to a gravitational force, we apply the principle of conserva-
tion of energy between P and /' and write

_
Fig. 13.14

T + V = T+V

, 2 GMm _ , 2 C.Vfm
(13.26)

where M is the mass of the earth.

Equation (13.26) may be solved for the magnitude v of the
velocity of the vehicle at P when the distance r from O to P is

known; Eq. (13.25) may then be used to determine the angle <>

that the velocity forms with the radius vector OP,

Equations (13.25) and (13.26) may also be used to determine
the maximum and minimum values of r in the case of a satellite

launched from P in a direction forming an angle <> with the
vertical OP (Fig. 13.15). The desired values of r are obtained by

making <> = 90° in (13.25) and eliminating c between Eqs.
(13.25) and (13.26).

It should be noted that the application of the principles of

conservation of energy and of conservation of angular momen-
tum leads to a more fundamental formulation of the problems of

space mechanics than the method indicated in Sec. 12.11. In all

cases involving oblique launchings, it will also result in much
simpler computations. And while the method of Sec. 12.11 must

be used when the actual trajectory or the periodic time of a space
vehicle is to be determined, the calculations will be simplified if
the conservation principles are first used to compute the maxi-
mum and minimum values of the radius vector r.

Fig. 13.15
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SAMPLE PROBLEM 13.6

A 20-lb collar slides without friction along a vertical rod as shown.

The spring attached to the collar has an undeformed length of 4 in.
and a constant of 3 lb/in. If the collar is released from rest in posi-

tion 1, determine its velocity after it has moved 6 in. to position 2.

Datum

g
6 in.

h
Position I. Potential Energy. The elongation of the spring is

x l = 8 in. — 4 in. = 4 in., and we have

V, = Jfcr 2 = 1(3 lb/in.)(4 in.) 2 = 24 in • 11.

Choosing the datum as shown, we have V g = 0. Therefore,

V, = V, + V, = 24 in • lb = 2 ft • lb

Kinetic Energy. Since the velocity in position 1 is zero, 2\ = 0.
Position 2. Potential Energy. The elongation of the spring is

x 2 = 10 in. — 4 in. = 6 in., and we have

V, = ifctf = J(3 lb/in.)(6 in.) 2 = 54 in - lb

V a = Wy = (201b)(-6in.) = -120 in -lb

Therefore,

V 2 = V, + V„ = 54 - 120 = -66 in • lb
= -5.5ft -lb

Kinetic Energy

r 2 = *m„ 2 = |.JLt, 2 = 0.311c 2
Conservation »f Energy. Applying the principle of conservation

of energy between positions 1 and 2, we write

r, + v, = t 2 + v 2

+ 2 ft • lb = 0.311t>| - 5.5 ft • lb

v 2 = ±4.91 ft/s
v.. = 4.91 ft si -*
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SAMPLE PROBLEM 13.7

The 200-g pellet is released from rest at A when the spring is com-
pressed 75 mm and travels around the loop ABODE. Determine the
smallest value of the spring constant for which the pellet will travel

around the loop and will at all times remain in contact with the loop.

£ -IJ

a0.450 m

Required Speed at Point C. As the pellet passes through the highest

point C, its potential energy with respect to gravity is maximum; thus,
at the same point its kinetic energy and its speed are minimum. Since
the pellet must remain in contact with the loop, the force N exerted

on the pellet by the loop must be equal to, or greater than, zero.
Setting N = 0, we compute the smallest possible speed v c .

+ 12F„ = ma„: W = ma. ">g = ma n <z„ = g

*-* v 2 c = ra„ = rg = (0.150 m)(9.81 m/s 2 ) = 1.472 m 2 /s 2

Position J. Potential Energy. Since the spring is compressed
0.075 m from its undeformed position, we have

V e = Jfcr 2 = £J:(0.075 m) 2 = (0.00281 m 2 )fc

Choosing the datum at A, we have V g = 0; therefore

V, = V, + V g = (0.00281 m 2 )k

Kinetic Energy. Since the pellet is released from rest, v A = and

we have T, = 0.
Position 2. Potential Energy. The spring is now undeformed; thus

V„ = 0. Since the pellet is 0.450 m above the datum, and since
W = (0.200 kg)(9.81 m/s 2 ) = 1.962 N, we have

V e =Wy= (1.962 N)(0.450 m) = 0.883 X • m = 0.883 J
V 2 = V, + V, = 0.883J

Kinetic Energy. L'sing the value of v% obtained above, we write

T 2 = J meg = i(0.200 kg)( 1.472 m 2 /s 2 ) = 0.1472 N • m = 0.1472 ]

Conservation of Energy. Applying the principle of conservation
of energy between positions 1 and 2, we write

T, + V x = T 2 + V 2

+ (0.00281 m 2 )fc = 0.1472 J + 0.883 J
k = 367 J/m 2 = 367 X/m

The required minimum value of k is therefore

k = 367N/m -+
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SAMPLE PROBLEM 13.8

A ball weighing 0,5 lb is attached to a fixed point O by means of an
elastic cord of constant k = lOlb/fl and of undeformed length equal
to 2 ft. The ball slides on a horizontal frictionless surface. If the ball

is placed at point A, 3ft from O, and is given an initial velocity of
lOft/s in a direction perpendicular to OA, determine (a) the speed
of the ball after the cord has become slack, (b) the closest distance
d that the ball will come to O.

o
>, = inn <

Solution. The force exerted by the cord on the ball passes through
the fixed point 0, and its work may be expressed as a change in
potential energy. It is therefore a conservative central force, and both
the total energy of the ball and its angular momentum about O are
conserved between points A and B. After the cord has become slack

at B, the resultant force acting on the ball is zero. The ball, therefore,
will move in a straight line at a constant speed v. The straight line
is the line of action of v B and the speed u is equal to c B .

a. Conservation of Energy.

At point A:

At point B:

T A = imoJS = { 32 ° 2 5 f ^ s2 (I0 ft/s) 8 = 0.776 ft • lb
V A = ikxl = £(10 lb/ft)(3 ft - 2 ft) 2 = 5 ft • lb

T B = Jmc| = i- ^v% = 0.0()776t;|2 32.2

V B =

Applying the principle of conservation of energy between points A
and B, wc write

T A + V A = T B + V B

0.776 + 5 = 0.007761- 2 ,

l-B = 744 i- = i. B = 27.3 ft/s

h. Conservation of Angular Momentum About O. Since r A and

d represent the perpendicular distances to \ A and vg, respectively,
we write

r A ( mc A) = d (mv B )

(3 ft) (M\( l() ft/ s ) = d(M)(27.3ft/s)
(/ = 1.099 ft -*
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SAMPLE PROBLEM 13.9

A satellite is launched in a direction parallel to the surface of the
earth with a velocity of 36 900 km/h from an altitude of 500 km.

Determine (a) the maximum altitude reached by the satellite, (b) the
maximum allowable error in the direction of launching if the satellite

is to go into orbit and to come not closer than 200 km to the surface
of the earth.

W
a. Maximum Altitude. We denote by A' the point of the orbit

farthest from the earth and by r, the corresponding distance from tho
center of the earth. Since the satellite is in free flight between A

and A', we apply the principle of conservation of energy.

T A + V.= TV + V AV

h , n4 _CMm = ^ mv2i _GMm (1)

Since the only force acting on the satellite is the force of gravity,
which is a central force, the angular momentum of the satellite about

O is conserved. Considering points A and A', we write

'„""."„ = r.mv. v, = On— (2)

a
Substituting this expression for t, into Eq. (1) and dividing each term
by the mass m, we obtain after rearranging the terms.

*<»-»-?(»-*) 1 + ^ = 2GM
h Wo*

(3)

Recalling that the radius of the earth is R = 6370 km, we compute

t = 6370 km + 500 km = 6870 km = 6.87 x l^m

v = 36900 km/h = (3.69 X 10 7 m)/(3.6 X 10 3 s) = 1.025 X 10 4 m/s
GX1 = gfl 2 = (9.81 m/s 2 )(6.37 x 10 6 m) 2 = 3.98 X 10" m 3 /s 2

Substituting these values into (3), we obtain r, = 66.8 X 10 s m

Maximum altitude = 66.8 X 10 6 m - 6.37 X 10" m = 60.4 X 10° m

= 60 4(H) km -^

b. Allowable Error in Direction of Launching. The satellite is

launched from P in a direction forming an angle <> with the vertical
OP n . The value of £ corresponding to r mln = 6370 km + 200 km =

6570 km is obtained by applying the principles of conservation of
energy and of conservation of angular momentum between P and A.

i o GMm i o Glim
4"» c o — = J""w - (4)

(5)

into (4), wc may

'0 'mln

r n mv n sin <>„ = f mlll mc m>1

Solving (5) for v max and then substituting for u m!l

solve (4) for sin £ . Using the values of D and CM computed in part

a and noting that r /r mla = 6870/6570 m 1.0457, we find

sin </>„ = 0.9801 *,, = 90° ± 11.5° Allowable error = - I I ..5° —
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L
PROBLEMS

1 3.50 The uniform rods AB and BC are each of mass m; the spring
CD is of constant k and is unstretched when 8=0. Determine the

potential energy of the system with respect to (a) the spring,
(b) gravity. (Place datum at A.)

13.51 A slender rod AB of negligible mass is attached to blocks A

and W, each of mass m. The constant of the spring is k and the spring is

undeformed when AB is horizontal. Determine the potential energy of

the system with respect to (a) the spring, (b) gravity. (Place datum at B.)

rFig. P13.51

13.52 Prove that a force ¥{x,y,z) is conservative if, and only if, the

following relations are satisfied:

3i;_3fj t dF t _ciF L dF, _ dF,
dy " dx dz " dy dx " dz

1 3.53 The force F = (xi + yj)/(x 2 + y 2 ) acts on the particle
I'(x,y) which moves in the xy plane, (a) Using the first of the relations
derived in Prob. 13.52, prove that F is a conservative force, (b) Deter-

mine the potential function V(x,y) associated with F.+A B

Fig. P13.55

13.54 The force F = (xi + yj + zk)/(x 2 + y 2 + z 2 ) 3 ' 2 acts on
the particle P(x,y,z) which moves in space, (a) Using the relations
derived in Prob. 13.52, prove that F is a conservative force, (fo) Deter-

mine the potential function V(x,y,z) associated with F.

1 3.55 The force F = x 2 y'\ + xy 2 ] acts on the particle P(x,y)
which moves in the xy plane. Prove that F is a nonconservative force
and determine the work of F as it moves from A to C along each of the

paths ABC, ADC, and AC.
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The spring AB is of constant 6 lb/in. and is attached to the

4-lb collar A which moves freely along the horizontal rod. The
unstretched length of the spring is 10 in. If the collar is released from

rest in the position shown, determine the maximum velocity attained

by the collar.

13.57 In Prob. 13.56, determine the weight of the collar A for

which the maximum velocity is 30 ft/s.

1 3.5I A collar of mass 1.5 kg is attached to a spring and slides
without friction along a circular rod which lies in a horizontal plane.

The spring is undeformed when the collar is at C and the constant of
the spring is 400 N/m. If the collar is released from rest at B, deter-

mine the velocity of the collar as it passes through point C.

30 in.

r
Fig. P13.56

1 3.59 Plunger A has a mass of 200 g and is to be shot to the right
by the mechanism shown. The undeformed length of the spring is

180 mm and it is compressed to a length of 60 mm; it will expand to a
length of 110 mm when the plunger is released. Knowing that a force

of 36 N is required to hold the plunger in the position shown, deter-

mine the velocity attained by the plunger as it leaves the mechanism.

1 3.60 The collar of Prob. 13.58 has a continuous, although non-

uniform, motion along the rod. If the speed of the collar at A is to be

half of its speed at C, determine (a) the required speed at C, (b) the
corresponding speed at B.

1 3.61 The 2-lb collar slides without friction along the horizontal
rod. Knowing that the constant of the spring is 3 lb/in. and that

v = 12 ft/s, determine the required spring tension in the position

shown if the speed of the collar is to be 8 ft/s at point C.

1 3.62 The 2-lb collar slides without friction along the horizontal
rod. Knowing that the spring has a constant k = 3 lb/in. and is un-

stretched in the position shown, determine the required speed v if it is
to reach point C..-60 mm

Fig. P13.S9

5 in.

— 12 in — — 12 in. -

Fig. P13.61 and P13.62
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1 3.63 The 50-kg block is released from rest when <J> = 0. If the

speed of the block when <> = 90° is to be 2.5 in/s, determine the

required value of the initial tension in the spring.

50 kg

Fig. P13.63

1 3.64 A sling shot is made by stretching an elastic band between
pins A and B located 100 mm apart in the same horizontal plane. The

spring constant for the entire length of the elastic band is 600 X/m and
the tension in the band is 40 N when it is stretched directly between A

and B. Determine the maximum speed attained by a 50-g pellet which

is placed at C," and released.

.Fig. P13.64h*»

( "fei 1

Fig. P13.65

1 3.65 The sphere C and the block A are both moving to the left
with a velocity v when the block is suddenly stopped by the wall.

Determine the smallest velocity v for which the sphere C will swing in
a full circle about the pivot B {a) if BC is a slender rod of negligible
weight, (b) if BC is a cord.

13.66 The collar of Prob. 13.58 is released from rest at point A.
Determine the horizontal component of the force exerted by the rod on

the collar as the collar passes through point B. Show that the force

component is independent of the mass of the collar.
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1 3.67 A 1.5-lb collar may slide without friction along the semicir-
cular rod BCD. The spring is of constant 2 lb/in. and its undeformed
length is 12 in. The collar is released from rest at B. As the collar

passes through point C, determine (a) the speed of the collar, (b) the
force exerted by the rod on the collar.

1
Fig. P13.67

1 3.68 A small block is released at A with zero velocity and moves
along the frictionless guide to point B where it leaves the guide with

a horizontal velocity. Knosving that h = 8 ft and b = 3 ft, determine
(a) the speed of the block as it strikes the ground at C, (b) the corre-
sponding distance c.

A[

/

t . c

w

Fig. P13.68

1 3.69 Assuming a given height h in Prob. 13.68, (a) show that
the speed at C is independent of the height b, {b) determine the height
b for which the distance c is maximum and the corresponding value
of c.
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Fig. P13.71

13.70 A ball of mass m attached to an inextensible cord rotates

in a vertical circle of radius r. Show that the difference between the

maximum value T max of the tension in the cord and its minimum value

7" mln is independent of the speed v n of the ball as measured at the

bottom of the circle, and determine 7" — r_, n .

1 3.71 A bag is gently pushed off the top of a wall at A and swings
in a vertical plane at the end of a 4-m rope which can withstand
a maximum tension equal to twice the weight of the bag. (a) Deter-
mine the difference in elevation h between point A and point B where
the rope will break, (b) How far from the vertical wall will the bag
strike the door?

1 3.72 A delicate instrument weighing 12 lb is placed on a spring
of length / so that its base is just touching the undeformed spring. The
instrument is then inadvertently released from that position. Deter-

mine the maximum deflection x of the spring and the maximum force
exerted by the spring if the constant of the spring is k = 15 lb/in.

gFig. P13.72

1 3.73 Nonlinear springs are classified as hard or soft, depending

upon the curvature of their force-deflection curves (see figure). Solve
Prob. 13.72, assuming (a) that a hard spring is used, for which
F = loxfl + O.lx 2 ), (b) that a soft spring is used, for which
F= 15x(l -O.lx 2 ).

Hard spring

Fig. P13.73
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1 3.74 Determine the escape velocity of a missile, i.e., the velocity
with which it should be fired from the surface of the earth if it is

to reach an infinite distance from the earth. Give the answer in both

SI and U.S. customary units. Show that the result obtained is inde-
pendent of the firing angle.

13.75 How much energy per kilogram should be imparted to a

satellite in order to place it in a circular orbit at an altitude of (a)
500 km, (ft) 5000 km?

13.76 A lunar excursion module (LEM) was used in the Apollo

moon-landing missions to save fuel by making it unnecessary to launch
the entire Apollo spacecraft from the moon's surface on its return trip
to the earth. Check the effectiveness of this approach by computing

the energy per pound required for a spacecraft to escape the gravita-
tional field of the moon if the spacecraft starts (a) from the moon's
surface, (ft) from a circular orbit 60 mi above the moon's surface.

Neglect the effect of the earth's gravitational field. (The radius of the
moon is 1080 mi and its mass is 0.01230 times the mass of the earth.)

13.77 Show, by setting r = R + y in formula (13.17') and ex-

panding in a power series in y/R, that the expression obtained in (13.16) for the potential energy V g due to gravity is a first-order approx-
imation for the expression given in (13.17'). Using the same expansion,
derive a second-order approximation for V g .

1 3.78 Show that the ratio of the potential and kinetic energies of
an electron, as it enters the plates of the cathode-ray tube of Prob.

12.60, is equal to dS/IL. (Place the datum at the surface of the positive

plate.)

1 3.79 In Sample Prob. 13.8, determine the required magnitude of

v_4 if the ball is to pass at a distance d = 4 in. from point O. Assume
that the direction of v A is not changed.

1 3.80 A 2-kg sphere is attached to an elastic cord of constant
150 N/m which is undeformed when the sphere is located at the origin

O. Knowing that in the position shown v, is perpendicular to OP and
has a magnitude of 10 m/s, determine (a) the maximum distance from
the origin attained by the sphere, (ft) the corresponding speed of the
sphere.

1 3.81 In Prob. 13.80, determine the required initial speed c A if

the maximum distance from the origin attained by the sphere is to be
1.5 m.

/
0.6 m

-

k
Fig. P13.80
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1 3.82 A 1.5-lb block P rests on a frictionless horizontal table at a

distance of ] ft from a fixed pin O. The block is attached to pin O by an elastic cord of constant k = 10 lb/ft and of undeformed length 2 ft.
If the block is set in motion to the right as shown, determine (a) the
speed Oj for which the distance from O to the block P will reach a

maximum value of 3 ft, (h) the speed v 2 when OP = 3 ft, (c) the radius
of curvature of the path of the block when OP = 3 ft.

^jr

2
Fig. P13.82

1 3.83 Collar B weighs 10 lb and is attached to a spring of constant
50 lb/ft and of undeformed length equal to 18 in. The system is set in
motion with r = 12 in., v„ = 16 ft/s, and v r = 0. Neglecting the mass
of the rod and the effect of friction, determine the radial and transverse

components of the velocity of the collar when r = 21 in.

^]
30 in.

Fig. P13.83

1 3.84 For the motion described in Prob. 13.83, determine (a) the
maximum distance between the origin and the collar, \b) the corre-
sponding velocity.

1 3.85 In Sample Prob. 13.8, determine the smallest magnitude of
v. for which the clastic cord will remain taut at all times,

1 3.86 through 1 3.89 Using the principles of conservation of
energy and conservation of angular momentum, solve the following
problems:

1 3.86 Prob. 12.88.

13.87 Prob. 12.93.

13.88 Prob. 12.92.

13.89 Prob. 12.89.
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1 3.90 A space shuttle is to rendezvous with an orbiting laboratory
which circles the earth at the constant altitude of 240 mi. The shuttle

has reached an altitude of 40 mi when its engine is shut off, and its

velocity v„ forms an angle £ = 45° with the vertical OB at that time.
What magnitude should v have if the shuttle's trajectory is to be
tangent at A to the orbit of the laboratory?

1 3.91 A space shuttle is to rendezvous with an orbiting laboratory
which circles the earth at the constant altitude of 240 mi. The shuttle

has reached an altitude of 40 mi and a velocity v of magnitude

12,000 ft/s when its engine is shut off. What is the angle 6 that v

should form with the vertical OB if the shuttle's trajectory is to be
tangent at A to the orbit of the laboratory?

2-!0ml

9
Fig. P13.90 and P13.91

13.92 Determine the magnitude and direction (angle <> formed
with the vertical OB) of the velocity v B of the spacecraft of Prob.
12.100 just before splashdown at B. Neglect the effect of the atmos-
phere.

1 3.93 To what value D should the speed of the spacecraft of Prob.

12.101 be reduced preparatory to reentry if its velocity v B just before
splashdown at B is to form an angle <> = 30°

Neglect the effect of the atmosphere.

with the vertical OB?

13.94 Upon the LEM's return to the command module, the
Apollo spacecraft of Prob. 12.93 is turned around so that the LEM
faces to the rear. The LEM is then cast adrift with a velocity of

600 ft/s relative to the command module. Determine the magnitude

and direction (angle <> formed with the vertical OC) of the velocity
v t . of the LEM just before it crashes at C on the moon's surface.

13.95 At engine burnout a satellite has reached an altitude of
2400 km and has a velocity v of magnitude 8100 m/s forming an angle
<*>„ = 76° with the vertical. Determine the maximum and minimum

heights reached by the satellite.

1 3.96 At engine burnout a satellite has reached an altitude of
2400 km and has a velocity v of magnitude SlOO m/s. For what range
of values of the angle <¦>„, formed by v and the vertical, will the
satellite go into a permanent orbit? (Assume that if the satellite gets
closer than 300 km from the earth's surface, it will soon burn up.)

Knglnc
/ Ixirnout

Powered

plmvr

Fig. P1 3.95 and P13.96
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13.97 A satellite is projected into space with a velocity v at
a distance r from the center of the earth by the last stage of its
launching rocket. The velocity v was designed to send the satellite
into a circular orbit of radius r u . However, owing to a malfunction
of control, the satellite is not projected horizontally but at an angle
a with the horizontal and, as a result, is propelled into an elliptic
orbit. Determine the maximum and minimum values of the distance

from the center of the earth to the satellite.

.
Fig. P13.97

Fig. P13.99

* 1 3.98 Using the answers obtained in Prob. 13.97, show that the

intended circular orbit and the resulting elliptic orbit intersect at the
ends of the minor axis of the elliptic orbit.

3.99 A spacecraft of mass m describes a circular orbit of radius

r l around the earth, (a) Show that the additional energy A£ which
must be imparted to the spacecraft to transfer it to a circular orbit

of larger radius r 2 is

. _ CMm(r 2 - i,)IE =

where M is the mass of the earth, (b) Further show that, if the transfer

from one circular orbit to the other is executed by placing the space-
craft on a transitional scmielliptic path AB, the amounts of energy
AK 4 and A/'.' fl which must be imparted at A and B are respectively
proportional to r., and r,!

A/'.' =

r i + r 2
AE AE B =

'i + H
-A£

13.100 Show that the total energy E of a satellite of mass m
describing an elliptic orbit is E = -GMm/(r 1 + r 2 ), where M is the
mass of the earth, and i\ and r 2 represent, respectively, the maximum
and minimum distance of the orbit to the center of the earth. (It

is recalled that the gravitational potential energy of a satellite was
defined as being zero at an infinite distance from the earth.)
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* 1 3.1 01 (a) Express the angular momentum per unit mass, h, and
the total energy per unit mass, E/m, of a space vehicle moving under
the earth's gravitational force in terms of r mln and v mKX (Fig. 13.15).
(6) Eliminating v max between the equations obtained, derive the for-
mula

1 CM llCMV

1F + VVF7
-i-

2(E/m)
h-

(c) Show that the constant C in Eq. (12.39) of Sec. 12.11 may be
expressed as

C =
(GM\ 2 2(E/m)

m h*

(d) Further show that the trajectory of the vehicle is a hyperbola, an

ellipse, or a parabola, depending on whether /•.' is positive, negative or
zero.

* 1 3.1 02 In Prob. 13.90, determine the distance separating the

two points located on the surface of the earth directly below points B
and A where engine shut-off and rendezvous with the orbiting labora-
tory respectively take place. [Hint Use Eq. (12.39) of Sec. 12.11,
noting that point A corresponds to 6 = 180°.]

* 1 3.1 03 A missile is fired from the ground with a velocity v of

magnitude v — VgR, forming an angle <>„ with the vertical, (a) Ex-
press the maximum height d reached by the missile in terms of (J> .
(Z>) Show that the angle 2o subtending the trajectory BAC of the missile
is equal to 2d and explain what happens when $ a approaches 90°.
[Hint. Use Eq. (12.39) of Sec. 12.11 to solve part b, noting that
9 - 180° for point A and = 180° - <i for point «.]

* 1 3.1 04 A missile is fired from the ground with an initial velocity

v forming an angle <> with the vertical. If the missile is to reach
a maximum altitude equal to the radius of the earth, (a) show that
the required angle <i is denned by the relation

v 1

where t; esc is the escape velocity,
minimum allowable values of v .

2 V o /

determine the maximum and

Fig. P13.103 and P13.104
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13.10. Principle of Impulse and Momentum, a

third basic method for the solution of problems dealing with the
motion of particles will be considered now. This method is based

on the principle of impulse and momentum and may be used to
solve problems involving force, mass, velocity, and time. It is of
particular interest in the solution of problems involving impul-
sive motion or impact (Sees. 13.11 and 13.12).

Consider a particle of mass m acted upon by a force F. As we
saw in Sec. 12.2, Newton's second law may be expressed in die
form

her
F = -(mv) (13.27)

where mv is the linear momentum of the particle. Multiplying

both sides of Eq. (13.27) by dt and integrating from a time t x to a
time t 2 , we write

F dt - dirnv)

F dt = mv 2 — tnv 1

or, transposing the last term.

mv, + J F dt = mv. (13.28)

The integral in Eq. (13.28) is a vector known as the linear im-

pulse, or simply the impulse, of the force F during the interval of
time considered. Resolving F into rectangular components, we
write

ImPi-^J F dt

Fig. 13.16

r's r*2 r ( *

= ij F x dt+jj F y dt+kj F z dt (13.29)
'i 'i <i

and note that the components of the impulse of the force F are,
respectively, equal to the areas under the curves obtained by

plotting the components F x , F y , and F s against f (Fig. 13.16). In
the case of a force F of constant magnitude and direction, the
impulse is represented by the vector F(t 2 — tj), which has the
same direction as F.

If SI units are used, the magnitude of the impulse of a force is
expressed in N • s. But, recalling the definition of the newton, we
have

N • s = (kg • m/s 2 ) • s = kg • m/s
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which is the unit obtained in Sec. 12.3 for the linear momentum

of a particle. We thus check that Eq. (13.28) is dimensionally
correct. If U.S. customary units are used, the impulse of a force

is expressed in lb • s, which is also the unit obtained in Sec. 12.3
for the linear momentum of a particle.

Equation (13.28) expresses that, when a particle is acted upon

by a force F during a given time interval, the final momentum

mv 2 of the particle may be obtained by adding cectorially its
initial momentum mv, and the impulse of the force F during the

time interval considered (Fig. 13.17). We write

mv, + Imp 1 .. 2 = mv 2 (13.30)

O-^ + 0=0

w
Fig. 13.17

We note that, while kinetic energy and work are scalar quanti-

ties, momentum and impulse are vector quantities. To obtain an
analytic solution, it is thus necessary to replace Eq. (13.30) by the
equivalent component equations

c'-
K), + 1 F, dt = K) 2

'i

(me,), + f '' F„ dt = (mv y ) 2 (13.31)
'.

f' 1
(mv z ) l + F z dt = (mv t ) 2

When several forces act on a particle, the impulse of each of
the forces must be considered. We have

mv, + 2 Imp 1 _ 2 = mv 2 (13.32)

Again, the equation obtained represents a relation between vec-

tor quantities; in the actual solution of a problem, it should be
replaced by the corresponding component equations.

When a problem involves two particles or more, each particle
may be considered separately and Eq. (13.32) may be written for



586 DYNAMICS

each particle. We may also add vectorially the momenta of all
the particles and the impulses of all the forces involved. We
write then

2mv, + 2 Imp,. 2 = 2«tv 2 (13.33)

Since the forces of action and reaction exerted by the particles on
each other form pairs of equal and opposite forces, and since the
lime interval from t-y to t 2 is common to all the forces involved,
the impulses of the forces of action and reaction cancel out, and

only the impulses of the external forces need be considered.!

If no external force is exerted on the particles or, more gener-
ally, if the sum of the external forces is zero, the second term in

Eq. (13.33) vanishes, and Eq. (13.33) reduces to

Smv, = 2mv 2 (13.34)

which expresses that the total momentum of the particles is
conserved. Consider, for example, two boats, of mass m A and m B ,

initially at rest, which are being pulled together (Fig. 13.18). If
the resistance of the water is neglected, the only external forces

acting on the boats are their weights and the buoyant forces
exerted on them. Since these forces are balanced, we write

'"« V R

Fig. 13.18

Smv, = Smv 2

= m A v' A + m B v B

where v^, and v^ represent the velocities of the boats after a finite

interval of time. The equation obtained indicates that the boats

move in opposite directions (toward each other) with velocities

inversely proportional to their masses.}

f We should note the difference between this statement and the corresponding
Statement made in Sec. I3.4 regarding the work of the forces of action and
reaction between several particles. While the sum of the impulses of these
forces is always zero, the sum of their work is zero only under special circum-
stances, e.g., when the various bodies involved are connected by inextensible
cords or links and are thus constrained to move through equal distances.

(The application of the method of impulse and momentum to a system of
particles and the concept of conservation of momentum for a system of particles

are discussed in detail in Chap. 14.
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13.11. Impulsive Motion. In some problems, a very

large force may act during a very short time interval on a parti-

cle and produce a definite change in momentum. Such a force is

called an impulsive force and the resulting motion an impulsive

motion. For example, when a baseball is struck, the contact
between bat and ball takes place during a very short time inter-

val It. But the average value of the force F exerted by the bat on

the ball is very large, and the resulting impulse F Af is large
enough to change the sense of motion of the ball (Fig. 13.19).

Fig. 13.19

When impulsive forces act on a particle, Eq. (13.32) becomes

mv, + 2F M = mv 2 (13.35)

Any force which is not an impulsive force may be neglected,

since the corresponding impulse F A/ is very small. Nonimpul-

sive forces include the weight of the body, the force exerted by a

spring, or any other force which is known to be small compared

with an impulsive force. Unknown reactions may or may not be
impulsive; their impulse should therefore be included in Eq.

(13.35) as long as it has not been proved negligible. The impulse
of the weight of the baseball considered above, for example, may
be neglected. If the motion of the bat is analyzed, the impulse of
the weight of the bat may also be neglected. The impulses of the
reactions of the player's hands on the bat, however, should be

included; these impulses will not be negligible if the ball is
incorrectly hit.

In the case of the impulsive motion of several particles, Eq.

(13.33) may be used. It reduces to

2mv, +ZF\t = 2mv 2 (13.36)

where the second term involves only impulsive, external forces.

If all the external forces are nonimpulsive, the second term

vanishes, and Eq. (13.36) reduces to Eq. (13.34); the total mo-
mentum of the particles is conserved.



S
SAMPLE PROBLEM 13.10

An automobile weighing 4000 lb is driven down a 5° incline at a speed

of 60 ini/h when the brakes are applied, causing a constant total
braking force (applied by the road on the tires) of 1500 lb. Determine
llie time required for the automobile to come to a stop.

.Solution. We apply the principle of impidse and momentum. Since

each force is constant in magnitude and direction, each corresponding

impulse is equal to the product of the force and of the time interval f.

p1
nv,=0

mv, + 2 Imp 1 _. i — mv.,

+ \x components: mv l + ( Wsin 5°)< — Ft =

(4000/32.2)(88 ft/s) 4- (4000 sin 5°)r - 1500< =
f - 9.49 s

10 ft/s

SAMPLE PROBLEM 13.11

An airline employee tosses a 30-lb suitcase with a horizontal velocity

of 10 ft/s onto a 70-lb baggage carrier. Knowing that the carrier can
roll freely and is initially at rest, determine the velocity of the carrier

after the suitcase has slid to a relative stop on the carrier.

Solution. We apply the principle of impulse and momentum to

the carrier-suitcase system. Since the impulses of the internal forces
cancel out, and since there are no horizontal external forces, the total

momentum of the carrier and suitcase is conserved.

"'.\V\ = U ~ ' m A + in a iv

~W_

¦ x components:

m A v A + m B v B = (m A + m B W

30

g
()+ 30 (]()ft/s)= 70-f30 t .

c' = 3 ft/s

588



SAMPLE PROBLEM 13.12

l
An old 2000-kg gun fires a 10-kg shell with an initial velocity of

600 m/s at an angle of 30°. The gun rests on a horizontal surface and is

free to move horizontally. Assuming that the barrel of the gun is

rigidly attached to the frame (no recoil mechanism} and that the shell
leaves the barrel 6 CDS after firing, determine the recoil velocity of the

gun and the resultant R of the vertical impulsive forces exerted by the
ground on the gun.

Solution. We first apply the principle of impulse and momentum to

the shell and find the impulse F At exerted by the gun on the shell. We

then apply it to the gun and find the final momentum of the gun and
the impulse R A/ exerted by the ground on the gun. Since the time

interval At = 6 ms = 0.006 s is very short, we neglect all nonimpulsive
forces.

Free Body: Shell

(m s v s . = " ryi
«s»i)i

('" S v s ), + 1 Imp, 2 = (m s v s ) 2

+ FAt = (10kg)(600m/s)

F It = 6000 kg • m/s = 6000 N ¦ s

Free Body: Gun

m c v e i-°-( m o v n)i + 2 Imp, 2 = (m v ) 2

±» x components: - (F At) cos 30° = —m v a

- (6000 kg • m/s) cos 30° = -(2000 kg)v

v G = +2.60 m/s v c = 2.60 m/s <-

+ t y components: 0+fiAl- (F At) sin 30° =

R At = (6000 N • s) sin 30° = 3000 N • s

R = 500 kN T= 3 - °.-' !i = + 500 000 X
0.006 s

The high value obtained for the magnitude of R stresses the need in
modern guns for a recoil mechanism which allows the barrel to move

and brings it to rest over a period of time substantially longer than At.

Although the total vertical impulse remains the same, the longer time

interval results in a smaller value for the magnitude of R.

589
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PROBLEMS

13.105 A 2750-lb automobile is moving at a speed of 45 mi/h
when the brakes arc hilly applied, causing all four wheels to skid.
Determine the lime required to stop the automobile (a) on concrete

ill = 0.80), (b) on ice (p = 0.10).

1 3.1 06 A tugboat exerts a constant force of 25 tons on a 200,000-

ton oil tanker. Neglecting the frictional resistance of the water, deter-

mine the time required to increase the speed of the tanker (a) from
1 mi/h to 2 mi/h, (h) from 2 mi/h to 3 mi/h.

A 3-lb particle is acted upon by a force F of magnitude
F = 14* 2 (lb) which acts in the direction of the unit vector

A = $i -f |j + fk. Knowing that the velocity of the particle at ( = is
v = (400 ft/s)j - (250 ft/s)k, determine the velocity when t • = 3 s.

1 3.108 A 2-kg particle is acted upon by the force, expressed in
newtons, F = (8 - 6r)i + (4 - t 2 )} + (4 + f)k. Knowing that the
velocity of the particle is v = (150 m/s)i + (100 m/s)j — (250 m/s)k at
f = 0, determine (a) the time at which the velocity of the particle is

parallel to the 1/2 plane, (b) the corresponding velocity of the particle.

13.109 and 13.110 The initial velocity of the 50-kg car is
5 m/s to the left. Determine the time r at which the car has (a) no

velocity, (b) a velocity of 5 m/s to the right.

50 kg

Fig. P13.109

50 kg

^ ^

101

20 kg

Fig. P13.110

13.111 Using the principle of impulse and momentum, solve
I'rob. 12.17&.

13.112 Using the principle of impulse and momentum, solve
Prob. 12.18b.
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1 3.1 1 3 A light train made of two cars travels at 100 km/h. The

mass of car A is 15 Mg, and the mass of car H is 20 Mg. When the
brakes are applied, a constant braking force of 25 k.\ is applied to each
car. Determine (a) the time required for the train to stop after the
brakes are applied, (b) the force in the coupling between the cars while
the train is slowing down.

KKI km l»

15 Mg 20 Mr

TiJF

Fig. P13.113

1 3. 1 1 4 Solve Prob. 13.113, assuming that a constant braking force
of 25 k.N is applied to car B but that the brakes on car A are not
applied.

13.115 The 3-lb collav is initially at rest and is acted upon by the
force Q which varies as shown. Knowing that fi — 0.25, determine the
velocity of the collar at (a) t = 1 s, (77) / = 2s.

13.116 In Prob. 13.115. determine (o) the maximum velocity

reached by the collar and the corresponding time, (b) the time at
which the collar comes to rest.

i
o 1.0

Fig. P13.115

2.0

13.117 A 20-kg block is initially at rest and is subjected to a force
P which varies as shown. Neglecting the effect of friction, determine

(a) the maximum speed attained by the block, (b) the speed of the
block at * = 1.5 s.5Fig. P13.117

1 3.1 1 8 Solve Prob. 13.117, assuming that ,u = 0.25 between the
block and the surface.

13.119 A gun of mass 50 Mg is designed to fire a 250-kg shell with
an initial velocity of 600 m/s. Determine the average force required
to hold the gun motionless if the shell leaves the gun 0.02 s after being
fired.
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tF
40 ft/s

Fig. P1 3.121

13.120 A 6000-kg plane lands on the deck of an aircraft carrier

at a speed of 2(X)km/h relative to the earner and is brought to a
stop in 3.0 s. Determine the average horizontal force exerted by the
carrier on the plane (a) if the carrier is at rest, (b) if the carrier is
moving at a speed of 15 knots in the same direction as the airplane.

(] knot - 0.514 m/s.)

13.121 A 4-oz baseball is pitched with a velocity of 40 ft/s
toward a batter. After the ball is hit by the bat B, it has a velocity of
120 ft/s in the direction shown. If the bat and ball are in contact

0.025 s, determine the average impulsive force exerted on the ball
during the impact.

.
- - " '¦

Fig. P13.122

Fig. P13.123

13.122 A 160-lb man dives off the end of a pier with an initial

velocity of 9 ft/s in the direction shown. Determine the horizontal and
vertical components of the average force exerted on the pier during the
0.8 s that the man takes to leave the pier.

13.123 A steel-jacketed bullet of mass 20 g is fired with a velocity
of 600 m/s toward a steel plate; the bullet ricochets along the path CD

with a velocity of 500 m/s. Knowing that the bullet caused a 50-mm

scratch on the surface of the plate, determine the average impulsive
force exerted on the bullet during its contact with the plate. {Hint.
Assume an average speed of 550 m/s during contact.)

13.1 24 Determine the initial recoil velocity of an 8-lb rifle which
fires a j-oz bullet with a velocity of 1600 ft/s.

1 3.1 25 A 2-oz rifle bullet is fired horizontally with a velocity of
1200 ft/s into an 8-lb block of wood which can move freely in the
horizontal direction. Determine (a) the final velocity of the block,
(/>) the ratio of the final kinetic energy of the block and bullet to the

initial kinetic energy of the bullet.

1.5 kg J.5 fcg fr

Fig. P13.126

13.1 26 Collars A and B are moved toward each other, thus

compressing the spring, and are then released from rest. The spring is
not attached to the collars. Neglecting the effect of friction and
knowing that collar B is observed to move to the right with a velocity

of 6 m/s, determine (a) the corresponding velocity of collar A, (b) the
kinetic energy of each collar.
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A barge is initially at rest and carries a 6(K)-kg crate. The
barge has a mass of 3000 kg and is equipped with a winch which is used
to move the crate along the deck. Neglecting any friction between the
crate and the barge, determine (a) the velocity of both the barge and
the crate when the winch is drawing in rope at the rate of 1.5 m/s,
(b) the final position of the barge after 12 m of rope has been drawn in
by the winch, (c) Solve parts a and b assuming that p = 0.30 between
the crate and the barge.

28 A 60-ton railroad car is to be coupled to a second car

which weighs 40 tons. If initially the speed of the 60-ton car is 1 mi/h

and the 40-ton car is at rest, determine (a) the final speed of the
coupled cars, (b) the average impulsive force acting on each car if the
coupling is completed in 0.5 s.

'7-7:

Fig. P13.127

I ml/h
"- 60 tons

18
^P^

•10 torn

X- MM,

Fig. P13.128

1 29 Solve Prob. 13.128, assuming that, initially, the 60-ton car
is at rest and the 40-ton car has a speed of 1 mi/h.

1 30 A 10-kg package is discharged from a conveyor belt with a

velocity of 3 m/s and lands in a 25-kg cart. Knowing that the cart is

initially at rest and may roll freely, determine the final velocity of the
cart.

1 31 Solve Prob. 13.130, assuming that the single 10-kg pack-

age is replaced by two 5-kg packages. The first 5-kg package comes to
relative rest in the cart before the second package strikes the cart.

132 In order to test the resistance of a chain to impact, the
chain is suspended from a 100-kg block supported by two columns. A
rod attached to the last link of the chain is then hit by a 25-kg cylinder
dropped from a 1.5-m height. Determine the initial impulse exerted on
the chain, assuming that the impact is perfectly plastic and that the
columns supporting the dead weight (a) are perfectly rigid, (h) are
equivalent to two perfectly elastic springs, (c) Determine the energy
absorbed by the chain in parts a and /).

A machine part is forged in a small drop forge. The
hammer weighs 300 lb and is dropped from a height of 4 ft. Determine
the initial impulse exerted on the machine part, assuming that the

800-lb anvil (a) is resting directly on hard ground, (b) is supported by-
springs.

Fig. P13.130

Fig. P13.132
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>*V

t
(a)Dircct central impact

na
(b)Oblique central impact

Fig. 13.20

.1B

(a) Before impact

13.12. Impact. A collision between two bodies which

occurs in a very small interval of lime, and during which die two
bodies exert on each other relatively large forces, is called an
impact. The common normal to the surfaces in contact during
the impact is called the line of impact. If the mass centers of the
two colliding bodies arc located on this line, the impact is a

central impact. Otherwise, the impact is said to be eccentric. We
shall limit our present study to that of the central impact of two
particles and postpone until later the analysis of the eccentric
impact of two rigid bodies (Sec. 17.11).

If the velocities of the two particles are directed along the line
of impact, the impact is said to be a direct impact (Fig. 13.20a).
If, on the other hand, either or both particles move along a line

other than the line of impact, the impact is said to be an oblique

impact (Fig. 13.20&).
13.13. Direct Central Impact. Consider two particles

A and B, of mass m A and m B , which are moving in the same
straight line and to the right with known velocities v A and v s
(Fig. 13.21a). If \ A is larger than v B , particle A will eventually
strike particle B. Under the impact, the two particles will de-
form and, at the end of the period of deformation, they will have
the same velocity u (Fig. 13.21&). A period of restitution will
then take place, at the end of which, depending upon the magni-

tude of the impact forces and upon the materials involved, the
two particles either will have regained their original shape or
will stay permanently deformed. Our purpose here is to deter-
mine the velocities v^, and \' B of the particles at the end of the
period of restitution (Fig. 13.21c).

Considering first the two particles together, we note that there
is no impulsive, external force. Thus, the total momentum of the
two particles is conserved, and we write

m A V A + " l B V B = " l A V A + m B V Bc(h) At maximum deformation

Since all the velocities considered are directed along the same

axis, wc may replace the equation obtained by the following
relation involving only scalar components:

m A v A + m B v B = m A v' A (13.37)

J A positive value for any of the scalar quantities v A , v B , v' A , or v' B
means that the corresponding vector is directed to the right; a

negative value indicates that the corresponding vector is directed
to the left.
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To obtain the velocities v^ and v^, it is necessary to establish

a second relation between the scalars v' A and v' B . For this pur-

pose, we shall consider now the motion of particle A during' the period of deformation and apply the principle of impulse and
momentum. Since the only impulsive force acting on A during

this period is the force P exerted by B (Fig. 13.22a), we write,
using again scalar components,

m A v A -SPdt = m A u (13.38)

where the integral extends over the period of deformation.

'» vVi

r
Fig. 13.22

Ofrdt
(a) Period of deformation

OAdt
(b) Period of restitution

III \U

t
0-

Considering now the motion of A during the period of restitu-
tion, and denoting by R the force exerted by B on A during
this period (Fig. 13.22fo), we write

m A u - fR dt = m A v' A (13.39)

where the integral extends over the period of restitution.
In general, the force R exerted on A during the period of

restitution differs from the force P exerted during the period of deformation, and the magnitude fR dt of its impulse is smaller
than the magnitude J"P dt of the impulse of P. The ratio of the

magnitudes of the impulses corresponding respectively to the
period of restitution and to the period of deformation is called
the coefficient of restitution and is denoted by e. We write

e =
fRdt

SPdt
(13.40)

The value of the coefficient e is always between and 1 and
depends to a large extent on the two materials involved. How-

ever, it also varies considerably with the impact velocity and the shape and size of the two colliding bodies.



596 DYNAMICS

t«- v'a) + (oi --u)

°4

-
^

(«4- o) + (u - v B ) %

t-B -v' A = e(v A - "b)

w
Solving Eqs. (13.38) and (13.39) for the two impulses and

substituting into (13.40), we write

e=^± (13.41)
v A - u

A similar analysis of particle B leads to the relation

e = ?£^± (13.42)
u - v„

Since the quotients in (13.41) and (13.42) are equal, they are also
equal to the quotient obtained by adding, respectively, their
numerators and their denominators. We have, therefore,

e =

and v' B - v' A = e(v A - v B ) (13.43)

Since v' B — v' A represents the relative velocity of the two parti-
cles after impact and v A — v B their relative velocity before
impact, formula (13.43) expresses that the relative velocity oftlie
two particles after impact may be obtained by multiplying their
relative velocity before impact by tlxe coefficient of restitution.
This property is used to determine experimentally the value of
the coefficient of restitution of two given materials.

The velocities of the two particles after impact may now be
obtained by solving Eqs. (13.37) and (13.43) simultaneously for v' A
and v' B . It is recalled that the derivation of Eqs. (13.37) and
(13.43) was based on the assumption that particle B is located to
the right of A, and that both particles are initially moving to the
right. If particle B is initially moving to the left, the scalar v B
should be considered negative. The same sign convention holds
for the velocities after impact: a positive sign for v' A will indicate

that particle A moves to the right after impact, and a negative
sign that it moves to the left.

Two particular cases of impact are of special interest:

1. e = 0, Perfectly Plastic Impact. When e = 0, Eq. (13.43)

yields v' B = v' A . There is no period of restitution, and both
particles stay together after impact. Substituting v' B —

v' A = v' into Eq. (13.37), which expresses that the total mo-
mentum of the particles is conserved, we write

m A v A + m R V B = ( m A + m s) D ' (13.44)

This equation may be solved for the common velocity v' of the
two particles after impact.
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2. e = 1, Perfectly Elastic Impact. When e = 1, Eq. (13.43)
reduces to

Vr - fj = v, - v„ (13.45)

which expresses that the relative velocities before and after

impact are equal. The impulses received by each particle

during the period of deformation and during the period of
restitution are equal. The particles move away from each

other after impact with the same velocity with which they

approached each other before impact. The velocities v' A and

v' B may be obtained by solving Eqs. (13.37) and (13.45) simul-
taneously.

It is worth noting that, in the case of a perfectly elastic impact,
the total energy of the two particles, as well as their total momen-

tum, is conserved. Equations (13.37) and (13.45) may be written
as follows:

mJPd ~ v 'a) = m B ( v B - »*) (13.37')

(13.45')

Multiplying (13.37') and (13.45') member by member, we have

m A( v A ~ v 'a)(<>a + «£) = m B (v' B - v B ){v' B + v B )
m.v

A" A - m A^A? = m B( V ' B ) 2 ~ m B V l

Rearranging the terms in the equation obtained, and multiplying
by £, we write

b m A v A + W»I = W^) 2 + hm^v'g) 2

which expresses that the kinetic energy of the particles is con-
served. It should be noted, however, that in the general case of
impact, i.e., when e is not equal to 1, the total energy of the
particles is not conserved. This may be shown in any given case
by comparing the kinetic energies before and after impact. The
lost kinetic energy is in part transformed into heat and in part
spent in generating elastic waves within the two colliding bodies.

13.14. Oblique Central Impact. Let us now consider

the case when the velocities of the two colliding particles are not
directed along the line of impact (Fig. 13.23). As indicated in

Sec. 13.12, the impact is said to be oblique. Since the velocities

v' A and \' B of the particles after impact are unknown in direction
as well as in magnitude, their determination will require the use
of four independent equations.

We choose x and y axes, respectively, along the line of impact
and along the common tangent to the surfaces in contact. As-

suming that the particles are perfectly smooth and frictionless, Fig. 13.23
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Fig. 13.23 (repealed)

we observe that the only impulsive forces acting on the particles
during the impact arc internal forces directed along the x axis.

We may therefore express that:

1. The y component of the momentum of particle A is con-
served.

2. The y component of the momentum of particle B is con-
served.

3. The x component of the total momentum of the particles is
conserved.

4. The x component of the relative velocity of the two particles
after impact is obtained by multiplying the x component of
their relative velocity before impact by the coefficient of
restitution.

We thus obtain four independent equations which may be
solved for the components of the velocities of A and B after

impact. This method of solution is illustrated in Sample Prob.
13.15.

1 3.1 5. Problems Involving Energy and Momentum.

We have now at our disposal three different methods for the
solution of kinetics problems: the direct application of Newton's
second law, SF = ma, the method of work and energy, and the
method of impulse and momentum. To derive maximum benefit
from these three methods, we should be able to choose the

method best suited for the solution of a given problem. We should
also be prepared to use different methods for solving the var-
ious parts of a problem when such a procedure seems advisable.

We have already seen that the method of work and energy

is in many cases more expeditious than the direct application
of Newton's second law. As indicated in Sec. 13.4, however,

the method of work and energy has limitations, and it must

sometimes be supplemented by the use of 2F = ma. This is the
case, for example, when we wish to determine an acceleration
or a normal force.

There is generally no great advantage in using the method

of impulse and momentum for the solution of problems involving
no impulsive forces. It will usually be found that the equation
2F = ma yields a solution just as fast and that the method of
work and energy, if it applies, is more rapid and more conven-

ient, However, the method of impulse and momentum is the

only practicable method in problems of impact. A solution based
on the direct application of SF = ma would be unwieldy, and
the method of work and energy cannot be used since impact
(unless perfectly elastic) involves a loss of mechanical energy.
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Many problems involve only conservative forces, except for a
short impact phase during which impulsive forces act. The

solution of such problems may be divided into several parts.
While the part corresponding to the impact phase calls for the
use of the method of impulse and momentum and of the relation
between relative velocities, the other parts may usually be solved
by the method of work and energy. The use of the equation
2F = ma will be necessary, however, if the problem involves the
determination of a normal force.

Consider, for example, a pendulum A, of mass m A and length /,
which is released with no velocity from a position Aj (Fig.
13.24a). The pendulum swings freely in a vertical plane and hits
a second pendulum B, of mass m B and same length /, which is
initially at rest. After the impact (with coefficient of restitu-

tion e), pendulum B swings through an angle that we wish to
determine.

The solution of the problem may be divided into three parts:

1. Pendulum A Swings from A, to A 2 . The principle of conser-

vation of energy may be used to determine the velocity (v A ) 2
of the pendulum at A 2 (Fig. 13.24fo).

2. Pendulum A Hits Pendulum B. Using the fact that the total

momentum of the two pendulums is conserved and the rela-
tion between their relative velocities, wc determine the ve-

locities (v A ) 3 and (v B ) 3 of the two pendulums after impact
(Fig. 13.24c).

3. Pendulum B Swings from B a to B 4 . Applying the principle of
conservation of energy, we determine the maximum elevation
y 4 reached by pendulum B (Fig. 13.24d). The angle may
then be determined by trigonometry.

Conservation

of energy

Impact:
Total momentum conserved

Relative velocities

"V_

3 —

(v A ) 1=

V T

(«:

,-n

Conservation

of energy

As I

(c)mWe note that the method of solution just described should be
supplemented by the use of 2F = ma if the tensions in the cords
holding the pendulums are to be determined.

Fig. 13.24

(d)



v, = 0,5 ni/s

20 Mg

SAMPLE PROBLEM 13.13

A 2()-Mg railroad car moving at a speed of 0.5 m/s to the right collides
with a 35-Mg car which is at rest. If after the collision the 35-Mg
car is observed to move to the right at a speed of 0.3 m/s, determine
the coefficient of restitution between the two cars.

Solution. We express that the total momentum of the two cars is
conserved.

v»=0 v'„ = 0.3 m/s

38 Mg 20 Mg 33 Mg

"i B v fl m e \ ,,

™A V A + m B V B - m A V A + ""fiVB

(20Mg)(+0.5m/s) + (35Mg)(0) = (20 Mg)v' A + (35Mg)(+0.3m/s)

v' A = -0.025 m/s v^ = 0.025 m/s «-

The coefficient of restitution is obtained by writing

e = v B - v 4 _ +0.3 - (-0.025) _ 0.325 g = Q ft _
+0.5 - 0.5

SAMPLE PROBLEM 13.14

al30°m0.500.> ,

:".; : /

0.779 v

A ball is thrown against a frictionless vertical wall. Immediately

before the ball strikes the wall, its velocity has a magnitude D and
forms an angle of 30° with the horizontal. Knowing that e = 0.90,
determine the magnitude and direction of the velocity of the ball as
it rebounds from the wall.

Solution. We resolve the initial velocity of the ball into components

D„ = cos 30° = 0.866u v y = v sin 30° = 0.5()(te

Vertical Motion. Since the wall is frictionless, no vertical impulsive

force acts on the ball during the time it is in contact with the wall.
The vertical component of the momentum, and hence the vertical
component of the velocity, of the ball is thus unchanged:

v; = v„ = 0.500i; T

Horizontal Motion. Since the mass of the wall (and earth) is essen-

tially infinite, there is no point in expressing that the total momentum
of the ball and the wall is conserved. Using the relation between relative
velocities, we write

- tf. = e(v x - 0)
v' z = -0.9O(O.866i3) = -0.779t v' x = 0.779d *-

Raultant Motion. Adding vectorially the components \' x and \' y ,
v' = 0.926l- !b. 32.7° -*
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SAMPLE PROBLEM 13.15

The magnitude and direction of the velocities of two identical friction-

less balls before they strike each other are as shown. Assuming
e = 0.90, determine the magnitude and direction of the velocity of
each ball after the impact.

r
»¦ , = .in r ,

3
0--0

.I! '/I! •

34.6i23.7

Solution. The impulsive forces acting between the balls during the
impact are directed along a line joining the centers of the balls called

the line of impact. Choosing X and u axes, respectively, parallel and

perpendicular to the line of impact and directed as shown, we write

("A = °a cos 30" = +26.0ft/s

("A = °a sin 3()C = + 15.0 ft/s
(v„) x = -t B cos60" = -20.0 ft/s

(»¦)» = u s sin60° = +34.6 ft/s

Principle of Impulse and Momentum. In the adjoining sketches
we show in turn the initial momenta, the impulsive reactions, and
the final momenta.

Motion Perpendicular to the Line of Impact. Considering onlv the

i/ components, we apply the principle of impulse and momentum to
each ball separately. Since no vertical impulsive force acts during

the impact, the vertical component of the momentum, and hence the

vertical component of the velocity, of each ball is unchanged.

K)„ = 15.0 ft/s f (vi), = 34.6 ft/s T

Motion Parallel to the Line of Impact. In the .t direction, we

consider the two balls together and note that, by Newton's third law,

the internal impulses are, respectively, V St and — F St and cancel.
We thus write that the total momentum of the balls is conserved:

"b(»A + "'ato), = rn A (v' A ) r + m B (o B ) t

m(26.0) + m(-20.0) = m(v' A ) x + m(v B ),

to), + to)* = 6<> (1)

Using the relation between relative velocities, we write

to), - to). = tfto). - to)J

to). - («£). = (0.90)[26.0 - (-20.0)]

to), " («*)« = 41-4 (2)

Solving Eqs. (1) and (2) simultaneously, we obtain

(i>i). = -17.7 to), -+23.7

K), = 17.7 ft/s «- fy 8 ), = 23.7 ft/s -+

Resultant Motion. Adding vcctorially the velocity components of
each ball, we obtain

v.', = 23.2 ft/s ^ 40.3° vj, =41.9 ft s ^ 55.6' -4

601



30 kg

A

B 10 kg 2 m

n

SAMPLE PROBLEM 13.16

A 30-kg block is dropped from a height of 2 in onto the 10-kg pan

of a spring scale. Assuming the impact to be perfectly plastic, deter-
mine the maximum deflection of the pan. The constant of the spring
is k = 20 kN/rn.

Solution. The impact between the block and the pan must be
treated separately; therefore we divide the solution into three parts.

of energy
Impact! Total

iiiiiiiu'iihiiii conserved

.i\:irion

or energy

— t— ' ' ' / Durum \

2"l I JU»r \;.= 0) 1 |

erg
*3 r f-^ deformation \

m
¦2 ' 3 -<

Cwwercatfon of Energy. Block: W, = (30kg)(9.81 m/s 2 ) = 294 N

r, = WO? = v i = «&I = < 294 NX 2 m) = 588 J

r s = Jm^)i = i(30kg)( Cjl ) % = o

T, + V 1 = T 2 + V 2 : + 588 J = £<30kg)(<;Jl +

(cj, = + 6.26 m/s (vjjj = 6.26 m/s ;

lmi>act: Conservation of Momentum. Since the impact is perfectly

plastic, e = 0; the block and pan move together after the impact.

">a( v a)2 + m^Bl-i = ( m A + m B )v 3

(30 kg){6.26 m/s) + = (30 kg + 10kg)t;,,

D 3 = +4.70 m/s v 3 = 4.70 m/s J,

Conservation of Energy. Initially the spring supports the weight
\V B of the pan; thus the initial deflection of the spring is

V^ _ (10k g )(9.81m/s 2 ) _ 98.1 N
3 k 2()Xl0 3 N/m 20x'10 3 N/m

Denoting by X* the total maximum deflection of the spring, we write

T a = l(m A + m B )v'i = £(30 kg + 10kg)(4.70m/s) 2 = 442 J

V s = V, + V t = + |fcr 2 = |(20 X 10 3 )(4.91 X 10" 3 ) 2 = 0.241 J
T 4 = o

V* = Vg+ V « = ( W a + W B )(-ft) + Ifcx-f = -(392)ft + |(20 X 10 3 )* 2

Noting that the displacement of the pan is ft = x& — x 3 , we write

r a + v 8 = 3; + v 4i

442 + 0.241 = - 392(.r 4 - 4.91 X 10" 3 ) + |(20 X 10 3 )x=f

x 4 = 0.230 m ft = i 4 - * 3 = 0.230 m - 4.91 X 10~ 3 m

ft = 0.225 m ft = 225 mm -^
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12 ft/> Sfl/s

13.134 The coefficient of restitution between the two collars is

known to be 0.75; determine (a) their velocities after impact, (b) the

energy loss during the impact.

ill) 3 II.

8

Fig. P13.134

13.135 Solve Proh. 13.134, assuming that the velocity of collar B
is 4 ft/s to the right.

13.136 Two steel blocks slide without friction on a horizontal

surface; immediately before impact their velocities are as shown.
Knowing that e = 0.75, determine («) their velocities after impact,

(b) the energy loss during impact.

4 m/s 2 m/s

0.6 kg 0.9 k R

A H

Fig. P13.136 and P13.137

13.137 The velocities of two steel blocks before impact are as

shown. If after the impact the velocity of block B is observed to be

2.5 m/s to the right, determine the coefficient of restitution between
the two blocks.

13.138 As ball A is falling, a juggler tosses an identical ball B

which strikes ball A. The line of impact forms an angle of 30° with the

vertical. Assuming the balls frictionless and e = 0.8, determine the
velocity of each ball immediately after impact.

13.139 Two identical pucks A and B, of 80-inni diameter, may

move freely on a hockey rink. Puck B is at rest and puck A has an
initial velocity v as shown, (a) Knowing that b = 40 mm and e = 0.80,
and assuming no friction, determine the velocity of each puck after the

impact, (fo) Show that if e = 1, the final velocities of the pucks form a

right angle for all values of b.cv , = 4 m/s

v s = 5 m/s

Fig. P13.138

Fig. P13.139

13.1 40 Assuming perfectly elastic impact, determine the velocity

imparted to a quarter-dollar coin which is at rest and is struck squarely

by (a) a dime moving with a velocity v„, [b) a half-dollar moving with a
velocity v . (Masses: half-dollar, 192.9 grains; quarter dollar, 96.45

grains; dime, 38.58 grains.)
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13.141 A dime which is at rest on a rough surface is struck
squarely by a half dollar moving to the right. After the impact, each
coin slides and comes to rest; the dime slides 19.2 in. to the right, and

the half dollar slides 3.8 in. to the right. Assuming the coefficient of
friction is the same for each coin, determine the value of the coefficient

of restitution between the coins. (See Prob. 13.140 for the mass of

United Slates coins.)

"O-

Fig. P13.142

13.142 A ball is thrown into a 90° corner with an initial velocity

v. Denoting the coefficient of restitution by e and assuming no friction,
show that the final velocity v' is of magnitude ev and that the initial

and final paths AS and CD are parallel.

13.143 A steel ball falling vertically strikes a rigid plate A and
rebounds horizontally as shown. Denoting by e the coefficient of
restitution and assuming no friction, determine (a) the required angle
0, (b) the magnitude of the velocity v r

Fig. P13.143

_o

• VTviv^-
— di — L d 2 -- ,l. s -

Fig. P13.144, P13.145, and P13.146

13.144 A ball is dropped from a height /i u = 36 in. onto a
frictionless floor. Knowing that for the first bounce /ij = 32 in. and
<i, = 16 in., determine (a) the coefficient of restitution, (b) the height

and length of the second bounce.

1 3.145 A ball is dropped onto a frictionless floor and allowed to
bounce several times as shown. Derive an expression for the coefficient

of restitution in terms of (a) the heights of two successive bounces /i n
and /i nJ .!, (6) the lengths of two successive bounces d„ and d n , ,, (c) the
durations of two successive bounces t, and (L.,.

1 3.146 A ball is dropped onto a frictionless floor and bounces as
shown. The lengths of the first two bounces are measured and found to

be rf, = 14.5 in. and d 2 = 12.8 in. Determine (a) the coefficient of
restitution, (fo) the expected length d 3 of the third bounce.
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1 3.147 A ball is dropped from a height h above the landing and

bounces down a flight of stairs. Denoting by e the coefficient of
restitution, determine the value of h for which the bail will bounce to

the same height above each step.

1 r
1

P31
d

1
V \

d

1 :

.
\(
V

i
Fig. P13.14

i
7

sbe
¥

A i

Fig. P13.148

# 13.148 Ball B is suspended by an inextensible cord. An identical

ball A is released from rest when it is just touching the cord and

acquires a velocity v before striking ball R. Assuming e = 1 and no
friction, determine the velocity of each ball immediately after impact.

* 1 3.1 49 A 2-kg sphere moving to the left with a velocity of 10 m/s

strikes the frictionless, inclined surface of a 5-kg block which is at rest.
The block rests on rollers and may move freely in the horizontal

direction. Knowing that e = 0.75, determine the velocities of the

block and of the sphere immediately after impact.g10 m/s

o
n n n n n

Fig. P13.149

1 3.1 50 The 4.5-kg sphere A strikes the 1.5-kg sphere B. Knowing

that e = 0.90, determine the angle A at which A must be released
if the maximum angle 6 B reached by B is to be 90°.

1 3.1 51 The 4.5-kg sphere A is released from rest when A = 60°

and strikes the 1.5-kg sphere B. Knowing that e = 0.90, determine
(a) the highest position to which sphere B will rise, (b) the maximum
tension which will occur in the cord holding B. Fig. P1 3.150 and P13.151
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13.152 Block A is released when A = 90° and slides without
friction until it strikes ball B. Knowing that e = 0.90, determine

{a) the velocity of B immediately after impact, [b) the maximum
tension in the cord holding B, (c) the maximum height to which ball B
will rise.

r - 2 ft

-SJ

S
3ft

JlO
4 lb

Fig. P13.1S2

5()(J lb

dFig. P13.154 and P13.155

1 3.1 53 What should be the value of the angle A in Prob. 13.152
if the maximum angle between the cord holding ball B and the vertical
is to be 45°?

1 3.1 54 It is desired to drive the 400-lb pile into the ground until

the resistance to its penetration is 24,000 lb. Each blow of the 1500-lb

hammer is the result of a 4-ft free fall onto the top of the pile.
Determine how far the pile will be driven into the ground by a single-
blow when the 24,000-lb resistance is achieved. Assume that the

impact is perfectly plastic.

13.155 The 1500-lb hammer of a drop-hammer pile driver falls

from a height of 4 ft onto the top of a 400-lb pile. The pile is driven

4 in. into the ground. Assuming perfectly plastic impact, determine

the average resistance of the ground to penetration.

13.156 Cylinder A is dropped 2 m onto cylinder B, which is

resting on a spring of constant k = 3 kN/m. Assuming a perfectly
plastic impact, determine (a) the maximum deflection of cylinder B,

(b) the energy loss during the impact.

s 0.5 kg

2 m

J

r
2.5 kg

. 1
Fig. P13.156
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13.157 The efficiency i) of a drop-hammer pile driver may be
defined as the ratio of the kinetic energy available after impact to

the kinetic energy immediately before impact. Denoting by r the ratio

of the pile mass m p to the hammer mass m h , and assuming perfectly
plastic impact, show that r; = 1/(1 + r).

'

13.158 A bumper is designed to protect a ]600-kg automobile , ---^T'X __
from damage when it hits a rigid wall at speeds up to 12km/h. O ~^&
Assuming perfectly plastic impact, determine (</) the energy absorbed (<•)
by the bumper during the impact, (b) the speed at which the automo-
bile can hit another 1600-kg automobile without incurring any

damage, if the other automobile is at rest and is similarly protected.
(b)

Fig. P13.158

13.159 Solve Prob. 13.158, assuming a coefficient of restitution

e = 0.50. Show that the answer to part b is independent of e.

13.1 60 A small rivet connecting two pieces of sheet metal is being

clinched by hammering. Determine the energy absorbed by the rivet
under each blow, knowing that the head of the hammer weighs 1.5 lb

and that it strikes the rivet with a velocity of 20 ft/s. Assume that

the anvil is supported by springs and (a) is infinite in weight (rigid
support), (b) weighs 10 lb.

* 13.161 A ball of mass m, moving to the right with a velocity v 4 — 1~

strikes a second ball of mass m B which is at rest. Derive an expression (^T\ ' ¦ 1
for the kinetic-energy loss during impact. Assume that the balls strike V_/ \J_y
each other squarely, and denote the coefficient of restitution by e. Fig. P13.161

REVIEW PROBLEMS

1 3.1 62 Collar B has an initial velocity of 2 m/s. It strikes collar A

causing a series of impacts involving the collars and the fixed support
at C. Assuming e = 1 for all impacts and neglecting friction, deter-
mine (a) the number of impacts which will occur, (b) the final velocity

of B, (c) the final position of A.

-MOmm-H v„-2m/s

a
IS

0.5 kg 1.5 k«

Fig. P13.162
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k- 3 lb/in.

Fig. P13.163

13.163 The 0.5-lb pellet is released when the spring is com-
pressed 6 in. and travels without friction around the vertical loop
ABCD. Determine the force exerted by the loop on the pellet (a) at
point A, (h) at point B, (c) at point C.

1 3.1 64 In Prob. 13.163, determine the smallest allowable deflec-

tion of the spring if the pellet is to travel around the entire loop
without leaving the track.

o
Fig. P13.165

1 3.1 65 Show that the values t, and c 2 of the speed of a satellite

at the perigee A and the apogee ,4' of an elliptic orbit are defined by
the relations

0* =
2G.\f

fi + H r,

2GAf r,

'i + r, r.

13.166 The 20-Mg truck and the 40-Mg railroad flatcar are both
at rest with their brakes released. An engine bumps the flatcar and
causes the flatcar alone to start moving with a velocity of 1 m/s to
the right. Assuming e = 1 between the truck and the ends of the
flatcar, determine the velocities of the track and of the flatcar after

end A strikes the truck. Describe the subsequent motion of the sys-
tem. Neglect the effect of friction.pFig. P13.166

13.167 An elevator travels upward at a constant speed of 2 m/s.
A boy riding the elevator throws a 0.8-kg stone upward with a speed
of 4 m/s relative to the elevator. Determine (a) the work done by
the boy in throwing the stone, {b) the difference in the values of the

kinetic energy of the stone before and after it was thrown, (c) Why

are the values obtained in parts a and b not the same?
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Two blocks are joined by an inextensible cable as shown.
If the system is released from rest, determine the velocity of block
A after it has moved 2 m. Assume that ,u equals 0.25 between block

A and the plane and neglect the mass and friction of the pulleys.

200 kg

3

600 kg

Fig. P13.168 and P13.169

Knowing that the system is released from rest, determine
the additional mass that must be added to block B if its velocity is to be
4 m/s half a second after release. Assume that y. = 0.25 between

block A and the plane and neglect the mass and friction of the pulley.

A steel ball is dropped from A, strikes a rigid, frictionless

steel plate at B, and bounces to point C. Knowing that the coefficient
of restitution is 0.80, determine the distance d.

Two portions AB and BC of the same elastic cord are
connected as shown. The portion of cord BC supports a load W while,
initially, the portion AB is under no tension. Determine the maximum
tension which will develop in the entire cord after the stick DE

suddenly breaks. (Assume that the tensions in AB and BC are instanta-
neously equalized after the stick breaks and that the elongation of the
cord is small compared to L.)

•18 in

Fig. P13.170

» «.

X
I < ''

W

Fig. P13.171
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13.172 A 5-kg collar slides without friction along a rod which
forms an angle of 30° with the vertical. The spring is unstretched
when the collar is at A. If the collar is released from rest at A,

determine the value of the spring constant k for which the collar has
zero velocity at B.

/
0.5 m- ~

/'/¦/'/'AMAA/— pf5)

Fig. P13.172

13.173 In Prob. 13.172, determine the value of the spring con-
stant k for which the velocity of the collar at li is 1.5 m/s.



CHAPTER

Systems +jg
of Particles 1^1

14.1. Application of Newton's Laws to the Motion

of a System of Particles. Effective Forces. We shall

be concerned in this chapter with the application of Newton's

laws of motion to a system of particles, i.e., to a large number of

particles coasidered together. The results obtained will enable us

to analyze the effect of streams of particles on vanes or ducts and
will provide us with the basic principles underlying the theory of

jet and rocket propulsion (Sees. 14.9 through 14.11). Since a

rigid body may be assumed to consist of a very large number of
particles, the principles developed in this chapter will also pro-
vide us with a basis for the study of the kinetics of rigid bodies.

In order to derive the equations of motion for a system of n

particles, we shall begin by writing Newton's second law for each

individual particle of the system. Consider die particle P t , where

1 < i < n. Let m i be the mass of F ( and a, its acceleration with

respect to the newtonian frame of reference Oxyz. We shall

denote by f tj the force exerted on P { by another particle E of the
system (Fig. 14.1); this force is called an internal force. The

resultant of the internal forces exerted on P t by all the other
n

particles of the system is thus ^ ^a (where i H has no meaning
;=i

and is assumed equal to zero). Denoting, on the other hand, by F (

611

_— ©

Fig. 14.1
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the resultant of all the external forces acting on P t , we write
Newton's second law for the particle P j as follows:

n
(14.1)

Denoting by ti the position vector of P i and taking the moments
about of the various terms in Eq. (14.1), we also write

U x F,

)
'i X to = *i X m,a. (14.2)

Repeating this procedure for each particle P i of the system, we
obtain n equations of the type (14.1) and n equations of the type
(14.2), where i takes successively the values 1, 2, ... , n. The

vectors m { a t are referred to as the effective forces of the parti-

cles. Thus the equations obtained express the fact that the exter-

nal forces Fj and the internal forces f ,,- acting on the various
particles form a system equivalent to the system of the effective

forces n^a, (i.e., one system may be replaced by the other)
(Fig. 14.2).

Before proceeding further with our derivation, let us examine

the internal forces { tj . We note that these forces occur in pairs f^,
f (j , where f i; represents the force exerted by the particle E on the
particle P i and f- ( the force exerted by P i on P. (Fig. 14.2). Now,ts

Fig. 14.2

according to Newton's third law (Sec. 6.1), as extended by New-

ton's law of gravitation to particles acting at a distance (Sec.

12.9), the forces f tj and f ;i are equal and opposite and have the
same line of action. Their sum is therefore £y + i^, = and the
sum of their moments about O is

r, X ty + r, X f H = r, X (f„ + ifi) + (ij - r t ) X f /4 =

since the vectors r, — rj and L in the last term are collinear.
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Adding all the internal forces of the system, and summing their

moments about G, we obtain the equations

22% =° s:>>ixy = o (14.3)

which express the fact that the resultant and the moment result-

ant of the internal forces of the system are zero.

Returning now to the n equations (14.1), where 1 = 1,
2, . . . , n, we add them member by member. Taking into account

the first of Eqs. (14.3), we obtain

2 F « = 2 m » a « (14.4)
i = l

Proceeding similarly with Eqs. (14.2), and taking into account the
second of Eqs. (14.3), we have

^ j (r i XF i )=^ j (r i Xm i a i ) (14.5)
i=l

Equations (14.4) and (14.5) express the fact that the system of

the external forces F ( and the system of the effective forces m,a (
have the same resultant and the same moment resultant. Refer-

ring to the definition given in Sec. 3.18 for two equipollent
systems of vectors, we may therefore state that the system of the

external forces acting on the particles and the system of the

effective forces of the particles are equipollent] (Fig. 14.3).

^
O

K </*<"¦--
P,

Fig. 14.3

f The result just obtained is often referred to as D' Akmbe.it' s principle, after
the French mathematician Jean le Rond d'Alembcrt (1717-1783). However,
d'Alembert's original statement refers to the motion of a system of connected
bodies, with i tj representing constraint forces which, if applied by themselves,
will not cause the system to move. Since, as it will now be shown, this is in

general not the case for the internal forces acting on a system of free particles, we shall postpone the consideration of D'Alembert's principle until the study of
the motion of rigid bodies (Chap. 16).
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We may note that Eqs. (14.3) express the fact that the system

of the internal forces f sj is equipollent to zero. It does not follow,
however, that the internal forces have no effect on the particles

under consideration. Indeed, the gravitational forces that the sun
and the planets exert on each other are internal to the solar
system and equipollent to zero. Yet these forces are alone re-
sponsible for the motion of the planets about the sun.

Similarly, it does not follow from Eqs. (14.4) and (14.5) that
two systems of external forces which have the same resultant and
the same moment resultant will have the same effect on a given

system of particles. Clearly, the systems shown in Figs. 14.4o and
14.4/? have the same resultant and the same moment resultant;

yet the first system accelerates particle A and leaves particle B
imaffectcd, while the second accelerates B and does not affect A.

7

o,

(a)

Fig. 14.4a
w B

/..

It is important to recall that, when we stated in Sec. 3.18 that

two equipollent systems of forces acting on a rigid body are also

equivalent, we specifically noted that this property could not be

extended to a system of forces acting on a set of independent
particles such as those considered in this chapter.

In order to avoid any confusion, we shall use gray equals signs

to connect equipollent systems of vectors, such as those shown in
Figs. 14.3 and 14.4. These signs will indicate that the two sys-
tems of vectors have the same resultant and the same moment

resultant. Blue equals signs will continue to be used to indicate
that two systems of vectors are equivalent, i.e., that one system
may actually be replaced by the other (Fig. 14.2).

14.2. Linear and Angular Momentum of a System

of Particles. Equations (14.4) and (14.5), obtained in the

preceding section for the motion of a system of particles, may be

expressed in a more condensed form if we introduce the linear
and the angular momentum of the system of particles. Defining

the linear momentum L of the system of particles as the sum of
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the linear momenta of the various particles of the system (Sec.
12.2), we write

L=X"V< (14.6)
i=l

Defining the angular momentum H about O of the system of
particles in a similar way (Sec. 12.6), we have

n

H = '£(r i Xtn i v i ) (14.7)
i=l

Differentiating both members of Eqs. (14.6) and (14.7) with
respect to t, we write

L=2m J v J = £ro,a 1 (14.8)
i=i i=i

and

Ho = 2 ft X m^) + ^ (r,- X m iVi )
i = l

i=l i=l

which reduces to

n

H =2(r*Xm i a,) (14.9)
f=i

since the vectors v ; and m i v i are collinear.

We observe that the right-hand members of Eqs. (14.8) and

(14.9) are, respectively, identical with the right-hand members of
Eqs. (14.4) and (14.5). It follows that the left-hand members of

these equations are respectively equal. Recalling that the left-

hand member of Eq. (14.5) represents the sum of the moments

M about O of the external forces acting on the particles of the

system, and omitting the subscript i from the sums, we write

2F = L (14.10)

2M o = H (14.11)

These equations express that the resultant and the moment
resultant about the fixed point O of the external forces are respec-
tively equal to the rates of change of the linear momentum and of
the angular momentum about O of the system of particles.
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14.3. Motion of the Mass Center of a System of

Particles. Equation (14.10) may be written in an alternate

form if the mass center of the system of particles is considered.
The mass center of the system is the point G defined by the
position vector r which satisfies the relation

mr = 2 m * < 14 - 12 )

where m represents the total mass V m t of the particles. Re-
i=l

solving the position vectors r and r ; into rectangular components,

we obtain the following three scalar equations, which may be
used to determine the coordinates x, y, z of the mass center:

n n n

mx = 2 ™**i m 9 = 2 m *Vi "** = 2 m i 2 » ( 14 - 12 ')
i = l i=1 1 = 1

Since m ( g represents the weight of the particle P,, and Dig the

total weight of the particles, we note that G is also the center of
gravity of the system of particles. However, in order to avoid
any confusion, we shall call G the mass center of the system of
particles when discussing properties of the system associated
with the mass of die particles, and we shall refer to it as the
center of gravity of the system when considering properties

associated with the weight of the particles. Particles located
outside the gravitational field of the earth, for example, have a

mass but no weight. We may then properly refer to their mass

center, but obviously not to their center of gravity. f
Differentiating both members of Eq. (14.12) with respect to t,

we write

n

or

mv = ^ "W (14.13)
i=l

I It may also be pointed out that the mass center and the center of gravity of
a system of particles do not exactly coincide, since the weights of the particles
are directed toward the center of the earth and thus do not truly form a system
of parallel forces.
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where v represents the velocity of the mass center G of the

system of particles. But the right-hand member of Eq. ( 14. 13) is, by definition, the linear momentum L of the system (Sec. 14,2).
We have therefore

L=mv (14.14)

and, differentiating both members with respect to t.

L = mi (14.15,

where a represents the acceleration of the mass center C. Sub-

stituting for L from (14.15) into (14.10), we write the equation

SF = ma (14.16)

which defines the motion of the mass center G of the system of
particles.

We note that Eq. (14.16) is identical with the equation we
would obtain for a particle of mass m equal to the total mass of
the particles of the system, acted upon by all the external forces.
We state therefore: Tlie mass center of a system of particles
motes as if the entire mass of tire system and all the external
forces were concentrated at that point.

This principle is best illustrated by the motion of an exploding
shell. We know that, if the resistance of the air is neglected, a
shell may be assumed to travel along a parabolic path. After the
shell has exploded, the mass center G of the fragments of shell
will continue to travel along the same path. Indeed, point G

must move as if the mass and the weight of all fragments were
concentrated at G; it must move, therefore, as if the shell had not

exploded.

It should be noted that the preceding derivation does not
involve the moments of the external forces. Therefore, it would

he wrong to assume that the external forces are equipollent to a
vector ma attached at die mass center G. This is, in general, not
the case, since, as we shall see in the next section, the sum of the

moments about G of die external forces is, in general, not equal
to zero.

1 4.4. Angular Momentum of a System of Particles

about Its Mass Center. In some applications (for example,
in the analysis of the motion of a rigid body) it is convenient to
consider the motion of the particles of the system with respect to
a centroidal frame of reference Gx'y'z' which translates with

respect to the newtonian frame of reference Oxyz (Fig. 14.5).
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Fig. 14.5

While such a frame is not, in general, a newtonian frame of
reference, we shall see that the fundamental relation (14.11) still

holds when the frame Oxyz is replaced by Cx'y'z'.

Denoting respectively by r,' and vj the position vector and the
velocity of the particle P t relative to the moving frame of refer-
ence Gx'y'z 1 , we define the angular momentum H' G of the system

of particles about tiie mass center G as follows:

H'g

e
m,v0 (14.17)

We now differentiate both members of Eq. (14.17) with respect

to t. This operation being similar to that performed in Sec. 14.2
on Eq. (14.7), we write immediately

He = i>J X m^) (14.18)

where a| denotes the acceleration of P f relative to the moving
frame of reference. Referring to Sec. 11.12, we write

a ; = a + a,'

where a t and a denote, respectively, the accelerations of P t and G
relative to the frame Oxyz. Solving for aj and substituting into
(14.18), we have

ii'a =2«Xm 1 a i )-
i=l \=1 '

X a (14.19)

But, by (14.12), the second sum in Eq. (14.19) is equal to mi' and,
thus, to zero, since the position vector F of G relative to die
frame Gx'y'z' is clearly zero. On the other hand, since a t repre-
sents the acceleration of P i relative to a newtonian frame, we

may use Eq. (14.1) and replace m^ by the sum of the internal
forces f i; and of the resultant F 4 of the external forces acting on
Pj. But a reasoning similar to that used in Sec. 14.1 shows that
the moment resultant about G of the internal forces f tj of the
entire system is zero. The first sum in Eq. (14.19) reduces there-
fore to the moment resultant about G of the external forces

acting on the particles of the system, and we write

2M fl = h;. (14.20)

which expresses that the moment resultant about G of the exter-
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rial forces is equal to the rate of change of the angular momentum
about G of the system of particles.

It should be noted that, in Eq. (14.17), we defined the angular
momentum W n as the sum of the moments about G' of the mo-

menta of the particles m,-v{ in their motion relative to the centroi-

dal frame of reference Gx'y'z'. We may sometimes want to
compute the sum H G of the moments about G of the momenta of

the particles m j v i in their absolute motion, i.e., in their motion as
observed from the newtonian frame of reference Oxyz (Fig.
14.6):

H,

g
Yi X ro,V;) (14.21)

Fig. 14.6

Remarkably, the angular momenta H' G and H are identically
equal. This may be verified by referring to Sec. 11.12 and writ-

ing

v ; = v + v| (14.22)

Substituting for v, from (14.22) into Eq. (14.21), we have

H^fim^Xv+^rJXm,,!)

But, as observed earlier, the first sum is equal to zero. Thus H fl .

reduces to the second sum which, by definition, is equal to H„.f

\ Note that this property is peculiar to the centroidal frame Cx'y'z' and does
not hold, in general, for other frames of reference (see Prob. 14,19).
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Taking advantage of the property we have just established, we
shall simplify our notation by dropping the prime (') from Eq.
(14.20). We therefore write

2M G = He (14.23)

where it is understood that the angular momentum H G may be

computed by forming the moments about G of the momenta of
the particles in their motion with respect to either the newtonian
frame Oxijz or the centroidal frame Gx'y'z':

H G = £ (rj X m iVi ) = £ « X mrf) (14.24)
i=l 4=1

1 4.5. Conservation of Momentum for a System of

Particles. If no external force acts on the particles of a
system, the left-hand members of Eqs. (14.10) and (14.11) are
equal to zero and these equations reduce to L = and H = 0.
We conclude that

L = constant Hy = constant (14.25)

The equations obtained express that the linear momentum of the

system of particles and its angular momentum about the fixed
point O are conserved.

In some applications, such as problems involving central
forces, the moment about a fixed point O of each of the external

forces may be zero, without any of the forces being zero. In such
cases, the second of Eqs. (14.25) still holds; the angular momen-

tum of the system of particles about O is conserved.

The concept of conservation of momentum may also be ap-

plied to the analysis of the motion of the mass center G of a
system of particles and to the analysis of the motion of the system

about G. For example, if the sum of the external forces is zero,

the first of Eqs. (14.25) applies. Recalling Eq. (14.14), we write

v = constant (14.26)

which expresses that the mass center G of the system moves in a

straight line and at a constant speed. On the other hand, if the
sum of the moments about G of the external forces is zero, it

follows from Eq. (14.23) that the angular momentum of the
system about its mass center is conserved:

H G = constant (14.27)



SAMPLE PROBLEM 14.1

A 200-kg space vehicle is observed at t = to pass through the origin
of a newtonian reference frame Oxyz with the velocity v = (150 m/s)i
relative to the frame. Following the detonation of explosive charges,
the vehicle separates into three parts. A, B, and C, of mass 100 kg,
60 kg, and 40 kg, respectively. Knowing that, at t = 2.5 s, the positions
of parts A and B arc observed to be A(555, —180, 240) and

£(255, 0, — 120), where the coordinates are expressed in meters, deter-
mine the position of part C at that time.

Solution, Since there is no external force, the mass center C of the

system moves with the constant velocity v = (150 m/s)i. At t = 2.5 s,
its position is

7 = v r = (150 m/s)i(2.5 s) = (375 m)i

Recalling Eq. (14.12), we write

ror = m A t A + m B r B + m c x c

(200 kg)(375 m)i = (100 kg)[(555 m)i - (180 m)j + (240 m)k]

+ (60 kg) [(255 m)i - (120 m)k] + (40 kg)r c

r ( . — 105 nri — 150 m J — (420 m)k -^

y
SAMPLE PROBLEM 14.2

/ A 20-lb projectile is moving with a velocity of 100 ft/sec when it

"0 Ibr"^- '' V 5 ° explodes into two fragments A and B, weighing 5 lb and 15 lb, respec-
^ ^Zjst)' tively. Knowing that immediately after the explosion the fragments

151b B travel in the directions shown, determine the velocity of each frag-
ment.

m y
Solution. Since there is no external force, the linear momentum of

the system is conserved, and we write

45° m A*A + ' n flV B = mv

M? (5/gK + (15/g)v B = (20/g)v

'£L A x components: 5v A cos 45° + 15% cos 30° = 20(100)
Ti^N*. + t!/ components: 5c,, sin 45° - 15% sin 30° =

Solving simultaneously the two equations for o A and v B , we have

v A = 207 ft/s v B = 97.6 ft/s

v A = 207 ft/s ^L 45° v fl = 97.6 ft/s "^ 30°

621
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PROBLEMS

14.1 Two men dive horizontally and to the right off the end of a

300-0) boat. The boat is initially at rest, and each man weighs 150 lb.
If each man dives so that his relative horizontal velocity with respect

to the boat is 12 ft/s, determine (a) the velocity of the boat after the

men dive simultaneously, (b) the velocity of the boat after one man
dives and the velocity of the boat after the second man dives.

H Icm/h

m
65 Mg

Fig. P14.2

4 m/s

A B

Fig. P14.3

1 4.2 A 65-Mg engine coasting at 6 km/h strikes, and is automati-
cally coupled with, a 10-Mg flat car which carries a 25- Mg load. The
load is not securely fastened to the car but may slide along the dool-
ie = 0.20). Knowing that the car was at rest with its brakes released
and that the coupling takes place instantaneously, determine the
velocity of the engine (a) immediately after the coupling, (b) after the
load has slid to a stop relative to the car.

1 4.3 Two identical balls B and C are at rest when ball B is struck

by a ball A of the same mass, moving with a velocity of 4 m/s. This
causes a series of collisions between the various balls. Knowing that

e = 0.40, determine the velocity of each ball after all collisions have
taken place.

._ .,

3ll> 9 lb

Fig. P14.4itrrFig. P14.5

14.4 A f-oz bullet is fired in a horizontal direction through block
A and becomes embedded in block B. The bullet causes A and B to

start moving with velocities of 8 and 6 ft/s, respectively. Determine

(a) the initial velocity v u of the bullet, (b) the velocity of the bullet as it
travels from block A to block B.

1 4.5 A system consists of three particles A, B, and C. We know
that W A =2 lb, W„ = 3 lb, and W c = 4 lb and that the velocities of
the particles expressed in feet per second are, respectively,
v H = - lOj + 5k, v„ = 8i - 6j + 4k, and v c = oj + i>„j + 10k. De-

termine (a) the components v x and v y of the velocity of particle C for
which the angular momentum H of the system about O is parallel to

the z axis, (b) the corresponding value of H .

14.6 For the system of particles of Prob. 14.5, determine (a) the

components v r and v y of the velocity of particle C for which the angular momentum H of the system about O is parallel to the x axis,
(/?) the corresponding value of H .
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1 4.7 A system consists of three particles A, B, and C. We know
that m A = 1 kg, m B - 2 kg, and m c = 3 kg and that the velocities of
the particles expressed in meters per second are, respectively,
v 4 = 3i - 2j + 4k, v B = 4i + 3j, and v c = 2i + 5j - 3k. (a) Deter-

mine the angular momentum H of the system about O. (fa) Using the
result of part a and the answers to Prob. 14.8, check that the relation
given in Prob. 14.17 is satisfied.

4.8 For the system of particles of Prob. 14.7, determine (a) the

position vector 7 of the mass center C of the system, (fa) the linear
momentum niv of the system, (c) the angular momentum H of the
system about G.

A 240-kg space vehicle traveling with the velocity

v = (500 m/s)k passes through the origin O at I — 0. Explosive charges then separate the vehicle into three parts, A, B, and C, of mass
40 kg, 80 kg, and 120 kg, respectively. Knowing that at t = 3 s the
positions of parts B and C are observed to be B(375, 825, 2025) and

C'(— 300, —600, 1200), where the coordinates are expressed in meters',
determine the corresponding position of part A. Neglect the effect of
gravity.

a
Fig. P14.7

14.10 Two 30-lb cannon balls are chained together and fired
horizontally with a velocity of 500 ft/s from the top of a 45- ft wall.
The chain breaks during the flight of the cannon balls and one of them
strikes the ground at l = 1.5 s, at a distance of 720 ft from the foot of

the wall, and 21 ft to the right of the line of fire. Determine the

position of the other cannon ball at that instant. Neglect the resistance
of the air.

1 4.1 1 Solve Prob. 14.10, if the cannon ball which first strikes the

ground weighs 24 lb and the other 36 lb. Assume that the time of flight

and the point of impact of the first cannon ball remain the same.tFig. P14.10

'¦ A 10-kg projectile is passing through the origin with a
velocity v = (60 m/s)i when it explodes into two fragments, A and B,
of mass 4 kg and 6 kg, respectively. Knowing that, 2 s later, the posi-
tion of the first fragment is A(150 m, 12 m, —24 m), determine the

position of fragment B at the same instant. Assume g = 9.81 m/s 2 and
neglect the resistance of the air.

I An archer hits a game bird flying in a horizontal straight
line 30 ft above the ground with a 500-grain wooden arrow [ 1 grain =
(1/7000) lb]. Knowing that the arrow strikes the bird from behind with
a velocity of 350 ft/s at an angle of 30° with the vertical, and that the
bird falls to the ground in 1.5 s and 48 ft beyond the point where it was
hit, determine (a) the weight of the bird, (fa) the speed at which it was
Hying when it was hit.
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4
14.14 In a game of billiards, ball A is moving with the velocity

v = (10 ft/s)i when it strikes balls B and C which are at rest side by
side. After the collision, A is observed to move with the veloc-

ity v A = (3,92 ft/s)i — (4,56 ft/s)j, while B and C move in the direc-
tions shown. Determine the magnitudes of the velocities v g and v c .

14.15 A 5-kg object is falling vertically when, at point D, it
explodes into three fragments A, B, and C, weighing, respectively,
1.5 kg, 2.5 kg, and 1 kg. Immediately after the explosion the velocity of
each fragment is directed as shown and the speed of fragment A is
observed to be 70m/s. Determine the velocity of the 5-kg object

immediately before the explosion.

