436-431 MECHANICS 4
UNIT 2

MECHANICAL VIBRATION

J.M. KRODKIEWSKI

2008

THE UNIVERSITY OF MELBOURNE
Department of Mechanical and Manufacturing Engineering



MECHANICAL VIBRATIONS

Copyright (©) 2008 by J.M. Krodkiewski

The University of Melbourne
Department of Mechanical and Manufacturing Engineering



3

CONTENTS

0.1 INTRODUCTION. . . . . . . . e 5
MODELLING AND ANALYSIS 7
MECHANICAL VIBRATION OF ONE-DEGREE-OF-FREEDOM
LINEAR SYSTEMS 9
1.1 MODELLING OF ONE-DEGREE-OF-FREEDOM SYSTEM . . .. 9
1.1.1 Physicalmodel . . . . . . .. ... ... ... ... 9
1.1.2 Mathematical model . ... ... ... ........... 12
1.1.3 Problems . . . .. . ... . ... ... 16
1.2 ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM . . . . .. 28
1.2.1 Free vibration . . . . . . . ... oL 28
1.2.2 Forced vibration . . ... ... ... ... ... ... 34
123 Problems . .. .. .. .. .. ... .. 44
MECHANICAL VIBRATION OF MULTI-DEGREE-OF-FREEDOM
LINEAR SYSTEMS 66
2.1 MODELLING . . . . . . . . e 66
2.1.1 Physical model . . . . . ... ... ... 66
2.1.2 Mathematical model . ... ... ... ... ... .. ... 67
213 Problems . . ... ... ... oo 74
2.2 ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM . . . . . 93
221 Generalcase . .. ...... ... ... ... ... 93
2.2.2 Modal analysis - case of small damping . . . . . . . . .. 102
2.2.3 Kinetic and potential energy functions - Dissipation
function . . . . ... ..o 109
224 Problems . . .. ... ... oo 112
2.3 ENGINEERING APPLICATIONS . ... ... ... ... ...... 151
2.3.1 Balancing of rotors . . . .. ... ... ... ... ... 151
2.3.2 Dynamic absorber of vibrations . .. ... .. ... ... 157
VIBRATION OF CONTINUOUS SYSTEMS 162
3.1 MODELLING OF CONTINUOUS SYSTEMS . . . . ... ... ... 162
3.1.1 Modelling of strings, rods and shafts . . ... ... ... 162

3.1.2 Modelling of beams . . . ... ... ............. 166



CONTENTS 4

3.2 ANALYSIS OF CONTINUOUS SYSTEMS . ... .. ........ 168
3.2.1 Free vibration of strings, rods and shafts . . . . . . . .. 168
3.2.2 Free vibrations of beams . . . . . ... ... ... 174
323 Problems. ... ... ... ... ... .. 182

3.3 DISCRETE MODEL OF THE FREE-FREE BEAMS . . . . . .. .. 214
3.3.1 Rigid Elements Method. . . . . .. ... ... ....... 214
3.3.2 Finite Elements Method. . . . . . . ... ... ... .... 217

3.4 BOUNDARY CONDITIONS. . . . . ... ... ... ... ...... 225

3.5 CONDENSATION OF THE DISCREET SYSTEMS . .. .. .. .. 226
3.5.1 Condensation of the inertia matrix. . . .. ... .. ... 227
3.5.2 Condensation of the damping matrix. . . . . . . ... .. 228
3.5.3 Condensation of the stiffness matrix. . . ... .. .. .. 228
3.5.4 Condensation of the external forces.. . . . . . . ... .. 228

3.6 PROBLEMS. . . . .. . . . . . . e 229

II EXPERIMENTAL INVESTIGATION 237
4 MODAL ANALYSIS OF A SYSTEM WITH 3 DEGREES OF FREE-

DOM 238

4.1 DESCRIPTION OF THE LABORATORY INSTALLATION . . . .. 238

4.2 MODELLING OF THE OBJECT . . . . .. ... ... ... ..... 239
4.2.1 Physical model . . . . . . ... oo 239
4.2.2 Mathematical model . . ... ... ... ... ...... 240

4.3 ANALYSIS OF THE MATHEMATICAL MODEL . . . ... ... .. 241
4.3.1 Natural frequencies and natural modes of the undamped

system. . . . .. L. 241
4.3.2 Equations of motion in terms of the normal coordinates

- transfer functions . . . ... ... ... 000, 241
4.3.3 Extraction of the natural frequencies and the natural

modes from the transfer functions . . . . . ... ... .. 242

4.4 EXPERIMENTAL INVESTIGATION . .. ... .. ......... 243
4.4.1 Acquiring of the physical model initial parameters . . 243
4.4.2 Measurements of the transfer functions. . . . . . . . .. 244
4.4.3 Identification of the physical model parameters . . . . 245

4.5 WORKSHEET . ... ... ... 246



INTRODUCTION. 5

0.1 INTRODUCTION.

The purpose of this text is to provide the students with the theoretical background
and engineering applications of the theory of vibrations of mechanical systems. It is
divided into two parts. Part one, Modelling and Analysis, is devoted to this solu-
tion of these engineering problems that can be approximated by means of the linear
models. The second part, Experimental Investigation, describes the laboratory
work recommended for this course.

Part one consists of four chapters.

The first chapter, Mechanical Vibration of One-Degree-Of-Freedom
Linear System, illustrates modelling and analysis of these engineering problems
that can be approximated by means of the one degree of freedom system. Infor-
mation included in this chapter, as a part of the second year subject Mechanics 1,
where already conveyed to the students and are not to be lectured during this course.
However, since this knowledge is essential for a proper understanding of the following
material, students should study it in their own time.

Chapter two is devoted to modeling and analysis of these mechanical systems
that can be approximated by means of the Multi-Degree-Of-Freedom models.
The Newton’s-Euler’s approach, Lagrange’s equations and the influence coefficients
method are utilized for the purpose of creation of the mathematical model. The
considerations are limited to the linear system only. In the general case of damping
the process of looking for the natural frequencies and the system forced response
is provided. Application of the modal analysis to the case of the small structural
damping results in solution of the initial problem and the forced response. Dynamic
balancing of the rotating elements and the passive control of vibrations by means of
the dynamic absorber of vibrations illustrate application of the theory presented to
the engineering problems.

Chapter three, Vibration of Continuous Systems, is concerned with the
problems of vibration associated with one-dimensional continuous systems such as
string, rods, shafts, and beams. The natural frequencies and the natural modes are
used for the exact solutions of the free and forced vibrations. This chapter forms a
base for development of discretization methods presented in the next chapter

In chapter four, Approximation of the Continuous Systems by Dis-
crete Models, two the most important, for engineering applications, methods of
approximation of the continuous systems by the discrete models are presented. The
Rigid Element Method and the Final Element Method are explained and utilized to
produce the inertia and stiffness matrices of the free-free beam. Employment of these
matrices to the solution of the engineering problems is demonstrated on a number of
examples. The presented condensation techniques allow to keep size of the discrete
mathematical model on a reasonably low level.

Each chapter is supplied with several engineering problems. Solution to some
of them are provided. Solution to the other problems should be produced by students
during tutorials and in their own time.

Part two gives the theoretical background and description of the laboratory
experiments. One of them is devoted to the experimental determination of the nat-
ural modes and the corresponding natural frequencies of a Multi-Degree-Of-Freedom-



INTRODUCTION.

System. The other demonstrates the balancing techniques.



Part 1
MODELLING AND ANALYSIS



Modelling is the part of solution of an engineering problems that aims to-
wards producing its mathematical description. This mathematical description can
be obtained by taking advantage of the known laws of physics. These laws can not
be directly applied to the real system. Therefore it is necessary to introduce many
assumptions that simplify the engineering problems to such extend that the physic
laws may be applied. This part of modelling is called creation of the physical model.
Application of the physics law to the physical model yields the wanted mathematical
description that is called mathematical model. Process of solving of the mathematical
model is called analysis and yields solution to the problem considered. One of the
most frequently encounter in engineering type of motion is the oscillatory motion of
a mechanical system about its equilibrium position. Such a type of motion is called
wtbration. This part deals with study of linear vibrations of mechanical system.



Chapter 1

MECHANICAL VIBRATION OF ONE-DEGREE-OF-FREEDOM
LINEAR SYSTEMS

DEFINITION: Any oscillatory motion of a mechanical system about its
equilibrium position is called wvibration.

1.1 MODELLING OF ONE-DEGREE-OF-FREEDOM SYSTEM

DEFINITION: Modelling is the part of solution of an engineering problem
that aims for producing its mathematical description.

The mathematical description of the engineering problem one can obtain by
taking advantage of the known lows of physics. These lows can not be directly
applied to the real system. Therefore it is necessary to introduce many assumptions
that simplify the problem to such an extend that the physic laws may by apply. This
part of modelling is called creation of the physical model. Application of the physics
law to the physical model yields the wanted mathematical description which is called
mathematical model.

1.1.1 Physical model

As an example of vibration let us consider the vertical motion of the body 1 suspended
on the rod 2 shown in Fig. 1. If the body is forced out from its equilibrium position
and then it is released, each point of the system performs an independent oscillatory
motion. Therefore, in general, one has to introduce an infinite number of independent
coordinates x; to determine uniquely its motion.

~
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Figure 1
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DEFINITION: The number of independent coordinates one has to use to
determine the position of a mechanical system is called number of degrees of
freedom

According to this definition each real system has an infinite number of degrees
of freedom. Adaptation of certain assumptions, in many cases, may results in reduc-
tion of this number of degrees of freedom. For example, if one assume that the rod
2 is massless and the body 1 is rigid, only one coordinate is sufficient to determine
uniquely the whole system. The displacement x of the rigid body 1 can be chosen as
the independent coordinate (see Fig. 2).

i

rrv/?’ R

Figure 2

Position x; of all the other points of our system depends on z. If the rod
is uniform, its instantaneous position as a function of x is shown in Fig. 2. The
following analysis will be restricted to system with one degree of freedom only.

To produce the equation of the vibration of the body 1, one has to produce

its free body diagram. In the case considered the free body diagram is shown in Fig.
3.

1 /\//\\/\\ t
A

G

Figure 3

The gravity force is denoted by G whereas the force R represents so called
restoring force. In a general case, the restoring force R is a non-linear function of
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the displacement = and the instantaneous velocity @ of the body I (R = R(z,)).
The relationship between the restoring force R and the elongation = as well as the
velocity # is shown in Fig. 4a) and b) respectively.

R | R

a) b)

7 : :

Figure 4

If it is possible to limit the consideration to vibration within a small vicinity
of the system equilibrium position, the non-linear relationship, shown in Fig. 4 can
be linearized.

R=R(z,%) = kx + c& (1.1)

The first term represents the system elasticity and the second one reflects the system’s
ability for dissipation of energy. k is called stiffness and c is called coefficient of
damping. The future analysis will be limited to cases for which such a linearization
is acceptable form the engineering point of view. Such cases usually are refer to as
linear vibration and the system considered is call linear system.

Result of this part of modelling is called physical model. The physical model
that reflects all the above mention assumption is called one-degree-of-freedom linear
system. For presentation of the physical model we use symbols shown in the Fig. 5.
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X
IQJ rigid block of mass m (linear motion)
m  m|
7@ rigid body of mass m and moment of inertia | (angular motion)
4
®n

particle of of massm

§k massless spring of stifness k (linear motion)

A JE
massless beam area A, second moment of areaJ and Y oung modulug

massless spring of stifness k (angular motion)

massless damper of damping coefficient ¢ (linear motion)

N I ,), : massless damper of damping coefficient ¢ (angular motion)

Figure 5

1.1.2 Mathematical model

To analyze motion of a system it is necessary to develop a mathematical description
that approximates its dynamic behavior. This mathematical description is referred to
as the mathematical model. This mathematical model can be obtained by application
of the known physic lows to the adopted physical model. The creation of the phys-
ical model, has been explained in the previous section. In this section principle of
producing of the mathematical model for the one-degree-of-freedom system is shown.

Let us consider system shown in Fig. 6.
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Lol 2
k I X
kX
me ] |
mg
Figure 6

Let as assume that the system is in an equilibrium. To develop the mathe-
matical model we take advantage of Newton’s generalized equations. This require
introduction of the absolute system of coordinates. In this chapter we are assuming
that the origin of the absolute system of coordinates coincides with the centre of
gravity of the body while the body stays at its equilibrium position as shown in Fig.
6. The resultant force of all static forces (in the example considered gravity force
mg and interaction force due to the static elongation of spring kx;) is equal to zero.
Therefore, these forces do not have to be included in the Newton’s equations. If the
system is out of the equilibrium position (see Fig. 7) by a distance x, there is an
increment in the interaction force between the spring and the block. This increment
is called restoring force.

-K\x\=-kx

K X%

VR L
x>0

x<0

Figure 7

In our case the magnitude of the restoring force is |Fg| = k|z|

If z > 0, the restoring force is opposite to the positive direction of axis z.
Hence Fr = —k |x| = —kx

If = < 0, the restoring force has the same direction as axis z. Hence Fr =
+k x| = —ko
Therefore the restoring force always can be represented in the equation of motion by
term

F R — —kx (12)
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K c X -c\X\=-cx +Co\X\=-cx
KX

m | +X>O O

*)'(<0

Figure 8

Creating the equation of motion one has to take into consideration the interac-
tion force between the damper and the block considered (see Fig. 8). This interaction
force is called damping force and its absolute value is |Fp| = ¢|Z|. A very similar to
the above consideration leads to conclusion that the damping force can be represented
in the equation of motion by the following term

FD = —cT (13)

mo—|

Fo ()

Figure 9

The assumption that the system is linear allows to apply the superposition
rules and add these forces together with the external force F,,(t) (see Fig. 9). Hence,
the equation of motion of the block of mass m is

mi = —kx — ct + F,.(t) (1.4)
Transformation of the above equation into the standard form yields
&+ 2wt +wir = f(t) (1.5)

where
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c
n=1/—; 26w, = —; t) = 1.6
W —~ Wn = — f(t) - (1.6)

wy, - is called natural frequency of the undamped system

¢ - is called damping factor or damping ratio

f(t) - is called unit external excitation

The equation 1.5 is known as the mathematical model of the linear vibration
of the one-degree-of-freedom system.
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1.1.3 Problems
Problem 1

Figure 10

The block of mass m (see Fig. 10)is restricted to move along the vertical axis.
It is supported by the spring of stiffness k1, the spring of stiffness k5 and the damper
of damping coefficient ¢. The upper end of the spring ks moves along the inertial axis
y and its motion is governed by the following equation

Yya = asinwt

were a is the amplitude of motion and w is its angular frequency. Produce the equation
of motion of the block.
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Solution

Figure 11

Let us introduce the inertial axis x in such a way that its origin coincides with
the centre of gravity of the block 1 when the system is in its equilibrium position (see
Fig. 11. Application of the Newton’s low results in the following equation of motion

mi = —kox — k1x + koy — cit (1.7)
Its standard form is
&+ 25w, d + wlr = gsinwt (1.8)
where ke k "
w? = 22 26w, = < q= =24 (1.9)
m m m
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Problem 2

Figure 12

The cylinder 1 (see Fig. 12) of mass m and radius r is plunged into a liquid
of density d. The cylindric container 2 has a radius R. Produce the formula for the
period of the vertical oscillation of the cylinder.



MODELLING OF ONE-DEGREE-OF-FREEDOM SYSTEM

Solution

Figure 13

19

Let us introduce the inertial axis x in such a way that its origin coincides with
the centre of gravity of the cylinder 1 when the system is in its equilibrium position
(see Fig. 13. If the cylinder is displaced from its equilibrium position by a distance

x, the hydrostatic force acting on the cylinder is reduced by
AH = (z + 2) dgrr?
Since the volume V; must be equal to the volume V5 we have
V1:7Tr2x:V2:7T(R2—r2)z

Therefore
2

2=

RQ_TQ

Introducing the above relationship into the formula 1.10 one can get that

r2 R2r2
AH = (Q? + mx) dg7T7’2 = 7ng (m> X

According to the Newton’s law we have

R27‘2

The standard form of this equation of motion is

i+ wie=0

) dg R2 2
Wn = R2 — y2

The period of the free oscillation of the cylinder is

27r B — r2 — 7“2
Wn

where

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)
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Problem 3

Figure 14

The disk I of mass m and radius R (see Fig. 14) is supported by an elastic shaft
of diameter D and length L. The elastic properties of the shaft are determined by
the shear modulus G. The disk can oscillate about the vertical axis and the damping

is modelled by the linear damper of a damping coefficient ¢. Produce equation of
motion of the disk
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Solution

NN
m

Figure 15

Motion of the disk is governed by the generalized Newton’s equation

I = —ksp — CR2¢

miR_ the moment of inertia of the disk

2
_ T _ T _ JG _ xD'G i
ks = . =1L =T = 51 the stiffness of the rod

JG
Introduction of the above expressions into the equation 1.18 yields

mD*G
I.. R2 . — 0
preiet oo
or
© 4 2¢wpp + wigp =0
where
, wD'G cR?
ws = 26w, =

n 3oL e

21

(1.18)

(1.19)

(1.20)

(1.21)
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Problem 4
O
p. K ;' 5
| 77 7
b
17 1
| E—
NV
Figure 16

The thin and uniform plate 1 of mass m (see Fig. 16) can rotate about
the horizontal axis O. The spring of stiffness k keeps it in the horizontal position.
The damping coefficient ¢ reflects dissipation of energy of the system. Produce the
equation of motion of the plate.
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Solution

Figure 17

Motion of the plate along the coordinate ¢ (see Fig. 17) is govern by the
generalized Newton’s equation

Ip=M (1.22)
The moment of inertia of the plate 1 about its axis of rotation is
bQ
I= % (1.23)

The moment which act on the plate due to the interaction with the spring k& and the
damper c is

M = —kl*¢ — cb*p (1.24)
Hence 2
ngb F k2o + by =0 (1.25)
or
P+ 2wpp +wip =0 (1.26)
where
, Okl? 6c

Wi =—5 26w, = — (1.27)
m m
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Problem 5

E,l wt

Figure 18

The electric motor of mass M (see Fig. 18)is mounted on the massless beam of
length [, the second moment of inertia of its cross-section I and the Young modulus
E. The shaft of the motor has a mass m and rotates with the angular velocity w. Its
unbalance (the distance between the axis of rotation and the shaft centre of gravity)
is p. The damping properties of the system are modelled by the linear damping of
the damping coefficient c. Produce the equation of motion of the system.
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Problem 6

Figure 19

The wheel shown in the Fig. 19 is made of the material of a density o. It
can oscillate about the horizontal axis O. The wheel is supported by the spring of
stiffness k£ and the damper of the damping coefficient c¢. The right hand end of the
damper moves along the horizontal axis y and its motion is given by the following
equation

Yy = asinwt

Produce the equation of motion of the system
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Problem 7

N
N
N

|
N

Figure 20

The cylinder 1 of mass m is attached to the rigid and massless rod 2 to form
the pendulum shown in the Fig. 20. Produce the formula for the period of oscillation
of the pendulum.
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Problem 8
O
A ’ ;l I
| 77 7
b
AN 1
a m
y
Ny
Figure 21

The thin and uniform plate 1 (see Fig. 21) of mass m can rotate about the
horizontal axis O. The spring of stiffness k& keeps it in the horizontal position. The
damping coefficient ¢ reflects dissipation of energy of the system. Produce the formula
for the natural frequency of the system.



ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM 28

1.2 ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM
1.2.1 Free vibration

DEFINITION: It is said that a system performs free vibration if there are
no external forces (forces that are explicitly dependent on time) acting on this
system.

In this section, according to the above definition, it is assumed that the resul-
tant of all external forces f(t) is equal to zero. Hence, the mathematical model that
is analyzed in this section takes form

¥+ 26wt +wiz =0 (1.28)

The equation 1.28 is classified as linear homogeneous ordinary differential equation of
second order. If one assume that the damping ratio ¢ is equal to zero, the equation
1.28 governs the free motion of the undamped system.

i+ wir=0 (1.29)

Free vibration of an undamped system

The general solution of the homogeneous equation 1.29 is a linear combination of its
two particular linearly independent solutions. These solutions can be obtained by

means of the following procedure. The particular solution can be predicted in the
form 1.30.
r = eM (1.30)

Introduction of the solution 1.30 into the equation 1.29 yields the characteristic equa-
tion
N 4+w2=0 (1.31)

This characteristic equation has two roots
AN = tiw, and Iy = —iw, (1.32)
Hence, in this case, the independent particular solution are
r1 =sinw,t and x5 = coswyt (1.33)

Their linear combination is the wanted general solution and approximates the free
vibration of the undamped system.

r = Cysinw,t + C, cosw,t (1.34)

The two constants C and C. should be chosen to fulfill the initial conditions which
reflect the way the free vibrations were initiated. To get an unique solution it is nec-
essary to specify the initial position and the initial velocity of the system considered.
Hence, let us assume that at the instant ¢ = 0 the system was at the position xy and
was forced to move with the initial velocity vg. Introduction of these initial conditions
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into the equation 1.34 results in two algebraic equation that are linear with respect
to the unknown constants C; and C..

CC = X
Cswn = (135)

According to 1.34, the particular solution that represents the free vibration of the
system is

Vo .
r = —slnwyl+ TgCcosw,t =
Wn,

= Csin(w,t+ @) (1.36)

2
C = \/(g:o)? + (S—()) ;= arctan (%) (1.37)

For w, = 1[1/s], xo = 1[m] vo = 1|m/s] and ¢ = 0 the free motion is shown in Fig.
22 The free motion, in the case considered is periodic.

where

AN
I
C
Xo
\ \ I T il v —
10 20 3 40 50 t[s]
-0.5
1
Tn
15 7 e ———
Figure 22

DEFINITION: The shortest time after which parameters of motion repeat
themselves is called period and the motion is called periodic motion.

According to this definition, since the sine function has a period equal to 2,
we have
sin(wy,(t +1,,) + a) = sin(wpt + o + 27) (1.38)
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Hence, the period of the undamped free vibrations is

2m
T, = o (1.39)
Free vibration of a damped system
If the damping ratio is not equal to zero, the equation of the free motion is
¥+ 26wt +wiz =0 (1.40)
Introduction of the equation 1.30 into 1.40 yields the characteristic equation
N 4 26w A+ w? =0 (1.41)
The characteristic equation has two roots
PO VO 2 A T (1.42)

2

The particular solution depend on category of the above roots. Three cases are
possible

Case one - underdamped vibration

If ¢ < 1, the characteristic equation has two complex conjugated roots and
this case is often referred to as the underdamped vibration.

Ao = —sw, T iw, V1 —¢2 = —qw, +iwy (1.43)

where
wg =wpyV1—¢2 (1.44)

The particular solutions are

r1 =e “rlsinwgt and x5 = et coswgyt (1.45)
and their linear combination is
r = e (O, sinwgt + C. coswgt) (1.46)
For the following initial conditions
T |t=0= To T J4=0= Vo (1.47)

the two constants C and C,. are

Vg + SWy,To
c, = ———=—
Wq

C. = z (1.48)
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Introduction of the expressions 1.48 into 1.46 produces the free motion in the following
form

z = e (Cysinwgt + C.coswgt) = Ce™“m sin(wgt + ) (1.49)
where
2
C = \/(w) + (x0)2; o = arctan &; Wy =wpV1—¢2
Wy Vo + Sw,To
(1.50)

For w, = 1[1/s], ©o = 1[m] vo = 1[m/s] and ¢ = .1 the free motion is shown in Fig.
23In this case the motion is not periodic but the time 7, (see Fig. 23) between every

§ ! X[m]
L1
o
a t T
%o 05 -
|
/QY!X(H Ta ) [ x(t)
[ [ /\\ y/\v I~ I
0 0 20 1 30 40 50  t[s]
05 -
1 Td
15 -
Figure 23

second zero-point is constant and it is called period of the dumped vibration. 1t is easy
to see from the expression 1.49 that

_27T

T, = (1.51)

Wd

DEFINITION: Natural logarithm of ratio of two displacements z(¢) and
x(t + Ty) that are one period apart is called logarithmic decrement of damping
and will be denoted by 6.
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It will be shown that the logaritmic decrement is constant. Indeed

5 . (t) Ce“ntsin(wgt + @)
= n— — 1n ==
x(t+1Ty) Ce—swn(t+Ta) gin(wqy(t + Ty) + @)
Ce “rtsin(wgt + ) 2T SWn, 2T SWy,
Ceswnte=swnTa gin(wgt + 27 + ) Wa w1 — 2
2mg

- 1.52

— (1.52)

This formula is frequently used for the experimental determination of the damping
ratio .

4]

°T VA2 4 62

The other parameter w,, that exists in the mathematical model 1.40 can be easily
identified by measuring the period of the free motion T;. According to the formula
1.44 and 1.51

(1.53)

. wqg 2
V1—-¢2  Ti/1—¢2

Case two - critically damped vibration

(1.54)

Wn

If ¢ = 1, the characteristic equation has two real and equal one to each other
roots and this case is often referred to as the critically damped vibration

A2 = —Swnp (1.55)
The particular solutions are
Ty =e " and 1y =te ! (1.56)
and their linear combination is
x = Cye™ " 4 Cte ! (1.57)
For the following initial conditions
T |i=0= o T |i—0= v (1.58)

the two constants C; and C,. are as follow

Cs = X
C. = wvy+ zowy, (1.59)

Introduction of the expressions 1.59 into 1.57 produces expression for the free motion
in the following form

T = e (2 + t(vo + Town)) (1.60)
For w, = 1[1/s], o = 1[m] vy = 1[m/s] and ¢ = 1. the free motion is shown in
Fig. 24. The critical damping offers for the system the possibly faster return to its
equilibrium position.



ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM 33

X[m]
\6
% 05 -
0 T T T 7 T -
10 20 30 40 50 t[s]
-0.5
1
15 -
Figure 24

Case three - overdamped vibration

If ¢ > 1, the characteristic equation has two real roots and this case is often
referred to as the overdamped vibration.

A2 = —SWn TwpV6? =1 =w,(—¢ £ V¢? = 1) (1.61)

The particular solutions are

py = e VDl g gy = emwnlem VIS (1.62)
and their linear combination is
x=e “nt <Cse“"m)t - Cce*”"‘/@—*l)t> (1.63)
For the following initial conditions
T |i=0= To T |4=0= o (1.64)

the two constants C, and C, are as follow

+22 +ao(+s + V2 — 1)
2v¢2 -1
=2 4 xo(—s + V2 - 1)
C, = —o (1.65)
2v/¢?2 —1
For w, = 1[1/s], zp = 1|m] vo = 1[m/s] and ¢ = 5. the free motion is shown in Fig.
25

Cs =
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1.2.2 Forced vibration

In a general case motion of a vibrating system is due to both, the initial conditions and
the exciting force. The mathematical model, according to the previous consideration,
is the linear non-homogeneous differential equation of second order.

i+ 26wnd +wiz = f(1) (1.66)
where
k Fe:c t
Wn == 2wa=—;  f(t)= &) (1.67)
m m m

The general solution of this mathematical model is a superposition of the general
solution of the homogeneous equation z, and the particular solution of the non-
homogeneous equation z,.

T =224+, (1.68)

The general solution of the homogeneous equation has been produced in the previous
section and for the underdamped vibration it is

1y = e (Cysinwgt + C.coswgt) = Ce“ sin(wgt + ) (1.69)

To produce the particular solution of the non-homogeneous equation, let as assume
that the excitation can be approximated by a harmonic function. Such a case is
referred to as the harmonic excitation.

f(t) = gsinwt (1.70)
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In the above equation ¢ represents the amplitude of the unit excitation and w is the
excitation frequency. Introduction of the expression 1.70 into equation 1.66 yields

i+ 26w, d + wir = gsinwt (1.71)
In this case it is easy to predict mode of the particular solution
x, = Agsinwt + A, coswt (1.72)

where A, and A. are constant. The function 1.72 is the particular solution if and
only if it fulfils the equation 1.71 for any instant of time. Therefore, implementing it
in equation 1.71 one can get

(w2 — w?) Ay — 2ewawA,) sinwi+ (2swawA, + (W) — w?)A.) coswt = gsinwt (1.73)
This relationship is fulfilled for any instant of time if

(W2 —wH A, — 2wwA. = q
26wpwAs + (W2 —wA, = 0 (1.74)

Solution of the above equations yields the expression for the constant A, and A.

q —2¢wnpw
1 0 (w?—w?) _ (w2 —w?)q
’ o )%+ 4(cwy)?w?