.
Fig. P14.15

sFig. P14.16

1 4.1 6 In a scattering experiment, an alpha particle A is projected
with the velocity u = -{600 m/s)i + (750 m/s)j - (800 m/s)k into a

stream of oxygen nuclei moving with the common velocity
v = (600 m/s)j. After colliding successively with the nuclei B and C,
particle A is observed to move along the path defined by the points
A 1 (280, 240, 120), A 2 (360, 320, 160), while nuclei B and C are observed
to move along paths defined, respectively, by £,( 147, 220, 130), B 2 (114,
290, 120) and by C,(240, 232, 90), C 2 (240, 280, 75). All paths are along
straight lines and all coordinates are expressed in millimeters. Know-
ing that the mass of an oxygen nucleus is four times that of an alpha
particle, determine the speed of each of the three particles after the
collisions.

1 4. 1 7 Derive the relation

H = r X mv + H„

between the angular momenta H and H„ defined in Eqs, (14.7) and
(14.24), respectively. The vectors r and v define, respectively, the
position and velocity of the mass center C of the system of particles
relative to the newtonian frame of reference Oxyz, and m represents

the total mass of the system.



14.18 Show that Eq. (14.23) may be derived directly from Eq.
(14.11) by substituting for H the expression given in Prob. 14.17.

14.19 Consider the frame of reference Ax'y'z 1 in translation with
respect to the newtonian frame of reference Oxyz. We define the
angular momentum H A of a system of n particles about A as the sum

H.4 = »;x™,v; (1)

of the moments about A of the momenta njjV,' of the particles in their
motion relative to the frame Ax'y'z'. Denoting by II,, the sum

SYSTEMS OF PARTICLES 625

H, = X rj X m^t (2)

of the moments about A of the momenta nijVj of the particles in their
motion relative to the newtonian frame Oxyz, show that H^ = H!, at a
given instant if, and only if, one of the following conditions is satisfied

at that instant: (a) A has zero velocity with respect to the frame Oxyz,
(b) A coincides with the mass center G of the system, (c) the velocity v A
relative to Oxyz is directed along the line AG.

HFig. P14.19

14.20 Show that the relation

SM, = H' A

where H^, is denned by Eq. (1) of Prob. 14.19 and where ZM A repre-

sents the sum of the moments about A of the external forces acting on
the system of particles, is valid if, and only if, one of the following
conditions is satisfied: (a) the frame Ax'y'z 1 is itself a newtonian frame
of reference, (b) A coincides with the mass center G, (c) the accelera-
tion a A of A relative to Oxyz is directed along the line AG.
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1 4.6. Kinetic Energy of a System of Particles. The

kinetic energy T of a system of particles is defined as the sum of
the kinetic energies of the various particles of the system. Refer-

ring to Sec. 13.3, we therefore write

4
m.v:i»i (14.28)

1=1

Using a Centroidal Frame of Reference. It is often con-

venient, when computing the kinetic energy of a system com-
prising a large number of particles (as in the case of a rigid body),
to consider separately the motion of the mass center G of the
system and the motion of the system relative to a moving frame
of reference attached to G.

Let P t be a particle of the system, \ i its velocity relative to the
newtonian frame of reference Oxyz, and \[ its velocity relative to

the moving frame Gx'y'z' which is in translation with respect to
Oxyz (Fig. 14.7). We recall from the preceding section that

v, = v + vj (14.22)

where v denotes the velocity of the mass center G relative to the

newtonian frame Oxyz. Observing that v'f is equal to the scalar

Fig. 14.7

product Vj • v,, we express as follows the kinetic energy T of the
system relative to the newtonian frame Oxyz:

1 i=i z .=i
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or, substituting for v f from (14.22),

The first sum represents the total mass m of the system. Recalling
Eq. (14.13), we note that the second sum is equal to mv' and thus
to zero, since v', which represents the velocity of G relative to
the frame Gx'y'z', is clearly zero. We therefore write

r = ^ 2 + ji»vf (14.29)
i = l

This equation shows that the kinetic energy T of a system of
particles may be obtained by adding the kinetic energy of the

muss center C (assuming the entire mass concentrated at G) and the kinetic energy of the system in its motion relative to the frame
Gx'y'z'.

14.7. Work-Energy Principle. Conservation of

Energy for a System of Particles. The principle of work
and energy may be applied to each particle P { of a system of
particles. We write

t, + r/ M = r„ (14.30)

for each particle P f , where U r _. 2 represents the work done by the internal forces fy and the resultant external force F, acting on l\.
Adding the kinetic energies of the various particles of the system,

and considering the work of all the forces involved, we may apply Eq. (14.30) to the entire system. The quantities T, and T 2
now represent the kinetic energy of the entire system and may be
computed from either Eq. (14.28) or Eq. (14.29). The quantity
U 1 . 2 represents the work of all the forces acting on the particles

of the system. We should note that, while the internal forces f (/ and f ;j are equal and opposite, the work of these forces, in
general, will not cancel out, since the particles P, and E on which
they act will, in general, undergo different displacements.
Therefore, in computing U 1 . 2 , we should consider the work of
the internal forces f j; as well as the work of the external forces F f .
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If all the forces acting on the particles of the system are
conservative, Eq. (14.30) may be replaced by

T 1 + V, = T. z + V. 2 (14.31)

where V represents the potential energy associated with the
internal and external forces acting on the particles of the system.

Equation (14.31) expresses the principle of conservation of en-
ergy for the system of particles.

14.8. Principle of Impulse and Momentum for a
System of Particles. Integrating Eqs. (14.10) and (14.11) in

t from a time t t to a time t 2 , we write

^ / ' F dt = L 2 - L, (14.32)

2j' 2 M d(=(H ) 2 -(H c ), (H.33)

Recalling the definition of the linear impulse of a force given in
Sec. 13.10, we observe that the integrals in Eq. (14.32) represent

the linear impulses of the external forces acting on the particles

of the system. We shall refer in a similar way to the integrals in Eq. (14.33) as the angular impulses about O of the external
forces. Thus, Eq. (14.32) expresses that the sum of the linear
impulses of the external forces acting on the system is equal to

the change in linear momentum of the system. Similarly, Eq. (14.33) expresses that the sum of the angular impulses about O of
the external forces is equal to the change in angular momentum
about O of the system.

In order to understand the physical significance of Eqs. (14.32)
and (14.33), we shall rearrange die terms in these equations and
write

L x + 2 | ' F dt = L 2 (14.34)
'i

(Ho)i+2/' 2 M * = (H„) 2 (14.35)

We have sketched in parts a and c of Fig. 14.8 the momenta of
the particles of the system at times «, and t 2 , respectively, and we
have shown in part b of the same figure a vector equal to the sum
of the linear impulses of the external forces and a couple of
moment equal to the sum of the angular impulses about O of the
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external forces. For simplicity, the particles have been assumed
to move in the plane of the figure, but the present discussion

remains valid in the case of particles moving in space. Recalling from Eq. (14.6) that L, by definition, is the resultant of the
momenta m^, we note that Eq. (14.34) expresses that the result-

ant of the vectors shown in parts a and b of Fig. 14.8 is equal to

(">r v h\

(m c v c ),

(«)

Fig. 14.8

s
(m 4 » A ), (»'bV 2

(m c v c ) s

(e)

the resultant of the vectors shown in part c of the same figure.
Recalling from Eq. (14.7) that H is the moment resultant of the

momenta m,v,, we note that Eq. (14.35) similarly expresses that

the moment resultant of die vectors in parts a and b of Fig. 14.8
is equal to the moment resultant of the vectors in part c. To-
gether, Eqs. (14.34) and (14.35) thus express that the momenta of
the particles at time t t and the impulses of the external forces
from «j to t 2 form a system of vectors equipollent to the system of
the momenta of the particles at time t 2 . This has been indicated
in Fig. 14.8 by the use of gray plus and equals signs.

If no external force acts on the particles of the system, the
integrals in Eqs. (14.34) and (14.35) are zero, and these equations
reduce to

L, = L 2 (14.36)

(Ho), = (H ) 2 (14.37)

We thus check the result obtained in Sec. 14.5: If no external

force acts on the particles of a system, the linear momentum and

the angular momentum about O of the system of particles are conserved. The system of die initial momenta is equipollent to
the system of the final momenta, and it follows that the angular

momentum of the system of particles about any fixed point is conserved.
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SAMPLE PROBLEM 14.3

For (he 200-kg space vehicle of Sample Prob. 14.1, it is known
that, at I = 2.5 s, the velocity of part A is v, =

(270 m/s)i - (120 m/s)j + (160 m/s)k and the velocity of part B is
parallel to the xt plane. Determine the velocity of part C.

Solution. Since there is no external force, the initial momentum

mv is equipollent to the system of the final momenta. Equating first
the sums of the vectors in both parts of the adjoining sketch, and then
the sums of their moments about O, wc write

Lj = L 2 : mv = m A v A + m B v B + m c v c (1)

(H ), = (H ) 2 : = r A X "^v,, + r B X m B \ B + r c X m c v c (2)

Recalling from Sample Prob. 14.1 that v„ = (150m/s)i,

m A = 100 kg m B = 60 kg m c = 40 kg

r A = (555 m)i - (180 m)j + (240 m)k

r fi = (255 m)i - (120 m)k

r c = (105 m)i + (450 m)j - (420 m)k

and using the information given in the statement of this problem, we
rewrite Eqs. (1) and (2) as follows:

200(150i) = 100(270i - 120j + 160k) + 60[(c a ),i + (e„) t k]

+ 40[(o c ),i + (t»a) v j + (v c W

= 100

(!')

i j koi j k+555 -180 240 + 60 255 -120u270 -120 160i(».). o (%)»hofi j knk+40 105 450 -420rdci("o). (»c)y ( V C I-

(2')

Equating to zero the coefficient of j in (1') and the coefficients of i and
k in (2'), we write, after reductions, the three scalar equations

"C/y
-300 =0

450(t> c ), + 420( 1 > C .)„ =

WSlpeiv ~ 450(c c ), - 45 000 =

which yield, respectively,

(v c ) v = 300 (o ), = -280 (v c ) z = -30

The velocity of part C is thus

v c = -(30 m/s)i + (300 m/s)j - (280 m/s)k

630



-8ft-

-
-7ft-

A'

-2ft -H

£*
Ti

=|F

C

3 ft

SAMPLE PROBLEM 14.4

In a game of billiards, ball A is given an initial velocity v of magnitude
v = 10 ft/s along line DA parallel to the axis of the table. It hits ball

B and then ball C, which are both at rest. Knowing that A and C hit
the sides of the table squarely at points A' and C, respectively, that B
hits the side obliquely at B', and assuming frictionless surfaces and

perfectly elastic impacts, determine the velocities v^, v B , and v c with
which the balls hit the sides of the table. (Remark. In this sample
problem and in several of the problems which follow, the billiard balls

are assumed to be particles moving freely in a horizontal plane, rather
than the rolling and sliding spheres they actually are.)

7
n A i "¦ = m 10 .

o
f

2 ft

1

et
'1

etra
O tt H

ei
c

B
7
3 ft

Iil7ftt
Solution. Conservation of Momentum. Since there is no external

force, the initial momentum mv is equipollent to the system of mo-
menta after the two collisions (and before any of the balls hits the side
of the table). Referring to the adjoining sketch, we write

-> x components: m(10 ft/s) - m(v B ) x + mv c (1)

+ ft/ components: = mv A - m(o B ) ¥ (2)

+ 5 moments about O: -(2 ft)m(10 ft/s) = (8 tt)mv A

-(7ft)m(c B ),-(3ft)inc < . (3)

Solving the three equations for v A , (v B ) r , and (v B ) y in terms of v c :

A = (o B ) t = 3t> c - 20 (c B ), = 10 - c c (4)

Contenation of Energy, Since the surfaces are frictionless and the

impacts are perfectly elastic, the initial kinetic energy imoj is equal to
the final kinetic energy of the system:

Imv* = \m A v A + \m B v\ + \m c c%

^+(^)l + (f B )? + ^ = (10ft/s)2 (5)

Substituting for v A , (v B ) r , and (v B ) y from (4) into (5), we have

2(3v c - 20) 2 + (10 - o p )

20o| - 260t) c

+ 1>| = loo

f 800 =

Solving for v c , we find v c = 5 ft/s and v c = 8 ft/s. Since only the
second root yields a positive value for t;^ after substitution into Eqs. (4),
we conclude that v c = 8 ft/s and

3i = (»*), = 3(8) - 20 = 4 ft/s (« B ) X = 10 - 8 m 2 ft/s

v A = 4 li ^ . = 1. 17 ft/s ^ 63.4= » c = 8 II •, -» *m

631
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PROBLEMS

14.21 In Prob. 14.13, determine the amount of energy lost as the
arrow hits the game bird.

14.22 In Prob. 14.14, determine the percentage of the initial

kinetic energy lost due to the impacts among the three balls.

14.23 In Prob. 14.15, determine the work done by the internal

forces during the explosion.

14.24 In Prob. 14.16, determine the percentage of the initial
kinetic energy lost due to the collisions between the alpha particle and
the two oxygen nuclei and check that, taking into account the numeri-
cal accuracy of the given data and of the calculations, the result
obtained suggests conservation of energy.

14.25 A 5-lb weight slides without friction on the xy plane. At

t = it passes through the origin with a velocity v = (20 ft/s)i.
Internal springs then separate the weight into the three parts shown.
Knowing that, at t = 3 s, x A - (42 ft)i + (27 ft)j and r B =

(60 ft)i - (6 ft)j, that v 4 = (14 ft/s)i + (9 ft/s)j, and that v B is parallel
to the x axis, determine the corresponding position and velocity of

part C.4Fig. P14.2S

3m Q

Fig. P14.26

1 4.26 Two small spheres A and B, respectively of mass m and 3m,
are connected by a rigid rod of length / and negligible mass. The two

spheres are resting on a horizontal, frictionlcss surface when A is suddenly given the velocity v = v i. Determine (a) the linear mo-
mentum of the system and its angular momentum about its mass center
G, (ft) the velocities of A and B after the rod AB has rotated through
90°, (c) the velocities of A and B after the rod AB has rotated through
180°.
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14.27 A 240-kg space vehicle traveling with the velocity
v = (500 m/s)k passes through the origin O at I — 0. Explosive

charges then separate the vehicle into three parts, A, B, and C, of mass
40 kg, 80 kg, and 120 kg, respectively. Knowing that at f = 3 s the
positions of the three parts are, respectively, A(150, 150, 1350), 73(375,
825, 2025), and C(-300, -600, 1200), where the coordinates are

expressed in meters, that the velocity of C is v c =
-(100m/s)i - (200m/s)j + (400m/s)k, and that the y component
of the velocity of B is +350 m/s, determine the velocity of part A.

1 4.28 In the scattering experiment of Prob. 14.16, it is known that
the alpha particle is projected from A (300, 0, 300) and that it collides
with the oxygen nucleus C at Q(2A0, 200, 100), where all coordinates

arc expressed in millimeters. Determine the coordinates of point B
where the original path of nucleus B intersects the xz plane. (Hint,
Express that the angular momentum of the three particles about Q is
conserved.)

14.29 In a game of billiards, ball A is moving with the velocity
v = t,,i when it strikes balls B and C which are at rest side by side.
After the collision, the three balls are observed to move in the direc-

tions shown. Assuming frictionless surfaces and perfectly elastic im-
pacts (i.e., conservation of energy), determine the magnitudes of the
velocities v.,, v B , and v c in terms of t and 6.

14.30 In a game of billiards, ball A is moving with the velocity
v = (3 m/s)i when it strikes balls B and C which are at rest side by
side. After the collision, the three balls are observed to move in the

directions shown, with 8 = 30°. Assuming frictionless surfaces and
perfectly elastic impacts (i.e., conservation of energy), determine the
magnitudes of the velocities v,, v B , and v c .

Fig. P14.29 and P14.30

14.31 In a scattering experiment, an alpha particle A is projected
with the velocity u = (960 m/s)i + (1200 m/s)j + (1280 m/s)k into a

stream of oxygen nuclei moving with the common velocity v = v j. After colliding successively with the nuclei B and C, particle A is
observed to move in the direction defined by the unit
vector \ A = -0.463i + 0.853j - 0.241k, while nuclei B and C are

observed to move in directions defined, respectively, by \ B =
0.939J + 0.344k and A c . = 0.628i + 0.778J. Knowing that the mass of
an oxygen nucleus is four times that of an alpha particle, and assuming
conservation of energy, determine (a) the speed o of the oxygen nuclei
before the collisions, (b) the speed of each of the three particles after
the collisions.
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„.8

Ml.

f
V s*

c
v = 20 ft/sec

Fig. P14.32

t
1 4.32 When the cord connecting particles A and B is severed, the

compressed spring causes the particles to fly apart (the spring is not
connected to the particles). The potential energy of the compressed
spring is known to be 20 ft • lb and the assembly has an initial velocity
v as shown. If the cord is severed when 8 — 30°, determine the

resulting velocity of each particle.

14.33 In a game of billiards, ball A is given an initial velocity v
along line DA parallel to the axis of the table. It hits ball B and then
ball C, which are at rest. Knowing that A and C hit the sides of the

table squarely at points A' and C, respectively, with velocities of
magnitude v A = 4 ft/s and v c = 6 ft/s, and assuming frictionless sur-
faces and perfectly elastic impacts (i.e., conservation of energy), deter-
mine (a) the initial velocity v of ball A, (b) the velocity v B of ball B,
(c) the point B' where B hits the side of the table.

Fig. P14.33
14.34 Solve Prob. 14.33 if v A = 6 ft/s and v c = 4 ft/s.

R:
A v "

i^<rse-/al«V|ho

I *

B'inessr
1 4.35 Two small disks A and B, of mass 2 kg and 1 kg, respec-

tively, may slide on a horizontal and frictionless surface. They are

connected by a cord of negligible mass and spin about their mass
center G. At t = 0, the coordinates of G are Xq = 0, y n = 1.6 m, and
its velocity is v = (1.5 m/s)i + (1.2 m/s)j. Shortly thereafter, the cord
breaks and disk A is observed to move along a path parallel to the y
axis at a distance a — 1.96 m from that axis. Knowing that, initially,

the angular momentum of the two disks about G was 3 kg • m 2 /s
counterclockwise and that their kinetic energy relative to a centroidal
frame was 18.75 J, determine (a) the velocities of A and B after the cord
breaks, (h) the abscissa b of the point B' where the path of B intersects
the X axis.

Fig. P14.35 and P14.36

14.36 Two small disks A and B, of mass 2 kg and 1 kg, respec-

tively, may slide on a horizontal and frictionless surface. They are
connected by a cord of negligible mass and spin about their mass
center G. At t = 0, G is moving with the velocity v a and its coordi-
nates arc x = 0, y = 1.89 m. Shortly thereafter, the cord breaks and
disk A is observed to move with the velocity v, = (5 m/s)j in a straight
line and at a distance a = 2.56 m from the y axis, while B moves with

the velocity v B = (7.2 m/s)i — (4.6 m/s)j along a path intersecting the
X axis at a distance b = 7.48 m from the origin O. Determine (a) the
initial velocity v u of the mass center G of the two disks, (b) the angular
momentum H of the system about G and its kinetic energy relative to
a centroidal frame before the cord broke, (t) the length of the cord

initially connecting the two disks, (d) the rate in rad/s at which the
disks were spinning about G.
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* 1 4.9. Variable Systems of Particles. All the sys-
tems of particles considered so far consisted of well-defined

particles. These systems did not gain or lose any particles during
their motion. In a large number of engineering applications,
however, it is necessary to consider variable systems of particles,
i.e., systems which are continuously gaining or losing particles,
or doing both at the same time. Consider, for example, a hy-
draulic turbine. Its analysis involves the determination of the
forces exerted by a stream of water on rotating blades, and we
note that the particles of water in contact with the blades form

an everchanging system which continuously acquires and loses
particles. Rockets furnish another example of variable systems,
since their propulsion depends upon the continuous ejection of
fuel particles.

We recall that all the kinetics principles established so far
were derived for constant systems of particles, which neither
gain nor lose particles. We must therefore find a way to reduce
the analysis of a variable system of particles to that of an auxil-
iary constant system. The procedure to follow is indicated in

Sees. 14.10 and 14.11 for two broad categories of applications.
* 14.10. Steady Stream of Particles. Consider a

steady stream of particles, such as a stream of water diverted

by a fixed vane or a flow of air through a duct or through a
blower. In order to determine the resultant of the forces exerted

on the particles in contact with the vane, duct, or blower, we

isolate these particles and denote by S the system thus defined

(Fig. 14.9). We observe that S is a variable system of particles,
since it continuously gains particles flowing in and loses an equal
number of particles flowing out. Therefore, the kinetics prin-
ciples that have been established so far cannot be directly ap-
plied to S.

Fig. 14.9
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However, we may easily define an auxiliary system of particles
which does remain constant for a short interval of time Af.

Consider at time t the system S plus the particles which will
enter S during the interval of time At (Fig. 14.10fl). Next, con-
sider at time f + At the system S plus the particles which have

left S during the interval At (Fig. 14.10c). Clearly, the same
particles are involved in both cases, and we may apply to these
particles the principle of impulse and momentum. Since the
total mass m of the system S remains constant, the particles
entering the system and those leaving the system in the time
At must have the same mass Am. Denoting by v^ and v B , respec-
tively, the velocities of the particles entering S at A and leaving

S at B, we represent the momentum of the particles entering
S by (Amjvj (Fig. 14.10a) and the momentum of the particles
leaving S by (Am)v B (Fig. 14.10c). We also represent the mo-
menta WIjVj of the particles forming S and the impulses of the
forces exerted on S by the appropriate vectors, and indicate by
gray plus and equals signs that the system of the momenta and
impulses in parts a and b of Fig. 14.10 is equipollent to the
system of the momenta in part c of the same figure.

cAi.'i v, f t

Fig. 14.10

Since the resultant ^m^ of the momenta of the particles of

S is found on both sides of the equals sign, it may be omitted.
We conclude that the system formed by the momentum (Am)\ A

of the particles entering S in the time At and the impulses of
the forces exerted on S during that time is equipollent to the
momentum (Am)v fi of the particles leaving S in the same time
At. We may therefore write

(Am)v A + 2F At = (Am)v B (14.38)
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A similar equation may be obtained by taking the moments of
the vectors involved (see Sample Prob. 14.5). Dividing all terms
of Eq. (14.38) by At and letting Af approach zero, we obtain
at the limit

SF =
dm

dt
( v b ~ *a) (14.39)

where v B — v^ represents the difference between the vectors v B
and v^.

If SI units are used, dm/dt is expressed in kg/s and the veloci-

ties in m/s; we check diat both members of Eq. (14.39) are
expressed in the same units (newtons). If U.S. customary units
are used, dm/dt must be expressed in slugs/s and die velocities
in ft/s; we check again that both members of the equation are
expressed in the same units (pounds), t

The principle we have established may be used to analyze
a large number of engineering applications. Some of the most
common are indicated below.

Fluid Stream Diverted by a Vane. If the vane is fixed, the

method of analysis given above may be applied directly to find
the force F exerted by the vane on the stream. We note that

F is the only force which needs to be considered since the

pressure in the stream is constant (atmospheric pressure). The
force exerted by the stream on the vane will be equal and oppo-

site to F. If the vane moves with a constant velocity, the stream
is not steady. However, it will appear steady to an observer
moving with the vane. We should therefore choose a system

of axes moving widi the vane. Since this system of axes is not

accelerated, Eq. (14.38) may still be used, but v^, and \ B must

be replaced by the relative velocities of the stream with respect
to the vane (see Sample Prob. 14.6).

Fluid Flowing through a Pipe. The force exerted by the

fluid on a pipe transition such as a bend or a contraction may

be determined by considering the system of particles S in contact
with the transition. Since, in general, the pressure in the flow
will vary, we should also consider the forces exerted on S by

the adjoining portions of the fluid.

f It is often convenient to express the mass rate of flow dm/dt as the product
pQ, where p is the density of the stream (mass per unit volume) and Q its volume
rate of flow (volume per unit time). If SI units are used, p is expressed in kg/m 3
(for instance, p = 1000 kg/m 3 for water) and Q in m 3 /s. However, if U.S.
customary units are used, p will generally have to be computed from the
corresponding specific weight y (weight per unit volume), p = y/g. Since y
is expressed in lb/ft 3 (for instance, y = 62.4 lb/ft 3 for water), p is obtained in
slugs/ft 3 . The volume rate of flow Q is expressed in ft 3 /s.
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Jet Engine In a jet engine, air enters with no velocity

through the front of the engine and leaves through the rear with

a high velocity. The energy required to accelerate the air parti-
cles is obtained by burning fuel. While the exhaust gases contain

burned fuel, the mass of the fuel is small compared with the
mass of the air flowing through the engine and usually may be
neglected. Thus, the analysis of a jet engine reduces to that of
an air stream. This stream may be considered as a steady stream
if all velocities are measured with respect to the airplane. The
air stream shall be assumed, therefore, to enter the engine with

a velocity v of magnitude equal to the speed of the airplane
and to leave with a velocity u equal to the relative velocity of

the exhaust gases (Fig. 14.11). Since the intake and exhaust

Fig. 14.11

pressures are nearly atmospheric, the only external force which
needs to be considered is the force exerted by the engine on

the air stream. This force is equal and opposite to the thrust, t
Fan. We consider the system of particles S shown in Fig.

14.12. The velocity v^ of the particles entering the system is
assumed equal to zero, and the velocity v B of the particles
leaving the system is the velocity of the slipstream. The rate
of flow may be obtained by multiplying v B by the cross-sectional

SlipstreameFig. 14.12

f Note that, if the airplane is accelerated, it cannot be used as a newtonian
frame of reference. The same result will be obtained for the thrust, however,

by using a reference frame at rest with respect to the atmosphere, since the
air particles will then be observed to enter the engine with no velocity and
to leave it with a velocity of magnitude u — v.
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area of the slipstream. Since the pressure all around S is atmos-
pheric, the only external force acting on S is the thrust of the
fan.

Airplane Propeller. In order to obtain a steady stream of
air, velocities should be measured with respect to the airplane.
Thus, the air particles will be assumed to enter the system with
a velocity v of magnitude equal to the speed of the airplane
and to leave with a velocity u equal to the relative velocity of
the slipstream.

* 14.11. Systems Gaining or Losing Mass. We shall

now analyze a different type of variable system of particles,

namely, a system which gains mass by continuously absorbing
particles or loses mass by continuously expelling particles. Con-
sider the system S shown in Fig. 14.13. Its mass, equal to m
at the instant t, increases by Am in the interval of time At. In

order to apply the principle of impulse and momentum to the
analysis of this system, %ve must consider at time t the system

U = V. — V

1FAIS(m+Am)(v + Av)

Fig. 14.13

m + Am

m

S plus the particles of mass Am which S absorbs during the time
interval At. The velocity of S at time t is denoted by v, and
its velocity at time t + At is denoted by v + Av, while the
absolute velocity of the particles which are absorbed is denoted
by v a . Applying the principle of impulse and momentum, we
write

mv + (Am)v a + 2F At = (m + Am)(v + Av)
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Solving for the sum SF Ai of the impulses of the external forces
acting on S (excluding the forces exerted by the particles being
absorbed), we have

IF At = m Av + Aro(v - vj 4- (Am)fAv) (14.40)

Introducing the relative velocity u with respect to S of the
particles which are absorbed, we write u = v a — v and note,
since v a < v, that the relative velocity u is directed to the left,

as shown in Fig. 14.13. Neglecting the last term in Eq. (14.40),
which is of the second order, we write

SF At = m Av - (Am)u

Dividing through by At and letting Ar approach zero, we have
at the limitf

2F=m^-^-u (14.41)
dt dt

Rearranging the terms, we obtain the Equation

vi? i dm dv ,, , lxn
SF + _ u=m _ (14 .42)

which shows that the action on S of the particles being absorbed
is equivalent to a thrust of magnitude (dm/dt)u which tends to
slow down the motion of S, since the relative velocity u of the

particles is directed to the left. If SI units are used, dm/dt is
expressed in kg/s, the relative velocity u in m/s, and the corre-
sponding thrust in newtons, If U.S. customary units are used,
dm/dt must be expressed in slugs/s and u in ft/s; the corre-

sponding thrust will then be expressed in pounds, t
The equations obtained may also be used to determine the

motion of a system S losing mass. In this case, the rate of change
of mass is negative, and the action on S of the particles being
expelled is equivalent to a thrust in the direction of — u, that
is, in the direction opposite to that in which the particles are
being expelled. A rocket represents a typical case of a system
continuously losing mass (see Sample Prob. 14.7).

I When the absolute velocity v„ of the particles absorbed is zero, we have
u = — v, and formula (14.41) becomes

Comparing the formula obtained to Eq. (12.3) of Sec. 12.2, we observe that
Newton's second law may be applied to a system gaining mass, provided that tiie
¦particles absorbed are initially at rest. It may also be applied to a system losing
mass, provided tliat the velocity of the particles expelled is zero with respect to
the frame of reference selected.

J See footnote on page 637.
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SAMPLE PROBLEM 14.5

Grain falls from a hopper onto a chute C'fl at the rate of 240 lb/s.

It hits the chute at A with a velocity of 20 ft/s and leaves at B with

a velocity of 15 ft/s, forming an angle of 10° with the horizontal.

Knowing (hat the combined weight of the chute and of the grain it
supports is a force W of magnitude 600 lb applied at C, determine
the reaction at the roller-support B and the components of the reaction

al the hinge C.

Solution. We apply the principle of impulse and momentum for

the time interval A( to the system consisting of the chute, the grain
it supports, and the amount of grain which hits the chute in the
interval St. Since the chute does not move, it has no momentum.

We also note that the sum 2m,v, of the momenta of the particles

supported by the chute is the same at t and t + It and thus may
be omitted.

f
( J

n
«i

-12-

10

BA'
f

+ft/ components:

+ ) moments about C:

Since the system formed by the momentum (&m)v A and the impulses
is equipollent to the momentum (Am)v B , we write

-** x components: C t At = (Am)t B cos 10° (1)

-(Am)v A + C„ At - W Af + B Ar

= -(Am)i; B sinl0° (2)

-3(Am)o jl - 7(WAl) + 12(BA«)

= 6(Am)t„ cos 10° - 12(Am)i; B sin 10° (3)

Using the given data, W = 600 lb, v A = 20 ft/s, v B = 15 ft/s,
Am/At = 240/32.2 = 7.45 slugs/s, and solving Eq. (3) for B and Eq.
(1) for C x :

12B = 7(600) + 3(7.45)(20) + 6(7.4o)(15)(cos 10° - 2 sin 10°)

12B = 5075 B = 423 lb B = 423 lb f -*

C x = (7.45)(15) cos 10° = 110.1 lb C, = 1 10.1 lb -* -*

Substituting for B and solving Eq. (2) for C„:

C„ = 600 - 423 + (7.45)(20 - 15 sin 10°) = 307 lb
C„ ¦ 307 lb ' -*

641
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SAMPLE PROBLEM 14.6

A nozzle discharges a stream of water of cross-sectional area A with
a velocity v,. The stream is deflected by a single, blade which moves
to the right with a constant velocity V. Assuming that the water moves

along the blade at constant speed, determine («) the components of
the force F exerted by the blade on the stream, (b) the velocity V

for which maximum power is developed.

-

o
a. Components of Force Exerted on Stream. We choose a coordi-

nate system which moves with the blade at a constant velocity V.
The particles of water strike the blade with a relative velocity u^ =
v A — V and leave the blade with a relative velocity u B . Since the
panicles move along the blade at a constant speed, the relative veloci-
ties u /t and u n have the same magnitude it. Denoting the density of
water by f>, the mass of the particles striking the blade during the

time interval At is \m — Ap(v A — V) At; an equal mass of particles
leaves the blade during At. We apply the principle of impulse and
momentum to the system formed by the particles in contact with the
blade and by those striking the blade in the time A*.

veF. A

Recalling that u^ and u B have the same magnitude u, and omitting
the momentum Zm,v, which appears on both sides, we write

- L * x components: (Am)u — F„ At = (im)u cos 6

+ T;/ components: +F U At = (Ain)n sin 6

Substituting Am = Ap(v A — V) At and u = v A — V, we obtain

¥, = Ap(o A - Vftl-cosO)*- F„= ,/',., \ ¦¦'-'shiflT ~*

b. Velocity of Blade for Maximum Pnwer. The power is obtained

by multiplying the velocity V of the blade by the component F x of
the force exerted by the stream on the blade.

Power = F.7 = Ap(c A - V) 2 (l - cos0)V

Differentiating the power with respect to V and setting the derivative
equal to zero, we obtain

(/(power)
dV

V = o A

= Ap(v A - 4x> A V + 3V 2 )(l - cos 6) =

V = %v A For maximum power V — Jts^-

Sote. These results are valid only when a single blade deflects the
stream. Different results arc obtained when a series of blades deflects

the stream, as in a Pelton-wheel turbine. (See Prob. 14.90.)



SAMPLE PROBLEM 14.7

A rocket of initial mass m (including shell and fuel) is fired vertically
at time t = 0. The fuel is consumed at a constant rate q = dm/dt

and is expelled at a constant speed 11 relative to the rocket. Derive an expression for the velocity of the rocket at time t, neglecting the
resistance of the air.

Solution. At time f, the mass of the rocket shell and remaining

fuel is m = m - qt, and the velocity is v. During the time interval
\t, a mass of fuel 1m = q M is expelled with a speed U relative to
the rocket. Denoting by v, the absolute velocity of the expelled fuel,

we apply the principle of impulse and momentum between time I
and time f + It.

"i,- 1,1 - i, A.' v ¦• _i,

4*

-
[WAl-g(m -$l)Al] TA".v

(Ami r -r;Al(ll - 0>]

We write

(m - qt)v - g(m - qt) M
= (m -qt -q M)(c + Ao) - q M(u - o)

Dividing through by It, and letting A( approach zero, we obtain

-g("»o ~ <?') = < m o - ¥i "ft ~ '/"

Separating variables and integrating from t = 0, v = to t = t, v = v.

Km - qt

t) = [-«ln(m -<7r)-gr]{, r = » In
"'» - '/'

-&

Remark. The mass remaining at time f,, after all the fuel has been

expended, is equal to the mass of the rocket shell in, = m^, — qt t ,
and the maximum velocity attained by the rocket is t> m =

U In (tn /m a ) - gt,. Assuming that the fuel is expelled in a relatively short period of time, the term gt, is small and we have
t; ro S u In (tn^/m,). In order to escape the gravitational field of the
earth, a rocket must reach a velocity of 11180m/s. Assuming

u=2200m/s and v m = 11 180 m/s. we obtain m /m, = 161.

Thus, to project each kilogram of the rocket shell into space, it is
necessary to consume more than 161 kg of fuel if a propellant yielding
u = 2200 m/s is used.
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.
Fig. P14.37

g
' t„

Ffg. P14.38 and P14.39

n
PROBLEMS

Note. In the following problems use p = 1()(K) kg/nr* for llic density of
water in SI units, and y - 62.4 lb/ft 3 for its specific weight in U.S.
customary units. (See footnote on page 637.

1 4.37 A hose discharges 2000 gal/min from the stern of a 20-ton
fireboat. If the velocity of the water stream is 90 ft/s, determine the
reaction on the boat.

1 4.38 A stream of water of cross-sectional area A and velocity v,
strikes the curved surface of a block which is held motionless (V = 0)

by the forces P x and P„. Determine the magnitudes of P,. and P u when
A = 500 mm 2 and v 1 = 40 m/s.

1 4.39 A stream of water of cross-sectional area A and velocity \ x
strikes the curved surface of a block which moves to the left with a

velocity V. Determine the magnitudes of the forces P.,. and P,, required to hold the block when A = 3 in 2 , o, = 90 ft/s, and V = 25 ft/s.
1 4.40 Sand is discharged at the rate m (kg/s) from a conveyor belt

moving with a velocity v . The sand is deflected by a plate at B so that
it falls in a vertical stream. .After falling a distance h, the sand is again

deflected as shown by a curved plate at C. Neglecting the friction between the sand and the plates, determine the force required to hold
each plate in the position shown.

Fig. P14.40cFig. P14.41wV V
V

I — ¦ .'
^,:...-ltsAFig. P14.42

cy14.41 Water flows in a continuous sheet from between two plates
A and B with a velocity v. The stream is split into two equal streams
1 and 2 by a vane attached to plate C. Denoting the total rate of
flow by Q, determine the force exerted by the stream on plate C.

1 4.42 Water flows in a continuous sheet from between two plates

A and B with a velocity v. The stream is split into two parts by a smooth horizontal plate C. Denoting the total rate of flow by Q,
determine the rate of flow of each of the resulting streams. (Hint.
The plate C can exert only a vertical force on the water.)



1 4.43 A stream of water of cross-sectional area A and velocity

v, is deflected by a vane AB in the shape of an arc of circle of radius
R. Knowing that the vane is welded to a fixed support at A, determine
the components of the force-couple system exerted by the support on
the vane.

SYSTEMS OF PARTICLES 645

Fig. P14.43

1 4.44 The nozzle shown discharges 250 gal/min of water with
a velocity v^ of 120 ft/s. The stream is deflected by the fixed vane
AB. Determine the force-couple system which must be applied at
C in order to hold the vane in place (1 ft 3 = 7.48 gal).

2 in.

t
Fig. P14.44

14.45 Knowing that the blade AB of Sample l'rob. 14.6 is in

the shape of an arc of circle, show that the resultant force F exerted
by the blade on the stream is applied at the midpoint C of the arc
AB. (Hint. First show that the line of action of F must pass through
the center O of the circle.)

1 4.46 The stream of water shown flows at the rate of 0.9 m 3 /min

and moves with a velocity of magnitude 30 m/s at both A and B. The
vane is supported by a pin connection at C and by a load cell at D
which can exert only a horizontal force. Neglecting the weight of the
vane, determine the reactions at C and D.

3.3 mm . 125 mm

8, 200 nun

Fig. P14.46
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14.47 The nozzle shown discharges water at the rate of
1.2 m 3 /min. Knowing that at both A and B the stream of water moves

with a velocity of magnitude 25 m/s and neglecting the weight of
the vane, determine the components of the reactions at C and D.

Fig. P14.47

v .\ m -,-S*^*'

-
5r- r

2.5 ft

1
3ft

n I

-°— ° — °\\

cTjo\

Fig. P14.4

1

9

HDltt

-311 -1s
14.48 The final component of a conveyor system receives sand

at the rate of 180 lb/s at A and discharges it at B. The sand is moving horizontally at A and B with a velocity of magnitude n. = ©_ a
12 ft/s. Knowing that the combined weight of the component and
of the sand it supports is VV = 800 lb, determine the reactions at C
and D.

14.49 Solve Prob. 14.48, assuming the velocity of the belt of the

final component of the conveyor system is increased in such a way that, while the sand is still received with a velocity v„ of 12 ft/s, it
is discharged with a velocity v B of 24 ft/s.

1 4.50 A jet airplane scoops in air at the rate of 250 lb/s and

discharges it with a velocity of 2200 ft/s relative to the airplane. If
the speed of the airplane is 600mi/h, detennine (a) the propulsive
force developed, (b) the horsepower actually used to propel the air-
plane, (c) the horsepower developed by the engine.

14.51 The total drag due to air friction on a jet airplane traveling
at 1000 km/h is 16 kN". Knowing that the exhaust velocity is 600 m/s

relative to the airplane, determine the mass of air which must pass through the engine per second to maintain the speed of 1 (XX) km/h
in level flight.
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1 4.52 While cruising in horizontal flight at a speed of 800 km/h,
a 9000-kg jet airplane scoops in air at the rate of 70 kg/s and discharges
it with a velocity of 600 m/s relative to the airplane, (a) Determine
the total drag due to air friction, (b) Assuming that the drag is propor-
tional to the square of the speed, determine the horizontal cruising
speed if the flow of air through the jet is increased by 10 percent,
i.e., to 77 kg/s.

14.53 The cruising speed of a jet airliner is 600 mi/h. Each of the

four engines discharges air with a velocity of 2000 ft/s relative to the plane. Assuming that the drag due to air resistance is proportional to
the square of the speed, determine the speed of the airliner when only
two of the engines are in operation.

14.54 For use in shallow water the pleasure boat shown is pow-

ered by a water jet. Water enters the engine through orifices located in
the bow and is discharged through a horizontal pipe at the stern.

Knowing that the water is discharged at the rate of 10 m 3 /min with a
velocity of 15 m/s relative to the boat, determine the propulsive force
developed when the speed of the boat is (a) 6 m/s, (fc) zero.

14.55 In order to shorten the distance required for landing, a

jet airplane is equipped with movable vanes which partially reverse
the direction of the air discharged by each of its engines. Each engine

scoops in air at the rate of 200 lb/s and discharges it with a velocity
of 2(XK) ft/s relative to the engine. At an instant when the speed of

the airplane is 120 mi/h, determine the reversed thrust provided by
each of the engines.

1 4.56 An unloaded helicopter of weight 5000 lb produces a slip-
stream of 38-ft diameter. Assuming that air weighs 0.076 lb/ft 3 , deter-
mine the vertical component of the velocity of the air in the slipstream

when the helicopter is hovering in midair.4
CE

Fig. P14.S3

P
Fig. P14.54

120 mi/h

oFig. P14.55bFig. P14.56 and P14.57

14.57 The helicopter shown weighs 5000 lb and can produce a
maximum downward air speed of 60 ft/s in the 38-ft diameter slip-

stream. Determine the maximum load which the helicopter can carry

while hovering in midair.
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.
Fig. P14.58

14.58 The slipstream of a fan has a diameter of 500 mm and a

velocity of lOm/s relative to the fan. Assuming p = 1,21 kg/m 3 for
air and neglecting the velocity of approach of the air, determine the
force required to hold the fan motionless.

14.59 The propeller of an airplane produces a thrust of 4000 N

when the airplane is at rest on the ground and has a slipstream of 2-m diameter. Assuming p = 1.21 kg/m 3 for air, determine (a) the
speed of the air in the slipstream, (b) the volume of air passing through the propeller per second, (c) the kinetic energy imparted per second
to the air of the slipstream.

i
14.60 Each arm of the sprinkler shown discharges water at the

rate of 10 liters per minute with a velocity of 12 m/s relative to the
arm. Neglecting the effect of friction, determine (c) the constant rate
at which the sprinkler will rotate, (b) the couple M which must be
applied to the sprinkler to hold it stationary.

1 4.61 A circular reentrant orifice (also called Borda's mouthpiece)
of diameter D is placed at a depth h below the surface of a tank.
Knowing that the speed of the issuing stream is o = y/2gh and assum-
ing that the speed of approach t a is zero, show that the diameter of the
stream is d — D/ \2. (Hint. Consider the section of water indicated,

and note that P is equal to the pressure at a depth h multiplied by the
area of the orifice.)

6 in.
1U in.kFig. P14.62

' i ¦eFig. P14.61

14.62 A garden sprinkler has four rotating arms, each of which
consists of two horizontal straight sections of pipe forming an angle of
120°. Each arm discharges water at the rate of 3 gal/min with a
velocity of 48 ft/s relative to the arm. Knowing that the friction
between the moving and stationary parts of the sprinkler is equivalent
to a couple of magnitude M = 0.200 lb • ft, determine the constant rate

at which the sprinkler rotates (1 ft' 1 = 7.48 gal),
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1 4.63 Each of the two conveyor belts shown discharges sand at a
constant rate of 51b/s. The sand falls through a height h and is

deflected by a stationary vane. Knowing that the velocity of the sand is
horizontal as it leaves the vane, determine the force P required to hold

the vane when (a) h = 6 ft, (b) h = 12 ft.

14.64 Gravel falls with practically zero velocity onto a conveyor

belt at the constant rate q = dm/dt. A force P is applied to the belt
to maintain a constant speed o. Derive an expression for the angle
f) for which the force P is zero.

i?S - f •*».-' V* -

Fig. P14.63

5
Fig. P14.64 and P14.65

1 4.65 Gravel falls with practically zero velocity onto a conveyor

belt at the constant rate </ = dm/dt. (a) Determine the magnitude

of the force P required to maintain a constant belt speed D, when
6=0. (h) Show that the kinetic energy acquired by the gravel in
a given time interval is equal to half the work done in that interval
by the force P. Explain what happens to the other half of the work
done by P.

Fig. P14.66

1 4.66 A chain of mass m per unit length and total length / lies in
a pile on the floor. At time t = a force P is applied and the chain is
raised with a constant velocity v. Express the required magnitude of
the force P as a function of the time t.

14.67 A chain of length I and mass m per unit length falls

through a small hole in a plate. Initially, when ;/ is very small, the
chain is at rest. In each case shown, determine (fl) the acceleration

of the first link A as a function of y, (b) the velocity of the chain
as the last link passes through the hole. In case 1 assume that the
individual links are at rest until they fall through the hole; in case

2 assume that at any instant all links have the same speed. Ignore
the effect of friction.

(2)

Fig. P14.67
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.
Fig. P14.68

7
Fig. P14.70

14.68 A moving railroad car, of mass m when empty, is loaded
by dropping sand vertically into it from a stationary chute at the rate

q = dm/dt. At the same time, however, sand is leaking out through the floor of the car at the lesser rate q' . Determine the magnitude
of the horizontal force P required to keep the car moving at a constant
speed c while being loaded.

1 4.69 For the car and loading conditions of Prob. 14.68, express as
a function of ( the magnitude of the horizontal force P required to keep
the car moving with a constant acceleration a while being loaded.

Denote by o the speed of the car at t = 0, when the loading operation begins.

14.70 A railroad car, of mass m Q when empty and moving freely
on a horizontal (rack, is loaded by dropping sand vertically into it
from a stationary chute at the rate q = dm/dt. Determine the velocity

and acceleration of the car as functions of t. Denote by t> the speed of the car at t = 0, when the loading operation begins.

I
tv = «

>' | u = 8000ft/s

Fig. P14.72

1 4.71 If the car of Prob. 14.68 moves freely (P = 0), determine its

velocity and acceleration as functions of f. Denote by c the speed of
the car at f = 0, when the loading operation begins.

14.72 A test rocket is designed to hover motionless above the

ground. The shell of the rocket weighs 2500 lb, and the initial fuel load

is 7500 lb. The fuel is burned and ejected with a velocity of 8000 ft/s.
Determine the required rate of fuel consumption (a) when the rocket is
fired, (b) as the last particle of fuel is being consumed.

14.73 The main engine installation of a space shuttle consists of
three identical rocket engines which are required to provide a total
thrust of 60(H) kN. Knowing that the hydrogen-oxygen propellent is
burned and ejected with a velocity of 3900 m/s, determine the re-
quired total rate of fuel consumption.

Fig. P14.73
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14.74 A space vehicle describing a circular orbit at a speed of

15,000 mi/h releases a capsule which has a gross weight of 100011),
including 750 lb of fuel. If the fuel is consumed at the constant rate of

30 lb/s and is ejected with a relative velocity of 8000 ft/s, determine

the tangential acceleration of the capsule (o) as the engine is fired,
(h) as the last particle of fuel is being consumed.

1 4.75 A rocket of gross mass 1000 kg, including 900 kg of fuel, is
fired vertically when r = 0. Knowing that fuel is consumed at the rate

of 10 kg/s and ejected with a relative velocity of 3500 m/s, determine
the acceleration and velocity of the rocket when (a) C = 0, (b) t = 45 s,
(c) I = 90 s.

14.76 A space tug describing a low-level circular orbit is to be
transferred to a high-level orbit. The maneuver is started by firing the
rocket engines to increase the speed of the tug from 7370 to 9850 m/s.
The initial mass of the tug, fuel, and payload is 14.1 Mg. Knowing that
the hydrogen-oxygen propellent is consumed at the rate of 20 kg/s and
is ejected with a velocity of 37.50 m/s, determine (a) the mass of fuel
which must be expended to initiate the maneuver, (h) the time interval
for which the engines must be fired.

14.77 The rocket of Prob. 14.75 is redesigned as a two-stage

rocket consisting of rockets A and 13, each of gross mass 500 kg, includ-
ing 450 kg of fuel. The fuel is again consumed at the rate of 10 kg/s
and is ejected with a relative velocity of 3500 m/s. Knowing that,

when rocket A expells its last particle of fuel, its shell is released and

rocket B is fired, determine (a) the speed when rocket A is released,

(h) the maximum speed attained by rocket B.

14.78 A spacecraft is launched vertically by a two-stage rocket.

When the speed is 10,000 mi/h the first-stage-rocket casing is released
and the second-stage rocket is fired. Fuel is consumed at the rate of
200 lb/s and ejected with a relative velocity of 8000 fl/s. Knowing

that the combined weight of the second-stage rocket and spacecraft is

20,0001b, including 17,0001b of fuel, determine the maximum speed

which can be attained by the spacecraft.

14.79 For the rocket of Sample Prob. 14.7, derive an expression
for the height of the rocket as a function of the time t.

14.80 Determine the distance between the spacecraft and the
first-stage-rocket casing of Prob. 14.78 as the last particle of fuel is
being expelled by the second-stage rocket.

1 4.81 Determine the distance between the capsule and the space
vehicle of Prob. 14.74 as the last particle of fuel is being ejected by the
rocket of the capsule. Both the capsule and the space vehicle may be
considered to move in a straight line during the time interval consid-
ered.

Fig. P14.74

Fig. P14.77
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1 4.82 In a jet airplane, the kinetic energy imparted to the exhaust
gases is wasted as far as propelling the airplane is concerned. The
useful power is equal to the product of the force available to propel the
airplane and the speed of the airplane. If i> is the speed of the airplane
and u is the relative speed of the expelled gases, show that the effi-
ciency is i| = 2c/(u + c). Explain why i) = 1 when u = v.

14.83 In a rocket, the kinetic energy imparted to the consumed

and ejected fuel is wasted as far as propelling the rocket is concerned.
The useful power is equal to the product of the force available to
propel the rocket and the speed of the rocket. If v is the speed of the
rocket and u is the relative speed of the expelled fuel, show that the
efficiency is -q = 2uv/{u 2 4- i> 2 ). Explain why tj — 1 when u — v.

B
Fig. P14.84

REVIEW PROBLEMS

1 4.84 A 9000-kg jet airplane maintains a constant speed of
900km/h while climbing at an angle a = 5°. The airplane scoops
in air at the rate of 80 kg/s and discharges il with a velocity of 700 m/s
relative to the airplane. If the pilot changes to a horizontal flight
and the same engine conditions are maintained, determine (a) the
initial acceleration of the plane, (b) the maximum horizontal speed
attained. Assume that the drag due to air friction is proportional to

the square of the speed.

¦S, (c\

Fig. P14.85

14.85 Three identical balls A, B, and C may roll freely on a
horizontal surface, Balls B and C are at rest and in contact when

struck by ball A, which was moving to the right with a velocity v .

Assuming e — 1 and no friction, determine the final velocity of ball A if
(a) the path of A is perfectly centered and A strikes B and C simulta-
neously, (b) the path of A is not perfectly centered and A strikes B
slightly before it strikes C.

14.86 A 1-oz bullet is fired with a velocity of 1600 ft/s into

block A, which weighs 10 lb. The coefficient of friction between block
A and the cart BC is 0.50. Knowing that the cart weighs 81b and
can roll freely, determine (a) the final velocity of the cart and block,
(b) the final position of the block on the cart.

21V

Fig. P14.86

w



SYSTEMS OF PARTICLES 653

1 4.87 The ends of a chain of mass m per unit length lie in piles at
A and at C; when released, the chain moves over the pulley at B.
Determine the required initial speed u for which the chain will move
at a constant speed. Neglect axle friction.

1 4.88 Two railroad freight cars move with a velocity v through a
switchyard. Car B hits a third car C, which was at rest with its brakes

released, and it automatically couples with C. Knowing that all three
cars have the same mass, determine their common velocity after they
are all coupled together, as well as the percentage of their total initial
kinetic energy which is absorbed by each coupling mechanism, assum-
ing (a) that cars A and B were originally coupled, (b) that cars A and 8
were moving a few feet apart and that the coupling operation between

B and C is completed before A hits B and becomes coupled with it.

Fig. P14.87

<«>

(fc)

Fig. P14.88

v, = 91) m/s

1 4.89 A 5-kg sphere is moving with a velocity of 60 in/s when it
explodes into two fragments. Immediately after the explosion the
fragments are observed to travel in the directions shown and the speed
of fragment A is observed to be 90 m/s. Determine (a) the mass of

fragment A, (b) the speed of fragment B.

o-
60 m/sser>

Fig. P14.89

:a

\f-6-.

1 4.90 In a Pclton-wheel turbine, a stream of water is deflected by
a series of blades so that the rate at which water is deflected by the
blades is equal to the rate at which water issues from the nozzle

(Am/At = Apv A ). Using the same notation as in Sample Prob. 14.6,
(a) determine the velocity V of the blades for which maximum power is
developed, (b) derive an expression for the maximum power, (c) derive
an expression for the mechanical efficiency. Fig. P14.90
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A

-(
1

1 1 1 1 1 1 1 1 1 1 1 1

renm
Fig. P14.91

14.91 A large number of small blocks of total mass m are at rest
on a tabic when a constant force P is applied to block A. Knowing that
the blocks are in contact with each other but not connected, determine

the speed of block A after half of the blocks have been pushed off the

table, (a) neglecting the effect of friction, (b) assuming a coefficient of
friction /j between the table and the blocks.

14.92 A jet of water having a cross-sectional area A = 600 mm 2
and moving with a velocity of magnitude v A = v B — 20 m/s is de-

flected by the two vanes shown, which are welded to a vertical plate.
Knowing that the combined mass of the plate and vanes is 5 kg,
determine the reactions at C and D.

200 mm

p
150 250 mm
nun

Fig. P14.92

1 4.93 A space vehicle equipped with a retrorocket, which may
expel fuel with a relative velocity u, is moving with a velocity v .
Denoting by m. the net mass of the vehicle and by m t the mass of the
unexpended fuel, determine the minimum ratio m f /m s for which the
velocity of the vehicle can be reduced to zero.

14.94 The jet engine shown scoops in air at A at the rate of
165 lb/s and discharges it at B with a velocity of 2500 ft/s relative to
the airplane. Determine the magnitude and line of action of the

propulsive thrust developed by the engine when the speed of the
airplane is (a) 300 mi/h, (b) 600 mi/h.sFig. P14.94

1 4.95 Solve Prob. 14.94, including the effect of the fuel which is

consumed by the engine at the rate of 3 lb/s.



CHAPTER

Kinematics of

Rigid Bodies 15

15.1. Introduction. In this chapter, we shall study the
kinematics of rigid bodies. We shall investigate the relations
existing between the time, the positions, the velocities, and the

accelerations of the various particles forming a rigid body. As we
shall see, the various types of rigid-body motion may be conven-
iently grouped as follows:

I. Translation, A motion is said to be a translation if any
straight line inside the body keeps the same direction during
the motion. It may also be observed that in a translation all

the particles forming the body move along parallel paths. If
these paths are straight lines, the motion is said to be a

rectilinear translation (Fig. 15.1); if the paths are curved lines,
the motion is a curvilinear translation (Fig. 15.2).

Fig. 15.1 Fig. 15.2

655
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Fig. 15.3

2. Rotation about a Fixed Axis. In this motion, the particles

forming the rigid body move in parallel planes along circles

centered on the same fixed axis (Fig. 15.3). If this axis, called
the axis of rotation, intersects the rigid body, the particles
located on the axis have zero velocity and zero acceleration.

Rotation should not be confused with certain types of cur-

vilinear translation. For example, the plate shown in Fig.

15.4a is in curvilinear translation, with all its particles moving

along parallel circles, while the plate shown in Fig. 15.4/j is in
rotation, with all its particles moving along concentric circles.
In the first case, any given straight line drawn on the plate will
maintain the same direction, while, in the second case, point
O remains fixed.

o(a) Curvilinear translation

Fig. 15.4aBecause each particle moves in a given plane, the rotation
of a body about a fixed axis is said to be a plane motion.

3. General Plane Motion. There are many other types of plane
motion, i.e., motions in which all the particles of the body
move in parallel planes. Any plane motion which is neither a
rotation nor a translation is referred to as a general plane

motion. Two examples of general plane motion are given in
Fig. 15.5.E[a) Rolling wheel (b) Sliding rod

Fig. 15.5 Examples of general plane motion
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4. Motion about a Fixed Point. This is the three-dimensional

motion of a rigid body attached at a fixed point 0. An exam-
ple of motion about a fixed point is provided by the motion of
a top on a rough floor (Fig. 15.6).

5. General Motion. Any motion of a rigid body which does not
fall in any of the above categories is referred to as a general
motion.

15.2. Translation. Consider a rigid body in translation
(either rectilinear or curvilinear translation), and let A and B be

any two of its particles (Fig. 15.7a). Denoting respectively by r,, and r B the position vectors of A and B with respect to a fixed
frame of reference, and by r B/A the vector joining A and B, we
write

r n = r A + r BM (15.1)

Let us differentiate this relation with respect to t. We note that,

from the very definition of a translation, the vector r B/A must
maintain a constant direction; its magnitude must also be con-

stant, since A and B belong to the same rigid body. Thus, the derivative of r B/A is zero and we have

D
Fig. 15.6

v, as v.V B — "A

Differentiating once more, we write

(15.2)

«r = a. (15.3)

Thus, when a rigid body is in translation, all the points of the
body have the same velocity and the same acceleration at any
given instant (Fig. 15.7/? and c). In the case of curvilinear trans-

lation, the velocity and acceleration change in direction as well
as in magnitude at every instant. In the case of rectilinearnO,c(*)yto

Fig. 15.7
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.
Fig. 15.8

o
translation, all particles of the body move along parallel straight
lines, and their velocity and acceleration keep the same direction

during the entire motion.
1 5.3. Rotation about a Fixed Axis. Consider a rigid

body which rotates about a fixed axis AA'. Let P be a point of the
body and r its position vector with respect to a fixed frame of
reference. For convenience, we shall assume that the frame is

centered at point O on AA' and that the z axis coincides with AA'
(Fig. 15.8). Let B be the projection of P on AA'; since P must
remain at a constant distance from B, it will describe a circle of

center B and of radius r sin d>, where c,'> denotes the angle formed
by r and AA'.

The position of P and of the entire body is completely defined
by the angle 8 the line BP forms with the zx plane. The angle 8
is known as the angular coordinate of the body. The angular
coordinate is defined as positive when counterclockwise as

viewed from A' and will be expressed in radians (rad) or, occa-
sionally, in degrees (°) or revolutions (rev). We recall that

1 rev = 2wrad = 360°

We recall from Sec. 11.9 that the velocity v = dx/dt of a

particle P is a vector tangent to the path of P and of magnitude
t; = ds/dt. Observing that the length As of the arc described by
P when the body rotates through A0 is

As = (BP)A0 = (rsint?>)A0

and dividing both members by St, we obtain at the limit, as At

approaches zero.

ds a .
v = — = rti sin •

dt
(15-4)

where 8 denotes the time derivative of 8. (Note that, while the

angle depends upon the position of P within the body, the rate of change 8 is itself independent of P.) We conclude that the
velocity v of P is a vector perpendicular to the plane containing
AA' and r, and of magnitude v defined by (15.4). But this is
precisely the result we would obtain if we drew along AA' a
vector <o = #k and formed the vector product to X r (Fig. 15.9).
We thus write

dr
v=- = to X r (15.5)

The vector

<o = cok = 6k (15.6)
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is called the angular velocity of the body. It is directed along the

axis of rotation, it is equal in magnitude to the rate of change 8

of the angular coordinate, and its sense may be obtained by the

right-hand rule (Sec. 3.5) from the sense of rotation of the body.t

We shall now determine the acceleration a of the particle P.

Differentiating (15.5) and recalling the rule for the differentiation
of a vector product (Sec. 11.10), we write

dv d , .. ,

da .. . ., dr
= lu xr + " x d-t

=*Xr + «Xv (15.7)

The vector die ill is denoted by a and called the angular acceler-
ation of the body. Substituting also for v from (15.5), we have

a=aXr+wx(wXr) (15.8)

Differentiating (15.6), and recalling that k is constant in magni-
tude and direction, we have

a = ak = wk = 0k (15.9)

Thus, the angular acceleration of a body rotating about a fixed
axis is a vector directed along the axis of rotation, and equal in
magnitude to the rate of change co of the angular velocity.
Returning to (15.8), we note that the acceleration of P is the sum

of two vectors. The first vector is equal to the vector product
a X r; it is tangent to the circle described by P and represents,
therefore, the tangential component of the acceleration. The

second vector is equal to the vector triple product a X (w X r)
obtained by forming the vector product of co and to X r; since

w X r is tangent to the circle described by P, the vector triple

product is directed toward the center B of the circle and repre-
sents, therefore, the normal component of the acceleration.

Rotation of a Representative Slab. The rotation of a rigid

body about a fixed axis may be defined by the motion of a

representative slab in a reference plane perpendicular to the axis

of rotation. Let us choose the xy plane as the reference plane

and assume that it coincides with the plane of the figure, with the

tit will be shown in Sec. 15.12 in the more general case of a rigid body
rotating simultaneously about axes having different directions, that angular
velocities obey the parallelogram law of addition and, thus, arc actually vector
quantities.
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Fig. 15.10

2 axis pointing out of the paper (Fig. 15.10). Recalling from
(15.6) that w = cok, we note that a positive value of the scalar a

corresponds to a counterclockwise rotation of the representative
slab, and a negative value to a clockwise rotation. Substituting

ok for a into Eq. (15.5), we express the velocity of any given
point P of the slab as

v = uk X r (15.10)

Since the vectors k and r are mutually perpendicular, the magni-
tude of the velocity v is

C = f co (15.10')

and its direction may be obtained by rotating r through 90° in
the sense of rotation of the slab.

Substituting to = cok and a = «k into Eq. (15.8), and observing

that cross-multiplying r twice by k results in a 180° rotation of

the vector r, we express the acceleration of point P as

a = ak X r - co 2 r (15.11)

eFig. 15.11

Resolving a into tangential and normal components (Fig. 15.11),
we write

a, = «k X r a, = ra
a„ = -co'r

(15.11')

The tangential component a, points in the counterclockwise
direction if the scalar a is positive, and in the clockwise direction
if « is negative. The normal component a„ always points in the

direction opposite to that of r, i.e., toward O.
15.4. Equations Defining the Rotation of a Rigid

Body about a Fixed Axis. The motion of a rigid body

rotating about a fixed axis AA' is said to be kntnen when its

angular coordinate 6 may be expressed as a known function of r.
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In practice, however, the rotation of a rigid hocly is seldom

defined by a relation between and t. More often, the conditions

of motion will be specified by the type of angular acceleration

that the body possesses. For example, a may be given as a
function of t, or as a function of 6, or as a function of w. Recall-

ing the relations (15.6) and (15.9), we write

— S (1312 >

«-*-S (i5,3 »

or, solving (15.12) for dt and substituting into (15.13),

— ±J (15-14)

Since these equations are similar to those obtained in Chap. 11

for the rectilinear motion of a particle, their integration may be

performed by following the procedure outlined in Sec. 11.3.

Two particular cases of rotation are frequently encountered:

1. Uniform Rotation. This case is characterized by the fact that

the angular acceleration is zero. The angular velocity is thus
constant, and the angular coordinate is given by the formula

e=0 o + ut (15.15)

2. Uniformly Accelerated Rotation. In this case, the angular
acceleration is constant. The following formulas relating

angular velocity, angular coordinate, and time may then be
derived in a manner similar to that described in Sec. 11.5.

The similitude between the formulas derived here and those

obtained for the rectilinear uniformly accelerated motion of a

particle is easily noted.

(15.16)

It should be emphasized that formula (15.15) may be used only

when a = 0, and formulas (15.16) only when a = constant. In
any other case, the general formulas (15.12) to (15.14) should be
used.

w SO + at

e = 0o + u t + $at 2
CO 2 = «8 + 2a(6 ~ )
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SAMPLE PROBLEM 15.1

A pulley and two loads are connected by inextensible cords as shown.

Load A has a constant acceleration of 10 ft/s 2 and an initial velocity of 15 ft/s, both directed upward. Determine (a) the number of revolu-
tions executed by the pulley in 3 s, (b) the velocity and position of load B after 3 s, (c) the acceleration of point C on the rim of the pulley
at t = 0.

Mo§ <Vi =

ti. Motion of Pulley, Since the cord connecting the pulley to load
A is inextensible, the velocity of C is equal to the velocity of A and
the tangential component of the acceleration of C is equal to the
acceleration of A.

(v )o = (vj = 15 ft/s t (a c ), = a 4 = 10 ft/s 2 f

Noting that the distance from C to the center of the pulley is 5 ft,
we write

(«c)o = rw o 15 ft/s = (5 ft)o) w = 3 rad/s )

(a c ) t = to 10 ft/s 2 = (5 ft)a a = 2 rad/s 2 5

From the equations for uniformly accelerated motion, we obtain, for
t = 3 s,

w = w + at = 3 rad/s + (2 rad/s 2 )(3 s) = 9 rad/s

to = 9 rad/s "j

8 = u t + fat 2 = (3rad/s)(3s) + £(2 rad/s 2 )(3 s) 2
6 - 18 rad

Number of revolutions = (18 rad)/ 1 rev , | = 2 B6 rev -^
\27rrad/

i of Load li. Using the following relations between the
linear and angular motion, with r = 3ft, we write

v B = ru - (3 ft)(9 rad/s) \ „ =

S B = r0 = (3 ft)(18 rad) 54 ft j. -^

c. Acceleration of Point C at ( = 0. The tangential component
of the acceleration is

(a c ), = a,, = 10 ft/s 2 T

Since, at t = 0, u)„ = 3 rad/s, the normal component of the acceler-
ation is

(a c ) n = r«4 = (5 ft)(3 rad/s) 2 (a c )„ = 45 ft/s 2 *-

The magnitude and direction of the total acceleration are obtained

by writing

tan $ = (10 ft/s 2 )/(45 ft/s 2 ) <*, = 12.5"

a c sin 12.5° = 10 ft/s 2 a c = 46.1 ft/s 2
Be = 46.1 ft/s* 3s. 12.5' -*
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PROBLEMS

15.1 The motion of a cam is defined by the relation

8 = t 3 — 2t 2 — 4t + 10, where 6 is expressed in radians and t in
seconds. Determine the angular coordinate, the angular velocity, and

the angular acceleration of the cam when (a) t = 0, (h) t = 3 s.
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15.2 The rotor of a steam turbine is rotating at a speed of

7200 rpm when the steam supply is suddenly cut off. It is observed
that 5 min are required for the rotor to come to rest. Assuming uni-

formly accelerated motion, determine (a) the angular acceleration, (b)
the total number of revolutions that the rotor executes before coming
to rest.

15.3 A small grinding wheel is attached to the shaft of an electric

motor which has a rated speed of 1800 rpm. When the power is turned
on, the unit reaches its rated speed in 4 s, and when the power is
turned off, the imit coasts to rest in 50 s. Assuming uniformly acceler-
ated motion, determine the number of revolutions that the motor

executes (a) in reaching its rated speed, (b) in coasting to rest.

n
Fig. P15.3

1 5.4 The rotor of an electric motor has a speed of 1200 rpm when

the power is cut off. The rotor is then observed to come to rest after

executing 520 revolutions. Assuming uniformly accelerated motion,
determine (a) the angular acceleration, (b) the time required for the
rotor to come to rest.

1 5.5 The assembly shown consists of the straight rod ABC which

passes through and is welded to the rectangular plate DEt'H. The

assembly rotates about the axis AC with a constant angular velocity of

18 rad/s. Knowing that the motion when viewed from C is counter-
clockwise, determine the velocity and acceleration of corner F.

1 5.6 In Prob. 15.5, assuming that the angular velocity is 18 rad/s
and decreases at the rate of 45 rad/s 2 , determine the velocity and
acceleration of corner H.

15.7 The assembly shown rotates about the rod AC with a con-

stant angular velocity of 5 rad/s. Knowing that at the instant consid-

ered, the velocity of corner D is downward, determine the velocity and
acceleration of corner D.

15.8 In Prob. 15.7, determine the velocity and acceleration of

comer £, assuming that the angular velocity is 5 rad/s and increases at
the rate of 25 rad/s 2 .

Fig. P15.5

Fig. P15.7



F
Fig. P15.9 and P15.10

1 5.9 The rod ABCD has been bent as shown and may rotate about

the line joining points A and D. Knowing that the rod starts from rest
in the position shown with a constant angular acceleration of 14 rad/s 2
and that the initial acceleration of point B is upward, determine the

initial acceleration of point C.

1 5.1 The bent rod ABCD rotates about the line joining points A

and D. At the instant shown, the angular velocity of the rod is 7 rad/s
and the angular acceleration is 21 rad/s 2 , both counterclockwise when

viewed from end A of line AD. Determine the velocity and accelera-

tion of point C.

15.11 The earth makes one complete revolution on its axis in
23.93 h. Knowing that the mean radius of the earth is 3660 mi, deter-

mine the linear velocity and acceleration of a point on the surface

of the earth (a) at the equator, (b) at Philadelphia, latitude 40° north,
(c) at the North Pole.

2Fig. P15.13 and P15.14

15.12 The earth makes one complete revolution about the sun in

365.24 days. Assuming that the orbit of the earth is circular and has
a radius of 93,(XK),(K)0 mi, determine the velocity and acceleration of
the earth.

15.13 A small block B rests on a horizontal plate which rotates
about a fixed vertical axis. If the plate is initially at rest at I ' =
and is accelerated at the constant rate a, derive an expression (a) for
the total acceleration of the block at time t, (b) for the angle between
the total acceleration and the radius AB at time I.

15.14 It is known that the static-friction force between block

B and the plate will be exceeded and that the block will start sliding
on the plate when the total acceleration of the block reaches 5 m/s 2 .

If the plate starts from rest at ( = and is accelerated at the constant
rate of 6 rad/s 2 , determine the time f and the angular velocity of the

plate when the block starts sliding, assuming r = 100 mm..I. [0 V t. |. |. »¦¦»¦¦¦

Fig. P15.15 and P15.16

15.15 The sprocket wheel and chain are initially at rest. If the
acceleration of point A of the chain has a constant magnitude of

5 in./s 2 and is directed to the left, determine (a) the angular velocity of
the wheel after it has completed three revolutions, (b) the time re-
quired for the wheel to reach an angular velocity of KM) rpm.

15.16 At the instant shown the velocity of point A is 8 in./s
directed to the right and its acceleration is 12 in./s 2 directed to the

left. Determine (a) the angular velocity and angular acceleration of
the sprocket wheel, (b) the total acceleration of sprocket B.
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15.17 The friction wheel B executes 100 revolutions about its

fixed shaft during the time interval f, while its angular velocity is being

increased uniformly from 200 to 600 rpm. Knowing that wheel B rolls

without slipping on the inside rim of wheel A, determine (a) the
angular acceleration of wheel A, (b) the time interval t.

15.18 Ring C has an inside diameter of 120 mm and hangs from
the 40-inm-diameler shaft which rotates with a constant angular ve-

locity of 30 rad/s. Knowing that no slipping occurs between the shaft
and the ring, determine (a) the angular velocity of the ring, (b) the

acceleration of the points of B and C which are in contact.

30 mm

Fig. P15.17

40 mm

Fig. P15.18

1 5.1 9 The system shown starts from rest at I = and accelerates

uniformly. Knowing that at t = 4 s the velocity of the load is 4.8 m/s
downward, determine (a) the angular acceleration of gear A, (b) the

number of revolutions executed by gear A during the 4-s interval.

300 mm

s
«0 mm

300 mm

Fig. P1S.19

1 5.20 The two pulleys shown may be operated with the V belt in

any of three positions. If the angular acceleration of shaft A is 6 rad/s 2
and if the system is initially at rest, determine the time required for

shaft B to reach a speed of 4(X) rpm with the belt in each of the three
positions.

) 2 in. 3 in. 4 in.

Fig. P15.20
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Fig. P15.21 and P15.22

15.21 The two friction wheels A and B are to be brought to-

gether. Wheel A has an initial angular velocity of 600 rpm clockwise
and will coast to rest in 40 s, while wheel B is initially at rest and is
given a constant counterclockwise angular acceleration of 2 rad/s 2 .

Determine (a) at what time the wheels may be brought together if they
are not to slip, (b) the angular velocity of each wheel as contact is
made.

Two friction wheels A and B are both rotating freely at

300 rpm clockwise when they are brought into contact. After 6 s of

slippage, during which each wheel has a constant angular acceleration,
wheel A reaches a final angular velocity of 60 rpm clockwise. Deter-

mine («) the angular acceleration of each wheel during the period of
slippage, (/)) the time at which the angular velocity of wheel B is equal
to zero.

iFig. P15.24

*1 5.23 The motion of the circular plate of Prob. 15.13 is defined

by the relation = (l sin (2nt/T), where 8 is expressed in radians and t

in seconds. Derive expressions (a) for the magnitude of the total
acceleration of ij, (b) for the values of at which the total acceleration

of B reaches its maximum and minimum values, and for the corre-

sponding values of the total acceleration of B.

#1 5.24 In a continuous printing process, paper is drawn into the
presses at a constant speed v. Denoting by r the radius of paper on the
roll at any given time and by b the thickness of the paper, derive an
expression for the angular acceleration of the paper roll.

1 5.5. General Plane Motion. As indicated in Sec. 15.1,

we understand by general plane motion a plane motion which

is neither a translation nor a rotation. As we shall presently see,
however, a general plane motion may always be considered as
the sum of a translation and a rotation.

Consider, for example, a wheel rolling on a straight track (Fig.
15.12). Over a certain interval of time, two given points A andaPlane motion

Fig. 15.12

»1 fi'i
s

/

Yh
I

¦A
A-i I

Translation with A + Rotation about A
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B will have moved, respectively, from A t to A 2 and from B l
to B 2 . The same result could be obtained through a translation
which would bring A and B into A 2 and B\ (the line AB re-
maining vertical), followed by a rotation about A bringing B

into B 2 . Although the original rolling motion differs from the
combination of translation and rotation when these motions are

taken in succession, the original motion may be completely

duplicated by a combination of simultaneous translation and
rotation.

Another example of plane motion is given in Fig. 15.13, which
represents a rod whose extremities slide, respectively, along a
horizontal and a vertical track. This motion may be replaced by
a translation in a horizontal direction and a rotation about A

(Fig. 15.13a) or by a translation in a vertical direction and a

rotation about B (Fig. 15.136).

a-A,

Plane motiontTranslation with A Rotation about A

PliUie motion(Translation with B Rotation about B

Fig. 15.13
(b)
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Fig. 15.14

In general, we shall consider a small displacement which
brings two particles A and B of a representative slab, respec-

tively, from A 1 and B x into A 2 and B 2 (Fig. 15.14). This displace-
ment may be divided into two parts, one in which the particles
move into A 2 and B\ while the line A/3 maintains the same
direction, the other in which B moves into B., while A remains

fixed. Clearly, the first part of the motion is a translation and the
second part a rotation about A.

Recalling from Sec. 11.12 the definition of the "relative mo-

tion" of a particle with respect to a moving frame of refer-
ence — as opposed to its "absolute motion" with respect to a fixed
frame of reference — we may restate as follows the result ob-
tained above: Given two particles A and B of a rigid slab in plane
motion, the relative motion of B with respect to a frame attached
to A and of fixed orientation is a rotation. To an observer moving

with A, but not rotating, particle B will appear to describe an arc
of circle centered at A.

15.6. Absolute and Relative Velocity in Plane Mo-

tion. We saw in the preceding section that any plane motion
of a slab may be replaced by a translation defined by the motion

of an arbitrary reference point A, and by a rotation about A.
The absolute velocity v B of a particle B of the slab is obtained
from the relative- velocity formula derived in Sec. 11.12,

= v, + vB/A (15.17)

where the right-hand member represents a vector sum. The
velocity v 4 corresponds to the translation of the slab with A,
while the relative velocity v B/A is associated with the rotation
of the slab about A and is measured with respect to axes centered

at A and of fixed orientation (Fig. 15.15). Denoting by i B/A the
position vector of B relative to A, and by wk the angular velocity

of the slab with respect to axes of fixed orientation, we have from
(15.10) and (15.10')

'B/A = cok X rB/A (15.18)

where /• is the distance from A to B. Substituting for \ B/A from
(15.18) into (15.17), we may also write

= v. + wk X rB/A (15.17')



KINEMATICS OF RIGID BODIES 669

e
Plane motion

Fig. 15.15

Translation with A

A
Hotation about A V B= V .\ + V B/A

As an example, we shall consider again the rod AB of Fig.

15.13. Assuming that the velocity v A of end A is known, we
propose to find the velocity v B of end B and the angular velocity

« of the rod, in terms of the velocity v^, the length /, and the

angle 0. Choosing A as reference point, we express that the given

motion is equivalent to a translation with A and a rotation about

A (Fig. 15.16). The absolute velocity of B must therefore be

equal to the vector sum

v B = v, + vB/A (15.17)

We note that, while the direction of v B//t is known, its magnitude
lu is unknown. However, this is compensated by the fact that

the direction of \ B is known. We may therefore complete the
diagram of Fig. 15.16. Solving for the magnitudes v B and u, we
write

v B = v A tan W =^- =
Z cos

(15.19)

I'lanc motion

Fig. 15.16

Translation with A

.\ Bxetl

Hnlation about A

I ¦

V B = V A + V„. A
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The same result may be obtained by using B as a point of
reference. Resolving the given motion into a translation with
B and a rotation about B (Fig. 15.17), we write the equation

*a = v B + y A/B (15-20)

which is represented graphically in Fig. 15.17. We note that

v a/b anc ^ v b/a bave the same magnitude lu but opposite sense.
The sense of the relative velocity depends, therefore, upon the
point of reference which has been selected and should be care-

fully ascertained from the appropriate diagram (Fig. 15.16 or
15.17).

B(flxcd)

T
e\

•r

Plane motion = Translation with B + Rotation about B

Fig. 15.17

V .A= V B + V A/B

Finally, we observe that the angular velocity to of the rod in
its rotation about B is the same as in its rotation about A. It

is measured in both cases by the rate of change of the angle
0. This result is quite general; we should therefore bear in mind
that the angular velocity w of a rigid body in plane motion is
independent of the reference point.

Most mechanisms consist, not of one, but of several moving
parts. When the various parts of a mechanism are pin-
connected, its analysis may be carried out by considering each
part as a rigid body, while keeping in mind that the points where
two parts are connected must have the same absolute velocity
(see Sample Prob. 15.3). A similar analysis may be used when
gears are involved, since the teeth in contact must also have

the same absolute velocity. However, when a mechanism con-

tains parts which slide on each other, the relative velocity of
the parts in contact must be taken into account (see Sees. 15.10
and 15.11).
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SAMPLE PROBLEM 15.2

The double gear shown rolls on the stationary lower rack; the velocity

of its center A is 1.2 m/s directed to the right. Determine (a) the

angular velocity of the gear, (b) the velocities of the upper rack R and
of point D of the gear.

a. Angular Velocity of the Gear. Since the gear rolls on the lower
rack, its center A moves through a distance equal to the outer circum-

ference 7/iir l for each full revolution of the gear. Noting that 1 rev =

2tt rad, and that when A moves to the right (x A > 0) the gear rotates
clockwise (6 < 0), we write

•M _

2W, 2ir= -or *a = -**

Differentiating with respect to the time t and substituting the known

values v A = 1.2 m/s and r, = 150 mm = 0.150 m, we obtain

1.2 m/s = -(0.150 m)w w = -8 rad/s

= — (8 rad s k -^

v, = —r.u

where k is a unit vector pointing out of the paper.

. Velocities. The rolling motion is resolved into two component
motions: a translation with the center A and a rotation about the

center A. In the translation, all points of the gear move with the same

velocity v^. In the rotation, each point P of the gear moves about A

with a relative velocity \ p/A = uk X r p/A , where t p/A is the position
vector of P relative to A.

revTranslation + Rotation ¦ Rolling motion

Velocity of Upper Hock. The velocity of the upper rack is equal to

the velocity of point B; we write

v « = v b = v .4 + "b/a = y A + "> k X r B/A
= (1.2 m/s)i - (8 rad/s)k X (0.100 m)j
= (1.2 m/s)i + (0.8 m/s)i = (2 m/s)i

v s = 2 m/s — » -*

Velocity of Point D:

v D = v a + v dm = v a + wk X r D/A
= (1.2 m/s)i - (8 rad/s)k X (-0.150 m)i

= (1.2m/s)i +(1.2 m/s) j

v- = 1.697 m/s ^£45* -+
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L
SAMPLE PROBLEM 15.3

In the engine system shown, the crank AB has a constant clockwise

angular velocity of 2000 rpm. For the crank position indicated, deter-
mine (a) the angular velocity of the connecting rod BD, (/>) the velocity
of the piston P.

A
Motion of Crank AB. The crank AB rotates about point A. Ex-

pressing u AB in rad/s and writing v B — ru AB , we obtain

»4» = (i2000
iin/\ 60s /\ 1 rev /

v B = (AB)u AB = (3 in.)(209 rad/s) = 627 in./s

v 8 = 627 in./s "=5 50°

Motion of Connecting Rod BD. We consider this motion as a

general plane motion. Using the law of sines, we compute the angle
B between the connecting rod and the horizontal,

sin 40° sin /i

3 in.
B = 13.9°

The velocity v u of the point D where the rod is attached to the piston
must be horizontal, while the velocity of point B is equal to the
velocity v B obtained above. Resolving the motion of BD into a transla-
tion with B and a rotation about B, wc obtain

s^=^?

Plane motiontTranslation Rotation

-? |-/3 = 13.9'

Expressing the relation between the velocities v D , v^, and v D/B , we
write

v d = v s + V D/B

We draw the vector diagram corresponding to this equation. Recalling
that fi = 13.9°, we determine the angles of the triangle and write

vp <~i> h _ &2T in -
sin 53.9° sin 50° sin 76,1°

°d/b = 495 in -/ s v fl/B = 495 in./s ^S. 76.1°
v n = 522 in./s = 43.5 ft/s v D = 43.5 ft/s -*

v p = v n = 43.5 ft/s

Since v D/a = /w BD , we have

495 in./s = (8 in.)cc £ u BI) = 61.9 rad/s}

672



PROBLEMS

15.25 An automobile travels to the right at a constant speed of
50 km/h. (a) If the diameter of a wheel is 610 mm, determine the

velocity of points B, C, D, and E on the rim of the wheel, (b) Solve part
a assuming that the diameter of the wheel is reduced to 560 mm.

1 5.26 Collar B moves with a constant velocity of 25 in./s to the
left. At the instant when = 30°, determine (a) the angular velocity

of rod AB, (b) the velocity of collar A.
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a

1
Fig. P15.25

Fig. P15.26

15.27 Solve Prob. 15.26, assuming that = 45°.

15.28 The plate shown moves in the xy plane. Knowing that
(v A ) x = 80 mra/s, (v B ) ¥ = 200 mm/s, and (c c ) y = -40mm/s, deter-
mine (a) the angular velocity of the plate, (b) the velocity of point A.b120 mm

120

Fig. P15.28

1 5.29 In Prob. 15.28, determine the equation of the locus of the

points of the plate for which the magnitude of the velocity is
100 mm/s.

1 5.30 In Prob. 15.28, determine (a) the velocity of point B, (h) the
point of the plate with zero velocity.
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3
1 5.31 In the planetary gear system shown, the radius of gears A,

S, C, and D is a and the radius of the outer gear E is 3a. Knowing that the angular velocity of gear A is a A clockwise and that the outer gear E
is stationary, determine (a) the angular velocity of the spider connect-
ing the planetary gears, (b) the angular velocity of each planetary gear.

1 5.32 Two rollers A and B of radius r are joined by a link AB and

roll along a horizontal surface. A drum C of radius 2f is placed on the
rollers as shown. If the link moves to the right with a constant velocity
v, determine {a) the angular velocity of the rollers and of the drum, (b)
the velocity of points D, E, and F of the drum.

Fig. P15.31

n

1
( A(.

r
•)

v y

w
V

t
Fig. P15.32

1 5.33 Gear A rotates clockwise with a constant angular velocity

of 60 rpm. Knowing that at the same time the arm AB rotates counter-

clockwise with a constant angular velocity of 30 rpm, determine the
angular velocity of gear B.4Fig. P15.33 and P15.34

1 5.34 Arm AB rotates with an angular velocity of 120 rpm clock-
wise. If the motion of gear B is to be a curvilinear translation, deter-

mine (a) the required angular velocity of gear A, (/>) the corresponding
velocity of the center of gear B.



15.35 Crank AB has a constant angular velocity of 12 rad/s

clockwise. Determine the angular velocity of rod BD and the velocity of collar D when («) = 0, (fa) = 90°, '(c) = 180°.

KINEMATICS OF RIGID BODIES 675

5
Fig. P15.35

1 5.36 In the engine system shown, I = 160 mm and b = 60 mm;
the crank AB rotates with a constant angular velocity of 1000 rpm

clockwise. Determine the velocity of the piston I' and the angu-
lar velocity of the connecting rod for the position corresponding to
(a) = 0, (fa) = 90°, (c) - 180°.

Fig. P15.36

15.37 Solve Prob. 15.36 for the position corresponding to
= 60°.

15.38 Solve Prob. 15.35 for the position corresponding to
e = 120°.

15.39 through 15.42 In the position shown, bar AB has a
constant angular velocity of 3 rad/s counterclockwise. Determine the

angular velocity of bars BD and DE.112 in.

—6 in—

Fig. P15.39

-12 in.-

9 in.i120 mmmFig. P15.40

180 mm

— lfiOmm

Fig. P15.41

lfiOmm-

£
B

1 ¦•r200 mm

120 mm

— 200 mm— i— 160 mm-

Fig. P15.42
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1 5.43 Two gears, each of 12-in. diameter, are connected by an

18-in. rod AC. Knowing that the center of gear B has a constant
velocity of 30 in./s to the right, determine the velocity of the center
of gear A and the angular velocity of the connecting rod (a) when
B = 0, (b) when fi = 60°.

1
Fig. P15.43

15.44 Solve Prob. 15.43, assuming (a) (i = 180°, (b) B = 30°.

1 5.45 Two collars C and D move along the vertical rod shown.
Knowing that the velocity of collar D is 0.210 m/s downward, deter-

mine (a) the velocity of collar C, (b) the angular velocity of member
AB.

400 mmgFig. P15

*15.46 Prove for any given position of the mechanism of Prob.

15.45 that the ratio of the magnitudes of the velocities of collars
C and D is equal to the ratio of the distances AC and AD.

*15.47 Assuming that the crank AB of Prob. 15.36 rotates with

a constant clockwise angular velocity u and that = at t = 0, derive

an expression for the velocity of the piston P in terms of the time t.
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15.7. Instantaneous Center of Rotation in Plane

Motion. Consider the general plane motion of a slab, We shall
show that at any given instant the velocities of the various
particles of the slab are the same as if the slab were rotating
about a certain axis perpendicular to the plane of the slab, called
the instantaneous axis of rotation. This axis intersects the plane

of the slab at a point C, called the instantaneous center of
rotation of the slab.

To prove our statement, we first recall that the plane motion

of a slab may always be replaced by a translation defined by
the motion of an arbitrary reference point A, and by a rotation
about A. As far as the velocities are concerned, the translation

is characterized by the velocity v^, of the reference point A and
the rotation is characterized by the angular velocity co of the

slab (which is independent of the choice of A). Thus, the velocity

v A of point A and the angular velocity u of the slab define
completely the velocities of all the other particles of the slab
(Fig. 15.18a). Now let us assume that v A and to are known and

ntthat they are both different from zero. (If v^ = 0, point A is
itself the instantaneous center of rotation, and if to = 0, all the

particles have the same velocity v^.) These velocities could be

obtained by letting the slab rotate with the angular velocity w
about a point C located on the perpendicular to v A at a distance

r = v A /o> from A as shown in Fig. 15.18b. We check that the
velocity of A would be perpendicular to AC and that its magni-

tude would be roi = (v A /w)(o = v A . Thus the velocities of all the
other particles of the slab would be the same as originally de-

fined. Therefore, as far as the vebcities are concerned, the slab
seems to rotate about the instantaneous center C at the instant

considered.
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1
Fig. 15.19

o
The position of the instantaneous center may be defined in

two other ways. If the directions of the velocities of two parti-
cles A and B of the slab are known, and if they are different,
the instantaneous center C is obtained by drawing the perpen-
dicular to v_4 through A and the perpendicular to v B through
B and determining the point in which these two lines intersect

(Fig. 15.19a). If the velocities v^ and v B of two particles A and
B are perpendicular to the line AB, and if their magnitudes are
known, the instantaneous center may be found by intersecting

the line AB with the line joining the extremities of the vectors

v^ and v B (Fig. 15.19&). Note that, if v A and v s were parallel
in Fig. 15.19a, or if v A and v s had the same magnitude in Fig.
15.19b, the instantaneous center C would be at an infinite dis-

tance and w would be zero; all points of the slab would have the
same velocity.

To see how the concept of instantaneous center of rotation
may be put to use, let us consider again the rod of Sec. 15.6.
Drawing the perpendicular to v^ through A and the perpen-
dicular to v B through B (Fig. 15.20), we obtain the instantaneous
center C. At the instant considered, the velocities of all the

particles of the rod are thus the same as if the rod rotated about

C. Now, if the magnitude v A of the velocity of A is known,
the magnitude w of the angular velocity of the rod may be

obtained by writing

Fig. 15.20 AC I cos e
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The magnitude of the velocity of B may then be obtained by
writing

v B = (BC)u = I sin 6 , Va n = v, tan Q
I cos a

Note that only absolute velocities are involved in the computa-
tion.

The instantaneous center of a slab in plane motion may be
located either on the slab or outside the slab. If it is located

on the slab, the particle C coinciding with the instantaneous

center at a given instant t must have zero velocity at that instant.
However, it should be noted that the instantaneous center of

rotation is valid only at a given instant. Thus, the particle C of
the slab which coincides with the instantaneous center at time t

will generally not coincide with the instantaneous center at time

t + At; while its velocity is zero at time t, it will probably be

different from zero at time t + At. This means that, in general,
the particle C does not have zero acceleration, and therefore that

the accelerations of the various particles of the slab cannot be
determined as if the slab were rotating about C.

As the motion of the slab proceeds, the instantaneous center
moves in space. But it was just pointed out that the position of

the instantaneous center on the slab keeps changing. Thus, the
instantaneous center describes one curve in space, called the
space centrode, and another curve on the slab, called the body

centrode (Fig. 15.21). It may be shown that, at any instant, these

two curves are tangent at C and that, as the slab moves, the body

centrode appears to roll on the space centrode.

Fig. 15.21



SAMPLE PROBLEM 15.4

Solve Sample Prob. 15.2, using the method of the instantaneous center
of rotation.

r„ = 250mm

l
a. Angular Velocity of the Gear. Since the gear rolls on the station-

ary lower rack, the point of contact C of the gear with the rack has
no velocity; point C is therefore the instantaneous center of rotation.
We write

v, = r.u <¦> = Q rad s )"a — 'a" 1 1.2 m/s = {0.150 m)u

b. Velocities. All points of the gear seem to rotate about the
instantaneous center as far as velocities are concerned.

Velocity of Upper Hack. Recalling that On = v B , we write

v H = t) fl = r B o> v R = (0.250 m)(8 rud/s) = 2 m/s
v * = 2 m / s -» ~+

Velocity of Point D. Since r D = (0. 150 m) \/2 = 0.212 m, we write

v n = r D co v D = (0.212 m)(8 rad/s) = 1.696 m/s

v„ = 1.696 m s *£45" -+

SAMPLE PROBLEM 15.5

Solve Sample Prob. 15.3, using the method of the instantaneous center
of rotation.eMotion of Crank AB. Referring to Sample Prob. 15.3, we obtain
the velocity of point B; v B = 627 in./s "S* 50°.