(W2 —w?)  —2w,w (w2 — w?
2wpw (W2 —w?)
(wp—w?) ¢
26wpw 0 —2(swy )wq
A, = = 1.75
’ (W2 —w?)  —2w,w ‘ (w2 — w?)? + 4(swy, ) ?w? (1.75)

n n

Aww (W2 —w?)

Introduction of the expressions 1.75 into the predicted solution 1.72 yields

z, = Assinwt + A, coswt = Asin(wt + ¢) (1.76)

where
q A, 2(swp)w
A= A2+ A2 = = arctan — = — arctan ————
VL= PRt A A, P
(1.77)

or
3 s

A= - p = —arctan ——=— (1.78)

U= PP+ - (27

Introducing 1.69 and 1.76 into the 1.68 one can obtain the general solution of the
equation of motion 1.71 in the following form

x = Ce * sin(wgt + ) + Asin(wt + @) (1.79)
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The constants C' and « should be chosen to fullfil the required initial conditions.
For the following initial conditions

T |4=0= %o T |4=0= 1o (1.80)

one can get the following set of the algebraic equations for determination of the
parameters C' and «

9 = C,sina,+ Asingp
vg = —Cyswysina, + Cowqcos a, + Aw cos (1.81)
Introduction of the solution of the equations 1.81 (C, a,) to the general solution,

yields particular solution of the non-homogeneous equation that represents the forced
vibration of the system considered.

x = Che™ ! sin(wgt + ) + Asin(wt + ¢) (1.82)

This solution, for the following numerical data ¢ = 0.1, w,, = 1[1/s], w = 2[1/s],
Cy, = 1lm], a, = 1[rd], A = 0.165205[m], ¢ = 0.126835[rd| is shown in Fig. 26
(curve ¢).The solution 1.82 is assembled out of two terms. First term represents an

xm A
.
08

0.6
0.4
0.2

o N

-0.2

LB
04

06 7 trandient state of the forced vibration Steady state of the forced vibration

Figure 26

oscillations with frequency equal to the natural frequency of the damped system wy.
Motion represented by this term, due to the existing damping, decays to zero (curve
a in Fig. 1.82) and determines time of the transient state of the forced vibrations.
Hence, after an usually short time, the transient state changes into the steady state
represented by the second term in equation 1.82 (curve b in Fig. 1.82)

x = Asin(wt + ¢) (1.83)

This harmonic term has amplitude A determined by the formula 1.77. It does not
depend on the initial conditions and is called amplitude of the forced vibration. Mo-
tion approximated by the equation 1.83 is usually referred to as the system forced
vibration.
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Both, the exciting force f(t) = ¢gsinwt (1.70) and the (steady state) forced
vibration z = Asin(wt + ¢) (1.83) are harmonic. Therefore, they can be represented
by means of two vectors 'rotating’ with the same angular velocity w (see Fig. 27).One

X
| q
| A
gsin(wt )
Asin(t+ @) ot
Figure 27

can see from the above interpretation that the angular displacement ¢ is the phase
between the exciting force and the displacement it causes. Therefore ¢ is called phase
of the forced vibration.

Because the transient state, from engineering point of view play secondary
role, in the following sections the steady state forced vibration will be considered
only.

Forced response due to rotating elements - force transmitted to foundation.

Figure 28

One of many possible excitation of vibrations is excitation caused by inertia
forces produced by moving elements. The possibly simplest case of vibration cased
by this type of excitation is shown in Fig. 28. The rotor of an electrical motor rotates
with the constant angular velocity w. If u represents the static imbalance of the rotor
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and m is its mass, then the rotor produces the centrifugal force
F = muw? (1.84)
Its component along the vertical axis z is
F, = muw? sin wt (1.85)

The motor of mass M is supported by means of a beam of the stiffness k. The
damping properties are approximated by the damping coefficient c¢. Let us model
vibration of the system. The physical model of the problem described is shown in
Fig. 28b). Taking advantage of the earlier described method of formulation the
mathematical model we have

M3 = —kz — ci + muw?® sinwt (1.86)

Transformation of this equation into the standard form yields

i+ 26wt +wlr = gsinwt (1.87)
where
k c mpw?
n = e — 2 n = 7/ — 1.
“ A VA Vi (1.88)

Hence, the steady state forced vibration are

r = Asin(wt + @) (1.89)
where according to 1.77
- 2
A= - ¢ = —arctan ——2— (1.90)
VA= (2P a2 =G
or, taking into consideration 1.88
mo. (w2 ¢«
A= i) p = —arctan RV (1.91)
V= (222 432 - @)

The ratio ﬂiﬂ, is called the magnification factor, Its magnitude and the phase ¢ as

a function of the ratio = for different damping factor ¢ is shown in Fig. 29.If the
frequency of excitation cﬁanges from zero to the value equal to the natural frequency
wy,, the amplitude of the forced vibration is growing. Its maximum depends on the
damping ratio and appears for w > w,. The phenomenon at which amplitude of
the forced vibration is maximum is called amplitude resonance. If the frequency of
excitation tends towards infinity, the amplitude of the forced vibration tends to §}u.
For w = w,, regardless the damping involved, phase of the forced vibration is equal
to 90°. This phenomenon is called phase resonance. If the frequency of excitation
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tends to infinity, the phase tends to 180°. Hence the response of the system tends to
be in the anti-phase with the excitation.

The force transmitted to the foundation R, according to the physical model
shown in Fig. 28b) is

R(t) = kx + ci = kAsin(wt + ¢) 4+ cAw cos(wt + ¢) = AVE? + 2w? sin(wt + ¢ + )
(1.92)
The amplitude of the reaction is

|IR| = AVE?+ 2w? = AM\/w? + 4¢%w2w? =
1+4¢2(:=)?
V= (22 + ()

= muw?

The amplification ratio ‘M 5> of the reaction as a function of the ratio - is shown in
Fig. 30.For the frequency of excitation w < 1.4w,, the force transmltted to foundation

6

Figure 30

is greater then the centrifugal force itself with its maximum close to frequency w,,.
For w > 1.4w,, this reaction is smaller then the excitation force and tends to zero
when the frequency of excitation approaches infinity.

Forced response due to the kinematic excitation - vibration isolation

The physical model of a system with the kinematic excitation is shown in Fig. 31b).
Motion of the point B along the axis y causes vibration of the block M. This physical
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model can be used to analyze vibration of a bus caused by the roughness of the
surface of the road shown in Fig. 31a). The stiffness k of the spring and the damping
coefficient ¢ represent the dynamic properties of the bus shock-absorbers. The block
of mass M stands for the body of the bus. If the surface can be approximated by the
sine-wave of the amplitude a and length L and the bus is travelling with the constant
velocity v, the period of the harmonic excitation is

T== (1.93)

Hence, the frequency of excitation, according to 1.39 is

2TV
— - 1.94
w 7 (1.94)

and the motion of the point B along the axis y can approximated as follows
y = asinwt (1.95)
The equation of motion of the bus is
Mi = —kx —ct + ky + ¢y (1.96)
Introduction of 1.95 yields
M3 + ¢t + kx = kasinwt + caw cos wt

or
2
n

q=aw’, [1+ 4§2(i)2 (1.98)
Wn

&+ 26w, 4+ wlr = wlasin wt + 2cwywa coswt = gsin(wt + a) (1.97)

where
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Without any harm to the generality of the considerations one can neglect the phase
« and adopt the mathematical model in the following form

&+ 26wpd + wlr = gsinwt (1.99)
Motion of the block along axis x is governed by the equation 1.83
xr = Asin(wt + )

where
3 2

A= i ¢ = — arctan ——=— (1.100)

V= ()22 442 (2)?

Introduction of equation 1.98 gives

a,/1+ 4@(&)2 9c
A— V Dl (1.101)

p = —arctan
V= ()22 4 42(2)2

The magnifying factor 2 = and the phase ¢ as a function of - is shown in Fig. 32.
For w < 1.4w, it is possible to arrange for the bus to have Vlbratlon smaller than the
amplitude of the kinematic excitation

The expression for the reaction force transmitted to the foundation is

R = kx+ci—ky—cy=kAsin(wt + ¢) + cwAcos(wt + @) — kasinwt — cwa cos wt
= |R|sin(wt + ) (1.102)

Problem of minimizing the reaction force R (e.g. 1.92) or the amplitude A (e.g..
1.101) is called wvibration isolation.
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1.2.3 Problems
Free vibrations

Problem 9

N
k| oy c

v

Figure 33

The carriage 1 of the lift shown in Fig. 33 operates between floors of a building.
The distance between the highest and the lowest floor is H = 30m. The average mass
of the carriage is m = 500kg. To attenuate the impact between the carriage and the
basement in the case the rope 3 is broken, the shock absorber 2 is to be installed.

Calculate the stiffness £ and the damping coefficient ¢ of the shock-absorber
which assure that the deceleration during the impact is smaller then 200m/s?.
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Solution

45

In the worst case scenario, the lift is at the level H when the rope brakes.

Figure 34

Due to the gravity force the lift is falling down with the initial velocity equal to zero.

Equation of motion of the lift is
mx = mg

By double side by side integrating of the above equation one can get

x:A+Bt+gt2

Introduction of the following initial conditions
x ‘t:OZ 0 z ‘t:OZ 0

yields A =0 and B = 0 and results in the following equation of motion

x:gt2
2

Hence, the time the lift reaches the shock-absorber is

2H
to=1]—
g

v=2x=gt

Since

(1.103)

(1.104)

(1.105)

(1.106)

(1.107)
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the velocity of the lift at the time of the impact with the shock-absorber is

Vo = T |t:to: \/ 2Hg (1108)

To analyze the motion of the lift after impact let us introduce the inertial axis y
in such a way that its origin coincides with the upper end of the shock-absorber at
the instant of impact (see Fig. 35).Since at the instant of impact the spring k is

Figure 35

uncompressed, the equation of motion after the lift has reached the shock-absorber is

my + cy + ky = mg (1.109)
or in the standardized form
i+ 26w,y + Wiy =g (1.110)
where
P (1.111)
m m

It is easy to see that in the case considered the particular solution of the non-

homogeneous equation is
g
== 1.112
Yp w% ( )
The best performance of the shock-absorber is expected if the damping is critical
(¢ = 1). In this case, there exists one double root and the general solution of the
homogeneous equation is

y, = Cre " + Cyte ! (1.113)
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Therefore the general solution of the non-homogeneous equation as the sum of y, and

Yq 18
y = Crent 4 Cytent + L (1.114)

2
Whn

This equation has to fullfil the following initial conditions
Y li=o=0 9 |1=0= 1, (1.115)

Introduction of these initial conditions into the equation 1.113 yields
__49 _
Cl = —w— 02 = Vo — — (1116)

and results in the following equation of motion

v = () (L) &
ws Wn, ws

= L -t 4 (vo - i) te™" =D (1—e ") + Ete " (1.117)

2
wz, Wn,

where
p=2 p=v,-L (1.118)
wn Wn

Double differentiation of the function 1.117 yields acceleration during the impact
j = (—=Dw? — 2Ew,) e " + Ewjte™ " (1.119)

By inspection of the function 1.118, one can see that the maximum of the deceleration
occurs for time ¢ = 0. Hence the maximum of deceleration is

Umaz = i |t=0= | —Dw’ — 2Ew, (1.120)

If

v, > L (1.121)

both constants £ and D are positive. Hencen
Umae = Dw? 4 2Ew, = g + 20,w, — 29 = 200wy — ¢ (1.122)
This deceleration has to be smaller then the allowed deceleration a, = 200ms—2.
20,wWp, — g < Qg (1.123)

It follows
ae+g  200+10

Wy < =
2v2Hg 2v/2-30-10
Since w,, = \/% , the stiffness of the shock-absorber is

=4.2857" (1.124)

k=w?m = 4.28% - 500 = 9160N/m (1.125)
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and the damping coeflicient
c=2w,m=2-1-4.28-500 = 4280Ns/m (1.126)

Our computation can be accepted only if the inequality 1.121 is fullfil. Indeed
10
v, = \/2H :\/2~30-10:24.5>iz—zZ.éLm/s (1.127)
Wn

The displacement of the lift, its velocity and acceleration during the impact as a
function of time is shown in Fig. 36
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Problem 10

The power winch W was mounted on the truss 7" as shown in Fig. 37a) To

b)

Figure 37

analyze the vibrations of the power winch the installation was modelled by the one
degree of freedom physical model shown in Fig. 38b). In this figure the equivalent
mass, stiffness and damping coefficient are denoted by m, k and ¢ respectively. Origin
of the axis = coincides with the centre of gravity of the weight m when the system
rests in its equilibrium position.

To identify the unknown parameters m, k, and ¢, the following experiment was
carried out. The winch was loaded with the weight equal to M; = 1000kg as shown in
Fig. 38. Then the load was released allowing the installation to perform the vertical

T

Figure 38

oscillations in x direction. Record of those oscillations is presented in Fig. 39.
Calculate the parameters m, k, and c.
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Answer

m = 7000kg; Kk = 3000000Nm~t; ¢ = 15000Nsm~*
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Problem 11

b)

Figure 40

The winch W shown in Fig. 40 is modelled as a system with one degree of
freedom of mass m stiffness k£ and the damping coefficient ¢. The winch is lifting the
block of mass M with the constant velocity v, (see Fig. 41).Assuming that the rope

SR N

Figure 41

R is not extendible produce expression for the tension in the rope R before and after
the block will lose contact with the floor.
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Solution
Tension in the rope R before the contact is lost

In the first stage of lifting the block M, it stays motionlessly at the floor
whereas the lift itself is going down with respect to the inertial axis x with the
constant velocity v,. The tension 7' in the rope R varies between 0 and M g.

0<T < My (1.128)

If origin of the inertial axis x coincides with the gravity centre when the unloaded
winch is at its equilibrium, the equation of motion of the winch is

mi + ct + kx = =T (1.129)

In the above equation & = 0 (the winch is moving with the constant velocity v,),
T = —v, and ¢ = —v,t. Hence

—T = c(—v,) + k(—v,t) (1.130)

The equation 1.130 governs motion of the winch till the tension 7' will reach value
Mg. Therefore the equation 1.130 allows the time of separation ¢s to be obtained.

Mg —cu,

ls
kv,

(1.131)
At the instant of separation the winch will be at the position determined by the

following formula
Mg — o
Ty = —Ugty = —% (1.132)
If Mg < cv, then z, =t, = 0.
If Mg > cv,
T = cv, + kvt for 0<t<t, (1.133)

Tension in the rope R after the contact of the weight with the floor is lost

Without any harm to the generality of the further consideration one may
assume that the time corresponding to the instant of separation is equal to 0.

For t > 0, the equation of motion of the winch and the block (see Fig. 42) are
as following

mi+ct+kr = =T
Mz, = T — Mg (1.134)
Since the rope R is not extendible, the instantaneous length of the rope L is

L=L,—v,t (1.135)
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V!

Figure 42

Where L, stands for the initial length of the rope (the lenght the rope had at the
instance ¢t = 0). Taking into account that

L=x—ux (1.136)
we have
Ty=x—L=x—L,+ vt (1.137)
Introduction of the equation 1.137 into 1.134 yields
mi+cr+kr = =T
Mi = T — Mg (1.138)

Elimination of the unknown tension force allows the equation of motion of the winch

to be formulated
(m—+M)i+ci+kex=—-Mg (1.139)

The standardized form is as following

&+ 25wnd + wir = q (1.140)

[k c Mg
n = ; 26wy, = ; = — 1.141
w m+ M o m+ M 1 m+ M ( )

The particular solution of the non-homogeneous equation can be predicted as a con-
stant magnitude A. Hence

where

VA=q A=2L (1.142)

2
Wi
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The general solution of the mathematical model 1.140 is
1 =e N (Cysinwgt + C.coswgt) + A (1.143)

where
Wg = wpV 1 —¢2 (1.144)

This solution has to fulfill the following initial conditions
for t=0 z=2, ==-v, (1.145)

Introduction of these initial conditions into the solution 1.143 yields the following
expressions for the constants C; and C.,

—V, + swy(zs — A)
Wq

C, = C.=x,— A (1.146)

Hence,

— Vo n s A .
T = e SwWnt ( Yot gc:) (@ ) sinwgt + (zs — A) cos wdt) + A (1.147)
d

The time history diagram of the above function is shown in Fig.43 The tension is

|
NI | 3
A
= ¥ AAA~—
Tq
‘/U o

Figure 43

determined by the equation 1.138
T=Mzi+ Mg (1.148)
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Double differentiation of the function 1.147 yields the wanted tension as a function
of time

T = Mg+ Me " (Cy(swn)? 4 2Ceswywq — Csw]) sinwgt
+Meswnt (C’C(gwn)2 — 20 qwpwy + CCWZ) cos wgyt (1.149)
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Forced vibration

Problem 12
m
M
E,l ot
A
2 N 2
7 C 0007
Nl
- | -
Figure 44

The electric motor of mass M (see Fig. 44) is mounted on the massless beam
of length [, the second moment of inertia of its cross-section / and Young modulus E.
Shaft of the motor, of mass m, rotates with the constant angular velocity w and its
unbalance (distance between the axis of rotation and the shaft centre of gravity) is
1. The damping properties of the system are modelled by the linear damping of the
damping coefficient c¢. Produce expression for the amplitude of the forced vibration
of the motor as well as the interaction forces transmitted to the foundation at the
points A and B.
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Solution
X
m mu o
M
E,l ot
A
o= NE =
e T
B~
| -
Figure 45

Application of the Newton’s approach to the system shown in Fig. 45 results
in the following differential equations of motion.

M3 = —kz — ci + muw? sin wt (1.150)

where k stands for the stiffness of the beam E'[.

48E1
k=5 (1.151)
Its standardized form is
i+ 26w, d + wir = gsinwt (1.152)
where
k c mpw?
n — e 2 n — == 1.1
“ Mo T M T M (1.153)
The particular solution of the equation 1.152
xr = Asin (wt + ¢) (1.154)
where
% 22
A= - @ = —arctan ———=— (1.155)

VA= (222 +ae(2) P @
represents the forced vibrations of the system. In the above formula A stands for the
amplitude of the forced vibrations of the motor. The interaction force at the point
A can be determined from equilibrium of forces acting on the beam at an arbitrarily
chosen position z (see Fig 46).
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The force needed to displace the point D by x is equal to kx. Hence, the
reaction at the point A is

R4 = —0.5kz = —0.5kAsin (wt + ) (1.156)

Figure 47

To move the point D (see Fig. 47) with the velocity & the force i is required.

Hence, from the equilibrium of the damper one can see that the reaction at the point
B is
Rp = —ci = —cwAsin (wt + @)
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Problem 13

=Xy

Figure 48

Figure 48 presents a seismic transducer. Its base 2 is attached to the vibrating
object 1. The seismic weight 3 of mass m is supported by the spring 4 of stiffness k& and
the damper 5 of the damping coefficient ¢.This transducer records the displacement

z=x—y (1.157)

where y is the absolute displacement of the vibration object 1 and z is the absolute
displacement of the seismic weight 3. Upon assuming that the object 1 performs a
harmonic motion

y = asinwt (1.158)

derive the formula for the amplification coefficient s of the amplitude of vibration of

the object 1 of this transducer ( > = %ﬂeo“ ) as a function of the non-dimensional
plitude of y

frequency .
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Solution
The equation of motion of the system shown in Fig. 48 is

mi + ct + kx = cy + ky (1.159)
Its standardize form is
i+ 26w i + wlr = ag. coswt + ag, sinwt (1.160)
where
Wy, = E 25w, = £ ge = iw gs = ﬁ (1.161)
m m m m

Simplification of the right side of the above equation yields

&+ 26wnd + w?x = agsin (wt + a) (1.162)
where
w > w
0=+ ¢ = w42 (—) +1 a = arctan 2 = arctan 26— (1.163)
Wn qs Wn
According to equation 1.76 (page 35) the particular solution of the equation 1.162 is
x, = aAsin(wt + o + @) (1.164)
where
2
4§2 (ﬁ) + 1 2§£
A= ¢ = — arctan o (1.165)

Jo-@) ey

Hence the record of the transducer is

z = x—y=aAsin(wt+a+y)—asinwt =
= aAcos(a+ ¢)sinwt + aAsin (o + @) coswt — asinwt =
= (aAcos(a+ ¢) —a)sinwt + aAsin (a + @) coswt (1.166)

The amplitude of this record is

amp, = \/(aA cos (a + @) — a)® + (aAsin (a + ¢))* = ay/A2 + 1 — 2A cos(a + @)

(1.167)
Therefore, the coefficient of amplification is
amp,
= =4/A2+1-2A 1.168
» p VA2 + cos(a + @) ( )

The diagram presented in Fig.49 shows this amplification coefficient sr as a function
of the ratio == .If the coefficient of amplification s is equal to one, the record of the
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amplitude of vibration (amp,) is equal to the amplitude of vibration of the object
(amp, = a). It almost happends, as one can see from the diagram 49, if the frequency
w of the recorded vibrations is twice greater than the natural frequency w, of the
transducer and the damping ratio ¢ is 0.25.

6

Figure 49
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Problem 14

A
x

A
Y

Figure 50

The physical model of a vibrating table is shown in Fig. 50. It can be con-
sidered as a rigid body of the mass m and the moment of inertia about axis through
its centre of gravity I5. It is supported with by means of the spring of the stiffness
k and the damper of the damping coefficient c. The motion of the lower end of the
spring with respect to the absolute coordinate x can be approximated as follows

z = X coswt

where X stands for the amplitude of the oscillations of the point C' and w stands for
the frequency of these oscillations.
Produce:

1. the differential equation of motion of the vibrating table and present it in
the standard form

2. the expression for the amplitude of the forced vibrations of the table caused
by the motion of the point C

3. the expression for the interaction force at the point A

4. the expression for the driving force that has to be applied to the point C'
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Problem 15

< A

Figure 51

Two uniform rods (1 and 2), each of length L and mass m, were joined together
to form the pendulum whose physical model is depicted in Fig. 51. The pendulum
performs small oscillations o about the axis through the point A. At the point B it
is supported by a spring of stiffness k£ and a damper of damping coefficient c¢. The
point C' of the damper is driven along the axis Y and its motion is approximated by
the following function

Y = Asinwt
Produce:
1. The expression for the position x of the center of gravity G of the pendulum
Answer:

re=3L—a
2. Th(;1 expression for the moment of inertia of the pendulum about the axis through
the point A.
Answer:
Iy = HmL? 4+ 2maH2 — 3mLa
3. The differential equation of motion of the pendulum
Answer:
& + 20w, & + w2a = qeoswt
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where: 2¢w,, = %; w2 = w q= A;JAC(J,

4. The expression for the amplitude of the forced vibrations of the pendulum
Answer: |

A, = T

Y- ()’
5. The driving force that must be applied to the point C to assure the assumed
motion . "
D = ¢(Aw coswt — aA, cos(wt + ¢)) @ = —arctan Xon

1-()”




Chapter 2

MECHANICAL VIBRATION OF MULTI-DEGREE-OF-FREEDOM
LINEAR SYSTEMS

Since in the nature massless or rigid elements do not exist, therefore each of the
particle the real element is made of can moves independently. It follows that to
determine its position with respect to the inertial space one has to introduce infinite
number of coordinates. Hence, according to the previously introduce definition, the
number of degrees of freedom of each real element is equal to infinity. But in many
vibration problems, with acceptable accuracy, the real elements can be represented
by a limited number of rigid elements connected to each other by means of massless
elements representing the elastic and damping properties. This process is called
discretization and the final result of this process is called multi-degree-of-freedom
system. In this chapter it will be assumed that forces produced by these massless

v _k%dﬂf

Figure 1

elements (springs and dampers) are linear functions of displacements and velocities
respectively.

2.1 MODELLING
2.1.1 Physical model

Fig. 1 shows part of a multi-degree-of-freedom system. Usually, to describe motion of
such a system a set of local generalized coordinates is introduced. These coordinates
(w;, xj, yi(t)) are motionless with respect to a global (inertial) system of coordinates
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(not shown in the Fig. 1). The coordinate y;(¢) is not independent (is an explicit
function of time) whereas the coordinates z;, and x; are independent and their number
determines the number of degree of freedom of the system. Origin of each coordinate
coincides with the centre of gravity of individual bodies when the whole system is at
its equilibrium position. For this equilibrium position all the static forces acting on
individual bodies produces the resultant force equal to zero.

2.1.2 Mathematical model

It will be shown in this section that the equation of motion of the multi-degree of
freedom linear system has the following form

mX+cx+kx=F(t)

where

m - is the inertia matrix

c - is the damping matrix

k- is the stiffness matrix

F - is the external excitation matrix

X- is the displacement matrix

There are many methods that allow the mathematical model to be formulated.
In the following sections a few of them are presented.

Newton-Euler method of formulation of the mathematical model

To develop the equations of motion of the system described, one may utilize the
Newton’s or Euler’s equations. Since in case considered the body of mass m; performs
a plane motion hence the Newton’s equations may be used.

If the system stays at its equilibrium position, as it was mention earlier, the resultant
of all static forces is equal zero. Therefore, the force F' must contains forces due to
the displacement of the system from its equilibrium position only. To figure these
forces out let us move the mass m; out of its equilibrium position by the displacement
x;. The configuration a) shown in the figure below is achieved.
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mle = —kiZCi — kul'z +kijxj —H@yl(t) —Cii'i — Cz’ji'i
(2.2)

Due to this displacement there are two forces k;x; and k;;x; acting on the considered
mass m;. Both of them must be taken with sign -’ because the positive displacement
x; causes forces opposite to the positive direction of axis z;. Similar consideration
carried out for the displacements along the axis z; (configuration b)) and axis y; (
configuration c)) results in the term +k;;z;. and +k;y;(t) respectively. Up to now it
has been assumed that the velocities of the system along all coordinates are equal
to zero and because of this the dampers do not produce any force. The last three
configurations (d, e, and f) allow to take these forces into account. Due to motion of
the system along the coordinate x; with velocity ; two additional forces are created
by the dampers ¢; and ¢;; they are —c;@; and —c;;%;. Both of them are caused by
positive velocity and have sense opposite to the positive sense of axis x;. Therefore
they have to be taken with the sign ’-". The forces caused by motion along the axis
x; (configuration e)) and axis y; ( configuration f)) results in the term +c¢;;;. and 0
respectively. Since the system is linear, one can add all this forces together to obtain

After standardization we have the final form of equation of motion of the mass m;.

To accomplished the mathematical model, one has to carry out similar consideration
for each mass involved in the system. As a result of these consideration we are getting
set of differential equation containing as many equations as the number of degree of
freedom.



MODELLING 69

Lagrange method of formulation of the mathematical model

The same set of equation of motion one can get by utilization of the Lagrange’s
equations

d, 0 0 ov
75D "5 Tt = m=12..M (2.5)

where

T - is the system kinetic energy function

V' - stands for the potential energy function

Qm - is the generalized force along the generalized coordinate g,

The kinetic energy function of the system considered is equal to sum of the
kinetic energy of the individual rigid bodies the system is made of. Hence

Iiac 0 0 Wig
T = Z mlv + = [wm Wiy wiz] 8 Iéy IO Wiy (2.6)
iz Wiz

where

m; - mass of the rigid body

- absolute velocity of the centre of gravity of the body

Wig Wiy, Wiz, - components of the absolute angular velocity of the body

Iiz, 1iy, 1;, - The principal moments of inertia of the body about axes through
its centre of gravity
Potential energy function V for the gravity force acting on the link ¢ shown in Fig. 2
is

Vi =mgraiz (2.7)

IGiz

Figure 2

Potential energy for the spring s of stiffness ks and uncompressed length [
(see Fig. 3) is

1
‘/5 = §ks(|I'A — I'B’ — l5>2 (28)



MODELLING 70

Figure 3

Potential energy function for all conservative forces acting on the system is

1 S

V=Y Vi+> Vi (2.9)

i=1 s=1

In a general case the damping forces should be classified as non-conservative ones
and, as such, should be included in the generalized force @),,. It must be remembered
that the Lagrange’s equations yield, in general case, a non-linear mathematical model.
Therefore, before application of the developed in this chapter methods of analysis, the
linearization process must be carried out. The following formula allows for any non-
linear multi-variable function to be linearized in vicinity of the system equilibrium
position g7, ...qy,, -..q%,

f(ql,M.qmé...qM, Q1y -Gy --Gur) = f(q2, .42, q% 0, .é.O, 0)+
+ 3 2L (G5 G5 @315 050, -0) Agu + Xy A (a8, G50 031, 0, .0,...0) Ady,

(2.10)
In the case of the system shown in Fig. 1 the kinetic energy function is
Y N

Dots in the above equation represents this part of the kinetic energy function that
does not depend on the generalized coordinate ;.