Motion of the Connecting Rod BD. Wc first locate the instantane-

ous center C by drawing lines perpendicular to the absolute velocities
v B and v n . Recalling from Sample Prob. 15.3 that ft = 13.9° and that
BD = 8 in., we solve the triangle BCD.

y B = 40° + ft = 53.9" y D = 90° - ft = 76.1°

BC _ CD _ 8 in.
sin 76.1° sin 53.9° sin 50°

BC = 10.14 in. CD = 8.44 in.

Since the connecting rod BD seems to rotate about point C, we write

v B = (BC)u BD

627 in./s = (10.14 in.)w BD

U BD - 01.9 rad/s) -^

v D = (CD)u BD = (8.44 in.)(61. 9 rad/s)

= 522 in./s =43.5 ft/s

v ; , = \ „ = 13. 5 ft/s -» -+

680



PROBLEMS

15.48 A helicopter moves horizontally in the x direction at a
speed of 120 mi/h. Knowing that the main blades rotate clockwise at

an angular velocity of 180 rpm, determine the instantaneous axis of
rotation of the main blades.
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Fig. P15.48

1 5.49 Denoting by r A the position vector of a point A of a rigid
slab which moves in plane motion, show that the position vector r,, of
the instantaneous center of rotation is

t c =t a +
"Xv.

where to is the angular velocity of the slab and v^ the velocity of
point A.

1 5.50 A drum, of radius 4.5 in., is mounted on a cylinder, of radius

6 in. A cord is wound around the drum, and its extremity D is pulled
to the left at a constant velocity of 3 in./s, causing the cylinder to

roll without sliding. Determine (a) the angular velocity of the cylin-
der, (b) the velocity of the center of the cylinder, (o) the length of
cord which is wound or unwound per second.sFig. P15.50

15.51 Solve Sample Prob. 15.2, assuming that the lower rack is
not stationary but moves to the left with a velocity of 0.6 m/s.



682 DYNAMICS

6(1 min/s

A
21 mn/i A

Fig. P15.52

15.52 A double pulley rolls without sliding on the plate AB,
which moves to the left at a constant speed of 24 mm/s. The 60-mm-

radius inner pulley is rigidly attached to the 80-mm-radius outer

pulley. Knowing that cord E is pulled at a constant speed of 60 mm/s
as shown, determine (a) the angular velocity of the pulley, (b) the
velocity of the center G of the pulley.

15.53 Knowing that at the instant shown the velocity of collar
D is 20 in./s upward, determine (a) the angular velocity of rod AD,

lb) the velocity of point B, (c) the velocity of point A.

Fig. P15.53

uFig. P15.54

1 5.54 The rod ABD is guided by wheels which roll in the tracks
shown. Knowing that B = 60° and that the velocity of A is 24 in./s

downward, determine (a) the angular velocity of the rod, (b) the
velocity of point D.

1 5.55 Solve Prob. 15.54, assuming that B = 30°.

1 5.56 Knowing that at the instant shown the angular velocity

of crank AB is 3rad/s clockwise, determine (a) the angular velocity
of link BD, (b) the velocity of collar D, (c) the velocity of the midpoint
of link BD.w300 mm

— 225 mm— Fig. P15.56 and P15.57

1 5.57 Knowing that at the instant shown the velocity of collar

D is 1.5 m/S to the right, determine (a) the angular velocities of crank
AB and link BD, (b) the velocity of the midpoint of link BD.
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15.58 Collar A slides downward with a constant velocity v..

Determine the angle d corresponding to the position of rod AB for which the velocity of B is horizontal.

8
Fig. P15.58 and P15.60

15.59 Two rods AB and BD are connected to three collars as

shown. Knowing that collar A moves downward with a constant

velocity of 120 mm/s, determine at the instant shown (a) the angular velocity of each rod, [b) the velocity of collar D.
1 5.60 Collar A slides downward with a constant speed of 16 in./s.

Knowing that b = 2 in., L = 10 in., and = 60°, determine (a) the
angular velocity of rod AB, (b) the velocity of B.

15.61 The rectangular plate is supported by two 6-in. links as
shown. Knowing that at the instant shown the angular velocity of
link AB is 4 rad/s clockwise, determine (a) the angular velocity of the
plate, (b) the velocity of the center of the plate, (c) the velocity of
coiner F.n

Fig. P15.59

nSin.

Fig. P15.61 and P15.62

15.62 Knowing that, at the instant shown, the angular velocity

of link AB is 4 rad/s clockwise, determine (a) the angular velocity of the plate, (h) the points of the plate for which the magnitude of the
velocity is equal to or less than 6 in./s.
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15.63 At the instant shown, the velocity of the center of the

gear is 200mm/s to the right. Determine (a) the velocity of point
B, (b) the velocity of collar D.

60 mm

d
Fig. P15.63 and P15.64

1 5.64 At the instant shown, the velocity of collar D is 360 mm/s
downward. Determine (a) the angular velocity of rod BD, (b) the
velocity of the center of the gear.

15.65 Describe the space centrode and the body centrodc of gear
A of Prob. 15.63 as the gear rolls on the horizontal rack.

1 5.66 Describe the space centrode and the body centrode of rod
ABD of Prob. 15.54 as point A moves downward. (Note. The body
centrode need not lie on a physical portion of the rod.)

1 5.67 Using the method of Sec. 15.7, solve Prob. 15.35.

1 5.68 Using the method of Sec. 15.7, solve Prob. 15.36.

1 5.69 Using the method of Sec. 15.7, solve Prob. 15.39.

15.70 Using the method of Sec. 15.7, solve Prob. 15.40.

15.71 Using the method of Sec. 15.7, solve Prob. 15.41.

15.72 Using the method of Sec. 15.7, solve Prob. 15.42.

1 5.73 Using the method of Sec. 15.7. solve Prob. 15.43.

15.74 Using the method of Sec. 15.7, solve Prob. 15.32.

1 5.75 Using the method of Sec. 15.7, solve Prob. 15.33.
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1 5.8. Absolute and Relative Acceleration in Plane

Motion. We saw in Sec. 15.5 that any plane motion may be replaced by a translation defined by the motion of an arbitrary reference point A, and by a rotation about A. This property
was used in Sec. 15.6 to determine the velocity of the various

points of a moving slab. We shall now use the same property to determine the acceleration of the points of the slab.
We first recall that the absolute acceleration a s of a particle

of the slab may be obtained from the relative-acceleration for-
mula derived in Sec. 11.12,

a„ = a. a B/A (15.21)

where the right-hand member represents a vector sum. The
acceleration a A corresponds to the translation of the slab with
A, while the relative acceleration a BM is associated with the

rotation of the slab about A and is measured with respect to axes centered at A and of fixed orientation. We recall from Sec.
15.3 that the relative acceleration a B/A may be resolved into two

components, a tangential component (& B/A ), perpendicular to the line AB, and a normal component (a B/A ) n directed toward A (Fig.
15.22). Denoting by r B/A the position vector of B relative to A

and, respectively, by ick and ak the angular velocity and angular acceleration of the slab with respect to axes of fixed orientation,
we have

(H/ A )t = <*k X r B/A (a B/A \ = ra
( a B/A>n — ~~ w r B/A (a„

(15.22)

where r is the distance from A to B. Substituting into (15.21) the

expressions obtained for the tangential and normal components of a B/4 , we may also write
a„ = a. «k X r B/A - u 2 rB/A (15.21')ti/ V a B/A

"n/.-\\ a,
x U/.\i:

Plane motion

Fig. 15.22

Translation with A + Rotation about A
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Fig. 15.23

ti
Plane motion Translation with A Rotation about A

(
-

(a)

n\ {a B/\ ] ;o<C)

(d)o'fl/A'n

As an example, we shall consider again the rod AB whose
extremities slide, respectively, along a horizontal and a vertical
track (Fig. 15.23). Assuming that the velocity v^ and the accel-

eration & A of A are known, we propose to determine the acceler- ation a B of B and the angular acceleration o of the rod. Choosing
A as a reference point, we express that the given motion is
equivalent to a translation with A and a rotation about A. The
absolute acceleration of B mast be equal to the sum

a„ = a, + al B/A

= z A + (a B/ J n + (a B/A ) t (15.23)

where (a B/yl )„ has the magnitude Zto 2 and is directed toward A, while (a B/-4 ), has the magnitude la and is perpendicular to AB.
There is no way of telling at the present time whether the

tangential component (a BM ), is directed to the left or to the right, and the student should not rely on his "intuition" in this
matter. We shall therefore indicate both possible directions for

this component in Fig. 15.23. Similarly, we indicate both possi-
ble senses for a B , since we do not know whether point B is
accelerated upward or downward.

Equation (15.23) has been expressed geometrically in Fig.
15.24. Four different vector polygons may be obtained, depend-
ing upon the sense of a A and the relative magnitude of a A and

(a B/A ) n . If we are to determine a B and a from one of these diagrams, we must know not only a A and but also w. The
angular velocity of the rod, therefore, should be separately de- termined by one of the methods indicated in Sees. 15.6 and 15.7.
The values of a B and a may then be obtained by considering
successively the x and y components of the vectors shown in
Fig. 15.24. In the case of polygon a, for example, we write

-*» x components: = a A + fw 2 sin 9 — la cos 9
+ \y components: —a B = —lu 2 cos8 — la sin 6

and solve for a B and a. The two unknowns may also be obtained
by direct measurement on the vector polygon. In that case, care
should be taken to draw first the known vectors sl a and (a BM )„.
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It is quite evident that the determination of accelerations is
considerably more involved than the determination of velocities.

Yet, in the example considered here, the extremities A and B

of the rod were moving along straight tracks, and the diagrams drawn were relatively simple. If A and B had moved along
curved tracks, the accelerations n A and a B should have been

resolved into normal and tangential components and the solution of the problem would have involved six different vectors.
When a mechanism consists of several moving parts which

are pin-connected, its analysis may be carried out by considering each part as a rigid body, while keeping in mind that the points
where two parts are connected must have the same absolute
acceleration (see Sample Prob. 15.7). In the case of meshed
gears, the tangential components of the accelerations of the teeth

in contact are equal, but their normal components are different.
¦=15.9. Analysis of Plane Motion in Terms of a

Parameter. In the case of certain mechanisms, it is possible

to express the coordinates x and y of all the significant points of the mechanism by means of simple analytic expressions con-
taining a single parameter. It may be advantageous in such a

case to determine directly the absolute velocity and the absolute acceleration of the various points of the mechanism, since the
components of the velocity and of the acceleration of a given point may be obtained by differentiating the coordinates x and
y of that point.

Let us consider again the rod AB whose extremities slide,

respectively, in a horizontal and a vertical track (Fig. 15.25).
The coordinates x A and y B of the extremities of the rod may
be expressed in terms of the angle 6 the rod forms with the
vertical.

Fig. 15.

x A = I sin y B = lcos0 (15.24)

Differentiating Eqs. (15.24) twice with respect to f, we write

*A = *a = ie cos ° .. B = y B = -10 sin
a A = x A - -10 2 sin 6 + 10 cos 6

u b = !Jb = ~ W a cos - 10 sin

Recalling that = a and = a, we obtain

A as la cos v B = -lu sin (15.25)
a A - -lu 2 sin + la cos a B = -lu> 2 cos - la sin

(15.26)

We note that a positive sign for v A or a A indicates that the velocity v^ or the acceleration a A is directed to the right; a
positive sign for v B or a B indicates that v B or a B is directed
upward. Equations (15.25) may be used, for example, to deter-
mine v B and w when v A and are known. Substituting for w
in (15.26), we may then determine a B and a if a A is known.
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SAMPLE PROBLEM 15.6

The center of the double gear of Sample Prob. 15.2 has a velocity of
1.2 m/s to the right and an acceleration of 3 m/s 2 to the right. Deter-
mine (a) the angular acceleration of the gear, (fc) the acceleration of
points B, C, and D of the gear.

a. Angular Acceleration of the Gear. In Sample Prob. 15.2, we
found that X A = —rjl m&V A = — fjM. Differentiating the latter with
respect to time, we obtain a A = —r t a.

v A = -r x w 1.2 m/s = -(0.150 m)« « = -8rad/s
a A = -Tja 3 m/s 2 = -{0.150 m)« ot = -20rad/s 2

a =ok = -(20rad/s 2 )k -*

b. Accelerations. The rolling motion of the gear is resolved into a
translation with A and a rotation about A.

'Translationeler ; ¦'¦

V

'«/-•'„h•i>/\h

Acceleration of Point B. Adding vectorially the accelerations cor-

responding to the translation and to the rotation, we obtain

»B = a /t + *B/A = a A + ( a B//l)< + ( a B/A
= a, 4- «k X Is/a ~ <Al R/A

= (3 m/s 2 )! - (20 rad/s 2 )k X (0.100 m)j - (8 rad/s) 2 (0.100 m)j
= (3 m/s 2 )i + (2 m/s 2 )i - (6.40 m/s 2 )j

a B = 8.12 m/s 2 ^ 52.0 s -*

Acceleration of Point C

*c = *a + *c/a = a x + ak X r C/A - ta\ /A
= (3 m/s 2 )i - (20 rad/s 2 )k X (-0.150 m)j - (8 rad/s) 2 ( -0.150 m)j
= (3 m/s 2 )i - (3 m/s 2 )i + (9.60 m/s^j

a r = 9.00 m/s 2 T -*

Acceleration of Point D

*D = *A + *D/A = *A + ak X X WA - "^D/A
= (3 m/s 2 )i - (20 rad/s^k X ( -0.150 m)i - (8 rad/sffl -0.150 m)i

= (3 m/s 2 )i + (3 m/s 2 )] + (9.60 m/s 2 )!
a„ = 12.95 n:/s 2 ^ 13.4° -^

688
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SAMPLE PROBLEM 15.7

Crank AB of the engine system of Sample Prob. 15.3 has a constant

clockwise angular velocity of 2000 rpm. For the crank position shown,
determine the angular acceleration of the connecting rod BD and the
acceleration of point D.

A
r = 3iii.\

Af(S

B
-10

Motion of Crank AB. Since the crank rotates about A with constant

u AB = 2000 rpm = 209 rad/s, we have a AB = 0. The acceleration of
B is therefore directed toward A and has a magnitude

a B = ru AB = ( & ft)(209 rad/s) 2 = 10,920 ft/s 2

a B = 10,920 ft/s 2 7* 40°

Motion of the Connecting Rod BD. The angular velocity a BD and
the value of B were obtained in Sample Prob. 15.3.

u BD = 61.9 rad/s 5 B = 13.9°

The motion of BD is resolved into a translation with B and a rotation

about B. The relative acceleration » D/B is resolved into normal and
tangential components.

(«d/b)» = (BDKo = (A ft)(61.9 rad/s) 2 = 2550 ft/s 2
(«/)/«)„= 2550 ft/s 2 ^13.9°

(«a/*)i = (BD)a BD = (ft)a BI) = 0.667a BD

( az , /B ),=0.667« BD -£76.1°

While (a B/D ), must be perpendicular to BD, its sense is not known.aPlane inoiioiitTranslation Rotation

Noting that the acceleration & u must be horizontal, we write

a„ = a B + a D/B = a B + (a n/B ) n + (a 0/B ),

[a D «*] = [10,920 ?" 40°] + [2560 5^ 13.9=] + [0.667o Bn u£ 76.1°]

Equating x and y components, we obtain the following scalar equa-
tions:

¦*» x components:

-a D = - 10,920 cos 40° - 25.50 cos 13.9° + 0.667a BD sin 13.9°
+ \y components:

= - 10,920 sin 40° + 2550 sin 13.9° + 0.667a BD cos 13.9°

Solving the equations simultaneously, we obtain a Bn = +9890
rad/s 2 and a D = +9260 ft/s 2 . The positive signs indicate that the
senses shown on the vector polygon are correct; we write

a nn = 9890 rad/s- ) -^

a„ = 9260 ft/s 2 «- -4
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SAMPLE PROBLEM 15.8

, 7 . The linkage ABDF. moves in the vertical plane. Knowing that in the
position shown crank AB has a constant angular velocity to, of 20 rad/s
counterclockwise, determine the angular velocities and angular accel-
erations of the connecting rod BD and of the crank DE.

—- 8 in.-"-" — 12 in. — •+« 17 in.

1
r B = 8i + 14j

r D = - 17i + 17 j

t D/B = 12i+3j

Solution. While this problem could be solved by the method used

in Sample Prob. 15.7, we shall make full use of the vector approach in the present case. The position vectors r B , r n , and r 0/B arc chosen as
shown in the sketch.

Velocities. Since the motion of each element of the linkage is

contained in the plane of the figure, we have

u AB = u An k = (20 rad/s)k cc an = "nnk *°i)fi — ^DE*<"BD — W BJ3'

where k is a unit vector pointing out of the paper. We now write

V D = V B + V D/B

u De V X r D = u AB V X r„ + to afl k X t D /B

«Bjk X (-171 + 17j) = 20k x (8i + 14j) + u BD k X (12i + 3j)
-17» OT j - llu DE i = 160j - 280i + 12w BD j - 3« BD i

Equating the coefficients of the unit vectors i and j, we obtain the
following two scalar equations:

-17w M = -280-3u Bfl
-17<a M = +160 + 12u aD

» M = -(293rad/s)k ta Dg = (11.29 rad/s)k -*

Accelerations. Noting that at the instant considered crank AB has a
constant angular velocity, we write

«BD = «BO k a DE = Q DR k
a n = a„ + a

a
AB

=

»D — a B T u D//i

Each term of Eq. (1) is evaluated separately:

(1)

«n = «DB k X r„ - mIbTd

= « M k X (-171 + 17j) - (11.29) 2 (-17i + 17j) = -n« OE i - 17 <W + 2170i - 2170J
«« = v AH Y X r B - co 2 B r B = - (20) 2 (8i + 14j)

- _3200i - 5600J

a D/B = "flD* X f/j/a — U BD T D/B

= a BD k X (12i + 3j) - (29.3) 2 (12i + 3j)
= 12n BD j - 3a BD i - l(),320i - 2580J

Substituting into Eq. (1) and equaling the coefficients of i and j, we
obtain

-17«„ K + 3a B „= -15,690

-17«jW- 12<1 />n = -60J0

= -{645 rad/s 2 * a nr = («» rai

690
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PROBLEMS

15.76 A 15-ft steel beam is lowered by means of two cables
unwinding at the same speed from overhead cranes. As the beam

approaches the ground, the crane operators apply brakes to slow down
the unwinding motion. At the instant considered the deceleration of
the cable attached at A is 13 ft/s 2 , while that of the cable attached at B

is 7 ft/s 2 . Determine (a) the angular acceleration of the beam, (b) the
acceleration of point C.

15.77 The acceleration of point C is 5 ft/s 2 downward and the
angular acceleration of the beam is 2 rad/s 2 clockwise. Knowing that
the angular velocity of the beam is zero at the instant considered,
determine the acceleration of each cable.

15.78 A 600-mm rod rests on a smooth horizontal table. A force

P applied as shown produces the following accelerations:
a A = 0.8 m/s 2 to the right, a = 2 rad/s 2 clockwise as viewed from

above. Determine the acceleration (a) of point B, (/>) of point (,'.

.\

12 ft •3(1-

Figs. P15.76 and P15.77

nFig. P15.78

1 5.79 In Prob. 15.78. determine the point of the rod which (a) has
no acceleration, (b) has an acceleration of 0.350 m/s 2 to the right.

15.80 Determine the accelerations of points C and D of the
610-mm-diameter wheel of Prob. 15.25, knowing that the automobile
moves at a constant speed of 50 km/h.

1 5.81 Determine the accelerations of points K and E of the wheel

of Prob. 15.25, knowing that the automobile moves at a constant speed of 50 km/h and assuming the diameter of the wheel is reduced to
560 mm.

1 5.82 The Hanged wheel rolls without slipping on the horizontal
rail. If at a given instant the velocity and acceleration of the center of

the wheel are as shown, determine the acceleration (a) of point B, (b) of
point C, (c) of point D.

1 5.83 The moving carriage is supported by two casters A and
C, each of J-in. diameter, and by a ^-in.-diameter ball B. If at a given
instant the velocity and acceleration of the carriage are as shown,
determine (a) the angular accelerations of the ball and of each caster,
(b) the accelerations of the center of the ball and of each caster.wFig. P15.82

3 in./s

"(j <-.(& > V""»^

Fig. P15.83
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15.84 and 15.85 At the instant shown, the disk rotates with

a constant angular velocity to clockwise. Determine the angular

velocities and the angular accelerations of the rods AB and BC.

6Fig. P15.86.- r = io mm

Fig. P15.881
Fig. P15.84 Fig. P15.85

1 5.86 Crank AB rotates about A with a constant angular velocity

of 900 rpm clockwise. Determine the acceleration of the piston P
when (a) 6 = 90°, (b) 9 = 180°.

1 5.87 Solve Prob. 15.86 when (a) = 0, (b) = 270°.

1 5.88 Ann AB rotates with a constant angular velocity of J 20 rpm

clockwise. Knowing that gear A does not rotate, determine the accel-
eration of the tooth of gear B which is in contact with gear A.

15.89 and 15.90 For the linkage indicated, determine the

angular acceleration (a) of bar BD, (b) of bar HE.
1 5.89 Linkage of Prob. 15.41.
15.90 Linkage of Prob. 15.40.

1 5.91 and 1 5.92 The end A of the rod AB moves downward

with a constant velocity of 9 in./s. For the position shown, determine
(a) the angular acceleration of the rod, (£>) the acceleration of the
midpoint C of the rod.5Fig. P1S.91 and P15.93 Fig. P15.92 and P15.94

1 5.93 and 1 5.94 In the position shown, end A of the rod AB
has a velocity of 9 in./s and an acceleration of 6 in./s 2 , both directed
downward. Determine («) the angular acceleration of the rod, (b) the

acceleration of the midpoint G of the rod.
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15.95 In the position shown, point A of bracket ABCD has a

velocity of magnitude^ = 250 mm/s with dv A /dt = 0. Determine (a)
the angular acceleration of the bracket, (b) the acceleration of point C.

1 5.96 In Prob. 15.95, determine the acceleration of point D.

1 5.97 Show that the acceleration of the instantaneous center of

rotation of the slab of Prob. 15.49 is zero if, and only if,

*a = Jv A + " X v,

where a = ark is the angular acceleration of the slab.

* 1 5.98 Rod AB slides with its ends in contact with the floor and

the inclined plane. Using the method of Sec. 15.9, derive an expression
for the angular velocity of the rod in terms of v g , 8, I, and /i.

m
— 100 mm — — 100 mm —J

Fig. P15.95

eFig. P15.98 and P15.99

*1 5.99 Derive an expression for the angular acceleration of the

rod AB in terms of v B , 8, I. and B, knowing that the acceleration of
point B is zero.

* 1 5. 1 0O The drive disk of the Scotch crosshead mechanism shown

has an angular velocity u and an angular acceleration a, both directed

clockwise. Using the method of Sec. 15.9, derive an expression (a) for the velocity of point B, (b) for the acceleration of point B.
? 15.101 A disk of radius r rolls to the right with a constant

velocity v. Denoting by P the point of the rim in contact with the
ground at t = 0, derive expressions for the horizontal and vertical
components of the velocity of P at any time t. (The curve described
by point P is called a cycloid.)

? 1 5.1 02 Knowing that rod AB rotates with an angular velocity u
and with an angular acceleration a, both counterclockwise, derive

expressions for the velocity and acceleration of collar D.

* 1 5. 1 03 Knowing that rod AB rotates with an angular velocity u
and an angular acceleration a, both counterclockwise, derive expres-
sions for the components of the velocity and acceleration of point E.5.Fig. P15.102 and P15.103
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.
Fig. P15.104 and P15.105

1
Fig. P15.106

1Fig. P15.108

* 1 5. 1 04 Collar B slides along rod OC and is attached to a sliding
block which moves in a vertical slot. Knowing that rod OC rotates

witli an angular velocity to and with an angular acceleration a, both
counterclockwise, derive expressions for the velocity and acceleration
of collar B.

* 15. 105 Collar B slides along rod OC and is attached to a sliding

block which moves upward with a constant velocity v in a vertical
slot. Using the method of Sec. 15.9, derive an expression (a) for the
angular velocity of rod OC, (b) for the angular acceleration of rod
OC.

* 15.106 The position of a factory window is controlled by the rack

and pinion shown. Knowing that the pinion C has a radius r and rotates counterclockwise at a constant rate to, derive an expression for
the angular velocity of the window.

*15.107 The crank AB of Prob. 15.36 rotates with a constant

clockwise angular velocity to, and — at 1 ¦ = 0. Using the method
of Sec. 15.9, derive an expression for the velocity of the piston P in
terms of the time t.

*1 5.108 Collar A slides upward with a constant velocity v^.

Using the method of Sec. 15.9, derive an expression for (a) the angular
velocity of rod AB, (b) the components of the velocity of point B.

*15.109 In Prob. 15.108, derive an expression for the angular
acceleration of rod AB.

1 5.10. Rate of Change of a Vector with Respect to

a Rotating Frame. We saw in Sec. 11.10 that the rate of

change of a vector is the same with respect to a fixed frame and
with respect to a frame in translation. In this section, we shall

compare the rales of change of a vector Q with respect to a fixed
frame and with respect to a rotating frame of reference, t We
shall also learn to determine the rate of change of Q with respect

to one frame of reference when Q is defined by its components in
another frame.

Consider two frames of reference centered at O, a fixed frame

OXYZ and a frame Oxyz which rotates about the fixed axis OA;
let O denote the angular velocity of the frame Oxyz at a given

t It is recalled that the selection of a fixed frame of reference is arbitrary. Any

frame may be designated as "fixed'"; all others will then be considered a.s moving.
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instant (Fig. 15.26). Consider now a vector function Q(t) repre- sented by the vector Q attached at O; as the time t varies, both
the direction and the magnitude of Q change. Since the varia-
tion of Q is viewed differently by an observer using OXYZ as a
frame of reference and by an observer using Oxyz, we should
expect the rate of change of Q to depend upon the frame of
reference which has been selected. Therefore, we shall denote

°y (Q)oxyz tne rate of change of Q with respect to the fixed frame

OXYZ, and by (Q) 0xv , its rate of change with respect to the
rotating frame Oxyz. We propose to determine the relationship
existing between these two rates of change.

Let us first resolve the vector Q into components along the .v,
(/, and z axes of the rotating frame. Denoting by i, j, and k the
corresponding unit vectors, we write

Q = QA + Qj + QJt (15.27)

Differentiating (15.27) with respect to t and considering the unit
vectors i, j, k as fixed, we obtain the rate of change of Q with
respect to the rotating frame Oxyz:

(QW = <?,* + Q„i + ftk (15.28)

To obtain the rate of change of Q with respect to Die fixed
frame OXYZ, we mast consider the unit vectors i, j, k as variable
when differentiating (15.27). We therefore write

(0)om = & + <?J + Q± + Q, j f + Q u | + ft f| (15.29)
Recalling (15.28), we observe that the sum of the first three terms

in the right-hand membei of (15.29) represents the rate of change
(9Wr- We note > on the otner nand . 'hat the rate of change
(QVra would reduce to the last three terms in (15.29) if the

vector Q were fixed within the frame Oxyz, since (Q) 0ti/1 would then be zero. But, in that case, (Q) 0ATZ would represent the
velocity of a particle located at the tip of Q and belonging to a
body rigidly attached to the frame Oxyz. Thus, the last three

terms in (15.29) represent the velocity of that particle; since the
frame Oxyz has an angular velocity fi with respect to OXYZ at
the instant considered, we write, by (15.5),

<?4 + v, d 4,+Q, d ±-clt lit
(15.30)

Substituting from (15.28) and (15.30) into (15.29), we obtain the
fundamental relatione

Fig. 15.26

(Q)OXYZ = (QW + n x Q (15.31)
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\ ,.¦ = ilyd
We conclude that the rate of change of the vector Q with respect
to the fixed frame OXYZ is made of two parts: The first part

represents the rate of change of Q with respect to the rotating
frame Oxyz; the second part, fi X Q, is induced by the rotation

of the frame Oxyz.

The use of relation (15.31) simplifies the determination of the
rate of change of a vector Q with respect to a fixed frame of
reference OX YZ when the vector Q is defined by its components

along the axes of a rotating frame Oxyz, since diis relation does
not require the separate computation of the derivatives of the
unit vectors defining die orientation of the rotating frame.

15.11. Plane Motion of a Particle Relative to a

Rotating Frame. Coriolis Acceleration. Consider two

frames of reference, both centered at O and both in the plane of

the figure, a fixed frame OXY, and a rotating frame Oxy (Fig.
15.27). Let P be a particle moving in the plane of the figure.
While the position vector r of P is the same in both frames, its
rate of change depends upon the frame of reference which has
been selected.

The absolute velocity v P of the particle is defined as the
velocity observed from the fixed frame OXY and is equal to the

rate of change (r) 0XY of r with respect to that frame. We may,

however, express \ p in terms of the rate of change (r) 0l() observed
from the rotating frame if we make use of Eq. (15.31). Denoting

by the angular velocity of the frame Oxy with respect to OAT
at the instant considered, we write

v P = (f)oAT = O X r + (r) 0l „ (15.32)

But (r) 0j . (/ defines the velocity v P/F of the particle P relative to the
frame Oxy. If we imagine that a rigid slab has been attached to
the rotating frame, v P/F will represent the velocity of P along the

path that it describes on that slab (Fig. 15.28). On the other hand, the term Hxrin (15.32) will represent the velocity v^. of
the point P' of the slab — or rotating frame — which coincides
with P at the instant considered. Thus, we have

Vp = Vp, + v,P/F (15.33)

Fig. 15.28

where \ P = absolute velocity of particle P

Vp. = velocity of point P' of moving frame coinciding
with P

Vp,y = velocity of P relative to moving frame
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The absolute acceleration a P of the particle is defined as the
rate of change of v P with respect to the fixed frame OXY.
Computing the rates of change with respect to OX Y of the terms
in (15.32), we write

a P = v f = SJ X r + S!xf + ;§K*W (15-34)
where all derivatives are defined with respect to OXY, except
where indicated otherwise. Referring to Eq. (15.31), wc note
that the last term in (15.34) may be expressed as

dtKftoJ = ( ¥ W, + n X $0*

On the other hand, f represents the velocity v p and may be replaced by the right-hand member of Eq. (15.32). After com-
pleting these two substitutions into (15.34), we write

a p = S2 x r + Q X (O X r) + 2fi x (r) ,„ + (r) 0zv (15.35)

Referring to the expression (15.8) obtained in Sec. 15.3 for the
acceleration of a particle in a rigid body rotating about a fixed

axis, we note that the sum of the first two terms represents the
acceleration a p . of the point P' of the rotating frame which
coincides with P at the instant considered. On the other hand,

the last term defines the acceleration a P/F of P relative to the rotating frame. If it were not for the third term, which has not
been accounted for, a relation similar to (15.33) could be written

for the accelerations, and a,, could be expressed as the sum of &p, and a p/F . However, it is clear that such a relation would be
incorrect and that we must include the additional term. This

term, which we shall denote by a c , is called the complementary
acceleration, or Coriolis acceleration, after the French mathema-

tician De Coriolis (1792-1843). We write

a,, = & p . + a p/F + a c (15.36)

where a p — absolute acceleration of particle P
a,,. = acceleration of point P' of moving frame coinciding

with P

a P/F = acceleration of P relative to moving frame

a c = 2fl x (r) „ = 2fl x y„ r
— complementary, or Coriolis, acceleration
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We note that, since point P' moves in a circle about the origin
O, its acceleration a p , has, in general, two components: a compo-
nent (a P -), tangent to the circle, and a component (a,,.),, directed

toward O. Similarly, the acceleration * p , F generally has two
components: a component (a P , F ), tangent to the path that P
describes on the rotating slab, and a component (& P/F )„ directed
toward the center of curvature of that path. We further note

that, since the vector SI is perpendicular to the plane of motion,
and thus to \ P/F , the magnitude of the Coriolis acceleration

a c = 2fi X Vp/j is equal to 2Qv P/F , and its direction may be obtained by rotating the vector \ P/F through 90° in the sense of
rotation of the moving frame (Fig. 15.29). The Coriolis accelera-
tion reduces to zero when either $2 or v p/F is zero.

wgFig. 15.29

The following example will help in understanding the physical

meaning of the Coriolis acceleration. Consider a collar P which is made to slide at a constant relative speed u along a rod OB
rotating at a constant angular velocity w about O (Fig. 15.30a).

According to formula (15.36), the absolute acceleration of P may
be obtained by adding vectorially the acceleration a^ of the point
A of the rod coinciding with P, the relative acceleration a P/0B
of P with respect to the rod, and the Coriolis acceleration a c .
Since the angular velocity w of the rod is constant, a^ reduces
to its normal component (a A ) n of magnitude ru 2 ; and since «

is constant, the relative acceleration a P/0R is zero. According
to the definition given above, the Coriolis acceleration is a vector

perpendicular to Oli, of magnitude 2«u, and directed as shown
in the figure. The acceleration of the collar P consists, therefore,
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of the two vectors shown in Fig. 15.30a. Note that the result
obtained may be checked by applying the relation (11.44).

To understand better the significance of the Coriolis acceler-
ation, we shall consider the absolute velocity of P at time f and

at time t + Af (Fig. 15.30fo). At time f, the velocity may be
resolved into its components u and v,, and at time t + Af into
its components u' and v 4 .. Drawing these components from the
same origin (Fig. 15.30c), we note that the change in velocity

during the time At may be represented by the sum of three

vectors W, TTT, and T"f'. The vector TT' measures the

change in direction of the velocity v,,, and the quotient TT"/At

represents the acceleration a A when Af approaches zero. We

check that the direction of TT" is that of a A when Af approaches
zero and that

,. TT" ,. A0 2
urn — ; — = Iim v, — — = ma = nr = a,
ii-o Af ±i-o A At A

The vector RR' measures the change in direction of u due to

the rotation of the rod; the vector T"T measures the change

in magnitude of v A due to the motion of P on the rod. The

vectors RR' and T"T' result from the combined effect of the
relative motion of P and of the rotation of the rod; they would

vanish if either of these two motions stopped. We may easily
verify that the sum of these two vectors defines the Coriolis

acceleration. Their direction is that of a c when At approaches
zero and, since RR ' = u AO and

(r + Ar)u — rw = w Ar, we check that
T'T = v A . - v A =

lim m + Z*L) = lim L» + a %)±i-o \ At Ar / a/-o \ Af Af /

= (/CO tau = 2w« = a.

Formulas (15.33) and (15.36) may be used to analyze the
motion of mechanisms which contain parts sliding on each other.
They make it possible, for example, to relate the absolute and

relative motions of sliding pins and collars (see Sample Frobs.
15.9 and 15.10). The concept of Coriolis acceleration is also very
useful in the study of long-range projectiles and of other bodies
whose motions are appreciably affected by the rotation of the
earth. As was pointed out in Sec. 12.1, a system of axes attached
to the earth does not truly constitute a newtonian frame of

reference; such a system of axes should actually be considered
as rotating. The formulas derived in this section will therefore

facilitate the study of the motion of bodies with respect to axes attached to the earth.a
f \>-M

dFig. 15.30
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SAMPLE PROBLEM 15.9

The Geneva mechanism shown is used in many counting instalments

and in other applications where an intermittent rotary motion is

required. Disk D rotates with a constant counterclockwise angular

velocity " D of 10 rad/s. A pin P is attached to disk D and slides along
one of several slots cut in disk S. It is desirable that the angular

velocity of disk S be zero as the pin enters and leaves each slot; in
the case of four slots, this will occur if the distance between the centers

of the disks is / = V2 R.

At the instant when 6 = 150°, determine (n) the angular velocity

of disk S, (b) the velocity of pin P relative to disk S.

n
/ = YSh -

Solution. We solve triangle OPB, which corresponds to the position

4> = 130°. Using the law of cosines, we write

r- = R? + I 2 - 2RI cos 30° = 0.551R* r = 0.742JJ = 37.1 mm

From the law of sines

sin 30°sin/? _ sin 30°
H r

sin B =
0.742

B = 42.4°

Since pin P is attached to disk. D, and since disk D rotates about point
B, the magnitude of the absolute velocity of P is

Vp = Ru. D = (30 mm)(10 rad/s) = 500mm/s
v p = 500 mm/s 5^ 60°

We consider now the motion of pin P along the slot in disk S. Denoting
by 7" the point of disk S which coincides with P at the instant con-
sidered, we write

"r + vp/a

Noting that v ; ,. is perpendicular to the radius OP and that v p/a is
directed along the slot, we draw the velocity triangle corresponding
to the above equation. From the triangle, we compute

y = 90° - 42.4° - 30° = 17.6°

v p - = v P sin y = (500 mm/s) sin 17.6°

v p . = 151.2 mm/s K 42.4°
o p/s = Vp cos y = (500 mm/s) cos 17.6°

Vp /S = 477 mm/s -gr 42.4° -^

Since v p . is perpendicular to the radius OP, we write

L-p. 151.2 mm/s = (37.1 mm)w s

«3 = 4.08 rad/s )
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SAMPLE PROBLEM 15.10

In the Geneva mechanism of Sample Prob. 15.9, disk D rotates with
a constant counterclockwise angular velocity <o B of 10 rad/s. At the
instant when £ = 150°, determine the angular acceleration of disk S.

4
; = V2H

42.4'

== 618 mm - :

/-** "MBOnrai --'

Solution, Referring to Sample Prob. 15.9, we obtain the angular
velocity of disk S and the velocity of the pin relative to disk S.

w s = 4.08 rad/s \

P = 42.4° v p/s = 477 mm/s IF 42.4°

Since pin P moves with respect to the rotating disk S, we write

a p = a p . + a p/s + a c (1)

Each term of this vector equation is investigated separately.
Absolute Acceleration a,.. Since disk D rotates with constant u,

the absolute acceleration a p is directed toward H.

a P = Ru'i = (50mm)(10rad/s) 2 = 5000 mm/s 2

& p = 5000 mm/s 2 ^ 30°

Acceleration a t , of the Coinciding Point P', The acceleration a f .
of the point P' of disk S which coincides with P at the instant con-

sidered is resolved into normal and tangential components. (We recall
from Sample Prob. 15.9 that r = 37.1 mm.)

vV)» = r "l = ( 37 -l mm)(4.08 rad/s) 2 = 618 mm/s 2

(a,.), = 618 mm/s 2 F 42.4°

(a,), = ra s = 37.1a s (a,.), = 37.1a s % 42.4°

Relative Acceleration n r v Since the pin P moves in a straight
slot cut in disk S, the relative acceleration a p/s must be parallel to
the slot; i.e., its direction must be *3?42.4°.

Coriolix Acceleration a . Rotating the relative velocity v p/S through
90° in the sense of <o s , we obtain the direction of the Coriolis compo-
nent of the acceleration.

a c = 2u 8 v P/8 = 2(4.08 rad/s)(477 mm/s) = 3890 mm/s 2

a c = 3890 mm/s 2 'Vj 42.4°

We rewrite Eq. (1) and substitute the accelerations found above.

*p = (V)„ + (V). + »p/« + »c

[5000 ^ 30°1 = [618 5 s " 42.4°] + [37.1a s ^ 42.4°]

+ [a P/s «£ 42.4°] + [3890 ^ 42.4°]

Equating components in a direction perpendicular to the slot:

5000 cos 17.6° = 37.1<x s - 3890

«% = 233 rad/s*} •+
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PROBLEMS

15.110 and 15.111 Two rotating rods are connected by a slider
block P. The rod attached at B rotates with a constant clockwise

angular velocity to B . For the given data, determine for the position
shown (a) the angular velocity of the rod attached at A, (fa) the relative

velocity of the slider block V with respect to the rod on which it slides.

15.110 fa = 10 in., o,- B = 5 rad/s.

15.111 fa = 200 mm, u B = 9 rad/s.

.
Fig. P15.110 and P15.112 Fig. P15.111 and P15.113

15.112 and 15.113 Two rotating rods are connected by a slider

block /'. The velocity v of the slider block relative to the rod on

which it slides is constant and is directed outward. For the given
data, determine the angular velocity of each rod for the position
shown.

15.112 h = 200 mm, v = 300 mm/s.

1 5.1 1 3 h = 10 in., c = 15 in./s.

1 5.1 14 Two rods AH and BD pass through smooth holes drilled

in a hexagonal block. (The holes are drilled in different planes so

that the rods will not hit each other.) Knowing that rod AH rotates
counterclockwise at the rate w, determine the angular velocity of rod

BD and the relative velocity of the block with respect to each rod

when (a) = 30°, (fa) = 15°.aFig. P15.114

1 5.1 1 5 Solve Prob. 15.114 when (a) = 90°, (fa) = 60°.
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15.116 Four pins slide in four separate slots cut in a circular

plate as shown. When the plate is at rest, each pin has a velocity
directed as shown and of the same constant magnitude U. If each

pin maintains the same velocity in relation to the plate when the plate

rotates about O with a constant clockwise angular velocity to, deter-

mine the acceleration of each pin.

1 5.1 1 7 Solve Prob. 15.1 16, assuming that the plate rotates about

O with a constant counterclockwise angular velocity «.

15.118 At the instant shown the length of the boom is being
decreased at the constant rate of 150 mm/s and the boom is being

lowered at the constant rate of 0.08 rad/s. Knowing that 6 = 30°,

determine (a) the velocity of point B, (b) the acceleration of point B.

Fig. P15.116

- .16 in.

— 18 in .— ]

^=4
Fig. P15.118 Fig. P15.119

15.119 Water flows through a straight pipe OB which rotates
counterclockwise with an angular velocity of 120 rpm. If the velocity
of the water relative to the pipe is 20 ft/s, determine the total acceler-
ation (a) of the particle of water P v (b) of the particle of water P.,.

15.120 Pin P slides in the circular slot cut in the plate ABDF. at a

constant relative speed u = 0.5 m/s as the plate rotates about A at the
constant rate u = 6 rad/s. Determine the acceleration of the pin as it

passes through (a) point B, (b) point D, (c) point E.

15.121 Solve Prob. 15.120, assuming that at the instant consid-
ered the angular velocity u is being decreased at the rate of 10 rad/s 2

and that the relative velocity u is being decreased at the rate of 3 m/s 2 .

300 mm

100 mm

Fig. P15.120
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15.122 The cage of a mine elevator moves downward with a

constant speed of 40 ft/s. Determine the magnitude and direction of

the Coriolis acceleration of the cage if the elevator is located (a) at the
equator, (b) at latitude 40° north, (c) at latitude 40° south. (Hint. In

parts b and c consider separately the components of the motion paral-
lel and perpendicular to the plane of the equator.)

1 5.1 23 A train crosses the parallel 50° north, traveling due north
at a constant speed v. Determine the speed of the train if the Coriolis
component of its acceleration is 0.01 ft/s 2 . (See hint of Prob. 15.122.)

15.124 In Prob. 15.110, determine the angular acceleration of
the rod attached at A.

15.125 In Prob. 15.111, determine the angular acceleration of
the rod attached at A.

f> in.
10 in.

Fig. P15.126rFig. P15.127

15.1 26 A garden sprinkler has four rotating arms, each of which
consists of two horizontal straight sections of pipe forming an angle

of 120°. The sprinkler when operating rotates with a constant angular
velocity of 180 rpm. If the velocity of the water relative to the pipe

sections is 12 ft/s, determine the magnitude of the total acceleration
of a particle of water as it passes the midpoint of (a) the 10-in. section

of pipe, (b) the 6-in. section of pipe.

15.127 Water flows through the curved pipe OB, which has a
constant radius of 0.375 m and which rotates with a constant counter-

clockwise angular velocity of 120 rpm. If the velocity of the water
relative to the pipe is 12m/s, determine the total acceleration of the

particle of water P.
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15.1 28 The disk shown rotates with a constant clockwise angular

velocity of 12 rad/s. At the instant shown, determine (a) the angular

velocity and angular acceleration of rod BD, {b) the velocity and
acceleration of the point of the rod in contact with collar I'..

1 5.1 29 Solve Prob. 15.128, assuming that the disk rotates with a

constant counterclockwise angular velocity of 12 rad/s.

*15.12. Motion about a Fixed Point. We have studied

in Sec. 15.3 the motion of a rigid body constrained to rotate

about a fixed axis. We shall now consider the more general case

of the motion of a rigid body which has a fixed point O.

First, we shall prove that the most general displacement of a

rigid body ivith a fixed point O is equivalent to a rotation of the
body about an axis through O.f Instead of considering the rigid

body itself, we may detach a sphere of center O from the body

and analyze the motion of that sphere. Clearly, the motion of the

sphere completely characterizes the motion of the given body.
Since three points define the position of a solid in space, the

center O and two points A and B on the surface of the sphere will
define the position of the sphere and, thus, the position of the

body. Let A l and B i characterize the position of the sphere at

one instant, and A., and B 2 its position at a later instant (Fig.

15.31a). Since the sphere is rigid, the lengths of the arcs of great

circle A,B, and A 2 B 2 must be equal, but, except for this require-

ment, the positions of A,, A 2 , B v and B 2 are arbitrary. We
propose to prove that the points A and B may be brought,

respectively, from A x and li t into A 2 and B 2 by a single rotation

of the sphere about an axis.

For convenience, and without loss of generality, we may select

point B so that its initial position coincides with the final position
of A; thus, B y = A 2 (Fig. 15.316). We draw the arcs of great

circle A^A 2 , A 2 B 2 and the arcs bisecting, respectively, A X A 2 and
A 2 B 2 . Let C be the point of intersection of these last two arcs;

we complete the construction by drawing A ,0', A 2 C, and B 2 C. As

pointed out above, AjBj = A.,B 2 on account of the rigidity of the
sphere; on the other hand, since C is by construction equidistant

from A,, A 2 , and B 2 , we have A^C = A 2 C = B 2 C. As a result,

the spherical triangles A^CA 2 and B t CB 2 are congruent and the

angles A % CA 2 and B X CB 2 are equal. Denoting by the common

value of these angles, we conclude that the sphere may be

brought from its initial position into its final position by a single
rotation through about the axis OC.

It follows that the motion during a time interval \t of a rigid

body with a fixed point O may be considered as a rotation

125 mm

E
250 mm

Fig. P15.128

«i

{fcl

Fig. 15.31

( This is known as Enler's theorem.
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Fig. 15.32

#
through A# about a certain axis. Drawing along that axis a vector
of magnitude A#/Af and letting Af approach zero, we obtain at
the limit the instantaneous axis of rotation and the angular
velocity to of the body at the instant considered (Fig. 15.32). The
velocity of a particle P of the body may then be obtained, as in

Sec. 15.3, by forming the vector product of to and of the position
vector r of the particle:

v=f = «X» (15.37)
at

The acceleration of the particle is obtained by differentiating
(15.37) with respect to t. As in Sec. 15.3 wc have

a = aXr + «x("Xr) (15.38)

where the angular acceleration a is defined as the derivative

a = <£ (15.39)
of the angular velocity w.

In the case of the motion of a rigid body with a fixed point, the

direction of to and of the instantaneous axis of rotation changes
from one instant to the next. The angular acceleration a, there-

fore, reflects the change in direction of u as well as its change in

magnitude and, in general, is not directed along the instantane-
ous axis of rotation. While the particles of the body located on

the instantaneous axis of rotation have zero velocity at the instant

considered, they do not have zero acceleration. Also, the accel-

erations of the various particles of the body cannot be deter-
mined as if the body were rotating permanently about the in-
stantaneous axis.

Recalling the definition of the velocity of a particle with

position vector r, we note that the angular acceleration a, as
expressed in (15.39), represents the velocity of the tip of the

vector to. This property may be useful in the determination of

the angular acceleration of a rigid body. For example, it follows
that the vector a is tangent to the curve described in space by the

Body cone tip of the vector to.
We should note that the vector to moves within the body, as

well as in space. It thus generates two cones, respectively called
the body cone and the space cone (Fig. 15.33). f It may be shown
that, at any given instant, the two cones are tangent along the

instantaneous axis of rotation and that, as the body moves, the

body cone appears to roll on the space cone.

t It is recalled that a cone is, by definition, a surface generated by a straight
line passing through a fixed point. In general, the cones considered here will not
he circular cones.
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Before concluding our analysis of the motion of a rigid body
with a fixed point, we should prove that angular velocities are

actually vectors. As it was indicated in Sec. 2.2, some quantities,
such as the finite rotations of a rigid body, have magnitude and
direction, but do not obey the parallelogram law of addition;

these quantities cannot be considered as vectors. We shall see
presently that angular velocities (and also infinitesimal rotations)
do obey the parallelogram law and, thus, are truly vector quanti-
ties.

Consider a rigid body with a fixed point which, at a given

instant, rotates simultaneously about the axes OA and OB with
angular velocities w t and to 2 (Fig. 15.34a). We know that this
motion must be equivalent at the instant considered to a single
rotation of angular velocity to. We propose to show that

cc = <o, + (tin (15.40)

i.e., that the resulting angular velocity may be obtained by
adding coj and w, by the parallelogram law (Fig. 15.34/j).

Consider a particle P of the body, defined by the position
vector r. Denoting respectively by Vj, v 2 , and v the velocity of P
when the body rotates about OA only, about OB only, and about
both axes simultaneously, we write

v = co X r Vl = to, X r v 2 = w 2 X r (15.41)

But the vectorial character of linear velocities is well established

(since they represent the derivatives of position vectors). We
have therefore

where the plus sign indicates vector addition. Substituting from
(15.41), we writeh

— B

(")

s«Xr = to 1 xr+<o 2 xr

a X r = («, + w 2 ) x r

where the plus sign still indicates vector addition. Since the
relation obtained holds for an arbitrary r, we conclude that
(15.40) must be true.

* 15.1 3. General Motion. We shall now consider the

most general motion of a rigid body in space. Let A and B be
two particles of the body. We recall from Sec. 11.12 that the
velocity of B with respect to the fixed frame of reference OXY7.

may be expressed as

v b = Tg + v bm (15.42)
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e
where v B/A is the velocity of B relative to a frame AX'Y'Z'
attached to A and of fixed orientation (Fig. 15.35). Since A is
fixed in this frame, the motion of the body relative to AX'Y'Z' is
the motion of a body with a fixed point. Therefore, the relative
velocity \ B/A may be obtained from (15.37), after r has been

replaced by the position vector x B/A of B relative to A. Substi-
tuting for v B/A into (15.42), wc write

v b = v A + w X rB/A (15.43)

where to is the angular velocity of the body at the instant consid-
ered.

The acceleration of B is obtained by a similar reasoning. We
first write

a B = & A + & B/A

and, recalling Eq. (15.38),

¦b = ** + « X t tu + a X (« X r B/A ) (15.44)

where a is the angular acceleration of the body at the instant
considered.

Equations (15.43) and (15.44) show that the most general mo-
tion of a rigid body is equivalent, at any given instant, to the sum

of a translation, in which all the particles of the body have the
same velocity and acceleration as a reference particle A, ami of a
motion in which particle A is assumed to he fixedA

It may easily be shown, by solving (15.43) and (15.44) for v /t
and a A , that the motion of the body with respect to a frame
attached to B would be characterized by the same vectors w and

a as its motion relative to AX'Y'Z '. Thus, the angular velocity
and angular acceleration of a rigid body at a given instant are
independent of the choice of the reference point. On the other
hand, one should keep in mind that, whether it is attached to A
or to B, the moving frame should maintain a fixed orientation;

i.e., it should remain parallel to the fixed reference frame OX YZ

throughout the motion of the rigid body. In many problems it is
found more convenient to use a moving frame which is allowed
to rotate as well as to translate. The use of such moving frames
will be discussed in Sees. 15.14 and 15.15.

tit is recalled from Sec, 15.12 that, in general, the vectors u and « are not
collinear, and that the accelerations of the particles of the body in their motion
relative to the frame AX'Y'Z' cannot be determined as if the body were rotating
permanently about the instantaneous axis through A.
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SAMPLE PROBLEM 15.11

The crane shown rotates with a constant angular velocity to t of

0.30 rad/s. Simultaneously, the boom is being raised with a constant

angular velocity to 2 or °-50 rad/s relative to the cab. Knowing that the
length of the boom OP is I = 12 m, determine (a) the angular velocity
to of the boom, (b) the angular acceleration a of the boom, (c) the
velocity v of the tip of the boom, (rf) the acceleration a of the tip of the
boom.

y

y

10.39 m-

»,= 0.30 j

6 m

ara = 0.15i

F«. = 0.50k

a. Angular Velocity of Boom. Adding the angular velocity tc 1 of the
cab and the angular velocity to 2 of the boom relative to the cab, we
obtain the angular velocity a of the boom at the instant considered:

u = w, + to 2 to = (0..30 rad/s)j + (0.50 rad/s)k -^

b. Angular Acceleration of Boom. The angular acceleration a of
the boom is obtained by differentiating to. Since the vector to, is

constant in magnitude and direction, we have

a = <o = tb t + to 2 = + <b 2

where the rate of change to 2 is to be computed with respect to the fixed
frame OXY7,. However, it is more convenient to use a frame Oxyz

attached to the cab and rotating with it, since the vector to 2 also rotates

with the cab and, therefore, has zero rate of change with respect to

that frame. Using Eq. (15.31) with Q = to 2 and Q = to,, we write

(QW = (QW + «xQ
("aWra = Wow + <°i X "2

a = (a 2 ) 0XYZ = + (0.30 rad/s)j x (0.50 rad/s)k
a = :0.I5rad/s-)i -*

c. Velocity of Tip of Boom. Noting that the position vector of point
P is r = (10.39 m)i + (6 m)j and using the expression found for to in
part a, we write

I J k
v = to X r = 0.30 rad/s 0.50 rad/s

10.39 m 6 m

v = -{3 m/s)i + (5.20 m/s)j - (3.12 m/s)k -^

d. Acceleration of Tip of Room. Recalling that v = to x r, we
write

a=axr + tox("Xr)=axr + toXv

I j k
a = 0.15

! 10.39 6

J k

0.30 0.50

-3 5.20 -3.12

= 0.90k - 0.94i - 2.60i - l.oOj + 0.90k

a = -i3.54m/s 2 ii - (LSOm/s^j + (1.80 m. >k
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SAMPLE PROBLEM 15.12

The rod AB, of length 7 in., is attached to the disk by a ball-and-socket
connection and to the collar B by a clevis. The disk rotates in the yz
plane at a constant rate 10, = 12 rad/s, while the collar is free to slide

along the horizontal rod CD. For the position 0=0, determine (a) the
velocity of the collar, (fo) the angular velocity of the rod.

i
<¦>, = 12i

r A =2k

r„=6i +3j

*B/A = 61 + 3j - 2k

o'E/B= ~3j+2k

a. Velocity of Collar. Since point A is attached to the disk and
since collar B moves parallel to the x axis, we have

v* = «i X r A = 12i X 2k = -24j v B = v B i

Denoting by to the angular velocity of the rod, we write

y B=*A+ V B/A = v a + « X r B

i j k

IA

v B i = -24j +
6 3 -2

-
v„i = -24j 4- (-H - H)" + (<H + 2"-v)J + (3«. - K> k

Equating the coefficients of the unit vectors, we obtain

v B =

24 = 2w.
= 3w. -6to

-2w,
+&,,

(1)
(2)

(3)

Multiplying Eqs. (1), (2), (3), respectively, by 6, 3, —2 and adding, we
write

(iv R + 72 = o„ = —12v B = — ;l2in./s;i -^

b. Angular Velocity of Rod AB. We note that the angular velocity
cannot be determined from Eqs. (1), (2), and (3), since the determinant

formed by the coefficients of «,, io u , and u, is zero. We must therefore
obtain an additional equation by considering the constraint imposed by
the clevis at B.

The collar-clevis connection at B permits rotation of AB about the
rod CD and also about an axis perpendicular to the plane containing
AB and CD. It prevents rotation of AB about the axis EB, which is

perpendicular to CD and lies in the plane containing AB and CD.
Thus the projection of ..• on r F/B must be zero and we writet

=
'B/B W + W v j + «,k) • (-3j + 2k) =

-3w„ + 2u, = (4)

Solving Eqs. (1) through (4) simultaneously, we obtain

i>„ = - 12 «. = 3.e w„ = 1.846 w. = 2.77

co = (3.89 rad/s)i + ( 1 .846 rad/s)j + (2.77 rad/s)k -^

IWe could also note that the direction of El! is that of the vector triple
product r„ /t . X (t u/v X r B/A ) and write w[r B/c X (r„ /c X r HIA )] = 0. This
formulation would lie particularly useful if the rod CD were skew.
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PROBLEMS

1 5.1 30 The rigid body shown rotates about the origin of coordi-

nates with an angular velocity « Denoting the velocity of point A by v .i = ( ,; Ai + (°I)»j + (^J.-k. and knowing that (v A ) t = 40 mm/s and
(c^),, = —200 mm/s, determine (a) the velocity component (t-^) r , (b)
the velocity of point B.

d
Fig. P1 5.130 and P15.131

1 5.131 The rigid body shown rotates about the origin of coordi-

nates with an angular velocity a = u T i + u y j + w.k. Knowing that
(v A ) y = 400 mm/s, (v B ) y = —300 mm/s, and co v = 2 rad/s, determine
(a) the angular velocity of the body, (b) the velocities of points A and B.

15.132 The circular plate and rod arc rigidly connected and
rotate about the ball-and-socket joint O with an angular velocity
a =u,i + biy) +W,k. Knowing that v, = — (27 in./s)i + (18in./s)j
+ (v A ) s k and a y = 4 rad/s, determine (a) the angular velocity of
the assembly, (fc) the velocity of point B.

15.133 Solve Prob. 15.132, assuming that oj„ = 0.

15.134 The rotor of an electric motor rotates at the constant rate

Wj = 3600 rpm. Determine the angular acceleration of the rotor as the
motor is rotated about the y axis with a constant angular velocity of

6 rpm clockwise when viewed from the positive y axis.

Fig. P15.132

Fig. P15.134
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Fig. P15.136

15.135 The propeller of a small airplane rotates at a constant

rate of 2200 rpm in a clockwise sense when viewed by the pilot.
Knowing that the airplane is turning left along a horizontal circular

path of radius L000 ft, and that the speed of the airplane is ISO mi/h,
determine the angular acceleration of the propeller at the instant the
airplane is moving due south.

15.136 The blade of a portable saw rotates at a constant rate

ic = 1800 rpm as shown. Determine the angular acceleration of the
blade as a man rotates the saw about the y axis with an angular
velocity of 3 rad/s and an angular acceleration of 5 rad/s 2 , both clock-
wise when viewed from above.

15.137 Knowing that the turbine rotor shown rotates at a con-

stant rate io, = 10,000 rpm, determine the angular acceleration of the

rotor if the turbine housing has a constant angular velocity of 3 rad/s
clockwise as viewed from (a) the positive y axis, (b) the positive z axis.

I
/^noh

Fig. P1 5.137

1 5.1 38 In the gear system shown, gear A is free to rotate about
the horizontal rod OA. Assuming that gear B is fixed and that shaft OC
rotates with a constant angular velocity to,, determine (a) the angular
velocity of gear A, (h) the angular acceleration of gear A.uFig. P15.138

15.139 Solve Prob. 15.138, assuming that shaft OC and gear B
rotate with constant angular velocities os i and to.,, respectively, both
counterclockwise as viewed from the positive y axis.
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1 5.1 40 Two shafts AC and CF, which lie in the vertical xy plane,

are connected by a universal joint at C. Shaft CF rotates with a

constant angular velocity «, as shown. At a time when the arm of the

crosspiece attached to shaft CF is horizontal, determine the angular

velocity of shaft AC.

5
r&^.

Fig. P15.140

15.141 Solve Prob. 15.140, assuming that the arm of the cross-
piece attached to shaft CF is vertical.

1 5.1 42 The radar antenna shown rotates with a constant angular

velocity to, of 1.5 rad/s about the y axis. At the instant shown the
antenna is also rotating about the z axis with an angular velocity to, °f

2 rad/s and an angular acceleration a 2 of 2.5 rad/s 2 . Determine (a) the
angular acceleration of the antenna, (b) the accelerations of points A
and li.

Fig. P15.142
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Fig. P15.143

1 5. 1 43 The cone shown rolls on the zx plane with its apex at the
origin of coordinates. Denoting by «, the constant angular velocity of
the axis OB of the cone about the y axis, determine (a) the rate of spin
of the cone about the axis OB, (b) the total angular velocity of the cone,
(c) the angular acceleration of the cone.

1 5. 1 44 A rod of length OP = 500 mm is mounted on a bracket as

shown. At the instant considered the angle B is being increased at the
constant rate dB/dt = 4 rad/s and the elevation angle •/ is being
increased at the constant rate dy/dt = 1.6 rad/s. For the position
B = and y = 30°, determine (<;) the angular velocity of the rod, (b)
the angular acceleration of the rod, (<;) the velocity and acceleration of
point P.

Fig. P15.144

k
Fig. P15.145 and P15.146

A disk of radius /• spins at the constant rate w 2 about an
axle held by a fork-ended horizontal rod which rotates at the constant

rate Uy Determine the acceleration of point P for an arbitrary value of
the angle 0.

Bin.

1 £.
pwwwwi'iiH,

*- * ~V F

' t wm

t— i

-Bin. — — lin..

Fig. P1 5.147

J'

15.146 A disk of radius r spins at the constant rate w a about an
axle held by a fork-ended horizontal rod which rotates at the constant

rate »,, Determine (a) the angular acceleration of the disk, (/>) the
acceleration of point P on the rim of the disk when 6 = 0, (c) the
acceleration of P when 8 = 90°.

In the planetary gear system shown, gears A and B arc
rigidly connected to each other and rotate as a unit about shaft FG.

Gears C and 1) rotate with constant angular velocities of 15 rad/s and
30 rad/s, respectively (both counterclockwise when viewed from the

right). Choosing the .v axis to the right, the (/ axis upward, and the z
axis pointing out of the plane of the figure, determine {d> the common

angular velocity of gears A and B, (b) the angular velocity of shaft FII,
which is rigidly attached to FG.

15.148 In Prob. 15.147, determine (<;) the common angular ac-

celeration of gears A and B, (b) the acceleration of the tooth of gear B
which is in contact with gear D at point 2.
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15.149 Three rods are welded together to form the corner as-
sembly shown which is attached to a fixed ball-and-socket joint at 0.

The end of rod OA moves on the inclined plane D which is perpendic-
ular to the xy plane. The end of rod OB moves on the horizontal plane
E which coincides with the ex plane. Knowing that at the instant
shown v B = (1.6m/s)k, determine (a) the angular velocity of the as-

sembly, [b] the velocity of point C.

15.150 In Prob. 15.149 the speed of point B is known to be
constant. For the position shown, determine (a) the angular accelera-

tion of the assembly, (b) the acceleration of point C.

1 5.151 In Prob. 15.149 the speed of point B is being decreased at
the rate of 0.8 m/s 2 . For the position shown, determine (a) the angular

acceleration of the assembly, [b) the acceleration of point C.

d
Fig. P15.149

15.152 Rod AB, of length 220 mm, is connected by ball-and-
socket joints to collars A and B, which slide along the two rods shown.

Knowing that collar A moves downward with a constant speed of
63 mm/s, determine the velocity of collar B when c = 120 mm.

oFig. P15.152wFig. P15.154

15.153 Solve Prob. 15.152 when c = 40 mm.

1 5. 1 54 Rod BC, of length 21 in., is connected by ball-and-socket

joints to the collar C and to the rotating arm AB. Knowing that arm
AB rotates in the zx plane at the constant rate « = 38 rad/s, deter-
mine the velocity of collar C.

1 5.1 55 In Prob. 15.152, the ball-and-socket joint between the rod
and collar A is replaced by the clevis connection shown. Determine (n)

the angular velocity of the rod, (b) the velocity of collar B.

1 5.1 56 In Prob. 15.154, the ball-and-socket joint between the rod

and collar C is replaced by the clevis connection shown. Determine (a)
the angular velocity of the rod, (b) the velocity of collar C. Fig. P15.155 and P15.156
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15.157 In the linkage shown, crank BC rotates in the yz plane

while crank ED rotates in a plane parallel to the xi/ plane. Knowing
that in the position shown crank BC has an angular velocity u x of
10 rad/s and no angular acceleration, determine the corresponding
angular velocity w 2 of crank ED.

Fig. P15.157

1Fig. P15.158

1 5.1 58 Rod AT? has a length of 25 in. and is guided by pins sliding

in the slots CD and EF, which lie in the zx and xy planes, respectively.
Knowing that in the position shown end A moves to the left along slot

CD with a speed of 17 in./s, determine the velocity of end B of the rod.

#1 5.1 59 In Prob. 15.152, determine the acceleration of collar B

when <; = 40 mm.

#1 5.1 60 In Prob. 15.152, determine the acceleration of collar B

when c = 120 mm.

#15.161 In Prob. 15.157, determine the angular acceleration of
crank ED.

* 1 5. 1 62 Li Prob. 15.154, determine the acceleration of collar C.

'-15.14. Three-dimensional Motion of a Particle

Relative to a Rotating Frame. Coriolis Accelera-

tion. We saw in Sec. 15.10 that, given a vector function Q(l)
and two frames of reference centered at O — a fixed frame OX YZ

and a rotating frame Oxyz — the rates of change of Q with respect
to the two frames satisfy the relation

(Q)<*« = (QW + «xq (15.31)

We had assumed at the time that the frame Oxyz was constrained
to rotate about a fixed axis OA. However, the derivation given in



Sec. 15.10 remains valid when the frame OxtjZ is constrained only
to have a fixed point O. Under this more general assumption, the

axis OA represents the instantaneous axis of rotation of the frame

Oxijz (Sec. 15.12), and the vector S2 its angular velocity at the
instant considered (Fig. 15.36).

We shall now consider the three-dimensional motion of a

particle P relative to a rotating frame Oxyz constrained to have a
fixed origin O. Let r be the position vector of P at a given instant,
and B the angular velocity of the frame Oxyz with respect to the

fixed frame OXYZ at the same instant (Fig. 15.37). The deriva-
tions given in Sec. 15.11 for the two-dimensional motion of a

particle may readily be extended to the three-dimensional case,

and we may express the absolute velocity \ p of P (i.e., its velocity
with respect to the fixed frame OXYZ) as

KINEMATICS OF RIGID BODIES 717

Y

+
Fig. 15.36

v P = Q X r + (f),Oxy:

This relation may be written in the alternate form

Vp = v,, + v,P/F

(15.45)

(15.46)

where \ p = absolute velocity of particle P
v p - = velocity of point V of moving frame coinciding

withP

v P/ p = velocity of P relative to moving frame

The absolute acceleration a p of P may be expressed aseap = fl X r + fi X (0 X r) + 2fl x (i) 0zvi + (r) 0lI « (15.47)

We may also use the alternate form

a P — a p . + &p/ir + a ( (15.48)

where a P = absolute acceleration of particle P
& p . = acceleration of point P' of moving frame coinciding

with P

a p/F = acceleration of P relative to moving frame
a c = 2fi x (r) 0w = 29, x v P/F

= complementary, or Coriolis, acceleration

We note that the Coriolis acceleration is perpendicular to the

vectors and v P/F . However, since these vectors are usually not
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e
perpendicular to each other, the magnitude of a c , in general, is

not equal to 2£lv p/F , as was the case for the plane motion of a
particle. We further note that the Coriolis acceleration reduces

to zero when the vectors O and v^^ are parallel, or when either
of thein is zero.

Rotating frames of reference are particularly useful in the
study of the three-dimensional motion of rigid bodies. If a rigid
body has a fixed point O, as was the case for the crane of Sample
Prob. 15.11, we may use a frame Oxyz which is neither fixed nor

rigidly attached to the rigid body. Denoting by fl the angular
velocity of the frame Oxyz, we then resolve the angular velocity
« of the body into the components fl and u B/F , where the second
component represents the angular velocity of the body relative
to the frame Oxyz (see Sample Prob. 15.14). An appropriate

choice of the rotating frame will often lead to a simpler analysis

of the motion of the rigid body than would be possible with axes
of fixed orientation. This is especially true in the case of the

general three-dimensional motion of a rigid body, i.e., when the

rigid body under consideration has no fixed point (see Sample
Prob. 15.15).

*15.15. Frame of Reference in General Motion.

Consider a fixed frame of reference OXYZ and a frame Axyz

which moves in a known, but arbitrary, fashion with respect to

OXYZ (Fig. 15.38). Let P be a particle moving in space. The
position of P is defined at any instant by the vector i P in the fixed
frame, and by the vector r p/A in the moving frame. Denoting by
r. the position vector of A in the fixed frame, we have

r P m r A + r P/A (15.49)

The absolute velocity v P of die particle is obtained by writing

v„ = r p = r, + rP/A (15.50)

where the derivatives are defined with respect to the fixed frame
OXYZ. Thus, the first term in the right-hand member of (15.50)

represents the velocity v 4 of the origin A of the moving axes. On
the other hand, since the rate of change of a vector is the same

with respect to a fixed frame and with respect to a frame in
translation (Sec. 11.10), the second term may be regarded as the

velocity v P/A of P relative to the frame AX'Y'Z' of the same
orientation as OX YZ and the same origin as Axyz. We therefore
have

y p = v, + v P/A (15.51)

But the velocity v p/A of P relative to AX'Y'Z' may be obtained
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from (15.45) by substituting r P/A for r in that equation. We write

v P = v A + Q X tp /A + (t p/a ) Axi/ , (15.52)

where is the angular velocity of the frame Axijz at the instant
considered

The absolute acceleration a p of the particle is obtained by
differentiating (15.51) and writing

a p = v p = v A + v P/A (15.53)

where the derivatives are defined with respect to cither of the

frames OXYZ or AX'Y'Z'. Thus, the first term in the right-hand

member of (15.53) represents the acceleration a., of the origin A

of the moving axes, and the second term the acceleration a P/i of
P relative to the frame AX'Y'Z'. This acceleration may be

obtained from (15.47) by substituting x P/A for r. We therefore
write

&p = a A + fi x r P/A + Si X (0 X r p/A )
+ 2S2 x {i P/A ) Axvi + (jp /A ) Aty , (15.54)

Formulas (15.52) and (15.54) make it possible to determine the
velocity and acceleration of a given particle with respect to a
fixed frame of reference, when the motion of the particle is

known with respect to a moving frame. These formulas become
more significant, and considerably easier to remember, if wc note
that the sum of the first two terms in (15.52) represents the
velocity of the point P' of the moving frame which coincides
with P at the instant considered, and that the sum of the first

three terms in (15.54) represents the acceleration of the same
point. Thus, the relations (15.46) and (15.48) of the preceding
section are still valid in the case of a reference frame in general
motion, and we write

v P = v p . + v p/F (15.46)
ap = a p . + a p/F + a,. (15.48)

where the various vectors involved have been defined in Sec.

15.14.

We may note that, if the reference frame Axyz is in translation,
the velocity and acceleration of the point 7" of the frame which

coincides with P become respectively equal to the velocity and
acceleration of the origin A of the frame. On the other hand,
since the frame maintains a fixed orientation, a r is zero, and the

relations (15.46) and (15.48) reduce, respectively, to the relations
(11.33) and (11.34) derived in Sec. 11.12.
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SAMPLE PROBLEM 15.13

The bent rod OAB rotates about the vertical OB. At the instant

considered, its angular velocity and angular acceleration are, respec-

tively, 20 rad/s and 200 rad/s 2 , both clockwise when viewed from the

positive Y axis. The collar D moves along the rod and, at the instant
considered, OD = 8 in., and the velocity and acceleration of the collar

relative to the rod are, respectively, 50 in./s and 600 in./s 2 , both

upward. Determine (a) the velocity of the collar, (b) the acceleration
of the collar.

a -

-2()md/s)i

-200 i mi! •'- j

Frames of Reference. The frame OXYZ is fixed. We attach the

rotating frame Oxyz to the bent rod. Its angular velocity and angular
acceleration relative to OXYZ, therefore, are fl = ( — 20 rad/s)j and

il — (—200 rad/s 2 )]', respectively. The position vector of D is

r = (8 in.)(sin 30°i + cos 30°j) = (4 in.)i + (6.93 in.)j

a. Velocity v . Denoting by D' the point of the rod which coin-
cides with D, we write from Eq. (15.46)

v D = v e , + v D/F (1)

where

v D , = SI X r = (-20 rad/s)j x [(4 in.)i 4- (6.93 in.)j] = (80 in./s)k
v D/F = (50 in./s)(sin 30°i + cos 30°j) = (25 in./s)i + (43.3 in./s)j

Substituting the values obtained for v D . and \ D/F into (1), we find

v u = 25 in. s)i + 4:3.3 in. s;j + ,-SO in./s)k -*

b. Acceleration v fl . From Eq. (15.48) we write

a D = a D . + a n/F + a c (2)

where

a fl . = (l X r + SI X (O X r)
= ( -200 rad/s 2 )j x [(4 in.)i + (6.93 in.)j]

- (20 rad/s)j X (80 in./s)k
= +(800in./s 2 )k-(1600in./s 2 )i

a D/J , = (600 in./s 2 )(sin 30°i + cos 30°j) = (300 in./s 2 )i + (520 in./s 2 )j
a r = 2J2 x v D/F

= 2( -20 rad/s)j x [(25 in./s)i + (43.3 in./s)j] = (1000 in./s 2 )k

Substituting the values obtained for a n -, & D/F , and a ( . into (2):

a„ = -(1300 in./s 2 )i 4- (520 in./s 2 )j 4- (1800 in./s^k -«
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SAMPLE PROBLEM 15.14

The crane shown rotates with a constant angular velocity to, of
0.30 rad/s. Simultaneously, the boom is being raised with a constant
angular velocity « 2 of 0.50 rad/s relative to the cab. Knowing that the
length of the boom OP is I = 12 m, determine (a) the velocity of the tip
of the boom, (/?) the acceleration of the tip of the boom.

1 0.39 m-

6m

r u„ , ~ a = OS50k

Frames of Reference. The frame OXY7, is fixed. We attach the

rotating frame Oxyz to the cab. Its angular velocity with respect to the

frame OXYZ, therefore, is ft = <o t = (0.30 rad/s)j. The angular veloc-
ity of the boom relative to the cab and the rotating frame Oxijz is

a B/F = u 2 = (0.50 rad/s)k.
a. Velocity \>. From Eq. (15.46) we write

Vp = Vp, + v p/F (1)

where \ p - is the velocity of the point P' of the frame Oxyz which
coincides with P,

v p . = ft X r = (0.30 rad/s)j x [(10.39 m)i + (6 m)j] = -(3.12 m/s)k

and whore \ P/F is the velocity of P relative to the rotating frame Oxyz.
But the angular velocity of the boom relative to Oxyz was found to be
u b/f = (0-50 rad/s)k. The velocity of its tip V relative to Oxyz is
therefore

v p,f = *bif X r = (°- 50 rad/s)k X [(10.39 m)i + (6 m)j]
= -(3 m/s)i + (5.20 m/s)j

Substituting the values obtained for \ p . and \ P/F into (1), we find

v p = -(3 m/s)i + (5.20 m/s)j - (3.12 m/s)k -*

b. Acceleration a,.. From Eq. (15.48) we write

a p = & p . + a p/F + a c (2)

Since SI and u U/r are both constant, we have

a p . = fi x (ft X r) = (0.30rad/s)j x (-3.12 m/s)k = -(0.94 m/s 2 )i
*P/F = U B/F X (w B /r X r)

= (0.50rad/s)k x [-(3m/s)i + (5.20m/s)j]
= -(1.50m/s 2 )j - (2.60m/s 2 )i

a r = 2J2 x v P/ p

= 2(0.30 rad/s)j X [-(3 m/s)i + (5.20 m/s)j] = (1.80 m/s 2 )k

Substituting for a r , a P/F , and a c into (2), we find

a,, = -(3.54 m/s 2 )i - (1.50 m/s 2 )j + (1.80 m/s'-)k -«
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SAMPLE PROBLEM 15.15

Disk 7), of radius R, is pinned to end A of die arm OA of length L
located in the plane of the disk. The arm rotates about a vertical axis

through at the constant rate Wj, and the disk rotates about A at the
constant rate ui 2 . Determine (a) the velocity of point P located directly

above A, (fo) the acceleration of P, (c) the angular velocity and angular
acceleration of the disk.

f
Frames of Reference. The frame OXYZ is fixed. We attach the

moving frame Axyz to the arm OA. Its angular velocity with respect to

the frame OX YZ, therefore, is $2 = wj, The angular velocity of disk D
relative to the frame Axyz is i»p /F = w 2 k. The position vector of P
relative to O is r = Li + Tlj and its position vector relative to A is
r,. /A = flj.

a. Velocity v,,. Denoting by ?' the point of the frame Axyz which
coincides with F, we write from Kq. (15.46)

v P = V,+ v p/F (1)

where v r — it X r = wj X (/-i + R]) = —UjjUt
v,, /F = ia D/F X !>/., = ujc X Rj = -W g Ri

Substituting the values obtained for v,,. and v p/F into (1), we find

v F = — ojjfli — w,Lk -^

/>. Acceleration a /Jt From Eq. (15.48) we write

up = a p . + a,,,,. (2)

Since S2 and U D , F are both constant, we have

a p . = « X (ft X r) = co,j X (-W,!*) = -«fH
a /7F = «"W X («D/* X *p/a> = u: 2 k X i-u 2 Ri) = -u%Rj

a c = 20 x y P/F = 2wJ X (-WjRi) = 2w lt o,fik
• ¦ •

Substituting the values obtained into (2), we find

a ; , = — u\IA — cu'l'Rj + 2w,to 2 iJk -^

c. Angular Velocity and Angular Acceleration of. Disk.

<o = $2 + m b/ j. w = wj + u.- 2 k -^

Using Fq. (15.31) with Q = to, we write

« = (»>aira = i«>) Ar{1! + ft x w
= + wj X (u j + o: 2 k)

a = cc ,o.'.,i -^
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PROBLEMS

15.163 The bent rod ABC rotates at a constant rate

u, = 8 rad/s. Knowing that the collar D moves downward along the
rod at a constant relative speed u — 780 mm/s, determine for the
position shown (a) the velocity of D, (ft) the acceleration of D.

15.164 Solve

u = 650 mm/s.
Prob. 15.163, assuming u, = 6 rad/s and

15.165 The bent rod ABC rotates at a constant rate «,. Knowing
(hat the collar D moves downward along the rod at a constant relative
speed », determine for the position shown (a) the velocity of D, (ft) the
acceleration of 7).

CQ>

3
KINEMATICS OF RIGID BODIES 723

r

6
Fig. P15.163

Fig. P15.165 and P15.167

15.166 Solve Prob.

u = 40 in./s, and r = 6 in.
15.165, assuming that «, =9 rad/s.

15.167 At the instant shown the magnitude of the angular veloc-

ity to, of the bent rod ABC is 9 rad/s and is increasing at the rate of 20 rad/s 2 , while the relative speed u of collar D is 40 in./s and is
increasing at the rate of 100 in./s 2 . Knowing that r = 6 in., determine
the acceleration of O.

15.168 Solve Prob. 15.163, assuming that at the instant shown
the angular velocity tOj of the rod is 8 rad/s and is decreasing at the
rate of 18 rad/s 2 , while the relative speed u of the collar is 780 mm/s
and is decreasing at the rate of 2.6 m/s 2 .
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15.169 The cab of the backhoe shown rotates with the constant

angular velocity <o, = (0.4 rad/s)j about the Y axis. The arm OA is
fixed with respect to the cab, while the arm AB rotates about the
horizontal axle A at the constant rate « 2 = dB/dt — 0.6 rad/s. Know-

ing that fi = 30°, determine (a) the angular velocity and angular
acceleration of AB, (b) the velocity and acceleration of point B.

FigFig. P15.172

Fig. P15.169

1 5.1 70 Solve Sample Prob. 15.14, assuming that the crane has a
telescoping boom as shown and that the length of the boom is being
increased at the rate dL/dt = 1.5 m/s.

1 5.1 71 Solve Prob. 15.169, assuming that R = 30° and that arms
OA and AB rotate as a rigid body with respect to the cab with a
constant angular velocity (0.6 rad/s)k.

15.172 A disk of radius r rotates at a constant rate u 2 with

respect to the arm CD, which itself rotates at a constant rate to, about the V axis. Determine (a) the angular velocity and angular acceleration
of the disk, (h) the velocity and acceleration of point B on the rim of
the disk.

1 5.1 73 In Prob. 15.172, determine the velocity and acceleration

of point A on the rim of the disk.



15.1 74 The 40-ft blades of the experimental wind-turbine gener-
ator rotate at a constant rate to = 30 rpm. Knowing that at the instant
shown the entire unit is being rotated about the Y axis at a constant

rate Q = 0.1 rad/s, determine (a) the angular acceleration of the blades,
(b) the velocity and acceleration of blade tip B.
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Fig. P15.174

1 5.1 75 In Prob. 15.174, determine the velocity and acceleration
of (a) blade tip C, (b) blade tip E.

15.176 A disk of radius 100 mm rotates at a constant rate

u 2 = 20 rad/s with respect to the arm ABC, which itself rotates at a

constant rate u 1 = 10 rad/s about the X axis. Determine (a) the angu-
lar acceleration of the disk, (b) the velocity and acceleration of point D
on the rim of the disk.

1 5. 1 77 In Prob. 15. 176, determine the acceleration (a) of point E,
[b) of point F.

15.178 through 15.180 Two collars A and B are connected

by a 15-in. rod AB as shown. Knowing that collar A moves downward
at a constant speed of 18 in./s, determine the velocities and accelera-
tions of collars A and B for the constant rate of rotation indicated.

1 5.1 78 m, = 10 rad/s, u 2 = u 3 = 0.

1 5.1 79 u 2 = 10 rad/s, u x = co 3 = 0.

15.180 u 3 = 10 rad/s, to, = <j 2 = 0.

Fig. P15.176

100 mm

Fig. P15.178, P1S.179, and P15.180
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.
Fig. P15.181

15.181 A square plate of side It is welded to a vertical shaft

which rotates with a constant angular velocity «,. At the same time,

rod AB of length r rotates about the center of the plate with a constant
angular velocity «., with respect to the plate. For the position of the

plate shown, determine the acceleration of end B of the rod if (a)
e = o, (b) e = 90°, (c) e = iso°.

15.182 Solve Prob. 15.181, assuming io, = 2 rad/s, <o 2 = 3 rad/s,
and r = 100 mm.

15.183 In Prob. 15.181, the plate rotates at a constant rate

w, = 2 rad/s. At the same time, the magnitude <o 2 is 3 rad/s and is
increasing at the rate a, = 5 rad/s 2 . Knowing that r = 100 mm, de-
termine the acceleration of end B of the rod if 8 = 90°.

1 5. 1 84 In Prob. 15.181, the magnitude of the angular velocity of

the plate is u, = 2 rad/s and is increasing at the rate a, = 8 rad/s 2 . At the same time, the rod AB rotates with respect to the plate at the
constant rate co 2 = 3 rad/s. Knowing that r = 100 mm, determine the
acceleration of end B of the rod if — 90°.

REVIEW PROBLEMS

1 5.1 85 It takes 0.8 s for the turntable of a 33-rpm record player

to reach full speed after being started. Assuming uniformly acceler- ated motion, determine (a) the angular acceleration of the turntable,
(/>) the normal and tangential components of the acceleration of a
point on the rim of the 12-in.-diameter turntable just before the speed
of 33 rpm is reached, (c) the total acceleration of the same point at
that time.

Fig. P15.186

15.186 Three gears A, B, and C are pinned at their centers to
rod ABC. Knowing that r A = 3r s = 3r c and that gear A does not
rotate, determine the angular velocity of gears B and C when the rod
ABC rotates clockwise with a constant angular velocity of 10 rpm.

15.187 In Prob. 15.186 it is known that r A = 12 in., r B = r c =

4 in. Determine the acceleration of the tooth of gear C which is in

contact with gear B.



15.188 Three links AB, BC, and BD are connected by a pin B
as shown. Knowing that at the instant shown point D has a velocity
of 200 min/s to the right and no acceleration, determine (a) the angular
acceleration of each link, (b) the accelerations of points A and B.
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M

C B

100 i

100 i

300 mm

Fig. P15.188

15.189 The bent rod AOB is attached to a fixed ball-and-socket

joint at O. The lengths of portions OA and OB are 200 mm and 1 20 mm,

respectively, and the angle formed by the two portions is 45°. As
portion OA moves on the horizontal surface, portion OB moves on the
vertical wall. Knowing that end A moves at a constant speed of
600 min/s, determine, at the instant when ft = 60°, (a) the angular
velocity of the rod, (b) the velocity of point B.

1 5. 1 90 Water flows through the sprinkler arm ABC with a veloc-

ity of 16 ft/s relative to the arm. Knowing that the angular velocity of
the arm is 90 rpm counterclockwise, determine at the instant shown

the total acceleration (a) of the particle of water P v (b) of the particle
of water P 2 .1

Fig. P15.189

adFig. P15.190 Fig. P15.191

1 5.1 91 A thin ring of radius b is attached to a vertical shaft AB

which rotates with a constant angular velocity to. Collar C moves at a
constant speed u relative to the ring. For the position ft = 30°,
determine the velocity and acceleration of the collar when la) (9=0

(b) 1 = 90°.
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Fig. P15.192

15.192 Rod AB is 2 m long and slides with its ends in contact
with the floor and the inclined plane. End A moves with a constant

velocity of 6 m/s to the right. At the instant when = 25°, determine

(a) the angular velocity and angular acceleration of the rod, (b) the
velocity and acceleration of end B.

1 5.1 93 Gear A rolls on the fixed gear B and rotates about the axle
AD which is rigidly attached at D to the vertical shaft DE. Knowing
that shaft DE rotates with a constant angular velocity «,, determine (a)

the rate of spin of gear A about the axle AD, (b) the angular accelera-
tion of gear A, (c) the acceleration of tooth C of gear A.

.
100 mm

.Fig. P15.193 Fig. P15.194t15.194 At the instant shown, the slotted plate slides with a

velocity of 0.5 m/s upward and has an acceleration of 2 m/s z down-
ward. Determine the angular velocity and the angular acceleration of
rod OP.

15.195 Solve Prob. 15.193, assuming u t = 90 rpm, a = 60 mm,
b = 160 mm, and B - 30°.

15.1 96 The eccentric shown consists of a disk of 2-in. radius which

revolves about a shaft O located | in. from the center of the disk A.
Assuming that the disk rotates about O with a constant angular velocity

of 1800 rpm clockwise, determine the velocity and acceleration of block
B when point A is directly below the shaft O.



Plane Motion

of Rigid Bodies:
Forces and

Accelerations

CHAPTER

16

1 6.1 Introduction. In this chapter and in Chaps. 17 and
1 8, we shall study the kinetics of rigid bodies, i.e., the relations
existing between the forces acting on a rigid body, the shape and

mass of the body, and the motion produced. In Chaps. 12 and 13,
we studied similar relations, assuming then that the body could
be considered as a particle, i.e., that its mass could be concen-

trated in one point and that all forces acted at that point. We
shall now take the shape of the body into account, as well as the
exact location of the points of application of the forces. Besides,
we shall be concerned not only with the motion of the body as a
whole but also with the motion of the body about its mass center.

Our approach will be to consider rigid bodies as made of large

numbers of particles and to use the results obtained in Chap. 14
for the motion of systems of particles. In this chapter, we shall
use specifically Eq. (14.16), SF = ma, which relates the resultant
of the external forces and the acceleration of the mass center G

of the system of particles, and Eq. (14.23), 2M C = H 0> which

relates the moment resultant of the external forces and the angu- lar momentum of the system of particles about G.
Except for Sec. 16.2, which applies to the most general case of

the motion of a rigid body, the results derived in this chapter will
be limited in two ways: (1) They will be restricted to the plane
motion of rigid bodies, i.e., to a motion in which each particle of

729



730 DYNAMICS

the body remains at a constant distance from a fixed reference

plane. (2) The rigid bodies considered will consist only of plane
slabs and of bodies which are symmetrical with respect to the

reference plane. f The study of the plane motion of nonsym-
metrical three-dimensional bodies and, more generally, the mo-

tion of rigid bodies in three-dimensional space will be postponed
until Chap. 18.

16.2. Equations of Motion for a Rigid Body. Con-

sider a rigid body acted upon by several external forces F,, F 2 , F 3 ,
etc. (Fig. 16.1). We may assume the body to be made of a large
number n of particles of mass Am, (i = 1,2, . . . ,n) and apply the
results obtained in Chap. 14 for a system of particles (Fig. 16.2).

CidFig. 16.1 Fig. 16.2

Considering first the motion of the mass center G of the body
with respect to the newtonian frame of reference Oxyz, we recall

Eq. (14.16) and write

2F = ma (16.1)

where m is the mass of the body and a the acceleration of the
mass center G. Turning now to the motion of the body relative
to the centroidal frame of reference Gx'y'z', we recall Eq. (14.23)
and write

2M 6 = H G (16.2)

where H c represents the rate of change of H fl , the angular
momentum about G of the system of particles forming the rigid
body. In the following we shall simply refer to H (; as the angular
momentum of the rigid body about its mass center G. Together
Eqs. (16.1) and (16.2) express that the system of the external forces

I Or, more generally, bodies which have a principal centroidal axis of inertia

perpendicular to the reference plane.
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is equipollent to the system consisting of the vector ma attached

at G and the couple of moment H G (Fig. 16.3). t
Equations (16.1) and (16.2) apply in the most general case of

the motion of a rigid body. In the rest of this chapter, however,

we shall limit our analysis to the plane motion of rigid bodies, i.e.,
to a motion in which each particle remains at a constant distance

from a fixed reference plane, and we shall assume that the rigid
bodies considered consist only of plane slabs and of bodies which
are symmetrical with respect to the reference plane. Further
study of the plane motion of nonsymmetrical three-dimensional

bodies and of the motion of rigid bodies in three-dimensional

space will be postponed until Chap. 18.
1 6.3. Angular Momentum of a Rigid Body in Plane

Motion. Consider a rigid slab in plane motion. Assuming the

slab to be made of a large number n of particles P, of mass Afl»j
and recalling Eq. (14.24) of Sec. 14.4, we note that the angular
momentum H c; of the slab about its mass center G may be

computed by taking the moments about G of the momenta of the

particles of the slab in their motion with respect to either of the
frames Oxy or Gx'if. Choosing the latter course, we write

Fig. 16.3

H e = 2(ri'Xv f 'Am | ) (16.3)

where r- and Vj' Am f denote, respectively, the position vector and
the linear momentum of the particle P ; relative to the centroidal

frame of reference Gx'y' (Fig. 16.4). But, since the particle
belongs to the slab, we have v,' = u X r,', where w is the angular
velocity of the slab at the instant considered. We write

H = 2[r;x(coXr,0Am,.]
i = l

Referring to Fig. 16.4, we easily verify that the expression ob-

tained represents a vector of the same direction as to (i.e., per-

pendicular to the slab) and of magnitude equal to wSfj 2 Am,.
Recalling that the sum 2ff* Am,- represents the moment of inertia
/ of the slab about a centroidal axis perpendicular to the slab, we
conclude that the angular momentum H G of the slab about its
mass center isnO

Fig. 16.4

Ho = /« (16,4)

i Since the systems involved act on a rigid body, we could conclude at this
point, by referring to Sec. 3.18, that the two systems are equivalent as well as

equipollent and use blue rather than gray equals signs in Fig. 16.3. However, by
postponing this conclusion, we shall be able to arrive at it independently (Sees.