If the system takes an arbitral position that is shown in Fig. 4, elongation of
the springs k; and k;; are respectively
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Figure 4
Therefore, the potential energy function is
1 1
V= ghilei— 9" + gk —a)” 4o (2.13)

Again, dots stands for this part of the potential energy function that does not depend
on the generalized coordinate x;. It should be noted that the above potential energy
function represents increment of the potential energy of the springs due to the dis-
placement of the system from its equilibrium position. Therefore the above function
does not include the potential energy due to the static deflection of the springs. It
follows that the conservative forces due to the static deflections can not be produced
from this potential energy function. They, together with the gravity forces, produce
resultant equal to zero. Hence, if the potential energy due to the static deflections is
not included in the function 2.13 the potential energy due to gravitation must not be
included in the function 2.13 either. If the potential energy due to the static deflec-
tions is included in the function 2.13 the potential energy due to gravitation must be
included in the function 2.13 too.

Generally, the force produced by the dampers is included in the generalized
force Q.. But, very often, for convenience, a damping function (dissipation function)
D is introduced into the Lagrange’s equation to produce the damping forces. The
function D does not represent the dissipation energy but has such a property that its
partial derivative produces the damping forces. The damping function is created by
analogy to the creation of the potential energy function. The stiffness k is replaced
by the damping coefficient ¢ and the generalized displacements are replaced by the
generalized velocities. Hence, in the considered case, since the lower end of the damper
is motionless, the damping function is

1 1

D = 5@(1’1)2 + Ecij(ij — l’z)2 + e (214)
The Lagrange’s equation with the damping function takes form
d,6 0 0 ov. oD
— T) — T = Qm =1,2,..M 2.15
490 " g Ogn 0 O (213
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Introduction of the equations 2.11, 2.13 and 2.14 into equation 2.15 yields the equation
of the motion of the mass m;.

m1$z + (CZ‘ + Cij)i‘i — Ciji'j + (/fz + k”)l‘z — kijZCj = /fzyz<t) (216)

The influence coefficient method

Figure 5

Let us consider the flexible structure shown in Fig. 5. Let us assume that the masses
m; and m; can move along the coordinate x; and x; respectively. Let us apply to this
system a static force F}; along the coordinate x;. Let z;; be the displacement of the
system along the coordinate x; caused by the force Fj.

DEFINITION: The ratio

5y = % (2.17)

j
is called the influence coefficient

It can be easily proved (see Mazwell’s reciprocity theorem) that for any structure
0ij = 0ji (2.18)

If one apply forces along all I generalized coordinates z; along which the system
is allowed to move, the displacement along the ¢ — th coordinate, according to the
superposition principle, is.

I
mi=Y 0uF;  i=1,2,...0 (2.19)
7=1

These linear relationships can be written in the matrix form

x = 6F (2.20)
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The inverse transformation permits to produce forces that have to act on the system
along the individual coordinates if the system is at an arbitrarily chosen position x.

F=6"x (2.21)

The inverse matrix 6 ' is called stiffness matriz and will be denoted by k.

k=4" (2.22)
Hence according to equation 2.21 is
I
j=1

If the system considered moves and its instantaneous position is determined by the
vector x (x1,....z;, ...z ) the force that acts on the particle m; is

I
fi=—F=— Zkiijj (2.24)
=1

Hence, application of the third Newton’s law to the particle ¢ yields the equation of
its motion in the following form

I

J=1
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2.1.3 Problems
Problem 16

|z
|

| I—

Figure 6

The disk 1 of radius R, and mass m is attached to the massless beam 2 of
radius 7, length [ and the Young modulus £ as shown in Fig. 6 Develop equations of
motion of this system.
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Solution.

Figure 7

The motion of the disk shown in Fig. 7 is governed by Newton’s equations

my = Fy
Ig, = My (2.26)

In the above mathematical model

I = imR2 - moment of inertia of the disk about axis =

Fy, M, - forces acting on the disk due to its interaction with the beam

The interaction forces Fy and M, can be expressed as a function of the dis-
placements y and ¢, by means of the influence coefficient method.

FS
MS
| ! \ z
IS /)
4%
Iy
Figure 8

If the beam is loaded with force F; (see Fig. 8), the corresponding displace-
ments y and ¢, are
A 12
Y=3Ertt P =gt
If the beam is loaded with force M; (see Fig. 8), the corresponding displacements y
and ¢, are

(2.27)

12 [
—2EJM5, (,Oy = _Ms (228)

y= EJ
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Hence the total displacement along coordinates y and ¢, are

& 12

= F, M
Y= 3B T amd
12 l
= —F, +—M, 2.2
P = 3Er T E] (2.29)
or in matrix form , ,
Yy 57 357 F
= | || (2.30)
Py 267 EJ s
where .
Tr
= — 2.31
== (2.31)
The inverse transformation yields the wanted forces as function of the displacements
l3 l2 -1
-l ] -l ] e
M, S Py ko1 koo ©y
Since, according to the second Newton’s law
Fd o Fs
lMJ“[MS] (2.33)
the equation of motion takes the following form
m 0 ij ki1 kio Yy
; = — 2.34
ol =L ][] =

Hence, the final mathematical model of the system considered is

mk + kx = 0 (2.35)

_mo,_knklz,_y
S EI S P S O B

where
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Problem 17

LJ G LJ
(2] 1
kl k2
|1 |2
— 777
Figure 9

A rigid beam of mass m and the moments of inertia I about axis through
its centre of gravity G is supported by massless springs ki, and as shown in Fig. 9.
Produce equations of motion of the system.
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Solution.
M
L
o Tgoll v
Yi=y-@ |, I_'_‘k / y_m Y=yt o1,
L BT s
L .z
y
Figure 10

The system has two degree of freedom. Let us then introduce the two coordi-
nates y and ¢ as shown in Fig. 10.

The force F' and the moment M that act on the beam due to its motion along
coordinates y and ¢ are

F o= —yiky — yoko = —(y — ol)k1 — (y + ola)ky
= —[(k1 + k2)y + (kalz — k1lh)y)
M = +yikily — yokoly = +(y — pli)kily — (y + @la)kaly
= —[(kola — kil))y + (K1} + yhkold) o (2.37)

Hence, the generalized Newton’s equations yield

my = F=—[(ki+ko)y+ (kala — k1l1) )
Ip = M= —[(kala — kily)y + (K11} + yhkald) g (2.38)

The matrix form of the system equations of motion is
mX +kx =0 (2.39)

where

| m 0| | kR koly — kyly | Ty
m_[o f}’ k_[kzlz—klzl k1l§+k2l§]’ X—[ (2.40)
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Problem 18
1
/
A A A AN A lapaa
IR [+ F */*//
AR vV VIV
4 | -
2
Figure 11

The link 1 of a mass my, shown in Fig. 11), can move along the horizontal
slide and is supported by two springs 3 each of stiffness k. The ball 2 of mass mo
and a radius r and the massless rod 4 form a rigid body. This body is hinged to the
link 1 at the point A. All motion is in the vertical plane. Use Lagrange’s approach
to derive equations of small vibrations of the system about its equilibrium position.
I = %mQTQ — moment of inertia of the ball about axis through its centre of gravity.



MODELLING 80

Solution

1 X
\ A\ A\ A\ ]A\ /\|0 i I
| T D! ————
Z \ VoV Vo, \ | \ BRR/ | X
Kk e 7
3 : r R
2 J///\‘\; 0 |
e / w G

Figure 12

The system has two degree of freedom and the two generalized coordinates x
and ¢ are shown in Fig. 12. The kinetic energy of the system T is equal to the sum
of the kinetic energy of the link 1 77 and the link 2 T5.

1 1 1
T=T+T,= §m1x'2 + §m2vg + §Igp2 (2.41)
The absolute velocity of the centre of gravity of the ball vg can be obtained by
differentiation of its absolute position vector. According to Fig .12, this position
vector is
rg =i(z+ Rsiny) + j( — Rcos ) (2.42)

Hence
vg =1 =1i(& + Rpcosp) + j(Rpsin ) (2.43)

The required squared magnitude of this velocity is
v3 = (& + Rpcosp)® + (Rpsin ) = i + 22 Rp cos ¢ + R2p* (2.44)

Introduction of Eq. 2.44 into Eq. 2.41 yields the kinetic energy function of the system
as a function of the generalized coordinates x and .
1 ) 1 ] . . 2.9 1 -2
T = g + §m2(x + 2@ Ry cos p + R°¢%) + Elgo
1 1
= 5<m1 +mg)i? + myRip cos ¢ + §(m2R2 + 1)¢? (2.45)
The potential energy function is due the energy stored in the springs and the energy

due to gravitation.
1
V= 2§kx2 — magRcos g (2.46)
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In the case considered, the Lagrange’s equations can be adopted in the following form

dafory_or ov

dt \ 0t oxr  Or

d (0T or  ov

(=) - =4+ _ 2.4
dt <8<'p) Op + Op 0 (247)

The individual terms that appeare in the above equation are

d (0T d . :
7 <%> = = ((my + ma)d + maRp cos @) =
= (my + ma)F + maRH cosp — meRP? sin (2.48)
or
% 0 (2.49)
ov
- —_9 2.
5 kx (2.50)
d (0T d , :
7 (%> = = (maRi cos p + (maR> + 1)) =
= (maR? 4 I){ + myRi cos p — myRipsin (2.51)
oT
— = —meRipsin 2.52
B 2 TP 8 Y ( )
g—‘; = magRsin ¢ (2.53)

Hence, according to Eq. 2.47, we have the following equations of motion

(my +ma)i +maRpcosp —myRP*sinp +2kz = 0
(moR? + I1)$ + myRi cos p +mogRsing = 0 (2.54)

For small magnitudes of x and ¢, sing = ¢, cosg = 1, ¢* = 0. Taking this into
account the linearized equations of motion are

(my +mg)Z + moRp + 2kx = 0
(moR? + 1) + myRi +magRe = 0 (2.55)

Their matrix form is
mX +kx =0 (2.56)

where

| ma+my moR | 2k 0 |
=R ng2+I}’ k_{o mggR]’ X_Lo} (2.57)
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Problem 19

<5
k k @

Figure 13

Two identical and uniform rods shown in Fig. 13, each of mass m and length [,
are joined together to form an inverse double pendulum. The pendulum is supported
by four springs, all of stiffness k, in such way that its vertical position (¢; = 0 and
q2 = 0) is its stable equilibrium position. Produce equation of small vibrations of the
pendulum about this equilibrium position.
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Problem 20
1 3 4 2
‘ I3 e
g -
I | 7 -
\ /\ s GJ, E
- 1— - -
[ T
R |
| | 4
\
Figure 14

The disk 1 of mass m; and radius R shown in Fig. 14, is fasten to the massless
and flexible shaft 3. The left hand end of the massless and flexible beam / is rigidly
attached to the disk 1. At its right hand side the particle 2 of ms is placed. Derive
equations for analysis of small vibrations of the system.
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Problem 21

Figure 15

A belt gear was modelled as shown in Fig. 15. The shafts are assumed to
be massless and their length the second moment of inertia and the shear modulus is
denoted by [, J, and G respectively. The disks have moments of inertia [, I5, and I3.
The belt is modelled as the spring of a stiffness k. Derive the differential equations
for the torsional vibrations of the system.
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Problem 22

Figure 16

In Fig. 16 the physical model of a gear box is presented. Derive equations for
the torsional vibrations of the gear box. The shafts the gears are mounted on are
massless.
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Problem 23

Figure 17

Fig. 17 shows a mechanical system. Link 7 of the system is motionless with
respect to the inertial system of coordinates XY. The links 2 and 3 are hinged to
the link 7 at the point O. The links 4 and 4 join the links 2 and & with the collar 6.
The spring 7 has a stiffness k£ and its uncompressed length is equal to 2[. The system
has one degree of freedom and its position may be determined by one generalized
coordinate . The links 4 5 and 6 are assumed to be massless. The links 2 and &
can be treated as thin and uniform bars each of length 2] and mass m.

Derive equations of the small vibration of the system about its equilibrium
position.
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Problem 24

A

Figure 18

Three beads, each of mass m are attached to the massless string shown in Fig.
18. The string has length [ and is loaded with the tensile force T. Derive equation of
motion of the beads
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Problem 25

Figure 19

On the massless string of length [ the ball of mass m and radius R is suspended
(see Fig. 19). Derive equation of motion of the system.
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Problem 26

Figure 20

Fig. 20 presents the physical model of a winch. The shafts of the torsional
stiffness kg and kg as well as the gear of ratio ¢ are massless. To the right hand end
of the shaft kg, the rotor of the moment of inertia I is attached. The left hand end
of the shaft k,; is connected to the drum of the moment of inertia I;. The rope is
modelled as a massless spring of the stiffness k. At its end the block of mass m is
fastened. The damper of the damping coefficient ¢ represents the damping properties
of the system.

Produce the differential equation of motion of the system.
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Solution

Figure 21

In Fig. 21 z, p,and ¢, are the independant coordinates. Since the gear of the
gear ratio as well as the shafts of stiffness k;; and k,, are massless the coordinates
that specify the position of the of the gear a; and as are not independent. They are
a function of the independent coordinates.

Let "o

i=—=— (2.58)
] aq
Application of the Newton’s law to the individual bodies yields equations of motion
in the following form.

mi = —kx+ Rky, (2.59)
Lo, = +kRx —kR%*p, — cR*@, — kg, + kao (2.60)
05&1 = —kslal + ksl(pl + F’f’l (261)
05(2 = —]{TSQOzQ + k82@2 — F?“Q (262)
Loy = —ksaps + koo (2.63)

Introducing 2.58 into the equations 2.61 and 2.62 one can obtain
0 = —]{751&1 + kslgpl + iFTg (264)
0 = —ksgi()él + ksz(p2 — FTQ (265)

Solving the above equations for a; we have
ks ks

| = Dt 2y (2.66)

ks + ksot?
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Hence, according to 2.58

ikslgol + i2]€82g02
kg1 + kgot?

(67) :iOél =

(2.67)

Introducing 2.66 and 2.67 into 2.60 and 2.63 one can get the equations of motion in
the following form

mi = —kx+ Rky,
7%1901 + iks%ﬁz

. . 2 2 .
ILip, = +kRx—kR*p, — cR°¢; — kspy + ks Fr T ha? (2.68)
. iks107 + i2ks2902
== _ks ks .
& 27 e ksl + ksZZ2
After standardization we have
mz-+cz+kz=0
where
'm0 0 0O 0 0
m = 0 L 0 |; c=|0 cR* 0 |; (2.69)
| 0 0 1532 0O 0 O
[k —kR 0 T
Z‘2 1k i2
k = | —kR kR®+fabas, —jfaber, | z=| ¢
0 — ks1ksoi ks1ksat ﬁ
L k51+k52i2 k51+k52i2 )
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Problem 27

\j

Figure 22

The semi-cylinder of mass m and radius R shown in Fig. 50 is free to roll
over the horizontal plane XY without slipping. The instantaneous angular position
of this semi-cylinder is determined by the angular displacement a. Produce
1. the equation of small oscillations of the semi-cylinder (take advantage of the
Lagrange’s equations)

Answer:

(Ie +mR* (14 55 — &)
where I = 3mR? —m (3
2. the expression for period of these oscillations.

Answer:
T — 27

ng(lfﬁ
(toem (1455 35
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Problem 28

4
I3 1 G
—_—
Figure 23

The two disks of moments of inertia I; and I5 are join together by means of
the massless shafts as is shown in Fig. 51. The dynamic properties of the shafts are
determined by their lenghts [/, the second moments of area J and the shear modulus
G. Produce the differential equations of motion.

2.2 ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM

The analysis carried out in the previous section leads to conclusion that the mathe-
matical model of the linear multi-degree-of -freedom system is as follows

mx + cx + kx = F(t) (2.70)

where

m - matrix of inertia

¢ - matrix of damping

k - matrix of stiffness

F(1)- vector of the external excitation

x- vector of the generalized coordinates
2.2.1 General case
In the general case of the multi-degree-of-freedom system the matrices ¢ and k do not
necessary have to be symmetrical. Such a situation takes place, for example, if the
mechanical structure interacts with fluid or air (oil bearings, flatter of plane wings
etc.). Since the equation 2.70 is linear, its general solution is always equal to the sum
of the general solution of the homogeneous equation x, and the particular solution
of the non-homogeneous equation x,,.

X = X4 + X, (2.71)

The homogeneous equation
mX+cx+kx=0 (2.72)
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corresponds to the case when the excitation F(¢) is not present. Therefore, its gen-
eral solution represents the free (natural) vibrations of the system. The particular
solution of the non-homogeneous equation 2.70 represents the vibrations caused by
the excitation force F(t). It is often refered to as the forced vibrations.

Free vibrations - natural frequencies- stability of the equilibrium position

To analyze the free vibrations let us transfer the homogeneous equation 2.72 to so
called state-space coordinates. Let

y =X (2.73)

be the vector of the generalized velocities. Introduction of Eq. 2.73 into Eq. 2.72
yields the following set of the differential equations of first order.

X =y
y = —m 'kx—m 'cy (2.74)

The above equations can be rewritten as follows
7= Az (2.75)

where

X 0 1

Solution of the above equation can be predicted in the form 2.77.

z = zge"" (2.77)

Introduction of Eq. 2.77 into Eq. 2.75 results in a set of the homogeneous algebraic
equations which are linear with respect to the vector z.

A —1r] 2o =0 (2.78)

The equations 2.78 have non-zero solution if and only if the characteristic determinant
is equal to 0.
I[A—1r]| =0 (2.79)

The process of searching for a solution of the equation 2.79 is called eigenvalue problem
and the process of searching for the corresponding vector zy is called eigenvector
problem. Both of them can be easily solved by means of the commercially available
computer programs.

The roots r, are usually complex and conjugated.

o =hntiw, n=1..N (2.80)

Their number N is equal to the number of degree of freedom of the system considered.
The particular solutions corresponding to the complex roots 2.80 are

Zn1 = eh"t(Re(ZOn) cos wyt — Im(zo,,) sin w,t)
Zny = €"(Re(zo,)sinw,t + Im(zg,) cosw,t) n=1..N (2.81)
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In the above expressions Re(z, ) and Im(z,,) stand for the real and imaginary part
of the complex and conjugated eigenvector z,, associated with the n'" root of the
set 2.80 respectively. The particular solutions 2.81 allow to formulate the general
solution that approximates the system free vibrations..

7z = [ZH, 719,221,292 731,232, ..... Zn1,Zp2, e ZN1, ZNQ] C (282)

As one can see from the formulae 2.81, the imaginary parts of roots r, represent
the natural frequencies of the system and their real parts represent rate of
decay of the free vibrations. The system with N degree of freedom possesses
N natural frequencies. The equation 2.82 indicates that the free motion of a multi-
degree-of-freedom system is a linear combination of the solutions 2.81.

A graphical interpretation of the solutions 2.81 is given in Fig. 24 for the
positive and negative magnitude of h,,.The problem of searching for the vector of the

0 AZ z
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Figure 24

constant magnitudes C is called wnitial problem. In the general case, this problem is
difficult and goes beyond the scope of this lectures.

The roots 2.80 allow the stability of the system equilibrium position to be
determined.

If all roots r,, of the equation 2.80 have negative real parts then the
equilibrium position of the system considered is stable.

If at least one root of the equation 2.80 has positive real part then
the equilibrium position of the system considered is unstable.

Forced vibrations - transfer functions

The response to the external excitation F(t) of a multi-degree-of-freedom system is
determined by the particular solution of the mathematical model 2.70.

mX + cx + kx = F(t) (2.83)

Let us assume that the excitation force F(t) is a sum of K addends. For the further
analysis let us assume that each of them has the following form

F* = FFcos(wt + %) (2.84)

To facilitate the process of looking for the particular solution of equation 2.83, let us
introduce the complex excitation force by adding to the expression 2.84 the imaginary
part.

fF = FFcos(wt + ¢F) +iFFsin(wt + ¢%) (2.85)



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 96

The relationship between the complex excitation f* and the real excitation is shown
in Fig. 25. According to Euler’s formula the complex excitation may be rewritten as

Im

%9
wt
Fok cost+ (PCI)( ) Re
k \
" ¢0 \
£k
l ot
R
wt v
Figure 25
follows
fk _ Ffei(wt—kcplg) _ Ffeicp’geiwt _ ffeiwt (286)

Here, f* is a complex number that depends on the amplitude and phase of the external
excitation. Introduction of Eq. 2.86 into Eq. 2.83 yields

mx + cx + kx = £, (2.87)
Now, the particular solution of Eq. 2.87 can be predicted in the complex form 2.88
x¢ = ae™! (2.88)
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Introduction of Eq. 2.88 into Eq. 2.87 produces set of the algebraic equations which
are linear with respect to the unknown vector a.

(—w’m+iwc+k)a=f, (2.89)
Its solution is
a=(—w’m+iwc+k) f, (2.90)

Therefore, according to Eq. 2.88, the response of the system x¢ due to the complex
force f is
x° = (Re(a) + i Im(a))(coswt + 7 sin wt) (2.91)

Response of the system x due to the real excitation F' is represented by the real part
of the solution 2.91.
x = Re(a) coswt — Im(a) sinwt (2.92)

Motion of the system considered along the coordinate z*, according to 2.92 is
2% = ¥ cos(wt + B) (2.93)

where

Im(a*)
Re(a*)

It is easy to see from 2.91 that the amplitude of the forced vibration z* is equal to the
absolute value of the complex amplitude o, and its phase 8* is equal to the phase
between the complex amplitudes a* and the vector e®*. This findings are presented
in Fig. 26.

The complex matrix

z¥ = \/Re(a*)? + Im(a*)2 B = arc tan

(2.94)

(—w?m +iwe + k) (2.95)

will be denoted by R(iw) and it is called matriz of transfer functions. It transfers,
according to 2.90, the vector of the complex excitation f,e™? into the vector of the
complex displacement x¢ = ae™?.

x° = ac™! = R(iw)f,e™" (2.96)

It is easy to see that the element R,,(iw) of the matrix of transfer functions represents
the complex displacement (amplitude and phase) of the system along the coordinates
z, caused by the unit excitation 1e™' along the coordinate z,. Example of three
elements of a matrix of the transform functions are presented in Fig. 27. The first
two diagrams present the real and the imaginary parts of the complex transform
functions whereas the last two present its absolute value (amplitude) and phase.
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transfer functions m/N (real parts)
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Experimental determination of the transfer functions
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Figure 28

In order to produce the transfer function between the coordinate x, and the coor-
dinate z, (see Fig. 28) let us apply force F,(t) along the coordinate x, and record
it simultaneously with the system response x,(t) along the coordinate x,. Fourier
transformation applied to these functions

+o0
F(iw) — / R ()t

—00

v (iw) = / ity (2.97)

—00

yields the Fourier transforms in the frequency domain z,(iw) and F,(iw). The am-
plitude of the complex functions z,(iw) and F,(iw)

(i) = /Re(wy(iw))2 + Im(w, (iw))?
[Fy(iw)] = \/Re(Fy(iw))? + Im(Fy(iw))? (2.98)
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represents the amplitude of displacement and force respectively as a function of the
frequency w. The corresponding phases are determined by the following formulae.

Im(z,(iw))
= t P
Pop = MR, (i0))
Im(F,(iw))
= t 2.99
Pro = HOMR(F, (iw)) (2:99)
These Fourier transforms allow the transfer function R,,(iw) to be computed.
R (i) = 22() (2.100)

F,(iw)

The above formula determines response of the system along coordinate z, caused by
the harmonic excitation Fj, along the coordinate x,.

Tp(iw) = Ryq(iw) F(iw) (2.101)

Since the system considered is by assumption linear, the response along the coordinate
x, caused by set of forces acting along coordinates N coordinates z,, according to
the superposition principle, is

Tp(iw) = _Z R, (1w) F,(iw) g=1..N (2.102)

q=1

Application of the above described experimental procedure to all coordinates involved
in the modelling (p = 1....N) allows to formulate the matrix of the transfer functions
R,,(iw).The relationship above can be rewritten in the following matrix form

x(iw) = Ry, (iw)F (iw) p=1...N, g=1..N (2.103)
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2.2.2 Modal analysis - case of small damping

In the following analysis it will be assumed that the matrices m, ¢ and k are square
and symmetrical. Size of these matrices is N x N where N is the number of the
system degree of freedom. If the vector of the external excitation F(¢) is equal to
zero, it is said that the system performs free vibrations. According to the above
definition the free vibrations are governed by the homogeneous set of equations

mX+cx+kx=0 (2.104)

Free vibration of the undamped system - eigenvalue and eigenvector prob-
lem

If the damping is neglected the equation of the free vibrations is
mX +kx =0 (2.105)

It is easy to see that
x = X coswt (2.106)

is a particular solution of the equation 2.105. Indeed, introduction of Eq. 2.106 into
2.105 yields
(—w’m + k)X coswt = 0 (2.107)

and the differential equation 2.105 is fulfilled for any instant of time if the following
set of the homogeneous algebraic equations is fulfilled.

(—w’m+ k)X =0 (2.108)

In turn, the above set of equations has the non-zero solutions if and only if its char-
acteristic determinant is equal to zero

|—w’m + k| =0 (2.109)

The above characteristic equation, for any physical system, has N positive roots with
respect to the parameter w?. Hence, the parameter w can take any of the following
values

twy, fws, fwsz, ... +w,, ....twy (2.110)

As one can see from Eq. 2.106, these parameters have the physical meaning only for
positive values. They represent frequencies of the system free vibrations. They are
called natural frequencies. The number of different natural frequencies is therefore
equal to the number of degree of freedom. For each of the possible natural frequencies
wy, the system of equations 2.108 becomes linearly dependent and therefore has infinite
number of solution X,,. Its follows that if X,, is a solution of Eq. 2.108, the vector

. X, (2.111)

where C,, is arbitrarily chosen constant, is solution of the Eq. 2.108 too. The vec-
tor X,, represents so called natural mode of vibration associated with the natural
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frequency w,. It determines the shape that the system must possess to oscillate
harmonically with the frequency w,,.

For example, if a beam with four concentrated masses is considered (see Fig.
29) the vector X,, contains four numbers

Xn = [X1n>X2naX3n>X4n]T (2112)
If the system is deflected according to the this vector and allowed to move with the

Y

Xgn = Xgp COSwn t

X2n X3n ]
4 @ ] ‘

— WUV

Figure 29

initial velocity equal to zero, it will oscillate with the frequency w,. There are four
such a natural modes and four corresponding natural frequencies for this system.
The problem of the determination of the natural frequencies is called eigen-
value problem and searching for the corresponding natural modes is called eigenvector
problem. Therefore the natural frequencies are very often referred to as eigenvalue
and the natural modes as eigenvectors.
Now, one can say that the process of determination of the particular solution

X, = X,, COS Wyt (2.113)
of the equation 2.105 has been accomplished. There are N such particular solutions.
In similar manner one can prove that

X, = X,, sinwy,t (2.114)

is a particular solution too. Since the solutions 7?7 and 2.114 are linearly independent,
their linear combination forms the general solution of the equation 2.105

N
X, = Z(San sinwyt + C, X, cos wyt) (2.115)

n=1

The 2N constants S, and C), should be chosen to satisty the 2/V initial conditions.
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Properties of the natural modes.