16.4 and 18.3), thus eliminating the necessity of including the principle of

transmissibility among the axioms of mechanics (Sec. 16.5).
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Differentiating both members of Eq. (16.4) we obtain

H — lu = la (16.5)

o

Fig. 16.5

Thus the rate of change of the angular momentum of the slab is
represented by a vector of the same direction as a, (i.e., perpen-
dicular to the slab) and of magnitude la.

It should be kept in mind that the results obtained in this

section have been derived for a rigid slab in plane motion. As we
shall see in Chap. 18, they remain valid in the case of the plane

motion of rigid bodies which are symmetrical witli respect to the

reference plane, t However, they do not apply in the case of
nonsymmetrical bodies or in the case of three-dimensional mo-
tion.

16.4. Plane Motion of a Rigid Body. D'Alembert's

Principle. Consider a rigid slab of mass m moving under the
action of several external forces F,, F 2 , F 3 , etc., contained in the

plane of the slab (Fig. 16.5). Substituting for H (; from Eq. (16.5)
into Eq. (16.2), and writing the fundamental equations of motion

(16.1) and (16.2) in scalar form, we have

£F„ = ma. 2F, = ma y SM G = la (16.6)

Equations (16.6) show that the acceleration of the mass center

G of the slab and its angular acceleration a may easily be ob-

tained, once the resultant of the external forces acting on the slab
and their moment resultant about G have been determined.

Given appropriate initial conditions, the coordinates x and j/ of

the mass center and the angular coordinate 6 of the slab may then

be obtained at any instant / by integration. Thus the motion of
the slab is completely defined by the resultant and moment

resultant about C of the external forces acting on it.
This property, which will lie extended in Chap. 18 to the case

of the three-dimensional motion of a rigid body, is characteristic

of the motion of a rigid body. Indeed, as we saw in Chap. 14, the
motion of a system of particles which are not rigidly connected

will in general depend upon the specific external forces, as well
as upon the internal forces, acting on die various particles.

Since the motion of a rigid body depends only upon the result-

ant and moment resultant of the external forces acting on it, it

follows that two systems of forces which are equipollent, i.e.,
which have the same resultant and the same moment resultant.

tOr, more generally, bodies which have a principal centroidal axis of inertia
perpendicular to the reference plane.
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are also equivalent; i.e., they have exactly the same effect on a
given rigid hody.t

Consider in particular the system of the external forces acting
on a rigid body (Fig. 16.6a) and the system of the effective forces

associated with the particles forming the rigid body (Fig. 16.6fc).
It was shown in Sec. 14.1 that the two systems thus defined are

equipollent. But since the particles considered now form a rigid
body, it follows from the above discussion that the two systems
are also equivalent. We may thus state that the external forces
acting on a rigid body are equivalent to the effective forces of the
various particles forming the body. This statement is referred to
as D'Alembert's principle, after the French mathematician Jean
le Rond d'Alembert (1717-1783), even though D'Alembert's

original statement was written in a somewhat different form.

Fig. 16.6

(b)o(b)

Fig. 16.7

The significance of D'Alembert's principle has been empha-
sized by the use of a blue equals sign in Fig. 16.6 and also in
Fig. 16.7, where, using results obtained earlier in this section, the

effective forces have been replaced by a vector ma attached at

the mass center C of the slab and a couple of moment Ta.

IThis result has already been derived in Sec. 3,18 from the principle of
transniissibility (Sec. 3.2). The present derivation, however, is independent of
that principle and will make possible its elimination from the axioms of me-
chanics (Sec. 16.5).
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./,:

Fig. 16.8 Fig. 16.9

<*)

(Fig. 16.7 (.repeated)

(b)

Translation. In the particular case of a body in translation,
the angular acceleration of the body is identically equal to zero
and its effective forces reduce to the vector ma attached at G

(Fig. 16.8). Thus, the resultant of the external forces acting on a
rigid body in translation passes through the mass center of the
body and is equal to ma,

Centroidal Rotation. When a slab, or, more generally, a
body symmetrical with respect to the reference plane, rotates
about a fixed axis perpendicular to the reference plane and

passing through its mass center G, we say that the body is in
centroidal rotation. Since the acceleration a is identically equal
to zero, the effective forces of the body reduce to the couple la

(Fig. 16.9). Thus, the external forces acting on a body in cen-

troidal rotation are equivalent to a couple of moment la.

General Plane Motion. Comparing Fig. 16.7 with Figs. 16.8
and 16.9, we observe that, from the point of view of kinetics, the

most general plane motion of a rigid body symmetrical with
respect to the reference plane may be replaced by the sum of a
translation and a centroidal rotation. We should note that this

statement is more restrictive than the similar statement made

earlier from the point of view of kinematics (Sec. 15.5), since we

now require that the mass center of the body be selected as the

reference point.
Referring to Eqs. (16.6), we observe that the first two equations

are identical with the equations of motion of a particle of mass m
acted upon by the given forces F ls F 2 , F 3 , etc. We thus check
that the mass center C of a rigid body in plane motion moves as if
the entire mass of die body were concentrated at thai point, and
as if all the external forces acted on it. We recall diat this result
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has already been obtained in Sec. 14.3 in the general case of a
system of particles, the particles being not necessarily rigidly
connected. We also note, as we did in Sec. 14.3, that the system

of the external forces does not, in general, reduce to a single
vector ma attached at G. Therefore, in the general case of the

plane motion of a rigid body, the resultant of the external forces
acting on the body does not pass through the mass center of the
body.

Finally, we may observe that the last of Eqs. (16.6) would still

be valid if the rigid body, while subjected to the same applied
forces, were constrained to rotate about a fixed axis through G.

Thus, a rigid body in plane motion rotates about its mass center

as if this point were fixed.
* 1 6.5. A Remark on the Axioms of the Mechanics

Of Rigid Bodies. The fact that two equipollent systems of

external forces acting on a rigid body are also equivalent, i.e.,

have the same effect on that rigid body, has already been estab-
lished in Sec. 3.18. But there it was derived from the principle of

transmissibility, one of the axioms used in our study of the statics

of rigid bodies. It should be noted that this axiom has not been

used in the present chapter, because Newton's second and third
laws of motion make its use unnecessary in the study of the

dynamics of rigid bodies.
In fact, the principle of transmissibility may now be derived

from the other axioms used in the study of mechanics. This
principle stated, without proof, (Sec. 3.2) that the conditions of

equilibrium or motion of a rigid body remain unchanged if a
force F acting at a given point of the rigid body is replaced by a
force F' of the same magnitude and same direction, but acting at a

different point, provided that the two forces have the same line
of action. But, since F and F' have the same moment about any

given point, it is clear that they form two equipollent systems of
external forces. Thus, we may now prove, as a result of what vvc

established in the preceding section, that F and F' have Ihc same

effect on the rigid body (Fig. 3.3).
The principle of transmissibility may therefore be removed

from the list of axioms required for the study of the mechanics of
rigid bodies. These axioms are reduced to the parallelogram law
of addition of vectors and to Newton's laws of motion.

1 6.6. Solution of Problems Involving the Motion of

a Rigid Body. We saw in Sec. 16.4 that, when a rigid body is
in plane motion, there exists a fundamental relation between the

forces F,, F 2 , F 3 , etc., acting on the body, the acceleration a of its
mass center, and the angular acceleration a of the body. This

relation, which is represented in Fig. 16.7, may be used to deter-
mine the acceleration a and the angular acceleration a produced

by a given system of forces acting on a rigid body or, conversely,

Fig. 3.3 (repeated)
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(fc)

Fig. 16.7 (repeated)

e
=

to determine the forces which produce a given motion of the
rigid body.

While the three algebraic equatioas (16.6) may be used to
solve problems of plane motion,f our experience in statics sug-
gests that the solution of many problems involving rigid bodies
could be simplified by an appropriate choice of the point about
which the moments of the forces arc computed. It is therefore
preferable to remember the relation existing between the forces
and the accelerations in the vectorial form shown in Fig. 16.7,
and to derive from this fundamental relation the component or
moment equations which fit best the solution of the problem
under consideration.

The fundamental relation shown in Fig. 16.7 may be presented
in an alternate form if we add to the external forces an inertia

vector —ma of sense opposite to that of a, attached at G, and an
inertia couple —la of moment equal in magnitude to la and of
sense opposite to that of a (Fig. 16.10). The system obtained is

equivalent to zero, and the rigid body is said to be in dynamic
equilibrium.

Whether the principle of equivalence of external and effective

forces is directly applied, as in Fig. 16.7, or whether the concept

of dynamic equilibrium is introduced, as in Fig. 16.10, the use of
free-body diagrams showing vectorially the relationship existing
between the forces applied on the rigid body and the resulting
linear and angular accelerations presents considerable advan-

tages over the blind application of the formulas (16.6). These
advantages may be summarized as follows:

1 . First of all, a much clearer understanding of the effect of the
forces on the motion of the body will result from the use of a
pictorial representation.

2. This approach makes it possible to divide the solution of a

dynamics problem into two parts: In the first part, the analysis
of the kinematic and kinetic characteristics of the problem
leads to the free-body diagrams of Fig. 16.7 or 16.10; in the

second part, the diagram obtained is used to analyze by the
methods of Chap. 3 the various forces and vectors involved.

3. A unified approach is provided for the analysis of the plane
motion of a rigid body, regardless of die particular type of
motion involved. While the kinematics of die various motions

f We recall that the last of Eqs. (16.6) is valid only in the case of the plane
motion of a rigid body symmetrical with respect to the reference plane. In all
other cases, the methods of Chap. 18 should be used.
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considered may vary from one case to the other, the approach
to the kinetics of the motion is consistently the same. In every

case we shall draw a diagram showing the external forces, the
vector ma associated with the motion of C, and the couple la

associated with the rotation of the body about G.

4. The resolution of the plane motion of a rigid body into a
translation and a centroidal rotation, which is used here, is a

basic concept which may be applied effectively throughout
the study of mechanics. We shall use it again in Chap. 17 with
the method of work and energy and the method of impulse
and momentum.

5. As we shall see in Chap. 18, this approach may be extended to

the study of the general three-dimensional motion of a rigid
body. The motion of the body will again be resolved into a
translation and a rotation about the mass center, and free-

body diagrams will be used to indicate the relationship exist-
ing between the external forces and the rates of change of the
linear and angular momentum of the body.

16.7. Systems of Rigid Bodies. The method described

in the preceding section may also be used in problems involving
the plane motion of several connected rigid bodies. A diagram
similar to Fig. 16.7 or Fig. 16.10 may be drawn for each part of
the system. The equations of motion obtained from these dia-
grams are solved simultaneously.

In some cases, as in Sample Prob. 16.3, a single diagram may

be drawn for the entire system. This diagram should include all
the external forces, as well as the vectors ma and the couples la

associated with the various parts of the system. However, inter-
nal forces, such as the forces exerted by connecting cables, may

be omitted since they occur in pairs of equal and opposite forces

and are thus equipollent to zero. The equations obtained by

expressing that the system of the external forces is equipollent to

the system of the effective forces may be solved for the remain-
ing unknowns.!

This second approach may not be used in problems involving
more than three unknowns, since only three equations of motion
are available when a single diagram is used. We shall not elabo-

rate upon this point, since the discussion involved would be

completely similar to that given in Sec. 6.11 in the case of the

equilibrium of a system of rigid bodies.

• Note that we cannot speak of equivalent systems since we are not dealing
with a single rigid body.
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SAMPLE PROBLEM 16.1

When the forward speed of the truck shown was 30 ft/s, the brakes
were suddenly applied, causing all four wheels to stop rotating. It
was observed that the truck skidded to rest in 20 ft. Determine the

magnitude of the normal reaction and of the friction force at each
wheel as the truck skidded to rest.

Kinematics of Motion. Choosing the positive sense to the right
and using the equations of uniformly accelerated motion, wc write

u = +30 ft/s i; 2 = ojj + 2dx = (30) 2 + 2a(20)
a = -22.5 ft/s 2 a = 22.5 ft/s 2 «-

Equations of Motion. The external forces consist of the weight W
of the truck and of the normal reactions and friction forces at the

wheels. (The vectors N^ and F,, represent the sum of the reactions
at the rear wheels, while N B and F fi represent the sum of the reactions
at the front wheels.) Since the truck is in translation, the effective

forces reduce to the vector ma attached at C. Three equations of motion are obtained by expressing that the system of the external
forces is equivalent to the system of the effective forces.

+! SF, = S(F„) pff : N A + N B - W =

Since F A = fiN A and F B = u\' B , we find

F A +F B = fW 4 + N B ) = ixW

^SF I = 2(F x ) 0f! : -(F A +F„)=-nw

-pW = -
w

+ ) SM A = 2(M A ),

32.2 ft/s 2 < 22 - 5ft/s2 >
H = 0.699

- \V(5 ft) + .^(12 ft) = ma(4 ft)

-W(5ft)+A' B (12ft) =
W

N B = 0.650W
F B = pN B = (0.699){0.650VV)

32.2 ft/s 2

F B = 0.454 IV

(22.5 ft/s 2 )(4 ft)

+ T*F„ = v (iar[: N A + N B - W =

F A = 0.245W

N A + 0.650 W -WaO

N A = 0.350VV

F A = pN A = (0.699)(0.350W)

Reactions at Each Wheel. Recalling that the values computed
above represent the sum of the reactions at the two front wheels or

the two rear wheels, we obtain the magnitude of the reactions at each
wheel by writing

, = k\ n = 0.325W N„ a = h\ A = 0.175W -*

ffront = i F R = 0.227W /¦;„„, = AF, = 0.122W -*
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SAMPLE PROBLEM 16.2

The thin plate ABCD has a mass of 50 kg and is held in position by
the three incxtcnsible wires AK. HI] and CH. Wire AE is then cut.

Determine both (o) the acceleration of the plate, ff>) the tension in
wires BF and CI I immediately after wire AF. has been cut.

n
Motion of l'lalc. After wire AK has been cut, we observe that

corners B and C move along parallel circles of radius 1 rn centered,

respectively, at /'and H. The motion of the plate is thus a curvilinear
translation; the particles forming the plate move along parallel circles
of radius 1 in.

At the instant wire AE is cut, the velocity of the plate is zero; the
acceleration a of the mass center G is thus tangent to the circular

path which will be described by C.
Equations of Motion. The external forces consist of the weight \V

and of the forces T a and T r exerted by the wires. Since the plate
is in translation, the effective forces reduce to the vector ma attached

at G and directed along the I axis. Expressing that the system of the

external forces is equivalent to the system of the effective forces, we
write

+ \ 2K. = 2(F,) eU : W cos 30° = ma_
mg cos 30° = ma (1)

a = g cos 30* = (9.81 m/s 2 ) cos 30°
a = 8.50 m s z "=5 60" -*

T B + T c - Wsin 30° = (2)

[T B sin 30°)(0.75 m) - [T B cos 30 c )(] m)

+ (7' c sin 30°)(0.75 m) + {T c cos 30°)(1 m) =

-0.49ir B + 1.241T C =

T = 0,396% (3)

Substituting for T c from (3) into (2), we write

T B + 0.396'y s - VV sin 30° =

T B = 0.358W

T = 0.396(0.358W) = 0.1418VV

Noting that W = mg = (50 kg)(9.81 m/s 2 } = 49] X, we have

T B = 175.8 N T c = 69.6 \ -^
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S
SAMPLE PROBLEM 16.3

A pulley weighing 120 lb and having a radius of gyration of 4 ft is
connected to two blocks as shown. Assuming no axle friction, deter-
mine the angular acceleration of the pulley.

100 lb

on
Sense of Motion. Although an arbitrary sense of motion may be

assumed (since no friction forces are involved) and later checked by

the sign of the answer, we may prefer first to determine the actual

sense of rotation of the pulley. We first find the weight of block Ii
required to maintain the equilibrium of the pulley when it is acted
upon by the 50-lb block A. We write

+ J 2M = 0: W B (3 ft) - (50 lb)(5 ft) = W B = 83.3 lb

Since block H actually weighs 100 lb, the pulley will rotate counter-
clockwise.

Kinematics of Motion. Assuming a counterclockwise and noting
that a A = r A t\ and a B = r B a, we obtain

a A = oa f a B = 3a i

Equations of Motion. A single system consisting of the pulley and
the two blocks is considered. Forces external to this system consist

of the weights of the pulley and the two blocks and of the reaction
at G. (The forces exerted by the cables on the pulley and on the
blocks are internal to the system considered and cancel out.) Since

the motion of the pulley is a centroidul rotation and the motion of

each block is a translation, the effective forces reduce to the couple
7a and the two vectors ma A and ma A . The centroidal moment of

inertia of the pulley is

f = mk* = Jpk" = 3^*^ (4 ft)' = 59.6 lb • f t • s*
Since the system of the external forces is equipollent to the system
of the effective forces, we write

(1001b)(3ft) - (501b)(5ft) = +Ia + m B a B (3ft) + %a 4 (5ft)

(100X3) - (50X5) = +59.6o + JJ°r-(3a)(3) + ~r(5«)(5)32.2 '

a = 0.396 red - '
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P
S AMPLE PROBLEM 16.4

A cord is wrapped around a homogeneous disk of radius r = 0.5 m
and mass in = 15 kg. If the cord is pulled upward with a force T
of magnitude 180 N, determine (a) the acceleration of the center of
the disk, (b) the angular acceleration of the disk, (c) the acceleration
of the cord.

t
Equations of Motion. We assume that the components a x and a y

of the acceleration of the center are directed, respectively, to the right

and upward and that the angular acceleration of the disk is counter-
clockwise. The external forces acting on the disk consist of the weight
W and the force T exerted by the cord. This system is equivalent

to the system of the effective forces, which consists of a vector of

components ma, and ma„ attached at G and a couple la. We write

a
^2F, = Z(F x )„ ff : = ma. s, = o

T - W = r/w v
T - W

• m

Since T = 180 N, m = 15 kg, and W = (15 kg)(9.81 m/s 2 ) = 147.1 N,
we have

- = 180X-147.1X m +2 ]9 m/s2 j = 219 m/s 2 , ^
" 15 kg

+ 5 2M C = V(M C ) C „:

IT/-Tr = la

-Tr = (\mr 2 )a

2(180 N)

mr (15 kg)(0.5 in)
= -48.0rad/s 2

a = 48.0 rad/s 2 IlAcceleration of Cord. Since the acceleration of the cord is equal

to the tangential component of the acceleration of point A on the
disk, we write

* ord = ( a J/ = » + (*A/o)t
= [2.19 m/s 2 T] + [(0.5 m)(48 rad/s 2 ) t]

a (nr,l = 26.2 111, •¦'s 2 * -^
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S
SAMPLE PROBLEM 16.5

A hoop of radius r and mass m is placed on a horizontal surface with
no linear velocity but with a clockwise angular velocity co . Denoting

by fi the coefficient of friction between the hoop and the floor, deter-
mine (a) the time f, at which the hoop will start rolling without sliding,
(b) the linear and angular velocities of the hoop at time t v

inc
Solution. Since the entire mass is located at a distance r from the

center of the hoop, we write I = mr 2 .

Equations of Motion. The positive sense is chosen to the right for
a and clockwise for a. The external forces acting on the hoop consist
of the weight W, the normal reaction X, and the friction force F.
While the hoop is sliding, the magnitude of the friction force is
F = n-V. The effective forces consist of the vector ma attached at

C and the couple la. Expressing that the system of the external forces
is equivalent to the system of the effective forces, we write

+ t^„ = 2(F„) Brf : N-W = Q
N = W = nig F = pN = fling

F = ma** 2F, = S(F t ) M : V = ma jimg = ma

+ }ZM = nM )«r- -Fr = Ta

-(nmgjr = (mr*)a

a = +/xg

«?

Kinematic* of Motion. As long as the hoop both rolls and slides,
its linear and angular motions arc uniformly accelerated.

f = 0, ff = = c + (it = + jigt (1)

I = 0, to = to to = to„ + at = w ("*)¦
The hoop will start rolling without sliding when the velocity v c of
the point of contact is zero. At that time, r = «,, point C becomes
the instantaneous center of rotation, and we have

Substituting for t i into (1), we have

', =
2i.s

U, =ll%i x =,U£ ?
2,"g

(3, = £no„

¥ u o = rw i

v, = iru„

to, = ito„ J
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PROBLEMS

1 6.1 A 6-ft board is placed in a truck so that one end rests against
a block on the floor while the other end rests against a vertical wall.
Determine the maximum possible uniform acceleration of the truck if
the board is to remain in the position shown.

1 6.2 A uniform rod ABC of mass S kg is connected to two collars

of negligible mass which slide on smooth horizontal rods located in

the same vertical plane. If a force P of magnitude 40 N is applied
at C, determine (a) the acceleration of the rod, {b) the reactions at
B and C.

Fig. P16.1

1
Fig. P16.2

1 6.3 In Prob. 16.2, determine (a) the required magnitude of P
if the reaction at B is to be 45 N upward, (b) the corresponding
acceleration of the rod.

1 6.4 The motion of a 3-lb semicircular rod is guided by two small
wheels which roll freely in a vertical slot. Knowing that the accelera-
tion of the rod is a = Jg upward, determine (a) the magnitude of the
force P, (b) the reactions at A and B.rr = 5 in.

Fig. P16.4

16.5 Cylindrical cans are transported from one elevation to an-
other by the moving horizontal arms shown. Assuming that [i = 0.20
between the cans and the arms, determine [a) the magnitude of the
upward acceleration a for which the cans slide on the horizontal

arms, (b) the smallest ratio h/d for which the cans tip before they
slide.

16.6 Solve Prob. 16.5, assuming that the acceleration a of the
horizontal arms is directed downward. Fig. P16.5
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Fig. P16.7

0.6 m

16.7 A 20-kg cabinet is mounted on casters which allow it to
move freely (n = 0) on the floor. If a KHI-N force is applied as shown,
determine (a) the acceleration of the cabinet, (b) the range of values

of h for which the cabinet will not tip.

16.8 Solve Prob. 16.7, assuming that the casters are locked and

slide along the rough floor (;i = 0.25).

16.9 Determine the distance through which the truck of Sample
Prob. 16.1 will skid if (a) the rear-wheel brakes fail to operate, (b) the
front-wheel brakes fail to operate.

16.10 A 600-kg fork-lift truck carries the 300-kg crate at the
height shown. The truck is moving to the left when the brakes are
applied causing a deceleration of 3 m/s 2 . Knowing that the coefficient
of friction between the crate and the fork lift is 0.5, determine the

vertical component of the reaction (a) at each of the two wheels A (one
wheel on each side of the truck), (h) at the single stcerable wheel B.

.1.2 in

Fig. P16.10

1 6.1 1 In Prob. 16.10, determine the maximum deceleration of the

truck if the crate is not to slide forward and if the track is not to tip
forward.

16.12 Knowing that the coefficient of friction between the tires
and road is 0.80 for the car shown, determine the maximum possible

acceleration on a level road, assuming (a) four-wheel drive, (b) conven-
tional rear-wheel drive, (c) front-wheel drive,

II 4K , !

/ —

P- 20 in.

'..

— 60 in. — --4C in-! Fig. P16.12
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1 6.1 3 A man rides a bicycle at a speed of 30 km/h. The distance
between axles is 1050 mm, and the mass center of the man and bicycle
is located 650 mm behind the front axle and 1000 mm above the

ground. If the man applies the brakes on the front wheel only, deter-
mine the shortest distance in which he can stop without being thrown
over the front wheel.

16.14 The total mass of the loading car and its load is 2500 kg.
Neglecting the mass and friction of the wheels, determine (a) the
minimum tension T in the cable for which the upper wheels are lifted
from the track, (b) the corresponding acceleration of the car.

16.15 A 200-lb rectangular panel is suspended from two skids
which may slide with no friction on the inclined track shown. If the

panel is released from rest, determine (a) the acceleration of the panel,
(h) the reaction at B.

800 inin

1
Fig. P16.14

.Fig. P16.15

16.16 Solve Prob. 16.15, assuming that the coefficient of friction
between each skid and the track is 0.10.

16.17 The 2(K)-kg fire door is supported by wheels B and C which
may roll freely on the horizontal track. The 40-kg counterweight A is
connected to the door by the cable shown. If the system is released
from rest, determine (a) the acceleration of the door, (h) the reactions
at B and C.

Fig. P16.17
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16.18 Two uniform rods AB and CD, each of mass 2.5 kg, are

welded together and are attached to two links CE and DR Neglecting
the mass of the links, determine the force in each link immediately

after the system is released from rest in the position shown.

0.3 m

1
0.5 m

Fig. P16.18

16.19 The retractable shelf shown is supported by two identical

linkage-and-spring systems; only one of the systems is shown. A 40-lb
machine is placed on the shelf so that half of its weight is supported
by the system shown. If the springs are removed and the system is
released from rest, determine (a) the acceleration of the machine, (b)

the tension in link AB. Neglect the weight of the shelf and links.

3"«11C/

-12 in. -

8 in.

Fig. P16.20iFig. P16.19

1 6.20 The motion of the 20-lb plate ABCD is guided by two pins

which slide freely in parallel curved slots. Determine the pin reactions
at A and B immediately after the plate is released from rest in the
position shown.
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16.21 The cranks AB and CD rotate at a constant speed of

240 rpm. For the position <> = 30°. determine the horizontal compo-
nents of the forces exerted on the 5-kg uniform connecting rod BC
by the pins B and C.

1 6.22 The control rod AC is guided by two pins which slide freely

in parallel curved slots of radius 200 mm. The rod has a mass of 10 kg,
and its mass center is located at point G. Knowing that for the position
shown the vertical component of the velocity of C is 1.25 m/s upward
and the vertical component of the acceleration of C is 5 m/s- upward,
determine the magnitude of the force P.

p — 250 mm-J
375 miii 225 mm- 1

6
600 mm

Fig. P16

Fig. P16.22

16.23 Assumingthat the plate of Prob. 16.20 has acquired a velocity
of 4 ft/s in the position shown, determine (a) the acceleration of the plate,
(/>) the pin reactions at A and B.

* 16.24 A 12-kg block is placed on a 3-kg platform BD which
is held in the position shown by three wires. Determine the acceler-

ations of the block and of the platform immediately after wire AB
has been cut. Assume («) that the block is rigidly attached to BD,
(/>) that ji = between the block and BD.

* 16.25 The coefficient of friction between the 12-kg block and
the 3-kg platform BD is 0.50. Determine the accelerations of the block

and of the platform immediately after wire AB has been cut.n0.7 >m

Fig. P16.24 and P16.25

* 16.26 Draw the shear and bending moment diagrams for the
horizontal rod AB of Prob. 16.18.

? 16.27 Draw the shear and bending-moment diagrams for the
rod BC of Prob. 16.21.
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1 6.28 For a rigid slab in translation, show that the system of the

effective forces consists of vectors (Am^t attached to the various
particles of the slab, where a is the acceleration of the mass center G of
the slab. Further show, by computing their sum and the sum of their
moments about C, that ihe effective forces reduce to a single vector ma
attached at C.

Am ( ; oir.

P1
Fig. P16.28 Fig. P16.29

1 6.29 For a rigid slab in centroidal rotation, show that the system

of the effective forces consists of vectors — (Am^u 2 ^ and (Im^a X r|)
attached to the various particles P { of the slab, where to and a are the

angular velocity and angular acceleration of the slab, and where r,'
denotes the position vector of the particle P t relative to the mass center

G of the slab. Further show, by computing their sum and the sum of
their moments about C, that the effective forces reduce to a couple la.

16.30 A turbine-generator unit is shut off when its rotor is ro-

tating at 3600 rpm; it is observed that the rotor coasts to rest in
7.10 min. Knowing that the 1850-kg rotor has a radius of gyration
of 234 mm, determine the average magnitude of the couple due to
bearing friction.

16.31 An electric motor is rotating at 1200 rpm when the load

and power are cut off. The rotor weighs 180 lb and has a radius of
gyration of 8 in. If the kinetic friction of the rotor produces a couple of
moment 15 lb mil, how many revolutions will the rotor execute before
slopping?nFig. P16.32 and P16.33

16.32 Disk A weighs 121b and is at rest when it is placed in
contact with a conveyor belt moving at a constant speed. The link AB
connecting the center of the disk to the support at B is of negligible

weight. Knowing that r = 6 in. and ,u = 0.35, determine the angular
acceleration of the disk while slipping occurs.

1 6.33 The uniform disk A is at rest when it is placed in contact

with a conveyor belt moving at a constant speed. Neglecting the
weight of the link AB, derive an expression for the angular acceleration
of the disk while slipping occurs.
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16.34 Each of the double pulleys shown has a mass moment of

inertia of 10 kg • m 2 and is initially at rest. The outside radius is

400 mm, and the inner radius is 200 mm. Determine (a) the angular
acceleration of each pulley, (b) the angular velocity of each pulley
at r = 2 s, (c) the angular velocity of each pulley after point A on
the cord has moved 2 m.

34
(1)

Fig. P16.34

g
A ?

k
100 kg

(2)

300 kg 200 kg 50 kg

(3) (4)

16.35 Solve Prob. 12.17fl assuming that each pulley is of 8-in.
radius and has a centroidal mass moment of inertia 0.25 lb • ft • s 2 .

16.36 The flywheel shown weighs 250 lb and has a radius of
gyration of 15 in. A block A of weight 30 lb is attached to a wire
wrapped around the rim of radius r = 20 in. The system is released
from rest. Neglecting the effect of friction, determine (a) the acceler-

ation of block A, (b) the speed of block A after it has moved 6 ft.

16.37 In order to determine the mass moment of inertia of a

flywheel of radius r = 600 mm a block of mass 12 kg is attached to
a cord which is wrapped around the rim of the flywheel. The block
is released from rest and is observed to fall 3 m in 4.6 s. To eliminate

bearing friction from the computation, a second block of mass 24 kg
is used and is observed to fall 3 m in 3. 1 s. Assuming that the moment
of the couple due to friction is constant, determine the mass moment
of inertia of the flywheel.

1 6.38 A rope of total mass 10 kg and total length 20 m is wrapped
around the drum of a hoist as shown. The mass of the drum and shaft

is 18 kg, and they have a combined radius of gyration of 200 mm.
Knowing that the system is released from rest when a length h = 5 m
hangs from the drum, determine the initial angular acceleration of
the dram.

Fig. P16.36 and P16.37

Fig. P16.38
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16.39 The flywheel shown consists of a 3-ft-diameter disk which

weighs 300 lb. The coefficient of friction between the band and the
flywheel is 0.30. If the initial angular velocity of the flywheel is 300 rpm
clockwise, determine the magnitude of the force P required sto stop the
flywheel in 20 revolutions.

F
Fig. P16.39

0Fig. P16.41

1 6.40 Solve Prob. 16.39 assuming that the initial angular velocity
of the flywheel is 300 rpm counterclockwise.

1 6.41 A cylinder of radius r and mass m is placed with no initial
velocity on a belt as shown. Denoting by y. the coefficient of friction
at A and at B and assuming that n < 1, determine the angular acceler-
ation a of the cylinder.

1 6.42 Shaft A and friction disk B have a combined mass of 15 kg

and a combined radius of gyration of 150 mm. Shaft 1) and friction
wheel C rotate with a constant angular velocity of 1000 rpm. Disk

B is at rest when il is brought into contact with the rotating wheel.
Knowing thai disk B accelerates uniformly for 12 s before acquiring
its final angular velocity, determine the magnitude of the friction force
between the disk and the wheel.

50 mm

Fig. P16.42



PLANE MOTION OF RIGID BODIES: FORCES AND ACCELERATIONS 751

1 6.43 Each of the gears A and H weighs 4 lb and has a radius of

gyration of 3 in., while gear C weighs 20 lb and has a radius of gyration
of 9 in. If a couple M of constant magnitude 60 lb -in. is applied to
gear C, determine (a) the angular acceleration of gear A, (b) the time
required for the angular velocity of gear A to increase from 150 to
500 rpm.

1 6.44 Disk A is of mass 5 kg and has an initial angular velocity
of 300 rpm clockwise. Disk B is of mass 1.8 kg and is at rest when
it is placed in contact with disk A. Knowing that ji = 0.30 between

the disks and neglecting bearing friction, determine (a) the angular
acceleration of each disk, (b) the reaction at the support C.

1 50 mm

bFig. P16.44

1 6.45 In Prob. 16.44, (a) determine the final angular velocity of
each disk, (b) show that the final angular velocities are independent
of ft.s

Fig. P16.43

16.46 The two friction disks A and B are brought together by-
applying the 8-lb force shown. Disk A weighs 6 lb and had an initial

angular velocity of 1200 rpm clockwise; disk Ji weighs 15 lb and was
initially at rest. Knowing that n = 0.30 between the disks and ne-

glecting bearing friction, determine (a) the angular acceleration of
each disk, (b) the final angular velocity of each disk.

16.47 Solve Prob. 16.46, assuming that, initially, disk A was at
rest and disk 75 had an angular velocity of 12(K) rpm clockwise.

4 in.

Fig. P16.46
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1 6.48 A coder C, used to record in digital form the rotation of
a shaft S, is connected to the shaft by means of the gear train shown,

which consists of four gears of the same thickness and of the same
material. Two of the gears have a radius r and the other two a radius
nr. Let 1 K denote the ratio M/a of the moment M of the couple

applied to the shaft S and of the resulting angular acceleration a of
S. (I K is sometimes called the "reflected moment of inertia" of the
coder and gear train.) Determine l g in terms of the gear ratio n, the
moment of inertia I of the first gear, and the moment of inertia I c

of the coder. Neglect the moments of inertia of the shafts.

9
Fig. P16.48

1 6.49 A 6-kg bar is held between four disks as shown. Each
disk has a mass of 3 kg and a diameter of 200 mm. The disks may
rotate freely, and the normal reaction exerted by each disk on the
bar is sufficient to prevent slipping. If the bar is released from rest,
determine (a) its acceleration immediately after release, (h) its velocity
after it has dropped 0.75 m

¦@
0.75 in

1 S va

Fig. P16.49

16.50 Show that the system of the effective forces for a rigid
slab in plane motion reduces to a single vector, and express the dis-
tance from the mass center C of the slab to the lineof action of this

vector in terms of the centroidal radius of gyration k of the slab, the

magnitude oof the acceleration of C, and the angular acceleration a.
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16.51 For a rigid slab in plane motion, show that the system of
the effective forces consists of vectors (Am,)a, — (Am^io^r,', and
(Am,)(a X rp attached to the various particles /', of the slab, where a is
the acceleration of the mass center G of the slab, a the angular velocity
of the slab, a its angular acceleration, and where r[ denotes the
position vector of the particle P { relative to G. Further show, by
computing their sum and the sum of their moments about C, that the

effective forces reduce to a vector ml attached at C and a couple Ta.

1 6.52 The uniform slender rod AB weighs 8 lb and is at rest on

a frictionless horizontal surface. A force P of magnitude 2 lb is applied
at A in a horizontal direction perpendicular to the rod. Determine
(a) the angular acceleration of the rod, (b) the acceleration of the

center of the rod, (c) the point of the rod which has no acceleration.

i
Am ,-,>:,

53
Fig. P16.51

Fig. P16.52

1 6.53 In Prob. 16.52, determine the point of the rod AB at which

the force P should be applied if the acceleration of point B is to be
zero. Knowing that the magnitude of P is 2 lb, determine the corre-
sponding angular acceleration of the rod and the acceleration of the
center of the rod.

1 6.54 A 50-kg space satellite has a radius of gyration of 450 mm

with respect to the y axis, and is symmetrical with respect to the zx plane. The orientation of the satellite is changed by firing four
small rockets A, B, C, and D which are equally spaced around the

perimeter of the satellite. While being fired, each rocket produces
a thrust T of magnitude ION directed as shown. Determine the
angular acceleration of the satellite and the acceleration of its mass

center C (u) when all four rockets arc fired, (h) when all rockets except
rocket D are fired.tFig. P16.54

16.55 Solve Prob. 16.54 assuming that only rocket A is fired.
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IS ft -

Fig. P16.56 and P16.57

A

iI
n

5 1 I

i
a

1 (. i* I
0.75 m

Fi.
— 1 .5 ni

5F
1

- — 1.8 rn »

3.( m —

Fig. P16.58 and P16.59

dFig. P16.61

1 6.56 A 15-ft beam weighing 500 lb is lowered from a considerable
height by means of two cables unwinding from overhead cranes. As the
beam approaches the ground, the crane operators apply brakes to slow
the unwinding motion. The deceleration of cable A is 20 ft/s 2 , while that
of cable B is 2 ft/s*. Determine the tension in each cable.

16.57 A 15-ft beam weighing 500 lb is lowered from a considerable
height by means of two cables unwinding from overhead cranes. As the
beam approaches the ground, the crane operators apply brakes to slow
the unwinding motion. Determine the acceleration of each cable at thai

instant, knowing that T A = 360 lb and T B = 320 lb.

1 6.58 The ]80-kg crate shown is being lowered by means of two
overhead cranes. Knowing that at the instant shown the deceleration
of cable A is 7 m/s 2 , while that of cable B is 1 m/s 2 , determine the
tension in each cable.

16.59 The 180-kg crate is being lowered by means of two over-
head cranes. As the crate approaches the ground, the crane operators

apply brakes to slow the motion. Determine the acceleration of each
cable at that instant, knowing that T A = 1450 N and T„ = 1200 N.

1 6.60 Solve Sample Prob. 16.4, assuming that the disk rests flat
on a frictionless horizontal surface and that the cord is pulled hori-

zontally with a force of magnitude 180 N.

16.61 A turbine disk and shaft have a combined mass of

100 kg and a centroidal radius of gyration of 50 mm. The unit is lifted

by two ropes looped around the shaft as shown. Knowing that for each rope T A = 270 N and T B = 320 X, determine (a) the angular
acceleration of the unit, (b) the acceleration of its mass center.

1 6.62 By pulling on the cord of a yo-yo just fast enough, a man
manages to make the yo-yo spin counterclockwise, while remaining at
a constant height above the floor. Denoting the weight of the yo-yo by
VV, the radius of the inner drum on which the cord is wound by r, and

the radius of gyration of the yo-yo by k, determine (a) the tension in the
cord, (/>) the angular acceleration of the yo-yo.tFig. P16.62
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16.63 The 80-lb crate shown resls on four casters which allow

it to move without friction in any horizontal direction. A 2Mb hori-

zontal force is applied at the midpoint A of edge CE. Knowing that the force is perpendicular to side HCDE, determine the angular accel-
eration of the crate and the acceleration of point A.

1 6.64 and 1 6.65 A uniform slender bar AB of mass in is sus-

pended from two springs as shown. If spring BC breaks, determine at
that instant (a) the angular acceleration of the bar, (b) the acceleration
of point A, (c) the acceleration of point B.

'

yr
— Oft

V
c

/

F
«

A A

» "
2d

t

3
( )E

V^

!
1)

Soil,

Fig. P16.63

TT

Fig. P16.64

1
d

3 ^ %
i*V,yffl" \!HP 30°/ "9 MK

Fig. P16.65

1 6.66 A sphere of mass m and radius r is projected along a rough
horizontal surface with a linear velocity v„ and with u„ = 0. The

sphere will decelerate and then reach a uniform motion. Denoting by ,u the coefficient of friction, determine (a) the linear and angular
acceleration of the sphere before it reaches a uniform motion, (b) the
time required for the motion to become uniform, (c) the distance

traveled before the motion becomes uniform, (d) the final linear and
angular velocities of the sphere.6A

Fig. P16.66

16.67 Solve Prob. 16.66, assuming that the sphere is replaced
by a uniform disk of radius r and mass m.

16.68 A heavy square plate of weight W, suspended from four
vertical wires, supports a small block E of much smaller weight w.
The coefficient of friction between £ and the plate is denoted by fi.
If the coordinates of E are x = \L and s = \L, derive an expression

for the magnitude of the force P required to cause E to slip with respect to the plate. (Hint. Neglect w in all equations containing W.)

* 1 6.69 A square plate of weight W = 20 lb and side /. = 3 ft is
suspended from four wires and supports a block E of much smaller

weight to. The coefficient of friction between E and the plate is 0.50. If a force P of magnitude 10 lb is applied as shown, determine the area
of the plate where E should be placed if it is not to slip with respect to
the plate. (Hint. Neglect w in all equations containing W.)t-£.—

Fig. P16.68 and P16.69



756 DYNAMICS

.
Fig. 16.11

16.8. Constrained Plane Motion. Most engineering

applications deal with rigid bodies which are moving under given constraints. Cranks, for example, are constrained to rotate
about a fixed axis, wheels roll without sliding, connecting rods

must describe certain prescribed motions. In all such cases,
definite relations exist between the components of the accelera-
tion a of the mass center G of the body considered and its angular
acceleration a; the corresponding motion is said to be a con-
strained motion.

The solution of a problem involving a constrained plane mo-
tion calls first for a Unemaiic analysis of the problem. Consider,
for example, a slender rod AB of length I and mass m whose
extremities are connected to blocks of negligible mass which
slide along horizontal and vertical frictionless tracks. The rod
is pulled by a force P applied at A (Fig. 16.11). We know from
Sec. 15.8 that the acceleration a of the mass center C of the

rod may be determined at any given instant from the position
of the rod, its angular velocity, and its angular acceleration at

that instant. Suppose, for instance, that the values of 6, w, and a are known at a given instant and diat we wish to determine
the corresponding value of the force P, as well as the reactions at A and B. Wc should first determine the components a x and
a of the acceleration of tlxe mass center G by the method of Sec. 15.8. We next apply D'Alembert's principle (Fig. 16.12),
using the expressions obtained for a t and a y . The unknown forces
P, \ /( , and N„ may then be determined by writing and solving
the appropriate equations.

Suppose now that the applied force P, the angle 6, and the

angular velocity w of the rod are known at a given instant and that we wish to find the angular acceleration a of the rod and
the components a x and a y of the acceleration of its mass center
at that instant, as well as the reactions at A and B. The prclimi-

Fig. 16.12
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nary kinematic study of the problem will have for its object to
express the components a~ x and a v of the acceleration of G in
terms of the angular acceleration a of the rod. This will be done

by first expressing the acceleration of a suitable reference point such as A in terms of the angular acceleration a. The components
a z and a v of the acceleration of C may then be determined in

terms of a, and the expressions obtained carried into Fig.
16.12. Three equations may then be derived in terms of a, N A ,
and Ng, and solved for the three unknowns (see Sample Prob.
16.10). Note that the method of dynamic equilibrium may also

be used to carry out the solution of the two types of problems we have considered (Fig. 16.13).
When a mechanism consists of several moving parts, the

approach just described may be used with each part of the
mechanism. The procedure required to determine the various
unknowns is then similar to the procedure followed in the
case of the equilibrium of a system of connected rigid bodies
(Sec. 6.11).

We have analyzed earlier two particular cases of constrained
plane motion, the translation of a rigid body, in which the
angular acceleration of the body is constrained to be zero, and
the centroidal rotation, in which the acceleration a of the mass

center of the body is constrained to be zero. Two other particu- lar cases of constrained plane motion are of special interest, the
noncentroidal rotation of a rigid body and the rolling motion of

a disk or wheel. These two cases should be analyzed by one of the general methods described above. However, in view of
the range of their applications, they deserve a few special com-
ments.

Noncentroidal Rotation. This is the motion of a rigid body

constrained to rotate about a fixed axis which does not pass through its mass center. Such a motion is called a noncentroidal
rotation. The mass center C of the body moves along a circle
of radius r centered at the point O, where the axis of rotation

intersects the plane of reference (Fig. 16.14). Denoting, respec-
tively, by w and a the angular velocity and the angular acceler-
ation of the line OG, we obtain the following expressions for
the tangential and normal components of the acceleration of G:

=

Fig. 16.13

e»„ = ru

Fig. 16.14

a, = ra a n = no 2 (16.7)

Since line OG belongs to the body, its angular velocity u and its angular acceleration a also represent the angular velocity and
the angular acceleration of the body in its motion relative to
G. Equations (16.7) define, therefore, the kinematic relation
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existing between the motion of the mass center G and the motion of the body about G. They should be used to eliminate a, and
a n from the equations obtained by applying D'Alcmbert's princi- ple (Fig. 16.15) or the method of dynamic equilibrium (Fig.
16.16).

15
(a)

Fig. 16.15

w

An interesting relation may be obtained by equating the mo-
ments about the fixed point O of the forces and vectors shown
respectively in parts a and h of Fig. 16.15. We write

+ 5 SM = la + (mra)F= (f+ mr-)a

But, according to the parallel-axis theorem, we have / 4- mr 2 =
1 Q , where l denotes the moment of inertia of the rigid body
about the fixed axis. We write, therefore.

£M = I a (16.8)pWhile formula (16.8) expresses an important relation between the sum of the moments of the external forces about the fixed
point O and the product i o, it should be clearly understood that this formula does not mean that the system of the external
forces is equivalent to a couple of moment l a. The system of
the effective forces, and thus the system of the external forces,

reduces to a couple only when O coincides with G, that is, only when the rotation is centroidal (Sec. 16.4). In the more general
case of noncentroidal rotation, the system of the external forces
does not reduce to a couple.

A particular case of noncentroidal rotation is of special inter-
est: the case of uniform rotation, in which the angular velocity
u is constant. Since a is zero, the inertia couple in Fig. 16.16

vanishes and the inertia vector reduces to its normal component.

This component (also called centrifugal force) represents the tendency of the rigid body to break away from the axis of rota-
tion.
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Rolling Motion. Another important case of plane motion is
the motion of a disk or wheel rolling on a plane surface. If the
disk is constrained to roll without sliding, the acceleration a of
its mass center G and its angular acceleration a are not inde-
pendent. Assuming the disk to be balanced, so that its mass
center and its geometric center coincide, we first write that the

distance x traveled by G during a rotation of the disk is x = r(i,
where ;• is the radius of the disk. Differentiating this relation
twice, we write

a = ra (16.9)

Recalling that the system of the effective forces in plane
motion reduces to a vector ma and a couple la, we find that,
in the particular case of the rolling motion of a balanced disk,

the effective forces reduce to a vector of_ magnitude mm attached at G and to a couple of magnitude 7a. We may thus
express that the external forces are equivalent to the vector and
couple shown in Fig. 16.17.

lsFig. 16.17

When a disk rolls without sliding, there is no relative motion

between the point of the disk which is in contact with the ground and the ground itself. As far as the computation of the friction
force F is concerned, a rolling disk may thus be compared with a block at rest on a surface. The magnitude F of the friction
force may have any value, as long as it does not exceed the
maximum value F m = fi s \', where /i s is the coefficient of static
friction and A' the magnitude of the normal force. In the case
of a rolling disk, the magnitude F of the friction force should

therefore be determined independently of .Vby solving the equa-
tion obtained from Fig. 16.17.

When sliding is impending, the friction force reaches its maxi-
mum value ¥ m = /t s .V and may be obtained from N.



760 DYNAMICS

When the disk rotates and slides at the same time, a relative

motion exists between the point of the disk which is in contact

with the ground and the ground itself, and the force of friction
has the magnitude F k = n k N, where ix k is the coefficient of
kinetic friction. In this case, however, the motion of the mass

center G of the disk and the rotation of the disk about G are

independent, and a is not equal to ra.
These three different cases may be summarized as follows:

Rolling, no sliding: F < ix s N a = ra
Rolling, sliding impending: F = ,u s iV a = ra
Rotating and sliding: F = ix k N a and a independent
When it is not known whether a disk slides or not, it should

first be assumed that the disk rolls without sliding. If F is found
smaller than, or equal to, ,11,4V, the assumption is proved correct.
If F is found larger than n s N, the assumption is incorrect and

the problem should be started again, assuming rotating and
sliding.

When a disk is unbalanced, i.e., when its mass center C does

not coincide with its geometric center O, the relation (16.9)
does not hold between a and a. A similar relation will hold,

however, between the magnitude a of the acceleration of the

geometric center and the angular acceleration a,

a = ra (16.10)

To determine a in terms of the angular acceleration a and the

angular velocity u of the disk, we may use the relative-accelera-
tion formula,

a = a G = a,, + a 0/0

= a + (a,,/,,), + (a 0/0 )„ (16.11)

where the three component accelerations obtained have the
directions indicated in Fig. 16.18 and the magnitudes a = ra,

(ao/o)t = (OC)a, and (a G/0 ) n = (OG)u 2 .

Fig. 16.18
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SAMPLE PROBLEM 16.6

The portion AOB of a mechanism consists of a 400-mm steel rod OB

welded to a gear E of radius 120mm which may rotate about a

horizontal shaft O. It is actuated by a gear D and, at the instant
shown, has a clockwise angular velocity of 8 rad/s and a counter-

clockwise angular acceleration of 40 rad/s 2 . Knowing that rod OB has
a mass of 3 kg and gear E a mass of 4 kg and a radius of gyration
of 85 mm, determine (a) the tangential force exerted by gear D on
gear E, (b) the components of the reaction at shaft O.

Solution, In determining the effective forces of the rigid body AOB
we shall consider separately gear E and rod OB, Therefore, we shall

first determine the components of the acceleration of the mass center
C, ou of the rod:

(«ob)/ = ™ =(0.20Om)(40 rad/s 2 ) = S m/s 2

("oBln = «** = (0.200 m)(8 rad/s) 2 = 12.8 m/s 2

Equations of Motion, Two sketches of the rigid body AOB have
been drawn. The first shows the external forces consisting of the
weight \V t of gear E, the weight W os of rod OS, the force F exerted

by gear D, and the components R, and R tJ of the reaction at O. The
magnitudes of the weights are, respectively,

W B = m E g = (4 kg)(9.81 m/s 2 ) = 39.2 X
VV 0B = m 0B g = (3kg)(9.81 m/s 2 ) = 29.4 N

The second sketch shows the effective forces, which consist of a couple
l F a (since gear E is in centroidal rotation) and of a couple and two
vector components at the mass center of OB. Since the accelerations

are known, we compute the magnitudes of these components and couples:
Tga = mgkgtt = (4 kg)(0.085 m) 2 (40 rad/s 2 ) = 1.156 X-m

»'o«(«ob) ( = (3 kg)(8 m/s 2 ) = 24.0 N

"W«o«)„ = (3 kg)(12.8 m/s 2 ) = 38.4 X

W* = (tV'»oh'- 2 )" = tM3 kg)(0.400 m) 2 (40 rad/s 2 ) = 1,600 N • m

Expressing that the system of the external forces is equivalent to the
system of the effective forces, we write the following equations:

+3 W = 2<M ), H :

F(0.120m) = /> + m OB (« OB ),(0.200 m) + T 0B cx
F(0.120 m) = 1,156 N • m 4- (24.0 N)(0.200 m) + 1.600 N ¦ m

'2F, = 2^ eff

F = 63.0 X

R. = m.

F = 63.0 N i

",'OR\"OBh

R T = 24.0 N R. = 24.0 N

+ T^F S = 2(Fllhlf F - W B - W 0B = m Cl (Oon)»

fl„ - 63.0 X - 39.2 \ - 29.4 N = 38.4 N

H„= 170.0 N R„ = 170.0 X
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SAMPLE PROBLEM 16.7

A rectangular plate, 6 by 8 in., weighs 60 Hi and is suspended from

two pins A and B. If pin H is suddenly removed, determine (a) the
angular acceleration of the plate, (b) the components of the reactions

at pin A, immediately after pin H has been removed.

Sin

AQr-

S7 s t\" =

a•- J = 4in.-»-

a. Angular Acceleration. We observe that as the plate rotates
about point A, its mass center C describes a circle of radius 7 with
center at A.

Since the plate is released from rest (co = 0), the normal component

of the acceleration of G is zero. The magnitude of the acceleration

a of the mass center C is thus a = 7a. We draw the diagram shown
to express that the external forces are equivalent to the effective
forces:

Since a = 7a, we have

Wx = (ma)r + la

Wx = m(ra)r + la
Wx

g

(1)

The centroidal moment of inertia of the plate is

t = f|<a> + v) = m ^ k/ ^ m ft) 2 + <£ ft) 2 i
= 0.10781b -ft -s 2

Substituting this value of 7 together with W = 601b, 7 = & ft, and
.r = -^ ft into Kq. (1), we obtain

a = 4-46.4 rad/s 2 « = *«.4 rad $* ) -+

Ik Reaction at A. Using the computed value of a, we determine
the magnitude of the vector ml attached at G,

ma = mra =
60 lb

r {£ ft)(46.4 rad/s-') = 36.0 lb
32.2 ft/s^

Showing this result on the diagram, we write the equations of motion1±* ZF, = v ( ,g c|( : A,= -8(36 lb)
A, = -21.61b

A„ -601b= -1(36 lb)

A„= 4-31.211)

21.81b

S. =: 11.2 lb 1

The couple la is not involved in the last two equations; nevertheless,
it should be indicated on the diagram.
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SAMPLE PROBLEM 16.8

A sphere of radius r and weight VV is released with no initial velocity
on the incline and rolls without slipping. Determine (a) the minimum
value of the coefficient of friction compatible with the rolling motion,
(h) the velocity of the center G of the sphere after the sphere has
rolled 10 ft, (c) the velocity of G if the sphere were to move 10 fl
down a frictionless 30° incline.

/
(/. Minimum /» for Rolling Motion. The external forces W, N, and

F form a system equivalent to the system of effective forces repre-
sented by the vector ma and the couple Ta. Since the sphere rolls
without sliding, we have a = ra.

+ ) SM = 2(.W C ) C „: ( W sin 0)r = (ma)r + Ta
(Wsin 0)r = [mrn)r + la

Noting that m = VV/g and / = imr 2 , we write

,\u • os ( W \ , 2 W * 5gsin0 (VV sin 0)r = I — ra )r + — — r 2 a a = + -2
V g / o g It

a = „ = M^l m 5(32.2 ft/^sin 30- =
t / '

+ \ IF, = ^.(1'Xtv Wsin - F = ma

,,. . ,. ,. W ogsin 8
W sin - /¦ = 2_

g

F = + i\V sin = f VV sin 30° F = 0.143W S^ 30°

+ / Zl], = 2(F„) e „: .V - Wcostf =
X = IV cos = 0.866VV N = 0.866 VV <JL 60°

_ F_ _ 0.143VV
Mmln N 0.866VV Mmta = 0165

b. Velocity of Moiling Sphere. We have uniformly accelerated
motion,

v = a = 1 1.50 ft/s 2 x = 10 ft x =

D 2 = Sg + 2«(.v - *•„) r J = + 2(11.50 ft/s 2 )(10 ft)
v = 15.17 ft/s v = 15.17 ft/s "^ 30° -*

C, Velocity of Sliding Sphere. Assuming now no friction, we have
F = and obtain

0.50VV = — a

+ lZM a =Z(M ( ,U l : = /a ,v =

+ \ 2F, = S(F t ) ttt ! Wsin 30° = ma
g

o = +16.1 ft/s 2 a = 16.1 ft/s- ^ 30°

Substituting a = 16.1 ft/s 2 into the equations for uniformly acceler- ated motion, we obtain
tJ 2 = ug + 2fl(.v - .v )
u = 17.94 ft/s

c 2 = + 2(16.1 ft/s 2 )( 10 ft)
v= 17.94 ft s^si30°
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MF = 73.6

SAMPLE PROBLEM 16.9

A cord is wrapped around the inner drum of a wheel and pulled horizontally with a force of 200 N. The wheel has a mass of 50 kg
and a radius of gyration of 70 mm. Knowing that (X, s 0.20 and

u & = 0.J5, determine the acceleration of C and the angular acceler-
ation of the wheel.

0, Assume Rolling without Sliding. In this case, we have

a = ra = (0.100 m)a

By comparing the friction force obtained with the maximum available
friction force, we shall determine whether this assumption is justified.
The moment of inertia of the wheel is

1 = in* 2 = (.50 kg)(0.070 m) 2 = 0.245 kg • m-

/. quotums of Motion

+ ) 2M C = 2(.Vf e ) eH : (200 \)(0.040 m) = ma(0.100 m) + Ta
8.00 N = (50 kg)(0. 100 m)o(0.100 m) + (0.245 kg • m 2 )a

a = + 10.74 rad/s 2

H=ra = (0.100m)(10.74rad/s 2 ) = 1.074 m/s 2

2F, = 2(|fJ eff

+ T 2F„ = 2(F y ) e „:
V - W =

F + 200 N = ma

F + 200 X = (.50 kg)( 1.074 m/s 2 )
F = - 146.3 N F = 146.3 N *-

N = \V = ing = (50 kg)(9.81 m/s 2 ) = 490.5 N
N = 490.5 XT.Maximum Available Friction Force

F mtx = f i,.V = 0.20 (490.5 X) = 98.1 N

Since F > F naz , the assumed motion is impossible.
h. Kotating and Sliding. Since the wheel must rotate and slide at

the same lime, we draw a new diagram, where a and a are inde-

pendent and where

F = F h = m*.V = 0.15 (490.5 N) = 73.6 X

From the computation of part a, it appears that F should be directed
to the left. We write the following equations of motion:

¦*. 2F, = S(F,) aff : 200 X - 73.6 X = (50 kg)a
= + 2.53 m/s 2 a = 2.53 m s- -» -+

+ l^M = l(M ),,„:
(73.6 N)(0.100 m) - (200 N)(0.060 m) = (0.245 kg • m>

a = - 18.94 rad/s 2 a = 18.94 rad/s 2 5 -*
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SAMPLE PROBLEM 16.10

The extremities of u 4-ft rod, weighing 50 lb, may move freely and
with no friction along two straight tracks as shown. If the rod is
released with no velocity from the position shown, determine (a) the
angular acceleration of the rod, (b) the reactions at A and B.

Kinematics of Motion. Since the motion is constrained, the accel-

eration of C must be related to the angular acceleration o. To obtain

this relation, we shall first determine the magnitude of the acceleration

a A of point A in terms of a; assuming a directed counterclockwise
and noting that a B/A = 4a, we write

a B = °M + a B/A

Noting that <j> = 75° and using the law of sines, we obtain

a A = 5.46a a B = 4.90a

The acceleration of C is now obtained by writing

a = a G = a^, + a C/1

a = [5.46a ->] + [2a f 60"]

Resolving a into .t and y components, we obtain

a, = 5.46a - 2a cos 60° = 4.46a I, = 4.46a ->

a„ = -2a sin 60° = -1.732a I, = 1.732a J,

Kinetics of Motion. We draw the two sketches shown to express

that the system of external forces is equivalent to the system of effec-
tive forces represented by the vector of components ma, and ina u
attached al C and the couple 7a. We compute the following magni-
tudes:6f = 1 -.t _ 1 501b

12 12 32.2 ft/s 2

ma, =
50

(4.46a) = 6.93a

j(4 ft) 2 = 2.07 lb • ft • s 2 J« = 2.07a

50

™» = ~ 32.2(1.732a) = -2.69a32.2 '

Equations of Motion

+52M g = 2(M i ) etf
(50)( 1.732) = (6.93o)(4.46) + (2.69a)(1.732) + 2.07a

a = +2.30 rad/s 2 « = 2.30 rad s 2 '

¦** ZF, = 2(/g, fr : R B sin 45° = (6.93)(2.30) = 15.94
B B = 22.5 lb R B = 22.5 lb .

+f 2F, = WyW »,i + n« cos 45= - 50 = -(2.69X2.30)

R A = -6.19 - 15.94 4- 50 = 27.91b Rj = 27.9 lb f
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Fig. P16.70

PROBLEMS

16.70 Show that the couple Ta of Fig. 16.15 may be eliminated
by attaching the vectors ma, and mi, at a point P called the center
of percussion, located on line OG at a distance CP = k 2 /r from the
mass center of the body.

16.71 A uniform slender rod, of length /, = 900 mm and mass

m = 4 kg, is supported as shown. A horizontal force P of magnitude
75 X is applied at end R. For 7= \L = 225 mm, determine (a) the
angular acceleration of the rod, (/>) the components of the reaction
at C.

ffl

B

Fig. 16.71

T 1!

i

Fig. P16.73 and P16.74(Fig. P16.75

1 6.72 In Prob. 16.71, determine (a) the distance r for which the

horizontal component of the reaction at C is zero, '/') the corre-
sponding angular acceleration of the rod.

16.73 A uniform slender rod, of length I. and weight VV, hangs

freely from a hinge at A. If a horizontal force P is applied as shown,
determine (a) the distance h for which the horizontal component of the

reaction at A is zero, (b) the corresponding angular acceleration of the
rod.

16.74 A uniform slender rod, of length L and weight W, hangs

freely from a hinge at A. If a force P is applied at B horizontally to the
left (h — /.), determine (a) the angular acceleration of the rod, (b) the
components of the reaction at A.

16.75 A turbine disk of mass 75 kg rotates at a constant speed

of 9600 rpm; the mass center of the disk coincides with the center
of rotation O. Determine the reaction at O after a single vane at

A, of mass 45 g, becomes loose and is thrown off.
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1 6.76 A uniform slender rod of length / and mass m rotates about
a vertical axis AA' at a constant angular velocity cc. Determine the
tension in the rod at a distance x from the axis of rotation.

6
Fig. P16.76 Fig. P16.77

16.77 An 8-in.-diameter hole is cut as shown in a thin disk of

diameter 24 in. The disk rotates in a horizontal plane about its geo-
metric center A at a constant angular velocity of 480 rpm. Knowing
that the disk weighs 100 lb after the hole has been cut, determine

the horizontal component of the force exerted by the shaft on the
disk at A.

16.78 A large flywheel is mounted on a horizontal shaft and

rotates at a constant rate of 1200 rpm. Experimental data show that
the total force exerted by the flywheel on the shaft varies from 55 kX

upward to 85 kN downward. Determine (a) the mass of the flywheel,
(b) the distance from the center of the shaft to the mass center of the

flywheel.

16.79 and 16.80 A uniform beam of length L and weight W
is supported as shown. If the cable suddenly breaks, determine (a) the
reaction at the pin support, (b) the acceleration of point B.

V

-MS !>fi

Fig. P16.79 Fig. P16.80

N l 1

_>«
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Fig. P16.81

16.81 A uniform slender rod AB, of length L = 4 ft and weight

10 lb, is held in the position shown by three wires. 1(0 = 60°, determine
the tension in wires AC and BC immediately after wire AD has been cut.

1 6.82 Two uniform rods, each of mass m, are attached as shown to

small gears of negligible mass. If the rods are released from rest in the
position shown, determine the angular acceleration of rod AB immedi-

ately after release, assuming (a) = 0, (b) = 30°.

ni
Fig. P16.83

1 6.83 A uniform rod AB is bent in the shape of an arc of circle.
Determine the angular acceleration of the rod immediately after it is

released from rest and show that it is independent of 6.gFig. P16.84 and P16.85

16.84 A 2-kg slender rod is riveted to a 4-kg uniform disk as
shown. The assembly swings freely in a vertical plane and, in the

position shown, has an angular velocity of 4 rad/s clockwise. Deter-
mine (a) the angular acceleration of the assembly, (b) the components
of the reaction at A.

1 6.85 A 2-kg slender rod is riveted to a 4-kg uniform disk as

shown. The assembly rotates in a vertical plane under the combined
effect of gravity and a couple M which is applied to rod AB. Knowing
that at the instant shown the assembly has an angular velocity of
6 rad/s and an angular acceleration of 10 rad/s 2 both counterclock-
wise, determine (a) the magnitude of the couple M, (b) the components
of the reaction at A.

1 6.86 After being released, the plate of Sample Prob. 16.7 is

allowed to swing through 90°. Knowing that at that instant the
angular velocity of the plate is 4.82 rad/s, determine (a) the angular
acceleration of the plate, (b) the reaction at A.
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1 6.87 Two uniform rods, AB of weight 12 lb and CD of weight
8 lb, are welded together to form the T-shaped assembly shown. The
assembly rotates in a vertical plane about a horizontal shaft at £.
Knowing that at the instant shown the assembly has an angular veloc-
ity of ]2rad/s and an angular acceleration of 36 rad/s 2 , both clock-

wise, determine (a) the magnitude of the horizontal force P, (b) the
components of the reaction at £.

1 6.88 The uniform rod AB of mass m is released from rest when

ft = 60°. Assuming that the friction between end A and the surface is

large enough to prevent sliding, determine (a) the angular acceleration
of the rod just after release, (b) the normal reaction and the friction

force at A, (c) the minimum value of fi compatible with the described
motion.

12 In.

12 in.

D«

-lSilL- -18 in.

Fig. P16.87

tFig. P16.88 and P16.89

* 1 6.89 Knowing that the coefficient of friction between the rod and

the floor is 0,30, determine the range of values of ft for which the rod will
slip immediately after being released from rest.

1 6.90 Derive the equation 2M = I c a for the rolling disk of Fig.
16.17, where 2M represents the sum of the moments of the external

forces about the instantaneous center C and / c the moment of inertia of
the disk about C.

1 6.91 Show that, in the case of an unbalanced disk, the equation
derived in Prob. 16.90 is valid only when the mass center C, the
geometric center O, and the instantaneous center C happen to lie in a
straight line.

1 6.92 A homogeneous cylinder C and a section of pipe /' are
in contact when they are released from rest. Knowing that both the
cylinder and the pipe roll without slipping, determine the clear dis-
tance between them after 2.5 s.

- 10'

Fig. P16.92



770 DYNAMICS

9
1 6.93 A flywheel is rigidly attached to a shaft of 40-mm radius

which may roll along parallel rails as shown. When released from rest,

the system rolls a distance of 3 m in 30 s. Determine the centroidal
radius of gyration of the system.

a
Fig. P16.93 and P16.94

16.94 A flywheel of centroidal radius of gyration k = Ml mm
is rigidly attached to a shaft of radius r = 30 mm which may roll along
parallel rails. Knowing that the system is released from rest, determine
the distance it will roll in 20 s.

16.95 through 16.98 A drum of 80-mm radius is attached to

a disk of 160-mm radius. The disk and drum have a total mass of

5 kg and a radius of gyration of 120 mm. A cord is attached as shown
and pulled with a force P of magnitude 20 X. Knowing that the disk
rolls without sliding, determine (a) the angular acceleration of the disk
and the acceleration of G, (b) the minimum value of the coefficient

of friction compatible with this motion.6.9Fig. P1 6.95 and P1 6.99 Fig. P16.96 and P16.100 Fig. P16.97 and P16.101 Fig. P1 6.98 and P1 6.1 02

16.99 through 16.102 A drum of 4-in. radius is attached to

a disk of 8-in. radius. The disk and drum have a total weight of 10 lb
and a radius of gyration of 6 in. A cord is attached as shown and

pulled with a force P of magnitude 5 lb. Knowing that fi = 0.20,
determine (a) whether or not the disk slides, ib) the angular acceler-
ation of the disk and the acceleration of G.
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16.103 and 16.104 The 12-lb carriage is supported as shown
by two uniform disks each of weight 8 lb and radius 3 in. Knowing that
the disks roll without sliding, determine the acceleration of the car-

riage when a force of 4 lb is applied to it.

i ii

121b

w v J
Fig. P16.103

i lb
12 Hi

*(U) »(U)
Fig. P16.104

16.105 A half section of pipe of mass m and radius r rests on

a rough horizontal surface. A vertical force P is applied as shown.

Assuming that the section rolls without sliding, derive an expression
(a) for its angular acceleration, (b) for the minimum value of ,u compat-
ible with this motion. [Hint. Note that OG = 2f/w and that, by the

parallel-axis theorem, I = mr 2 - m(OC)-.} Fig. P16.10S

16.106 A small block of mass m is attached at B to a hoop of

mass hi and radius r. Knowing that when the system is released from

rest it starts to roll without sliding, determine \a) the angular acceler-
ation of the hoop, (b) the acceleration of H.eFig. P16.106

1 6.107 Solve Prob. 16.105, assuming that the force P is applied at
B and is directed horizontally to the right.
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Fig. P16.108

1 S. 1 08 The mass center G of a 10-lb wheel of radius R = 12 in. is

located at a distance r = 4 in. from its geometric center C. The
centroidal radius of gyration is k = 6 in. As the wheel rolls without
sliding, its angular velocity varies and it is observed that w = 8 rad/s in

the position shown. Determine the corresponding angular acceleration
of the wheel.

' End A of the 100-lb beam AT? moves along the frictionless
door, while end B is supported by a 4-ft cable. Knowing that at the
instant shown end A is moving to the left with a constant velocity
of 8 ft/s, determine (a) the magnitude of the force P, (b) the corre-
sponding tension in the cable.

igFig. P16.110 and P16.112

Fig. P16.109

16.110 Ends A and B of a 4-kg slender rod are attached to collars
of negligible mass which slide without friction along the rods shown. A
horizontal force P is applied to collar B, causing the rod to start from
rest with a counterclockwise angular acceleration of 12 rad/s 2 . Deter-

mine (a) the required magnitude of P, (b) the reactions at A and B.

16.111 Solve Prob. 16.110, assuming that at the instant consid-
ered the angular velocity of the rod is 4 rad/s counterclockwise.rFig. P16.113

'¦ Ends A and B of a 4-kg slender rod are attached to collars
of negligible mass which slide without friction along the rods shown. Tf
the rod is released from rest in the position shown, determine (a) the
angular acceleration of the rod, (6) the reactions at A and B.

16.113 The 50-kg uniform rod AB is released from rest in the

position shown. Knowing that end A may slide freely on the fric-
tionless floor, determine (a) the angular acceleration of the rod, (b)
the tension in wire BC, (<;) the reaction at A.
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16.114 Rod AB weighs 31b and is released from rest in the

position shown. Assuming that the ends of the rod slide without
frietion, determine (a) the angular acceleration of the rod, (b) the
reactions at A and B.

4
Fig. P16.114

16.115 The 12-lb uniform rod AB is held by the three wires

shown. Determine the tension in wires AD and HE immediately after
wire AC has been cut. Fig. P16.115

1 6.1 1 6 Show that, for a rigid slab in plane motion, the equation

"ZM A = I A a, where 2A/, represents the sum of the moments of the
external forces about point A and I A the moment of inertia of the
slab about the same point A, is verified if and only if one of the
following conditions is satisfied: (a) A is the mass center of the slab,

(b) A has zero acceleration, (c) the acceleration of A is directed along
a line joining point A and the mass center C

16.117 The 6-lb sliding block is connected to the rotating disk by
the uniform rod AB which weighs 4 lb. Knowing that the disk has a

constant angular velocity of 360 rpm, determine the forces exerted on
the connecting rod at A and B when /I — 0.

1 6. 1 1 8 Solve Prob. 16.117 when B = 180°.

16.1 19 Each of the bars shown is 600 mm long and has a mass

of 4 kg. A horizontal and variable force P is applied at C, causing
point C to move to the left with a constant speed of 10 m/s. Deter-
mine the force P for the position shown.

16.120 The two bars AB and BC are released from rest in the

position shown. Each bar is 600 mm long and has a mass of 4 kg.
Determine (a) the angular acceleration of each bar, (6) the reactions
ut A and C.

Fig. P16.117

Fig. P16.119 and P16.120
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16.121 and 16.122 Two rods AB and BC. of mass m per unit
length, are connected as shown to a disk which is made to rotate in

a vertical plane at a constant angular velocity <o . For the position shown, determine the components of the forces exerted at A and B
on rod AB.

F
Fig. P16.121 Fig. P16.122

<l

Fig. P16.123

1 6.1 23 A section of pipe rests on a plate. The plate is then given
a constant acceleration a directed to the right. Assuming that the
pipe rolls on the plate, determine (a) the acceleration of the pipe,
(b) the distance through which the plate will move before the pipe
reaches end A.

1 6.1 24 Solve Prob. 16.123, assuming that the pipe is replaced (1)
by a solid cylinder, (2) by a sphere.

16.125 and 16.126 Gear C weighs 6 lb and has a centroidal

radius of gyration of 3 in. The uniform bar AB weighs 5 lb and gear

D is stationary. If the system is released from rest in the position
shown, determine («) the angular acceleration of gear (,', (/;) the accel-
eration of point B.sFig. P16.125cFig. P16.126
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* 16. 127 The disk shown rotates with a constant counterclock-

wise angular velocity of 12 rad/s. The uniform rod BD is 450 mm long
and has a mass of 3 kg. Knowing that the system moves in a horizontal
plane, determine the reaction at E.

* 1 6.1 *>«* Solve Prob. 16.127, assuming that the disk rotates with a
constant clockwise angular velocity of 12 rad/s.

* 16.1 29 A uniform slender rod of length L and mass m is re-
leased from rest in the position shown. Derive an expression for (a)
the angular acceleration of the rod, ffe) the acceleration of end A, (c)
the reaction at A, immediately after release. Neglect the mass and
friction of the roller at A.

Fig. P1 6.129 and P16.130

* 1 6.1 30 A uniform rod AB, of mass 3 kg and length I. = 1.2 m,

is released from rest in the position shown. Knowing that fi = 3() = ,

determine the values immediately after release of (a) the angular
acceleration of the rod, (b) the acceleration of end A, (c) the reaction
at A. Neglect the mass and friction of the roller at A.

* 1 6. 1 3 1 Each of the bars AB and BC is of length 7, = 18 in. and

weight 3 lb. A couple M of magnitude 6 lb • ft is applied to bar BC.
Determine the angular acceleration of each bar.

125 mm

.
250 mm

Fig. P16.127

Aft

I.

.1
Fig. P16.131

bS

Fig. P16.132

* 1 6. 1 32 Each of the bars AB and BC is of length /, = 1 8 in. and

weight 3 lb. A horizontal force P of magnitude 4 lb is applied at C.
Determine the angular acceleration of each bar.
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^ & T

Fig. P16.133

* 16. 133 Two uniform slender rods, each of mass m, are con-

nected by a pin at C. Determine the acceleration of points C and D
immediately after the horizontal force P has been applied at D.

V)

Fig. P1 6.134

* 16. 134 The slender bar AB is of length 7, and mass m. It is

held in equilibrium by two counterweights, each of mass }»n. If the
wire at B is cut, determine at that instant the acceleration of (a) point
A, (b) point B.

#16.135 (a) Determine the magnitude and the location of the
maximum bending moment in the rod of Prob. 16.74. {b) Show that the

answer to pari a is independent of the weight VV of the rod.

4=16.136 In Prob. 16.132 the pin at B is severely rusted and the

bars rotate as a single rigid body. Determine the bending moment
which occurs at B.

* 1 6.1 37 Draw the shear and bending-moment diagrams for the
beam of Prob. 16.79 immediately after the cable at B breaks.

* 16.1 38 Draw the shear and bending-moment diagrams for the
bar of Prob. 16.134 immediately after the wire at B has been cut.

REVIEW PROBLEMS

T
1- Wires .

- A

16.139 and 16.140 A uniform plate of mass m is suspended
in each of the ways shown. For each case determine the acceleration

of the center of the plate immediately after the connection at B has
been released.

n
[- — Springs Fin supports

=^W

A .-Cmmterwciglits < «

Fig. P16.139

U>)

Fig. P16.140

¦.;,'
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16.141 The flanged wheel shown rolls to the right with a constant

velocity of 1.5 m/s. The rod AB is 1.2 in long and has a mass of 5 kg.
Knowing that point A slides without friction on the horizontal surface,
determine the reaction at A (a) when /i = 0, (b) when R = 180°.

16.142 A 15-lb uniform disk is suspended from a link AB of
negligible weight. If a 10-lb force is applied at B, determine the
acceleration of B (a) if the connection at B is a frictionless pin, (b)
if the connection at B is "frozen" and the system rotates about A

as a rigid body.

:KX> mm

4
Fig. P16.141

6.
Fig. P16.142 Fig. P16.143

1 6.143 Two uniform bars AB and BC, each of length L = 10 in.,
arc welded together to form an L-shaped rigid body. Knowing that

each bar weighs 3 lb, determine the tension in each wire immediately
after the body has been released from rest.

1 6.1 44 A slender rod of mass m per unit length is placed inside a

shallow drum of radius r which rotates at a constant angular velocity
to about a vertical shaft through O. (a) Determine the ratio L/r for

which the maximum bending moment in the rod is as large as possible.
(b) Derive an expression for the corresponding value of the maximum
bending moment.lFig. P16.144

16.145 A collar C of weight \V C is rigidly attached to a uniform
slender rod AB of length L and weight W. If the rod is released from
rest in the position shown, determine the ratio d/L for which the

reaction at B is independent of W c .

1 6.146 A collar C of weight 2 lb is rigidly attached to a uniform
slender rod AB of weight 12 lb and length L = 20 in. If the rod is
released from rest in the position shown, determine the distance d for

which the angular acceleration of the rod is maximum.

i.

Fig. P16.145 and P16.146
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1 A

o
¦:

Io yo \l

4
Fig. P1

nia
6.147

sos
Fig. P16.148

16.147 Identical cylinders of mass m and radius r are pushed
by a series of moving arms. Assuming the coefficient of friction be-

tween all surfaces to be y. < 1, and denoting by a the magnitude of
the acceleration of the arms, derive an expression for (a) the maximum
allowable value of a if each cylinder is to roll without sliding, (b)
the minimum allowable value of a if each cylinder is to move to the
right without rotating.

16.148 A sphere of mass m and radius r is dropped with no initial
velocity on a belt which moves with a constant velocity v . At first
the sphere will both rotate and slide on the belt. Denoting by \i the
coefficient of friction between the sphere and the belt, determine the

distance the sphere will move before it starts rolling without sliding.

16.149 A section of pipe, of mass ,50 kg and radius 250 mm, rests

on two corners as shown. Assuming that ft between the corners and

the pipe is sufficient to prevent sliding, determine (a) the angular
acceleration of the pipe just after corner B is removed, (b) the corre-
sponding magnitude of the reaction at A.

aFig. P16.149ofW

16.150 A block B of mass m is attached to a cord wrapped around
a cylinder of the same mass m and of radius r. The cylinder rolls

without sliding on a horizontal surface. Determine the components
of the accelerations of the center A of the cylinder and of the block
75 immediately after the system has been released from rest if (a) the

block hangs freely, (h) the motion of the block is guided by a rigid
member DAE, frictionless and of negligible mass, which is hinged to
the cylinder at A.

Fig. P16.150



Plane Motion

of Rigid Bodies:

Energy and
Momentum

Methods

17.1 Principle of Work and Energy for a Rigid

Body. In the first part of this chapter, the principle of work
and energy will be used to analyze the plane motion of rigid
bodies and of systems of rigid bodies. As was pointed out in
Chap. 13, the method of work and energy is particularly well

adapted to the solution of problems involving velocities and displacements. Its main advantage resides in the fact that the
work of forces and the kinetic energy of particles are scalar
quantities.

In order to apply the principle of work and energy to the
analysis of the motion of a rigid body, we shall again assume that
the rigid body is made of a large number n of particles of mass
Am,. Recalling Eq. (14.30) of Sec. 14.7, we write

t, + (/,.. 2 = r 2 (i7.i)

where T v T 2 = initial and final values of total kinetic energy of
the particles forming the rigid body

U l _, = work of all forces acting on the various particles
of the body

779
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The total kinetic energy

1

=
Fig. 17.1

T = -^(Am i )cf (17.2)
f=i

is obtained by adding positive scalar quantities and is itself a
positive scalar quantity. We shall see later how T may be deter-

mined lor various types of motion of a rigid body.

The expression U l ., in (17.1) represents the work of all the
forces acting on the various particles of the body, whether these

forces are internal or external. However, as we shall see pres-

ently, the total work of the internal forces holding together the

particles of a rigid body is zero. Consider two particles A and B
of a rigid body and the two equal and opposite forces F and — F

they exert on each other (Fig. 17.1). While, in general, small

displacements dr and dr' of the two particles are different, the
components of these displacements along AB must be equal;
otherwise, the particles would not remain at the same distance

from each other, and the body would not be rigid. Therefore, the
work of F is equal in magnitude and opposite in sign to the work
of — F, and their sum is zero. Thus, the total work of the internal

forces acting on the particles of a rigid body is zero, and the

expression U^^ in Eq. (17.1) reduces to the work of the external
forces acting on the body during the displacement considered.

17.2 Work of Forces Acting on a Rigid Body. We

saw in Sec. 13.2 that the work of a force F during a displacement

of its point of application from A, to A 2 is

l\_ 2 =| F-</r (17.3)

or

C\_. 2 = I (h' cos a)ds (17.3')

where F is the magnitude of the force, a the angle it forms with
the direction of motion of its point of application A, and s the
variable of integration which measures the distance traveled by

A along its path.

In computing the work of the external forces acting on a rigid
body, it is often convenient to determine the work of a couple
without considering separately the work of each of the two
forces forming the couple. Consider the two forces F and — F
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forming a couple of moment M and acting on a rigid body

(Fig. 17.2). Any small displacement of the rigid body bringing A and B, respectively, into A' and B" may be divided into two
parts, one in which points A and B undergo equal displacements t/r,, the other in which A' remains fixed while B' moves into B"
through a displacement dr 2 of magnitude ds 2 — r dO. In the first
part of the motion, the work of F is equal in magnitude and
opposite in sign to the work of — F and their sum is zero. In the

second part of the motion, only force F works, and its work is

dU = Fds 2 = FrdO. But the product Fr is equal to the magni-
tude M of the moment of the couple. Thus, the work of a couple
of moment M acting on a rigid body is

dU = M dO (17.4)

where dB is the small angle expressed in radians through which
the body rotates. We again note that work should be expressed in
units obtained by multiplying units of force by units of length.
The work of the couple during a finite rotation of the rigid body
is obtained by integrating both members of (17.4) from the initial
value 0, of die angle 6 to its final value $.,. We write

-
Fig. 17.2

•„-fiM dd (17.5)

When the moment M of the couple is constant, formula (17.5)
reduces to

L/„ 2 = M(0 2 8, (17.6)

It was pointed out in Sec. 13.2 that a number of forces en-

countered in problems of kinetics do no work. They arc forces applied to fixed points or acting in a direction perpendicular to
the displacement of their point of application. Among the forces
which do no work the following have been listed: the reaction at
a frictionless pin when the body supported rotates about the
pin, the reaction at a frictionless surface when the body in con-
tact moves along the surface, the weight of a body when its
center of gravity moves horizontally. We should also indicate
now that, when a rigid body rolls without sliding on a fixed
surface, the friction force F at the point of contact C does no
work. The velocity v c , of the point of contact C is zero, and the
work of the friction force F during a small displacement of the
rigid body is dU = F ds c = F(v c dt) = 0.
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1 7.3 Kinetic Energy of a Rigid Body in Plane Mo-

tion. Consider a rigid body of mass m in plane motion. Wc
recall from Sec. 14.6 that, if the absolute velocity v, of each

particle F, of the body is expressed as the sum of the velocity v of

the mass center G of the body and of the velocity v{ of the

particle relative to a frame Gx'y' attached to G and of fixed

{ B , = )', u'

n
Oi

Fig. 17.3

orientation (Fig. 17.3), the kinetic energy of the system of parti-
cles forming the rigid body may be written in the form

T = Jmc* + ?5> (17.7)

But the magnitude rj of the relative velocity of P t is equal to the
product r\u of the distance r- of P { from the axis through G
perpendicular to the plane of motion and of the magnitude w of
the angular velocity of the body at the instant considered. Sub-
stituting into (17.7), we have

T = lmv-
+ 2f (£***)< (17.8)

or, since the sum represents the moment of inertia / of the body
about the axis through C,

T = hmv 2 + ilcc 2 (17.9)

We note that, in the particular case of a body in translation
(u = 0), the expression obtained reduces to §mv 2 , while, in the
case of a centroidal rotation (5 = 0), it reduces to |/w 2 . We
conclude that the kinetic energy of a rigid body in plane motion
may be separated into two parts: (1) the kinetic energy £mc 2
associated with the motion of the mass center G of the body, and

(2) the kinetic energy Jfo) 2 associated with the rotation of die
bodv about G.
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Noncentroidsl Rotation. The relation (17.9) is valid for any
type of plane motion and may, therefore, be used to express the

kinetic energy of a rigid body rotating with an angular velocity w about a fixed axis through (Fig. 17.4). In that case, however,
the kinetic energy of the body may be expressed more directly by

noting that the speed t, of the particle P ( is equal to the product f,« of the distance r ( of Pj from the fixed axis and of the magni-
tude u of the angular velocity of the body at the instant consid-
ered. Substituting into (17.2), we write

or, since the last sum represents the moment of inertia l of the
body about the fixed axis through O,

*
Fig. 17.4

T = u,§*0° (17.10)

We note that the results obtained are not limited to the motion

of plane slabs or to the motion of bodies which are symmetrical with respect to the reference plane. They may be applied to the
study of the plane motion of any rigid body, regardless of its
shape.

17.4 Systems of Rigid Bodies. When a problem in-
volves several rigid bodies, each rigid body may be considered
separately, and the principle of work and energy may be applied
to each body. Adding the kinetic energies of all the particles and
considering the work of all the forces involved, we may also

write the equation of work and energy for the entire system. We have

*i L>i-2 = T 2 (17.11)

where T represents the arithmetic sum of the kinetic energies of
the rigid bodies forming the system (all terms are positive) and
k 7 i-2 tnc work of all the forces acting on the various bodies,

whether these forces are internal or external from the point of
view of the system as a whole.

The method of work and energy is particularly useful in solv-
ing problems involving pin-connected members, or blocks and

pulleys connected by inextensible cords, or meshed gears. In all
these cases, the internal forces occur by pairs of equal and oppo-
site forces, and the points of application of the forces in each pair
move through equal distances during a small displacement of the
system. As a result, die work of the internal forces is zero, and

C/,_ 2 reduces to the work of the forces external to the system.
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1 7.5 Conservation of Energy. We saw in Sec. 13.6

that the work of conservative forces, such as the weight of a

body or the force exerted by a spring, may be expressed as a
change in potential energy. When a rigid body, or a system

of rigid bodies, moves under the action of conservative forces,
the principle of work and energy stated in Sec. 17.1 may be

expressed in a modified form. Substituting for Uj-^ from (13.19')
into (17.1), we write

r, v, = r, + v. (17.12)

Formula (17.12) indicates that, when a rigid body, or a system
of rigid bodies, moves under the action of conservative forces,
the sum of the kinetic energy and of the potential energy of the
system remains constant. It should be noted that, in the case

of the plane motion of a rigid body, the kinetic energy of the body should include both the translational term |m© 2 and the
rotational term JJu a .

As an example of application of the principle of conservation

of energy, we shall consider a slender rod AB, of length I and
mass m, whose extremities are connected to blocks of negligible

mass sliding along horizontal and vertical tracks. We assume
that the rod is released with no initial velocity from a horizontal

position (Fig. 17.5a), and we wish to determine its angular veloc-
ity after it has rotated through an angle 9 (Fig. 17.5b).

Datumi- Datum

- /

Fig. 17.5tSince the initial velocity is zero, we have T, = 0. Measuring

the potential energy from the level of the horizontal track, we write V l = 0. After the rod has rotated through 0, the center
of gravity G of the rod is at a distance \l sin below the reference
level and we have

V 2 = -^Wl sinO = -%mglsm6

Observing that, in this position, the instantaneous center of the
rod is located at C, and that CO = %l, we write v 2 = \lu and
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obta

1 ml 2 ,

2 3

Applying the principle of conservation of energy, vvc write

i\ + v, = r 2 + v t

= ctf 2 — J-mg/ sin
— ¦ >

-AM"
We recall that the advantages of the method of work and

energy, as well as its shortcomings, were indicated in Sec. 13.4.
In this connection, we wish to mention that the method of work

and energy must be supplemented by the application of D'Alem-
bert's principle when reactions at fixed axles, at rollers, or at
sliding blocks are to be determined. For example, in order to
compute the reactions at the extremities A and B of the rod of

Fig. 17.5b, a diagram should be drawn to express that the system of die external forces applied to the rod is equivalent to the
vector ma and the couple la. The angular velocity w of the rod, however, is determined by the method of work and energy
before the equations of motion are solved for the reactions. The

complete analysis of the motion of the rod and of the forces

exerted on the rod requires, therefore, the combined use of the

method of work and energy and of the principle of equivalence
of the external and effective forces.

1 7.6. Power. Power was defined in Sec. 13.5 as the time

rate at which work is done. In the case of a body acted upon
by a force F, and moving with a velocity v, the power was
expressed as follows:

Power = 52 = F . v ( 13 j 3 )

In the case of a rigid body rotating with an angular veloci ty w and acted upon by a couple of moment M parallel to the axis of rota-
tion, we have, by (17.4),

Power = ig. = MM = Ma (17 . 13)dl dt

The various units used to measure power, such as the watt and
the horsepower, were defined in Sec. 13.5.
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1.25 ft

SAMPLE PROBLEM 17.1

A 240-lb block is suspended from an inextensible cable which is
wrapped around a drum of 1.25-ft radius rigidly attached to a fly-
wheel. The drum and flywheel have a combined ccnlroidal moment
of inertia T= 10.5 lb • ft • s 2 . At the instant shown, the velocity of the

block is 6 ft/s directed downward. Knowing that the bearing at A

is poorly lubricated and that the bearing friction is equivalent to a
couple M of magnitude 60 lb -ft, determine the velocity of the block-
after it has moved 4 ft downward.

v, = 0ft/s

t
\l = mil, II

s80 ll> -ft

Solution. We consider the system formed by the flywheel and the
block. Since the cable is inextensible, the work done by the internal

forces exerted by the cable cancels. The initial and final positions of the system and the external forces acting on the system are as shown.
Kinetic Energy. Position I. We have

, = 6ft/s 6ft/S_ ii _
1.25 ft

= 4.80 rad/s

1 2401b

2 32.2 ft/s 2

= 255 fl • lb

(6 ft/s) 2 + £(10.5 lb • ft • s 2 )(4.80 rad/s) 2

Position 2. Noting that u 2 = c.,/1.25, wc write

7' 2 = JmC 2 , + 2 Io:'i

Work. During the motion, only the weight W of the block and
the friction couple M do work. Noting that W does positive work
and that the friction couple M does negative work, we write

s, = s, = 4 ft

= 3.20 rad
r 1.25 ft

(',.., = W(s 2 - *,) - M(0 2 - 0,)

= (240 lb)(4 ft) - (60 lb • ft)!3.20 rad)
= 768 ft • lb

Principle of Work and Energy

r, + i/ M = r 2
255 ft -lb + 768 ft -lb = 7.09c 2

v 2 = 12.01 ft/s v., = 12.(11 ft si

786



r . = 250 mm

0
= 100 mm

SAMPLE PROBLEM 17.2

Gear A has a mass of 10 kg and a radius of gyration of 200 mm, while
gear B has a mass of 3 kg and a radius of gyration of 80 mm. The
system is al rest when a couple M of magnitude BN-m is applied to

gear B. Neglecting friction, determine (a) the number of revolutions
executed by gear 7} before its angular velocity reaches 600 rpm, (b)
the tangential force which gear B exerts on gear A,

te
Motion of Entire System. Noting that the peripheral speeds of the

gears are equal, we write

'j^-'j — r n ^ - B
100 mm „ „

B 2o()mm B

For tc„ = 600 rpm, we have

u„ - 62._8 rad/s w A = 0.40u fl = 25.1 rad/s
U = mM = (10 kgXO.200 m) a = 0,400 kg • m 2
h = i"n k l = (3 kg)(0.080 in) 2 = 0.0192 kg • m-

Kinetic Energy, Since the system is initially al rest, '1\ = 0. Adding
the kinetic energies of the two gears when ic B = 600 rpm, wc obtain

T 2 = &«5 + fo4
= 4(0. 4<X) kg • m-)(25.1 rad/s) 2 + 4(0.0192 kg • m 2 )(62.8 rad/s) 2
= 163.9]

Work Denoting by 8 B the angular displacement of gear B, we have

C/1-2 = W B = (6N ¦ mW £ rad) = (60„) J

Principle of Work and Energy

''\ + t' r i-2 = T -2 : + (6 6 B ) J = 163.9 J
8 B = 27.32 rad //,.= 1.35 rev -^

Motion ol Gear A. Kinetic Energy. Initially, gear A is at rest,
T, = 0. When u> n = 600 rpm, the kinetic energy of gear A is

T 2 = K»«3 = 4(0.400 kg • m 2 )(25.1 rad/s) 2 = 126.0 J

Work. The forces acting on gear A are as shown. The tangential
force F does work equal to the product of its magnitude and of the
length 8 A r A of the arc described by the point of contact. Since 8 A r A —
B r B , wc have

l/ M = E(0 B r B ) = F(27.3 rad)(0.100 m) = F(2.73 m)

Principle nf Work unci Energy

F, + ( : , ,, = T 2 : + F(2.73 m) = 126.0 J

F = +46.1 N F = 46.1 N / -*
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SAMPLE PROBLEM 17.3

A sphere, a cylinder, and a hoop, each having the same mass and
the same radius, are released from rest on an incline. Determine the

velocity of each body after it has rolled through a distance corre-
sponding to a change in elevation h.

lW
Solution, We shall first solve the problem in general terms and

then find particular results for each body. We denote the mass by
m, the ccntroidal moment of inertia by /, the weight by W. and the

radius by r.