Each eigenvector has to fulfill the Eq. 2.108. Hence,

—wmX,+kX, = 0
—w? mX,,+kX,, = 0 (2.116)

Primultiplying the first equation by X” and the second equation by X’ one can get

—w2 XTI mX, +X kX, = 0
—w2 X'mX,, +XTkX,, = 0 (2.117)

Since matrices m and k are symmetrical
X'kX, = X'kX,, and X! mX, =X 'mX,, (2.118)

Now, primultiplying the first equation of set 2.117 by -1 and then adding them to-
gether we are getting
(w? — w2 )XTmX,, =0 (2.119)

n

Since for n # m (w? — w?) # 0,

X'mX,, =0 for n#m (2.120)

If n = m, since (w? — w?) = 0, the product XZmX,, does not have to be equal to

zero. Let this product be equal to \?
X"mX, = A2 (2.121)
Division of the above equation by A\? yields

1 1
—XT)\m(—
Dm(-

(5 X,) =1 (2.122)

But according to 2.111 5 X is eigenvector too. Let us denot it by =,

1
n=—X 2.12
- (2123

[1

The process of producing of the eigenvectors E, is called normalization and the
eigenvector E,, is called normalized eigenvector or normalized mode. According to
2.122,

(11

'm=, =1 (2.124)
2.124

Taking into account Eq’s 2.120 and 2 one can conclude that

"mE,, = { 0 if nzm } (2.125)

1 if n=m

(1

It is said that eigenvectors E,, and =,, that fulfill the above conditions are orthogonal
with respect to the inertia matrix m.
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Owning to the above orthogonality condition, the second of the equations

2.117 yields
Tk=,, :{ 0 if n#m } (2.126)

w: if n=m

(1

It means that the normalized modes are orthogonal with respect to the matrix of
stiffness.

The modal modes E,, can be arranged in a square matrix of order N known
as the modal matriz 2 .

E=[E,5,....E,,......B5] where N is number of degrees of freedom (2.127)

1

ETkE = w? (2.128)

where w? is a square diagonal matrix containing the squared natural frequencies w?

W= D (2.129)

Normal coordinates - modal damping

Motion of any real system is always associated with a dissipation of energy. Vibrations
of any mechanical structures are coupled with deflections of the elastic elements.
These deflections, in turn, cause friction between the particles the elements are made
of. The damping caused by such an internal friction and damping due to friction of
these elements against the surrounding medium is usually referred to as the structural
damping. In many cases, particularly if the system considered is furnished with
special devices design for dissipation of energy called dampers, the structural damping
can be omitted. But in case of absence of such devices, the structural damping has
to be taken into account. The structural damping is extremely difficult or simply
impossible to be predicted by means of any analytical methods. In such cases the
matrix of damping c (see Eq. 2.104) is assumed as the following combination of the
matrix of inertia m and stiffness k with the unknown coefficients p and &.

¢ =pm+-rk (2.130)

This coefficients are to be determined experimentally.
It will be shown that application of the following linear transformation

(1]

n (2.131)

X =
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to the mathematical model
mX + cx + kx = F(t) (2.132)

results in its decoupling. Indeed, introduction of the transformation 2.131 into 2.132
yields
mZi) + cEn + kEn = F(t) (2.133)

Primultiplying both sides of the above equation by 27 we obtain
E'mEd) + ET (um-+rk)EN + ETkEn = ETF(?) (2.134)

Taking advantage of the orthogonality conditions 2.128 we are getting set of indepen-
dent equations
1% + yn + win = ETF(?) (2.135)

where
1 - the unit matrix
w? and v = (pl+rw?) - diagonal matrices
Hence, each equation of the above set has the following form

B, + 26nwat), +win, = ZCF() n=1,2..N (2.136)

The coefficients ¢,, = (u+rw?) /2w, are often referred to as the modal damping ratio.

Solution of each of the above equations can be obtained independently and
according to the discussion carried out in the first chapter (page 30, Eq. 1.46) can
be written as follows

N, = € Oy sinwgnt + Clp cOSwWant) + Nom (2.137)

where wg, = wpy/1—¢2 and Ny, Stands for the particular solution of the non-
homogeneous equation 2.136. Problem of determination of this particular solution is
considered in the next section.

Introduction of the solutions 2.137 into equation 2.131 yields motion of the
system along the physical coordinates x.

Response to the harmonic excitation - transfer functions

Let us solve the Eq. 2.136 for response of the system due to the harmonic excitation
along coordinate z,. In this case the right hand side of the equation 2.136 takes form

ETF(t) =E) | Fet | =5, Fe™ (2.138)

Hence .
B + 26wty + Wi, = Eg byt n=1,2,...N (2.139)
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Therefore =
- ~anq Wt p=1,2,..N 2.140
T w2 —w? + 2gnwnwie " T ( )
Since
x =En (2.141)
response along coordinate z,,
N
‘ Zon=an
_ wt pn—qn-=- q 2142
T =€ nz:; w2 — w? + 26, w,wi ( )

transfer function between coordinate p and the others

N

Lp Spn=qn =12
= E 5 5 . =1,2,.......
F et Wi —w + 26 Wwnwt

. . xp N EpnZon((w?—w?)—2¢,wpwi)
RPQ(ZW) T Fyetwt T Zn:1 (W2 —w?)24+4¢2 w2 w? -
2

S (N T

(w2 —w?)2+462 w2 w2 (w2 —w?)24+462 w2 w2

Zf w = Wn qu(iW) — Eanqn(ng _ W2) _Eanqni

462 w2 w? 26 pWnw

Determination of natural frequencies and modes from the transfer func-
tions

The transfer functions R,,(iw) can be easily obtained by means of a simple exper-
iment (see page 100). They allow the natural frequencies, natural modes and the
modal damping to be identified. It can be seen from the equation 2.145 that the
real part of the transfer function R,,(iw) is equal to zero for the frequency equal
to the natural frequency w,. Hence the zero-points of the real part of the transfer
functions determine the system natural frequencies. From the same equation it is
apparent that the imaginary parts corresponding to w = w,, and measured for differ-
ent q=1,2,....... N, but for the same p yield the natural modes with accuracy to the

2
_ 2§nwn

SEpn

constant magnitude C' =
Eng = CIm(Ry,(iwy,)) ¢=1,2,....... N (2.146)

Alternatively, The natural frequencies and the natural modes can be extracted from
diagrams of the magnitudes and phases of the transfer function.

The phase ¢, since the real part of the transfer function is equal to zero for
w = wy, is equal to £90°

Iin (R (i)
Re (Ryq (i)

This property allows the natural frequencies to be determined.

©,, = arctan = *arctan co = £90° (2.147)
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Since the real part of the transfer function is equal to zero for w = w,, its
modulus is equal to the absolute value of imaginary part.

| Ry, (iw)| = 2;%%5% (2.148)
Hence
Eng = C|Rpg(iw)| ¢=1,2,.....N (2.149)
where ) )
C = |2 (2.150)
=

Signe of the idividual elements =,,, of the mode n is deremined by signe of the corre-
sponding phase ¢, = £90°

An example of extracting the natural frequency and the corresponding natural
mode from the transfer functions is shown in Fig. 30

transfer functions m/N (modulus)
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Figure 30

The demonstated in this chapter approach for solution of the vibration prob-
lems is referred to as modal analysis.
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2.2.3 Kinetic and potential energy functions - Dissipation function

In this section the kinetic energy function, the potential energy function and the
dissipation function are formulated for a linear system governed by the equation

mX + cx + kx = F(t) (2.151)

where the matrices m, ¢ and k are symmetric and positive definite matrices.

Kinetic energy function

Let us consider function
T==x"mx %x={iy,....dprin}’ (2.152)

Performing the matrix multiplication we are getting
m=N .
2m=1 MimTm

n=N m=N
(i:n mnmscm)(z.mg)

If this function is positive definite (is always positive and is equal to zero if and only
if all variables i, are equal to zero) the corresponding matrix m is called positive
definite matriz.

If T is the kinetic energy function, according to Lagrange’s equations should

be
T
d (0T oT L
pr (8xn) el {mn1, .. Mpp. My} T (2.154)
Iy

Let us prove that the function 2.152 fulfills the requirement 2.154.

da(ory ot
dt \ 0z, ox,,

= —|3|{0,0.1.0} SN Mo {81 T BN M =

2om=1 Mimim My

QL
| —

d 1 m=N m=N
= =13 > M + Y mmnatm)) (2.155)
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Since Mym = Mopn,

d (0T\ OT d (1.2 d ("=
i}
m=N
= Z Mo Tm = {Mp1, e Mipgpyeeenenr. MmN} S n
m=1 | ..
In

Now we may conclude that the function 2.152 is the kinetic energy function if the
matrix m is symmetric and positive definite.

Potential energy function

Let us consider function
1
V= §kax X ={T1e T zn}’ (2.157)

Performing the matrix multiplication we are getting

m=N
2om—1 KimTm

................. n=N m=N
1 o _ 1
V = §{x1,x2..xn..x]\/} Zm:ivknm:vm =3 E (mn g knmxm>2.158)

.................. m=1

2=t knmm

n=N m=N

1

n=1 m=1

If V' is the potential energy function, it must be positive definite and according to
Lagrange’s equations should fulfills the following relationship

T1
g;/:{knl, ...... R RO (2.159)
TN

Let us prove that the function 2.157 fulfills the requirement 2.159.

222\7 Rimm K1n
SXL = % {0,0..1..0} Z%jlvknmxm +{x1, ..ty 2N} k:mn =
SN Bt -
= % "ij Erim@m + mz__i: kmnxm> (2.160)
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Since knm = kmn

T

8‘/ 1 m=N m=N

o = 52 m; Ko T = m; K@ = {kn1, oo knmeeekinny Y . T (2.161)
TN

Now we may conclude that the function 2.157 is the kinetic energy function if the
matrix k is symmetric and positive definite.

Dissipation function

It is easy to notice, having in mind the previous consideration, that the function

1
D=—%xTcx X={@1, . ..ipeciin}’ (2.162)

T

oD

T {Cn1y e Crumpesnnnnn CaN} R T (2.163)
TN

It follows that if the matrix of damping is symmetrical and positive definite, such a
damping can be included in the Lagrange’s equation in the following way
d (0T or ov. 90D
— — | — + + =

= Q. (2.164)

The function D is called dissipation function. It must be noted that the dissi-
pation function does not represent the dissipation energy.

The damping forces, in a general case, are not conservative and have to be
included in the generalized force @),,.
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2.2.4 Problems

Problem 29
]
k
J> E, ma
77@77 2 2 774;77
2 ¢ 2
A
y
Figure 31

The point A of the system shown in Fig. 31 moves according to the following
equation

y = Ay sin(fit) + Agsin(fot) (2.165)
where A; and Ay are amplitudes of this motion and f; and f, are the corresponding
frequencies.

Produce

1. the differential equations of motion

2. the natural frequencies

3. the steady state motion of the system due to the kinematic excitation y

4. the exciting force at the point A required to maintain the steady state
motion

5. the reaction force and the reaction moment at the point B. .

Given are:

Lh=1m E;=02-102N/m? J =1-10"%m* m; = 10kg

lo=2m FE;,=02-10"2N/m? J,=1-10"%m* my = 20kg

k = 10000N/m

c¢=100Ns/m

Ay =0.0lm  f; = 30rad/s

Ay =0.0lm  fo =3brad/s
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Solution
1. The differential equations of motion
g
k Y1
J, E, m3
WQT 2 2 77%77
2 Cyy2 2
A
y
Figure 32

Utilization of the Newton-Euler approach for modelling of the system shown
in Fig. 32 allows to develop its mathematical model.

mith = —kiyi — kyi + kya
Malia = —kayo — kya + ky1 — o + ¢y (2.166)

Its matrix form is

lml %Hg;%lo cHiiHT kl%“i]ﬂ%] (2.167)

or shorter

my + cy + ky = F(¢) (2.168)
where
[my 01 J00] ., [k+k -k ] To
m—[ 0 mgl’ C_lO c}’ k_l —k k—i—l@]’ F(t)_{cyl
(2.169)

Taking into consideration Eq. 2.165, the excitation cy is
cy = cAy fi cos(fit) + cAa facos(fat) = ay cos(fit) + ag cos( fat) (2.170)

where

a = cAifi;  ax =cAsf
Introduction of Eq. 2.170 into the equation of motion 2.168 yields

my +cy + ky = F,(t) + Fa(t) (2.171)
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where

Fi(t) = {al Co(s)( Aib) 1 » Falt) = [ag Cog( ft) 1 (2.172)

For the given numerical data the stiffness of the beam 1 at the point of attachment
of the mass 1 is

3E\J;  3-02-102%-1-1078

= 6000N/m (2.173)

The stiffness of the beam 2 at the point of attachment of the mass 2 is
_ 48E,J, 48-0.2-10"%-1-107°

by = —p— = > — 12000N/m (2.174)
2
Hence
[ 07 __fo 07 -, _[ 16000 —10000
1o 20| "o 100| 7| —-10000 22000
0 0 (2.175)
Fit) = [ 30 cos(30t) ] )= | g cos(35t) ]

2. Free motion - the natural frequencies

To analyze the free vibrations let us transfer the homogeneous equation 2.171
to the state-space coordinates. The substitution

w=y (2.176)

results in the following set of equations

z=Az (2.177)
where
0 0 10
[y [ o O R 0 01
‘= [w} A_[—m_lk —m~lc |~ | —1600.0 1000 0 0 (2.178)
500 ~1100 0 —5

Solution of the eigenvalue problem yields the following complex roots

wp = —1.6741 £ 24.483:
wy = —0.8259 £ 45.734: (2.179)

For underdamped system the imaginary part of the above roots represents the natural
frequency of the damped system. The real part indicates the rate of decay of the free
vibrations.
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Solution of the eigenvector problem produces the following complex vectors.