Since each body rolls, the instantaneous center of rotation is located
at C and we write

r

h. inciic Energy

T, =0

T 2 = £mu 2 + £fc>»

= J™ 2 + V(jf = i('n + £)**
Work. Since the friction force F in rolling motion does no work,

D" M = Wh

Principle of Work and Energy

r, + u i * = '>*

+ Wh = l Jm + -L\v 2 < 2VV7i

m + I/t 2

Noting that W = nig, we rearrange the result and obtain

2g/>
v' =

1 + I/mr 2

Velocities ol Sphere, Cylinder, and Hoop. Introducing successively

the particular expressions for T, we obtain

Sphere:

Cylinder:

Hoop:

Han ark.

I = Jror 2

J=\mr 2
1= mr 2

F — 0.845 y2gh

v = O.HI()'v / 2g7T
V = 0.707 \'2«/i

We may compare the results with the velocity attained
by a frictionless block sliding through the same distance. The solution
is identical to the above solution except that co = 0; we find
U= V2g/i.

Comparing the results, we note that the velocity of the body is
independent of both its mass and radius. However, the velocity does
depend upon the quotient I/mr 2 = k 2 /r 2 , which measures the ratio

of the rotational kinetic energy to the_translational kinetic energy. Thus the hoop, which has the largest k for a given radius r, attains
the smallest velocity, while the sliding block, which does not rotate,
attains the largest velocity.
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5ft 1
SAMPLE PROBLEM 17.4

A 30- lb slender rod .48 is oft long and is pivoted about a point O

which is 1 ft from end B. The other end is pressed against a spring
of constant k = 1800 lb/in. until the spring is compressed 1 in. The

rod is then in a horizontal position. If the rod is released from this
position, determine its angular velocity and the reaction at the pivot
O as the rod passes through a vertical position.

Position

HI

Pirtitton 1

/
Datum

EG »i

L

n

G

O

= <T,

Position /. Potential Energy. Since the spring is compressed 1 in.,
we have x, = 1 in.

V, = Ikxj = |(1800 lb/in.)(l in.)* = 900 in • lb

Choosing the datum as shown, we have V Q = 0; therefore,

V, = V e + V„ = 900 in • lb = 75 ft • lb

Kinetic Energy. Since the velocity in position I is zero, we have
r, = o.

Position 2. Potential Energy. The elongation of the spring is zero,
and we have V,. = 0. Since the center of gravity of the rod is now
1.5 ft above the datum,

V„ = (301b)( + 1.5ft) = 45 ft -lb
V 2 = V e + V 9 = 45 ft • lb

Kinetic Energy. Denoting by to, the angular velocity of the rod
in position 2, we note that the rod rotates about O and write

c., — 7u 2 = 1.5co 2 .

301b
/ = fonl* = J

12 32.2 ft/s 5
(5 ft) 2 = 1.941 lb- ft -s 2

T 2 = }mcg + jTco 2 = 1^.(1.5^)2 + KLM1MI = 2.019<o|
Conservation of Energy

7, + V, = 7" + V 2 : + 75 ft • lb = 2.019o;| + 45 ft • lb
m. = 3.86rad/s )

Reaction in Position 2. Since u 2 = 3.86rad/s, the components of
the acceleration of G as the rod passes through position 2 are

a n = no 2 = (1.5 ft)(3.86 rad/s) 2 = 22.3 ft/s s 5 n = 22.3 ft/s 2 j
a, = ra a, = ftt — *

We express that the system of external forces is equivalent to the
system of effective forces represented by the vector of components
ma, and mi, attached at G and the couple la.

+ 1 2M = 2(M ) e „: = la + m(ra)r
R x = m(ra)

R„-301b = -ma n

a =0

«v- 301b =-^i_(22.3 ft/s 2 )
R u = +9.22 lb R = 9.22 lb T
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SAMPLE PROBLEM 17.5

Each of the two slender rods shown is 0.75 m long and has a mass
of 6 kg. If the system is released from rest when B = 60", determine

(a) the angular velocity of rod AB when /i = 20°. (b) the velocity of
point D at the same instant.

=
5S.9 \

nTj, = 0.325 m

D.iln ¦iS
Kinematics of Molion When [i = 20°. Since v a is perpendicular

to the rod AB and v u is horizontal, the instantaneous center of rotation

of rod BD is located at C. Considering the geometry of the figure,
we obtain

BC = 0.75 m CD = 2(0.75 m) sin 20° = 0.513 m

Applying the law of cosines to triangle CDE, where K is located at
the mass center of rod BD, we find F.C = 0.522 m. Denoting by <o

the angular velocity of rod AB, we have

v AB = (0.375 m)w v^ = 0.375w \

t B = (0.75 m)io v„ = 0.75u \

Since rod BD seems to rotate about point C, we may write

v B = [BC)u BD (0.75 m)w = (0.75 m)u BD u BD = u }

c B0 = {EC)u BD = (0.522 m)oi v BD = 0.522a \

Position J. Potential Energy. Choosing the datum as shown, and

observing thai VV = (6 kg)(9.81 m/s 2 ) = 58.9 N, we have

V, = 2YVJ7, = 2(58.9 N)(0.325 m) = 38.3 J

Kinetic Energy. Since the system is at rest, T, = 0.

Position 2. Potential Energy

V 2 = 2Wy 2 = 2(58.9 N)(0. 128 m) = 15.1 J

Kinetic Energy

Tab = Tbd= i2'»'" = A(6kg)(0.75m) 2 = 0.281 kg-m*
T 2 = Jmo^a + I'ab^ab + $"™BD + iW-io

= £(6X0.37510)- + J(0.281)« 2 + ](6){0.522u) a + £(0.281)u a
= 1.520m'- 1

icrvation of Knergy

l\ + V, = T 2 + V 2 . + 38.3 J = 1.520m 8 + 15.1 J
w = 3.91 rad/s u iB — 3.91 tud s ;

it? nf Point »

u D = (C/3)u = (0.513 m)(3.91 rad/s) = 2.01 ni/s

v„ = 2.01 in S

790
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PROBLEMS

17.1 The rotor of a generator has an angular velocity of 3600 rpm
when the generator is taken off line. The 150-kg rotor, which has
a centroidal radius of gyration of 250 mm, then coasts to rest. Knowing
that the kinetic friction of the rotor produces a couple of magnitude
2 N • in, determine the number of revolutions that the rotor executes

before coining to rest.

17.2 A large flywheel of muss 1800 kg has a radius of gyration
of 0.75 m. It is observed that 2500 revolutions are required for the
flywheel to coast from an angular velocity of 450 rpm to rest. Deter-
mine the average magnitude of the couple due to kinetic friction in
the bearings.

1 7.3 Two disks of the same material are attached to a shaft as

shown. Disk A is of radius r and has a thickness 3b, while disk B is of

radius nr and thickness h. A couple M of constant magnitude is
applied when the system is at rest and is removed after the system has
executed two revolutions. Determine the value of n which results in

the largest final speed for a point on the rim of disk B.

1 7.4 Two disks of the same material are attached to a shaft as

shown. Disk A weighs 30 lb and has a radius r = 5 in. Disk B is

one-third as thick as disk A. A couple M of magnitude 10 lb -ft is
applied to disk A when the system is at rest. Determine the radius nr

of disk B if the angular velocity of the system is to be 450 rpm after
5 revolutions.aFig. P17.3 and P17.4

1 7.5 The flywheel of a small punch rotates at 240 rpm. It is
known that 1500 ft • lb of work must be done each time a hole is

punched. It is desired that the speed of the flywheel after one punch-
ing be not less than 90 percent of the original speed of 240 rpm.
(a) Determine the required moment of inertia of the flywheel, (h) If a

constant 20-lb-ft couple is applied to the shaft of the flywheel, deter-
mine the number of revolutions which must occur between each

punching, knowing that the initial velocity is to be 240 rpm at the start
of each punching.

17.6 The flywheel of a punching machine weighs 600 lb and has a
radius of gyration of 24 in. Each punching operation requires
15(H) ft -lb of work, (a) Knowing that the speed of the flywheel is
300 rpm just before a punching, determine the speed immediately after
the punching, (b) IS a constant 15-lb ¦ ft couple is applied to the shaft of
the flywheel, determine the number of revolutions executed before the

speed is again 300 rpm.
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400 111111

.
12kg

Fig. P17.7

17.7 Two cylinders are attached by cords to an 18-kg double
pulley which has a radius of gyration of 300 mm. When the system
is at rest and in equilibrium, u 3-kg collar is added to the 12-kg

cylinder. Neglecting friction, determine the velocity of each cylinder

after the pulley has completed one revolution.

1 7.8 Solve Prob. 17.7, assuming that the 3-kg collar is added to

the 6-kg cylinder.

1 7.9 Using the principle of work and energy, solve Prob. 16.36'fo.

17.10 Using the principle of work and energy, solve Prob. 16.34c.

1 7.1 1 A disk of constant thickness and initially at rest is placed
in contact with the belt, which moves with a constant velocity v.

Denoting by /i the coefficient of friction between the disk and the
belt, derive an expression for the number of revolutions executed by

the disk before it reaches a constant angular velocity.

0Fig. P17.11 andP17.121350 mm

(i, = 0.50
H, = 0.40

Fig. P17.13

17.12 Disk A. of weight 5 lb and radius r = 3 in., is at rest when it

is placed in contact with the belt, which moves with a constant speed
v = 30 ft/s. Knowing that ji = 0.20 between the disk and the belt,

determine the number of revolutions executed by the disk before it

reaches a constant angular velocity.

17.13 The 200-mm-radius brake drum is attached to a larger

flywheel which is not shown. The total mass moment of inertia of the

flywheel and drum is 8 kg-m-. Knowing that the initial angular veloc-
ity is 120 rpm clockwise, determine the force P which must be applied

if the system is to come to rest in 8 revolutions.

1 7.14 Solve Prob. 17.13, assuming that the initial angular velocity

of the flywheel is 120 rpm counterclockwise.



PLANE MOTION OF RIGID BODIES: ENERGY AND MOMENTUM METHODS 793

17.15 Each of the gears A and H has a mass of 2 kg and a radius
of gyration of 70 mm, while gear C has a mass of 10 kg and a radius
of gyration of 175 mm. A couple M of constant magnitude 12 N ¦ m is

applied to gear C. Determine (a) the number of revolutions required
for the angular velocity of gear C to increase from 1(H) to 4.50 rpm,
(b) the corresponding tangential force acting on gear A.

SO mm

200 mill

17.16 Solve Prob. 17.15, assuming that the 12-N-m couple is Fig " P171S
applied to gear B.

p
h0 mm

17.17 A cord is wrapped around a cylinder of radius r and mass

in as shown. If the cylinder is released from rest, determine the

velocity of the center of the cylinder after it has moved through a
distance h.

17.18 Two 10-kg disks, each of radius r = 0.3 m, are connected

by a cord. At the instant shown, the angular velocity of disk B is
20 rad/s clockwise. Determine how far disk A will rise before the

angular velocity of disk B is reduced to 4 rad/s. Fig. P17.17

Fig. P17.18

1 7.1 9 A flywheel is rigidly attached to a lj-in.-radius shaft which

rolls without sliding along parallel rails. The system is released from

rest and attains a speed of 6 in./s after moving 75 in. along the rails.
Determine the centroidal radius of gyration of the system.

1 7.20 A hemisphere of mass m and radius r is released froin rest

in the position shown. Assuming that the hemisphere rolls without
sliding, determine (a) its angular velocity after it has rolled
through 90°, (b) the normal reaction at the surface at the same instant.

[Hint. Note that CO - 3r/8 and that, by the parallel-axis theorem,
I = jror* - m(GOf.]

IS'

Fig. P17.19

Fig. P17.20
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Fig. P17.21

17.21 A sphere of mass m and radius r rolls without slipping

inside a curved surface of radius H. Knowing that the sphere is re-
leased from rest in the position shown, derive an expression (a) for

the linear velocity of the sphere as it passes through B, (b) for the
magnitude of the vertical reaction at that instant.

1 7.22 Solve Prob. 17.21, assuming that the sphere is replaced by a

uniform cylinder of mass m and radius r.

17.23 A slender rod of length / and mass m is pivoted at one

end as shown. It is released from rest in a horizontal position and

swings freely, (a) Determine the angular velocity of the rod as it passes

through a vertical position and the corresponding reaction at the
pivot, (b) Solve part a for m = 1.5 kg and / = 0.9 m.

A I ! J" AC

/

Fig. P17.23

t'1

C C

; -

Fig. P17.24

JB

1 7.24 A uniform rod of length / is pivoted about a point C located
at a distance b from its center G. The rod is released from rest in

a horizontal position. Determine (a) the distance b so that the angular
velocity of the rod as it passes through a vertical position is maximum,
(h) the value of the maximum angular velocity.

1 7.25 A 6- by 8-in. rectangular plate is suspended by two pins at A

and B. The pin at B is removed and the plate swings about point A.
Determine (a) the angular velocity of the plate after it has rotated

through 90°, (fo) the maximum angular velocity attained by the plate as

it swings freely.

-n- ~r

A \iB »

Bin

T

m Sin. -

Fig. P17.25
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1 7.26 and 1 7.27 Gear C weighs 6 lb and has a centroidal radius
of gyration of 3 in. The uniform bar AH weighs 5 lb, and gear D is
stationary. If the system is released from rest in the position shown,

determine the velocity of point R afler bar AB has rotated through
90°.

F
Fig. P17.26 Fig. P17.27

17.28 The mass center G of a 1.5-kg wheel of radius R = 150 mm
is located at a distance r = 50 mm from its geometric center C. The
centroidal radius of gyration of the wheel is k — 75 mm. As the wheel

rolls without sliding, its angular velocity is observed lo vary. Knowing
that in position 1 the angular' velocity is 10 rad/s, determine the

angular velocity of the wheel (a) in position 2, (b) in position 3.heFig. P17.28 and P17.29

1 7.29 The mass center G of a wheel of radius R is located at

a distance r from its geometric center C. The centroidal radius of
gyration of the wheel is denoted by k. As the wheel rolls freely and
without sliding on a horizontal plane, its angular velocity is observed
to vary. Denoting by w,, u.,, and to 3 , respectively, the angular velocity
of the wheel when C is directly above (.', level with C, and directly

below C. show that io,, o; 2 , and co., satisfy the relation

<4
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17.30 and 17.31 The 12-lb carriage is supported as shown by

two uniform disks, each of weight H lb and radius 3 in. Knowing that

the system is initially a( rest, determine the velocity of the carriage
after it has moved 3 ft. Assume that the disks roll without sliding.

ill. ¦lib

1211)

SI

1211)

Fig. P17.30 Fig. P17.31

1 7.32 The motion of the 240-mm rod AB is guided by pins at A
and H which slide freely in the slots shown. If the rod is released from

rest in position I, determine the velocity of A and B when the rod is
(a) in position 2. (b) in position 3.

I1 NSBA

I 1 * — ^
300 mm ^

180 mm

J_.J_S jld II

1 1 //'

1 1 //
7^*

4*c — —

it

Fig. P17.33

Fig. P17.32

17.33 The motion of a 0.6-m slender rod is guided by pins at
A and B which slide freely in the slots shown. Knowing that the rod
is released from rest when = and that end A is given a slight
push to the right, determine (a) the angle 8 for which the speed of
end A is maximum, (h) the corresponding maximum speed of A.
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1 7.35 The ends of a 25-lb rod AB are constrained to move along

the slots shown. A spring of constant 3 lb/in. is attached to end A.
Knowing that the rod is released from rest when = (I and that the
initial tension in the spring is zero, determine the maximum distance
through which end A will move.

1 7.36 The ends of a 25-lb rod AB are constrained to move along

the slots shown. A spring of constant 10 lb/in. is attached to end A
in such a way that its tension is zero when = 0. If the rod is

released from rest when 8 = 60% determine the angular velocity of
I he rod when - 30°.

3
Fig. P17.35 and P17.36

1 7.37 Determine the velocity of pin li as the rods of Sample Prob.
17.5 strike the horizontal surface.

17.38 The uniform rods AB and BC are of mass 4.5 and 1.5 kg

respectively. If the system is released from rest in the position shown,

determine the angular velocity of rod BC as it passes through a vertical
position.

200 mm

-600 mm •!¦

^ °> 3 CavFig. P17.38a17.39 In Prob. 17.38, determine the angular velocity of rod BC
after it has rotated 45°.

* 1 7.40 A small matchbox is placed on top of the rod AB. End

B of the rod is given a slight horizontal push, causing it to slide on
the horizontal floor. Assuming no friction and neglecting the weight
of the matchbox, determine the angle through which the rod will
have rotated when the matchbox loses contact with the rod. Fig. P17.40
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g.
w

Fig. P17.41

17.41 The experimental setup shown is used to measure the

power output of a small turbine. When the turbine is operating at
200 rpm, the readings of the two spring scales are 10 and 22 lb, respec-
tively. Determine the power being developed by the turbine.

1 7.42 In Sample Prob. 17.2 determine the power being delivered
to gear B at the instant when (a) the gear starts rotating, (b) the gear

attains an angular velocity u B = 300 rpm.

17.43 Knowing that the maximum allowable couple which can
be applied to a shaft is ]2k.\'tn, determine the maximum power
which can be transmitted by the shaft (a) at 100 rpm, (b) at 1000 rpm.

1 7.44 Determine the moment of the couple which must be ex-

erted by a motor to develop } hp at a speed of (a) 3600 rpm, (b)
720 rpm.

17.7. Principle of Impulse and Momentum for the

Plane Motion of a Rigid Body. We shall now apply the
principle of impulse and momentum to the analysis of the plane
motion of rigid bodies and of systems of rigid bodies. As was
pointed out in Chap. 13, the method of impulse and momentum
is particularly well adapted to the solution of problems involving
time and velocities. Moreover, the principle of impulse and
momentum provides the only practicable method for the solution
of problems involving impulsive motion or impact (Sees. 17.10
and 17,11).

Considering again a rigid body as made of a large number of
particles P., we recall from Sec. 14.8 that the system formed by
the momenta of the particles at time t L and the system of the
impulses of the external forces applied from r, to t 2 are together
equipollent to the system formed by the momenta of the particles
at time t 2 . Since the vectors associated with a rigid body may be
considered as sliding vectors, it follows (Sec. 3.18) that the sys-

tems of vectors shown in Fig. 17.6 are not only equipollent but

O

Fig. 17.6

(«)

v. Ami, ;

(V Am

(C)
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truly equivalent in the sense that the vectors on the left-hand side
of the equals sign may be transformed into die vectors on the right-
hand side through the use of the fundamental operations listed in
Sec. 3.12. We therefore write

Syst Momenta, + Syst Ext Imp,_ 2 = Syst Momenta.; (17.14)

But the momenta v, &m t of the particles may be reduced to a
vector attached at G, equal to their sum

n

L = 2 V < Am »

and to a couple of moment equal to the sum of their moments
about G

H G = 2 r i' X v i Am f
1=1

We recall from Sec. 14.2 that L and H c define, respectively, the

linear momentum and the angular momentum about G of the

system of particles forming the rigid body. We also note from

Eq. (14.14) that L = mv. On the other hand, restricting the
present analysis to the plane motion of a rigid slab or of a rigid

body symmetrical with respect to the reference plane, wc recall
from Eq. (16.4) that H G = /w. We thus conclude that the system
of the momenta Vj Am ; is equivalent to the linear momentum
vector mv attached at G and to the angular momentum couple lu

(Fig. 17.7). Observing that the system of momenta reduces to the
vector mv in the particular case of a translation (a = 0) and to
the couple lai in the particular case of a centroidal rotation
(v = 0), we verify once more that the plane motion of a rigid

body symmetrical with respect to the reference plane may be
resolved into a translation with the mass center G and a rotation

about G.

Fig. 17.7
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Replacing the system of momenta in parts a amd c of Fig. 17.fi
by the equivalent linear momentum vector and angular momen-
tum couple, we obtain the three diagrams shown in Fig. 17.8.

F
(*)

y mv,

f
Fig. 17.8

<«!

This figure expresses graphically the fundamental relation (17.14)
in the case of the plane motion of a rigid slab or of a rigid body
symmetrical with respect to the reference plane.

Three equations of motion may be derived from Fig. 17.8.
Two equations are obtained by summing and equating the x and
y components of the momenta and impulses, and the third by
summing and equating the moments of these vectors about any
given point. The coordinate axes may be chosen fixed in space, or
they may be allowed to move with the mass center of the body

while maintaining a fixed direction. In either case, the point
about which moments are taken should keep the same position
relative to the coordinate axes during the interval of time consid-
ered.

In deriving the three equations of motion for a rigid body, care

should be taken not to add indiscriminately linear and angular momenta. Confusion will be avoided if it is kept in mind that
mo, and mv v represent the components of a vector, namely, the
linear momentum vector mv, while /to represents the magnitude
of a couple, namely, the angular momentum couple lu. Thus the
quantity Tu should be added only to the moment of the linear
momentum mv, never to this vector itself nor to its components.
All quantities involved will then be expressed in the same units,
namely N*nvs or lb-ft'S.
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Noncentroidal Rotation. In this particular case of plane

motion, the magnitude of the velocity of the mass center of the
body is c — r&, where F represents the distance from the mass
center to the fixed axis of rotation and w the angular velocity
of the body at the instant considered; the magnitude of the
momentum vector attached at G is thus mo = mm. Summing
the moments about O of the momentum vector and momentum

couple (Fig. 17.9) and using the parallel-axis theorem for mo-
ments of inertia, we find that the angular momentum H of the

body about O has the magnitudef

Ioi + (mnc)r = (7 + mr 2 )u = / w (17.15)

Equating the moments about O of the momenta and impulses
in (17.14), we write

r' 2
(17.16)

In the general case of plane motion of a rigid body symmet-
rical with respect to the reference plane, Eq. (17.16) may be used
with respect to the instantaneous axis of rotation under certain
conditions. It is recommended, however, that all problems of

plane motion be solved by the general method described earlier
in this section.

1 7.8. Systems of Rigid Bodies. The motion of several

rigid bodies may be analyzed by applying the principle of im-
pulse and momentum to each body separately (Sample Prob.
17.6).

However, in solving problems involving no more than three
unknowns (including the impulses of unknown reactions), it is
often found convenient to apply the principle of impulse and
momentum to the system as a whole. The momentum and im-

pulse diagrams are drawn for the entire system of bodies. The
diagrams of momenta should include a momentum vector, a

momentum couple, or both, for each moving part of the system.

f Note that the sum II, of the moments about an arbitrary point A of the
momenta of the particles of a rigid slab is, in general, not equal to l A u. (See
Prob. 17.59.)
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Impulses of forces internal to the system may be omitted from

the impulse diagram since they occur in pairs of equal and
opposite vectors. Summing and equating successively the x com-
ponents, y components, and moments of all vectors involved,

one obtains three relations which express that the momenta at
time ( l and the impulses of the external forces form a system
equipollent to the system of the momenta at time f 2 .f Again,

care should be taken not to add indiscriminately linear and angular momenta; each equation should be checked to make sure
that consistent units have been used. This approach has been
used in Sample Prob. 17.8 and, further on, in Sample Frobs. 17.9
and 17.10.

17.9. Conservation of Angular Momentum. When

no external force acts on a rigid body or a system of rigid bodies, the impulses of the external forces are zero and the system of
the momenta at time t, is equipollent to the system of the
momenta at time r 2 . Summing and equating successively the x
components, y components, and moments of the momenta at

times /, and r 2 , we conclude that the total linear momentum

of the system is conserved in any direction and that its total
angular momentum is conserved about anv point.

There are many engineering applications, however, in which

the linear momentum is not conserved yet in which the angular
momentum H of the system about a given point O is conserved:

(H„),=(H ) 2 (17.17)

Such cases occur when the lines of action of all external forces

pass through or, more generally, when the sum of the angular impulses of the external forces about U is zero.
Problems involving conservation of angular momentum about

a point O may be solved by the general method of impulse and

momentum, i.e., by drawing momentum and impulse diagrams as described in Sees. 17.7 and 17.8. Equation (17.17) is then
obtained by summing and equating moments about O (Sample Prob. 17.8). As we shall sec later in Sample Prob. 17.9, two
additional equations may be written by summing and equating
x and 1/ components; these equations may be used to determine

two unknown linear impulses, such as the impulses of the reac-
tion components at a fixed point.

• Note lhat, as in Sec. 16.7, we cannot speak of tqtiivalent systems since wc
are not dealing with a single rigid body.
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SAMPLE PROBLEM 17.6

Gear A has a mass of 10 kg and a radius of gyration of 2(K) mm, while
gear B has a mass of 3 kg and a radius of gyration of 80 mm. The
system is at rest when a couple M of magnitude 6N-m is applied to
gear B. Neglecting friction, determine [a) the time required for the
angular velocity of gear B to reach 600 rpni, ib) the tangential force
which gear B exerts on gear A. These gears have been previously
considered in Sample Prob. 17.2.

Solution. Wc apply the principle of impulse and momentum to
each gear separately. Since all forces and the couple are constant,
their impulses are obtained by multiplying them by the unknown time
I. We recall from Sample Prob. 17.2 that the centroidal moments of
inertia and the final angular velocities are

l A = 0.4(H) kg • m 2

(u A ) t = 25.1 rad./s
l B - 0.0192 kg -m 2

(u B )., = 62.8 rad/s

Principle of Impulse and Momentum for Gear A. The systems of
initial momenta, impulses, and final momenta are shown in three-

separate sketches.

+)Syst Momenta, + Syst Ext Imp[_ 2 = Syst Momenta.,

+ ) moments about A: — Ftr A = —l A (u A )->

Ff (0.250 m) = (0.400 kg • m 2 )(25.1 rad/s)
Ft = 40.2 N • s

Principle of Impulse and Momentum for Gear B.

/„ 10„ . = (IabV 'n'WtSyst Momenta, 4- Syst Ext Imp^j = Syst Momenta.,
+) moments about B-. + Mt — Ftr B = 1^^-,

+(6 X ¦ m)j - (10.2 \" • sKO.100 m) = (0.0192 kg • m 2 )(62.8 rad/s)
f = 0.871 s

Recalling that R = 40.2 N • s, we write

f(0.87\ s) = 40.2 X • s F = +46.2 N

Thus, the force exerted by gear B on gear A is F =

803
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SAMPLE PROBLEM 17.7

A hoop of radius r and mass m is placed on a horizontal surface with
no linear velocity but with a clockwise angular velocity to,. Denoting

by ,u the coefficient of friction between the hoop and the surface,
determine (a) the time t, at which the hoop will start rolling without
sliding, (h) the linear and angular velocities of the hoop at time t,.

Solution. Since the entire mass m is located at a distance r from

the center of the hoop, we have / = mr 2 . While the hoop is sliding
relative to the surface, it is acted upon by the normal force N, the

friction force F, and its weight VV of magnitude W = wg.
Principle of Impulse and Momentum. We apply the principle of

impulse and momentum to the hoop from the time l x when it is placed
on the surface until the time t 2 when it starts rolling without sliding.

c; »i>,=ii

mp,
Syst Momenta; + Syst Ext Imp, ., = Syst Momenta,

+ f y components: Xl - Wt = (1)
^* .v components: Fl = mc 2 (-)

+ ) moments about G: -7co, Fir = - /co., ,3.

From (1) we obtain A 7 = W = nig. For t < tg, sliding occurs at point
C and we have F = flN = M»>g- Substituting for !¦' into (2), we write

u.mgt = mv 2 c 2 = ,ugr

Substituting F = u.mg and / = mr 2 into (3),

(4)

— mr 2 <a 1 + ixmgtr = — mr^Wg «*l = «1 ~ ^
The hoop will start rolling without sliding when the velocity v c of
the point of contact is zero. At that time, / = I.,, point C becomes
the instantaneous center of rotation, and we have LT 2 = rco 2 . Substi-

tuting from (4) and (5), we write

/ us \ r«j

2 = r« a pgt a = r^co, - —t 2 J l "-^
Substituting this expression for t 2 into (4),

O t =ixsh= Mg-^- v 2 = £r«,
— l, ¦
— 2^1

v- = Jrw,

«j = i«, )

804
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SAMPLE PROBLEM 17.8

Two solid spheres of radius 3 in., weighing 2 lb each, are mounted
at A and B on the horizontal rod A'B\ which rotates freely about

the vertical with a counterclockwise angular velocity of 6rad/s. The

spheres are held in position by a cord which is suddenly cut. Knowing that the centroidal moment of inertia of the rod and pivot is
T R = 0.25 lb ¦ ft • s 2 , determine (a) the angular velocity of the rod after
the spheres have moved to positions A' and B', (h) the energy lost
due to the plastic impact of the spheres and the stops at A' and B'.

a. Principle of Impulse and Momentum. In order to determine

the final angular velocity of the rod, we shall express that the initial
momenta of the various parts of the system and the impulses of the
external forces arc together equipollent to the final momenta of the
svstem. w

rObserving that the external forces consist of the weights and the

reaction at the pivot, which have no moment about the y axis, and
noting that v A = v B = 7u, we write

4- ) moments about y axis:

2(m s F,w 1 )F l + 2f s w, + f ft w, = 2(m s F 2 te 2 )F 2 + 2/ s w 2 + T K io 2

(2m s r\ + 27 s + / s )to, = (2m s r% + 2/ s + 7 B K'., (1)

which expresses that the angular momentum of the system about the
y axis is conserved. We now compute

/- = Ka* = 1( 32.2 iw )^ ft)2 = Mom lb * ft " s2

¦** s sir ( A) 2 - aoi ° 8 m ^ = MW = °- 2696
Substituting these values and T R = 0.25, u i = 6rad/s into (1):

0.278(6 rad/s) = 0.792m 2 6J a = 2.08 rad/s ) -*

b. Energy Lost. The kinetic energy of the system at any instant
is

T = 2(Jm«P s + Iffiw 2 ) + &w» - i(2»v ! + 2J S + Z>*

Recalling the numerical values found above, we have

r, = .](0.275)(fi) 2 = 4.95 ft • lb T 2 = J(0.792)(2.08) 2 = 1.713 ft • lb
AT = T 2 - T, = 1.71 - 4.95 1T= -3.24 1"! -lb
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Fig. P17.45

PROBLEMS

17.45 A small grinding wheel is attached to the shaft of an

electric motor which has a rated speed of 3600 rpm. When the power
is turned off, the unit coasts to rest in 70 s. The grinding wheel and
rotor have a combined weight of 6 lb and a combined radius of
gyration of 2 in. Determine the average magnitude of the couple due

to kinetic friction in the bearings of the motor.

17.46 A turbine-generator unit is shut off when its rotor is ro-
tating at 3600 rpm; it is observed that the rotor coasts to rest in

7.10 min. Knowing that the 1850-kg rotor has a radius of gyration

of 234 mm, determine the average magnitude of the couple due to
bearing friction.

17.47 A bolt located 50 mm from the center of an automobile

wheel is tightened by applying the couple shown for 0.I s. Assuming
that the wheel is free to rotate and is initially at rest, determine the
resulting angular velocity of the wheel. The 20-kg wheel has a radius

of gyration of 250 mm.

nIlll \

Fig. P17.47

Fig. P17.49 and P17.50

1 7.48 Solve Prob. 17.3. assuming that the couple M is applied for
a time /,, and then removed.

1 7.49 A disk of constant thickness, initially at rest, is placed in

contact with a belt which moves with a constant velocity v. Denoting
by u the coefficient of friction between the disk and the belt, derive an

expression for the time required for the disk to reach a constant
angular velocity.

1 7.50 Disk A, of weight 5 lb and radius /¦ = 3 in., is at rest when it

is placed in contact with the belt, which moves with a constant speed
c = 50 ft/s. Knowing that u = 0.20 between the disk and the belt,

determine the time required for the disk to reach a constant angular
velocity.
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17.51 Solve Prob. 12.17/?, assuming that each pulley is of 8-in.
radius and has a centroidal moment of inertia of 0.25 llvft-s 2 ,

1 7.52 Using the principle of impulse and momentum, solve Prob.
16.34&.

1 7.53 Disks A and B are of mass 5 and 1.8 kg, respectively. The
disks are initially at rest and the coefficient of friction between them

is 0.20. A couple M of magnitude 4 N • m is applied to disk A for
1.50 s and then removed. Determine (a) whether slipping occurs be-
tween the disks, (b) the final angular velocity of each disk.

1 7.54 In Prob. 17.53, determine (a) the largest couple M for which

no slipping occurs, (b) the corresponding final angular velocitv of each
disk.

150 nun

n
Fig. P17.53

1 7.55 Two disks A and B are connected by a belt as shown. Each
disk weighs 30 lb and has a radius of 1 .5 ft. The shaft of disk B rests in

a slotted bearing and is held by a spring which exerts a constant force
of 15 lb. If a 20-lb-ft couple is applied to disk A. determine (a) the
time required for the disks to attain a speed of 600 rpm, (b) the tension
in both portions of the belt, (c) the minimum coefficient of friction if no
slipping is to occur.hFig. P17.55

17.56 Solve Prob. 17.55, assuming that disk A weighs 10 lb and
disk B weighs 50 lb.

1 7.57 Show that the system of momenta for a rigid slab in plane
motion reduces to a single vector, and express the distance from the

mass center G to the line of_action of this vector in terms of the
centroidal radius of gyration k of the slab, the magnitude c of the
velocity of C, and the angular velocity oi.
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S
1 7.58 Show that, when a rigid slab rotates about a fixed axis

through perpendicular to the slab, the system of momenta of its
particles is equivalent to a single vector of magnitude mru, perpeiir
dicular to the line OG, and applied to a point P on this line, called
the center of percussion, at a distance GP = k 2 / 7 from the mass center
of the slab.

17.59 Show that the sum H (1 of the moments about a point A
of the momenta of the particles of a rigid slab hi plane motion is

equal to l A u>, where to is the angular velocity of the slab at the instant
considered and I A the moment of inertia of the slab about A, if and
only if one of the following conditions is satisfied: (a) A is the mass
center of the slab, (b) A is the instantaneous center of rotation, (c)

the velocity of A is directed along a line joining point A and the mass
center G.

Fig. P17.60

17.60 Consider a rigid slab initially at rest and subjected to an

impulsive force F contained in the plane of the slab. We define the
center of percussion P as the point of intersection of the line of action
of F with the perpendicular drawn from G. (o) Show thai the instan-
taneous center of rotation C of the slab is located on line CP al a

distance CC = k 2 /GP on the opposite side of G. (b) Show that, if
the center of percussion were located at C, the instantaneous center
of rotation would be located at P.

1 7.61 A cord is wrapped around a solid cylinder of radius r and

mass m as shown. If the cylinder is released from rest at time t = 0,
determine the velocity of the center of the cylinder at a time t.lFig. P17.61aFig. P17.62

1 7.62 A 100-kg cylindrical roller is initially at rest and is acted

upon by a 300- N force as shown. Assuming that the body rolls without
slipping, determine (a) the velocity of the center G after 6s, (b) the
friction force required to prevent slipping.
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1 7.63 A section of thin-walled pipe of radius r is released from
rest at time r = 0. Assuming that the pipe rolls without slipping,
determine (a) the velocity of the center at time t, (/>) the coefficient
of friction required to prevent slipping.

1 7.64 Two disks, each of weight 12 lb and radius 6 in., which roll
without slipping, are connected by a drum of radius r and of negligible
weight. A rope is wrapped around the drum and is pulled horizontally
with a force P of magnitude 8 lb. Knowing that r = 3 in. and that the
disks arc initially at rest, determine (a) the velocity of the center G
after 3 s, (b) the friction force required to prevent slipping.

1
Fig. P17.63

o
Fig. P17.64

17.65 In Prob. 17.64, determine the required value of r and the
corresponding velocity after 3 s if the friction force is to be zero.

1 7.66 and 1 7.67 The 12-lb carriage is supported as shown by
two uniform disks, each of weight 8 lb and radius 3 in. Knowing that
the carriage is initially at rest, determine the velocity of the carriage
3 s after the 4-lb force is applied. Assume that the disks roll without
sliding.

4 lb

Fig. P17.66

12ll>

[B A Ho.

Fig. P17.67

12 lb

1 7.68 A sphere of mass m and radius r is projected along a rough
horizontal surface with a linear velocity v but with no angular veloc-
ity («„ = 0). Determine {a) the final velocity of the sphere, (b) the
time at which the velocity of the sphere becomes constant in terms
of u and u.

1 7.69 A sphere of mass m and radius r is projected along a rough
horizontal surface with the initial velocities indicated. If the final

velocity of the sphere is to be zero, express [a) the required w in
terms of D and r, {b) the time required for the sphere to come to
rest in terms of i„ and a.

Fig. P17.68 and P17.69
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.
Fig. P17.72

1 7.70 Solve Sample Prob. 17.7, assuming that the hoop is replaced
by a uniform sphere of radius /- and mass m.

17.71 Solve Sample Prob. 17.8, assuming that, after the cord is
cut, sphere B moves to position H' but that an obstruction prevents
sphere A from moving.

1 7.72 An 8-lb tube CD may slide freely on rod AB, which in turn
may rotate freely in a horizontal plane. At the instant shown, the
assembly is rotating with an angular velocity of magnitude w = 8 rad/s
and the tube is moving toward A with a speed of 5 ft/s relative to the

rod. Knowing that the centroidal moment of inertia about a vertical axis is 0.022 lb-ft-s 2 for the tube and 0.400 lb -ft •$* for the rod and
bracket, determine (a) the angular velocity of the assembly after the
tube has moved to end A, (/;) the energy lost due to the plastic impact
at A.

17.73 Four rectangular panels, each of length b and height \b, are
attached with hinges to a circular plate of diameter \/2b and held by a
wire loop in the position shown. The plate and the panels are made of
the same material and have the same thickness. The entire assembly is

rotating with an angular velocity to n when the wire breaks. Determine

the angular velocity of the assembly after the panels have come to rest
in a horizontal position.

Fig. P17.73

UNI milld150 mm

•100 rpm

Fig. P17.74

1 7.74 Disks A and B are made of the same material and are of

the same thickness; they may rotate freely about the vertical shaft.
Disk B is at rest when it is dropped onto disk A which is rotating
with an angular velocity of 400 rpm. Knowing that the mass of disk

A is 4 kg, determine (a) the final angular velocity of the disks, (b) the
change to kinetic energy of the system.

1 7.75 In Prob. 17.74, show that if both disks arc initially rotating,
the change in kinetic energy A 7' of the system depends only upon the

initial relative velocity to B//1 of the disks, and derive an expression for
AT in terms of «„,,. .
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1 7.76 A small 250-g ball may slide in a slender tube of length
1 in and of mass 1 kg which rotates freely about a vertical axis passing
through its center C. If the angular velocity of the tube is 10 rad/s

as the ball passes through C, determine the angular velocity of the tube (a) just before the ball leaves the tube, (b) just after the ball
has left the tube.

1 7.77 The rod AB is of mass m and slides freely inside the tube
CD which is also of mass m. The angular velocity of the assembly
was to, when the rod was entirely inside the lube (x = 0). Neglecting
the effect of friction, determine the angular velocity of the assembly
when x — iL.

c
Fig. P17.76

oC_LL>

fc:::-c^!£:

L

Fig. P17.77

C

-/.

1 7.78 In the helicopter shown, a vertical tail propeller is used to
prevent rotation of the cab as the speed of the main blades is changed.
Assuming that the tail propeller is not operating, determine the final
angular velocity of the cab after the speed of the main blades has been
changed from 180 to 240 rpm. The speed of the main blades is meas-
ured relative to the cab, which has a centroidal moment of inertia of

650 lb • ft -s 2 . Each of the four main blades is assumed to be a 14-ft

slender tod weighing 55 lb.oFig. P17.78

1 7.79 Assuming that the tail propeller in Frob. 17.78 is operating
and that the angular velocity of the cab remains zero, determine the

final horizontal velocity of the cab when the speed of the main blades
is changed from 180 to 240 rpm. The cab weighs 1250 1b and is
initially at rest. Also determine the force exerted by the tail propeller
if this change in speed takes places uniformly in 12 s.
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17.80 The 5-kg disk is attached to the arm AB which is free to
rotate about the vertical axle CD. The arm and motor unit has a

moment of inertia of 0.03 kg*m s with respect to the axle CD, and the
normal operating speed of the motor is 360 rpm. Knowing that the
system is initially at rest, determine the angular velocities of ihe arm
and of the disk when the motor reaches a speed of 360 rpm.

cpl

1
Fig. P17.80

1 7.81 In Prob. 17.77, determine the velocity of the rod relative
to the tube when x = ±,L.

1 7.82 Knowing that in Prob. 17.76 the speed of the ball is 1.2 m/s
as it passes through C, determine the radial and transverse components
of the velocity of the ball as it leaves the tube at B.

2 It

- J-b>

o =£MT

Fig. P17.83

1 7.83 Collar B weighs 3 lb and may slide freely on rod UA which
in turn may rotate freely in the horizontal plane. The assembly is

rotating with an angular velocity w = L5 rad/s when a spring located between A and B is released, projecting the collar along the rod
with an initial relative speed v, = 5 ft/s. Knowing that the moment
of inertia about O of the rod and spring is 0.151b • ft • s 2 , determine
(a) the minimum distance between the collar and point U in the

ensuing motion, (b) the corresponding angular velocity of the assembly.

1 7.84 In Prob. 17.83, determine the required magnitude of the
initial relative velocity v r if during the ensuing motion the minimum

distance between collar B and point O is to be 1 ft.

1 7.85 Solve Prob. 17.83, assuming that the initial relative speed of

the collar is t; r = 10 ft/s.
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17.10. Impulsive Motion. We saw in Chap. 13 that the
method of impulse and momentum is the only practicable

method for the solution of problems involving impulsive motion. Now we shall also find that, compared with the various problems
considered in the preceding sections, problems involving impul-
sive motion are particularly well adapted to a solution by the

method of impulse and momentum. The computation of linear impulses and angular impulses is quite simple, since, the time
interval considered being very short, the bodies involved may be assumed to occupy the same position during that time interval.

17.11. Eccentric Impact. In Sees. 13.13 and 13.14, we
learned to solve problems of central impact, i.e., problems in
which the mass centers of the two colliding bodies are located

on the line of impact. We shall now analyze the eccentric impact of two rigid bodies. Consider two bodies which collide, and
denote by v 4 and v g the velocities before impact of the two
points of contact A and B (Fig. 17.10a). Under the impact, the
two bodies will deform and, at the end of the period of deforma-
tion, the velocities u 4 and u B of A and B will have equal com-
ponents along the line of impact mi (Fig. 17.106). A period of
restitution will then take place, at the end of which A and B will

have velocities v^ and v' B (Fig. 17.10c). Assuming the bodies
frictionless, we find that the forces they exert on each other are
directed along the line of impact. Denoting, respectively, by
fP dt and fR dt the magnitude of the impulse of one of these

forces during the period of deformation and during the period of restitution, we recall that the coefficient of restitution e is defined
as the ratio

e —
fRdt

JPdt
(17.18)

We propose to show that the relation established in Sec. 13.13

between the relative velocities of two particles before and after

impact also holds between the components along the line of impact of the relative velocities of the two points of contact
A and B. We propose to show, therefore, that

(»«)n - Kin = #x)>, - (»s)»] (17.19)

We shall first assume that the motion of each of the two

colliding bodies of Fig. 17.10 is unconstrained. Thus the only
impulsive forces exerted on the bodies during the impact are
applied at A and B respectively. Consider the body to which
point A belongs and draw the three momentum and impulseti(b)wFig. 17.10
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» +

1
(a)

Fig. 17.11

W

p
ir)

diagrams corresponding to the period of deformation (Fig. 17.] 1).
We denote by v and u, respectively, the velocity of the mass

center at the beginning and at the end of the period of deforma-
tion, and by « and a* the angular velocity of the body at the
same instants. Summing and equating the components of the
momenta and impulses along the line of impact nn, we write

mv n - J'Pdt ss mu a (17.20)

Summing and equating the moments about G of the momenta
and impulses, we also write

To-TSPdt = Ta* (17.21)

where r represents the perpendicular distance from C to the line
of impact. Considering now the period of restitution, we obtain
in a similar way

mu„ — J'R dt — mo '„
Ju* - rffl dt = /«'

(17.22)

(17.23)

where v' and w' represent, respectively, the velocity of the mass
center and the angular velocity of the body after impact. Solving
(17.20) and (17.22) for the two impulses and substituting into
(17.18), and then solving (17.21) and (17.23) for the same two
impulses and substituting again into (17.18), we obtain the follow-
ing two alternate expressions for the coefficient of restitution:

e= U J- _' (17.24)

Multiplying by r the numerator and denominator of the second

expression obtained for e, and adding respectively to the numer- ator and denominator of the first expression, we have
'•'« + ru - tv' + rco

v n + ru- M„
(17.25)

Observing that v„ + ru represents the component (v A ) n along
tin of the velocity of the point of contact A and that, similarly.
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" n + "">* and '„ + "»' represent, respectively, the components
("A and («m) b , vvc write

e =

M» - («A
(17.26)

The analysis of the motion of the second body leads to a similar expression for e in terms of the components along nn of the
successive velocities of point B. Recalling that (uj n = (u B )„, and eliminating these two velocity components by a manipulation
similar to the one used in Sec. 13.13, we obtain relation (17.19).

If one or both of the colliding bodies is constrained to rotate

about a fixed point O, as in the case of a compound pendulum (Fig. 17.12fl), an impulsive reaction will be exerted at O (Fig.
17.12&). We shall verify that, while their derivation must be

l/Q.A

mamodified, Eqs. (17.26) and (17.19) remain valid. Applying for- mula (17.16) to the period of deformation and to the period of
restitution, we write

I u - rfPdt = I u*

/ w* — rfR dt = I u'
(17.27)

(17.28)

where r represents the perpendicular distance from the fixed
point O to the line of impact. Solving (17.27) and (17.28) for

the two impulses and substituting into (17.18), and then observing that no, iw* and r«' represent the components along nn of the
successive velocities of point A, we write

w — u'

u — w*

ru — ru

no — ru*

K u Aln - cA In

(«u)« - («A

and check that Eq. (17.26) still holds. Thus Eq. (17.19) remains valid when one or both of the colliding bodies is constrained to
rotate about a fixed point O.

In order to determine the velocities of the two colliding bodies
after impact, relation (17.19) should be used in conjunction with

one or several other equations obtained by applying the principle of impulse and momentum (Sample Prob. 17.10).
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SAMPLE PROBLEM 17.9

A 0.125-lb bullet A is fired with an initial velocity of 1500 ft/s into
a 50-lb wooden beam B which is suspended from a hinge at O.

Knowing that the beam is initially at rest, determine [a) the angular velocity of the beam immediately after the bullet becomes embedded
in the beam, (b) the impulsive reaction at the hinge, assuming that
the bullet becomes embedded in 0.0002 s.

Solution. Principle of Impulse and Momentum. We consider the
bullet and the beam as a single system and express that the initial
momenta of the bullet and beam and the impulses of the external

forces are together equipollent to the final momenta of the system. Since the time interval A< = 0.0002 s is very short, we neglect all
nonimpulsive forces and consider only the external impulses R x ±t and
R„M.

O

2 ft

!

-j [ :
II. A'

' C

2 ft

+ ) moments about O: m^(i; r ) 1 (2 ft) + = Io> 2 + m H v 2 (2 ft) (1)
-** x components: »U( c r)i + fl x At = m B v 2 (2)
+ t y components: — "liWi + K„ ^< = (3)

The components of the velocity of the bullet and the ccntroidal mo-
ment of inertia of the beam are

(ig, = J(1500 ft/s) = 1200 ft/s (©„), = j|(1500 ft/s) = 900 ft/s

/ = fcmP =
1 501b

r (4ft) 2 = 2.071b-ffs 2
12 32.2 ft/s 2 v

Substituting these values into (1) and noting that v 2 = (2 ft)w 2 :

(0.125/32.2)(1200)(2) = 2.07io 2 + (50/32.2)(2<o 2 )(2)

u 2 = 1.125 rad/s Wj, = 1.125 rud s ] -*

Substituting c 2 = (2 ft)( 1.1 25 rad/s) = 2.25 ft/s into (2), we solve Eqs.
(2) and (3) for fl, and R v , respectively.

(0.125/32.2)(1200) + fi r (0.(X)02) = (50/32.2>;2.25)
H, = -58201b K, = 58201b'

-(0.125/32.2)(900) + K„(0.0002) =
R„ = + 17,470 lb 1 7.-170 lb :

816
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SAMPLE PROBLEM 17.10

A 2-kg sphere moving horizontally to the right with an initial velocity
of 5 m/s strikes the lower end of an 8-kg rigid rod AB. The rod is

suspended from a hinge at A and is initially at rest. Knowing that
the coefficient of restitution between the rod and sphere is 0.80,

determine the angular velocity of the rod and the velocity of the
sphere immediately after the impact.

Principle of Impulse and Momentum. We consider the rod and

sphere as a single system and express that the initial momenta of the
rod and sphere and the impulses of the external forces arc together
equipollent to the final momenta of the system. We note that the

only impulsive force external to the system is the impulsive reaction
at A.

£1

1.2 in

CJ

0.6 1

" L °1 » —

o

+ 5 moments about A:

m s v,{1.2 m) = tn,v'„(1.2 m) + m R v' R (0.6 m) + Tu' (1)

Since the rod rotates about A, we have o' R = rw' = (0.6 m)to'. Also,

7"= j!jmL2 = £(8kg)(1.2 m) 2 = 0.96 kg • m s

Substituting these values and the given data into Eq. (1), wc have

(2kg)(5m/s)(1.2m)

= (2kg)t-;(1.2m) + (8 kg)(0.6 m)w'(0.6 m) + (0.96 kg -mV
12 = 2.4c; + 3.84m' (2)

Relative Velocities. Choosing positive to the right, we write

<='b ~ v 's = «fo - <-•/»/

Substituting v, = 5 m/s, v B = 0, and e — 0.80, wc obtain

o' B - i;; = 0.80(5 m/s) (3)

Again noting that the rod rotates about A, we write

c' B = (1.2 m)»' (4)

Solving Eqs. (2) to (4) simultaneously, we obtain

w' = +3.21 rad/s to' = 3.21 rad 's J -«
v', = -0.143 m/s vl = 0.143 m/s <- -*
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SAMPLE PROBLEM 17.11

A square package of side a and mass m moves clown a conveyor belt
A with a constant velocity v\. At the end of the conveyor belt, the
corner of the package strikes a rigid support at B. Assuming that the
impact at B is perfectly plastic, derive an expression for the smallest
magnitude of the velocity v\ for which the package will rotate about
B and reach convevor bell C

Principle ol Impulse and Momentum. Since the impact between
the package and the support is perfectly plastic, the package rotates
about B during the impact. We apply the principle of impulse and
momentum to the package and note that the only impulsive force-
external to the package is the impulsive reaction at B.

.--=CH = \-\f2" ¦ 0.707a
/i; = C.R sin ( 15 + 15' )

~=0.0I2«

/,., = <;« -U.TOTuom
Syst Momenta, - Syst Ext Imp,^, = Syst Momenta.;

+ ) moments about B: (mSJQa) + = (me^)(j \/2a) + Tu 3 (1)

Since the package rotates about B, we have c., = (CB)u 2 = \yfla*. 2 .
We substitute this expression, together with / = Jmir, into Eq. (1);

(meiKio) = m$y/2m>aMy/2a) + bnuPa 2 u, = gou 2 (2)

Principle of Conservation of Energy. We apply the principle of
conservation of energy between position 2 and position 3.

•?. V 2 = W/i... Recalling that v., = i \fhiu 2 , we write

T., = 2 mv'i + \L»\ = J»n(J\/2aw 2 ) 2 + HfrnxPM = J«w 2 «|

Position 3. Since the package must reach conveyor belt B, it must
pass through position 3 where G is directly above B. Also, since we
wish to determine the smallest velocity for which the package will

reach this position, we choose c 3 = w 3 = 0. Therefore T n = and
V 3 = w».

Conservation of Energy

r 2 + v, = r 3 + V 3

§mafoi + Wh 2 = + Wh 3

(3)

Substituting the computed values of h., and h 3 into Eq. (3), we obtain

3g
w| = %0.707« - 0.612a) = J-(0.095o) « 2 = V0285g/«

Cj = $O0 2 — \n V0.2S5g/fl c, =0.712\/gfl
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PROBLEMS

1 7.86 A 45-g bullet is fired with a horizontal velocity of 400 m/s
into a 9-kg square panel of side b = 200 mm. Knowing that
h = 200 mm and that the panel is initially at rest, determine (a) the
velocity of the center of the panel immediately after the bullet becomes

embedded, (b) the impulsive reaction at A, assuming that the bullet
becomes embedded in 1 ms.

17.87 In Prob. 17.86, determine (a) the required distance h if
the impulsive reaction at A is to be zero, (b) the corresponding velocity
of the center of the panel after the bullet becomes embedded.

I 7.88 A bullet weighing 0.08 lb is fired with a horizontal velocity

of 1800 ft/s into the 15-lb wooden rod AH of length L = 30 in. The
rod, which is initially at rest, is suspended by a cord of length

L = 30 in. Knowing that h = 6 in., determine the velocity of each end of the rod immediately after the bullet becomes embedded.

1 7.89 In Prob. 17.88, determine the distance h for which, imme-
diately after the bullet becomes embedded, the instantaneous center

of rotation of the rod is point C.

1
«A i

h

v "

b

I

b

e
Fig. P17.86

t
c. ;.

Fig. P17.88

1 7.90 A bullet of mass m is fired with a horizontal velocity v u and
at a height h = iR into a wooden disk of much larger mass M and
radius R. The disk rests on a horizontal plane and the coefficient of
friction between the disk and the plane is finite, (a) Determine the
linear velocity v, and the angular velocity W] of the disk immediately
after the bullet has penetrated the disk. (b) Describe the ensuing
motion of the disk and determine its linear velocity after the motion
has become uniform.

it(Fig. P17.90

1 7.91 Determine the height h at which the bullet of Prob. 17.90

should be fired (a) if the disk is to roll without sliding immediately after
impact, (b) if the disk is to slide without rolling immediately after
impact.

1 7.92 A uniform slender rod AB is equipped at both ends with the
hooks shown and is supported by a frictionless horizontal table. Ini-

tially the rod is hooked at A to a fixed pin C about which it rotates with
the constant angular velocity «,. Suddenly end R of the rod hits and
gets hooked to the pin D, causing end A to be released. Determine the

magnitude of the angular velocity <o 2 of the rod in its subsequent rotation about D.uFig. P17.92
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1 7.93 A uniform disk of radius r and mass m is supported by a
frictionlcss horizontal tabic. Initially the disk is spinning freely about
its mass center G with a constant angular velocity u v Suddenly a latch

B is moved to the right and is struck by a small stop A welded to the edge of the disk. Assuming that the impact of A and B is perfectly
plastic, determine the angular velocity of the disk and the velocity of
its mass center immediately after impact.

7
Fig. P17.93

1 7.94 Solve Prob. 17.93, assuming that the impact of A and B is

perfectly elastic.

t
B

33 '

Fig. P17.95

1 7.95 A uniform slender rod of length L is dropped onto rigid

supports at A and B. Immediately before striking A the velocity of
the rod is v,. Since support B is slightly lower than support A, the
rod strikes A before it strikes B. Assuming perfectly clastic impact
at both A and B, determine the angular velocity of the rod and the
velocity of its mass center immediately after the rod (a) strikes support
A, ib) strikes support B, (c) again strikes support A.

1 7.96 A square block of mass m moves along a frictionless hori-
zontal surface and strikes a small obstruction at B. Assuming that the

impact between comer A and the obstruction B is perfectly plastic,
determine the angular velocity of the block and the velocity of its mass
center C immediately after the impact.oFig. P17.96

1 7.97 Solve Prob, .17,96, assuming that the impact between cor-
ner A and the obstruction B is perfectly elastic.
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1 7.98 A uniformly loaded square crate is released from rest with
its corner D directly above A; it rotates about A until its corner B

strikes the floor, and then rotates about B. The floor is sufficiently rough to prevent slipping and the impact at B is perfectly plastic.
Denoting by fty, the angular velocity of the crate immediately before B

strikes the floor, determine (a) the angular velocity of the crate imme- diately after B strikes the floor, (b) the fraction of the kinetic energy of
the crate lost during the impact, (c) the angle 9 through which the
crate will rotate after B strikes the door.

(
(!)

Fig. P17.98

(

n
/)

peeowaisrlswt
A B

o
(2)

l
,;;

1 7.99 A uniform sphere of radius r rolls without slipping down
the incline shown. It hits the horizontal surface and, after slipping
for a while, starts rolling again. Assuming that the sphere does not
bounce as it hits the horizontal surface, determine its angular velocity
and the velocity of its mass center after it has resumed rolling.

1 7.100 A sphere A of mass tn and radius r rolls without slipping

with a velocity v„ on a horizontal plane. It hits squarely an identical sphere B which is at rest. Denoting by ,u the coefficient of friction
between the spheres and the plane, neglecting the friction between
the spheres, and assuming perfectly elastic impact (e = 1), determine
(a) the linear and angular velocity of each sphere immediately after

impact, (/;) the velocity of each sphere after it has started rolling uniformly, (c) Discuss the special case when jx — 0.1
Fig. P17.99

yoFig. P17.100

17.101 A slender rod of length I strikes a frictionlcss door at A
with a vertical velocity v, and no angular velocity. Assuming that the
impact at A is perfectly elastic, derive an expression for the angular
velocity of the rod immediately after impact.

17.102 Solve Prob. 17.101, assuming that the impact at A is
perfectly plastic. Fig. P17.101
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.
Fig. P17.103

17.103 A bullet of mass m is fired with a horizontal velocity v

Into the lower corner of a square panel of much larger mass M. The

panel is held by two vertical wires as shown. Determine the velocity
of the center G of the panel immediately after the bullet becomes
embedded.

17.104 Two uniform rods, each of mass m, form the L-shaped

rigid body ABC which is initially at rest on the frictionless horizontal
surface when hook D of the carriage E engages a small pin at C.

Knowing that the carriage is pulled to the right with a constant
velocity v , determine immediately after the impact (a) the angular
velocity of the body, {!>) the velocity of corner B. Assume that the
velocity of the carriage is unchanged and that the impact is perfectly
plastic.

7J~

G*

I
b

D

Fig. P17.105eFig. P17.107

Fig. P17.104

17.105 The uniform plate ABCD is falling with a velocity v,
when wire BE becomes taut. Assuming that the impact is perfectly-
plastic, determine the angular velocity of the plate and the velocity of
its mass center immediately after the impact.

1 7. 1 06 In Prob. 17.96, determine the line of action of the impul-
sive force exerted on the block by the obstruction at B.

17.1 07 A uniformly loaded rectangular crate is released from rest
in the position shown. Assuming that the floor is sufficiently rough

to prevent slipping and that the impact at B is perfectly plastic, determine the largest value of the ratio b/a for which comer A will
remain in contact with the floor,
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1 7. 1 08 A slender rod of mass m and length / is held in the position
shown. Roller B is given a slight push to the right and moves along
the horizontal plane, while roller A is constrained to move vertically.
Determine the magnitudes of the impulses exerted on the rollers A
and B as roller A strikes the ground. Assume perfectly plastic impact.

1 7.109 In a game of billiards, ball A is rolling without slipping
with a velocity v as it hits obliquely ball B which is at rest, Denoting
by r the radius of each ball, by \i the coefficient of friction between the

balls and the table, neglecting friction between the balls, and assuming
perfectly elastic impact (e = 1), determine (a) the linear and angular

velocity of each ball immediately after impact, (b) the velocity of B after it has started rolling uniformly.

¦A"
ill

Fig. P17.108

1Fig. P17.109

17.110 In Prob. 17.109, determine the equation of the path
described by the center of ball A while the ball is slipping.

1 7.1 1 1 For the billiard balls of Prob. 17.109, determine (a) the
velocity of ball A after it has started rolling again without slipping,
(b) the angle $ formed by the velocities of balls A and B after they have
finished slipping. (Compare the result obtained here with the one
obtained for the pucks of Prob. 13.139 when e — 1.)

17.112 A small rubber ball of radius r is thrown against a rough
floor with a velocity v A of magnitude v and a "backspin" ic A of
magnitude co . It is observed that the ball bounces from A to B, then

from B to A, then from A to B, etc. Assuming perfectly elastic impact, determine (a) the required magnitude u of the "backspin" in terms
of c and r, (b) the minimum required value of the coefficient of
friction.

tA 6 '
Fig. P17.112

6 7 v>
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1 7.1 1 3 Two identical rods AB and CD, each of length L, may move
freelv on a frictionlcss horizontal surface. Rod AB is rotating about its

mass center with an angular velocity oj when end B strikes end C of
rod CD, which is at rest. Knowing that at the instant of impact the

rods are parallel and assuming perfectly elastic impact [e — 1), deter-
mine the angular velocity of each rod and the velocity of its mass

center immediately after impact.

A M

:<%

L — - ,£, . :

Fig. P17.113

1 7.1 1 4 Solve Prob. 17.113, assuming that the impact is perfectly

plastic (e - 0).

REVIEW PROBLEMS

17.115 A small disk A is driven at a constant angular velocity

of 1200 rpm and is pressed against disk B, which is initially at rest.
The normal force between disks is 10 lb, and (i 4 = 0.20. Knowing that

disk B weighs 50 lb, determine the number of revolutions executed
by disk B before its speed reaches 120 rpm.Ar = 1 in.

Fig. P17.116

Fig. P17.115

17.116 A small collar of mass m is attached at B to the rim of

a hoop of mass m and radius r. The hoop rolls without sliding on
a horizontal plane. Kind the angular velocity u l of the hoop when

B is directly above the center A in terms of g and r, knowing that

the angular velocity of the hoop is '3u 1 when B is directly below A.
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17.1 17 The gear train shown consists of four gears of the same

thickness and of the same material; two gears are of radius r, and the other two are of radius nr. The system is at rest when the couple
M n is applied to shaft C. Denoting by /„ the moment of inertia of
a gear of radius r, determine the angular velocity of shaft A if the
couple M„ is applied (a) for one revolution of shaft C, (h) for / seconds.

1
Fig. P17.117

17.1 18 The motion of a 16-kg sliding panel is guided by rollers
at B and C. The counterweight A has a mass of 12 kg and is attached
to a cable as shown. If the system is released from rest, determine

for each case shown the velocity of the counterweight as it strikes the ground. Neglect, the effect of friction.1.„¦¦

Fig. P17.118

(M

17.1 19 A uniform rod of length L and weight W is attached to
two wires, each of length b. The rod is released from rest when =

and swings to the position B = 90°, at which time wire BD suddenly
breaks. Determine the tension in wire AC (a) immediately before wire
BD breaks, (b) immediately after wire BD breaks. Fig. P17.119
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r

h

'

Fig. P17.120

17.120 Two identical slender rods may swing freely from the
pivots shown. Rod A is released from rest in a horizontal position and

swings to a vertical position, at which time the small knob K strikes rod
B which was at rest. If h — U and e = I, determine (a) the angle

through which rod B will swing, (b) the angle through which rod A will
rebound.

1 7.1 21 Solve Prob. 17.120, assuming e = \.

The motor shown runs a machine attached to the shaft at

A. The motor develops 4 hp and nins at a constant speed of 300 rpm.
Determine the magnitude of the couple exerted (a) by the shaft on
pulley A, (b) by the motor on pulley B.

^9 in.

Fig. P17.122

1 7.1 23 The plank CDE of mass m p rests on top of a small pivot

at D. A gymnast A of mass »i stands on the plank at end C; a second
gymnast B of the same mass m jumps from a height h and strikes
the plank at E. Assuming perfectly plastic impact, determine the
height to which gymnast A will rise. (Assume that gymnast A stands
completely rigid.)

,r
-J3r

=,«

_L

Fig. P17.124ecFig. P17.123

17.124 Two uniform rods, each of mass m and length /., are

connected to form the linkage shown. End D of rod BD may slide

freely in the horizontal slot, while end A of rod AB is attached to a
fixed pin support. If end D is moved slightly to the left and then
released, determine its velocity (a) when D is directly below A,

(b) when rod AB is vertical.
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A rectangular slab of mass m s moves across a series of

rollers, each of which is equivalent to a uniform disk of mass m R and is initially at rest. Since the length of the slab is slightly less than three
times the distance b between two adjacent rollers, the slab leaves a
roller just before it reaches another one. Each time a new roller enters

into contact with the slab, slipping occurs between the roller and the
slab for a short period of time (less than the time needed for the slab to

move through the distance b). Denoting by v () the velocity of the slab
in the position shown, determine the velocity of the slab after it has
moved («) a distance b, (b) a distance nb.

— IK =1 h-

^W^ <ri>

Fig. P17.125

17.126 Solve Prob. 17.125, assuming v u = 5 m/s, m s = 17 kg,
m K = 2 kg, and n — 5.



CHAPTER

18
Kinetics of Rigid
Bodies in Three

Dimensions

1Fig. 18.1

* 1 8.1 . Introduction. In Chaps. 16 and 17 we were con-
cerned with the plane motion of rigid bodies and of systems of

rigid bodies. In Chap. 16 and in the second half of Chap. 17
(momentum method), our study was further restricted to that of

plane slabs and of bodies symmetrical with respect to the refer-

ence plane. However, many of the fundamental results obtained in these two chapters remain valid in the case of the motion of a
rigid body in three dimensions.

For example, the two fundamental equations

VF = ma

VM C ¦ H G

(18.1)

(18.2)

on which the analysis of the plane motion of a rigid body was
based, remain valid in the most general case of motion of a rigid

body. As it was indicated in Sec. 16.2, these equations express
that the system of the external forces is equipollent to the system

consisting of the vector ma attached at G and the couple of

moment H G (Fig. 18.1). However, the relation H . = /w, which enabled us to determine the angular momentum of a rigid slab
and which played an important part in the solution of problems
involving the plane motion of slabs and bodies symmetrical with

respect to the reference plane, ceases to be valid in the case of nonsymmetrical bodies or three-dimensional motion. It will thus
be necessary for us to develop in Sec. 18.2 a more general

828
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method for the computation of the angular momentum H of a
rigid body in three dimensions.

Similarly, the main feature of the impulse-momentum method
discussed in Sec. 17.7, namely the reduction of the momenta of
the particles of a rigid body to a linear momentum vector rav

attached at the mass center G of the body and an angular mo-
mentum couple H G , remains valid. Here again, however, the
relation H G = lie will have to be discarded and replaced by the
more general relation to be developed in Sec. 18.2.

Finally, we note that the work-energy principle (Sec. 17.1) and
the principle of conservation of energy (Sec. 17.5) still apply in
the case of the motion of a rigid body in three dimensions.
However, the expression obtained in Sec. 17.3 for the kinetic

energy of a rigid body in plane motion will be replaced by a new
expression to be developed in Sec. 18.4 for a rigid body in
three-dimensional motion.

*18.2. Angular Momentum of a Rigid Body in
Three Dimensions. We shall see in this section how the

angular momentum II G of the body about its mass center G may be determined from the angular velocity ic of the body in the
case of three-dimensional motion.

According to Eq. (14.24), the angular momentum of the body
about G may be expressed as

h c = :>>-¦ x w^*) (18.3)

where r[ and v/ denote, respectively, the position vector and the
velocity of the particle P ; , of mass Sm^ relative to the centroidal

frame Grip (Fig. 18.2). But v f ' = to X r/, where u is the angular velocity of the body at the instant considered. Substituting into
(18.3), we have

H R = 2 W X (co x r,0 AmJ
i = l

Recalling the rule for determining the rectangular components of
a vector product (Sec. 3.4), we obtain the following expression
for the x component of the angular momentum:

n

#* = 2 [&(" X «& - z i(" X <)„] Am.
i=l

n

= 2 [!/iK!/, - <V») - *i(<o,z, - ",*,)] *m t

Fig. 18.2

= «* 2 ($ + «ft Am i - «* S *m Am i - •v 2 ***< Am *
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a
Replacing the sums by integrals in this expression and in the two

similar expressions which are obtained for HL and H M , we have

H x = uj(y 2 + z 2 ) dm — Lcjxy dm — icjzx dm
H v = -tojxy dm + uj(z 2 + x 2 ) dm - ajyz dm (18.4)
11 t = -ujzx dm — o>Jyz dm + wj"(x 2 + y 2 ) dm

We note that the integrals containing squares represent the
centwidul mass moments of inertia of the body about the x, y,

and z axes, respectively (Sec. 9.10); we have

f = f(y 2 + z 2 ) dm T y = f(z 2 +_x 2 ) dm
I z =5(x 2 + if)dm (18.5)

Similarly, the integrals containing products of coordinates repre-
sent the centroidal mass products of inertia of the body
(Sec. 9.15); we have

P xv =f*ydm r y ,=Syzdm V !X =fzxdm (18.6)

Substituting from (18.5) and (18.6) into (18.4), we obtain the
components of the angular momentum H c of the body about its
mass center G:

" V = -V, + ly"y ~ *>, (18.7)

„«„ + /,<o,

The relations (18.7) show that the operation which transforms

the vector to into the vector H c (Fig. 18.3) is characterized by the
array of moments and products of inertia

7.

Fig. 18.3

l-JL

i y
-p,.iyn\ (18.8)

The array (18.8) defines the inertia tensor of the body at its mass
center G.t A new array of moments and products of inertia

t Setting /, = /„. F, = Z, 2 , /, = k» and -P,„ = / I2 , -P„ = / 13 . etc.. we
may write the inertia tensor in the standard form

'll 'l2 *is\

*21 *22 *23 I

Denoting by //,, //,, H 3 the components of the angular momentum II (; and by

Uu-Up W3 the components of the angular velocity «, we may write the relations
(18.7) in the form

where i and / take the values 1, 2, 3. The quantities /,j are said to be the
components of the inertia tensor. Since I tj = Ij,, the inertia tensor is a symmetric
tensor of the second order.
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i%

w
0\

V

n
[o

d
w

would be obtained if a different system of axes were used. The
transformation characterized by this new array, however, would

still be the same. Clearly, the angular momentum H (; corre-
sponding to a given angular velocity « is independent of the
choice of the coordinate axes. As it was shown in Sec. 9.16, it is

always possible to select a system of axes Cx'y'zf, called principal
axes of inertia, with respect to which all the products of inertia of

a given body are zero. The array (18.8) takes then die diagonal- ized form

(18.9)

where I z ., 1^, I y represent the principal centroidal moments of
inertia of the body, and the relations (18.7) reduce to

ll x , = 7,.co x . H u , = l v ,u y , H z . = Z y uv (18.10)

We note_that, if the three principal centroidal moments of

inertia I z ., 1^, I y are equal, the components H x -, H^, H t , of the angular momentum about G are proportional to the components
w i-» Wj,'. Wy of the angular velocity, and the vectors II C and <o are collinear. In general, however, the principal moments of inertia
will be different, and the vectors II and a will have different directions, except when two of the three components of o> hap-
pen to be zero, i.e., when w is directed along one of the coordi-

nate axes. Thus, the angular momentum H G of a rigid body and its angular velocity w have the same direction if, and only if <o is
directed along a principal axis of inertia.] Since this condition is

satisfied in the case of the plane motion of a rigid body symmet- rical with respect to the reference plane, we were able in
Sees. 16.3 and 1 7.7 to represent the angular momentum H of such
a body by the vector lu>. We must realize, however, that this
result cannot be extended to the case of the plane motion of a
nonsymmetrical body, or to the case of the three-dimensional

motion of a rigid body. Except when w happens to be directed
along a principal axis of inertia, the angular momentum and
angular velocity of a rigid body have different directions, and the

relation (18.7) or (18.10) must be used to determine H c from a.

tin the particular case when /,, = 1^ = l r ., any line through C may be

considered as a principal axis of inertia, and (he vectors H 6 and to arc always collinear.
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Fig. 18.4

Fig. 18.5

Angular Momentum of a Rigid Body About a Fixed

Point. In the particular case of a rigid body rotating in three-
dimensional space about a fixed point O (Fig. 18.4), it is some-
times useful to determine the angular momentum H of the body
about the fixed point O. Recalling Eq. (14.7), we write

H = X ^ x v i *"•) (18.11)
>=i

where r ( and v ; denote, respectively, the position vector and the
velocity of the particle P i with respect to the fixed frame Oxtjz.
Substituting v, = w X t t , and after manipulations similar to the
ones used above, we find that the components of the angular
momentum H (Fig. 18.5) are given by the relations

L yz" (18.12)

where the moments of inertia Z r , I y , I z and the products of inertia
P P P lt are computed with respect to the frame OxtfZ cen-
tered at the fixed point O.

* 1 8.3. Application of the Principle of Impulse and

Momentum to the Three-dimensional Motion of a

Rigid Body. Before we can apply the fundamental equation
(18.2) to the solution of problems involving the three-dimensional

motion of a rigid body, we shall have to learn to compute the
derivative of the vector H G . This will be done in Sec. 18.5. We

may, however, immediately use the results obtained in the pre-
ceding section to solve problems by the impulse-momentum
method.

Recalling from Sec. 17.7 that the system formed by the mo-
menta of the particles of a rigid body reduces to a linear momen-
tum vector mv attached at the mass center C of the body and an

angular momentum couple H R , we represent graphically the
fundamental relation

Syst Momenta! + Syst Ext Imp a , 2 = Syst Momenta., (17.14)

by means of the three sketches shown in Fig. 18.6. To solve a

given problem, we may use these sketches to write appropriate
component and moment equations, keeping in mind that die

components of the angular momentum H c are related to the
components of the angular velocity to by Eqs. (18.7) of the
preceding section.
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F
(a)

Fig. 18.6

I
(b)

H (;:

In solving problems dealing with the motion of a body rotating
about a fixed point O, it will be convenient to eliminate the

impulse of the reaction at O by writing an equation involving the
moments of the momenta and impulses about O. We note in this

connection that the angular momentum H of the body about the
fixed point O may be obtained directly from Eqs. (18.12).

*18.4. Kinetic Energy of a Rigid Body in Three

Dimensions. Consider a rigid body of mass m in three-
dimensional motion. We recall from Sec. 14.6 that, if the abso-

lute velocity v, of each particle P t of the body is expressed as the
sum of the velocity v of the mass center G of the body and of the
velocity v,' of the particle relative to a frame Gxijz attached to G

and of fixed orientation (Fig. 18.7), the kinetic energy of the system of particles forming the rigid body may be written in the
form

1

T = frw*+ -J) (Am>f (18.13)
i=l

where the last term represents the kinetic energy T' of the body relative to the centroidal frame Gxyz. Since v( — u X r/, we
writetT ' = J £ (^iK 2 = j £ (« X r<) 2 Am, (18.14)

Expressing the square of the vector product in terms of its rec-

tangular components, and replacing the sums by integrals, we have

T = /[(«*«/ - <y> 2 + (<v - a *y¥ + (»»* - w r*) 2 ] *"
= <oif(!/ 2 + z 2 ) dm + u 2 J(z 2 + x 2 ) dm + u 2 J(x 2 + tf) dm

— ZuiUyfxy dm — 2u v ioJ'yz dm — 2u z u T fzx dm



834 DYNAMICS

or, recalling the relations (18.5) and (18.6),

- M>^ - »«*A) (18-15)

Substituting into (18.13) the expression (18.15) we have just

obtained for the kinetic energy of the body relative to ccntroidal
axes, we write

r = £r»C 2 + £(Z>2 + £«g + 14 - 2P xyUx » v
-2P y! ^ z - 2f>,«J (18.16)

If the axes of coordinates are chosen so that they coincide at

the instant considered with the principal axes x', if, z' ol the
body, the relation obtained reduces to

(Fig. 18.8

V = imv* + i(l„<4 + V4 + / s .<4) (18.17)

where v = velocity of mass center

a = angular velocity

m = mass of rigid body

l t ., 1^, Iy = principal centroidal moments of inertia

The results we have obtained enable us to extend to the

three-dimensional motion of a rigid body the application ol the

principle of work and energy (Sec. 17.1) and of the principle of
conservation of energy (Sec. 17.5).

Kinetic Energy of a Rigid Body With a Fixed Point. In the

particular case of a rigid body rotating in three-dimensional
space about a fixed point O, the kinetic energy of the body may
be expressed in terms of its moments and products of inertia with
respect to axes attached at O (Fig. 18.8). Recalling the definition
of the kinetic energy of a system of particles, and substituting

v, = to X r 4 , vve write

T = j 2 (A%W = i 2 (« X ttf Am, (18.18)
Manipulations similar to those used to derive (18.15) from (18.14)
yield

t = JM + iA + iA - 2*>«".
- 20>„tt, - ZP^ju J (18.19)

or, if the principal axes x', y', z 7 of the body at the origin O are
chosen as coordinate axes.

T = j(V4 + lj*\ + I..<4) (18.20)
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SAMPLE PROBLEM 18.1

A rectangular plate of mass m suspended from two wires at A and B is
hit at /•> in a direction perpendicular to the plate. Denoting by F A«
the impulse applied at D, determine immediately after impact (a) the
velocity of the mass center G, (fo) the angular velocity of the plate.

i Al

Solution, We shall assume that the wires remain taut and, thus, that

the components v tl of v and w. of to are zero after impact. We have
therefore

v = vj + C,k co = co r i + wj

and, since the x, y, z axes are principal axes of inertia,

H = T t uj + I/tJ H c = fontfuj + -fanePuj (1)

Principle oi Impulse and Momentum. Since the initial momenta
are zero, the system of the impulses must be equivalent to the system
of the final momenta:

V

H,.i

.

¦6*

i'-v,
WM /aa

2o" v *w ,''* 1*
^'<

cea. Velocity of Mass Center. Equating the components of the im-
pulses and momenta in the x and z directions:

% comp.: = mv z t =

zcomp.: — Fit = mo_. u, = -Fil/m

v = 55,1 + v r k v = — i F -i/ ¦ m ik -^

h. Angular Velocity. Equating the moments of the impulses and
momenta about the x and ;/ axes:

About x axis: JbFAf = H x

About i/ axis: — JaFA< = H v

He = 77,i + ff,j H„ = |foF Af i - 1</F Ar j (2)

Comparing Eqs. (1) and (2), we conclude that

w f = 6FAt/mfc Uy - -6F\t/ma
to = to x i + wj

We note that to is directed along the diagonal AC.

Remark-. Equating the ;/ components of the impulses and momenta,
and their moments about the z axis, wc obtain two additional equations

which yield T A = T B — JW. We thus verify that the wires remain taut
and that our assumption was correct.
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SAMPLE PROBLEM 18.2

°^C=

n
A homogeneous disk of radius r and mass m is mounted on an axle OG

of length L and negligible mass. The axle is pivoted at the fixed point

O, and the disk is constrained to roll on a horizontal floor. Knowing thai the disk rotates counterclockwise at the rate w, about the axle OG,
determine (a) the angular velocity of the disk, (b) its angular momen- tum about O, (c) its kinetic energy, (d) the vector and couple at G
equivalent lo the momenta of the particles of the disk.

V/
yW

G

tt. Angular Velocity. As the disk rotates about the axle OG it also

rotates with the axle about the y axis at a rate ai 2 clockwise. The total
angular velocity of the disk is therefore

<0 = o)[i - Ujj (1)

To determine w 2 sve write that the velocity of C is zero:

v c = u X r c =

(uji - cojj) x (Li - rj) =
(I*»a — fwjk = 6> 2 = rw-i/L

Substituting into (1) for u 2 : cc = u a i - rw t /L)j -4

fr. -\ngular Momentum About O. Assuming the axle to be part of
the disk, we may consider the disk to have a fixed point at O. Since the
x, y, and z axes are principal axes of inertia for the disk,

H, - J>, = Or 2 )",
W„ = V>„ = (mL 2 + ^mr^-ruJL)
H, = £», = (mL 2 + |mr^ =

H,j =|mr 2 w 1 i — m(L B - ;'-' i'io,/L)j -^

c. Kinetic Energy. Using the values obtained for the moments of
inertia and the components of to, we have

"'¦'(e+g-)^
d. Momentum Vector and Couple at G. The linear momentum

vector m\ and the angular momentum couple H are

mv = miw jk -^
and

H = l^J + I^uJ + f^k = Jmr'ttji + $mr 2 (-r<o,//.,)j

836
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PROBLEMS

1 8.1 A thin homogeneous rod of mass m and length L rotates with
a constant angular velocity w about a vertical axis through its mass
center C. Determine the magnitude and direction of the angular
momentum H G . of the rod about its mass center.

1 8.2 A thin homogeneous disk of mass m and radius r spins at the
constant rate o t about an axle held by a fork-ended horizontal rod
which rotates at the constant rate u v Determine the angular momen-
tum of the disk about its mass center,

8.
Fig. P18.1

Fig. P18.2

1 8.3 A thin homogeneous disk of mass m and radius r is mounted
on the vertical axle AB. The plane of the disk forms an angle /} = 30°
with the horizontal. Knowing that the axle rotates with an angular

velocity to, determine the angle formed by the axle and the angular
momentum of the disk about G.pFig. P18.3

1 8.4 A thin rectangular plate of mass 9 kg is attached to a shaft as
shown. If the angular velocity to of the plate is 4 rad/s at the instant
shown, determine its angular momentum about its mass center C.

1 8.5 In Prob. 18.3, determine the value of fi for which the angle 8

formed by the axle and the angular momentum H G is maximum. Fig. P18.4
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1 8.6 A thin homogeneous disk of mass 800 g and radius 100 mm
rotates at a constant rate u g = 20 rad/s with respect to the arm ABC,
which itself rotates at a constant rate to, = 10 rad/s about the x axis.
Determine the angular momentum of the disk about point C.

P.
40 mm

Fig. P18.6

10(1 HUM

hFig. P18.8

18.7 Determine the angular momentum of the disk of Prob. 18.6
about point D.

18.8 A thin homogeneous triangular plate weighing 12 lb is
welded to a light axle which can rotate freely in bearings at A and B.
Knowing that the plate rotates at a constant rate u = 5 rad/s, deter-
mine its angular momentum about A.

1 8.9 Determine the angular momentum of the plate of Prob. 18.8
about its mass center.

18.10 Each element of the crankshaft shown is a homogeneous
rod of muss m per unit length. Knowing that the crankshaft rotates

with a constant angular velocity to, determine (a) the angular momen-
tum of the crankshaft about G, (b) the angle formed by the angular
momentum and the axis AS.

Fig. P18.10

18.11 Determine the angular momentum of the crankshaft of
Prob. 18.10 about point A.
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1 8.1 2 Show that, when a rigid body rotates about a fixed axis, its

angular momentum is the same about any two points A and B on the fixed axis (11^ = H„) if, and only if, the mass center G of the body is
located on the fixed axis.

1 8.1 3 Two I.-shaped arms, each weighing 6 lb, are welded at the

third points of the 3-ft shaft AB. Knowing that shaft AB rotates at a constant rate a = 300 rpm, determine (a) the angular momentum of
the body about A, (b) the angle formed by the angular momentum and
the shaft AB.

1 8.1 4 At a given instant during its (light, a launch vehicle has an
angular velocity a = (0.3 rad/s)j + (2 rad/s)k and its mass center G
has a velocity v = (6 m/s)i + (9 m/s)j + (1800 m/s)k, where i, j, and k
are the unit vectors corresponding to the principal centroidal axes of
inertia of the vehicle. Knowing that the vehicle has a mass of 40 Mg
and that its centroidal radii of gyration are fe x = fc„ = 6 m and
fcj = 1.5 in, determine (a) the linear momentum mv and the angular
momentum II C ,, (b) the angle between the vectors representing mv and
H„-

Fig. P18.13

uv.,

Fig. P18.14

18.15 For the launch vehicle of Frob. 18.14, determine the sum

H P of the moments about P of the momenta of the particles of the
vehicle, knowing that the distance from G to P is 10 m.

1 8.1 6 A homogeneous wire, of weight 2 lb/ft, is used to form the
wire figure shown, which is suspended from point A. If an impulse
Tit = — (lOlb-s)k is applied at point D of coordinates .t = 3ft,
y = 2ft,* as 3ft, determine (<;) the velocity of the mass center of the
wire figure, (fo) the angular velocity of the figure.

18.17 Solve Prob. 18.16, assuming that the impulse applied

point Dis Fit = (101b-s)j.

ath
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,

DE

<7

2n

i C-

Fig. P18.18

18.18 A uniform rod of total mass m is bent into the shape shown
and is suspended by a wire attached at B. The bent rod is hit at D in

a direction perpendicular to the plane containing the rod (in the
negative z direction). Denoting the corresponding impulse by FA/,
determine (a) the velocity of the mass center of the rod, [b) the angular
velocity of the rod.

18.19 Solve Prob. 18.18, assuming that the bent rod is hit at C.

18.20 Three slender homogeneous rods, each of mass m and
length d, are welded together to form the assembly shown, which
hangs from a wire at G. The assembly is hit at A in a vertical down-
ward direction. Denoting the corresponding impulse by F A/, deter-
mine immediately after impact (a) the velocity of the mass center G,
(b) the angular velocity of the assembly.

8'18.20Syr-r ;?s//A

i

<•" DaL_ a —
<nBieFig. P18.22

1 8.21 Solve Prob. 18.20, assuming that the assembly is hit at 7? in
a direction opposite to that of the z axis.

1 8.22 A cross of total mass m, made of two rods AB and CD, each

of length la and welded together at G, is suspended from a ball-and-
socket joint at A. The cross is hit at C in a direction perpendicular to
its plane (in the negative % direction). Denoting the corresponding
impulse by F M, determine immediately after impact (a) the angular
velocity of the cross, (b) its instantaneous axis of rotation.
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1 8.23 A build of mass m is fired with an initial velocity v„ into a

heavy circular plate of mass m which is suspended from a ball-and-

socket joint at O. Knowing that the bullet strikes point A and becomes embedded in the plate, determine immediately after impact (a) the
angular velocity of the plate, (b) its instantaneous axis of rotation.

1 8.24 A circular plate of radius a and mass m supported by a
ball-and-socket joint at O was rotating about the y axis with a constant

angular velocity to = tjfj when an obstruction was suddenly introduced at A. Assuming that the impact at A is perfectly plastic, determine
immediately after impact (a) the angular velocity of the plate, (b) the
velocity of the mass center G.

roFig. P18.24

18.25 Solve Prob. 18.24, assuming that, before the obstruction

was introduced, the plate was rotating about the i axis with a constant
angular velocity <o = Wgl.

18.26 The angular velocity of a 1000-kg space capsule is

ic - (0.02 rad/s)i + (0.10 rad/s)j when two small jets are activated at
A and B, each in a direction parallel to the z axis. Knowing that the

radii of gyration of the capsule are k r = k z = 1.00 m and k u = 1.25 m, and that each jet produces a thrust of 50 N, determine (a) the required
operating time of each jel if the angular velocity of the capsule is to be
reduced to zero, (b) the resulting change in the velocity of the mass
center G.

18.27 If jet B in Prob. 18.26 is inoperative, determine (a) the
required operating time of jet A to reduce the x component of the
angular velocity a of the capsule to zero, (b) the resulting final angular
velocity &>, (c) the resulting change in the velocity of the mass center G.sFig. P18.26
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Fig. P18.28

3Fig. P18.30

1 A satellite weighing 320 lb has no angular velocity when it
is struck at A by a 0.04-lb meteorite traveling with a velocity
v = -(2400ft/s)i - (1800ft/s)j + (4000 ft/s)k relative to the satel-

lite. Jvnosving that the radii of gyration of the satellite are k x — 12 in.
and k u = k t = 16 in., determine the angular velocity of the satellite in
rpm immediately after the meteorite has become imbedded.

1 8.29 Solve Prob. 18.28, assuming that, initially, the satellite was
spinning about its axis of symmetry with an angular velocity of 12 rpm
clockwise as viewed from the positive .r axis.

18.30 Show that the kinetic energy of a rigid body with a fixed
point O may be expressed as

T = fa*

where <o is the instantaneous angular velocity of the body and I 0L its
moment of inertia about the line of action OL of to. Derive this

expression (a) from Eqs. (9.46) and (18.19), (b) by considering T as the
sum of the kinetic energies of particles P f describing circles of radius p f
about line OL.oFig. P18.32

Denoting respectively by <o, H , and 7' the angular velocity,
the angular momentum, and the kinetic energy of a rigid body with a
fixed point O. (a) prove that

H -u = 2T

(b) show that the angle between a> and H will always be acute.

1 8.32 The body shown is made of slender, homogeneous rods and
may rotate freely in bearings at A and B. If the body is at rest when it
is given a slight push, determine its angular velocity after it has rotated
through 180°.

18.33 Determine the angular velocity of the body of Prob. 18.32
after it has rotated through 90".



KINETICS OF RIGID BODIES IN THREE DIMENSIONS 843

18.34 Determine the kinetic energy of the plate of Prob. 18.4.

18.35 Determine the kinetic energy of the disk of Prob. 18.3.

18.36 Determine the change in kinetic energy of the plate of
Prob. 18.24 due to its impact with the obstruction.

18.37 Determine the change in kinetic energy of the plate of
Prob. 18.25 due to its impact with the obstruction.

1 8.38 Determine the change in the kinetic energy of the satellite

of Prob. 18.28 in its motion about its mass center due to the impact of the meteorite, knowing that before the impact the satellite was spin-
ning about its axis of symmetry with an angular velocity of 12 rpm clockwise as viewed from the positive % axis.

1 8.39 Gear A rolls on the fixed gear B and rotates about the axle
AD of length L = 500 mm which is rigidly attached at D to the
vertical shaft DE. The shaft DE is made to rotate with a constant

angular velocity to, of magnitude 4 rad/s. Assuming that gear A can be
approximated by a thin disk of mass 2 kg and radius a — 100 mm, and

that II = 30°, determine (a) the angular momentum of gear A about
point D, (b) the kinetic energy of gear A.

*18.5. Motion of a Rigid Body in Three Dimen-

sions. As was indicated in Sec. 18.2, the fundamental equa-
tions

2F = ma

VM G = H G

(18.1)

(18.2)

remain valid in the most general case of the motion of a rigid
body. Before Eq. (18.2) could be applied to the three-dimen-
sional motion of a rigid body, however, it was necessary to derive
Eqs. (18.7), which relate the components of the angular momen-
tum H G and of the angular velocity to. It still remains for us to

find an effective and convenient way for computing the compo-
nents of the derivative H G of the angular momentum.

Since H G represents the angular momentum of the body in its
motion relative to centroidal axes GX'Y'Z' of fixed orientation

(Fig. 18.9), and since H G represents the rate of change of H G with
respect to the same axes, it would seem natural to use compo-
nents of to and H G along the axes X', Y', Z' in writing the
relations (18.7). But, since the body rotates, its moments and

products of inertia would change continuously, and it would be
necessary to determine their values as functions of the time. It

is therefore more convenient to use axes x, y, z attached to die
body, thus making sure that its moments and products of inertia
will maintain the same values during the motion. This is permis-u

Fig. P18.39

o
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Fig. 18.9 (repeated)

sible since, as indicated earlier, the transformation of to into H G is

independent of the system of coordinate axes which has been
selected. The angular velocity to, however, should still be defined

with respect to the frame GX'Y'Z' of fixed orientation. The

vector to may then be resolved into components along the rotat-
ing x, ;/, and z axes. Applying the relations (18.7), we obtain the

components of the vector H c along the rotating axes. The vector

H„, however, represents the angular momentum about G of the

body in its motion relative to the frame GX'Y'Z'.
Differentiating with respect to t the components of the angular

momentum in (18.7), we define the rate of change of the vector
II ( . with respect to the rotating frame Gxyz:

(H c ) Cw = H x i + HJ + 4* (18-21)

where i, j, k are the unit vectors along the rotating axes. Recall-

ing from Sec. 15.10 that the rate of change H of the vector H 6
with respect to the frame GX'Y'Z' may be obtained by adding to

(Hg)gxik ^ e vect()r product fi X H 6 , where $2 denotes the angu-
lar velocity of the rotating frame, we write

H c = (H G ) aiy! + Q X Ha (18.22)

where H c = angular momentum of the body with respect to
the frame GX'Y'Z' of fixed orientation

(ll G )ax V : = rate °f change of H G with respect to the rotating
frame Gxyz, to be computed from the relations

(18.7) and (18.21)

SI = angular velocity of the rotating frame Gxyz

Substituting for H G from (18.22) into (18.2), we have

2M = (H C ) CIP + 8 X H C (18.23)

If, as it has been assumed in this discussion, the rotating frame

is attached to the body, its angular velocity $2 is identically equal

to the angular velocity to of the body. There are many applica-

tions, however, where it is advantageous to use a frame of refer-
ence which is not actually attached to the body, but rotates in an

independent manner. For example, if the body considered is
axisymmetrical, as in Sample Prob. 18.5 or Sec. 18.9, it is possible
to select a frame of reference with respect to which the moments

and products of inertia of the body remain constant, but which
rotates less than the body itself, t As a result, simpler expressions

1 More specifically, the frame of reference will have no spin (see Sec. 18.9).
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may be obtained for the angular velocity w and the angular
momentum H„ of the body than would have been possible if the

frame of reference had actually been attached to the body. It is

clear that in such cases the angular velocity of the rotating

frame and the angular velocity u> of the body are different.
*18.6. Euler's Equations of Motion. Extension

of D'Alembert's Principle to the Motion of a Rigid

Body in Three Dimensions. If the x, y, and z axes are

chosen to coincide with the principal axes of inertia of the body,
the simplified relations (18.10) may be used to determine the

components of the angular momentum H G . Omitting the primes
from the subscripts, we write

H G = Ipj + foj + J^Jc (18.24)

where l x , I y , and l z denote the principal centroidal moments of
inertia of the body. Substituting for II,. from (18.24) into (18.23)

and setting £2 = «, we obtain the three scalar equations

y.M t = y>, - (f, - ]>, w ,
2M, = y* v - {l M - /> lWl (18.25)

2M, = 'A - ft - *>,«,

These equations, called Euler's equations of motion after the

Swiss mathematician Leonhard Euler (1707-1783), may be used to analyze the motion of a rigid body about its mass center. In
the following sections, however, we shall use Eq. (18.23) in
preference to Eqs. (18.25), since the former is more general, and
the compact vectorial form in which it is expressed is easier to
remember.

Writing Eq. (18.1) in scalar form, we obtain the three addi-

tional equations

2F X = ma z 2F„ = ma v 2/,; = m ^ (18.26)

which, together with Eider's equations, form a system of six
differential equations. Given appropriate initial conditions, these
differential equations have a unique solution. Thus, the motion

of a rigid body in three dimensions is completely defined by the
residtant and the moment resultant of the external forces acting
on it. This result will be recognized as a generalization of a
similar result obtained in Sec. 16.4 in the case of the plane
motion of a rigid slab. It follows that, in three as well as in two

dimensions, two systems of forces which are equipollent are also
equivalent; i.e., they have the same effect on a given rigid body.
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Considering in particular the system of the external forces

acting on a rigid body (Fig. 18.10a) and the system of the effec- tive forces associated with the particles forming the rigid body
(Fig. 18.10/?), we may state that the two systems — which were
shown in Sec. 14.1 to be equipollent — are also equivalent. This is
the extension of D'Alembert's principle to the three-dimensional

ma
(*)

motion of a rigid body. Replacing the effective forces in

Fig. (18.10b) by an equivalent force-couple system, we verify
that the system of the external forces acting on a rigid body in
three-dimensional motion is equivalent to the system consisting
of the vector ma attached at the mass center G of the body and

the couple of moment H (Fig. 18.11), where H G is obtainedlW

Fig. 18.11((h)

from the relations (18.7) and (18.22). Problems involving the
three-dimensional motion of a rigid body may be solved by

drawing the two sketches shown in Fig. 18. 11 and writing appro- priate equations relating the components or moments of the
external and effective forces (see Sample Prob. 18.3).
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*18.7. Motion of a Rigid Body about a Fixed

Point. When a rigid body is constrained to rotate about a fixed

point O, it is desirable to write an equation involving the mo-
ments about O of the external and effective forces, since this
equation will not contain the unknown reaction at O. While

such an equation may be obtained from Fig. 18.11, it may be
more convenient to write it by considering the rate of change of
the angular momentum H of the body about the fixed point O

.
Fig. 18.12

(Fig. 18.12). Recalling Eq. (14.11), we write

2M = H (18.27)

where H denotes the rate of change of the vector II with
respect to the fixed frame OXYZ. A derivation similar to that

used in Sec. 18.5 enables as to relate H to the rate of change
Woiib 0I Ho Wltn respect to the rotating frame Oxyz. Substi-
tution into (18.27) leads to die equation

2M = (H ) 0l( „ + fi X H (18.28)

where 2M = sum of the moments about O of the forces

applied to the rigid body
H = angular momentum of the body with respect to

the fixed frame OXYZ

(H ) 0l!/J . = rate of change of H with respect to the rotat-
ing frame Oxyz, to be computed from the rela-
tions (18.12)

fi = angular velocity of the rotating frame Oxyzi

I Head lasi paragraph of Sec. 18.5, replacing H c by H .
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8
# 1 8.8 Rotation of a Rigid Body about a Fixed

Axis. We shall use Eq. (18.28), which was derived in the
preceding section, to analyze the motion of a rigid body con-
strained to rotate about a fixed axis AB (Fig. 18.13). First, we
note that the angular velocity of the body with respect to the
fixed frame OXYZ is represented by the vector u directed along
the axis of rotation. Attaching the moving frame of reference

Oxyz to the body, with the z axis along AB, we have to = wk.

Substituting w, = 0, <o„ = 0, to, = to into the relations (18.12), we obtain the components along the rotating axes of the angular
momentum H of the body about 0:

H r = -?„« H„ — — *JW«H, = Lw

Since the frame Oxyz is attached to the body, we have SI = to
and Eq. (18.28) yields

SM = (H ) 0m + to X H
= {-PJ - P,J + f,k)« + tok x (-PJ - P V J + yc)«
= (-FJ - iy + Z,k)a + (-PJ + P„,i)<o 2

The result obtained may be expressed by the three scalar equa-
tions

2A#, = -t„a + P V! J
¦zm v = -v - p x y
2M. = /.«

(18.29)

When the forces applied to the body are known, the angular
acceleration a may be obtained from the last of Eqs. (18.29). The

angular velocity cc is then determined by integration and die
values obtained for a and a may be substitued into the first two

equations (18.29). These equations, plus the three equations
(18.26), which define the motion of the mass center of the body,

may then be used to determine the reactions at the bearings A
and B.

It should be noted that axes other than the ones shown in

Fig. 18.12 may be selected to analyze the rotation of a rigid body
about a fixed axis. In many cases, the principal axes of inertia of
the body will be found more advantageous. It is wise, therefore,
to revert to Eq. (18.28) and to select the system of axes which
best fits the problem under consideration.

If the rotating body is symmetrical with respect to the xy

plane, the products of inertia P T . and P yz are equal to zero and
Eqs. (18.29) reduce to

SM. = 2^=0 2M- = La (18.30)
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which is in accord with the results obtained in Chap. 16. If, on
the other hand, the products of inertia V xs and IL are different
from zero, the sum of the moments of the external forces about

the x and y axes will also be different from zero, even when the
body rotates at a constant rate u. Indeed, in the latter case,

Eqs. (18.29) yield

ZM, = P ¥ y 2M, = -l' T y SM, = (18.31)

This last observation leads us to discuss the balancing of rotat-
ing shafts. Consider, for instance, the crankshaft shown in

Fig. 18.14a, which is symmetrical about its mass center G. We
first observe that, when the crankshaft is at rest, it exerts no

lateral thrust on its supports, since its center of gravity G is
located directly above A. The shaft is said to be statically bal-
anced. The reaction at A, often referred to as a static reaction, is

vertical and its magnitude is equal to the weight W of the shaft.
Let us now assume that the shaft rotates with a constant angular
velocity w. Attaching our frame of reference to the shaft, with its

origin at G, the z axis along AB, and the y axis in the plane of
symmetry of the shaft (Fig. 18.14b), we note that P„ is zero and
that P IJZ is positive. According to Eqs. (18.31), the external forces

must include a couple of moment P (/J w 2 i. Since this couple is formed by the reaction at B and the horizontal component of the
reaction at A, we have

«,-*£J B = -
v a

(18.32)

Since the bearing reactions are proportional to u 2 , the shaft will

have a tendency to tear away from its bearings when rotating at high speeds. Moreover, since the bearing reactions A„ and B,
called dynamic reactions, axe contained in the yz plane, they

rotate with the shaft and cause the structure supporting it to vibrate. These undesirable effects will be avoided if, by rear-
ranging the distribution of mass around the shaft, or by adding
corrective masses, we let V yz become equal to zero. The dynamic

reactions A„ and B will vanish and the reactions at the bearings will reduce to the static reaction A., the direction of which is
fixed. The shaft will then be dynamically as well as statically
balanced.

(,'i

'

(«)

B

u

C.

~jhew

K ^ A

n;
(6)

Fig. 18.14
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SAMPLE PROBLEM 18.3

A slender rod AB of length L = 8 f t and weight YV = 40 lb is pinned at
A to a vertical axle DE which rotates with a constant angular velocity

a of 15 rad/s. The rod is maintained in position by means of a hori-
zontal wire BG attached to the axle and to the end B of the rod.

Determine the tension in the wire and the reaction at A.

he
Soluiii'i The effective forces reduce to the vector »na attached at

C and the couple Hq. Since G describes a horizontal circle of radius
7 = \h cos ft at the constant rate co, we have

a = a„ = -mH = -(JLoosj8)« 8 I = -(450ft/s 2 )I

ml = -^-(-4501) = -(559 lb)I
s

Determination of H e . We first compute the angular momentum

H„. Using the principal centroidal axes of inertia x, y, z, we write

I = &nl? T a = I, = fatf
o. = — w cos B «, = 0} sin R u t =

H G = I>,i + fytj + / r ",k
H G = —femL 2 u cos R i

The rate of change H c of H c with respect to axes of fixed orientation is

obtained from Eq. (18.22). Observing that the rate of change (H c ) Cj . K
of H c with respect to the rotating frame Cxijz is zero, and that the
angular velocity SI of that frame is equal to the angular velocity tc of
the rod, we have

H = (H„ W + a X Ho
H c = + ( -u cos B i + a sin R j) X ( —fenJfu cos B i)
H c = -^mL i u t sin B cos B k = (645 lb -ft)k

of Motion. Expressing that the system of the external
forces is equivalent to the system of the effective forces, we write

ZM A = 2(MA ff :
8.93J X (-'I'D + 21 X (-40J) = 3.46J X (-5591) + 645K

(6.93T - 80)K = (1934 + B45)K

IF = SF etr : A x \ + A Y ] + A Z K - 3841 - 40J = -5591
\ - (1751b)I + (401b)J -*

Remark The value of T could have been obtained from H,, and

Eq. ( 18.28). However, the method used here also yields the reaction at
A. Moreover, it draws attention to the effect of the asymmetry of the

rod on the solution of the problem by clearly showing that both
the vector ma and the couple H c must be used to represent the effec-
tive forces.
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SAMPLE PROBLEM 18.4

Two 100- mm rods A and B, each of mass 300 g, are welded to the shaft
CD which is supported by hearings at C and D. If a couple M of
magnitude equal lo 6 N -m is applied to the shaft, determine the compo-
nents of the dynamic reactions at C and D at the instant when the shaft

has reached an angular velocity of 1200 rpm. Neglect the moment of
inertia of the shaft itself.

he
it O. We attach to the body the frame of

reference Oxyz and note that the axes chosen are not principal axes of

inertia for the body. Since the body rotates about the x axis, we have

u t = a and u v a <o. = 0. Substituting into Eqs. (18.12),

ff, = 2> H„ = -i> H z = -P„ w
H = (',! - P t J - P„k)<o

; the External bout O. Since the frame of

reference rotates with the angular velocity to, Eq. (18.28) yields

2M = (H ) 0xV z + « X H
= (I r i - PJ - i J «k)« +MX (/,i - P„j - P„k)co
= IjA - (P^a - P„to 2 )j - (f„a + P Ty o> 2 )k (1)

The external forces consist of the weights
of the shaft and rods, the couple M, the static reactions at C and D, and

the dynamic reactions at C and D. Since the weights and static
reactions are balanced, the external forces reduce to the couple M and

the dynamic reactions C and D as shown in the figure. Taking mo-
ments about O, we have

2M = Li x (DJ + D.k) + Mi = Mi - DJ.j + D„Lk

Equating the coefficients of the unit vector i in (1) and (2):

M = I,a U a 2(Jmc 2 )tt a = 3M/2mc 2

Equating the coefficients of k and j in (1) and (2):

O, = -(*> + i> 2 )//- D t = (i> - P„u*)/L

Using the parallel-axis theorem, and noting that the product of
inertia of each rod is zero with respect to centroidal axes, we have

P, y = Vmxy = m(jL)(Jc) = $mLc
?„ = y.m& = m(\L)($c) = %mLc

Substituting into (3) the values found for P ly , P X! , and a:

O* = ~ t% (M/c) - imcu* D, = |(M/e) - Imcw*

Substituting to = 1200 rpm = 125.7 rad/s, a = 0.100 m, M = 6N-m,
and m = 0.300 kg, we have

(2)

(3)

-129.8 N D. = -36.8 N

Dynamic Reaction at C Using a frame of reference attached at D,
we obtain equations similar to Eqs. (3), which yield

C„ = -152.2 N C. = -155.2 N
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SAMPLE PROBLEM 18.5

A homogeneous disk of radius r and mass m is mounted on an axle OG

of length L and negligible mass. The axle is pivoted at the fixed point
O and the disk is constrained to roll on a horizontal floor. Knowing

that the disk rotates counterclockwise at the constant rate coj about the
axle, determine (a) the force (assumed vertical) exerted by the floor on

the disk, (b) the reaction at the pivot O.

l
Q— «,)

e
Solution. The effective forces reduce to the vector ma attached at

C and the couple H G . Recalling from Sample Prob. 18.2 that the axle
rotates about the y axis at the rate w 2 = ru^/L, we write

ma = — mLtc^i — — m/^rio,//,) 2 ! = — (mr 2 w\/L)i (1)

Determination of H n . We recall from Sample Prob. 18.2 that the
angular momentum of the disk about C is

M 1 -*)
where H c is resolved into components along the rotating axes x', y',
«', with x' along OG and y' vertical. The rate of change H (; of H„
with respect to axes of fixed orientation is obtained from Eq. (18.22).

Noting that the rate of change (Hg)^^- of H G with respect to the
rotating frame is zero, and that the angular velocity J2 of that frame is

SI = — tooi = —i/^)j

we have

H B (H, ;l G)G*tft- + ^ X H„

= o-^ jx ^,(i-^j)
= £mr 2 (r/L)w?k (2)

Equation* of Motion. Expressing that the system of the external
forces is equivalent to the system of the effective forces, we write

2M = 2(M ) eff : Li X (.Vj - Wj) = H c

(N - W)Lk = i»nr 2 (r/L)wf k

N = W + $mr(r/Lful S = \\V + hnr(r/i;?^\j (3) -«

2F = SF R + .Vj - Wj = ma

Substituting for .V from (3), for ma from (1), and solving for R:

R = -(mr 2 u 2 /L)i - lmr(r/L) 2 o>l j

miVr/. r A

R = — r-v+m

852
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PROBLEMS

1 8.40 Determine the rate of change H, ; of the angular momentum
H R of the disk of Prob. 18.2.

1 8.41 Determine the rate of change H G of the angular momentum
H c of the disk of Prob. 18.3, assuming that the angular velocity tc of
axle AB remains constant.

1 8.42 Determine the rate of change H 6 . of the angular momentum

H„ of the plate of Prob. 18.4, assuming that its angular velocity u
remains constant.

1 8.43 Determine the rate of change H^, of the angular momentum

H A of the disk of Prob. 18.6.

1 8.44 Determine the rate of change H c of the angular momentum
H G of the plate of Prob. 18.4 if, at the instant considered, the angular

velocity u of the plate is 4 rad/s and is increasing at the rate of
8 rad/s 2 .

1 8.45 Determine the rate of change H G of the angular momentum
H n of the disk of Prob. 18.3 if axle AB has an angular acceleration a.

18.46 Two 600-mm rods BE and CF, each of mass 4 kg, are
attached to the shaft AD which rotates at a constant speed of 20 rad/s.
Knowing that the two rods and the shaft lie in the same plane, deter-
mine the dynamic reactions at A and D.

18.47 Two triangular plates weighing 10 lb each are welded to a
vertical shaft AB. Knowing that the system rotates at the constant rate
co = 6 rad/s, determine the dynamic reactions at A and B.7Fig. P18.47
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18.48 Each element of the crankshaft shown is a homogeneous

rod of weight «•' per unit length. Knowing that the crankshaft rotates
with a constant angular velocity to, determine the dynamic reactions at
A and B.

Fig. P18.49

1
fe^

Fig. P18.48

1 8.49 A thin homogeneous square plate of mass m and side a is
welded to a vertical shaft AB with which it forms an angle of 45°.
Knowing that the shaft rotates with a constant angular velocity w,

determine the force-couple system representing the dynamic reaction
at A.

18.50 The shaft of Prob. 18.48 is initially at rest (a - 0) and is

accelerated at the rate a = «b = 100 rad/s 2 . Knowing that w — 4 lb/ft
and o=3 in., determine (a) the couple M required to cause the

acceleration, (b) the corresponding dynamic reactions at A and B.

18.51 The system of Prob. 18.47 is initially at rest (to = 0) and has

an angular acceleration a = (30 rad/s'^j. Determine (n) the couple VI
required to cause the acceleration, (/.») the corresponding dynamic
reactions at A and B.e0.1 in

0.1 in

Fig. P18.53 and P18.54

18.5! The square plate of Prob. 18.49 is at rest (« = 0) when a

couple of moment .\/ u j is applied to the shaft. Determine (a) the
angular acceleration of the plate, (b) the force-couple system repre-
senting the dynamic reaction at A at that instant.

Two uniform rods CD and DE, each of mass 2 kg, are

welded to the shaft AB, which is at rest. If a couple M of magnitude
ION Mil is applied to the shaft, determine the dynamic reactions at A
and B.

18.54 Two uniform rods CD and DE, each of mass 2 kg, are
welded to the shaft AB. At the instant shown the angular velocity of

the shaft is 15 rad/s and the angular acceleration is 100 rad/s 2 , both

counterclockwise when viewed from the positive .r axis. Determine
(a) the couple M which must be applied to the shaft, (h) the corre-

sponding dynamic reactions at A and B.
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18.55 Two L-shaped arms, each weighing 6 lb, are welded at the
third points of the 3-ft shaft AB. A couple M = (15 lb ¦ ft)k is applied
to the shaft, which is initially at rest. Determine {a) the angular
acceleration of the shaft, (b) the dynamic reactions at A and B as the
shaft reaches an angular velocity of 10 rad/s.

1 8.56 The blade of a portable saw and the rotor of its motor have
a combined mass of 1.2 kg and a radius of gyration of 35 mm. Deter-
mine the couple that a man must exert on the handle to rotate the saw

about the y axis with a constant angular velocity of 3 rad/s clock-
wise, as viewed from above, when the blade rotates at the rate

u: = 1800 rpm as shown.

Fig. P18.56

18.57 A three-bladed airplane propeller has a mass of 120 kg and

a radius of gyration of 900 mm. Knowing that the propeller rotates at

1500 rpm, determine the moment of the couple applied by the propel-
ler to its shaft when the airplane travels in a circular path of 360- m
radius at 600 km/h.o

Fig. P18.55

1 8.58 The flywheel of an automobile engine, which is mounted on

the crankshaft, is equivalent to a 16-in. -diameter steel plate of {jj-in.
thickness. At a time when the flywheel is rotating at 4000 rpm the
automobile is traveling around a curve of 600-ft radius at a speed of
60 mi/h. Determine, at that time, the magnitude of the couple exerted

by the flywheel on the horizontal crankshaft. (Specific weight of
steel = 490 lb/ft 3 .)

18.59 The essential structure of a certain type of aircraft turn
indicator is shown. Springs AC and BD are initially stretched and exert
equal vertical forces at A and B when the airplane is traveling in a

straight path. Knowing that the disk weighs Jib and spins at the rate
of 10,000 rpm, determine the angle through which the yoke will rotate
when the airplane executes a horizontal turn of radius 2500 ft at a

speed of 500 mi/h. The constant of each spring is 2 lb/in. Fig. 18.59
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Fig. P18.60

1 8.60 A thin homogeneous wire, of mass m per unit length and in
the shape of a circle of radius r, is made to rotate about a vertical shaft

with a constant angular velocity <o. Determine the bending moment in

the wire (a) at point C, (b) at point E, (c) at point B. (Neglect the effect
of gravity.)

1 8.61 A thin homogeneous disk of mass m and radius r spins at the
constant rate to 2 about a horizontal axle held by a fork-ended vertical
rod which rotates at the constant rate w,. Determine the couple M

exerted by the rod on the disk.

hFig. P18.61

1 8.62 A thin ring of radius a is attached by a collar at A to a
vertical shaft which rotates with a constant angular velocity a. Derive

an expression (a) for the constant angle ft that the plane of the ring
forms with the vertical, (b) for the maximum value of a for which the

ring will remain vertical (B — 0).

Fig. 18.62
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1 8.63 A uniform disk of radius r is welded to a rod AB of negligi-

ble weight, which is attached to the pin of a clevis which rotates with a
constant angular velocity u. Derive an expression (a) for the constant

angle /i that the rod forms with the vertical, (b) for the maximum value
of to for which the rod will remain vertical (B = 0).

1 8.64 A disk of mass m and radius r rotates at a constant rate w 2

with respect to the arm OA, which itself rotates at a constant rate co t

about the y axis. Determine the force-couple system representing the
dynamic reaction at O.

5
Fig. P18.64

1 8.65 Two disks, each of mass 5 kg and radius 300 mm, spin as
shown at 1200 rpm about the rod AB, which is attached to shaft CD.

The entire system is made to rotate about the z axis with an angular
velocity fi of 60 rpm. (a) Determine the dynamic reactions at C and D

as the system passes through the position shown, (b) Solve part a
assuming that the direction of spin of disk B is reversed.

18.66 A stationary horizontal plate is attached to the ceiling by
means of a fixed vertical tube. A wheel of radius a and mass m is

mounted on a light axle AC which is attached by means of a clevis at A
to a rod AB fitted inside the vertical tube. The rod AB is made to

rotate with a constant angular velocity $2 causing the wheel to roll on
the lower face of the stationary plate. Determine the minimum angu-
lar velocity il for which contact is maintained between the wheel and

the plate. Consider the particular cases (a) when the mass of the wheel

is concentrated in the rim, (b) when the wheel is equivalent to a thin
disk of radius a.

1 8.67 Assuming that the wheel of Prob. 18.66 weighs 8 lb, has a
radius a = 4 in. and a radius of gyration of 3 in., and that R = 20 in.,

determine the force exerted by the plate on the wheel when
ii = 25 rad/s.F

Fig. P18.63

Fig. P18.65

Rotating -
rod

fl- - -

Fig. P18.66
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Fig. P18.68

hi
18.68 A thin homogeneous disk of mass 800 g and radius 100 mm

rotates at a constant rate io, = 20 rad/s with respect to the arm ARC,
which itself rotates at a constant rate w, = 10 rad/s about the x axis.
For the position shown, determine the dynamic reactions at the bear-

ings D and E.

g(b) A

Fig. 18.15

Fig. P18.69

1 8.69 A slender homogeneous rod Ah of mass m and length L is

made to rotate at the constant rate to, about the horizontal x axis, while
the vertical plane in which it rotates is made to rotate at the constant

rate u t about the vertical y axis. Express as a function of the angle
(a) the couple M,i required to maintain the rotation of the rod in the

vertical plane, (b) the couple A/ 2 j required to maintain the rotation of
that plane.

*18.9. Motion of a Gyroscope. Eulerian Angles.

A gyroscope consists essentially of a rotor which may spin freely
about its geometric axis. When mounted in a Cardan's suspen-

sion (Fig. 18.15), a gyroscope may assume any orientation, but its
mass center must remain fixed in space. In order to define the
position of a gyroscope at a given instant, we shall select a fixed

frame of reference OXYZ, with the origin O located at the mass
center of the gyroscope and the Z axis directed along the line

defined by the bearings A and A' of the outer gimbal, and we
shall consider a reference position of the gyroscope in which the
two gimbals and a given diameter DD' of the rotor are located in
the fixed Y7, plane (Fig. 18.15a). The gyroscope may be brought
from this reference position into any arbitrary position

(Fig. 18.15b) by means of the following steps: (1) a rotation of the
outer gimbal through an angle <J> about the axis AA ', (2) a rotation
of the inner gimbal through about BB', (3) a rotation of the
rotor through \y about CC. The angles <j>, 0, and y are called the

Eulerian angles; they completely characterize the position of the

gyroscope at any given instant. Their derivatives <<>, 0, and ii

define, respectively, the rate of precession, the rate of nutation,

and the rate of spin of the gyroscope at the instant considered.
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In order to compute the components of the angular velocity
and of the angular momentum of the gyroscope, we shall use a
rotating system of axes Oxyz attached to the inner gimbal, with
the y axis along RB' and the z axis along CC (Fig. 18.16). These
axes are principal axes of inertia for the gyroscope but, while
they follow it in its precession and nutation, they do not spin.
For diat reason, they are more convenient to use than axes

actually attached to the gyroscope. We shall now express the

angular velocity w of the gyroscope with respect to the fixed
frame of reference OXYZ as the sum of three partial angidar
velocities corresponding respectively to the precession, the
nutation, and the spin of the gyroscope. Denoting by i, j, k the
unit vectors along the rotating axes, and by K the unit vector
along the fixed Z axis, we have

a = <SK + 0j + >^k (18.33)

Since the vector components obtained for to in (18.33) are not

orthogonal (Fig. 18.16), we shall resolve the unit vector K into
components along the x and z axes; we write

K = -sin i + cos k

and, substituting for K into (18.33),

(18.34)

)03 = -6 sin i + 0j + (^ + <j> cos 0)k (18.35)

Since the coordinate axes are principal axes of inertia, the com-

ponents of the angular momentum H may be obtained by

multiplying the components of to by the moments of inertia of
the rotor about the x, y, and z axes, respectively. Denoting by J
the moment of inertia of the rotor about its spin axis, by /' its
moment of inertia about a transverse axis through O, and ne-
glecting the mass of the gimbals, we write

H = -I'<j> sin i + l'6\ + ]$ + <£ cos 0)k (18.36)

Recalling that the rotating axes are attached to the inner
gimbal, and thus do not spin, we express their angular velocity as
the sum

fi = <j>K + B\ (18.37)

or, substituting for K from (18.34),

Q, = -<f,sin0i + 0j +(i>cos0k (18.38)
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F-<?

Fig. 18.17

Substituting for H and fl from (18.36) and (18.38) into the
equation

2M = (H ) 0xys + a X Ho (18.28)

we obtain the three differential equations

2M, = -I'(ij> sin + 20\;> cos B) + I0(i + cj> cos 0)

2M y = I'(0 - o 2 sin cos 0) + J<j> sin 6(j, + <j> cos 0) (18.39)

2M, = J-j-W- + 9<:os0)

The equations (18.39) define the motion of a gyroscope sub-

jected to a given system of forces when the mass of its gimbals is

neglected. They may also be used to define the motion of an
(^asymmetrical body (or body of revolution) attached at a point
on its axis of symmetry, or the motion of an axisymmctrical body
about its mass center. While the gimbals of the gyroscope helped
us visualize the Eulerian angles, it is clear that these angles may

be used to define the position of any rigid body with respect to
axes centered at a point of the body, regardless of the way in

which the body is actually supported.

Since the equations (18.39) are nonlinear, it will not be possi-

ble, in general, to express the Eulerian angles <•>, 0, and \p as
analytical functions of the time t, and numerical methods of
solution may have to be used. However, as we shall see in the

following sections, there are several particular cases of interest
which may be analyzed easily.

* 18.10. Steady Precession of a Gyroscope. We

shall consider in this section the particular case of gyroscopic

motion in which the angle 0, the rate of precession <>, and
the rate of spin -^ remain constant. We propose to determine
the forces which must be applied to the gyroscope to maintain

this motion, known as the steady precession of a gyroscope.

Instead of applying the general equations (18.39), we shall
determine the sum of the moments of the required forces by

computing the rate of change of the angular momentum of the
gyroscope in the particular case considered. We first note that

the angular velocity to of the gyroscope, its angular momentum
H , and the angular velocity fl of the rotating frame of reference

(Fig. 18.17) reduce, respectively, to

63 = — <j> sin i + a g k
H = -/'<j>sin0i + Zw.k

SI = — d> sin i + 4> cos k

(18.40)

(18.41)

(18.42)

where u s = ii- + 9 cos = component along the spin axis of the
total angular velocity of the gyroscope



KINETICS OF RIGID BODIES IN THREE DIMENSIONS 861

Since 8, 6, and \p are constant, the vector H is constant in

magnitude and direction with respect to the rotating frame of
reference, and its rate of change (H ) 0lIW with respect to that
frame is zero. Thus Eq. (18.28) reduces to

2M = X H (18.43)

which yields, after substitutions from (18.41) and (18.42),

y.M = (I« e - i'<j> cos 0)6 sin j (18.44)

Since the mass center of the gyroscope is fixed in space, we

have, by (18.1), 2F = 0; thus, the forces which must be applied

to the gyroscope to maintain its steady precession reduce to a
couple of moment equal to the right-hand member of
Eq. (18.44). We note that this couple should he applied about an
axis perpendicular to the precession axis and to the spin axis of
the gyroscope (Fig. 18.18).

Fig. 18.18

In the particular case when the precession axis and the spin

axis are at a right angle to each other, we have = 90° and
Eq. (18.44) reduces to

2M = iU) (18.45)

Thus, if we apply to the gyroscope a couple M about an axis

perpendicular to its axis of spin, the gyroscope will precess about

an axis perpendicular to both the spin axis and the couple axis, in

a sense such that the vectors representing respectively the spin,
the couple, and the precession form a right-handed triad
(Fig. 18.19).

Because of the relatively large couples required to change the

orientation of their axles, gyroscopes are used as stabilizers in
torpedoes and ships. Spinning bullets and shells remain tangent
to their trajectory because of gyroscopic action. And a bicycle is

easier to keep balanced at high speeds because of the stabilizing

effect of its spinning wheels. However, gyroscopic action is not
always welcome and must be taken into account in the design of

Precession axis

Couple axis

Spin axis

Fig. 18.19
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Fixed

direction

0
Fig. 18.20

r
bearings supporting rotating shafts subjected to forced preces-
sion. The reactions exerted by its propellers on an airplane which
changes its direction of flight must also be taken into considera-
tion and compensated for whenever possible.

* 18.1 1. Motion of an Axisymmetrical Body under

No Force. \\c shall consider in this section the motion about

its mass center of an axisymmetrical body under no force, except
its own weight. Examples of such a motion are furnished by
projectiles, if air resistance is neglected, and by artificial satellites
and space vehicles after burnout of their launching rockets.

Since the sum of the moments of the external forces about the

mass center G of the body is zero, Eq. (18.2) yields H G = 0. It
follows that the angular momentum H G of the body about C is
constant. Thus, the direction of H - is fixed in space and may be
used to define the Z axis, or axis of precession (Fig. 18.20).
Selecting a rotating system of axes Gxyz with the z axis along the

axis of symmetry of the body and the x axis in the plane defined
by the Z and z axes, we have

11 x = -H 6 waB 1I V = 11; = H G cos (18.46)

where represents the angle formed by the Z and % axes, and H G
denotes the constant magnitude of the angular momentum of the
body about G. Since the x, y, and z axes are principal axes of
inertia for the body considered, we may write

H. = I'o H v = l' Uy H. = la. (18.47)

where / denotes the moment of inertia of the body about its axis
of symmetry, and V its moment of inertia about a transverse axis

through G. It follows from Eqs. (18.46) and (18.47) that

w. = —
H c sin I

V «„ = !^ll (18.48)

The second of the relations obtained shows that the angular
velocity to has no component along the ;/ axis, i.e., along an axis

perpendicular to the Zz plane. Thus, the angle 6 formed by the
Z and z axes remains constant and the body is in steady precession
about the 7, axis.

Dividing the first and third of the relations (18.48) member by

member, and observing from Fig. 18.21 that —u3 x /io t = tan y,
we obtain the following relation between the angles y and that
the vectors w and H G respectively form with the axis of symme-
try of the body:

Fig. 18.21
tan y = — tan I (18.49)

v -



Z= i

Fixed direction •
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Z ^— Fixed direction

(b)

Fig. 18.22

There are two particular cases of motion of an axisymmetrical

body under no force which involve no precession: ( 1 ) If the body

is set to spin about its axis of symmetry, we have a n — and, by
(18.47), H x = 0; the vectors u and II have the same orientation
and the body keeps .spinning about its axis of symmetry

(Fig. 18.22a). (2) If the body is set to spin about a transverse axis,

we have a t = and, by (18.47), H z = 0; again a and II C have
the same orientation and the body keeps spinning about the
given transverse axis (Fig. 18.22fo).

Considering now the general case represented in Fig. 18.21,
we recall from Sec. 15.12 that the motion of a body about a fixed

point — or about its mass center — may be represented by the
motion of a body cone rolling on a space cone. In the case of
steady precession, the two cones are circular, since the angles y

and — y that the angular velocity w forms, respectively, with
the axis of symmetry of the body and with the precession axis are

constant. Two cases should be distinguished:

1. 2 < /'. This is the case of an elongated body, such as the
space vehicle of Fig. 18.23. By (18.49) we have y < 6; the
vector to lies inside the angle ZCz; the space cone and the
body cone are tangent externally; the spin and the precession
are both observed as counterclockwise from the positive z

axis. The precession is said to be direct.
2. / > /'. This is the case of a flattened body, such as the satel-

lite of Fig. 18.24. By (18.49) we have y > 0; since the vector
u must lie outside the angle ZGz, the vector i£k has a sense

opposite to that of the z axis; the space cone is inside the body-
cone; the precession and the spin have opposite senses; the
precession is said to be retrograde.

Space cone

tone

Fig. 18.23



S
SAMPLE PROBLEM 18.6

A space satellite of mass m is known to be dynamically equivalent to
two thin disks of equal mass. The disks are of radius a — 800 mm and

are rigidly connected by a light rod of length 2a. Initially the satellite
is spinning freely about its axis of symmetry at the rate co = 60 rpm.
A meteorite, of mass tHq = m/1000 and traveling with a velocity v of
2000 m/s relative to the satellite, strikes the satellite and becomes

embedded at C. Determine (a) the angular velocity of the satellite
immediately after impact, (b) the precession axis of the ensuing mo-
tion, (c) the rates of precession and spin of the ensuing motion.

ts
Solution. Moments of Inertia. We note that the axes shown are

principal axes of inertia for the satellite and write

l = l t = ^ma* l' = I t = l v = 2[\(lm)a 2 + (£m)« 2 ] =f mo*

Principle of Impulse and Momentum. We consider the satellite and

the meteorite as a single system. Since no external force acts on this

system, the momenta before and after impact are equipollent. Taking
moments about G we write

-a\ x m v k + Iu^k = H
H = -m o ai + Jco k (1)

Angular Velocity after Impact. Substituting the values obtained for

the components of Hg and for the moments cf inertia into

H, = to ", = to H, = to

we write/— m n v a a — I'oi x = ^rna 2 u I = I'u v/tOg = /CO

5 ma "
CO, = fa> (2)

For the satellite considered we have co = 60 rpm = 6.28 rad/s,
m /m = 1/1000, a = 0.800 rn, and t>„ = 2000 m/s; we find

to = —2 rad/s «,=0 oj = 6.28 rad/s

co = v^r + w f = 6-59 rad/s tan y — = +0.3185uto = 63.0 rpmsPrecession Axis. Since, in free motion, the direction of the angular
momentum H c is fixed in space, the satellite will precess about this

direction. The angle 6 formed by the precession axis and the z axis is

— h, m n v n a 2mriDn
// _r .38. -^0tan 6 = ¦

h, 7co maic f
= 0.796

Rates of Precession and Spin. We sketch the space and body cones
for the free motion of the satellite. Using the law of sines, we compute
the rates of precession and spin.

sin y sin (0 — y)

i'i — 30.7 rpm C — 36.0 rpm
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PROBLEMS

1 8.70 The rate of steady precession <f> of the cone shown about the
vertical is observed to be 30 rpm. Knowing that r = 75 mm and
h = 300 mm, determine the rate of spin i^ of the cone about its axis of
symmetry if B = 120°.

.
Fig. P18.70

1 8.71 Solve Prob. 18.70, assuming the same rate of steady preces-
sion and ft = 60°.

1 8.72 A 5-lb disk of 9-in. diameter is attached to the end of a rod

AB of negligible weight which is supported by a ball-and-socket joint
at A. If the rate of steady precession <j> of the disk about the vertical
is observed lo be 24 rpm, determine the rate of spin i^ of the disk
about AB when B = 60°.r<9CU>

Fig. P18.72

18.73 Solve Prob. 18.72, assuming the same rate of steady pre-
cession and fi = 30°.
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A

.
Fig. P18.74, P18.75, and 18.76

1 8.74 The top shown is supported at the fixed point O. Denoting
by / and /', respectively, the moments of inertia of the top about its
axis of symmetry and about a transverse axis through O, show that the
condition for steady precession is

(Iw, - J'(j) cos (9)0 = We

where </> is the rate of precession and u z the component of the angular
velocity along the axis of symmetry of the top.

Show that, if the rate of spin C of a top is very large
compared to its rate of precession £, the condition for steady pre-
cession is Ai<j> ;r Wc.

The top shown weighs 0.2 lb and is supported at the fixed
point O. The radii of gyration of the top with respect to its axis of
symmetry and with respect to a transverse axis through O are 0.75 in.
and 1.75 in., respectively. It is known that = 1.50 in. and that the

rate of spin of the top with respect to its axis of symmetry is 1600 rpm.
(a) Using the relation of Prob. 18.74, determine the two possible rates
of steady precession corresponding to = 30°. (b) Determine the
relative error introduced when the slower of the two rates obtained in

part a is approximated by the relation of Prob. 18.75.

'8-77 If the earth were a sphere, the gravitational attraction of
the sun, moon, and planets would at all times be equivalent to a single
force R acting at the mass center of the earth. However, the earth is

actually an oblate spheroid and the gravitational system acting on the
earth is equivalent to a force R and a couple M. Knowing that the
effect of the couple M is to cause the axis of the earth to precess about

the axis GA at the rate of one revolution in 25,800 years, determine the
average magnitude of the couple M applied to the earth. Assume that

the average density of the earth is 5.51, that the average radius of the
earth is 3960 mi, and that T= imR 2 . (Note. This forced precession is
known as the precession of the equinoxes and is not to be confused
with the free precession discussed in Prob. 18.85.)

Fig. P18.77
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18.78 A high-speed photographic record shows that a certain

projectile was fired with a horizontal velocity v of 2000 ft/s and with its axis of symmetry forming an angle /J = 3° with the horizontal. The
rate of spin if> of the projectile was 6000 rpm, and the atmospheric
drag was equivalent to a force D of 25 lb acting at the center of
pressure C p located at a distance c = 3 in. from C (a) Knowing that
the projectile weighs 40 lb and has a radius of gyration of 2 in. with
respect to its axis of symmetry, determine its approximate rate of
steady precession, (b) If it is further known that the radius of gyration

of the projectile with respect to a transverse axis through G is 8 in.,
determine the exact values of the two possible rates of precession.

8
Fig. P18.78

1 8.79 The essential features of the gyrocompass are shown. The
rotor spins at the rate -y about an axis mounted in a single gimbal,
which may rotate freely about the vertical axis AB. The angle formed
by the axis of the rotor and the plane of the meridian is denoted by
and the latitude of the position on the earth is denoted by \. We note
that the line OC is parallel to the axis of the earth and we denote by u e

the angular velocity of the earth about its axis.
(a) Show that the equations of motion of the gyrocompass are

if) + \0,u, cos X sin — I'u'j cos 2 X sin cos =0
Iu, = "

where ml is the component of the total angular velocity along the axis
of the rotor, and I and /' are the moments of inertia of the rotor with

respect to its axis of symmetry and a transverse axis through O, respec-
tively.

(h) Neglecting the term containing to 2 , show that, for small values of
8, we have

and that the axis of the gyrocompass oscillates about the north-south
direction.lFig. P18.79

18.80 Show that, for an axisymmetrical body under no force, the

rates of precession and spin may be expressed, respectively, as

and

*-*

; H a cos ft II' - I.
v= IT

where H g is the constant value of the angular momentum of the body.
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18.81 (a) Show that, for an axisymmetrical body under no force,
the rate of precession may be expressed as

lu.
•:> =

v cos e

where a.-, is the component of u along the axis of symmetry of the
body, (b) Use this result to check that the condition (18.44) for steady
precession is satisfied by an axisymmetrical body under no force.

1 8.82 Show that the angular velocity vector to of an axisymmetri-
cal body under no force is observed from the body itself to rotate about
the axis of symmetry at the constant rate

where u t is the component of to along the axis of symmetry of the body.

eFig. P18.84

1 8.83 For an axisymmetrical body under no force, prove (a) that
the rate of retrograde precession can never be less than twice the rate

of spin of the body about its axis of symmetry, (fo) that in Fig. 18.24 the
axis of symmetry of the body can never lie within the space cone.

1 8.84 Determine the precession axis and the rates of precession
and spin of a rod which is given an initial angular velocity to of 12 rad/s
in the direction shown.

18.85 Using the relation given in Prob. 18.82, determine the
period of precession of the north pole of the earth about the axis of

symmetry of the earth. The earth may be approximated by an oblate

spheroid of axial moment of inertia / and of transverse moment of

inertia /' = 0.9967/. (Note. Actual observations show a period of

precession of the north pole of about 432.5 mean solar days; the
difference between the observed and computed periods is due to the

fact that the earth is not a perfectly rigid body. The free precession
considered here should not be confused with the much slower preces-
sion of the equinoxes, which is a forced precession. See Prob. 18.77.)

1 8.86 Determine the precession axis and the rates of precession
and spin of the satellite of Prob. 18.28 after the impact.

18.87 Determine the precession axis and the rates of precession
and spin of the satellite of Prob. 18.28 knowing that, before impact, the
angular velocity of the satellite was to = —(12 rpm)i.
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1 8.88 The space capsule has no angular velocity when the jet at A
is activated for 1 s in a direction parallel to the X axis. Knowing that
the capsule has a mass of 1000 kg, that its radii of gyration are
k T = k u — 1.00 m and fc, = 1.25 m, and that the jet at A produces a
thrust of 50 N, determine the axis of precession and the rates of

precession and spin after the jet has stopped.

18.89 The space capsule has an angular velocity a =
(0.02rad/s)j + (0.10 rad/s)k when the jet at B is activated for Is
in a direction parallel to the x axis. Knowing that the capsule has a
mass of 1000 kg, that its radii of gyration are k r = fc_ = 1.00m and
k z = 1.25 m, and that the jet at B produces a thrust of 50 N, determine
the axis of precession and the rates of precession and spin after the jet
has stopped.

1.25 m

8
25 m

Fig. P18.88 and P18.89

1 8.90 The space station shown is known to precess about the fixed
direction OC at the rate of one revolution per hour. Assuming that the

station is dynamically equivalent to a homogeneous cylinder of length
100 ft and radius 10 ft, determine the rate of spin of the station about

its axis of symmetry.

10 ft

Fig. P18.90

18.91 The link connecting portions A and B of the space station of
Prob. 18.90 may be severed to allow each portion to move freely. Each
portion of the station is dynamically equivalent to a cylinder of length
50 ft and radius 10 ft. Knowing that, when the link is severed, the
station is oriented as shown, determine for portion B the axis of

precession, the rate of precession, and the rate of spin about the axis of
symmetry.

18.92 Solve Sample Prob. 18.6, assuming that the meteorite
strikes the satellite at (.' with a velocity v = —(2000 m/s)i.

1 8.93 After the motion determined in Sample Prob. 18.6 has been

established, the rod connecting disks A and B of the satellite breaks,
and disk A moves freely as a separate body. Knowing that the rod and
the z axis coincide when the rod breaks, determine the precession axis,

the rate of precession, and the rate of spin for the ensuing motion of
disk A.
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9
1 8.94 The angular velocity vector of a football which has just

been kicked is horizontal, and its axis of symmetry OC is oriented as
shown. Knowing that the magnitude of the angular velocity is 180 rpm
and that the ratio of the axial and transverse moments of inertia is

///' = 1/3, determine (a) the orientation of the axis of precession OA,
(h) the rates of precession and spin.

1 8.95 A slender homogeneous rod OA of mass m and length L is

supported by a ball-and-socket joint at O and may swing freely under
its own weight. If the rod is held in a horizontal position {0 — 90°) and

given an initial angular velocity <i = y/Hg/I. about the vertical OB,
determine (a) the smallest value of in the ensuing motion, (b) the
corresponding value of the angular velocity <;> of the rod about OB.

(Hint. Apply the principle of conservation of energy and the principle

of impulse and momentum, observing that, since 2Af 0B ss 0, the com-
ponent of II along OB must be constant.)

deFig. P18.97

18.96 A slender homogeneous rod OA of mass m and length L is

supported by a ball-and-socket joint at O and may swing freely under
its own weight. If the rod is held in a horizontal position (9 = 90°),
what initial angular velocity <£ should be given to the rod about the
vertical OB if the smallest value of in the ensuing motion is to be
60°? (See hint of Prob. 18.95.)

18.97 The gimbal ABA'B' is of negligible mass and may rotate
freely about the vertical AA'. The uniform disk of radius a and mass m
may rotate freely about its diameter BB', which is also the horizontal

diameter of the gimbal. (a) Applying the principle of conservation of
energy, and observing thai, since 2M«« = 0, the component of the

angular momentum of the disk along the fixed axis AA' must be
constant, write two first-order differential equations defining the mo-

tion of the disk, (b) Given the initial conditions On ^ 0, (,'> ^ 0, and

Q = 0, express the rate of nutation as a function of 0. (c) Show that

the angle will never be larger than o during the ensuing motion.
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* 18.98 The top shown is supported at the fixed point O. We
denote by 9, 0, and $¦ the Eulerian angles defining the position of the
top with respect to a fixed frame of reference. We shall consider the
general motion of the top in which all Eulerian angles vary.

(a) Observing that 2M Z = and SM. = 0, and denoting by / and /',
respectively, the moments of inertia of the top about its axis of symme-

try and about a transverse axis through O, derive the two first-order
differential equations of motion

(1)/'6 sin 2 + J(y + 9 cos 0) cos 6 = a

Ity, + 9 cos 0) = ft (2)

where a and ft are constants depending upon the initial conditions.
These equations express that the angular momentum of the top is

conserved about both the Z and z axes, i.e., that the rectangular

component of H along each of these axes is constant.

(b) Use Eqs. (1) and (2) to show that the component u g of the angular
velocity of the top is constant and that the rate of precession 9 depends
upon the value of the angle of nutation 0.

* 1 8.99 (a) Applying the principle of conservation of energy,
derive a third differential equation for the general motion of the top of

Prob. 18.98. (b) Eliminating the derivatives 9 and tp from the equation
obtained and from the two equations of Prob. 18.98, express the rate of

nutation as a function of the angle 6.

* 1 8. 1 00 A thin homogeneous disk of radius a and mass m is
mounted on a light axle OA of length a which is held by a ball-and-
socket support at O. The disk is released in the position ft = with a

rate of spin \f/ Q , clockwise as viewed from O, and with no precession or

nutation. Knowing that the largest value of ft in the ensuing motion is
30°, determine in terms of <*.„ the rates of precession and spin of the
disk when ft = 30°. (Hint. The angular momentum of the disk is
conserved about both the Z and z axes; see Prob. 18.98, part a.)

* 18.1 01 For the disk of Prob. 18.100, determine the initial value

9 of the spin, knowing that the largest value of ft in the ensuing
motion is 30°, (Hint. Use the principle of conservation of energy and
the answers obtained for Prob. 18.100.)

* 18. 102 A solid homogeneous cone of mass m, radius a, and
height h = |a, is held by a ball-and-socket support O. Initially the axis
of symmetry of the cone is vertical (0 = 0) with the cone spinning
about it at the constant rate y n , counterclockwise as viewed from above.

However, after being slightly disturbed, the cone starts falling and
precessing. If the largest value of in the ensuing motion is 90°,

determine (a) the rate of spin i£ of the cone in its initial vertical

position, (b) the rates of precession and spin as the cone passes through
its lowest position (6* = 90°). (Hint. Use the principle of conservation

of energy and the fact that the angular momentum of the cone is
conserved about both the Z and z axes; see Prob. 18.98, part a.)

Fig. P18.98

Fig. P18.100

Fig. P18.102
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I
2T/II,,

1
Fig. P18.103

* 18. 103 Consider a rigid body of arbitrary shape which is at-
tached at its mass center O and subjected to no force other than its

weight and the reaction of the support at O. (a) Prove that the angular

momentum II of the body about the fixed point is constant in
magnitude and direction, that the kinetic energy T of the body is
constant, and that the projection along H of the angular velocity to of
the body is constant, (b) Show that the tip of the vector u describes a
curve on a fixed plane in space (called the invariable plane), which is

perpendicular to H and at a distance 2T/ll„ from O. (c) Show that,
with respect to a frame of reference attached to the bodv and coincid-

ing with its principal axes of inertia, the tip of the vector u appears to

describe a curve on an ellipsoid of equation

I,«2 + h u l + h^t = 2T = constant

This ellipsoid (called the Poinsot ellipsoid) is rigidly attached to the

body and is of the same shape as the ellipsoid of inertia, but of a
different size.

4Fig. P1 8.104

* 18.104 Referring to Prob. 18.103, (a) prove that the Poinsot
ellipsoid is tangent to the invariable plane, (b) show that the motion of

the rigid body must be such that the Poinsot ellipsoid appears to roll on

the invariable plane. (Hint. In part a, show that the normal to the
Poinsot ellipsoid at the tip of a is parallel to H . It is recalled that the

direction of the normal to a surface of equation h\x,y^s) = constant at a

point P is the same as that of grad F at point P.)

* 18.105 Using the results obtained in Probs. 18.103 and 18.104,
show that, for an axisymmetrical body attached at its mass center

and under no force other than its weight and the reaction at O, the
Poinsot ellipsoid is an ellipsoid of revolution and the space and body

cones are both circular and arc tangent to each other. Further show
that (a) the two cones are tangent externally, and the precession is

direct, when I < /', where / and V denote, respectively, the axial and
transverse moment of inertia of the body, (b) the space cone is inside
the body cone, and the precession is retrograde, when / > /'.4Fig. P18.106

* 1 8.1 06 Referring to Probs. 18.103 and 18.104, (a) show that the
curve (called polhode) described by the tip of the vector to with respect

to a frame of reference coinciding with the principal axes of inertia of
the rigid body is defined by the equations

l z <4 + lyu* + 1/4 = 2T = constant (1)

/feef + iy u + I*a* = Hi = constant (2)

and thai this curve may, therefore, be obtained by intersecting the
Poinsot ellipsoid with the ellipsoid defined by Eq. (2). (b) Further

show, assuming J T > /^ > I t , that the polhodes obtained for various values of U have the shapes indicated in the figure, (c) Using the
result obtained in part b, show that a rigid body under no force can
rotate about a fixed cenlroidal axis if, and only if, that axis coincides
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with one of the principal axes of inertia of the body, and that the

motion will be stable if the axis of rotation coincides with the major or
minor axis of the Poinsot ellipsoid (z or x axis in the figure) and unstable
if it coincides with the intermediate axis (y axis).

REVIEW PROBLEMS

1 8.1 07 A thin rectangular plate of mass 9 kg is attached to a shaft
as shown. If at the instant shown the angular velocity U of the plate is

4 rad/s and is increasing at the rate of 8 rad/s 2 , determine (a) the
couple M which must be applied to the shaft, (b) the corresponding

dynamic reactions at A and C.

18.1 08 A thin rectangular plate of mass 9 kg is attached to a shaft

as shown. A couple of moment (3N • m)i is applied to the plate which
is initially at rest. Determine (a) the angular acceleration of the plate,

(b) the dynamic: reactions at A and C as the plate reaches an angular
velocity of 10 rad/s.

1 8.1 09 The rotor of a given turbine may be approximated by a
50-lb disk of 12-in. radius. Knowing that the turbine rotates clockwise
at 10,000 rpm as viewed from the positive x axis, determine the com-

ponents due to gyroscopic action of the forces exerted by the bearings
on axle AB if the instantaneous angular velocity of the turbine housing
is 2 rad/s clockwise as viewed from (a) the positive y axis, (b) the
positive x axis.

18.1 10 The rectangular plate shown is falling with a velocity v
and no angular velocity when its corner A strikes an obstruction.

Assuming the impact at A is perfectly plastic, determine immediately
after impact («) the angular velocity of the plate, (b) the velocity of the
mass center C of the plate.i

Fig. P18.107 and P18.108

o
:i:

Fig. P18.109

tFig. P18.110

* 18.1 11 Solve Prob. 18.110, assuming that the impact at A is
perfectly elastic.

18.112 A rigid square frame ABCD consisting of four slender
uniform bars, each 1.2 m long, is suspended by a wire attached at A.
Bars AB and CD have each a mass of 25 kg, while bars AD and BC have
each a mass of 5 kg. The frame is hit at 7J in a direction perpendicular
to, and into the plane of, the frame. Knowing that the corresponding
impulse applied to the frame is 75 N-s, determine immediately after
the impact (a) the velocity of the mass center of the frame, (h) the
angular velocity of the frame.

18.113 Solve Prob. 18.112, assuming that the frame is hit at
corner C. Fig. P18.112
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iP
Fig. P18.116

18.114 The 800-lb space capsule is spinning with an angular
velocity w„ = (100rpm)k when a 1-lb projectile is fired from A in a
direction parallel to the x axis and with a velocity v„ of 4000 ft/s.

Knowing that the radii of gyration of the capsule are k = 1L a 1.50 ft

and k : = 2.00 ft, determine immediately after the projectile has been fired (a) the angular velocity of the capsule, (b) the kinetic energy of
the capsule.

1 8.1 1 5 Determine the precession axis and the rales of precession
and spin of the capsule of Prob. 18.114 after the projectile has been
fired.

1 8.1 1 6 A coin is tossed into the air. During the free motion the

angle fi between the plane of the coin and the horizontal is observed to be constant, (a) Derive an expression for the angle formed by the
angular velocity of the coin and the vertical, (b) Denoting by $ the
rate of spin of the coin about its axis of symmetry, derive an expression
for the rate of precession, (c) Solve parts a and b for the case fi = 10°.

1Fig. P18.118

Fig. P18.117

1 8.1 1 7 A uniform rod AB of length / and mass m is attached to
the pin of a clevis which rotates with a constant angular velocity u.
Derive an expression (a) for the constant angle fi that the rod forms
with the vertical, (b) for the maximum value of a for which the rod will
remain vertical (fi = 0).

18.118 A homogeneous sphere of radius a and mass m is attached

to a light rod of length 4a. The rod forms an angle of 30° with the
vertical and rotates about AC at the constant rale il = Vg/a.

(a) Assuming that the sphere does not spin about the rod (i// = 0),
determine the tension in the cord BC and the kinetic energy of the

sphere, (b) Determine the spin ii (magnitude and sense) which should be given to the sphere if the tension in the cord BC is to be zero. What
is the corresponding kinetic energy of the sphere?



Mechanical

Vibrations

1 9.1 . Introduction. A mechanical vibration is the motion

of a particle or a body which oscillates about a position of
equilibrium. Most vibrations in machines and structures are

undesirable because of the increased stresses and energy losses
which accompany them. They should therefore be eliminated

or reduced as much as possible by appropriate design. The analysis of vibrations has become increasingly important in re-
cent years owing to the current trend toward higher-speed ma- chines and lighter structures. There is every reason to expect
that this trend will continue and that an even greater need for
vibration analysis will develop in the future.

The analysis of vibrations is a very extensive subject to which
entire texts have been devoted. We shall therefore limit our

present study to the simpler types of vibrations, namely, the vibrations of a body or a system of bodies with one degree of
freedom.

A mechanical vibration generally results when a system is
displaced from a position of stable equilibrium. The system tends

to return to this position under the action of restoring forces (either elastic forces, as in the case of a mass attached to a spring,
or gravitational forces, as in the case of a pendulum). But the
system generally reaches its original position with a certain
acquired velocity which carries it beyond that position. Since

875
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the process can be repeated indefinitely, the system keeps mov- ing back and forth across its position of equilibrium. The time
interval required for the system to complete a full cycle of motion is called the period of the vibration. The number of
cycles per unit time defines the frequency, and the maximum displacement of the system from its position of equilibrium is
called the amplitude of the vibration.

When the motion is maintained by the restoring forces only,
the vibration is said to be a free vibration (Sees. 19.2 to 19.6).

When a periodic force is applied to the system, the resulting
motion is described as a. forced vibration (Sec. 19.7). When the
effects of friction may be neglected, die vibrations are said to
be undamped. However, all vibrations are actually damped to
some degree. If a free vibration is only slightly damped, its

amplitude slowly decreases until, after a certain time, the motion comes to a stop. But damping may be large enough to prevent any true vibration; the system then slowly regains its original
position (Sec. 19.8). A damped forced vibration is maintained as long as the periodic force which produces the vibration Ls
applied. The amplitude of the vibration, however, is affected
by the magnitude of the damping forces (Sec. 19.9).

VIBRATIONS WITHOUT DAMPING

19.2. Free Vibrations of Particles. Simple Har-

monic Motion. Consider a body of mass m attached to a

spring of constant k (Fig. 19.1a). Since, at the present time, we
are concerned only with the motion of its mass center, we shall
refer to this body as a particle. When the particle is in static

equilibrium, the forces acting on it are its weight W and the force T exerted by the spring, of magnitude T — kS sv where <5 S ,
denotes the elongation of die spring. We have, therefore,

W = kd st (19.1)

Suppose now dial the particle is displaced through a distance x m from its equilibrium position and released with no initial
velocity. If x m has been chosen smaller than 5 st , the particle
will move back and forth through its equilibrium position; a
vibration of amplitude .v m has been generated. Note that the
vibration may also be produced by imparting a certain initial
velocity to die particle when it is in its equilibrium position
% = or, more generally, by starting the particle from any given

position X = -T () with a given initial velocity v .
To analyze the vibration, we shall consider the particle in a

position P at some arbitrary time t (Fig. 19.16). Denoting by
X the displacement OP measured from the equilibrium position
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O (positive downward), we note that the forces acting on the
particle are its weight W and the force T exerted by the spring
which, in this position, has a magnitude T = k(S si + x).
Recalling (19.1), we find that the magnitude of the resultant F
of the two forces (positive downward) is

P = VV - ft(«„ + x) = -kx (19.2)

Thus the resultant of die forces exerted on the particle is propor-
tional to the displacement OP measured from the equilibrium
position. Recalling the sign convention, we note that F is always

directed toward the equilibrium position O. Substituting for F into the fundamental equation F — ma and recalling that a is
the second derivative x of x with respect to f, we write

mx + fc»: = (19.3)

Note that the same sign convention should be used for the accel-

eration x and for the displacement x, namely, positive downward.
Equation (19.3) is a linear differential equation of the second

order. Setting

V 2 = — (19.4)
m '

we write (19.3) in the form

x + p 2 x = (19.5)

The motion defined by Eq. (19.5) is called simple harmonic
motion. It is characterized by the fact that the acceleration is

proportional to the displacement and of opposite direction. We note that each of the functions r, = sin pt and x^ = cos pi satis-
fies (19.5). These functions, therefore, constitute two particular
solutions of die differential equation (19.5). As we shall see

presently, the general solution of (19.5) may be obtained by multiplying the two particular solutions by arbitrary constants
A and B and adding. We write

x = Ax x + Bx 2 = A sin pt + B cos pt (19.6)

Differentiating, we obtain successively the velocity and acceler-
ation at time t,

v = x = Ap cos pt - Bp sin pt (19.7)

a = x— -Ap 2 sin pt — Bp 2 cos pt (19.8)

Substituting from (19.6) and (19.8) into (19.5), we verify that the expression (19.6) provides a solution of the differential equation
(19.5). Since this expression contains two arbitrary constants A
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and B, the solution obtained is the general solution of the differ-
ential equation. The values of the constants A and B depend

upon the initial conditions of the motion. For example, we have
A = if the particle is displaced from its equilibrium position
and released at t = with no initial velocity, and we have B =

if P is started from O at t — with a certain initial velocity.

In general, substituting t = and the initial values x and v of the displacement and velocity into (19.6) and (19.7), we find
A = v /p and B = x n .

The expressions obtained for the displacement, velocity, and

acceleration of a particle may be written in a more compact form if we observe that (19.6) expresses that the displacement
x = OP is the sum of the x components of two vectors A and
B, respectively of magnitude A and B, directed as shown in Fig.
19.2a. As f varies, both vectors rotate clockwise: we also note

that the magnitude of their resultant OQ is equal to the maxi-

tFlg. 19.2

mum displacement v m . The simple harmonic motion of P along
the X axis may thus be obtained by projecting on this axis the

motion of a point Q describing an auxiliary circle of radius x m with a constant angular velvcity p. Denoting by <j> the angle
formed by the vectors OQ and A, we write

OP = OQ sin (pt + 6) (19.9)

which leads to new expressions for the displacement, velocity,
and acceleration of P,

x = x m sin (pt + <t>)

v = x = x m p cos (pt + <t>)

a = -v = — x m p 2 sin (pt + <>)

(19.10)

(19.11)

(19.12)
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The displacement-time curve is represented by a sine curve (Fig.
19.26), and the maximum value x m of the displacement is called
the amplitude of the vibration. The angular velocity p of the

point Q which describes the auxiliary circle is known as the circular frequency of the vibration and is measured in rad/s,
while the angle 6 which defines the initial position of Q on the circle is called the phase angle. We note from Fig. 19.2 that
a full cycle has been described after the angle pt has increased
by 2t7 rad. The corresponding value of t, denoted by t, is called
the period of the vibration and is measured in seconds. We have

Period = t = %L (19.13)

The number of cycles described per unit of time is denoted by/ and is known as the frequency of the vibration. We write

Frequency = f = — = —
T 277

(19.14)

The unit of frequency is a frequency of 1 cycle per second, corresponding to a period of 1 s. In terms of base units the unit
of frequency is thus 1/s or s _l . It is called a hertz (Hz) in the

SI system of units. It also follows from Eq. (19.14) that a fre- quency of 1 s _1 or 1 Hz corresponds to a circular frequency of
27T rad/s. In problems involving angular velocities expressed in

= & Hz,c-l —revolutions per minute (rpm), we have 1 rpm s=
or 1 rpm = (277/60) rad/s.

Recalling that p was defined in (19.4) in terms of the constant k
of the spring and the mass m of the particle, we observe that the
period and the frequency are independent of the initial condi-
tions and of the amplitude of the vibration. Note that t and /
depend on the mass rather than on the weight of the particle and
thus are independent of the value of g.

The velocity-time and acceleration-time curves may be repre-
sented by sine curves of the same period as the displacement-
time curve, but with different phase angles. From (19.11) and

(19.12), we note that the maximum values of the magnitudes of the velocity and acceleration are
v m = x mP a B ,=* m p a (19.15)

Since the point Q describes the auxiliary circle, of radius x m , at the constant angular velocity p, its velocity and acceleration
are equal, respectively, to the expressions (19.15). Recalling Eqs. (19.11) and (19.12), we find, therefore, that the velocity and
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acceleration of P may be obtained at any instant by projecting on the x axis vectors of magnitudes v m = x m p and a m = x m p 2
representing respectively the velocity and acceleration of Q at
the same instant (Fig. 19.3).

h
Fig. 19.3

The results obtained are not limited to the solution of the

problem of a mass attached to a spring. They may be used to analyze the rectilinear motion of a particle whenever the result-
ant F of the forces acting on the particle is proportional to the displacement x and directed toward O. The fundamental equa-
tion of motion F = ma may then be written in the form (19.5), which characterizes simple harmonic motion. Observing that
the coefficient of x in (19.5) represents the square of the circular frequency p of the vibration, we easily obtain p and, after substi-
tution into (19.13) and (19.14), the period r and the frequency

/ of the vibration.
19.3. Simple Pendulum (Approximate Solution).

Most of the vibrations encountered in engineering applications

may be represented by a simple harmonic motion. Many others, although of a different type, may be approximated by a simple
harmonic motion, provided that their amplitude remains small.

Consider for example a simple pendulum, consisting of a bob of mass m attached to a cord of length /, which may oscillate

in a vertical plane (Fig. 19.4a). At a given time f, the cord forms an angle 6 with the vertical. The forces acting on the bob are its weight W and the force T exerted by the cord (Fig. 19.4b).
Resolving the vector ma into tangential and normal components,
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!
, »!«„

a
(b)

with ma, directed to the right, i.e., in the direction corresponding to increasing values of 0, and observing that a, = la = 10, we
write

2F, =ma,-. - Wsin = ml0

Noting that W — mg and dividing through by ml, we obtain

0+j-sinO = Q (19.16)

For oscillations of small amplitude, we may replace sin by 0, expressed in radians, and write
0+2.8 = (19.17)

Comparison with (19.5) shows that die equation obtained is that
of a simple harmonic motion and that the circular frequency

p of the oscillations is equal to (g//) ,/2 . Substitution into (19.13) yields the period of the small oscillations of a pendulum of
length /,

_ 2ff _ IT
' P V g

(19.18)

*19.4. Simple Pendulum (Exact Solution). For-

mula (19.18) is only approximate. To obtain an exact expression

for the period of the oscillations of a simple pendulum, wc must return to (19.16). Multiplying both terms by 20 and integrating
from an initial position corresponding to the maximum deflec- tion, that is, = m and 6 ' = 0, we write

P =-2-(cos0 cos 9„

orpcos — cos m )
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Replacing cos by 1-2 sin 2 (0/2) and cos B m by a similar
expression, solving for dl, and integrating over a quarter period
from t ¦ = 0, = to 1 ¦ = t/4, 9 = 0„„ wc have

-<£f
<W

gJ Vsin 2 (6J2) - sin 2 (0/2)

The integral in the right-hand member is known as an elliptic
integral; it cannot be expressed in terms of the usual algebraic
or trigonometric functions. However, setting

Sin (6/2) = sin (6 m /2) sin <>

we may write

t = 4 /- I Vg J
•ff/Z rfd>

Vl - sm 2 (0 m /2) sin 2 <>
(19.19)

where the integral obtained, commonly denoted by K, may be found in tables of elliptic integrals for various values of 0„,/2.t
In order to compare the result just obtained with that of the
preceding section, we write (19.19) in the form

-ZipS (19.20)

Formula (19.20) shows that the actual value of the period of
a simple pendulum may be obtained by multiplying the approxi-
mate value (19.18) by the correction factor 2K/V. Values of the
correction factor are given in Table 19.1 for various values of

Table 19.1 Correction Factor for the Period of a

Simple Pendulum

»m 10° 20° 30° 1 60° 90° 120° 150° 180°

K 1.571 1.574 1.583 1.598 1.686 1.854 2.157 2.768 00

2K/v 1,000 1.002 1.008 1.017 1.073 1.180 1.373 1.762 cc

the amplitude m . We note that for ordinary engineering com- putations the correction factor may be omitted as long as the
amplitude does not exceed 10°.

fSee, for example, Dwight, "Table of Integrals and Other Mathematical
Data,'" The Macmillan Company, or Peirce, "A Short Table of Integrals," Oiiin
and Company.
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SAMPLE PROBLEM 19.1

A 50-kg block moves between vertical guides as shown. The block
is pulled 40 mm down from its equilibrium position and released. For
each spring arrangement, determine the period of the vibration, the
maximum velocity of the block, and the maximum acceleration of the
block.

a. Springs Attached in Parallel. We first determine the constant

k of a single spring equivalent to the two springs by finding the
magnitude of the force P required to cause a given deflection 8. Since

for a deflection 8 the magnitudes of the forces exerted by the springs are, respectively, kjS and k 2 8, we have
P = k l 8 + fejfi = (ft, + k 2 )8

The constant k of the single equivalent spring is

fc = J = *i + k 2 = 4 fcN/m + 6 kN/m = 10 kX/m = 10 4 N/m

Period of Vibration: Since ffl = 50 kg, Eq. (19.4) vields

p = 14.14 rad/s
a _ JL _ 10' -Vm

P m 50 kg

' = 2*/p - = 0.4 lis -*

Maximum Velocity: v,„ = x m p = (0.040 m)( 14.14 rad/s)

u,„ = 0.566 m/s v,„ = 0.566 m/s J -*

Maiimutn Acceleration a,„ = x m p 2 = (0.040 m)( 14. 14 rad/s) 2

u m = 8.00 m/s 2 .i = 8.00m/s 2 J -^

attached in Series. We first determine the constant k

of a single spring equivalent to the two springs by finding the total elongation 8 of the springs under a given static load P. To facilitate
the compulation, a static load of magnitude I' = 12 kN is used.

B = 6 1 + 8 2 = £ + L = 12 kX
12 fc, k 2 4 kN/m

+
12 k\

6 kN/m
= om

A" = f- = -4^- a 2.4 kN/m = 2400 N/m

P ¦ , exm .¦ „¦> k 2400 X/m
rerioit of > titration: P" = — = , '

m oO kg

2:r

/; = 6.93 rad/s

- = 0.907 s

Maximum Velocity: v m = x m p = (0.040 m)(6.93 rad/s)

c,„ = 0.277 m/s v„ = 0.277 m s I

^faxilnunl Acceleration: a m = x m p 2 = (0.040 m)(6.93 rad/s) 2

a„, = 1.920 m/s 2 a„ = 1.920 m

883



884 DYNAMICS

PROBLEMS

19.1 A particle moves in simple harmonic motion with an ampli-
tude of 4 in. and a period of 0.60 s. Find the maximum velocity and the
maximum acceleration.

19.2 The analysis of the motion of a particle shows a maximum
acceleration of 30m/s 2 and a frequency of 120 cycles per minute.
Assuming that the motion is simple harmonic, determine (o) the ampli-
tude, (b) the maximum velocity.

A=].2k\,m

2 kg

Fig. P19.3

19.3 Collar A is attached to the spring shown and may slide
without friction on the horizontal rod. If the collar is moved 75 mm

from its equilibrium position and released, determine the period, the
maximum velocity, and the maximum acceleration of the resulting
motion.

,-A

Fig. P19.4

~T
~ZL-

1 9.4 A variable-speed motor is rigidly attached to the beam BC.
The rotor is slightly unbalanced and causes the beam to vibrate with
a circular frequency equal to the motor speed. When the speed of
the motor is less than 600 rpm or more than 1200 rpm, a small object

placed at A is observed to remain in contact with the beam. For speeds between 600 and 1200 rpm the object is observed to "dance"
and actually to lose contact with the beam. Determine the amplitude
of the motion of A when the speed of the motor is {a} 600 rpm, (b)
1200 rpm. Give answers in both SI and U.S. customary units.tFig. P19.5, P19.6,

and P19.8

19.5 The 6-lb collar rests on, but is not attached to, the spring

shown. The collar is depressed 2 in. and released, If the ensuing
motion is to be simple harmonic, determine (a) the largest permissible
value of the spring constant k, (b) the corresponding frequency of the
motion.

19.6 The 5-kg collar is attached to a spring of constant
k = 800 N/m as shown. If the collar is given a displacement of -50 mm
from its equilibrium position and released, determine for the ensuing
motion («) the period, (b) the maximum velocity of the collar, (c) the
maximum acceleration of the collar.

19.7 In Prob. 19.6, determine the position, velocity, and acceler-
ation of the collar 0.20 s after it has been released.

1 9.8 An 8-lb collar is attached to a spring of constant k = 5 lb/in.
as shown. If the collar is given a displacement of 2 in. downward

from its equilibrium position and released, determine (a) the time required for the collar to move 3 in. upward, (b) the corresponding
velocity and acceleration of the collar.



19.9 and 19.10 A 35-kg block is supported by the spring ar-
rangement shown. If the block is moved vertically downward from

its equilibrium position and released, determine (a) the period and frequency of the resulting motion, (b) the maximum velocity and
acceleration of the block if the amplitude of the motion is 20 mm.
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i

6 IcN/m 8kN/m , I2k\./m

35 kg
• 4 k.V/m

¦1 kN/m

35 kg

Fig. P19.9 Fig. P19.10

19.1 1 Denoting by 8 tt the static deflection of a beam under a
given load, show that the frequency of vibration of the load is

Neglect the mass of the beam, and assume that the load remains in
contact with the beam.

Fig. P19.11

19.12 The period of vibration of the system shown is observed to
be 0.8 s. If block A is removed, the period is observed to be 0.7 s.
Determine (a) the weight of block C, (b) the period of vibration when
both blocks A and B have been removed.

1 9.1 3 A simple pendulum of length / is suspended in an elevator.
A mass m is attached to a spring of constant k and is carried in the

same elevator. Determine the period of vibration of both the pen- dulum and the mass if the elevator has an upward acceleration a.
19.14 Determine (a) the required length / of a simple pendulum

if the period of small oscillations is to be 2 s, (b) the required ampli-
tude of this pendulum if the maximum velocity of the bob is to be
200 mm/s.)21b An21b B

^! =H

Fig. P19.12
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1 9. 1 5 A small bob is attached to a cord of length 4 ft and is re-

leased from rest when A = 5°. Knowing thai d = 2 ft, determine (a)
the time required for the bob to return lo point A, (b) the amplitude C .

9 o o-
K *

Fig. P19.15 and P19.16

.Fig. P19.17 and P19.189Fig. P19.19 and P19.20

19.16 A small bob is attached to a cord of length 4 ft and released

from rest at A when A = 4°. Determine the distance d for which the
bob will return to point A in 2 s.

1 9.1 7 The rod AB is attached to a hinge at A and to two springs
each of constant k. When h = 24 in., d = 10 in., and W = 50 lb,

determine the value of k for which the period of small oscillations is

(a) 1 s, (b) infinite. Neglect the weight of the rod and assume that each
spring can act in either tension or compression.

19.18 If d = 16 in., h = 24 in., and each spring has a constant

k = 4 lb/in., determine the load VV for which the period of small
oscillations is (a) 0.50 s, (h) infinite. Neglect the weight of the rod and
assume that each spring can act in either tension or compression,

19.19 A small block of mass m rests on a frictionless horizontal

surface and is attached to a taut string. Denoting by T the tension in
the string, determine the period and frequency of small oscillations of
the block in a direction perpendicular to the string. Show that the
longest period occurs when a — b = \l.

1 9.20 A 3-lb block rests on a frictionless horizontal surface and is

attached lo a taut string. Knowing that the tension in the string is
8 lb, determine the frequency of small oscillations of the block when
a = 12 in. and b = 18 in.

* 1 9.21 A particle is placed with no initial velocity on a friction-

less plane tangent to the surface of the earth, (a) Show (hat the

particle will theoretically execute simple harmonic motion with a period of oscillation equal to that of a simple pendulum of length equal
to the radius of the earth, (b) Compute the theoretical period of oscillation and show that it is equal to the periodic time of an earth
satellite describing a low-altitude circular orbit. [Hint, See Eq.
(12.44).]
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* 19.22 Expanding the integrand in (19.19) into a series of even

powers of sin<$> and integrating, show that the period of a simple
pendulum of length I may be approximated by the formula

T = 2 \/|H si " 2 T)
where m is the amplitude of the oscillations.

* 19.23 Using the data of Table 19.1, determine the period of
a simple pendulum of length 800 mm (a) for small oscillations, (ft) for
oscillations of amplitude 6 m = 30°, (c) for oscillations of amplitude
K = 90'.

* 19.24 Using the formula given in Prob. 19.22, determine the

amplitude m for which the period of a simple pendulum is j percent longer than the period of the same pendulum for small oscillations.
* 1 9.25 Using a table of elliptic integrals, determine the period

of a simple pendulum of length I = 800 mm if the amplitude of the oscillations is 6 m = 40°.
19.5. Free Vibrations of Rigid Bodies. The analysis

of the vibrations of a rigid body or of a system of rigid bodies
possessing a single degree of freedom is similar to the analysis
of the vibrations of a particle. An appropriate variable, such

as a distance X or an angle 0, is chosen to define the position of the body or system of bodies, and an equation relating this
variable and its second derivative with respect to t is written. If the equation obtained is of the same form as (19.5), i.e., if
we have

X + p 2 x -0 or 6 + p 2 6 = (19.21)

the vibration considered is a simple harmonic motion. The

period and frequency of the vibration may then be obtained by identifying p and substituting into (19.13) and (19.14).
In general, a simple way to obtain one of Eqs. (19.21) is to

express that the system of the external forces is equivalent to the system of the effective forces by drawing a diagram of the
body for an arbitrary value of the variable and writing the appropriate equation of motion. We recall that our goal should
be tlie determination of the coefficient of the variable X or 6,
not the determination of the variable itself or of the derivatives

x or 0. Setting this coefficient equal to p-, we obtain the circular
frequency p, from which t and / may be determined.

The method we have: outlined may be used to analyze vibra-
tions which are truly represented by a simple harmonic motion,

or vibrations of small amplitude which can be approximated by a simple harmonic motion. As an example, we shall determine
the period of the small oscillations of a square plate of side 2ft
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whi(b)

which is suspended from the midpoint of one side (Fig. 19.5a).
We consider the plate in an arbitrary position defined by the
angle that the line OG forms with the vertical and draw a

diagram to express that the weight W of the plate and the com- ponents R r and R„ of the reaction at_0 are equivalent to the
vectors ma, and ma„ and to the couple la (Fig. 19.5fo). Since the
angular velocity and angular acceleration of the plate are

equal, respectively, to and 0, the magnitudes of the two vectors are, respectively, mbB and mbO 2 , while the moment of the couple
is TO. In previous applications of this method (Chap. 16), we
tried whenever possible to assume the correct sense for the
acceleration. Here, however, we must assume the same positive

sense for and 6 in order to obtain an equation of the form

(19.21). Consequently, the angular acceleration will be as-

sumed positive counterclockwise, even though this assumption is obviously unrealistic. Equating moments about O, we write
+ ) -W(bsin6) = (mbO)b + 10

Noting that 7 = fan[(2bf + (2b) 2 } = §mfo 2 and W = mg. we
obtain

6 +~sinO =
5 b

(19.22)

For oscillations of small amplitude, we may replace sin by 0,
expressed in radians, and write

3 e
o + -j-o =

5 b
(19.23)

Comparison with (19,21) shows that the equation obtained is that of a simple harmonic motion and that the circular frequency
p of the oscillations is equal to (3g/56) ,/2 . Substituting into
(19.13), we find that the period of the oscillations is

2w 5b
T = = 27T /— -

V V3g
(19.24)

Fig. 19.5

The result obtained is valid only for oscillations of small am-

plitude. A more accurate description of the motion of the plate is obtained by comparing Eqs. (19.16) and (19.22). We note that
the two equations are identical if we choose / equal to ob/3.
This means that the plate will oscillate as a simple pendulum
of length I = 56/3, and the results of Sec. 19.4 may be used
to correct the value of the period given in (19.24). The point
A of the plate located on line OG at a distance / = ob/3 from
O is defined as the center of oscillation corresponding to O (Fig.

19.5a).
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SAMPLE PROBLEM 19.2

A cylinder of weight W and radius r is suspended from a looped cord
as shown. One end of the cord is attached directly to a rigid support,
while the other end is attached to a spring of constant k. Determine
the period and frequency- of vibration of the cylinder.

io
Kinematics of Motion. We express the linear displacement and the

acceleration of the cylinder in terms of the angular displacement 6.

Choosing the positive sense clockwise and measuring the displace- ments from the equilibrium position, we write

a = 0} a= ret = r§ a = r8 j, (1)

Equations of Motion. The system of external forces acting on the
cylinder consists of the weight VV and of the forces T, and T, exerted
by the cord. We express that this system is equivalent to the system
of effective forces represented by the vector »ia attached at G and
the couple 7o.

+ ) 2M A = Z(M A ) eU : Wr - T 2 (2r) = trim + Ta (2)

When the cylinder is in its position of equilibrium, the tension in the
cord is T = JW We note that, for an angular displacement ff, the
magnitude of T, is

T s = r„ + kS = !,W + kS = \W + k(2r0) (3)

Substituting from (I) and (3) into (2), and recalling that T= Jmr* we
write

Wr - (JW + 2fcrfl)(2r) = m(rd)r + \mrtf

3 m

The motion is seen to be simple harmonic, and we have

P ~ 3m
/8 k

P = V3m

f= JL' 2tt

3 HI

2 V S k

f =
I s /,

2rr \ 3 m
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SAMPLE PROBLEM 19.3

A circular disk, weighing 20 lb and of radius 8 in., is suspended from
a wire as shown. The disk is rotated (thus twisting the wire) and then

released; the period of the torsional vibration is observed to be 1.13 s. A gear is then suspended from the same wire, and the period of
torsional vibration for the gear is observed to be 1.93 s. Assuming that
the moment of the couple exerted by the wire is proportional to the
angle of twist, determine (a) the torsional spring constant of the wire,
(b) the centroidal moment of inertia of the gear, (c) the maximum
angular velocity reached by the gear if it is rotated through 90° and
released.

.
a. Vibration of Disk. Denoting by B the angular displacement of

the disk, we express that the magnitude of the couple exerted by the
wire is M = KB, where K is the torsional spring constant of the wire.

Since this couple must be equivalent to the couple la representing the
effective forces of the disk, we write

+ 5SM = 2(M )„ H : ¦ KB - -IB

+ 4# = o

M = KH

n
The motion is seen to be simple harmonic, and wc have

i
., K

For the disk, we have

T = 1.13s

r = % r-Jr/i (1)

/ = \mr 2 — —- 1/ >pp> \ (A ft)2 = 0.138 lb • ft • s 2
2\32.2ft/s 2 / v " ;

Substituting into (1), we obtain

U3 = &r/24p / I^TIb-ft/rad -^
V K

b. Vibration of Gear. Since the period of vibration of the gear
is 1.93 s and K = 4.271b • ft/rad, Eq. (1) yields

1.93 = 2rr
/

/„.„ = 0.403 lb- ft -s 3
V 4.27

r. Maximum Angular Velocity of the Gear. Since the motion is

simple harmonic, we have

= m sin pt a = 0„p cos pt co,„ = B m p

Recalling that m — 90° = 1.571 rad and t = 1.93 s, we write

«* = mP = BJIt/t) = (1.571 rad)(27r/1.93s)

: 5.11 rad s -^

890



PROBLEMS

19.26 and 19.27 The uniform rod shown weighs 8 lb and is
attached to a spring of constant k = 2.5 lb/in. If end A of the rod

is depressed 2 in. and released, determine (a) the period of vibration,
(b) the maximum velocity of end A.
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¦1ft

-3ft-

J5= D.l .\C

4fl

3 ft —

Fig. P19.26 Fig. P19.27

9.28 A belt is placed over the rim of a 15-kg disk as shown
and then attached to a 5-kg cylinder and to a spring of constant
k = 600 X/m. If the cylinder is moved 50 mm clown from its equilib-

rium position and released, determine (a) the period of vibration, (b) the maximum velocity of the cylinder. Assume friction is sufficient
to prevent the belt from slipping on the rim.

19.29 In Prob. 19.28, determine (a) the frequency of vibration,
(h) the maximum tension which occurs in the belt at B and at C.

a
Fig. P19.28

A 600-lb flywheel has a diameter of 4 ft and a radius of

gyration of 20 in. A belt is placed around the rim and attached to two
springs, each of constant k = 75 lb/in. The initial tension in the belt is

sufficient to prevent slipping. If the end C of the belt is pulled 1 in. down and released, determine (a) the period of vibration, (b) the
maximum angular velocity of the flywheel.

9.31 A uniform square plate of mass m is supported in a horizon-
tal plane by a vertical pin at B and is attached at A to a spring of

constant k. If corner A is given a small displacement and released, determine the period of the resulting motion.nFig. P19.30m
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4- &- - 19.32 A uniform rod of mass in is supported by a pin at its

midpoint C and is attached to a spring of constant k. If end A is given a
small displacement and released, determine the frequency of the
resulting motion.

Fig. P19.32 19.33 A uniform circular plate of mass m and radius T is held by

four springs, each of constant k. Determine the frequency of the
resulting vibration if the plate is (<;) given a small vertical displacement
and released, (b) rotated through a small angle about diameter AC and

released, (<?) rotated through a small angle about any other diameter
and released.

.
Fig. P19.33

19.34 A compound pendulum is defined as a rigid slab which
oscillates about a fixed point O, called the center of suspension. Show

that the period of oscillation of a compound pendulum is equal to the period of a simple pendulum of length OA, where the distance
from A to the mass center C is CA - k-/7. Point A is defined as the

center of oscillation and coincides with the center of percussion de-
fined in l'rob. 17.58.fFig. P19.34 and P19.36

19.35 Show that, if the compound pendulum of Prob. 19.34 is

suspended from A instead of 0, the period of oscillation is the same
as before and the new center of oscillation is located at O,

19.36 A rigid slab oscillates about a fixed point O. Show that
the smallest period of oscillation occurs when the distance Ffrom point
O to the mass center G is equal to k.
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19.37 A uniform bar of length / may oscillate about a hinge at
A located a distance c from its mass center C. (a) Determine the
frequency of small oscillations if c = U- (b) Determine a second value
of c for which the frequency of small oscillations is the same as that
found in part a.

19.38 For the rod of Prob. 19.37. determine (a) the distance C
for which the frequency of oscillation is maximum, (b) the corre-
sponding minimum period.

A
Fig. P19.37

19.39 A thin hoop of radius r and mass m is suspended from a
rough rod as shown. Determine the frequency of small oscillations of

the hoop (a) in the plane of the hoop, (fc) in a direction perpendicular to the plane of the hoop. Assume that j» is sufficiently large to prevent
slipping at A.

10Fig. P19.39

100 mm

Fig. P19.40

1 9.40 A 75-mm-radius hole is cut in a 200-mm-radius uniform disk

which is attached to a frictionless pin at its geometric center O. Determine (a) the period of small oscillations of the disk, (b) the length
of a simple pendulum which has the same period.

19.41 A uniform rectangular plate is suspended from a pin lo-

cated at the midpoint of one edge as shown. Considering the dimen- sion b constant, determine («) the ratio c/b for which the period of
oscillation of the plate is minimum, (b) the ratio c/b fur which the

period of oscillation of the plate is the same as the period of a simple
pendulum of length c.

1 9.42 A uniform rectangular plate is suspended from a pin lo-

cated at the midpoint of one edge as shown, (a) Determine the period of small oscillations if c = b. (b) Considering the dimension b con-
stant, determine a second value of c for which the period of oscillations
is the same as that found in part a.

b bo' ia~Tin<^i

c

I
hpaFig. P19.41 and P19.42
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19.43 The period of small oscillations about A of a connecting

rod is observed to be 1. 12 s. Knowing that the distance r a is 7.50 in.,
determine the ccntroidal radius of gyration of the connecting rod.

3
Fig. P19.43 and 19.44

19.44 A connecting rod is supported by a knife-edge at point
A; the period of small oscillations is observed to be 0.945 s. The rod
is then inverted and supported by a knife-edge at point B and the
period of small oscillations is observed to be 0.850 s. Knowing that
r a + r b = 11.50 in., determine (a) the location of the mass center G,
(b) the centroidal radius of gyration k.

19.45 A slender rod of length / is suspended from two vertical
wires of length h, each located a distance \b from the mass center
G. Determine the period of oscillation when (a) the rod is rotated
through a small angle about a vertical axis passing through G and
released, (b) the rod is given a small horizontal translation along AB
and released.



1 9.46 A uniform disk of weight 5 lb is suspended from a steel wire

which is known lo have a torsional spring constant K = 0.30 lb-in./rad.
If the disk is rotated through 360° about the vertical and then released,

determine (a) the period of oscillation, (fej the maximum velocity of a
point on the rim of the disk.

1 9.47 A uniform disk of radius 200 mm and of mass 8 kg is
attached to a vertical shaft which is rigidly held at li. It is known

that the disk rotates through 3° when a 4 N • m static couple is applied to the disk. If the disk is rotated through 6 = and then released,
determine (a) the period of the resulting vibration, (h) the maximum
velocity of a point on the rim of the disk.

8Fig. P19.47

1 9.48 A steel casting is rigidly bolted to the disk of Prob. 19.47.

Knowing that the period of torsional vibration of the disk and casting

is 0.650 s, determine the moment of inertia of the casting with respect to the shaft AB.B
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'=C ill.

Fig. P19.46

19.49 A torsion pendulum may be used to determine experimen-
tally the moment of inertia of a given object. The horizontal platform /'
is held by several rigid bars which are connected to a vertical wire.

The period of oscillation of the platform is found equal to t„ when the
platform is empty and to t a when an object of known moment of inertia

l A is placed on the platform so that its mass center is directly above the center of the plate, (a) Show that the moment of inertia /„ of the platform and its supports may be expressed as I = I A r%/(i% - i$, (6) If
a period of oscillation t b is observed when an object li of unknown
moment of inertia l H is placed on the platform, show that

Fig P19.49
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1 9.6. Application of the Principle of Conservation

of Energy. We saw in Sec. 19.2 that, when a particle of mass

m is in simple harmonic motion, the resultant F of the forces
exerted on the particle has a magnitude proportional to the
displacement x measured from the position of equilibrium O and
is directed toward O; we write F = —fee Referring to Sec. 13.6,

we note that F is a conservative farce and that the corresponding

potential energy is V = Jfce* where V is assumed equal to zero in the equilibrium position X = 0. Since the velocity ol the
particle is equal to x, its kinetic energy is T = |m.v 2 and wc may
express that the total energy of the particle is conserved by
writing

r + V = constant imx 2 + &x 2 = constant

Setting p 2 = k/m as in (19.4), where p is the circular frequency
of the vibration, we have

x 2 + fx 2 = coastant (19.25)

Equation (19.25) is characteristic of simple harmonic motion; it may be obtained directly from (19.5) by multiplying both terms
by 2x and integrating.

The principle of conservation of energy provides a convenient

way for determining the period of vibration of a rigid body or of a system of rigid bodies possessing a single degree of freedom,
once it has been established that the motion of the system is

a simple harmonic motion, or that it may be approximated by a simple harmonic motion. Choosing an appropriate variable,
such as a distance X or an angle 6, we consider two particular
positions of the system:

1. The displacement of the system is maximum; we have T, = 0,
and Vj may be expressed in terms of the amplitude x m or
m (choosing V = in the equilibrium position).

2. The system passes through its equilibrium position; we have
V 2 = 0, and T 2 may be expressed in terms of the maximum
velocity x m or m .

We then express that the total energy of the system is con-
served and write 7", + V x = T 2 + V 2 . Recalling from (19.15)
that for simple harmonic motion the maximum velocity is equal
to the product of the amplitude and of the circular frequency
p, we find that the equation obtained may be solved for p.
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* =0

g.
Datum

Fig. 19.6
(b)

As an example, we shall consider again the square plate of
Sec. 19.5. In the position of maximum displacement (Fig. 19.6a),
we have

T x = V, = W(b - h cos 6J = Wb(l - cos 6 m )

or, since 1 - cos 6 m = 2 sin* ($J2) s 2(0 J2)* = 02/2 for os-
cillations of small amplitude,

7\ = V 1 = \WhB\ (19.26)

As the plate passes through its position of equilibrium (Fig.
19.6b), its velocity is maximum and we have

T 2 = Jm©* -t Jl«* = \mhWi + hWi V 2 =

or, recalling from Sec. 19.5 that I = %mb 2 ,

T 2 = JQmiX V 2 = (19.27)

Substituting from (19.26) and (19.27) into 7\ + V t ss 7' 2 + V 2 ,
and noting that the maximum velocity 6 m is equal to the product
m p, we write

which yields p 2 = 3g/56 and

_ 2^7 _ /Bfo
" "p" := 2 V 3g~

(19.28)

(19.29)

as previously obtained.



S
SAMPLE PROBLEM 19.4

Determine the period of small oscillations of a cylinder of radius r
which rolls without slipping inside a curved surface of radius R.

/
Datum

<&/¦

e-

Solution. We denote by the angle which line OG forms with
the vertical. Since the cylinder rolls without slipping, we may apply
the principle of conservation of energy between position L where
8 = 6 m . and position 2, where = 0.

Position /. Kinetic Energy. Since the velocity of the cylinder is
zero, wc have T x = 0.

Potential Energy. Choosing a datum as shown and denoting by
W the weight of the cylinder, we have

V, = Wh = W(R - r)(l - cos 0)

Noting that for small oscillations (1 — cos 6) = 2 sin 2 (0/2) ~ 6 2 /2, we
have

V, = YV'fl - iff
Position 2. Denoting by m the angular velocity of line OG as the

cylinder passes through position 2, and observing that point C is the
instantaneous center of rotation of the cylinder, we write

Kinetic Energy:

T 2 = hnUi + ff»l

= $m(R - rfei + >(. mr 2)(fi_=-L^2
= MR - rfiil

Potential Energy: V, =

Conservation of Energy

T, + V, = T 2 -r V 2

Since ()„, = -p6 m and W = mg, we write

*-L
3 R - r

2tt '3 R - r

898
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PROBLEMS

19.50 Using the method of Sec. 19.6, determine the period of a

simple pendulum of length I.

19.51 The springs of an automobile are observed to expand 8 in.

to an undeformed position as the body is lifted by several jacks.
Assuming that each spring carries an equal portion of the weight of (he

automobile, determine the frequency of the free vertical vibrations of
the body.

1 9.52 Using the method of Sec. 19.6, solve Prob. 19.6.

19.53 Using the method of Sec. 19.6, solve Prob. 19.9.

19.54 Using the method of Sec. 19.6, solve Prob. 19.10.

19.55 Neglecting fluid friction, determine the frequency of oscil-

lation of the liquid in the U-tube manometer shown. Show that this
frequency is independent of the density of the liquid and of the

amplitude of the oscillation.

5
Fig. P19.50

aFig. P19.55

1 9.56 Two collars, each of weight W, are attached as shown to

a hoop of radius r and of negligible weight, (a) Show that for any

value of ji the period is t = 2tt \j2r/g. (b) Show that the same result
is obtained if the weight of the hoop is not neglected.

Fig. P19.56
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1 9.57 A thin homogeneous wire is bent into the shape of a square
of side / and suspended as shown. Determine the period of oscillation
when the wire figure is given a small displacement to the right and
released.

19.58 Solve Prob. 19.57, assuming that the wire square is suspended
from a pin located at the midpoint of one side.

19.59 Using the method of See. 19.6, solve Prob. 19.45.

19.60 Using the method of Sec. 19.6, solve Prob. 19.40.

r

i<3
19.61 A section of uniform pipe is suspended from two vertical

cables attached at A and B. Determine the period of oscillation in
terms of /, and /, when point B is given a small horizontal displace-
ment to the right and released.

Fig. P19.61

1 9.62 The motion of the uniform rod AB is guided by the cord
BC and by the small roller at A. Determine the frequency of oscilla-
tion when the end B of the rod is given a small horizontal displacement
and released.

•;.-

.

'< i

/

!111
"-

Fig. P19.62
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19.63 The 20-lb rod AB is attached to 8 -lb disks as shown.

Knowing that the disks roll without sliding, determine the frequency of
small oscillations of the system.

1 9.64 Blade AB of the experimental wind-turbine generator
shown is to be temporarily removed. Motion of the turbine generator

about the y axis is prevented, but the remaining three blades may
oscillate as a unit about the X axis. Assuming thai each blade is

equivalent to a 40-ft slender rod, determine the period of small oscilla-
tions of the blades.

i
IX in

Fig. P19.63

oFig. P19.64

19.65 The 8-kg rod AB is bolted to the 12-kg disk. Knowing
that the disk rolls without sliding, determine the period of small
oscillations of the system.

Fig. P19.65
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19.66 Using the method of Sec. 19.6, solve Prob. 19.32.

19.67 Using the method of See. 19.6, solve Prob. 19.31.

a
Fig. P19.68 and P19.70

19.68 The slender rod AB of mass m is attached to two collars

of negligible mass. Knowing that the system lies in a horizontal plane
and is in equilibrium in the position shown, determine the period of
Vibration if the collar A is given a small displacement and released.

1 9.69 Solve Prob. 19.68, assuming that rod AB is of mass m and
that each collar is of mass m„.

19.70 A slender rod AB of negligible mass connects two collars,

each of mass m c . Knowing that the system lies in a horizontal plane
and is in equilibrium in the position shown, determine the period of
vibration if the collar at A is given a small displacement and released.

19.71 Two uniform rods AB and CD, each of length I and weight
W, are attached to two gears as shown. Neglecting the mass of the
gears, determine for each of the positions shown the period of small
oscillations of the system.9.D L

U)

Fig. P19.71

(b)

1 9.72 Solve Prob. 19.7], assuming that / = 18 in., W = 4 lb, and
r = 3 in.
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19.73 A thin circular plate of radius r is suspended from three
vertical wires of length h equally spaced around the perimeter of the
plate. Determine the period of oscillation when (a) the plate is rotated

through a small angle about a vertical axis passing through its mass
center and released, (b) the plate is given a small horizontal translation
and released.

9
Fig. P19.73

19.74 Solve Prob. 19.73, assuming that r — 500 mm and /i =
300 mm.

* 1 9.75 As a submerged body moves through a fluid, the particles
of the fluid flow around the body and thus acquire kinetic energy.

In the case of a sphere moving in an ideal fluid, the total kinetic energy
acquired by the fluid is JpVt; 2 , where p is the mass density of the fluid.
V the volume of the sphere, and D the velocity of the sphere. Consider

a 1-lb hollow spherical shell of radius 3 in. which is held submerged
in a tank of water by a spring of constant 3 lb/in. (a) Neglecting fluid
friction, determine the period of vibration of the shell when it is
displaced vertically and then released, (b) Solve part a, assuming that

the tank is accelerated upward at the constant rate of 10 ft/s 2 .6^

Fig. P19.75

^7
Fig. P19.76

* 1 9.76 A thin plate of length I rests on a half cylinder of radius r.
Derive an expression for the period of small oscillations of the plate.



904 DYNAMICS

<? T = Jt(ff„+x]

Equilibrium /

J t i
Fig. 19.7

P = /' sin ul

i
ma = mv

19.7. Forced Vibrations. The most important vibra-
tions from ihc point of view of engineering applications are the
forced vibrations of a system. These vibratioas occur when a

system is subjected to a periodic force or when it is elastically
connected to a support which has an alternating motion.

Consider first the case of a body of mass m suspended from
a spring and subjected to a periodic force P of magnitude
P = P m sin wt (Fig. 19.7). This force may be an actual external

force applied to the body, or it may be a centrifugal force produced by the rotation of some unbalanced part of the body.
(See Sample Prob. 19.5.) Denoting by x the displacement of the
body measured from its equilibrium position, we write the equa-
tion of motion.

+ | ZF = ma'. l' m sin at + W - k{8 si + x) = mx

Recalling that W = ko si , vvc have

kx — P_ sin at (19.30)

oil =8T = k(8.. + x

h-4
' x >

Equilibrium <T

-S

— H

on ut)

h= |
wtceaFig. 19.8p'mi —w.V

Next we consider the case of a body of mass m suspended from
a spring attached to a moving support whose displacement 6
is equal to S m sin ut (Fig. 19.8). Measuring the displacement x
of the body from the position of static equilibrium corresponding
to at = 0, we find that the total elongation of the spring at lime
Ms<5 u h x — <5 m sin ut. The equation of motion is thus

+J, IF = ma: W — k{8 st + x - 8 M sin wt) = mx

Recalling that W = k8 st , we have

mx + kx = kS m sin wt (19.31)

We note that Eqs. (19.30) and (19.31) are of the same form and

that a solution of the first equation will satisfy the second if we
set P m = k8 m .

A differential equation like (19.30) or (19.31), possessing a
right-hand member different from zero, is said to be nonhomo-

geneous. Its general solution is obtained by adding a particular
solution of the given equation to the general solution of the
corresponding homogeneous equation (with right-hand member
equal to zero). A particular solution of (19.30) or (19.31) may
be obtained by trying a solution of the form

, sin tor (19.32)
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Substituting .v part for x into (19.30), we find

— mw'-x m sin ut + kx m sin ut = P m sin ut

which may be solved for the amplitude.

v.., =
k — nw 2

Recalling from (19.4) that k/m = »'-, where p is the circular

frequency of the free vibration of the body, we write

x„, =
V*

(19.33)
1 - (u/pf

Substituting from (19.32) into (19.31), we obtain in a similar way

.*.,. =

1 - (w/p) z
(.19.33')

The homogeneous equation corresponding to (19.30) or (19.31)
is Eq. (19.3), defining the free vibration of the body. Its general
solution, called the complementary function, was found in Sec.
19.2,

*comp = A sin P* + B cos l }t (19.34)

Adding the particular solution (19.32) and the complementary
function (19.34), we obtain the general solution of Eqs. (19.30)

and (19.31),

X = A sin pt + B cos pt + x m sin ut (19.35)

We note that the vibration obtained consists of two superposed

vibrations. The first two terms in (19.35) represent a free vibra-
tion of the system. The frequency of this vibration, called the

natural frequency of the system, depends only upon the constant

k of the spring and the mass wi of the body, and the constants
A and B may be determined from the initial conditions. This
free vibration is also called a transient vibration since, in actual

practice, it will soon be damped out by friction forces (Sec. 19.9).

The last term in (19.35) represents the steady-state vibration

produced and maintained by the impressed force or impressed
support movement. Its frequency is the forced frequency im-
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posed by this force or movement, and its amplitude x m , defined
by (19.33) or (19.33'), depends upon the frequency ratio u/p.
The ratio of the amplitude x m of the steady-state vibration to
the static deflection P m /k caused by a force P m , or to the ampli-
tude S m of the support movement, is called the magnification
factor. From (19.33) and (19.33'), we obtain

Magnification factor = — V = -r 1 =
I

1 - («/p) 2
(19.36)

The magnification factor has been plotted in Fig. 19.9 against
the frequency ratio u/p. We note that, when w = p, the ampli-
tude of the forced vibration becomes infinite. The impressed
force or impressed support movement is said to be in resonance

with the given system. Actually, the amplitude of the vibration
remains finite because of damping forces (Sec. 19.9); never-
theless, such a situation should be avoided, and the forced fre-

quency should not be chosen too close to the natural frequency
of the system. We also note that for w < p the coefficient of
sin ut in (19.35) is positive, while for o: > p this coefficient is

negative. In the first case the forced vibration is in phase with
the impressed force or impressed support movement, while in
the second case it is 180° out of phase.



S
SAMPLE PROBLEM 19.5

A motor weighing 350 lb is supported by four springs, each having
a constant of 750 lb/in. The unbalance of the rotor is equivalent to
a weight of 1 oz located 6 in. from the axis of rotation. Knowing that
the motor is constrained to move vertically, determine (a) the speed
in rpm at which resonance will occur, {b) the amplitude of the vibra-
tion of the motor at a speed of 1200 rpm.

.e
u. Resonance Speed. The resonance speed is equal to the circular

frequency (in rpm) of the free vibration of the motor. The mass of

the motor and the equivalent constant of the supporting springs are

350 lb
= 10.87 lb • s 2 /ft

32.2 ft/s 2

k = 4(750 lb/in.) = 3000 lb/in. = 36,000 lb/ft

V= Jm =
36.000 „ „ ,

V 10 87 = 5 ' orad/s = 549 r P m
Kesonancc Speed = 549 rpm

9 rpm. The angular velocity of
the motor and the mass of the equivalent 1-oz weight are

U = 1200 rpm = 125.7 rad/s
lib 1

m = (1 oz)
16 oz 32.2 ft/s 2

= 0.00194 lb -s 2 /ft

The magnitude of the centrifugal force due to the unbalance of the
rotor is

P m = ma„ = mm 1 = (0.00194 lb • s 2 /ft)(J|ft)(125.7 rad/s) 2 = 15.31b

The static deflection that would be caused by a constant load P m is

P m _ 15-3 lb
k 3000 lb/in.

= 0.00510 in.

Substituting the value of P m /k together with the known values of u
and p into Eq. (19.33), we obtain

PJk 0.00510 in.

** " 1 - (u/p) 2 ~ 1 - (125.7/57.5) 2
0.00135 in. ~*

iti: Since to > p, the vibration is 180° out of phase with the

centrifugal force due to the unbalance of the rotor. For example, when the unbalanced mass is directly below the axis of rotation, the position
of the motor is .t„ = 0.00135 in. above the position of equilibrium.

907
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| I' = / In
Fig. P19.77

Xf. = fi„. .sin ut

-6

Fig. P19.79

PROBLEMS

19.77 A block of mass m is suspended from a spring of constant

k and is acted upon by a vertical periodic force of magnitude
P = P m sin «/. Determine the range of values of a; for which the
amplitude of the vibration exceeds twice the static deflection caused
by a constant force of magnitude P m .

1 9.78 In Prob. 19.77, determine the range of values of u for which

the amplitude of the vibration is less than the static deflection caused
by a constant force of magnitude P m .

19.79 A simple pendulum of length / is suspended from a collar
C which is forced to move horizontally according to the relation

x c = f>„, sin tet, Determine the range of values of w for which the
amplitude of the motion of the bob exceeds 28 m . (Assume S m is small
compared to the length / of the pendulum.)

1 9.80 In Prob. 19.79, determine the range of values of u for which

the amplitude of the motion of the bob is less than S m .

19.81 A 500-lb motor is supported by a light horizontal beam.
The unbalance of the rotor Ls equivalent to a weight of 1 OZ located
10 in. from the axis of rotation. Knowing that the static deflection
of the beam due to the weight of the motor is 0.220 in., determine

(a) the speed (in rpm) at which resonance will occur, (fo) the amplitude
of the steady-state vibration of the motor at a speed of 800 rpm.

J&
^

Fig. P19.81

Fig. P19.83

19.82 Solve Prob. 19.81, assuming that the 500-lb motor is sup-

ported by a nest of springs having a total constant of 400 lb/in.

19.83 A motor of mass 4.5 kg is supported by four springs, each
of constant lOOkN/m. The motor is constrained to move vertically,

and the amplitude of its movement is observed to be 0.5 mm at a
speed of 1200 rpm. Knowing that the mass of the rotor is 14 kg,
determine the distance between the mass center of the rotor and the

axis of the shaft.

19.84 In Prob. 19.83, determine the amplitude of the vertical
movement of the motor at a speed of (a) 200 rpm, (b) 1600 rpm, (c)
900 rpm.



1 9.85 Rod AB is rigidly attached to the frame of a motor running
at a constant speed. When a collar of mass m is placed on the spring,
it is observed to vibrate with an amplitude of 0.5 in. When two collars,
each of mass m, are placed on the spring, the amplitude is observed

to be 0.6 in. What amplitude of vibration should be expected when three collars, each of mass m, are placed on the spring? (Obtain two
answers.)
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%

.
(h)

Fig. P19.85

19.86 Solve Prob. 19.83, assuming that the speed of the motor
is changed and thai one collar has an amplitude of 0.60 in. and two
collars have an amplitude of 0.20 in.

1 9.87 A disk of mass m is attached to the midpoint of a vertical
shaft which revolves at an angular velocity u. Denoting by k the
spring constant of the system for a horizontal movement of the disk

and by e the eccentricity of the disk with respect to the shaft, show
that the deflection of the center of the shaft may be written in the
form

r _ e(<-'/p) 2
1 - (w//>) 2

where p = \/k/m.

1 9.88 A disk of mass 30 kg is attached to the midpoint of a shaft.
Knowing that a static force of 200 \ will deflect the shaft 0.6 mm,
determine the speed of the shaft in rpm at which resonance will occur.

1 9.89 Knowing that the disk of Prob. 19.88 is attached to the

shaft with an eccentricity e = 0.2 mm, determine the deflection r of
the shaft at a speed of 900 rpm.iFig. P19.87 and P19.88
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19.90 A variable-speed motor is rigidly attached to the beam
BC. When the speed of the motor is less than 1000 rpm or more than

2000 rpm, a small object placed at A is observed to remain in contact
with the beam. For speeds between 1000 and 2000 rpm the object is
observed to "dance" and actually to lose contact with the beam.

Determine the speed at which resonance will occur.

JE

Fig. P19.90

jL
•A

~w

19.91 As the speed of a spring-supported motor is slowly in-
creased from 150 to 200 rpm, the amplitude of the vibration due to the
unbalance of the rotor is observed to decrease continuously from

0.150 to 0.080 in. Determine the speed at which resonance will occur.

19.92 In Prob. 19.91, determine the speed for which the ampli-
tude of the vibration is 0.200 in.

1 9.93 The amplitude of the motion of the pendulum bob shown
is observed to be 3 in. when the amplitude of the motion of collar

C is ^ '"• Knowing that the length of the pendulum is / = 36 in.,
determine the two possible values of the frequency of the horizontal
movement of the collar C.

x c = B m sin ateFig. P19.93rFig. P19.94

19.94 A certain vibrometer used to measure vibration ampli-

tudes consists essentially of a box containing a slender rod to which
a mass m is attached; the natural frequency of the mass-rod system
is known to be 5 Hz. When the box is rigidly attached to the casing
of a motor rotating at 600 rpm, the mass is observed to vibrate with
an amplitude of 1.6 mm relative to the box. Determine the amplitude
of the vertical motion of the motor.
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19.95 A small trailer of mass 200 kg will) its load is supported

by two springs, eacli of constant 20 k.\/m. The trailer is pulled over a road, the surface of which may be approximated by a sine curve
of amplitude 30 mm and of period 5 m (i.e., the distance between two
successive crests is 5 m, and the vertical distance from a crest to a

trough is 60 mm). Determine (a) the speed at which resonance will

occur, (fe) the amplitude of the vibration of the trailer at a speed of
60 km/h.

.
Fig. P19.95

1 9.96 Knowing that the amplitude of the vibration of the trailer

of Prob. 19.95 is not to exceed 15 mm, determine the smallest speed at which the trailer can be pulled over the road.

DAMPED VIBRATIONS

*19.8. Damped Free Vibrations. The vibrating sys-
tems considered in die first part of this chapter were assumed
free of damping. Actually all vibrations are damped to some
degree by friction forces. These forces may be caused by dry
friction, or Coulomb friction, between rigid bodies, by fluid
friction when a rigid body moves in a fluid, or by internal friction
between the molecules of a seemingly elastic body.

A type of damping of special interest is the viscous damping
caused by fluid friction at low and moderate speeds. Viscous
damping is characterized by the fact that the friction force is

directly proportional to the speed of the moving body. As an
example, we shall consider again a body of mass m suspended
from a spring of constant k, and we shall assume that the body
is attached to the plunger of a dashpot (Fig. 19.10). The magni-
tude of the friction force exerted on the plunger by the sur-

rounding fluid is equal to ex, where the constant c, expressed in N • s/m or lb • s/ft and known as the coefficient of viscous
damping, depends upon the physical properties of the fluid and
the construction of the dashpot. The equation of motion is

+ 1 2F = ma: \V - k(8 st + x) - c.i = mx

KquilibriumTFig. 19.10
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Recalling that W = kS sV we write

mx + ex + kx = (19.37)

Substituting x = e M into (19.37) and dividing through by e M ,
we write the characteristic equation

mX 2 + c\ +k = () (19.38)

and obtain the roots

A = -f ± JCff-± (19-39)2m V \2m/ m

Defining the critical damping coefficient c c as the value of c
which makes the radical in (19.39) equal to zero, we write

(a \ 2 k fk~— ) = c e = 2m — = 2mp (19.40)
2m/ m V m

where p is the circular frequency of the system in the absence

of damping. We may distinguish three different cases of damp-
ing, depending upon the value of the coefficient c.

1 . Heavy damping: c > c c . The roots \ and A, °f th e charac-

teristic equation (19.38) are real and distinct, and the general
solution of the differential equation (19.37) is

X = Ae^i' + Be** (19.41)

This solution corresponds to a nonvibratory motion. Since
A t and \ 2 are both negative, x approaches zero as t increases
indefinitely. However, the system actually regains its equilib-
rium position after a finite time.

2. Critical damping: c — c,.. The characteristic equation has a
double root A = —cjlm = — p, and the general solution of
(19.37) is

x = (A + Bt)e-" 1 (19.42)

The motion obtained is again nonvibratory. Critically

damped systems are of special interest in engineering appli-
cations since they regain their equilibrium position in the
shortest possible time without oscillation.

3. Light damping: c < c c . The roots of (19.38) are complex and
conjugate, and the general solution of (19.37) is of the form

x = e ~ lc/2m)t (A sin qt + B cos qt) (19.43)



where q is defined by the relation

\2W
<f =

m

Substituting k/m= p 2 and recalling (19.40), we write

'I =P
V

1 - W (19.44)

where the constant c/c c is known as the clamping factor. A
substitution similar to the one used in Sec. 19.2 enables us

to write the general solution of (19.37) in the form

X = x m e- <c/2m " sin (qt + <>) (19.45)

The motion defined by (19.45) is vibratory with diminishing
amplitude (Fig. 19.11). Although this motion does not ac-

tually repeat itself, the time interval t = 2^/q, corresponding
to two successive points where the curve (19.45) touches one

of the limiting curves shown in Fig. 19.11, is commonly
referred to as the period of the damped vibration. Recalling
(19.44), we observe that t is larger than the period of vibration
of the corresponding undamped system.

MECHANICAL VIBRATIONS 913

Fig. 19.11
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*19.9. Damped Forced Vibrations. If the system

considered in the preceding section is subjected to a periodic
force P of magnitude P — P m sin at, the equation of motion
becomes

mx + ex + kx - P m sin cot (]9.46)

The general solution of (19.46) is obtained by adding a particular
solution of (19.46) to the complementary function or general
solution of the homogeneous equation (19.37). The comple-

mentary function is given by (19.41), (19.42), or (19.43), depend-
ing upon the type of damping considered. It represents a tran-
sient motion which is eventually damped out.

Our interest in this section is centered on the steady-state

vibration represented by a particular solution of (19.46) of the
form

x par , = x m sin(cot-<r,) 9 - 47 )

Substituting x p(lrt for x into (19.46), we obtain

— mco 2 x m sin (cor — q>) -f- cax m cos (at — <p)
+ fcc m sin (cor - <p) = P m sin at

Making at — <p successively equal to and to w/2, we write

ccox m = P m sin<r (19.48)

(k- m a*)x m = P m cas<f. (19.49)

Squaring both members of (19.48) and (19.49) and adding, we
have

\(k - m*?f + (caf]xl = Pi (19.50)

Solving (19.50) for x m and dividing (19.48) and (19.49) member
by member, we obtain, respectively,

x P >» tan<p= — (19.51)
' "' V(* - ma 2 ) 2 + [caf k - ma 2

Recalling from (19.4) that k/m = p 2 , where p is the circular

frecmency of the undamped free vibration, and from (19.40) that 2?np = c c , where c c is the critical damping coefficient of the
system, we write

(19.52)

PJk 8 m V[l - KP) 2 ! 2 + [2(c/c c )(co/p)] 2

2(c/c c )co/p) nq-o,
tan <f = , (19.o.i)

1 - (u/p -
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Formula (19.52) expresses the magnification factor in terms of

the frequency ratio u/p and damping factor c/c c . It may be
used to determine the amplitude of the steady-state vibration
produced by an impressed force of magnitude P = P m sin ut or
by an impressed support movement 5 = S m sin tor. Formula

(19.53) defines in terms of the same parameters the phase differ- ence (p between the impressed force or impressed support move-

ment and the resulting steady-state vibration of the damped system. The magnification factor has been plotted against the frequency ratio in Fig. 19.12 for various values of the damping
factor. We observe that the amplitude of a forced vibration mav

be kept small by choosing a large coefficient of viscous damping c or by keeping the natural and forced frequencies far apart.

or

*m

S 2=05
c

=

1Fi.
c

= 0,125

etia
\ C= 0.25

nlc7" = 0.50sae-V.eie^^ = 1.00uFig. 19.12s*19.10. Electrical Analogues. Oscillating electrical
circuits are characterized by differential equations of the same

type as those obtained in the preceding sections. Their analysis is therefore similar to that of a mechanical system, and the results
obtained for a given vibrating system may be readily extended
to the equivalent circuit. Conversely, any result obtained for

an electrical circuit will also apply to the corresponding me- chanical system.
Consider an electrical circuit consisting of an inductor of

inductance /., a resistor of resistance R, and a capacitor of
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o

'¦I

¦&
E = E m sin u/

Fig. 19.13

capacitance C, connected in series with a source of alternating
voltage E = E m sinut (Fig. 19.13). It is recalled from elemen-
tary electromagnetic theory! that, if i denotes the current in
the circuit and q the electric charge on the capacitor, the drop

in potential is IXdi/dt) across the inductor, Ri across the resistor, and q/C across the capacitor. Expressing that the algebraic sum of the applied voltage and of the drops in potential around the
circuit loop is zero, we write

di q
£.. sin wr - L— - Ri - 4: =

dt C
(19.54)

Rearranging the terms and recalling that, at any instant, the
current i is equal to the rate of change q of the charge q, we
have

J.q + Rq + — q = £,„ sin ut (19.5c

We verify thai Eq. (19.55), which defines the oscillations of the electrical circuit of Fig. 19.13, is of the same type as Eq. (19.46),
which characterizes the damped forced vibrations of the me-
chanical system of Fig. 19.10. By comparing the two equations,

we may construct a table of the analogous mechanical and elec-
trical expressions.

Table 19.2 may be used to extend to their electrical analogues
the results obtained in the preceding sections for various me-
chanical systems. For instance, the amplitude i m of the current
in the circuit of Fig. 19.13 may be obtained by noting that it

corresponds to the maximum value i;„, of the velocity in the analogous mechanical system. Recalling that v m = wx m , substi-
tuting for *„, from Eq. (19.51), and replacing the constants of

Table 19.2 Characteristics of a Mechanical System and of Its

Electrical Analogue

Mechanical System

m mass

r Coefficient of viscous

damping

k Spring constant

v Displacement
t; Velocity

V Applied force

Electrical Circuit

L

R

Inductance

Resistance

1/C Reciprocal of capacitance
q Charge
i Current

E Applied voltage

f See Hamntond, "Electrical Engineering," McGraw-Hill Book Company, or
Smith, "Circuits, Devices, and Systems," John Wiley & Sons.
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the mechanical system by the corresponding electrical expres-
sions, we have

wE„,

L =

%-***)+&»?
E„

J*+(*-kJ
(19.56)

The radical in the expression obtained is known as the impedance of the electrical circuit.
The analogy between mechanical systems and electrical cir-

cuits holds for transient as well as steady-state oscillations. The

oscillations of the circuit shown in Fig. 19.14, for instance, are analogous to the damped free vibrations of the system of Fig.
19.10. As far as the initial conditions are concerned, we mav

note that closing the switch S when the charge on die capacitor is 1 - <ln >s equivalent to releasing the mass of the mechanical

system with no initial velocity from the position x = x n . We should also observe that, if a battery of constant voltage E is introduced in the electrical circuit of Fig. 19.14, closing the
switch S will be equivalent to suddenly applying a force of

constant magnitude P to the mass of the mechanical system of Fig. 19.10.
The above discussion would be of questionable value if its only

result were to make it possible for mechanics students to analyze

electrical circuits without learning the elements of electromag- netism. It is hoped, rather, that this discussion will encourage
the students to apply to the solution of problems in mechanical
vibrations the mathematical techniques they may learn in later
courses in electrical circuits theory. The chief value of the

concept of electrical analogue, however, resides in its application
to experimental methods for the determination of the charac-

teristics of a given mechanical system. Indeed, an electrical
circuit is much more easily constructed than a mechanical model,

and the fact that its characteristics may be modified by varying

the inductance, resistance, or capacitance of its various compo- nents makes the use of the electrical analogue particularly con-
venient.

To determine the electrical analogue of a given mechanical

system, we shall focus our attention on each moving mass in the system and observe which springs, dashpots, or external forces are applied directly to it. An equivalent electrical loop
may then be constructed to match each of the mechanical unitse

©

So

L

Fig. 19.14
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t
*,

It, - L
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P = /\

Fig. 19.15
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¦©-
£ = /-

Fig. 19.16

thus defined; the various loops obtained in that way will form

together the desired circuit. Consider, for instance, the mechan- ical system of Fig. 19.15. We observe diat the mass nij is acted
upon by two springs of constants fc 1 and k, and by two dashpots characterized by the coefficients of viscous damping c, and c 2 .
The electrical circuit should therefore include a loop consisting

of an inductor of inductance L, proportional to m v of two

capacitors of capacitance C, and C 2 inversely proportional to k 1 and k 2 , respectively, and of two resistors of resistance Kj and
R 2 , proportional to c x and c 2 , respectively. Since the mass m 2 is acted upon by the spring k 2 and the dashpot c 2 , as well as
by the force P = P m sin at, the circuit should also include a loop
containing the capacitor C 2 , the resistor R 2 , die new inductor
L 2 , and the voltage source E = E m sin cor (Fig. 19. 16).

To chock that the mechanical system of Fig. 19.15 and the
electrical circuit of Fig. 19.16 actually satisfy the same differen-
tial equations, we shall first derive the equations of motion for

mj and m 2 . Denoting respectively by x l and x 2 the displacements of m 1 and m., from dieir equilibrium positions, we observe that
the elongation of the spring k t (measured from the equilibrium

position) is equal to x v while the elongation of the spring k^ is equal to the relative displacement x 2 — x, of m 2 with respect
to Rk. The equations of motion for m 1 and m, 2 are therefore

*& + Cjij + c 2 (i, -x. 2 ) + k lXl + k 2 {x 1 -x£ = (19-57)

m 2 x 2 + c 2 (.t2 - x x ) + k 2 (x 2 - x x ) = F m sin cat (19.58)

Consider now the electrical circuit of Fig. 19.16; we denote

respectively by i x and i 2 the current in the first and second loops,
and by q t and q 2 the integrals Jh * and fi 2 dt. Noting that

the charge on the capacitor C t is q v while the charge on C 2 is q, — q 2 , we express that the sum of the potential differences
in each loop is zero:

Mi + Mi + «* - ^ + 1- + ^^ = ° (1959)

L 2 q 2 + R 2 (q 2 - <fc) + ^2k = Em sin at (19.60)
We easily check that Eqs. (19.59) and (19.60) reduce to (19.57)
and (19.58), respectively, when the substitutions indicated in
Table 19.2 are performed.



MECHANICAL VIBRATIONS 919

PROBLEMS

1 9.97 Show that, in the case of heavy damping (c > c r ), a body
never passes through its position of equilibrium O (a) if it is released
with no initial %'elocity from an arbitrary position or (b) if it is started
from O with an arbitrary initial velocity.

1 9.98 Show that, in the case of heavy damping (c > c c ), a body
released from an arbitrary position with an arbitrary initial velocity
cannot pass more than once through its equilibrium position.

19.99 In the case of light damping, the displacements .v,, x 2 , .r„
etc., shown in Fig. 19.11 may be assumed equal to the maximum
displacements. Show that the ratio of any two successive maximum
displacements .t„ and .t n+1 is a constant and that the natural logarithm
of this ratio, called the logarithmic decrement, is

In- 2*(c/c c )

VI - (c/c c f

1 9. 1 00 In practice, it is often difficult to determine the logarithmic
decrement defined in Prob. 19.99 by measuring two successive maxi-
mum displacements. Show that the logarithmic decrement may also
be expressed as (1/n) In (.r,/x n+I ), where n is the number of cycles
between readings of the maximum displacement.

19.101 Successive maximum displacements of a spring-mass-
dashpot system similar to that shown in Fig. 19.10 are 75, 60, 48, and
38.4 mm. Knowing that m = 20 kg and k = 800 N/m, determine (a) the
damping factor c/c c , (b) the value of the coefficient of viscous damping
ft {Hint. See Probs. 19.99 and 19.100.)

19.102 In a system with light damping (c < c c ), the period of
vibration is commonly defined as the time interval - = 2v/q corre-
sponding to two successive points where the displacement-time curve
touches one of the limiting curves shown in Fig. 19.11. Show that
the interval of time (a) between a maximum positive displacement
and the following maximum negative displacement is Jr, (h) between
two successive zero displacements is Jt, (c) between a maximum

positive displacement and the following zero displacement is greater than It.

1 9. 1 03 The barrel of a field gun weighs 1200 lb and is returned into
firing position after recoil by a recuperator of constant k = 8000 lb/ft.
Determine the value of the coefficient of damping of the recoil mecha-
nism which causes the barrel to return into firing position in the shortest
possible time without oscillation.
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19.104 A critically damped system is released from rest at an
arbitrary position x when I = 0. («) Determine the position of the
system at any time I, (/>) Apply the result obtained in part a to the
barrel of the gun of Prob. 19.103, and determine the time at which
the barrel is halfway back to its firing position.

19.105 Assuming that the barrel of the gun of Prob. 19.103 is

modified, with a resulting increase in weight of 300 lb, determine the
constant k of the recuperator which should be used if the recoil mech-

anism is to remain critically damped.

19.106 In the case of the forced vibration of a system with a

given damping factor c/c c , determine the frequency ratio w/p for
which the amplitude of the vibration is maximum.

hFig. P19.108

19.107 Show that for a small value of the damping factor c/c c ,

(a) the maximum amplitude of a forced vibration occurs when u zz p,
(b) the corresponding value of the magnification factor is approxi-
mately \(c c /c).

1 9.108 A motor of mass 25 kg is supported by four springs, each

having a constant of 200 k.N/m. The unbalance of the rotor is equiva-
lent to a mass of 30 g located 125 mm from the axis of rotation.

Knowing that the motor is constrained to move vertically, determine
the amplitude of the steady-state vibration of the motor at a speed
of 18(X)rpm, assuming (a) that no damping is present, [b) that the
damping factor c/c r is equal to 0.125.oFig. P19.110

19.109 Assume that the 25-kg motor of Prob. 19.108 is directly

supported by a light horizontal beam. The static deflection of the beam due to the weight of the motor is observed to be 5.75 mm, and
the amplitude of the vibration of the motor is 0.5 mm at a speed of 400 rprn. Determine (a) the damping factor c/c c , (b) the coefficient
of damping c.

19.1 10 A machine element weighing 800 lb is supported by two

springs, each having a constant of 200 lb/in. A periodic force of maximum value 30 lb is applied to the element with a frequency of
2.5 cycles per second. Knowing that the coefficient of damping is
8 lb • s/in., determine the amplitude of the steady-slate vibration of
the element,

19.111 In Prob. 19.110, determine the required value of the

coefficient of damping if the amplitude of the steady-state vibration
of the element is to be 0.15 in.
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19.112 A platform of mass 1(X) kg, supported by a set of springs

equivalent to a single spring of constant k = 80 kX/in, is subjected to a periodic force of maximum magnitude 500 X. Knowing that the
coefficient of damping is 2 kN • s/m, determine (a) the natural fre-
quency in rpm of the platform If there were no damping, (b) the
frequency in rpm of the periodic force corresponding to the maximum

value of the magnification factor, assuming damping, (c) the amplitude of the actual motion of the platform for each of the frequencies found
in parts a and b.

n :

^L

Fig. P19.112

* 1 9.1 1 3 The suspension of an automobile may be approximated
by the simplified spring-and-dashpot system shown, (a) Write the
differential equation defining the absolute motion of the mass m when
the system moves at a speed C over a road of sinusoidal cross section

as shown, (b) Derive an expression for the amplitude of the absolute motion of m.

Fig. P19.113

* 1 9. 1 1 4 Two loads A and B, each of mass m, are suspended
as shown by means of five springs of the same constant k. Load B
is subjected to a force of magnitude I' = I' m sin Mfc Write the differen-
tial equations defining the displacements x A and % B of the two loads
from their equilibrium positions.

R

F= P mhuI

Fig. P19.114

19.115 Determine the range of values of the resistance R for
which oscillations will take place in the circuit shown when the switch
S is closed.

1 9.1 1 6 Consider the circuit of Prob. 19.115 when the capacitance
C is equal to zero. If the switch S is closed at time I = 0, determine

(a) the final value of the current in the circuit, (6) the time / at which
the current will have reached (1 — \/e) times its final value. (The
desired value of / is known as the time constant of the circuit.)

WWW

Fig. P19.115
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1 9.1 1 7 through 19.1 20 Draw the electrical analogue of the

mechanical system shown. (Hint. In Probs. 19.117 and 19.118, draw
(he loops corresponding to the free bodies m and A.)

19.121 and 19.122 Write the differential equations defining

(a) the displacements of mass m and point A, (b) the currents in the
corresponding loops of the electrical analogue.

19.123 and 19.124 Write the differential equations defining

(a) the displacements of the masses m l and m 2 , (/;) the currents in the
corresponding loops of the electrical analogue.

V = P. sin ul

Fig. P19.117 and P19.1218
k,'

k
H

p _ p

Fig. P19.118 and P19.122 Fig. P19.119 and P19.123 Fig. P19.120 and P19.124

REVIEW PROBLEMS

19.125 A homogeneous wire of length 21 is bent as shown and
allowed to oscillate about a frictionlcss pin at B. Denoting by t the
period of small oscillations when ft = 0, determine the angle fl for
which the period of small oscillations is 2t .mFig. P19.125 and P19.126

19.126 Knowing that I = 0.6 m and ft = 30°, determine the

period of oscillation of the bent homogeneous wire shown.
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19.127 A period of 4.10 s is observed for the angular oscillations
of a 1-lb gyroscope rotor suspended from a wire as shown. Knowing
that a period of 6.20 s is obtained when a 2-in.-diamcter steel sphere
is suspended in the same fashion, determine the centroidal radius of

gyration of the rotor. (Specific weight of steel = 490 lb/ft 3 .)

19.128 An automobile wheel-and-tire assembly of total weight
47 lb is attached to a mounting plate of negligible weight which is
suspended from a steel wire. The torsional spring constant of the wire

is known to be K = 0.40 lb • in./rad. The wheel is rotated through 90° about the vertical and then released. Knowing that the period
of oscillation is observed to be 30 s, determine the centroidal mass

moment of inertia and the centroidal radius of gyration of the wheel-
and-tire assembly.

2
Fig. P19.127

iFig. P19.128

A homogeneous wire is bent to form a square of side I
which is supported by a ball-and-socket joint at A. Determine the

period of small oscillations of the square (a) in the plane of the square, (b) in a direction perpendicular to the square.

19.130 A 150-kg electromagnet is at rest and is holding 100 kg

of scrap steel when the current is turned off and the steel is dropped. Knowing that the cable and the supporting crane have a total stiffness
equivalent to a spring of constant 200 kN/m, determine (a) the fre-

quency, the amplitude, and the maximum velocity of the resulting
motion, (b) the minimum tension which will occur in the cable during
the motion, (c) the velocity of the magnet 0.03 s after the current is
turned off.0Fig. P19.129dj?^m^ Fig. P19.130
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F
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Fig. P19.131
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Fig. P19.133

1 9.1 31 During the normal operation of a single-phase generator,
the transmission of undesirable vibrations is prevented by four springs

mounted as shown (two springs at A and two springs at B). Knowing

that the stator of the generator weighs- 400 lb and has a eentroidal
radius of gyration of 24 in., determine the required constant of each
spring if the frequency of the free angular vibration of the stator is to
he 15 cycles per second.

1 9.1 32 The rotor of the generator of Prob. 19.131 weighs 300 lb
and has a eentroidal radius of gyration of J 8 in. Knowing that the
springs have been chosen so that the angular frequency of the stator
alone is 15 cycles per second, determine the frequency of the angular
vibration of the generator if the bearings are frozen SO that the rotor

and stator move as a single rigid body.

19.133 A slender bar of length / is attached by a smooth pin at A

to a collar of negligible mass. Determine the period of small oscillations
of the bar, assuming that the coefficient of friction between the collar

and the horizontal rod (o) is sufficient to prevent any movement of the
collar, {b) is zero.

19.134 A 2-kg instrument is spring-mounted on the casing of a
motor rotating at 1S(K) rpm. The motor is unbalanced and the am-

plitude of the motion of its casing is 0.5 mm. Knowing that
k = 9000 N/m, determine the amplitude of the motion of the instru-
ment.

Fig. P19.135

1 9.1 35 A collar of mass m slides without friction on a horizontal

rod and is attached to a spring AB of constant k. {a} If the unslretched

length of the spring is just equal to I, show that the collar docs not execute simple harmonic motion even when the amplitude of the
oscillations is small, (b) If the unstretched length of the spring is less
than /, show that the motion may be approximated by a simple har-
monic motion for small oscillations.

300 innsFig. P19.136

19.136 The assembly shown consists of two thin disks, each of

mass 3 kg, and four slender rods, each of mass 0.4 kg. Determine the
period of oscillation of the assembly.



Some Useful
APPENDIX

Definitions and **

Properties of

Vector Algebra

The following definitions and properties of vector algebra
were discussed fully in Chaps. 2 and 3 of Vector Mechanics for
Engineers: Statics. They are summarized here for the conven-

ience of the reader, with references Lo the appropriate sections of
the Statics volume. Equation and illustration numbers arc those
used in the original presentation.

A.1 . Addition of Vectors (Sees. 2.2 and 2.3). Vectors are

defined as mathematical expressions possessing magnitude and
direction, which add according to the parallelogram laic. Thus
the sum of two vectors P and Q is obtained by attaching the two
vectors to the same point A and constructing a parallelogram,
using P and Q as two sides of the parallelogram (Fig. 2.6). The
diagonal that passes through A represents the sum of the vectors
P and Q, and this sum is denoted by P + Q. Vector addition is
associative and commutative.

The negative vector of a given vector P is defined as a vector

having the same magnitude V and a direction opposite lo that of
P (Fig. 2.5); the negative of the vector P is denoted by —P.
Clearly, we have

P+(-P) =

P + Q

Fig-

-p

2.5

925
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A.2. Product of a Scalar and a Vector (Sec-. 2.3). The
product kP of a scalar k and a vector P is defined as a vector

having the same direction as P (if k is positive), or a direction

opposite to that of P (if k is negative), and a magnitude equal to
the product of the magnitude P and of the absolute value of k

(Fig. 2.13).

Fig. 2.13

n I

z

Fig. 2.32

A. 3. Unit Vectors. Resolution of a Vector into

Rectangular Components (Sees. 2.6 and 2.11). The vectors

i, j, and k, called unit vectors, are defined as vectors of magni-
tude 1, directed respectivelv along the positive x, y, and z axes

(Fig. 2.32).

Denoting by F T , F y , and F £ the scalar components of a vector F,
we have (Fig. 2.33)

F = F,i + FJ + F r k (2.20)

In the particular case of a unit vector A directed along a line

forming angles r , 8 y , and 8. with the coordinate axes, we have

A = cos0 x i + cos0„j + costf.k (2.22)

cos e.ji

Fig. 2.33
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A.4. Vector Product of Two Vectors (Sees. 3.3 and

3.4). The vector product, or cross product, of two vectors P and
Q is defined as the vector

V = PxQ

which satisfies the following conditions:

1. The line of action of V is perpendicular to the plane contain-
ing P and Q (Fig. 3.6).

2. The magnitude of V is the product of the magnitudes of P and
Q and of the sine of the angle formed by P and Q (the
measure of which will always be 180° or less); we thus have

V = PQ sin 6 (3.1)

3. The sense of V is such that a man located at the tip of V will
observe as counterclockwise the rotation through which
brings the vector P in line with the vector Q; note that if P
and Q do not have a common- point of application, they
should first be redrawn from the same point. The three vec-

tors P, Q, and V — taken in that order — form a right-handed
triad.

V=PxQ

b
Fig. 3.6

Vector products are distributive, but they are not commuta-
tive. We have

Q X P = -(P X 0) (3.4)

Products of Unit Vectors. It follows from the defi-

nition of the vector product of two vectors that

iXi =0

i X j = k

i x k = -j

j X i = -k

j X j =
j X k = i

k X i = j

k X j = -i
kxk =

(3.7)

Rectangular Components of Vector Product. Resolving
the vectors P and Q into rectangular components, we obtain
the following expressions for the components of their vector
product V:

v, = p& - KQ y
V v = P : (J X - P T Q : (3.9)

% = P t Q v - P V Q X

In determinant form, we have

V = P XQ =

i i k

K P v 5
Q* Qy ft

(3.10)
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Fig. 3.12

A.5. Moment of a Force about a Point (Sees. 3.5 and

3.7). The moment of a force F (or, more generally, of a vector
F) about a point O is defined as the vector product

M = r X F (3.11)

where r denotes the position vector of the point of application A
of F (Fig. 3.12).

Rectangular Components of the Moment of a Force.

Denoting by x, y, and z the coordinates of the point of applica-
tion A of F, we obtain die following expressions for the compo-
nents of the moment M of F:

U, = yF, - zF u
M v = zF z - xF,
K = *Fy - yf,

(3.18)

In determinant form, we have

M = r X F =

i j k

x y z

F. F„ F,

(3.19)

To compute the moment M B about an arbitrary point B of a

force F applied at A, we must use the vector Ar = r A — r B
instead of the vector r. We write

M B = dr X F = (t A - r B ) X F

or, using the determinant form,

|i j k
M s = , Ax Ay Ac

IF, P„ F;

(3.20)

(3.21)

where Ax, Ay, Az are the components of the vector Ar joining A
and B:

Fig. 3.1

A* = %. - x B ±y = \Ia ~\Jb ^ z = *a - Z B

A.6. Scalar Product of Two Vectors (Sec. 3.8). The

scalar product, or dot product, of two vectors P and Q is defined
as the product of the magnitudes of P and Q and of the cosine of
the angle formed by P and Q (Fig. 3.19). The scalar product of

P and Q is denoted by P • Q. We write

P • Q = PQ cos

Scalar products are commutative and distributive.

(3.24)
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Scalar Products of Unit Vectors. It follows from the defi-

nition of the scalar product of two vectors that

i • i = 1 j ' j = 1 k • k = 1

i • j = j • k = k • i =
(3.29)

Scalar Product Expressed in Terms of Rectangular
Components. Resolving the vectors P and Q into rectangular
components, wc obtain

P • Q = P.& + P V Qy + P& (3.30)

Angle Formed by Two Vectors. It follows from (3.24) and
(3.29) that

cost) =s I ¦ Q = j& + P „Q» + P*Q*
PQ PQ

(3.32)

Projection of a Vector on a Given Axis. The projection of

a vector P on the axis OL defined by the unit vector A (Fig. 3.23)
is

R„, = OA = P • A

A.7. Mixed Triple Product of Three Vectors (Sec.

3.9). The mixed triple product of the three vectors S, P, and Q is
defined as die scalar expression

S ¦ (P X Q.) (3.38)

obtained by forming the scalar product of S with the vector
product of P and Q. Mixed triple products are invariant under
circular permutations, but change sign under any other permuta-
tion:

S • (P X Q) = P • (Q X S) = Q • (S X P)

= -S • (Q X P) = -P • (S X Q) = -Q ¦ (P X S) (3.39)

Mixed Triple Product Expressed in Terms of Rectangular

Components. The mixed triple product of ,S, P, and Q may be
expressed in the form of a determinant:

s • (P x 0) =
s* s„ s,
P, Py P.
Qs Q y ft

(3.41)

The mixed triple product S • (P X Q) measures the volume of the
parallelepiped having the vectors S, P, and Q for sides (Fig. 3.25).

(3.36) Fig. 3.23

Fig. 3.25
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Fig. 3.27

Fig. 3.29

A.8. Moment of a Force about a Given Axis (Sec.

3.10). The moment M 0L of a force F (or, more generally, of a
vector F) about an axis OL is defined as the projection OC on the
axis OL of the moment M of F about O (Fig. 3.27). Denoting by
A the unit vector along OL, we have

M OL =X-M =\-(rXF)

or, in determinant form,

M M =
K *

X

F m

y

F

(3.42)

(3.43)

where X x , X v , X x = direction cosines of axis OL
x, y, z — coordinates of point of application of F

F x , F y , F, = components of force F
The moments of the force F about the three coordinate axes

are given by the expressions (3.18) obtained earlier for the rec-
tangular components of the moment M of F about 0;

M x = yF x - zF y
M y = zF x - xF, (3.18)

More generally, the moment of a force F applied at A about an

axis which does not pass through the origin is obtained by choos-
ing an arbitrary point B on the axis (Fig. 3.29) and determining

the projection on the axis BL of the moment M B of F about B.
We write

M BL = A • M B = A • (Ar X F) (3.45)

where Ar = r A — r B represents the vector joining B and A.

Expressing M BL in the form of a determinant, we have

K K K
Ax Ay As
F. E. F.

M m = (3.46)

where \ x , A , A^ = direction cosines of axis BL

A.v = x A - x B , \y = y A - y B , A s = z A - z B

F x , F y , F z = components of force F

It should be noted that the result obtained is independent of the
choice of the point B on the given axis; the same result would

have been obtained if point C had been chosen instead of B.
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F
MOMENTS OF INERTIA OF MASSES"

9.10. Moment of Inertia of a Mass. Consider a small

mass Am mounted on a rod of negligible mass which may rotate

freely about an axis AA' (Fig. 9.20a). If a couple is applied to the system, the rod and mass, assumed initially at rest, will start
rotating about AA'. The details of this motion will be studied

later in dynamics. At present, we wish only to indicate that the
time required for the system to reach a given speed of rotation
is proportional to the mass Am and to the square of the distance
r. The product r 2 Aw provides, therefore, a measure of the
inertia of the system, i.e., of the resistance the system offers when

we try to set it in motion. For this reason, the product r 2 Am is called the moment of inertia of the mass Am with respect to
the axis AA'.

Consider now a body of mass w which is to be rotated about

an axis AA' (Fig. 9.20b). Dividing the body into elements of
mass Am,, Am 2 , etc., we find that the resistance offered by the

body is measured by the sum r 2 Am, + r% Am 2 + ¦ ¦ ¦ . This sum defines, therefore, the moment of inertia of the body with respect
to the axis AA'. Increasing the number of elements, wc find that

the moment of inertia is equal, at the limit, to the integral

/ = fr 2 dm (9.28)

The radius of gyration k of the body with respect to the axis
AA' is defined by the relation

/ = k 2 m or k= I—
V m

(9.29)

(c)

Fig. 9.20

The radius of gyration k represents, therefore, the distance at
which the entire mass of the body should be concentrated if its

moment of inertia with respect to AA' is to remain unchanged (Fig. 9.20c). Whether it is kept in its original shape (Fig, 9.20b)
or whether it is concentrated as shown in Fig. 9.20c, the mass m will react in the same way to a rotation, or gyration, about
AA'.

If SI units are used, the radius of gyration k is expressed in
meters and the mass m in kilograms. The moment of inertia

of a mass, therefore, will be expressed in kg • m 2 . If U.S. custom-
ary units are used, the radius of gyration is expressed in feet

"This repeats Sees. 9.10 through 9.16 of the volume on statics.
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and the mass in slugs, i.e., in lb • s*/ft. The moment of inertia
of a mass, then, will be expressed in lb • ft • s 2 .t

The moment of inertia of a body with respect to a coordinate

axis may easily be expressed in terms of the coordinates X, y, z
of the element of mass dm (Fig. 9.21). Noting, for example,
that the square of the distance r from die element dm to the
y axis is z 2 + x 2 , we express the moment of inertia of the body
with respect to the 1/ axis as

I v = Jr* dm = S(z 2 + x 2 ) dm

Similar expressions may be obtained for the moments of inertia
with respect to the .v and z axes. We write Fig. 9.21

i z = S(y 2 + z*) dm

I v = f(z? + x 2 ) dm
Z. = S(x* + if) dm

(9.30)

9.11. Parallel-Axis Theorem. Consider a body of mass

m. Let Oxyz be a system of rectangular coordinates with origin

at an arbitrary point O. and G.v'i/V a system of parallel cen-

troidal axes, i.e., a system with origin at the center of gravity
G of the body} and with axes x', y', z', respectively parallel to

x, y, z (Fig. 9.22). Denoting by x, y, J the coordinates of G with

respect to Oxyz, we write the following relations between the
coordinates x, y, z of the element dm with respect to Oxyz and
its coordinates x J , if, z' with respect to the centroidal axes
Cx'y'z':

x = i* + x !/ = </' + </ z = z' + z (9.31)rtit should be kept in mind, when converting the moment of inertia of a
mass from U.S. customary units to SI units, that the base unit pound used in

the derived unit lh • ft • s 2 is a unit of force {not of mass) and, therefore, should
be converted into newtons. We have

1 lb • ft • s 2 = (4.45 N)(0.3048 m)(l s) 2 = 1.336 N • m • s 2

or, since \ = kg ¦ m/s ! ,

llb-ft-s 11 = 1.336 kg -m 2

Fig. 9.22

l.Note that the term centroidal is used to define an axis passing through the

center of gravity G of the body, whether or not C coincides with the centroid
of the volume of the body.
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Referring to Eqs. (9.30), we may express the moment of inertia
of the body with respect to the x axis as follows:

h = SW + z 2 ) dm = f[(y> + Tjf + y + 2)2j dm
= S(y' 2 + **) dm + 2yfy' dm + 2zftf dm + (y 2 + z 2 )f dm

The first integral in the expression obtained represents the mo-
ment of inertia T x . of the body with respect to the centroidal
axis x'; (he second and third integrals represent the first moment
of the body with respect to the z'x' and x'lf planes, respectively,
and, since both planes contain G, the two integrals are zero;
the last integral is equal to the total mass m of the body. We
write, therefore,

/, = /,. + m (y 2 +z 2 ) (9.32)

Fig. 9.23

and, similarly,

/„ = 1„ + m(z 2 + X 2 ) 4 = I, + m(x 2 + y 2 )

(9.32')

We easily verify from Fig. 9.22 that the sum 5" 2 + x 2 repre-

sents the square of the distance OB between the y and y' axis. .Similarly, y 2 + z 2 and x 2 + y 2 represent the squares of the
distances between the x and .v' axes, and the 2 and z' axes, respec-
tively. Denoting by d the distance between an arbitrary axis

AA' and a parallel centroidal axis BB' (Fig. 9.23), we may, there-
fore, write the following general relation between the moment

of inertia l_ of the body with respect to AA' and its moment of inertia / with respect to BB':

1 = 1 + md 2 (9.33)

Expressing the moments of inertia in terms of the corresponding
radii of gyration, we may also write

k 2 = k 2 + d 2 (9.34)

where k and k represent the radii of gyration about A A' and
BB', respectively.



9.12. Moments of Inertia of Thin Plates. Consider

a thin plate of uniform thickness t, made of a homogeneous material of density p (density = mass per unit volume). The
mass moment of inertia of the plate with respect to an axis AA'
contained in the plane of the plate (Fig. 9.24a) is

W.m*w = S 1 ' 2 dm

Since dm = pt dA, we write

V.mass = Ptf r ' 2 dA

But r represents the distance of the element of area dA to the
axis AA'; the integral is therefore equal to the moment of inertia

of the area of the plate with respect to AA'. We have

MA'.mass — P'*.4/l'.area (9.35)

Similarly, we have with respect to an axis BB' perpendicular
to AA' (Fig. 9.24fo)

'SB", mass = ptlBB'.m-va (9.36)

Considering now the axis CC perpendicular to the plate
through the point of intersection C of AA' and BB' (Fig. 9.24c),
we write

l CC, mass = pti,C, area (9.37)

where J c is the polar moment of inertia of the area of the plate
with respect to point C.

Recalling the relation J c = 7^. + I BB . existing between polar
and rectangular moments of inertia of an area, we write the

following relation between the mass moments of inertia of a thin
plate:

Ictr = luf + IBR (9.38)

Rectangular Plate. In the case of a rectangular plate of
sides a and b (Fig. 9.25), we obtain the following mass moments

of inertia with respect to axes through the center of gravity of
the plate:

^•.mnss = P'W.area = Pt(^' h )
Bfi'.mass» = P«Bfl'.area = Pt(frl»)

MOMENTS OF INERTIA OF MASSES 935

A'

t
(«)

p
(b)

v(c) Fig. 9.24

Fig. 9.25
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r
Observing that the product publ is equal to the mass m of the
plate, we write the mass moments of inertia of a thin rectangular
plate as follows:

I AA , = fona* Igg, = ^ (9.39)
h.c = Iax + 'mr = iV«;« 2 + fe 2 ) (9-40)

Circular Plate. In the case of a circular plate, or disk, of
radius r (Fig. 9.26), we write

M^'.raass = P"AA\ area = P'd 57 '" 1 )

Observing that the product pwrH is equal to the mass m of the
plate and that 7 A4 - = I Bg ., we write the mass moments of inertia
of a circular plate as follows:

l cc = Iaa- + 1 rk = \ mr ' 2

(9.41)

(9.42)

/dm = p;rr~ rfa

(//,= jr J dm
dlj = H. + i i dm = ^r 2 + x 1 ) dm
dL = dl, + x i dm = (\r 2 +x 2 )dm

Fig. 9.27 Determination of the moment of

inertia of a body of revolution.

9.13. Determination of the Moment of Inertia of a

Three-dimensional Body by Integration. The moment

of inertia of a three-dimensional body is obtained by computing
the integral I = fr 2 dm. If the body is made of a homogeneous
material of density p, we have dm = p dV and write 7 =

pjr- dV. This integral depends only upon the shape of the body.
In order to compute it, it will generally be necessary to perform
a triple, or at least a double, integration.

However, if the body possesses two planes ol symmetry, it
is usually possible to determine its moment of inertia through
a single integration by choosing as an element of mass dm the
mass of a thin slab perpendicular to the planes of symmetry.
In the case of bodies of revolution, for example, the element
of mass should be a thin disk (Fig. 9.27). Using formula (9.42),
the moment of inertia of the disk with respect to the axis of
revolution may be readily expressed as indicated in Fig. 9.27.
Its moment of inertia with respect to each of the other two axes

of coordinates will be obtained by using formula (9.41) and the
parallel-axis theorem. Integration of the expressions obtained
will yield the desired moments of inertia of the body of revolu-
tion.

9.14. Moments of Inertia of Composite Bodies.

The moments of inertia of a few common shapes are shown in

Fig. 9.28. The moment of inertia with respect to a given axis of a body made ol several of these simple shapes may be obtained
by computing the moments of inertia of its component parts
about the desired axis and adding them together. We should
note, as we already have noted in the case of areas, that the

radius of gyration of a composite body cannot be obtained by
adding the radii of gyration of its component parts.
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Slender rod

,
;„ = I, = ^mlJ

Thin rectangular plate

c
/.. = -rVmfo 2

Rectangular prism

Thin disk

<

^
| '1/ = tV"(c'-' + « 2 )

dI j. = ±mr-

J y = L = \mfi

Circular cvlinderol r — hna-

I, = I, = ,V m (3o 2 + I. 2 )

Circular cone-

Spheres/„ = u = i>n(W + h 2 )

l t =l„ = l, = ima*

Fig. 9.28 Mass moments ol inertia of com-
mon geometric shapes
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SAMPLE PROBLEM 9.9

Determine the mass moment of inertia of a slender rod of length /.
and mass m with respect to an axis perpendicular to the rod and
passing through one end of the rod.

lion, Choosing the differential element of mass shown, we
write

i m j
am — — ax

w«.-jVf*-Ufl
,/:¦

SAMPLE PROBLEM 9.10

b Determine the mass moment of inertia of the homogeneous rectangular

J~* prism shown with respect to the z axis.

-~ ,h

^n

We choose as a differential element of mass the thin slab

shown for which

dm = pbc dx

Referring to Sec. 9.12, we find that the moment of inertia of the

element with respect to the ;' axis is

dl z . = $p dm

Applying the parallel-axis theorem, we obtain the mass moment of

inertia of the slab with respect to the z axis.

dl, = dL. + x 2 dm = -&b 2 dm + x 2 dm = (&b 2 + x 2 ) pbc dx

Integrating from x = to x = a, we obtain

'* =f dI * = ( ft*" + *> P hc dx = f" hc W + J" 2 )
Since the total mass of the prism is m = ,Mbc, we may write

7, = m(±h* + fa 2 ) /. = &m(4fl* + b 2 ) -m

We note that if the prism is slender, b is small compared to a and
the expression for ^ reduces to ma 2 /3, which is the result obtained
in Sample Prob. 9.9 when L = a.

938
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SAMPLE PROBLEM 9.11

Determine the mass moment of inertia of a right circular cone with

respect to (a) its longitudinal axis, (/;) an axis through the apex of the
cone and perpendicular to its longitudinal axis, (c) an axis through
the centroid of the cone and perpendicular to its longitudinal axis.

r, *

- V \

e
Solution. We choose the differential element of mass shown.

r = aj- dm = pnr 2 dx = pm j^-x 2 dx

a. Moment af Inertia I Using the expression derived in Sec. 9.12
for a thin disk, we compute the mass moment of inertia of the

differential element with respect to the x axis.

tU, = p dm = I (afj (ptfij.** dx) = faj^x* dx
Integrating from .r = to x = h, we obtain

Since the total mass of the cone is m = ^pna 2 h, we may write

I* = ift>*a*h = $a 2 (Jp?ra 2 /l) = fono* ~«

The same differential element will be

used. Applying the parallel-axis theorem and using the expression
derived in Sec. 9.12 for a thin disk, we write

dl v = <//„. + x 2 dm = $r 2 dm + x- dm = (\r 2 + x 2 ) dm

Substituting the expressions for r and dm, we obtain

Introducing the total mass of the cone m, sve rewrite l t as follows:

h = l9o 2 + h*fama*h ',, - -*

1 We apply the parallel-axis theorem and
write

/„ = r„.. + mx 2

Solving for l u - and recalling that x = ij/i, we have

V ¦ I, - mx* = »m(}« 2 + ft 2 ) - m$hf

939
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SAMPLE PROBLEM 9.12

A steel forging consists of a rectangular prism 6 by 2 by 2 in. and of
two cylinders of diameter 2 in. and length 3 in., as shown. Determine
the mass moments of inertia with respect to the coordinate axes.

(Specific weight of steel = 490 lb/ft 8 .)

"S 2 in. —

Computation of Masses
Prim

(Min^y =ft81lbI728in 3 /ft 3

m = _MiilL. = 0.2U lb -sVfl

EacA Cylinder

32.2 ft/s 2

V = w(l in.) z (3 in.) = 9.42 in 3

(9.42 in 3 )(490 lb/ft 3 )
W =

1728in 3 /fl 3

2.67 lb

= 2.67 lb

= 0.0829 lb • sVft
32.2 fl/s 2

Mass Moments of Inertia. The mass moments of inertia of each

component are computed from Fig. 9.28, using the parallel-axis
theorem when necessary. Note that all lengths should be expressed
in feet.

Prim

l, = l, = 4(0.21] lb • s*/ft)[(& ft) 2 + (h ft) 2 ] = 4.88 X 10- 1 lb ¦ ft • s 2

/„ = 4(0.211 lb • s 2 /ft)[(£ ft) 2 + (, 2 2 ft) 2 ] = 0.977 x 10- 3 lb • ft • s 2

EacA cylinder

f, = Jm« s + my 3 = §(0.0829 lb • s7ft)(4 ft) 2
+ (0.0829 lb • sVflXji ft) 2 = 2.59 X 10 a lb • 11 • s-

/„ = Am(3o 2 + J, 2 ) + mz* = 4(0.0829 lb -s 2 /ft)[3(^ ft) 2 + {, 3 2 ft)*]
+ (0.0829 lb • >*/%)(# f) z = 4.17 X 10 -3 lb • ft • s 2

1, = J,m(3o 2 + J?) + m(x 2 + y 2 ) = , 1 2 (0.0829)[3{ 1 L) 2 + f, 3 ,) 2 !
+ (0.0829)[(-^) 2 + (f5) 2 | = 6.48 X 10~ 3 lb • ft • s 2

/,'n/ire Body. Adding the values obtained:

I, = 4.88 X 10~ 3 + 2(2.59 X 10 -3 )
/. = 10.06 x 10 :! lb ¦ ft -s-

f, = 0.977 X 10- 3 + 2(4.17 X 10~ 3 )

/„ = 4.88 X 10" 2(6.48 X t0 -s )
/„ = 9.32 X I0 -3 lb 'ft -S 8

I. = [7,84 X !<)-¦' lb -fl -s-



SAMPLE PROBLEM 9.13

Solve Sample Prob. 9.12 using SI units.

)
63.5 inn)

—76,2 mm*

50.S mm X

G^
7"-i-'30,Siimi

i_v

' SOrSmm

SO.Snuu

152.4 mm

Solution. First, the dimensions arc converted into millimeters

(1 in. = 25.4 mill). Next, the density of sleel p (mass per unit volume)
is determined in SI units. Recalling that 1 ft = 0.3048 m and that the

mass of a block weighing 1 lb is 0.454 kg, we have

Computation of Masses

Prism. V = (50.8 mm) 2 ( 152.4 mm) = 0.393 X 10 6 mm 3

or, since 1 mm' 1 = (10 -3 m) 3 = 10"'-' m 3 ,

V = 0.393 X 10 6 X 10-" afi = 0.393 X 10 3 m 3

m = P V = (7.85 X 10 3 kg/m 3 )(0.393 x 10 3 m 3 ) = 3.09 kg

Each Cylinder

V = •-r-'/i = ir(25.4 mm) 2 (76.2 mm) = 0.1544 X 10° mm 3

= 0.1544 X 10" 3 m 3

m = pV = (7.85 X 10 3 kg/m 3 )(0.1544 X 10" 3 m 3 ) s 1.212 kg

Mass Moments of Inertia. The mass moments of inertia of each

component are computed from Fig. 9.28, using the parallel-axis

theorem when necessary. Note that all lengths should be expressed
in millimeters.

Prism

l r= l ,= A(3.09 kg)[(152.4 mm) 2 + (50.8 mm) 2 ] = 6640 kg • mm 2 /„ = £(&(» kg)((50.8 mm) 2 + (50.8 mm) 2 ] = 1329 kg • mm 2
Each Cylinder

I, = Inufi + my* = £(1.212 kg)(25.4 mm) 2 + (1.212 kg)(50.8 mm) 2
= .3520 kg • mm 2

/„ = J,m(3a 2 + L-) + mx 2 = ,!,( 1.212 kg)f. 3(25.4 mm) 2 + (76.2 mm) 2 ]

+ (1.212 kg)(63.5 mm) 2 = 5670 kg • mm 2 I, = ±m(3a 2 + I 2 ) + m(x 2 + y 2 )
= ti(1.2I2kg)[3(25.4 mm) 2 + (76.2 mm) 2 ]

+ ( 1.212 kg)[(63.5 mm) 2 + (50.8 mm) 2 ] = 8800 kg -mm 2

Entire Body. Adding the values obtained, and observing that
1 mm 2 = ( I0" 3 m) 2 = 10 6 m 2 , we have

/, = 6640 kg • mm 2 + 2(3520 kg • mm 2 ) = 13.68 X 10 3 kg • mm 2
4 = 13.68 X 10- J kg-m- -4

I y = 1329 kg i 2 + 2(5670 kg • mm 2 ) = 12.67 X 10 3 kg • mm 2
/„ = 12.67 v Hr-kc-ui-

I, = 6640 kg • mm 2 + 2(8800 kg • mm 2 ) = 24.2 X 10 3 kg ¦ mm 2
L = 21.2 X in-- ; kcr • ,,,- -^

Recalling that 1 lb • ft • s 2 = 1.356 kg • m* (see footnote, page 383)
we may check these answers against the values obtained in Sample
Prob. 9.12.
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L
PROBLEMS

9.72 Determine the mass moment of inertia of a thin elliptical

plate of mass m with respect to (<i) the axes AA' and BB' of the ellipse,

{!>) the axis CC perpendicular to the plate.

9.73 Determine the mass moment of inertia of a ring of mass in,

cut from a thin uniform plate, with respect to (a) the diameter AA' of
the ring, (h) the axis CC perpendicular to the plane of the ring.

9
Fig. P9.73

Fig. P9.74

9.74 A thin plate of mass m is cut in the shape of an isosceles

triangle of base b and height h. Determine the mass moment of inertia
of the plate with respect to (a) the centroidal axes AA' and BB' in the
plane of the plate, (h) the centroidal axis CC perpendicular to the
plate.

9.75 Determine the mass moments of inertia of the plate of Prob.

9.74 with respect to the axes DD' and F.F/ parallel to the centroidal

axes AA' and BB' respectively.

9.76 Determine by direct integration the mass moment of inertia

with respect to the y axis of the right circular cylinder shown, assum-
ing a uniform density and a mass m.

ykx"

1eFig. P9.77

Fig. P9.76

9.77 The area shown is revolved about the x axis to form a

homogeneous solid of revolution of mass m. Express the mass moment

of inertia of the solid with respect to the x axis in terms of m, a, and fl.
The expression obtained may be used to verify (a) the value given in

Fig. 9.28 for a cone (with n = 1), (b) the answer to Prob. 9.78 (with
n = J), (c) the answer to Prob. 9.80 (with n = 2).



9.78 Determine by direct integration the mass moment of inertia

and the radius of gyration with respect to the z axis of the paraboloid
shown, assuming a uniform density and a mass m.
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Fig. P9.78 and P9.79

r
9.79 Determine by direct integration the mass moment of inertia

and the radius of gyration with respect to the y axis of the paraboloid shown, assuming a uniform density and a mass m.
9.80 The homogeneous solid shown was obtained by rotating the

area of Prob. 9.77, with n = 2, through 360° about the x axis. Deter-
mine the mass moment of inertia l x in terms of m and a.

9.81 Determine in terms of m and a the mass moment of inertia

and the radius of gyration of the homogeneous solid of Prob. 9. SO with
respect to the y axis.

9.82 Determine by direct integration the mass moment of inertia
with respect to the X axis of the pyramid shown, assuming a uniform
density and a mass m.

9.83 Determine by direct integration the mass moment of inertia

with respect to the y axis of the pyramid shown, assuming a uniform
density and a mass in.

9.84 Knowing that the thin hemispherical shell shown is of mass m
and thickness t, determine the mass moment of inertia of the shell with

respect to the X axis. (Hint. Consider the shell as formed by removing
a hemisphere of radius r from a hemisphere of radius r + (; then
neglect the terms containing fi and l x , anil keep those terms contain-
ing /.)n

Fig. P9.80

Fig. P9.82 and P9.83tFig. P9.84
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h~i

Fig. P9.85

9.85 Determine the mass moment of inertia of the frustum of a

right circular cone of mass m with respect to its axis of symmetry.

9.86 Determine the mass moment of inertia and the radius of

gyration of the steel flywheel shown with respect to the axis of rota-

tion. The web of the flywheel consists of a solid plate 25 mm thick.
(Density of steel = 7850 kg/in 3 .)

50 mm

30 mm

~2o mm

100 mm

400 mm

V> mm

1.5 hi.

19 in.

3 in.

22 in.

—100 mm—

— — ^50 miii^^

Fig. P9.86

o in.

Fig. P9.87

9.87 The cross section of a small flywheel is shown. The rim and

hub are connected by eight spokes (two of which are shown in the cross
section). Each spoke has a cross-sectional area of 0.400 in 2 . Determine
the mass moment of inertia and radius of gyration of the flywheel with

respect to the axis of rotation. (Specific weight of steel = 490 lb/ft 3 .)

9.88 Three slender homogeneous rods are welded together as

shown. Denoting the mass of each rod by m, determine the mass
moment of inertia and the radius of gyration of the assembly with

respect to (a) the % axis, (/;) the y axis, (c) the 3 axis.

y

J d

2 2

r~ii

i_. Fig. P9.88
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9.89 In using the parallel-axis theorem, the error introduced by

neglecting the centroidal moment of inertia is sometimes small. For a

homogeneous sphere of radius a and mass m, (a) determine the mass
moment of inertia with respect to an axis AA' at a distance R from the

center of the sphere, (h) express as a function of a/R the relative error

introduced by neglecting the centroidal moment of inertia, (c) deter-
mine the distance R in terms of a for which the relative error is 0.4

percent.

9-90 A section of sheet steel, 2 mm thick, is cut and bent into the

machine component shown. Knowing that the density of steel is
7850 kg/m ;t , determine the mass moment of inertia of the component
with respect to (a) the .t axis, (ft) the y axis, (e) the z axis.

0
Fig. P9.89

100 mm/ 100 mm

Fig. P9.90

9.91 Twelve uniform slender rods, each of length /, arc welded
together to form the cubical figure shown. Denoting by m the total
mass of the twelve rods, determine the mass moment of inertia of the

figure about the x axis.

9.92 and 9.93 Determine the mass moment of inertia and the

radius of gyration of the steel machine element shown with respect to
the x axis. (Specific weight of steel = 490 lb/ft 3 ; density of steel =
7850 kg/m 3 .)

Fig. P9.91i15 mm
lo mm

30 nun

Fig. P9.93

60-mm dinm.

60-m m diiim.

Fig. P9.92
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9.94 A homogeneous wire, of weight 2 lb/ft, is used lo form the

figure shown. Determine the mass moment of inertia of the wire figure
wilh respect to (a) the x axis, (/?) the y axis, (c) the z axis.

Fig. P9.94

9.95 Two holes, each of diameter 50 mm, are drilled through the
steel block shown. Determine the mass moment of inertia of the body

with respect to the axis of either of the holes. (Density of steel =
7S50 kg/m 3 .)

50 inni

.-100 mm

Fig. P9.95y*9.15. Moment of Inertia of a Body with Respect

to an Arbitrary Axis through O. Mass Products of

Inertia. We shall see in this section how the moment of inertia

of a body may be determined with respect to an arbitrary axis OL

through the origin (Fig. 9.29) if we have computed beforehand its
moments of inertia with respect to the three coordinate axes, as

well as certain other quantities to be defined below.
The moment of inertia of the body with respect to OL is

represented by the integral I 0L = fp- dm, where p denotes the

perpendicular distance from the element of mass rim to die axis OL. But, denoting by A the unit vector along OL and by r the
position vector of die element dm, we observe that the perpen-
dicular distance p is equal to the magnitude rain 6 of the vector

product A X r. We write therefore

Fig. 9.29 I 0L =Sp 2 dm=i\Xy.r) i dm (9.43)
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Expressing the square of the vector product in terms of its rec-
tangular components, we have

hL = SKKv - V) 2 + (V - Kv) 2 + (V - M"! dm

where the components \ x , A^, \ s of the unit vector A represent
the direction cosines of the axis OL, and the components x, y, z
of r represent the coordinates of the element of mass dm. Ex-

panding the squares in the expression obtained and rearranging the terms, we write

Iol = KHy 2 + = 2 ) dm + yj(z* + x*) dm + \|/(*8 + f) dm
~ 2\^»/ xl J dm ~ &Xf l J z dm ~ 2 ^AJ* =* dm (9-44)

Referring to Eqs. (9.30), we note that the first three integrals in

(9.44) represent, respectively, the moments of inertia I x , I and I g of the body with respect to the coordinate axes. The last three
integrals in (9.44), which involve products of coordinates, are

called the products of inertia of the body with respect to the .v
and y axes, the y and z axes, and the z and X axes, respectively.
We write

P x V = S *y *» P„ =fyz d >n P„ =fzxdm (9.45)

Substituting for the various integrals from (9.30) and (9.45) into
(9.44), we have

l0L = W + W + W - 2P rAK - 2VA - 2P ,AK

(9.46)

We note that the definition of the products of inertia of a mass

given in Eqs. (9.45) is an extension of the definition of the product
of inertia of an area (Sec. 9.7). Mass products of inertia reduce to
zero under the same conditions of symmetry as products of

inertia of areas, and the parallel-axis theorem for mass products of inertia is expressed by relations similar to the formula derived
for the product of inertia of an area. Substituting for x, ;/, z from
Eqs. (9.31) into Eqs. (9.45), we verify that

P *y = 5y + '»*</
P v* = P j* + m y* (9-47)
P :* = *M + mZX

where x, y, 2 are the coordinates of the center of gravity C of the body, and P r y, P^,, P jV denote the products of inertia with
respect to the centroidal axes x\ y', z' (Fig. 9.22).
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.
Fig. 9.30

Fig. 9.31

*9.16. Ellipsoid of Inertia. Principal Axes of In-

ertia. Let us assume that the moment of inertia of the body

considered in the preceding section has been determined with
respect to a large number of axes OL through the fixed point O,
and that a point Q has been plotted on each axis OL at a distance

00 = 1/ v'ot fr° m ^- The locus of the points Q thus obtained
forms a surface (Fig. 9.30). The equation of that surface may be
obtained by substituting l/(00) 2 for I 0L in (9.46) and multiply-
ing both sides of the equation by (OQ) 2 . Observing that

(OQ)\ T = x (00)A„ = y [OQ)\ = z

where x, y, z denote the rectangular coordinates of a point Q of
the surface, we write

I,* 2 + ly'f + U 2 ~ 2P W *» - 2P y:V z - 2P„« = 1 (9.48)

The equation obtained is that of a quadric. Since the moment of

inertia 1 0L is different from zero for every axis OL, no point O
may be at an infinite distance from 0. Thus, the quadric ob-
tained is an ellipsoid. This ellipsoid, which defines the moment of
inertia of the body with respect to any axis through O, is known
as the ellipsoid of inertia of the body at O.

We observe that, if the axes in Fig. 9.30 are rotated, the
coefficients of the equation defining the ellipsoid change, since
these are equal to the moments and products of inertia of the
body with respect to the rotated coordinate axes. However, die
ellipsoid itself remains unaffected, since its shape depends only
upon the distribution of mass in the body considered. Suppose
now that we choose as coordinate axes the principal axes x 1 , if, z'

of the ellipsoid of inertia (Fig. 9.31). The equation of the
ellipsoid with respect to these coordinate axes will be of the form

L* 2 + V.y' 2 + h' z " 2 = l ( 9 - 49 )

which does not contain any product of coordinates. Thus, the
products of inertia of the body with respect to the .t', if, z' axes

arc zero. The x', if, z' axes are known as the principal axes of
inertia of the body at O, and the coefficients l x ., /„., /.. as the

principal moments of inertia of the body at O. Note that, given a body of arbitrary shape and a point O, it is always possible to find
axes which are the principal axes of inertia of the body at O, i.e.,
axes with respect to which the products of inertia of the body are
zero. Indeed, no matter how odd or irregular the shape of the

body may be, the moments of inertia of the body with respect to axes through O will define an ellipsoid, and this ellipsoid will
have principal axes which, by definition, are die principal axes of
the body at O.
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Fig. 9.32

r
If the principal axes of inertia \ J , y', z' are used as coordinate

axes, the expression obtained in Eq. (9.46) for the moment of

inertia of a body with respect to an arbitrary axis through O
reduces to

l0L = i A? + W + W (9.50)

While the determination of the principal axes of inertia of a
body of arbitrary shape is somewhat involved and requires solv-
ing a cubic equation, f there are many cases when these axes may

be spotted immediately. Consider, for instance, die homogene-
ous cone of elliptical base shown in Fig. 9.32; this cone possesses
two mutually perpendicular planes of symmetry OAA' and
OBB'. We check from the definition (9.45) that, if the .vy and
y'z 1 planes are chosen to coincide with the two planes of symme-
try, all the products of inertia are zero. The .v', if, and z' axes
thus selected are therefore the principal axes of inertia of the

cone at O. In the case of the homogeneous regular tetrahedron
OABC shown in Fig. 9.33, the line joining the corner O to the
center D of the opposite face is a principal axis of inertia at

and any line through O perpendicular to OD is also a principal
axis of inertia at O. This property may be recognized if we
observe that a rotation through 120° about OD leaves the shape
and the mass distribution of the tetrahedron unchanged. It fol-

lows that the ellipsoid of inertia at O also remains unchanged under this rotation. The ellipsoid, therefore, is of revolution
about OD, and the line OD, as well as any perpendicular line
through O, must be a principal axis of the ellipsoid.

I Cf. Syiige and Griffith. Principles of Meclianics, McGraw-Hill Book Com-
pany, sec. 1 1 .3.lFig. 9.33
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SAMPLE PROBLEM 9.14

Consider a rectangular prism of mass m and sides a, h, c. Determine (a)
the mass moments and products of inertia of the prism with respect to
the coordinate axes shown, (ft) its moment of inertia with respect to the
diagonal OB.
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a. Moments and Products of Inertia with Respeel to the Coordinate
Axes. Moments of Inertia. Introducing the centroidal axes .v', if, z\

with respect to which the moments of inertia are given in Fig, 9.28, we
apply the parallel-axis theorem:

\ c = T x . + m(y 2 + z 2 ) = -&m(b 2 + c 2 ) + m/Jfc 2 + |fl*)
/_„ = -", C 8 ) ~+

Similarly: ^ = iw.r + <r. /_ = Jmffl 1 - b a ) -*

Products of Inertia. Because of symmetry, the products of inertia
with respect lo the centroidal axes .t', if, z' are zero and these axes are
principal axes of inertia. Using the parallel-axis theorem, we have

Similarly: = t<"'«' l\, = i""" "*

b. Moment of Inertia with Respeel to OB. We recall Eq. (946):

•on = >M + W + W - 2r **KK - w„K\ - ^KK

where the direction cosines of OB are

A, = cose, = (OH)/(OB) = a/id* + b 2 + W*
\ y = b/(a- + b- + e*)" a K = c /(« 2 + b2 - c2 ) 1/a

Substituting the values obtained for the moments and products of
inertia and for the direction cosines:

1

'on - a 2 + b 2 + d i Hm(h 2 + cV + im(c 2 + a 2 )h 2 + Jm(« 2 + &V

- bna 2 h 2 - JmftV - hmc 2 a 2 ]

_ m_a 2 b'- - /'-"'-' -( r-<r _ —
.•J

a 2 + b- + r

Alternate Solution. The moment of inertia \ QM may be obtained
directly from the principal moments of inertia l x ., l y ., /.., since the line

OB passes through the centroid O'. Since the at', if, z" axes are principal axes of inertia, we use Eq. (9.50) and write
Ion = W + W + &>!

1 I'm

„2 + b i + C 2 [ J 2(ft 8 + *V + ||(c* + a 2 )b 2 jL {a °- + b 2 )c 2 ]

r _ m a 2 b- + b'-c- + c 2 a 2 '"" - 6!/• i= + C»

950



PROBLEMS

9.96 and 9.97 Determine the mass products of inertia P,„, P„,
and P !X of the steel machine element shown. (Specific weight of
steel = 490 lb/ft 3 ; density of steel = 7850 kg/m 3 .)
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15 mm

i
30 uiii) \ flO-iiim ilium.

Fig. P9.96

o
9.98 A homogeneous wire, of weight 2 lb/ft, is used to form the

figure shown. Determine the mass products of inertia T , P , and P 2!
of the wire figure.

9.99 A section of sheet steel, 2 mm thick, is cut and bent into the

machine component shown. Knowing that the density of steel is

7850 kg/m 3 , determine the mass products of inertia P ly , P„, and P IX of
the component.h100 mm/ 100 mm

Fig. P9.99

9.100 For the homogeneous tetrahedron of mass m which is

shown, (a) determine by direct integration the mass product of inertia
P rl , (b) deduce P and P xy from the result obtained in part a.

Fig. P9.98

Fig. P9.100
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9.101 Complete the derivation of Eqs. (9.47), which express the

parallel-axis theorem for mass products of inertia.

9.1 02 Determine the mass moment of inertia of the right circular

cone of Sample Prob. 9.11 with respect to a generator of the cone.

9.103 Determine the mass moment of inertia of the rectangular

prism of Sample Prob. 9.14 with respect to the diagonal OF of its base.

i
Fig. P9.106

V

Fig. P9.107 and P9.108

9.104 Determine the mass moment of inertia of the bent wire of

Probs, 9.94 and 9.98 with respect to the axis through which forms

equal angles with the x, y, arid z axes.

9.105 Determine the mass moment of inertia of the forging of

Sample Prob. 9.12 with respect to an axis through U characterized by
the unit vector A = f i + Jj + jjk.

9. 1 06 Three uniform rods, each of mass in, are welded together as

shown. Determine [a) the mass moments of inertia and the mass prod-

ucts of inertia with respect to the coordinate axes, (ft) the mass mo-

ment of inertia with respect to a line joining the origin O and point D.

9.107 The thin bent plate shown is of uniform density and mass
m. Determine its mass moment of inertia with respect to a line joining

the origin O and point A.

9.108 The thin bent plate shown is of uniform density and mass
m. Determine its mass moment of inertia with respect to a line joining

points H and C.

9.109 Consider a homogeneous circular cylinder of radius a and
length L. Determine the value of the ratio a/L for which the ellipsoid
of inertia of the cylinder is a sphere when computed (a) at the ccntroid

of the cylinder, (ft) at the center of one of its bases.

9.1 1 Determine the value of the ratio a/h for which the ellipsoid

of inertia of the right circular cone of Sample Prob. 9.11 is a sphere

when computed («) at the apex of the cone, (ft) at the centroid of the
cone.

9.1 1 1 Given an arbitrary solid and three rectangular axes .v, i/, and

;, prove that the mass moment of inertia of the solid with respect to
any one of the three axes cannot be larger than the sum of the moments
of inertia of the solid with respect to the other two axes; i.e., prove that

the inequality l x < 1 }J + l t is satisfied, as well as two similar inequali-
ties. Further prove that, if the solid is homogeneous and of revolution,
and if X is the axis of revolution and y a transverse axis, then l u > il x .
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9.112 Given a homogeneous solid of mass m and of arbitrary

shape, and three rectangular axes X, y, and - of origin O, prove that the
sum I T + L 4- /j of the mass moments of inertia of the solid cannot be

smaller than the similar sum computed for a sphere of the same mass
and same material centered at 0. Further prove, using the result of
Prob. 9.111, that, if the solid is of revolution and if X is the axis of

revolution, then its moment of inertia I v about a transverse axis i/ must
satisfy the inequality

<* > |>™ 2
where a is the radius of the sphere of the same mass and same material.

9.1 13 Consider a cube of mass m and side a. (a) Show that the

ellipsoid of inertia at the center of the cube is a sphere, and use this
property to determine the mass moment of inertia of the cube with

respect to one of its diagonals, (b) Show that the ellipsoid of inertia at
one of the corners of the cube is an ellipsoid of revolution, and deter-
mine the principal moments of inertia of the cube at that point.
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Index

Absolute acceleration, 685-687

Absolute motion of a particle, 172
Absolute system of units, 6, 197

Absolute velocity. 66S, 679
Acceleration, 4-38, 166

absolute, 685-687

angular, 659, 706

components of: normal, 480-482

radial, 483, 484

rectangular, 470

tangential. 480-482
transverse, 483, 484

Coriolis: in plane motion. 696-699
in three-dimensional motion,

716-718

in general rigid-body motion, 708

of gravity, 1. 447, 521

in motion of rigid bodv about a fixed

point, 706

in plane motion, 685-687
relative: of a particle: in general

motion, 70S

in plane motion, 685-687

with respect to a frame in general
motion. 718-719

with respect to a frame in
translation. 472

with respect to a rotating frame.
696-699, 716-718

of two particles. 450, 471-172
in rotation. 659, 706

Acceleration-time curve, 439, 457

Accuracy, numerical, 15
Action and reaction. 1, 214

Addition:

of couples, 91

of forces: concurrent: in a plane. 21. 30

in space, 48
nonconcur! ent, 102

of vectors, 18

Amplitude. 876. 879

Analogue, electrical, 915

Angle:
of kinetic friction, 307

lead, 322

phase. 879

Angle:

of repose, 308
of static friction, 307

Angular acceleration, 659. 706

Angular coordinate, 658

Angular impulse, 628
Angular momentum:

conservation of, 519-520. 620. 802

of a particle, 5 1 6-5 1 8
rate of change of, 518, 615, 619, 732,

843, Sll

of a rigid bod), 731. 799, 800, SOI,
829-832 '

of a system of particles. 614, 615,
617-620

Angular velocity, 659, 706, 707
Apogee. 531
Archimedes. 2

A real velocity. 520
Aristotle, 2

Associative property for sums of vectors,
20

Auxiliary circle, 878
Axioms of mechanics, 2-5. 735

Axis:

of precession, 861
of rotation. 656

instantaneous, 677, 706

of spin. 861

of symmetry, 170
of a wrench. 108

Axisyiuinetrieal body, motion of, 860-863
Axle friction. 330-331

Balancing of rotating shafts, 849
Ball-and-socket supports, 150

Ball supports, 150
Ballistic missiles. 531

Baud brakes, 340

Banking of curves, 5<X5
Beams. 270-282

combined. 271

loading of, 270

span of, 271
supports of. 270-271

Beams:

types of, 271
Bearings, 150. 330-333

collar, 332

end, 332

journal, 330-331
thrust, 332

Belt drive, 31 1

Belt friction. ,339-341

Bending, 267

Bending moment. 267, 272-282

Bcnding-moment diagram, 274

Bernoulli, Jean, 405
Binomial, 482

Body centrodc, 679
Bodv cone, 706, S63

Cables:

with concentrated loads, 288

with distributed loads, 289-299

parabolic. 290, 291
reactions at. 124, 150

span of. 291, 299
Calculators:

accuracy, 15
use of, 23, 24, 30, 32, 38, 46

Cardan's suspension. S5S
Catenary, 297, 299

Cathode-ray tube, 515, 516
Center:

of gravity, 166, 199
of oscillation, 888

of percussion, 766, 808

of pressure, 193, 353, 368
of rotation, instantaneous, 677

of symmetry, 170
(See also Mass center)

Centimeter. 8

Central force, 519. 520, 568

Central impact. 594-598

Centrifugal force. 502. 758
Centrodc, 679

Ccntroidal axes, principal, 373
Centroidal frame of reference. 617. 619,

731, 829, 833

957
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Centroidal rotation:

effective forces in, 734

kinetic energy in, 782
momentum in, 799, 800

Centroids, 168-184, 199-203

of areas and lines, 168-18-1

of common shapes: of areas, 171
of lines, 172

of volumes, 202

of composite areas and lines, 171

of composite volumes, 201

determination of, by integration. 181,
2(X3

of volumes, 199-203

Circular frequency, 879
Circular orbit, 531

Coefficient:

of critical damping, 912
of damping, 911
of kinetic friction, 305, 306

of restitution, 595, 596, 813

of rolling resistance, 334
of static friction, 305, 306

of viscous damping, 911
Collar bearings, 332

Commutative property:

for scalar products, 78
for sums of vectors, 19

Complementary acceleration, 697
Complementary function, 905
Complete constraints, 128
Components:

of acceleration {see Acceleration)

of angular momentum: of a particle.
517

of a rigid body, 830-832
of derivative of a vector function.

46S

of force, 21, 27, 43, 47

of moment, 70, 71

of vector product, 65, 66
of velocity (see Velocity)

Composite areas:
centroids of, 174

moments of inertia of, 360

Composite bodies:
centroids of, 203

moments of inertia of, 386

Composition of forces (see Addition, of
forces)

Compound pendulum, 892
Compound trasses, 230

Compression, 62, 215, 267
Concurrent forces, 21

Conic section, 529

Conservation:

of angular momentum, 519-520, 620.
802

of energy: for particles, 567
for rigid bodies, 784, 829

for a system of particles, 627-628
in vibrations, 896, 897

of linear momentum, 497, 586, 620

of momentum. 620

Conservative force, 424, .565, .566, 568

Constrained plane motion, 756
Constraining forces, 123

Constraints, 410

complete. 128
improper, 129. 152

partial, 128, 152
Coordinate:

angular, 658

position, 436

Coplanar forces, 21
Coplanar vectors, 20
Coriolis acceleration:

in plane motion. 696-699
in three-dimensional motion, 716-718

Coulomb friction. 304

Counters, 236

Couple vector, 93

Couples, 88-93
addition of, 91

equivalent, 89-91
gyroscopic, 861
inertia, 736

momentum, 799, 800, 828, 829

Critical damping, coefficient of, 912
Cross product {see Vector product)
Curvature, radius of, 481, 482

Curvilinear motion of a particle:
kinematics of. 461-484

kinetics of. 500-533

Curvilinear translation, 655

Customary units, U.S., 8-13, 49S-499
Cylindrical coordinates, 484

D'Alembert, Jean, 2. 733

D'Alembcrt's principle, 733, 846

Damped vibrations (see Vibrations;

Damping:
coefficient of. 91 1

critical, 912

heavy, 912

light', 912
viscous, 91 1

Damping coefficient, 911

Damping factor, 913

Deceleration, 438

Decimeter, 8

Decrement, logarithmic, 919
Deformation, period of, 594, 595, 813

Degrees of freedom. 424, 451

Density, 168, 197, 935

Dependent motions, 450
Derivative:

of product of scalar and vector
functions, 468

of scalar product, 468
of vector function, 467-469

of vector product, 468
Determinant form:

for angular momentum. 517

for mixed triple product, 81
for moment of a force: about an axis,

82

about a point, 70

for vector product, 66
Determinate reactions, 128

Determinate structures, 241

Determinate trusses, 230

Diagram:

acceleration-time. 439. 457

bending-moment, 274

displacement-time, 439, 457
free-body, 36, 37. 123
shear, 274

velocity-displacement, 458

velocity-lime, 439, 457
Differential elements:

for centroids: of areas, 181

of volumes, 203

for moments of inertia: of areas, 353

of masses, 936

Direct central impact, 594-597

Direct precession, 863
Direction cosines, 44

Direction of a force, 16

Disk clutches, 332

Disk friction, 332

Displacement, 405, 541
virtual, 40S

Distance, 439

Distributed forces, 166. 350

Distributed loads, 191. 270. 271

Distributive property:

for scalar products. 78
for vector products, 64

Dot product, 77

Dry friction, 304

Dynamic balancing, 849

Dynamic equilibrium:

of a particle, 501-502



INDEX 959

Dynamic equilibrium!
of a rigid body: in noncentroidal

rotation, "58

in plane motion. 736
Dynamics, definition of, 1, 435

Earth satellites, 528, 569

Eccentric impact, 813-815

Eccentricity, 529, 909
Effective forces, 612

for a rigid body: in plane motion, 733.
734

In three dimensions. 846

Efficiency, 411, 412, 551

Elastic impact, 597

Electrical analogue, 915

Ellipsoid:
of inertia, 948

Poinsot, 872

Elliptic orbit, 530

End bearings, 332

Energy:

conservation of, 567. 627, 628, 784,

829, 896, 897

kinetic: of a particle. 546-547

of a rigid bods: in plane motion,
782

in rotation, 783

in three dimensions, 833, 834

of a system of particles. 626-627

potential 42-3. 563, 784
total mechanical, 567

Equations:

of equilibrium: for a particle, 35, 52
for a rigid bod)', 122

of motion: for an axisymmetrieal body,
860

for a gyroscope, 860

for a particle, 500. 501, 518. 519

for a system of particles, 612, 613,
615, 618

for a three-dimensional body: about

a fixed point. 847
in general motion, 828, 845
about its mass center, 844, 845

in rotation about a fixed axis,

848-849

for a two-dimensional body: in
noncentroidal rotation, 757, 758

in plane motion, 732

Equilibrium:
dynamic (sec Dynamic equilibrium)
equations (set- Equations)
neutral, 426-427

Equilibrium:

of a particle: in a plane. 35-37
in space. 52

of a rigid body: in a plane, 122-144

in space. 150-152

stability of, 426, 427

Equinoxes, precession of, 866

EquipoUence of external forces and
effective forces, 613, 730-731, 828

Equipollent systems of vectors, 104
Equivalence of external forces and

effective forces for n rigid body, 733,
845, 846

Equivalent forces. 6 J -62
Equivalent systems of forces, 103
Escape velocity, 447, 531
Euler, l.eonhard. 845

Enlerian angles, 858

Euler's equations of motion. 845
Eider's theorem, 705

External forces, 60, 612

Fan, 638

First moment:

of area. I&9

of volume. 200

Fixed supports, 124-125. 150
Flexible cords (see Cables)

Fluid How, 635-637

Fluid friction, 911

Focus of conic section. 529

Foot. 8. 498

Force, 2

central, 519, 568

centrifugal, 502, 758
conservative, 424, 565, 566. 568

effective \see Effective forces 1

external, 59, 612

gravitational, 520, 545, 564, 569

impulsive, 587
inertia. 502

internal. 59, 611

in a member, 217

noneonservative, 568

nonimpulsive, 587

on a particle: in a plane, 16-31
in space. 43-48

reversed effective (see Inertia vector!

on a rigid body, 59-121

Force-couple system, 93

Force systems, 102-121

Forced frequency, 905
Forced vibrations:

damped. 914. 915

Forced vibrations:

undamped, 904, 906
Frame of reference, 495

centroidal, 617, 619. 731, 829, 833

in general motion, 718-719

rotating, 695-699, 716-718
in translation, 469, 471, 472

Frames, 238-241

Free-body diagram:

of a particle, 36, 37

of a rigid body. 123

Free precession, 862, 863, 868
Free vibrations:

damped, 911-913

undamped, 876-897

Freedom, degrees of, 424. 451
Freely falling body, 449
Frequency, 876, 879

circular, 879

forced, 905

natural, 905

Frequency ratio, 906
Friction. 304-349

angles of, 307
belt, 339-.341

circle of, 331

coefficient of. 305-306

Coulomb, 304

dry, 304
fluid, 911

kinetic, 305

laws of. 305-307

static 305

wheel, 333, 334

Frictionless surfaces, 124, 150

Cears:

analvsis of, 670, 687

planetary, 674
General motion of a rigid body, 707-708
Geneva mechanism, 700, 701

Geometric instability, 130
Gradient. 566

Gram, 6, 498

Graphical methods for solution of

rectilinear-motion problems, 456-458
Gravitation:

constant of. 4. 520

Newton's law of, 4-5, 520

Gravitational forces, 520, 545, 564. 569

Gravitational potential energy, 563-561
Gravitational system of units, 9, 499

Gravity:

acceleration of. 4, 447, 521
/
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Gravity:
center of. 166, 167, 199

Culdiiius, (heorems of, 182-184

Gun, recoil, 589

Gyration, radius of, 354, 932

Gyrocompass, 867
Gyroscope, 858-862

Gyroscopic couple, 861

Hamilton, Sir William R., 2

Harmonic motion, simple, 876

Helicopter, 647, 811
Hertz (unit), 879

Hinges, 124, 15(1

Ilodograph, 466

Horsepower, 551

Hydrostatic forces, 192, 352

Hyperbolic trajectory, 530

Ideal machines, 411

Impact, 594
central: direct, 594-597

oblique, 597, 598
eccentric, 813-815

clastic, 597

line of. 591

plastic, 596

Improper constraints, 130, 152

Impulse:

angular, 628
linear. 584

and momentum, principle of (see
Principle)

Impulsive force, 587
Impulsive motion, 587
Inch, 10

Inclined axes, moments of inertia, 371.

372, 946, 948

Indeterminate reactions, 128, 152

Indeterminate structures. 241

Indeterminate trusses, 231

Inertia:

ellipsoid of, 948

moments of (we Moments of inertia)
principal axes of: for an area, 373

for a mass. 918-949

products of: of areas, 369
of masses. 947

parallel-axis theorem for, 370. 947
Inertia couple, 736
Inertia force. 502

Inertia tensor. 830

Inertia vector:

for a particle, 502

for a rigid body in plane motion, 736
Inertial system, 495
Initial conditions, 440

Input forces. 253

Input power, 551

Input work, 411, 412
Instantaneous axis of rotation. 677, 706

Instantaneous center of rotation, 677

Internal forces, 59, 61 1

in members, 266

in structures, 213

International system of units, 5-9, 497-
498

Invariable plane. 872

Jacks, 322

Jerk, 462
Jet engine, 638

Joints, method of, 216-219

Joule (unit), 406, .542

Journal bearings, 330-331

Kepler. Johann, 533
Kepler's laws, 533
Kilogram, 6, 497
Kilometer, 6, 498

Kiloncwton, 6, 498

Kiloponncl, 10
Kilowatt, 551

Kinematics, 435

of particles: in curvilinear motion,
464-^84

in rectilinear motion, 136-458

in relative motion, 450, 471-472,

696-699. 716-719

of rigid bodies: in general motion.
707-708

in motion about a (ixed point, 705-
707

in plane motion. 666-687
in rotation about a fixed axis, 658-

661

in translation, 657

Kinetic energy [see Energy)
Kinetic friction, 306

Kinetics, 435

of particles, 494-599
of rigid bodies, 729-863

of systems of particles, 611-640
Kip, 10

Lagrange, J. L., 2
I^aws:

of friction, 305-307

Kepler's, 533

Newton's {see Newton's law)
Lead of a screw, 322

Lead angle, 322
Line of action, 16. 61

Linear impulse, 584
Linear momentum:

conservation of, 497, 586, 620

of a particle, 496
rale of change of, 496, 615, 616
of a rigid body, 799, 800, 832

of a system of particles. 614-615
Links, 124

Liter, 8

Loading of beams, 270

Logarithmic decrement, 919

Machines, 253

ideal. HI

real, 411

Magnification factor. 906, 915

Magnitude of a force, 16
Mass, 2, 495

Mass center:

of a rigid body, 734

of a system of particles, 616
Mass moments of inertia, 932-949

Mass products of inertia, 947

Maxwell's diagram. 219

Mechanical efficiency, 411. 412, .551

Mechanical energy. 567
Mechanics:

definition of. I

Newtonian, 2

principles of, 2-5, 735

Megagram, 6, 498

Meter, 6, 497

Metric ton, 6, 498

Metric uuits, 5-9, 497-498

Mile. 10

Millimeter, 6, 498

Mixed triple product, 80
determinant form for. 81

Mohr's circle, 374-375

Moment:

bending, 267, 272-282

of a couple. 88-89
first. 168, 200

of a force: about an axis, 81-83

about a point, 67-69
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Moment:

of momentum (.see Angular
momentum)

second, 350-354

Moment-area method, 458
Moments of inertia. 350-399, 932-949

of areas, 350-375

parallel-axis theorem for, 359
of common geometric shapes, 361. 937
of composite areas, 360

of composite bodies, 936
determination of, by integration, 352-

353, 936

inclined axes. 371, 372, 946, 947

of masses, 932-949

parallel-axis theorem for, 933
polar, 353
principal, 373, 948
rectangular, .352. 9-33

of thin plates, 935-936
Momentum:

angular (sw Angular momentum)
conservation of. 620

linear (see Linear momentum)

of a particle. 496

of a rigid body, 799, 800, 828, 829

Momentum couple. 799, 800, 828. 829
Momentum vector. 799, 800, 828. 829

Motion:

absolute, 472

under a central force, 519

curvilinear, 464-484. 500-533

equations of (see Equations!

about a fixed point. 705-707. 847
general, 707-708

harmonic, simple, 876
impulsive, 587
about mass center. 618, 735, S 45

of mass center. 616-617, 734. 845

Newton's laws of [see Newton's law)

of a particle, 436-599
plane [.see Plane motion}
rectilinear, 436-458

relative (mc Relative motion' 1

of a rigid body. 655-863

rolling, 759, 760

of a system of particles, 61 1-640
Motion curves, 439, 156-458

Multiforce members. 23S, 267

Natural frequency. 905
Negative vector, J8

Neutral equilibrium, 426 127

Newton, Sir Isaac, 2, 3

Newton limit). 6, 497

Newtonian frame of reference. 495

Newtonian mechanics, 2

Newton's law:

of gravitation, I, 520
of motion: first, 3, 36

second, 3, 494

third, 4, 213

Noncentroidal rotation:

dynamic equilibrium in, 758
effective forces in. 758

equations of motion in. 757. 738
kinetic energy in, 783
momentum in, 801

Nonconservalivc force. .568

Nonimpulsive force, 587

Nonrigid truss. 231

Normal component of acceleration. 480-
482

Numerical accuracy, 15
Nutation. 858

Oblique central impact, 597. 598
Orbit. .531

Oscillation, center of. 888

Oscillations:

of a rigid body, 887, 896
of a simple pendulum, S80-8S2

Oscillating plane, 482

Output forces. 253

Output power, 551
Output work, 411,412

Overrigid trusses. 230

Pappus, theorems of, 182-184
Parabolic cable, 290. 291

Parabolic trajectory, 471. 530
Parallel-axis theorem:

for moments of inertia: of areas, 359

of masses. 933

for products of inertia: of areas, 370
of masses, 947

Parallelogram law, 3, 17

Partial constraints, 128, 152

Particles, 3. 16

equilibrium of: in a plane, 35-37
in space, 52

free-body diagram of. 36. 37
kinematics of, 436-484

kinetics of. 494-599

Particles:

relative motion of, 450, 471. 472, 696-

699, 716-719

systems of [see Systems)
vibrations of [see Vibrations)

Pascal (unit), 193
Pendulum:

compound. 892
simple. 880-882

Percussion, center of, 766. 808

Perigee, 531
Period:

of deformation, 594, 595. 813

of restitution, 594. 595, 813

of vibration, 876

damped. 913
undamped. S79

Periodic time, .532

Phase angle. 879
Phase difference. 915

Pile driver. 606

Pin-and-brackcl supports, 150
Pins. 124, 216

Pitch:

of a thread, 323

of a wrench, 108

Plane of symmetry. 201
Plane motion, 656

constrained, 756

dynamic equilibrium in, 736
clfective forces in, 733, 734

equations of motion in, 732
kinematics of. 666-687

kinetic energy in, 782
momentum in, 799. 800

Planetary gears, 674

Planetary motion. 533

Plastic impact, 596

Poinsot ellipsoid. 872
Point of application of a force. 16. 60
Polar coordinates, 483

Polar moment of inertia, 353

Pole, 353

Polhode. 872

Polygon ride. 20
Position coordinate, 436

relative, 450

Position vector, 67, 464

relative, 472

Potential energy. 423-425, 563, 784
Potential function. 565

Poimd force, 8, 498

Pound mass, 12. .500

Power. 550, 785
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Precession, 858, 860-863

of Ihc equinoxes, 866
free, 862, 863, 868

steady, 860-863

Pressure, center of, 193, 368, 369
Principal axes of inertia:

of areas, 373

of masses, 948-949

Principal moments of inertia:
of areas, 373

of masses, 948

Principal normal, 482
Principle:

of impulse and momentum: for a
particle, 584-586

for a rigid body, 798-802. 832

for a system of particles, 628-629
of transmissibility, 3, 61
of virtual work. 408-411

of work and energy: for a particle,
546-550

for a rigid body, 779, 829
for a system of particles. 627-628

Principles of mechanics, 2-5, 735
Problem solution, method of. II

Product:

of inertia: of area, .369-370

of mass, 947

mixed triple, 80-81
scalar, 77-80

of a scalar and a vector, 20 21

vector, 63-66

vector triple, 659

Projectile, 470. 50.1

Propeller, 639

Radial component:
of acceleration, 483, 484

of velocity, 483, 484
Radius:

of curvature, 481, 482

of gyration, 354, 932

Rale of change:

of angular momentum, 518, 615, 619.

732, 843, 844

of linear momentum, 496, 615, 616

of a vector, 469

with respect to a rotating frame,
695-696

Rated speed, 505
Reactions at supports and connections,

124, 151

Real machines, 411

Rectangular components:
of acceleration, 470

Rectangular components:

of angular momentum: of a particle. 517
of a rigid body, 830-832

of derivative of a vector function, 468

of force, 27. 44, 47

of moment, 70, 71

of vector product, 65. 66
of velocity, 470

Rectilinear motion of a particle, 436-458
uniform, 448

uniformly accelerated, 448, 449

Rectilinear- motion problems, solution of:

analytical, 440, 441

graphical. 456-458
Rectilinear translation, 655

Reduction of a system of forces, 102-108
Redundant members, 230

Reference frame, 495

Relative acceleration (see Acceleration)
Relative motion:

of a particle: with respect to a frame
in general motion. 718-719

with respect to u frame in
translation, 471, 472

with respect to a rotating frame.
696-699. 716-718

of two particles. 450, 171, 472
Relative position, 450. 472
Relative velocity:

of a particle: in general motion, 707,
708

in plane motion, 668-670

with respect to a frame in general
motion. 718-719

with respect to a frame in
translation, 472

with respect to a rotating frame,
696-697. 717

of two particles, 450, 471, 472

Relativity, theory of, 2
Repose, angle of, 308
Resolution of a force:

into components: in a plane, 21, 22, 27

in spaec, 43-44, 47

into a force and a couple, 93, 94
Resonance. 906

Restitution:

coefficient of, 595, 596. si;?

period of, 594, 595, 813
Resultant of forces. 17. 48, 102

(See also Addition, of forces; Addition,

of vectors!

Retrograde precession, 863

Reversed effective force (see Inertia
vector)

Revolution!

body of, 183, 860, 936
surface of, 183

Right-hand rule, 67

Rigid body. 3, 59

equilibrium of: in a plane. 122-144
in space, 150-163

free-body diagram of, 123
kinematics of, 655-694. 705-708

kinetics of, 729-863

vibrations of, 887, 896

Rigid truss. 216

Rocket, 640

Rollers, 124, 150

Rolling motion, 759. 760

Rolling resistance, 333, 334
coefficient of, 334

Rotating frame of reference. 694-699.
716-718

Rotating shafts. 849
Rotation, 656

ccnlroidal {see Centroidal rotation)

dynamic equilibrium in. 758
effective forces in, 734. 758

equations uf motion in. 757, 758, 848-
849

instantaneous axis of, 677. 706

instantaneous center of. 677

kinematics of. 658-661

kinetic energy in, 783
momentum in, 799, 800. SOI

nonccnlroidal (see Noncentroidal

rotation)

uniform, 661

uniformly accelerated, 661

Rough surfaces, 124, 150

Sag, 291, 299

Satellites, 528, 569

Scalar components, 27
Scalar product, 77-80

derivative of, 468

Scalars, 17

Screws, 322-323

Second, 6, 497

Second moment, 350-354

Sections, method of, 228-230

Self-locking screws, 322

Seinimajor axis, 532
Somiminor axis, 532

Sense of a force, 16

Shafts, rotating, 849
Shear. 267, 272-282
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Shear diagram, 274
SI units, 5-9, 497-498

Significant figures, 15
Simple harmonic motion, 876
Simple pendulum, 880-882
Simple busses, 216. 222

Slipstream, 638

Slug, 10, 499

Space. 2

Space ccntrode. 679
Space cone, 706, 863
Space mechanics, 528-533. 568, 569
Space truss, 222-223

Space vehicles. 528, 529, 569
Specific weight, 168. 197, 200
Speed, 437. 465

rated, 505

Spin, 858

Spring:
force exerted by. 422, 5-14

potential energy, 423-124, .564. 565
Spring constant, 422, 544

Square-threaded screws, 322
Stable equilibrium, 426. 427
Static friction, 305

angle of, 307
coefficient of, .305, 306

Statically determinate reactions, 128

Statically determinate structures, 241

Statically determinate trusses, 230
Statically indeterminate reactions, 128,

152

Statically indeterminate structures. 241

Statically indeterminate trusses, 230
Sialics, definition of, 1

Steady precession:
of gyroscope, 860
of top, S66

Steady-state vibrations. 905, 906, 914

Stream of particles, 635-639
Structural shapes, properties of, 362-363
Structures:

analysis of. 213-253
determinate. 241

indeterminate, 241

internal forces in, 213

two-dimensional, 68

Submerged surfaces, forces on, 192,
352

Subtraction of vector. 19

Supports:
ball, 150

ball-and-socket, 150

of beams, 270-272

reactions at, 124-125, 150 152

Surface:

Motionless. 124, 1.50

of revolution, 183

rough, 124, 150

submerged, forces on, 192, 352
Suspension bridges, 290
Symmetry:

axis of, 170, 172

center of. 170. 172

plane of. 201
Systems:

of forces, 102-108

of particles: angular momentum of,
614, 617-620

equations of motion for. 612, 613.
615, 618

impulse-momentum principle for,
628-629

kinetic energy of. 626-627
mass center of. 616

variable, 635-640

work-energy principle for, 627
of units, 5-13, 497 500

Tangential component of acceleration,
480-482

Tension, 62. 215, 266

Termor, inertia, S30

Three-force body, 144
Thrust. 638. 640

Thrust bearings, 332

Time, 2

Toggle vise, analysis of, 409, 411
Ton:

metric, 6, 498

U.S., 10

Top:
general motion of, 871

steady precession of. 866
Torsional vibrations, 890

Trajectory;

of projectile, 471, 531
of space vehicle, 530

Transfer formula (see Parallel-axis
theorem!

Transient vibrations, 905. 914

Translation, 655, 657

curvilinear, 655

effective forces in. 731

kinematics of, 657

kinetic energy in, 782
momentum in, 799

rectilinear. 655

Transmissibilily, principle of. 3, 61, 735

Transverse component:

of acceleration. 483, 484

of velocity, 483. 484

Triangle rule, 19
Trusses, 214-231

compound. 230
determinate. 230

indeterminate. 231

overrigid, 230

rigid, 216. 230

simple, 216, 222

space, 222-223

typical, 215
Two-dimensional structures, 68

Two-force body, 143-144

Unbalanced disk. 760

Uniform rectilinear motion, 448

Uniform rotation. 661

Uniformly accelerated rectilinear motion,
¦148. 449

Uniformly accelerated rotation, 661
Unit vectors, 27. 44. 45

U.S. customary units, 8-13, 498-499
Units, 5-13. 497 500

(See also specific systems of units)

Universal joints, 150

Unstable equilibrium, 427, 428
Unstable rigid bodies, 129

V belts, 341

Variable systems of particles. 635 640
Varignon's theorem, 69
Vector addition. 18-20

Vector components, 27
Vector function. 465, 467

derivative of. 467-469

Vector product, 63-65
derivative of, 468

determinant form for, 66

rectangular components of. 65, 66
Vector subtraction, 19

Vector triple product, 659
Vectors, 17

bound, fixed, 17

coplanar, 20
free, 18

inertia, .502, 736

momentum, 799, 800, 828, 829

rate of change of, 469, 694-696
sliding, IS. 61
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Velocity, 437, 465
absolute, 668, 679

angular, 659, 706, 707

areal, 520

components of: radial, 483, 484
rectangular, 470

transverse, 483, 484

escape, 447, 531

in general rigid-body motion, 707. 708

in motion of rigid body about a fixed
point, 705

in plane motion, 668, 677

relative (see Relative velocity)
in rotation, 658

Velocity-displacement curve, 458
Velocity-time curve, 439, 456, 457

Vibrations, 875

damped: forced, 914, 915
free, 911-913

Vibrations:

forced, 904-906, 914, 915

free, 876-897, 911-913

frequency of, 876, 879

period of, 876, 879. 913

of rigid bodies, 887, 896

steady-state, 905, 914
torsional, S90

transient, 905, 9J4

undamped: forced, 904-906
free, 876-897

Vibronieter, 910

Virtual displacement, 408
Virtual work, 408

principle of, 408-411

Viscous damping, 911

Watt (unit), -551

Wedges, 321-322
Weight, 4, 6, 498, 520-521
Wheel friction, .333, 334

Wheels, J 50, 333, 759
Work:

of a couple, 407. 421, 781

and energy, principle of {see Principle,
of work and energy)

of a force. 405, 420, 542

of force exerted by spring, 422. 544
of forces on a rigid body. 407. 780

of gravitational force, 545

input and output, 411, 412
virtual, 408

of a weight, 121, 543
Wrench. 108

Zero-force member, 220



Answers to

Even-numbered

Problems

CHAPTER 11

11.2

11.4

11.6

11.8

11.10

11.12

11.14

11.16

I = 0, x = 12 in., a = -18 in./s 2 ;

t = 3s, x = -15 in., a = 18 in./s 2

SI: « = 0, x = 0.305 m,

a = -0.457 m/s 2 ; / = 3 s,

x = -0.381 in, a = 0.457 m/s 2 .

(a) 2 s, 4 s. (b) 8 m, 7.33 m.
-4 m/s; 12 m; 20 m.

(a) 3 s. (b) 116 in., -56 in./s. (c)

SI: (a) 3 s. (b) 2.95 m, 1.422 m/s.
(c) 1.651m.

25 s- 2 .

(«) 384in :, /s 2 . (b) 13.86 in./s.

65 in.

SI: [a) 6.29 x H)- 1 m 3 /s 2 . (b) 0.352 m/s.

(«) 55.5 m. (b) Infinite.
142.7 ft/s. Si: 43.5 m/s.

11.18 (a) b =^(l -cos^j;

x = -^(f-s.nf).( & )2WA.
(c) 2fcT 2 Ar. (r/) fcT/vr.

11.20 (a) 15,540 ft. (b) 318 mi. (o) Infinite.
SI: (a) 4740 in. (b) 511km. (c) Infinite.

1 1 .22 (a) 6.90 m/s. (b) Infinite.

11.24 (a) 5 m/s. (b) 11 m/s. (c) 60 m.

1 1 .26 (a) 30.7 ft/s. (b) 98.2 ft/s.

SI: (a) 9.34 m/s. (b) 29.9 m/s.
11.28 t = 15 s; l = 450 ft. sj: ( = 15 s;

X = 137.2 m.

11.30 (a) 17.10 s; 171.0 m. (b) 81.5 km/h.

11.32 (a) 36 ft/s |. (b) 18 ft/s ;. (c) 54 ft/s ;.

(d) 36 ft/s |. SI: (a) 10.97 m/s J,.

(b) 5.49 m/s J,, (c) 16.46 m/s J,.
(d) 10.97 m/s |.

1 1 .34 (a) 200 mm/s «-. (b) 200 mm/s «-;

400 mm/s <-. (c) 100 mm/s <-.

(rf) 200 mm/s -».

11.36 (a) 3 s. (b) 3.38 in. t SI: (a) 3 s.
(b) 85.7 mm f.

1 1 .38 v A = 120 mm/s j,; Oj = 40 mm/s |;
u c = 80 mm/s | .

1 1 .40 v A = 200 mm/s J,; i; B = 40 mm/s J.;
v c = 120 mm/s |.

11.42 (a) 32 ft/s. (b) 192 ft. SI: (a) 9.75 m/s.

(b) 58.5 m.

1 1 .44 (a) 48 m. (b) 6 s, 13.75 s, 16.25 s.
1 1 .46 19 s.

11.48 (a) 2.67 ft/s 2 . (b) 23.2 mi/h.

si: (a) 0.813 m/s 2 . (b) 37.3 km/h.
11.50 lis; 70m.

1 1 .52 8.54 s; 58.3 mi/h. 51: 8.54 s; 93.8 km/h.

965
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11.54 (a) 8.57 s. (b) 1.867 m/s 2 ; 1.400 m/s 2 .
(c) 68.6 m; 51.4 m.

1 1 .56 (a) 150 in./s. (fa) 800 in. (c) 100 in./s.
SI: (a) 3.81 m/s. (b) 20.3 m.

(c) 2.54 m/s.

1 1 .58 (a) 10.0 m/s; 27.4 m. (fc) 13.9 m/s;
51.5 m.

11.60 (a) -756 in./s 2 . (b) -880 in./s 2 .
SI: (a) -19.20 m/s 2 . (fa) -22.4 m/s 2 .

11.64 (a) 2.7 s. (fc) 48.6 ft. SIi (a) 2.7 s.
(fo) 14.81 m.

11.66 (a) 12 m. (fc) 48 m.
1 1 .68 (a) 2 s. (fc) 2 m/s «•-; 2.24 m/s 2 <-£ 26.6°.

11.70 v = 2.22 ft/s ^34.2°;

a = 2.22 ft/s 2 J" 34.2°.

SI: v = 0.678 m/s ^£34.2°;

a = 0.678 m/s 2 ?" 34.2°.

1 1 .74 o = Vc 2 + /? V; ° = fl P a -
1 1 .76 4.20 m/s < U < 6.64 m/s.

11.78 44.0 ft/s; 38.1 ft/s. si • 13.40 m/s;

11.61 m/s.

11.80 12.43 ft. SI: 3.79 m.

11.82 26.6° or 63.4°.

11.84 15° or 75°.

11.86 14.83 ft. si: 4.52m.

11.88 23.2 mi? 7 17.8°. SI: 37.3km 7" 17.8°.

1 1 .90 (a) 56.3° from rear of truck.

(b) 16.63 m/s.
11.92 9.98 m/s 3" 81. 2".

1 1 .94 22.4 mi/h from 63.4° east of north.

SI: 36.0 km/h from 63.4° east of north.

1 1 .96 10.18 m/s ^ 10.8°; 9.81 m/s 2 j.
1 1 .98 (a) 2.08 m/s 2 . (b) 63.6 km/h.

1 1 .1 00 29.6 X 10 3 ft/s 2 . si. 9.02 X 10 3 m/s 2 .
11.102 8.51 ft/s 2 . si.- 2.59 m/s 2

11.104 1.2 m/s 2 .

11.106 3810 m.

11.108 22,800ft; 58,100ft. -I: 6.96km; 17.71 Ian.

11.110 p = H + c 2 /Rp 2 .
11.112 17,060 mi/h. SI: 27 400 km/h.
11.114 84.4 min.

11.116 (a) v = -(180 mm/s)L;

a = -(240 mva/s% - (4320 mm/s 2 )i,.
11.118 (a) V a -4*7/>i r + 47;bi 8 ;

a = -&7 2 foi r - L69r*H ( .
(b) v = 0; a = 87r 2 foi,.

11.120 u = fcsec 2 0.

11.122 (a) v = fcfci„; a = -\bk%.
(h) v = 2Wfci r + 2bki ;

a = 2bk 2 i T + 4bk 2 i„.

1 1 . 1 24 i! = 2tt v/A* + B 2 n 2 cos 2 2ctii;

a = 4*r 2 \f7? + B-V sin 2 2wn*.

o = /» tan /J \/4w 2 f 2 + esc 2 2^7.

a = 4^r/i tan /3 VI + T 2 * 2 -

tan"' (Kp/c).

(o) (.« + i/j/ + iHM* 2 + f + F) ,/s

.v;/- i/aV i ,,);-i.(/^ + ;:.Y - i"! 2 '

11.126

11.128

11.130

w
f2

(C

: + «/ 2 +

[ff + if + j2]
:213/2

[iii - i,x) 2 +(y£- W + (™ - WW* '

1.132 4.28 m/s; 0.188 m.

1.134 (a) 10 m. (b) 0.0693 s. (c) -1000 m/s 2 .
1.136 398 m.

1.138 1609ft. Si: 490m.

1 .1 40 (a) 60 s; 960 m. (b) 240 s; 5280 m.

1 .1 42 0.816 s, later; 276 ft below ground.
SI: 0.816 s, later; 84.0 m below ground.

CHAPTER 12

12.2 W = 16.49 lb; m = 100.00 lb;

m = 3.11lb-s 2 /ft. SI W=73.4N;

m = 45.36 kg.

1 2.4 3.22 ft/s 2 ; 20 lb. SI: 0.981 m/s 2 ; 9.07 kg.
1 2.6 (a) 65.9 ft/s. (b) 2.73 s.

SI: (a) 20.1 m/s. (fe) 2.73 s.
1 2.8 (a) 3.37 m/s. (fc) 10.28 m.

12.10 23.9 N.

1 2.1 2 (a) a. A = n g = 2.42 ft/s 2 / .
(h) 1.160 lb /.

SI: (a) a^ = a„ = 0.739 m/s 2 / .
(fa) 5.16 N / .

12.14 (a) 180 N. (b) 26.4 kg.
12.16 (a) 0.956 m. (fa) 1.064 m.

12.18 (a) 302 K. (fa) 6.79 m/s f-

(c) 1.346 m/s J,.

12.20 (a) 24.9lb->. (fa) 7.96 lb.
SI: (a) 110.6 N->. (fa) 35.4 N.

1 2.22 (a) a,, = 8.92 ft/s 2 <-;
a B a 5.94 ft/s 2 *-. (fa) 3.08 lb.
SI: (a) a d = 2.72 m/s 2 «-;
a B = l .81 1 m/s 2 «-. (b) 13.69 N.

12.24 (a) 9.56 ft/s 2 . (fa) 19.68 ft/s 2 .

SI: (a) 2.91 m/s 2 . (fa) 6.00 m/s 2 .
1 2.26 1.905 m/s.

12.28 (a) 10.73 ft/s 2 <-. (6) 18.671b.
SI: (a) 3.27 m/s 2 *-. (fa) 83.0 N.
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1 2.30 (a) 4.56 m/s 2 «-. (ft) 1.962 m/s 2 <-.
(c) 2.60 m/s 2 -*.

1 2.32 a = (P/m)e- k " m ; v = (P/k)[l__- e k " m \ 12.34 a = -(kx/m)[l - l/y/x* + P],
1 2.36 a^ = 13.26 ft/s 2 |; a B = 1.894 ft/s 2 |;

a t . = 9.47 ft/s 2 ;. Block C strikes ground
first. SI: a,, =4.04 m/s 2 1;
a B = 0.577 m/s 2 J; a c = 2.89 m/s 2 L
a 4 = 0.577 m/s 2 J,; a B = 2.89 m/s 2 J;
a c = 4.04 m/s 2 f.

12.38

12.40

12.42

12.44

12.46

12.48

12.50

a A = 4.91 m/s 2 T: a B = 2.45 m/s 2 J,;
a t - = 0.

(a) 5.51 m/s. (ft) 60.6°.

(a) 10.56 ft/s. (ft) 7.321b.
SI: (a) 3.22 m/s. (ft) 32.6 N.

(a) gsin0. (ft) \/2g/(cos - cos j.
(c) W(3 - 2 cos O ). (d) 60°.
2.71 m/s.

A: 12.86 ft/s 2 . B: 25.8 ft/s 2 .

C: 19.32 ft/s 2 . SI: A: 3.92 m/s 2 .

B: 7.86 m/s 2 . C: 5.89 m/s 2 .

1252 ^n = V y tan(g - 0) ;
c m« = Vgr tan(0 + £).

12.54 22.5°.

12.56 10.36 ft/s. SI: 3.16 m/s.

12.58 y = hx 2 /b 2 .
1 2.60 5 = eVlL/mvf t d.

12.62 VeV/me 2 ,.

1 2.64 (a) F r = 4 N, F, = 0. (ft) F, = -21.3 N,
F $ = 21.3.\.

12.66 (a) F r = -73.6 lb, /", = 0.
(ft) F r = -24.5 lb, F„ = -49.0 lb.

SI: (a) F r = -327 N, F = 0.

(ft) F r = -109.1 N, F s = -218 N.
12.68 (a) 11.93 lb. (ft) 2.981b. SI: (a) 53.0 N.

(ft) 13.26 N.
12.70 12.96 X.

1 2.72 n = 0: uniform circular motion;

n = 1: uniform rectilinear motion.

12.74 (a) 24in./s. (ft) p A = §in., p B = 18 in.
SI: (a) 0.610 m/s. (ft) p A = 16.93 mm,
pn = 457 mm.

1 2.76 409 X 10 21 lb ¦ s 2 /ft or 13.17 X lO 24 lb.

SI: 5.97 X 10 21 kg.
1 2.78 (a) 35 770 km or 22,230 mi.

(ft) 3070 m/s or 10,080 ft/s.

12.80 (a) 7.50in./s. (ft) Straight Unc.
si: (a) 0.1905 m/s.

1 2.82 2640 mi/h. Sli 4250 km/h.

12.84 (a) 6350 km/h. (ft) 5940 km/h.

1 2.86 (a) Z : J sin 3 X tan 0, = fij sin 3 2 tan 8 2 .
(ft) 240 mm.

12.88 (a) 7910 ft/s. (ft) 4800 ft/s.
SI: (o) 2410 m/s. (ft) 1462 m/s.

12.90 -30.4 m/s.

12.92 (a) 1537 km. (ft) 4070 m/s. (c) 1.536.

12.94 (a) 5560 ft/s. (fa) 61 ft/s.
SI: (a) 1695 m/s. (ft) 18.6 m/s.

1 2.96 45 h 30 min.

12.98 5h 17 min.

12.100 79.7°.

12.102 197 ft/s. SI: 60 m/s.

12.106 (a) $% (b) 75.9° ¦
1 2.1 08 (a) o = R V2g/r cos g.

(ft) 4 = }(* - 6).
12.110 3.32 m.

12.112 (a) 9.91 ft/s 2 J,, (ft) 32.2 ft/s 2 L
SI: (a) 3.02 m/s 2 j. (ft) 9.81 m/s 2 L

12.114 3.39 m/s 2 ^260°.

12.116 0.1438i;f/g.
12.118 (a) 35 200 km/h. (ft) 5150 km/h.

1 2.1 20 (a) a,, = 0; a B = 1.591 m/s 2 / .

(fa) a A = a B = 0.643 m/s 2 / .

CHAPTER 13

13.2 2.37 GJ.
1 3.4 (a) 3.37 m/s \ . (fa) 10.28 m.
13.6 8.72 ft/s. SI: 2.66 m/s.
13.8 14.40 N.

13.10 12.67 ft/s. SI: 3.86 m/s.

13.12 1.981 m/s.

13.14 ( u ) 9.27 ft/s. (fa) 9.33 ft.
SI: (o) 2.82 m/s. (fa) 2.84 m.

13.16 10.99 ft/s. SI: 3.35 m/s.
13.22 34 in. SI: 0.86 m.

13.24 (a) 0.801 m/s. (ft) 98.1 N.
13.26 19.67 in. SI: 0.500 m.

13.28 (a) 2.08 lb ^£30°. (ft) 2.83 lb f.
SI: (a) 9.27 N ^30°. (fa) 12.60 Nf.

1 3.30 Loop 1: (a) \/5g7<-. (fa) 3W->.
Loop 2: (a) V4gr «-. (fa) 2W-».

13.32 1315 lb -in. SI: 148.5 J.
13.34 25,950 ft/s. SI: 7905 m/s.

13.36 14.13 X 10 3 km/h.
1 3.38 549 \V; 628 W.

13.40 (a) 25.0 kW. (ft) 6.13 kW.

13.42 (a) 8.18 hp. (fa) 10.09 hp.
SI: (a) 6.10 kW. (ft) 7.52 kW.
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13.44

13.46

13.48

13.50

13.54

13.56

13.58

13.60

13.62

13.64

13.66

13.68

13.70

13.72

13.74

13.76

13.80

13.82

13.84

13.90

13.92

13.94

13.96

13.102

13.104

13.106

13.108

13.110

13.114

13.116

13.118

13.120

13.122

13.124

13.126

13.128

13.130

13.132

(a) 55.2 kW. (ft) 260 kW.

(a) 20.5 s; 701 ft. (ft) 34,2 s; 1904 ft.
SI: (a) 20.5 s; 214 in. (ft) 34.2 s; 580 m.
(a) 278 kW. (ft) 6.43 km/h.

(a) 2*12(1 -cos0) 2 . (ft) -mg/sinfl.
(ft) V = - (x s + if- + ; 2 )-" 2 .
46.6 ft/s. SI: 14.21 in/s.

2.45 m/s.

(a) 4.71 m/s. (ft) 4.03 m/s.
7.05 ft/s. SI: 2.15 m/s.

23.7 m/s.

104.9 N.

(a) 22.7 ft/s. (ft) 7.75 ft.

SI: (a) 6.92 m/s. (ft) 2.36 m.

6mg.
1.600 in.; 24 lb. SI; 40.6 mm; 7.32 N.

36,700 ft/s. SI 11.18 km/s.

(a) 0.943 X 10" ft • lb/lb.

(ft) 0.447 X 10 6 ft • lb/lb.

SI: (a) 2.82MJ/kg. (ft) 1.336 Ml/kg.
(a) 1.155 m. (ft) 5.20 m/s.

(a) 15.54 ft/s. (ft) 5.18 ft/s. (c) 0.125 ft.

SI: (o) 4.74 m/s. (ft) 1.579 m/s.
(c) 38.1 mm.

(a) 25.3 in. (ft) 7.58 ft/s.

SI: (a) 0.643 m. (ft) 2.31 m/s.
10,780 ft/s. SI: 3285 m/s.

8420 m/s; 74.4°.

5160 ft/s; 79.9°. SI: 1572 m/s; 79.9°.
65.7° < <b < 114.3°.

380 mi. SI; 610 km.

(b) J V6 *„,..* VSt^.
(a) and (ft) 6 min 4 s.

(a) 11.42 s.

(ft) v = -(125.5 m/s)j - (194.5 m/s)k.
(a) 2.80 s. (ft) 5.60 s.

(«) 38.9 s. (ft) 10.71 kN T.

(a) 10.06 ft/s; 1.5 s. (ft) 3 s.
SI: (a) 3.07 m/s; 1.5 s, (ft) 3 s.

(a) 9.03 m/s. (ft) 0.

(a) and (ft) 111.1 kN.

48.4 lb «-, 188.0 lb J,. SI: 215 N <-,
836 X |.

9.38 ft/s. SI: 2.86 m/s.

(a) 2m/s^. (ft) '/;, =3J. T B =9).
(a) 0.6mi/h. (ft) 43701b.

SI: (a) 0.966 km/h. (ft) 19.45 kN.
0.742 m/s -h».

(a) 135.6 N-s. (ft) 108.5 N-s. (c) 368 J;
294 J.

13.134 (a) v, = 1.125 ft/s ^;
v g = 13.875 ft/s -^. (ft) 5.10H • lb.
SI: («) v, = 0.343 m/s <-;

v„ = 4.23 m/s -^>. (ft) 6.91 J.
13.136 (a) v A = 2.30 m/s *-: v B = 2.20 m/s -».

(ft) 2.81 J.

13.138 v^ =3.50 m/s ^60°;
v„ = 4.03 m/s ^21.7°.

13.140 (a) 0.571 Vq. (ft) 1-333 v .
13.144 (a) 0.943. (ft) 28.4 in.; 15.08 in.

SI: (a) 0.943. (ft) 0.722 m; 0.383 rn.

13.146 (a) 0.883. (ft) 11.30 in. SI: (a) 0.883.
(ft) 0.287 m.

1 3. 1 48 v A = 0.721 u .=dl 16. 1 ' ; V/f = 0.693 l> «-.
13.150 69.9°.

13.152 ( fl ) 8.29 ft/s -». (ft) 6.85 lb. (c) 1.068 ft.

SI: (a) 2.53 m/s-*. (ft) 30.5 N.
(c) 0.326 in.

13.154 2.57 in. SI: 65.3mm.

13.156 (a) 34.7 mm. (ft) 8.18 J.
13.158 («) 8890 J. (ft) 24 km/h.
13.160 (a) 9.32 ft • lb. (ft) 8.10 ft • lb.

SI: (a) 12.63 J. (ft) 10.98 J.
13.162 (a) Five, (ft) 2m/s->. (c) Same as

original.
13.164 4.47in. SI: 113.6mm.

1 3.166 Impact at A: v, = 1.333 m/s -*,

v f = 0.333 m/s — »; impact at B: v, = 0,
V/ = 1 m/s — ».

13.168 5.29 m/s -».

13.170 4.89 ft. si: 1.491m.

13.172 317 N/m.

CHAPTER 14

1 4.2 (a) 5.20 km A -». (ft) 3.90 km/h -».

14.4 (a) 1670 ft/s^. (ft) 1158 ft/s -».

SI: (a) 509 m/s ^. (ft) 353rn/s-».

14.6 (a) «;,, = 19.50 ft/s, v y = 16.00 ft/s.
(ft) -(1.118 ft • lb - s)i.

SI: (a) », = 5.94 m/s, B, = 4.88 m/s.
(ft) -(1.516 kg -m 2 /s)i.

14.8 (a) (3 m)i + (1.5 m)j + (1.5 m)k.
(ft) ( 17 kg • m/s)i + (19 kg • in/s)j
— (5 kg • m/s)k.

(c) (2 kg • m 2 /s)i + (24.5 kg • m'7s)j
+ (25.5 kg • m 2 /s)k.

14.10 x = 780 ft, ij = 17.55 ft, Z = -21.0 ft.
SI: x = 238 m, i/ = 5.35 m, z = 6.40 m.

14.12 x = 100 in. y = -40.7 m. z = 16 in.
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14.14 v B = 4.57 ft/s; u c as 5.78 ft/s. 14.76

3
SI: v„ = 1.393 m/s; D = 1.761 m/s. 14.78

14.16 tj = 919 m/s; u B = 717 m/s; 14.80

5
c c = 619 m/s. 14.84

14.22 9.55%. 14.86

14.24 0.201%.

14.26 (a) mi: i; ifm/c k. (ft) v 4 = ^ ( ,i + lojjj
v 'e =|»oi - |t' ( j. (c) v., = -Ac ii

14.88

3
v„ = |©o*. 14.90

14.28 i = 181.7 mm, (/ = 0, s = 139.4 mm.

=
14.30 v A = 1.500 m/s; t B = 1.299 m/s; 14.92

4
t: r = 2.25 m/s. 14.94

14.32 v 4 = 34.3 ft/s -5229.7°;
v„ = .17.59 ft/s ^ 40.1'

14.34

14.36

14.38

14.40

14.42

14.44

14.46

14.48

14.50

14.52

14.54

14.56

14.58

14.60

14.62

14.64

14.66

14.68

14.70

14.72

14.74

SI: v A = 10.46 in/s<d?29.7°;

v B = 5.36 m/s "^40.1°.

(a) 13.00 ft/s-*. (b) 10.82 ft/s "=533.7°.

(c) b = 8.33 ft. SI: (a) 3.96 m/s -».
(fa) 3.30 m/s "^33.7°. (c) fc = 2.54 m.

(a) 3 m/s ^36.9°.

(fr) H = (4.80 kg • m 2 /s)k; V = 48.0 J.
(c) 0.600 m. (d) 20 rad/s.

P r = 800 N; P„ = 800 N.
B = mc„-»; C = m\/2gft"^30 a .
Pi =&?(! -sine);() 2 = |()(l + sin0).
C r = 83.3 lb -», C„ = 30.3 lb J,
M c = 496 lb • in. ) . SI: C t = 370 N -»,

C„ = 134.8 N J,, M c = 56.1 N • m )..

C x = 475N<-, C„ = 675Nt:
D = 865 N -».

C = 321 lb T: D =479 lb*.

SL C = 1428 N T; D = 2130 N T-

(a) 10,2501b. (b) 16,400 hp.

(c) 28,700 hp. SI: (a) 45.6 kN.
(6) 12.2:3 V1VV. (c) 21.4 MW.
(a) 26.4 kN. (b) 830 km/h.

(a) 1500 N. (b) 25(H) X.
43.2 ft/s. SI: 13.17 m/s.

23.8 N.

24 rad/s). (/>) 0.400 N-m),

216 rpm.

sin = 0*/gL
P = mv(v + gt).

qv.

c s= TnoCo/fnin + qt);

a = -m„v q/(m u + qt) 2 .
(a) 40.3 lb/s. (b) 10.06 lb/s.

SI: (a) 18.26 kg/s. (6) 4.56 kg/s.
(a) 240 ft/s 2 . (6) 960 ft/s 2 .
SI: (a) 73.2 m/s 2 . (B) 293 m/s 2 .

(a) 6820 kg. (fe) 341s.
18,480 mi/h. SL 29.7 X 10 3 km/h.

452,000 ft. SI: 137.9 km.

(a) 0.855 m/s 2 . (B) 987 km/h.
(a) 5.54 ft/s. (6) 0.641 ft from B.

SI: (a) 1.687 m/s. (fc) 0.1955 m from B.

(a) §«; (6C) 33.3%. (ft) ju; (BC) 25%,
(AB) 8.33%.

(fl) Jo 4 -». (ft) |Ap(l-COS0)of.
(c) %V/v A )[l - (V/v A )](\ - cosO).

C = 89.3 N 1; D = 138.4 N f-
(a) 10,560 lb; 1.922 ft below B.
(ft) 8300 lb; 4.89 ft below B.

SI; (a) 47.0 kN; 0.586 m below B.

(b) 36.9 kN; 1.490 m below B.

CHAPTER 15

15.2

15.4

15.6

(a) -2.51 rad/s 2 . (ft) 18 000 rev.

(fl) -2.42 rad/s 2 . (ft) 52 s.

v„ = -(32in./s)i + (56 in./s)kj

a w = -(368 ta./s*)i - (1040 in./s 2 )]
- (396 in./s 2 }k.

1 v„ = -(0.813 m/s)i + (1.422 in/sjk;
a„ = -{9.35 m/s 2 )! - (26.4 m/s 2 )j
- (10.06 m/s 2 )k.

1 5.8 v £ = (0.14 m/s)i - (0.48 m/s)j

- (0.96 m/s)k; a B = -(0.644 m/s 2 )i
+ (2.21 m/s 2 )j - (7.30 m/s'-')k.

15.10 v r = - ; 1 .8 in/s )j -J.2 m/s)k;

a c = (7.8 m/s 2 )i - (12.6 m/s 2 )j
4- (7.2 m/s 2 !k.

66,700 mi/h; 0.01947 ft/s 2 .

SI; 107.3 X 1 3 km/h: 5.93 min/s 2 .

1.174 s; 7.05 rad/s.

(a) 2 rad/s J; 3 rad/s 2 ).

(ft) 20 in./s 2 5^36.9°. SI: (a) 2 rad/s};
3 rad/s 2 5. (ft) 508 mm/s' 2 !b.36.9°.

(a) 10 rad/s. (ft) a B = 18 m/s 2 J.;

15.12

15.14

15.16

15.18

a e == 6 m/s 2 j.
15.20 3.49 s; 6.98 s; 13.96 s.

15.22 (a) a A = 4.19 rad/s 2 );
o B s= 6.98 rad/s 2 J. (ft) 4..50 s.

15.24 a = b&ltmr*.
15.26 (a) 1.25 rad/s J. (ft) 25 in./s i-. 60°.

Si: (fl) 1.25 rad/s}.
(ft) 635 mm/s 5^ 60°.

15.28 (o) 2 rad/s 2 }.

(b) v A = (SO mm/s)i + (440 mm/s)j.
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15.30 (a) v B = - (160 mm/s)i + (200 mm/s)j.
(b) x = 220 mm, y = 80 mm.

1 5.32 (a) a A =a B = v/r }; a c = v/2r).

(b) v B = 2t ->; v B = 0; v F = v^c'=5 45".
15.34 (a) 180 rpm}. (b) 2.83 m/s / .

1 5.36 (a) v P = 0; u nD = 39.3 rad/s ) .

(h) v p = 6.28 m/s |; w Bi) = 0.
(c) v p = 0; « BD = 39.3 rad/s },

1 5.38 a BD = 2.94 rad/s ); v = 31.8 in./s *-,
SI: u BD = 2.94 rad/s 7;
v D = 0.807 m/s «-.

1 5.40 ia BD = 1 rad/s ); a DE = 3 rad/s J.
1 5.42 u gl) = 3.75 rad/s }.; u> DE = 2.25 rad/s ).

15.44 (a) v, = 10 in./s -?; <o 4C = 0.

(b) v<1 = 45.4 in./s -*;
Wi4C = 0.566 rad/s).

SI: (a) v A = 0.254 m/s -»; <o 4(; = 0.
(b) v,, = 1.182 m/*-*!
fij^g = 0.566 rad/s }.

1 5.48 Vertical line intersecting zx plane at
x = 0,z = 9.34 ft. SI: x = 0,

z = 2.85 m.

15.50 (o) 2 rad/s). (b) 12 in./s <-. (c) 9 in./s,
wound.

SI: (a) 2 rad/s J. (b) 0.305 m/s «-.

(c) 0.229 m/s, wound.

15.52 (a) 0.6 rad/s}. (ft) 24mm/s-».

15.54 (a) 4 rad/s). (fc) 86.5 in./s ^£16.1*.

SI: (o) 4 rad/s). (b) 2.20 m/s ^£ 16.1".
15.56 (a) 6.67 rad/s J. (b) 2m/s^.

(c) 1.250 m/s J 7 36.9°.

1 5.58 cos 3 8 = />//•

15.60 (a) 2rad/s). (b) 18.33 in./s "^19.1°.

SI: (a) 2 rad/s). (b) 0.466 m/s ^ 19.1°.

1 5.62 (a) 3 rad/s ). (b) On or inside a 2-in.-

radius circle centered at a point

1.928 in. below G. SI: (a) 3 rad/s).

(b) On or inside a 50.8-mm-radius circle

centered at a point 49.0 mm below G.
15.64 (a) 0.9 rad/s }. (b) 144 mm/s «-.
15.66 Space centrode: Circle of 12-in. radius

with center at intersection of tracks.

Body centrode: Circle of 6-in. radius
with center on rod at point equidistant
from A and U.

15.76 (a) 0.5 rad/s 2 }. (b) 5.5 ft/s 2 f.
SI: (a) 0.5 rad/s 2 }. (b) 1.676 m/s 2 J.

1 5.78 (a) 0.4 m/s 2 «-. (b) 0.2 m/s 2 ^.
15.80 a c = 316m/s 2 t; a„ = 316 m/s* "560*.

(a) 10 in./s 2 T- (b) 18.36 in./s 2 ^60.6*.
(c) 42.2 in./s 2 ^22.3°.

SI: (a) 0.254 m/s 2 T-
(b) 0.466 m/s 2 ^60.6°.

(c) 1.071 m/s 2 ^22.3°.

".ah = °i a AB = § u o T; «bc = 2 W 5.
« BC ¦ 0.
(a) 157.0 m/s 2 T. (b) 592 m/s 2 J,.
71.1 m/s 2 \ .

(a) 0. (b) 2.67 rad/s 2 }.
(a) 3.46 rad/s 2 }.

(b) 15.59 in./s 2 "^30°.

si (a) 3.46 rad/s 2 }.
(b) 0.396 m/s 2 "^30°.

(a) 3.46 rad/s 2 }.

(b) 19.30 in./s 2 "^45.6°.

SI: (a) 3.46 rad/s 2 }.
(b) 0.490 m/s 2 ^45.6°.
1.814 m/s 2 5* 60.3°.

u = (v„ sin /i)/(/ cos 8)

(a) t: B = ru cosU.

(b) a B = ret cos 8 — w 1 sin 8.
v D = — 2/u sin 8;
a D = —2la sin 8 — 2lic 2 cos8.
v„ = flu sec 2 0;
a B = R sec 2 B(a + 2w s tan 0).
v> AB = ru(a? + P - 2al cos 8) U2 /al sin 8.
(a) to =(u /1 /b)cos 2 6'.

(b) (v,,), = (v A L/b) sin 8 cos* 0^,
( v b)„ = 'UKVfo) cos 3 * - 1] |.
(a) 2.58 rad/s}. (b) 19.75 in./s? 7 50°.

SI: (a) 2.58 rad/s}.
(b) 0.502 m/s T'SO".

W/U , = 1.958 rad/s); <o BD = 3.80 rad/s).
(a) to,

"P/BB

v p/-4// = 0.299/^^15°;
y p/BD = 1.115 /w ^75°.

15.1 16 aj = rto 2 i + 2utoj; aj, = — 2utoi — rto 2 j;
a 3 = (— tu 9 — ur/r + 2uco)i;
a^ = (rw 2 — 2wlo)j.

1 5.1 1 8 {aj v„ = 735 mm/s "^ 71.8°.

(b) a B = 62.4 mm/s 5^7.4 3 .
1 5.1 20 (a) a 8 = (10.9 m/s 2 )j.

(b) a fl = -(0.1 m/s 2 )i + (10.8 m/s 2 )j.
(c) a B = (10.7 m/s 2 )j.

15.122 (a) 0.00582 ft/s 2 wast.

(b) and (c) 0.00446 ft/s 2 west.
SI: (a) 1.773 mm/s 2 west.
(2>) and (c) 1.358 mm/s 2 west.

15.82

15.84

15.86

15.88

15.90

15.92

15.94

15.96

15.98

15.100

15.102

15.104

15.106

15.108

15.110

15.112

15.114 __, = u ): Vp /A u — 0;
= iwT- {b) W B n =")i
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15.124 ll.Oorad/s 2 *.

15.126 (a) 476ft/s 2 . (b) 307 ft/s 2 .
SI: (a) 145.1 m/s 2 . (b) 93.7 m/s 8 ,

15.128 (o) <o BO = 2.4 rad/sj;

a SD = 34.6 rad/s 2 J.
(fc) v = 1.342 m/s ^63.4°;
a =9.11 in/s 2 ^18.4°.

15.130 (a) -120 mm/s.

(b) v B = -(40 mm/s)i - (100 mm/s)j
- (80 mm/s)k.

15.132 (a) « = (2 rad/s)i + (4 rad/s)j + (3 rad/s)k.
(b) v B = -(3 in./s)i - (6 in./s)j
+ (10 in./s)k.

SI: (b) v B = -(76.2 mm/s)i
- (152.4 mm/s)j 4- (254 mm/s)k.

15.134 a = (237 rad/s 2 )k.

1 5.1 36 a = -(565 rad/s 2 )i - (5 rad/s 2 )j.
15.138 (a) a - -(flu,/r)i + wj.

(fc) a = (Rwf/rjk.
15.140 to, cos 30°.

15.142 (a) a = (3 rad/s 2 )! + (2.5 rad/s 2 )k.

(b) a A = -(125 in./s 2 )i + (50 in./s 2 )j
+ (67.5 in./s 2 )k;

a s = -(50 in./s 2 )i + (170 in./s 2 )j
- (180 in./s 2 )k.

SI: (b) a, = -(3.18 m/s 2 )!
+ (1.270 m/s 2 )j + (1.715 m/s 2 )k;

a B = -(1.270 m/s 2 )i 4- (4.32 m/s-')j
- (4.57 m/s 2 )k.

15.144 (a) a - -(4 rad/s)j + (1.6 rad/s)k.
(b) a = -(6.4 rad/s 2 )i.

(c) v p = -(0.4 m/s)i + (0.693 m/s)j
+ (1.732 m/s)k.

a^ = -(8.04 m/s 2 )i - (0.64 m/s 2 )j
- (3.2 m/s 2 )k.

15.146 (a) a = -to,w 2 j.

(fo) a p = — rw?,i + Snuggle,
(c) a p = -r(<o 2 + a;|)j.

15.148 (a) a = -(150 rad/s 2 )k.

(b) a = -(225 in./s 2 )! - (2400 in./s 2 )j.
SI: (a) a= -(150 rad/s 2 )k.

(b) a = -(5.72 m/s 2 )! - (61.0 m/s 2 )k.
15.150 (a) a = -(8 rad/s 2 )k.

(fe) a c = (3.2 m/s 2 )! - (0.8 m/s 2 )j.
15.152 v B = (54 mm/s)i.

15.154 v c = (32 in./s)j. SI: v c = (0.813 m/s)j.
1 5.1 56 (a) ic = (1.6 rad/s)i + (15.2 rad/s)j

- (3.2 rad/s)k.

(6) v c = (32 in./s)j.
SI: (b) v c = (0.813 m/s)j.

15.158 \ B = -(14.41 in./s)i - (4.32 in./s)j.
SL v B = -(0.366 m/s)i - (0.1098 m/s)j.

15.160 a B = -(49.2 mm/s 2 )i.
15.162 a c = (1162 in./s 2 )j.

a ( . = (29.5 m/s%

1 5.1 64 (a) v„ = (0.6 m/s)i - (0.6 m/s)j
+ (0.25 m/s)k.

(b) a„ = (3 m/s 2 )i - (3.6 m/s 2 )k.
15.166 (a) v D = -(20 in./s)i - (34.6 in./s)j

- (46.8 in./s)k. (b) a„ = -(652 in./s 2 )i
4- (133.3 in./s 2 )j + (360 in./s^k.

(a) v„ = -(0.508 m/s)i
- (0.880 m/s)j - (1.188 m/s)k.

(b) a u = -(16.56 m/s 2 )i + (3.39 m/s 2 )j
4- (9,14 m/s 2 )k.

15.168 (a) v„ = (0.8 m/s)i - (0.72 m/s)j
+ (0.3 m/s)k. [b) a D = (3 m/s 2 )i
+ (2.4 m/s 2 )j - (7.4 m/s 2 )k.

15.170 (a) y p = -(1.701 m/s)i

4- (5.95 m/s)j - (3.12 m/s)k.

(b) a p = -(4.29 m/s 2 )!
- (0.201 m/s 2 )j 4- (1.021 m/s 2 )k.

1 5.1 72 (a) to = W|j 4- tojc; a= u,u 2 i.
(£>) v B = raj -'(R + tyajt*
»B = -[(R + »M + Willi.

15.174 (a) a= -(0.314 rad/s 2 )k.

(h) v B = (124.7 ft/s)k;

a B = (25.0 ft/s 2 )i - (395 ft/s 2 )j.
SI: (b) v B = (38.0 m/s)k;

a B = (7.63 m/s 2 )i - (120.3 m/s 2 )j.
15.176 (a) a = (200 rad/s 2 )k.

(l>) y D = -d m/s)j - (2.4 m/s)k ;
a n = -(40 m/s 2 )i 4- (44 m/s 2 )j
-(10 m/s 2 )k.

15.1 78 v^ = -(18 in./s)j 4- (160 in./s)k;

v B = -(90 in./s)j 4- (64 in./s)k;

a A = -(1600 in./s 2 )j - (360 in./s 2 )k;
a B = -(880 in./s 2 )j - (1000 in./s^k.
-I: y A = -(0.457 m/s)j 4- (4.06 m/s)k;

v B = -(2.29 m/s)j 4- (1.626 m/s)k;
a^ = -(40.6 m/s 2 )j - (9.14 m/s 2 )k;
a B = -(22.4 m/s 2 )j - (25.4 m/s 2 )k.

15.180 v 4 = -(160 in./s)i - (18 in./s)j;
v B = -(40 in./s)i 4- (24 in./s)k;

a^ = (360 in./s 2 )! - (1600 in./s 2 )j;
a B = -(400 in./s^j - (100 in./s^k.
SI: v A = -(4.06 m/s)i - (0.457 m/s)j;
v B = -(1.016 m/s)i 4- (0,610 m/s)k;

a^ = (9.14 m/s 2 )i - (40.6 m/s 2 ))}
a B = -(10.16 m/s 2 )j - (2.54 m/s 2 )k.
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15.182 (o) a B = (0.45 m/s 2 )] - (1-979 m/s 2 )k.
(fa) a„ = -(2.34 m/s 2 )! + (0.346 m/s 2 )k.

(c) a B = -(0.45 m/s 2 )j + (2.67 m/s*)k.
15.184 a B = -(3.03 m/s 2 )i - (0.454 in/s z )k.

1 5.1 86 a B = 40 rpm ) ; U c = 20 rpm ).
15.188 (a) a Aa = a m . = 0;

a Dti = 1.333 rad/s 2 ).
(h) & A = 0.8 m/s 2 1; a B = 0.4 m/s 2 J.

15.190 (a) a, = -(302 ft/s 2 )) - (66.6 ft/.s'-)j.
(fa) a 2 = -(59.2 ft/s 2 )i + (190.6 fl/s 2 )j.
SI: (a) a, = -(91.9 m/s 2 )! - (20.3 m/s'-)j.
(fa) a z = -(18.05 m/s 2 )! + (58.1 m/s 2 )j.

15.192 (a) w = 1.996 rad/s);

a = 1.068 rad/s 2 }..

(b) v„ = 5.63 m/s-d!40 o ;

a B = 8.25 m/s 2 ^40".
1 5.1 94 to = 2.25 rad/s V a = 23.3 rad/s 2 ).

15.196 v B = 7.85 ft/s <-; a B = 92.7 ft/s 2 ~>.

SI: v fl = 2.39 m/s «— ; a B = 28.3 m/s 2 — ».

CHAPTER 16

16.2 (a) 5 m/s* <-. (b) B = 41.6 Nf;
C = 36.9 N t-

16.4 (a) 3.75 lb. (b) A = l.l94lb-»;
B = 1.194 lb *-.

SI: (a) 16.68 N. (/;) A=5.31X-»:
B = 5.31 X <-.

16.6 (a) 0.297g. (b) 5.
16.8 (a) 2.55 m/s 2 -». (fa) ft < 1.047 m.

16.10 (a) 3710 N|. (fa) 1411 N"f.

16.12 (a) 25.8 ft/s 2 . (fa) 12.27 ft/s 2 .
(c) 13.32 ft/s 2 .

SI: (a) 7.85 m/s 2 . (fa) 3.74 m/s 2 .

(c) 4.06 m/s 2 .

1 6.1 4 (a) 43.2 kN. (fa) 8.38 m/s 2 \ .

16.16 (a) 7.99 ft/s 2 . (fa) A B = 101.81b.
i- B s 10.181b.

Sli (a) 2.43 m/s*. ;/>; \ n = 453X,

i<„ = 45.3 N.

1 6.1 8 F CB = 8.72 N C; F Dr = 15.80 \ C.
16.20 A = 10.77 lb 5*30*;

B =0.774 lb "=530°.

SI: A = 47.9X^30°;

B=3.44N"=S30\

16.22 1381 N.

16.24 (a) 0.5(K)g"^30°. (fa) Platform:

1.250f; ^30°; block: 0.625g J,.

16.26 V B = -6.13 \; \/ B = -3.07 N • m.

16.30 89.6 X- in.

16.32 45.1 rad/s 2 ).

1 6.34 (1) 19.62 rad/s 2 Jj 39.2 rad/s );
19.81 rad/s). (2) 14.01 rad/s 2 };
28.0 rad/s); 16.74 rad/s).

(3) 6.54 rad/s 2 ); 13.08 rad/s);

11.44 rad/s )'. (4) 10.90 rad/s 2 );
21.8 rad/s); 10.44 rad/s).

16.36 (a) 5.66 ft/s* J,, (ft) 8.24 ft/s J,.
SI: (a) 1.725 m/s* 4- (fa) 2.51 m/s J,.

16.38 4.56 rad/s 2 .
16.40 73.1 lb. SI: 325 N.

16.42 9.44 X.

1 6.44 (a) a A = 8.48 rad/s 2 J;
a B = 39.2 rad/s 2 ) . (fa) C = 66.7 N T.
Mj. = 2.12 X'-m).

16.46 (a) a A = 12.36 rad/s 2 );
a B = 51.5 rad/s 2 ).

(fa) u A = 206 rpm ) ; <u B = 343 rpm ).

16.48 I K = L + -Jl + n%.
16.52 (a) 16.10 rad/s 2 ). (fa) 8.05 ft/s 2 -».

(c) 12 in. from B.

SI: (a) 16.10 rad/s 2 5. (fa) 2.45 m/s 2 -
(c) 0.305 m from fa.

16.54 (a) -(2.37 rad/s 2 )j; 0.
(fa) -(1.778 rad/s 2 )j; -(0.200 m/s*)L

1 6.56 T 4 = 359 lb; 7 B = 312 lb.
SI: T A = 1595 X; T B = 1388 N.

1 6.58 T A = 1348 N; T 8 = 1138 N.

16.60 (a) 12 m/s 2 f- (fa) 48 rad/s 2 ).
(c) 36 m/s* j. _

16.62 (a) W. (fa) rg/fc 2 ),

16.64 (a) 3g//.). (fa) gT- (e) 2gi.
16.66 (o) a = ng «— ; = 5ftg/2r).

(fa) 200/7.^. (c) I2cg/4%ig.
(rf) v = 5i; /7— »; <o = 5c /7r}.

16.68 P = 4mW/\/58.
16.72 (a) 150 mm. (fa) 125.0 rad/s 2 ).

1 6.74 (a) 3Pg/WL ) . (fa) A, = JP «-,

16.76 ^m/iy'il- - **).
16.78 (a) 1529 kg, (fa) 2.90 mm.
16.80 (a) 4W/T[. (fa) 3g/7|-

16.82 (a) 0.750g/Z). (fa) 0.275g//).
1 6.84 (a) 20.6 rad/s 2 ). (fa) A, = 48.3 N <-.

A„ = 39.3 N T-
16.86 (a) 34.8 rad/s 2 ).

(fa) A = 66.6 lb ^60.9°.

SI: (fa) A = 296 N -£60.9°.
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16.88 (a) 3g/4/.). (fa) N = 13W/16T;
F = 3\/3W/16-*. (c) 0.400.

16.92 2.91ft. SI: 0.887 m.

1 6.94 1.266 in.

16.96 (a) 24 rad/s 2 }; 3.84 m/s 2 ->. (fa) 0.016.
16.98 (a) 8 rad/s 2 ); 1.280 m/s 2 «-. (fa) 0.220.

16.100 (a) Does not slide, (fa) 23.2 rad/s 2 };

15.46 ft/s 2 -». SI: (fa) 23.2 rad/s 2 };
4.71 m/s 2 -».

16.102 (a) Slides, (fa) 12.88 rad/s 2 };

3.22 fl/s 2 ^. SI: (fa) 12.88 rad/s 2 );
0.981 m/s 2 4-.

16.104 3.58 ft/s 2 . SI: 1.091 m/s 2 .

16.106 (a) g/4i\ (fa) g\/2/4'^:45°.
16.108 23.6 rad/s 2 J.

1 6.1 1 (o) 28.0 N. (fa) A = 9.25 N <-;

B = .50.0 N T-

1 6.1 1 2 (a) 8.18 rad/s 2 ). (fa) A = 12.74 N *-;
B =31.9Nf.

16.114 (a) 13.23 rad/s 2 ). (fa) A = 1.375 lb f;
B = 1.460 lb !z^30 .

SI: (fa) A = 6.12 N T; B = 6.50 N 5^30°,
16.118 A = 105.9 lb *-; B = 200 lb ->.

SI: A = 471 N «-; B = 890 N -^.

1 6. 1 20 (a) aAB = 3.77 rad/s 2 ) :
o BC = 3.77 rad/s 2 ).

(fa) Aj. = 15.6S N ->, A y = 43.8 N f;
C = 30.2 N T-

1 6.1 22 A r = *mr 2 co 2 ^-, A, = 2mgr f, B, = 0,
B » = ">g'" I-

16.124 (la) a/3-». (lfa) 3<//2. (2a) 2o/7-*.

(2fa) 7d/5.

16.126 (a) 74.4 rad/s 2 ). (fa) 24.8 ft/s 2 J,.
SI: (fa) 7.56 m/s 2 J..

16.128 13.82 N ^£26.6°.

16.130 (a) 12.14 rad/s 2 ).
(fa) 11.21 m/s 2 ^30°.
(c) 14.56 N .-£60 °.

16.132 a Ali = 24.5 rad/s 2 };
a BC = 122.7 rad/s 2 ).

(«) kT- (&) fel-
(On AB) 2.25 lb -ft).

SI: (On AB) 3.05 \-m).

V„* = >g at ^ .W B „ = 4mg/V81 at
j /. to right of A.

(a) a r = 0.3g^, a„=0.6gj.
(fa) a = 0.630g i-

21.5 ft/s 2 -». (fa) 15.95 ft/s 2 -*.

(a) 6.55 m/s 2 -». (fa) 4.86 m/s 2 -*.

16.134

16.136

16.138

16.140

16.142

16.144

16.146

16.148

16.150

6.33 in. SI: 160.8 mm.

(«§/2g)(M - tune) /cosd (in - tanfl) 2 .
*a = 2g/5 «-; a B = 2g/5 j.

(fa) a 4 = 2g/7 «

(**)„ = 2g/7 i.
(¦*), = 2g/7

CHAPTER 17

17.2

17.4

17.6

17.8

17.12

17.14

17.16

17.18

17.20

17.22

17.24

17.26

17.28

17.30

17.32

71.6 N • in.

8.27 in. SI: 210 mm.

(a) 294 rpm. (fa) 15.92 rev.

v, = 1.293 m/s fj v B m 2.59 m/s J,.
61.8 rev.

338 N f.
(a) 2.40 rev. (fa) 21.4 N /.
1.541 m.

(a) 1. 074 Vg/r! (fa) 1.433m gf.
(a) Vfe(H-rXl-cos/8).
(fa) mg(7 - 4 cos /?)/3.

(a) //VT2. (fa) 1.861 VgTI
5.75 fl/s <-. SI; 1.752 m/s «-.

(a) 13.45 rad/s. (fa) 20.4 rad/s.
6.55 ft/s «— . SI: 1.997 m/s «-.

(a) v, = 1. 922 m/s | ; v fl = 3.20 m/s ^36.9 °
(b) v. = v B = 2.87 m/s «-.

17.34 (a) \ A = 1.332 m/s -»;

v u = 0.769 m/s J,, (fa) v, = Oj

v B = 4.20 m/s j.
17.36 14.63 rad/s).

17.38 7.67 rad/s).
17.40 36.4°.

1 7.42 (a) Zero, (fa) 188.5 W.

1 7.44 (a) 0.365 lb • ft.

SI: (a) 0.495 N
1 7.46 89.7 N • m.

17.48 1.000.

17.50 3.88 s.

1 7.54 (a) 3.33 N ¦ m. (fa)

»« =39.2 rad/s).

(fa) 1.824 lb • ft.

m. (fa) 2.47 N • m.

u A = 23.5 rad/s ) ;

(a)

SI:

(a) 1.634. (fa) 0.1925m« 2 r

.56 (a) 6.59 s. (fa) 13.06 lb; 1.944 lb.
(c) 0.61. SI: (fa) 58.1 N; 8.65 N.

17.62 (a) 12m/s->. (fa) 100 N «-.

1 7.64 (a) 32.2 ft/s ->. (fa) Zero.

SI: (a) 9.81 m/s -*. (fa) Zero.

1 7.66 21.5 ft/s «-. S I ¦ 6.54 m/s *-.

17.68 (a) 5 tJ /7 -*. (fa) 2JJ %

17.70 (a) «, = 2rw,/7fig. (fa) v 2 = &W/T-
<o 2 = 2uj/7i.

17.72 (a) 4.51 rad/s. (fa) 9.09 ft • lb.

SI: (a) 4.51 rad/s. (fa) 12.32 J.
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17.74

17.76

17.78

17.80

17.82

17.84

17.86

17.88

17.90

17.92

17.94

17.96

17.98

17.100

17.102

17.104

17.106

17.108

17.110

17.112

17.114

17.116

17.118

17.120

17.122

17.124

17.126

(a) 334 rpm. (ft) -6.51 J.
(a) and (b) 5.71 rad/s.

24.4 rpm.

Disk: 287.4 rpm; Arm: 72.6 rpm.

v r = 3.97 m/s; v = 2.86 m/s.
3.82 ft/s. SI: 1.164 m/s.

(a) 2.4 m/s-*. (ft) 3.6kN-».

v A = 1.920 ft/s «-; v a = 21.12 ft/s-».

SI: v, = 0.585 m/s <— ; v B = 6.44 m/s-
(a) v, = mc /M — »; w, = mv n /XIR J.

(ft) moo/3M-*.

«s *|»i7j v 2 =S rw it-
<o = JiJi/fc I; v = |\/2 5i ^s?45\
(a) «=i« i- (*>)$¦ ('•) 1-5

= 0, w, = u 1 ; v B = v a -
w

(a)

u u = 0. (ft) v A = 2t> /7 -*,

ic A = 2io /7 I; v B = 5u /7-»,

w B = 5io /7 ) . (c) The motion of part a
is the final motion.

6. sin/?
"a = I-

I 3 sin 2 P + 1

(a) 0.9VU- (6) 0.1o -».
31.0° 5*..

Ail = mVg'A B At = m \/g//12.
! /2 = (2 t |sin 2 <?/ /J g)x.

(a) \x>Jr. (ft)_l/V3.
U AB = S^o h \ui = ib«o L t:
" co = § M o T. v CD = tW-4-

V£737
(a) 3.76 m/s 5^45°

(a) 50.2°. (ft) 16.3°.
(a) 210 lb -f l. (ft) 70.0 lb ¦ ft.
SI: («) 285 N ¦ m. (ft) 94.9 N • m.

(a) 0.926 VgL«-. (ft) 1.225 vi^*
(a) 4.75 m/s^. (ft) 3.87 m/s->.

(ft) 3.18 m/s J,.

CHAPTER 18

18.2

18.4

18.6

18.8

18.10

18.14

Jmr^wji + 2^).
(0.432 kg • m 2 /s)i - (0.324 kg ¦ m 2 /s)k.
(112.8 g • m 2 /s)i + (80 g • m 2 /s)j.
-(0.699 ft • lb • s)i + (0.699 ft • lb • s)j.

si: -(0.947 kg • m 2 /s)i + (0.947 kg • m 2 /s)j.
(a) §m<z 3 co(5i - 3k). (ft) 31.0°.
(a) mv = (240 Mg • m/s)i + (360 Mg • m/s)j
+ (72 x 10 3 Mg • m/s)k;
H = (432 Mg • m 2 /s)j + (180 Mg • m 2 /s)k.
(ft) 67.1°.

18.16

18.18

18.20

18.22

18.24

18.26

18.28

18.32

18.34

18.36

18.38

18.40

18.42

18.44

18.46

18.48

18.50

18.52

18.54

18.56

18.58

18.60

18.62

18.64

18.66

18.68

18.70

18.72

18.76

18.78

18.84

18.86

(1.296 N-in)j

(a) -(3.86 ft/s)k; SI: -(1.177 m/s)k.

(ft) -(0.643 rad/s)i + (0.497 rad/s)j.
(a) -(FAr/m)k.

(ft) (12i-"Af/7ma)(-i - 5j).

(a) 0. (ft) (3FA«/rod)(i - }k).
{a) (6FAf/7ma)(i - 7j). (ft) Axis
through A, in xy plane, forming
^581.9° with .vaxis.

(a) Jo! (-i + j). (ft) h\A-
{a) At A = 1.213 s; Ar„ = 0.558 s.
(ft) Av = (0.0886 m/s)k.

(5.97 rpmli - (2.69 rpm)j + (0.806 rpm)k.

\/6g/5o.
0.864 J.

— 5ma 2 u%/48.
-5.10 ft -lb. SI: -6.92 J.

— gmr 2 to,u; 2 j.
(1.296 N-m)j.
(0.864 N • m)i -

- (0.6-18 N • m)k.

A = (46.2 N)j; D = -(46.2 N)j.
A = $(w/g)a 2 a% B = -A.
(a) M = (0.647 lb • ft)i.

(ft) A = (0.388 lb)j; B = -(0.388 lb)j.
SI: (a) M = (0.877 N • m)i.

(ft) A = (1.727 N)j; B = -(1.727 N)j.
(a) (4M /ma% (ft) R A = -(M V2/a)i;
M. 4 = fMok.
(a) M = (4.00 N • m)i.

(ft) A = -(19.49 N)j + (8.66 N)k;
B = -A.

(0.831 N ¦ m)i.
22.7 lb • ft.

SI: 30.7 N • m.

(a) 2flw 3 »*. (ft) 0. (c) Jror'wf.
(a) cos/? = 2g/3au 2 . (ft) \/2g/3a.
F = -mRwfij
M = Jmj^iOjWji — tnftk'ljk.
(a) VgTa". (ft) V2g7^-
D = -(0.622 N)j - (4.00 N)k.
E = (3.82N)j -(4.00N)k.
4450 rpm.
3690 rpm.

(a) 36.1 rad/s; 7.40 rad/s. (ft) -0.169.

(a) 2.75 rpm. (ft) 2.77 rpin; 397 rpm.
Precession axis: ^30"; precession,

6.00 rad/s; spin, 10.39 rad/s.

Precession axis: 9 I s 39.9°, 0„ = 127.9°,
S = 79.4°; precession, 4.38 rpm; spin,

2.61 rpm.
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1 8.88 Precession axis: 8 T = 90°, 6„ = 58.0°,

d z =32.0°; precession, 1.126 rpm

(retrograde); spin, 0.343 rpm.
14.01 rev/h.

(a) oi = 22.7 rpm, y = 57.3°.
(ft) = 75.6°. (c) Precession,

19.72 rpm; spin, 7.36 rpm.

(a) /? = 23.8°. (ft) Precession, 74.3 rpm;

spin, 1 15.9 rpm. 3VS72T.
£ = 4 ^/15; ¦& = nfo/15.
(a) 5V 3J72^. (ft) $ = V3g72a^
t? = 5V3g/2n.
(a) 27.8rad/s 2 .

(ft) A = (3.35N)j + (12.08 \)k;
C = -A.

(a) -lu (li + lk). (6) -|u j.
(a) -(1.250 m/s)k.

(ft) (1.657 rad/s)(i + 3j).
(a) (42.4 rpm)j + (64.2 rpm)k.
(i) 2800 ft • lb. SI: (ft) 3790 J.

(a) Tangent of angle = r^^Tg -
(ft) -ty sec fi. (c) 9.4°; -2.03^.

J/oJ & = 0.789mg; 7" = 0.700mga.
'<ft) «|- = 13.66 Vg/aj 7' ¦ 42.8mga.

18.90

18.92

18.94

18.96

18.100

18.102

18.108

18.110

18.112

18.114

18.116

18.118

CHAPTER 19

19.2 (a) 0.1900 m. (ft) 2.39 m/s.
1 9.4 (a) 2.49 mm; 0.0979 in. (ft) 0.621 mm;

0.0245 in.

19.6 (a) 0.497 s. (ft) 0.632 m/s. (c) 8.00 m/s 2 .

1 9.8 (a) 0.1348 s. (ft) 2.24 ft/s |; 20,1 ft/s 2 j.
SI (ft) 0.683 m/s t; 6.13 m/s 2 J.

19.10 (a) 0.679 s; 1.473 Hz. (ft) 0.1852 m/s;
1.714 m/s 2 .

19.12 (a) 4.53 lb. (ft) 0.583 s.

SL (a) 2.06 kg (mass), (ft) 0.583 s.
19.14 (a) 0.994 m. (ft) 3.67°,
19.16 1.400 ft. SL 0.427 m.

19.18 (a) 7.90 lb. (ft) 85.3 lb. SI: (a) 3.58 kg.
(ft) 38.7 kg.

19.20 1.904 Hz.

19.24 16.3°.

19.26 (a) 0.440s. (ft) 2.38 ft/s. SI: (a) 0.440s.

(ft) 0.725 m/s.

19.28 (a) 0.907 s. (ft) 0.346 m/s.

1 9.30 (a) 0.533 s. (ft) 0.4 91 rad/s.

19.32 f=(l/2ir)y/3k/m.
19.38 (a) Z/VI2. (ft) 4.77\/Z7g.
19.40 (a) 2.28 s. ( ft) 1.294 m.

1 9.42 (a) t = 2w\/5fc/6g. (ft) c = $ft.
1 9.44 (a) r„ = 7.09 in. (ft) 3.42 in.

SI: (a) r a = 180.0 mm. (ft) 86.9 mm.

19.46 (a) 5.54 s. (ft) 3.57 ft/s. SI: (a) 5.54 s.
(ft) 1.087 m/s.

19.48 0.658 kg • m 2 .
19.50 t = 2v\ /l/g.
19.58 t = 2-n\/fp6g.
19.62 / = (l/2w) Vg/2l
19.64 9.90 s.

19.68 t = 2;r\ /m/3fccos 2 /? .
19.70 t = 2a\ZmJkcos T p.
19.72 (a) 1.107 s. (ft) 1.429 s.

19.74 (a) 0.777 s. (ft) 1.099 s.

19.76 T = W/\/3f£
19.78 <o> \j2k/m.

19.80 &J >V2&7I
19.82 (a) 168.0 rpm. (ft) 0.00131 in.

SI: (a) 168.0 rpm. (6) 33.3 pm.
19.84 (a) 11.38 fim. (ft) 320 fim. (c) co.
19.86 0.0857 in. or 0.120 in. SI: 2.18mm or

3.05 mm

19.88 1007 rpm.
19.90 1085 rpm.
1 9.92 109.5 rpm.
19.94 1.200 mm.

19.96 70.1 km/h.

19.104 (a) x = x e "'(1 + pt). (ft) 0.1147 s.

19.106 VI - 2(c/c c ) 2 .
19.108 (a ) 1.509 mm. (ft) 0.583 mm.
19.110 0.1791 in. Si; 4.55 mm.

19.112 (a) 270 rpm. (ft) 234 rpm. (c) 8.84 mm;
9.45 mm.

19.114 mx A + 5A-.r, - 2kx B = 0;
mS B - 2kx A + 2kx B - P m sin ut.

19.116 (a) E/R. (ft) L/R.

(a) mx m + k 2 x m + c(x m - i A ) = 0;
c(*a ~ *„,) + k,x A =

(&) E&4"$t + B(4W-4i)"Ql

Ci
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19.124 (a) m,X, + Oj,*, + CJ& —x 2 ) + fe,*,
+ k 2 <x, - x 2 ) = Oj

m.,x., + c.,(x 2 - i,) -(- c 3 x 2

+ k 2 (x 2 — Xj) + k 3 x 2 = P m sin ul.
(b) /.,//, + K,«Ji + R 2 {& - &)

L,fc + R 2 (q 2 - qj + R 3 q 2

19.126 1.363 s.

1 9.1 28 0.760 lb • ft • s 2 ; 8.66 in. SI: 1.030 kg • m 2 ;
0.220 m.

19.130 (a) 5.81 IIz; 4.91 mm; 179.2 mm/s.

\b) 491 N. (c) 159.2 mm/s t .
19.132 12.5811/..

19.134 72.5 ,um.

19.136 1.346 s.

APPENDIX B

9.72 (a) Jmo 2 , \rnti 1 . (b) {m(a? + ft 2 ).
9.74 (a) I AA . = m/> 2 /24; I RB . = m/i 2 /18.

(b) J cc = m(3fo 2 + 4A 2 )/72.
9.76 m(3« 2 + LV12-

2 ;a/\/3.9.78 Jim
9.80 5ma 2 /18

9.82 m(2b 2 + 7^ 2 )/l().
9.84 2mr 2 /3.

9.86 1.514 kg • m 2 ; 155.7 mm.
9.88 (a) md 2 /6. (b) 2mrf 2 /3. (c) 2md*/3.
9.90 (a) 5.14 X 10 _:i kg • m 2 .

(6) 7.54 X lO" 8 kg • m 2 . (cj 3.47 X 10- :, kg-m 2 .
9.92 0.0503 lb • ft • s 2 ; 3.73 in.

SI: 0.0682 kg ¦ m 2 ; 94.8 mm.
9.94 (a) 20.2 lb • ft • s 2 . (b) 42.1 lb • ft • s 2 .

(c) 41.3 lb- ft -s 2 . si: (a) 27.4 kg -in 2 .
(b) 57.1 kg • m 2 . (c) 56.0 kg • m 2 .

9.96 P lp = -0.001 199 kg • m 2 , P w = P„ = <
9.98 P„ = 7.02 lb • ft • s 2 , P„. = P„ = 0.

SI:P w = 9.52kg.m*,P w = ?„ = 0,
9.100 (a) P„ a mm/20, (b) ? n = mafc/20;

P w = mbc/20.
9.102 3ma 2 (a 2 + 6/i 2 )/20(fl 2 + /; 2 ).
9.104 29.9 lb • ft • s 2 . SI: 40.5 kg • m 2 .

9.106 (a) 7, = 2m« 2 /3, 7, = J. = llm« 2 /12,
P x , = maV4. P„ = 0, P„ = -ma 2 /4.
(b) 2ma 2 /3.

9.108 0.426 ma 2 .

9.110 (a) 2. (b) 0.5.



Centroids of Common Shapes of Areas and Lines

Shape Area

Triangular area

c
bh

2

Quarter-circular
area

Semicircular area

l
4r

3w 3w

_4r
3ot

4

2

Semiparabolic
area

Parabolic area

C
3a

8

3h

5

3/i

2aft

3

4a/t

3

Parabolic span-
drel

3a

4

3fc

10 3

Circular sector
2r sin a

3a
ar*

Quarter-circular
arc

Semicircular arc

2r 2r

2r

•n

¦nr

2

Arc of circle Zar



Moments of Inertia of

Common Geometric Shapes

Rectangle

, = A™
¦ r = )m>

= >/-¦¦/,

c = &bh{b 2 + h 2 )

Triangle

l*. = Afefcs
/, = tW> 3

Circle

T z = J y = ^w*

Semicircle

!, = !, = iwr*
7o = isrr*

Quarter circle

h = I v = -rWr 4
7o = Att 1

Ellipse

I T - frab*

/„ = iwa 3 b

J = }irab(a* + b 2 )

J

A
i 1 '

-,-Jf
Mass Moments of Inertia of

Common Geometric Shapes

Slender rod

I„ = '.- = famL-

"rhin rectangular plate

7„ = ^jTOC 2

Rectangular prism

r, = fymfit + &)
I„ = fernfc* + a 2 )
I, = tV'"(o' j + >> 2 )

Thin disk

L = /.- - i»»- 2

Circular cylinder

L = /.- = AmfSrf + /.*;

Circular cone

h = fynuP

l y = h = im(W + /< 2 )

Sphere

7, = L = 7. = i»i'i-

f

/