[ —1.6392 x 1072 ] [ —1.4508 x 102
Reg _ | —L7637x10°2 g _ | 13213 x 10
¢Zor = 38263 ) %o = —. 37705
i . 35302 | i —. 40969
[ 1.9755 x 1072 [ —6.049 x 1073
—1.0154 x 1072 1.477 x 1073
Rezo, = .26033 » Imzez = .90847 (2.180)
| —5.9162 x 102 | | —.46561
According to 2.81, the particular solutions are
Z11 = hlt(Re(zm) coswit — Im(zgy) sinwyt) =
—1.6392 x 1072 ] —1.4508 x 1072
_1.6741¢t —1.7637 x ].072 —1.3213 x 1072 .
= e 138963 cos 24. 483t — _ 37705 sin 24. 483t
35302 —. 40969
z15 = "' (Re(zo1)sinwit + Im(zo; ) coswit) =
[ —1.6392 x 1072 | —1.4508 x 1072
1 erate —1.7637 x 1072 —1.3213 x 1072
= e 138963 sin 24. 483t + — 37705 cos 24. 483t
35302 —. 40969
zo1 = €' (Re(zo2) coswat — Im(zgy) sinwyt) =
1.9755 x 1072 —6.049 x 1073
—1.0154 x 1072 1.477 x 1073
__—0.8250t .
= e 96033 cos 45. 734t — 90847 sin 45. 734t
i —5.9162 x 10_2 —. 46561
zos = €' (Re(zgg)sinwat + Im(zgg) coswayt) =
1.9755 x 1072 —6.049 x 1073
—1.0154 x 1072 1.477 x 1073
—0.8259¢ .
= e 96033 sin45. 734t + 90847 cos 45. 734t
| —5.9162 x 1072 | —. 46561
(2.181)

The two first rows in the above solutions represent displacement along the coordinates
y1 and ys respectively. The two last rows represents the generalized velocities along
the coordinates y; and y,. Example of the motion along the coordinate 3, associated
with the particular solution z1; (y111) and za; (Yo11)

% cos 24. 483t + 1.4508 x 102 sin 24. 483t)
sin45. 734t) (2.182)

e HOMI(1,6392 x 10~
e” 8299 (1,9755 x 1072 cos 45. 734t + 6. 049 x 1073

Y111

Y211

are presented in Fig 33.
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3. The steady state motion of the system due to the kinematic excitation

According to the given data, motion of the point A is

y = 0.01 - sin(30 - £) + 0.01 - sin(35 - £) (2.183)

0.014

|
ov\/ vv

-0.02+

o

Figure 34

The time history diagram of this motion is given in Fig. 34
The particular solution y, which represents the forced vibration, according to
the superposition rule, is

y=Yy1tYy2 (2.184)

where y; is the particular solution of the equation 2.185

my +cy + ky = F,(t) (2.185)
and ys is the particular solution of the equation 2.186

my + cy + ky = F,(t) (2.186)

To produce the particular solution of the equation 2.185 let us introduce the complex
excitation

) B 0 B 0 L0 e
Fi(t) = l ay cos(fit) + iaq sin( f1t) ] a { arelt ] N [ a ] =

= Fypett = l 300 ] e30t (2.187)

Hence the equation of motion takes form
my + cy + ky = F e (2.188)

Its particular solution is '
y§ = y5oe (2.189)
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where
Yio = (—fim+ific+k)'Fy=
-1
(100 70 0 16000 —10000 0]
- (30 l 0 20| %% 0 100 | T | 10000 22000 30 |
l —.00384 — .00112: }

—2.688 x 1073 — 7.84 x 10~ (2.190)

The motion of the system, as the real part of 2.189 is

B —.00384 —.00112i 301
yi = Re ({ —2.688 x 107% — 7.84 x 1074 ] ¢ >

- —.00 384 cos 30t + .00 112 sin 30t
o —2.688 x 1073 cos 30t + 7.84 x 10~*sin 30t

Similarly, one can obtained motion due to the excitation Fy(t)

Yo = (—f22m+if2c+k)_1F20:

_ (352 10 0 1 35 0 0 n 16000 —10000 1\ [ 0 B
n 0 20 “1 0 100 —10000 22000 35 |

—3.1546 x 1073 — 3.7855 x 10~%
- l —1.183 x 1073 — 1.4196 x 10~ ] (2.191)
Hence
_ —3.1546 x 103 — 3.7855 x 1074 | 35,
Y2 = e 1183 %1073 —1.4196 x 1074 | ©
[ —3.1546 x 1073 cos 35¢ + 3. 7855 x 10~*sin 35¢ (2.102)
- —1.183 x 103 cos 35t + 1.4196 x 10~*sin 35¢ :

The resultant motion of the system due to both components of excitation is

Y=Yty
- —.00384 cos 30t 4+ .00 112 sin 30t
- l —2.688 x 1073 cos 30t + 7.84 x 10~*sin 30t
—3.1546 x 1073 cos 35t + 3. 7855 x 10~*sin 35¢
{ —1.183 x 102 cos 35t + 1. 4196 x 10~*sin 35¢ }

—.0038 cos 30t + .0011sin 30t — 3.15 x 1073 cos 35t + 3. 78 x 10~ sin 35¢ }

_|_

—2.6x1073¢cos30t+ 7.8 x 1074sin30t — 1.1 x 103 cos 35t + 1.41 x 10~ *sin 35t

(2.193)

This resultant motion of the system along the coordinates y; and y,, computed
according to the equation 2.193, is shown in Fig. 35 and 36 respectively.
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4. The exciting force at the point A required to maintain the steady
state motion

43

1y

Figure 37

To develop the expression for the force necessary to move the point A according
to the assumed motion 2.183, let us consider the damper ¢ shown in Fig. 37. If the
point A moves with the velocity ¢ and in the same time the mass my moves with the
velocity 1., the relative velocity of the point A with respect to the mass ms is

V=1 — i (2.194)

Therefore, to realize this motion, it is necessary to apply at the point A the following
force

Fa=c(y—1e) (2.195)
Hence, according to the equation 2.183 and 2.193 we have

Fy = 100(< (0.01 - sin 30t + 0.01 - sin 35¢) +
—2(—2.6-107% cos 30t + 7.8 - 10~* sin 30+
—1.1-10"3cos 35t + 1.4 - 10~*sin 35t)) =
= 27.648 cos 30 + 34. 503 cos 35t — 8. 064 sin 30t — 4. 1405 sin 35¢[N]

(2.196)

Diagram of this force is presented in Fig.38
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Figure 38

5. The reaction force and the reaction moment at the point B.

s)
Il \]]_ El
I e —
M ~~
B i)ﬂ
Rp
Figure 39
According to Fig. 39
RB — P
i (2.197)

where P is dependent on the instantaneous displacement y;. This relationship is
determined by the formula 2.173

3B, 3-02-102-1-10-8
B NT 13
1

The motion along the coordinate y; is determined by the function 2.193

P =k = = 6000y, (2.198)
y1 = —.0038 cos 30t +.00 11 sin 30¢ — 3. 15 x 10~ cos 35t +3. 78 x 10 *sin 35¢ (2.199)
Hence
Rp=6000 (—.00 38 cos 30¢+.00 11 sin 30t—3. 15x 10~ cos 35¢ 4- 3. 7810~ * sin 35¢)

Mp=6000-1- (—.00 38 cos 30¢+.00 11 sin 30t—3. 15x 10~° cos 35¢t+3. 78x 10™* sin 35¢)
(2.200)
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Problem 30

The link 7 of a mass my, shown in Fig. 40, can move along the horizontal
slide and is supported by two springs & each of stiffness k. The ball 2 of mass ms
and a radius r is hinged to the link 7 at the point A by means of the massless and
rigid rod 4. All motion is in the vertical plane. The equation of motion, in terms of
the coordinates x and ¢ (see Fig. 41) have been formulated in page 81 to be

mi + kx = 0 (2.201)

where

| mu+me moR 12k 0 |z 2 4
R mﬂ¥+1y k_{o me}’X_[w}’[_5mﬂ

(2.202)
At the instant ¢ = 0, the link 7 was placed to the position shown in Fig. 42 and
released with the initial velocity equal to zero.
For the following data:

mp = 2 kg

my =1 kg
R=01m
r=.05m

k = 1000 N/m
a=0.01 m
Produce:

1. the natural frequencies of the system

2. the normalized natural modes

3. the differential equation of motion in terms of the normal coordinates

4. the equation motion of the system along the coordinates = and ¢ due to
the given initial conditions.
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Solution
1. The natural frequencies and the natural modes

According to the given numerical data the moment of inertia of the ball, the
inertia matrix and the stuffiness matrix are

2
I = 5-1-0.05220.001 kgm?

[2+1 1.01 30 .1
"o {1'0-1 1-0.1%2 4+ 0.001 } - l 1 ,011] (2.203)
i« — [1000 0 ~ [ 1000.0 ©

10 1-10-0.1 | — 0 1.0

According to 2.108 (page 102) one can write the following set of equations
(—w’m+k)X =0 (2.204)

where w stands for the natural frequency and X is the corresponding natural mode.
Hence for the given numerical data we are getting

R ] (8] 16

— 1w? —011w2+1.0 | | ® 0 (2:205)

This set of equations has non-zero solution if and only if its determinant is equal to
zero. Hence the equation for the natural frequencies is.

—3.0w? +1000.0 —.1w?
— 1w? —.011w? 4+ 1.0

] ‘ =.023w} — 14.0w? +1000.0 =0 (2.206)

Its roots:
[ 22.936 —22.936 9.0913 —-9.0913 }

yield the wanted natural frequencies
w; =9.0913 wy = 22.936 [s7] (2.207)

For w, = w; = 9.0913 the equations 2.205 become linearly dependent. Therefore,
one of the unknown can be chosen arbitrarily (e.g. X; = 1) and the other may be
produced from the first equation of the set 2.205.

X, =1
—3.0X w3 + 1000.0X; — . 1wi®; = 0 (2.208)
1
d, = ———— —3.0-9.092 4+ 1000.0) = 90.
! T oooiE 30009+ 000.0) = 90.99

These two numbers form the first mode of vibrations corresponding to the first
natural frequency w;.Similar consideration, carried out for the natural frequency
wy = 22.936,yields the second mode.

Xy =1
1

— _ | — . 2 -
By = oo (3.0 22,9367 +1000.0) = ~10.991 (2.209)
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Now, one can create the modal matrix

1 1
X=X, Xa] = l 90.99 —10.991 ] (2210)

In this case the modal matrix has two eigenvectors X; and Xs.

1 1
X1 = { 90.99 } X2 = { ~10.991 } (2211)

2. Normalization of the natural modes

According to 2.121 the normalization factor is
X 'mX, = \? (2.212)
Hence
Al=[1 90.99 ] {310 .611] {50-991 =112.27

A1 = V112.27 = 10. 596 (2.213)

Division of the eigenvector X; by the factor A\; yields the normalized mode =;.

— 1 1 9.4375 x 1072
' 10.596 { 90.99 } B { 8.5872 } (2214)
Similar procedure allows the second normalized mode to be obtained
2 _ 3.0 .1 1 B
A=[1 —10.991 | l 1 o011 ] [ 10,991 1 = 2.1306
A2 = V2.1306 = 1.4597
= 1 1 | .68507
T2 1.4597 { ~10.991 } B { —7.5296 } (2215)
These two vectors forms the normalized modal matrix =.
—_ 9.4375 x 1072 . 68507
- [ 8.5872 —7.5296 ] (2.216)

The normalized eigenvectors must be orthogonal with respect to both the inertia
matrix and the stiffness matrix. Indeed.

"m

(1]
(1]
|

~[9.4375 x 107*  8.5872 3.0 .1 9.4375 x 1072 . 68507
N 68507 —7.5296 .1 .011 8. 5872 —7.5296

= l (1] (1) 1 (2.217)



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 126

~ [9.4375x 1072 8.5872 1000 0 9.4375 x 1072 . 68507
68507 ~7.5296 | | 0 1-10-0.1 | | 8.5872 —7.5296

_[82.647 0 [ (9.091) 0 C[w? oo

- [ 0  526.02 } - [ 0 (22.935)° ] a [0 w} (2218)

3. The differential equation of motion in terms of the normal coordinates

Introducing the substitution 2.131

(1

n (2.219)

X =

that in the case considered has the following form
X N PO 771
l o ] —Bn= { } (2.220)

2
into 2.201 and premultiplying them from the left hand side by Z7 we are getting the
differential equations of motion in terms of the normal coordinates 7).

(11

(E"TmE)H+(E'kE)n =0 (2.221)
Taking advantage of the orthogonality conditions, the equations of motion are of the
following form
10]. (9.091) 0
=0 2.222
[o 1}’”{ 0 (22,9352 | " (2.222)

or

i +(9.091)%n, = 0
iy 4 (22.935)%n, = 0 (2.223)

The general solution of the above set of the differential equations, according to 1.36
is

Vo1 .
N, = ——sinwyt + 1y coswit
w1
Vo2 .
ny = —sin wat + 1gg COS Wat (2.224)
2

Where 7y, and 7y, stand for the initial position whereas vy; and vge stand for the
initial velocity of the system along the normal coordinates. These initial conditions
must be formulated along the normal coordinates. It can be obtained by transforming
the initial conditions from the physical coordinates to the normal coordinates.

Mo | = Xo] o fa] [ 1142 1039 0.01
e | = | ® | 7 |0] 7| 13024 —14313x10°2 || 0

01142
- { 1.3024 x 1072 } (2.225)
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Vo1 . 0
Vo2 - 0
Introduction of the above initial conditions into the equations 2.224 results in motion
of the system along the normal coordinates

(2.226)

N, = Mo coswit = .01142 cos9.091¢
Ny = Ty coswat = 1.3024 x 1077 cos 22.935¢ (2.227)

4. The equations of motion of the system along the coordinates x and ¢

To produce equation of motion along the physical coordinates, one has to
transform the motion along the normal coordinates beck to the physical ones. Hence,
using the relationship 2.219, we are getting

o |7 8.5872 —7.5296 1.3024 x 1072 cos 22.935¢

_ 1.0778 x 1072 c0s 9. 091¢ 4+ 8.9224 x 1073 cos 22. 935¢
- 9.8066 x 1072 ¢c0s9.091t — 9. 8066 x 1072 cos 22. 935t

lX } = l 9.4375 x 1072 . 68507 ] l 01142 c0s 9.091¢ 1 _

(2.228)

This motion is presented in Fig. 43 and 44
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Problem 31

a—

1

Figure 45

The rigid beam 1 of mass M, length L and the moment of inertia about
its point of rotation [4, is supported by means of the spring of stiffness £ and the
damper of the damping coefficient ¢ as shown in Fig. 45. The beam 2 is massless
and the Young’s modulus F and the second moment of area .J determine its dynamic
properties. Its end D is fixed and the particle 3 of mass m is attached to the end C.

Derive an expression for the fixing moment and the fixing force at the point
D due to the exciting force F' that is applied to the system at the point B.
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Problem 32

| | []°
S1 S a
k1 (o} kz
N | ) S R
A
[ |.|G "
2
mlo ©1 @J O " m lop
F coswy t k R coswot

— /\/\/\/\
Figure 46

The two rods, 1 and 2, are suspended in the vertical plane as shown in Fig. 46.
Their mass and their moment of inertia about their points of rotation are respectively
ma1, Io1, and mg, Ips. These rods are connected to each other by means of springs
of the stiffness k, k1, ko and as well as the damper of the damping coefficient c¢. The
centres of gravity of these rods are denoted by GG; and G5 respectively. Vibrations of
the system are excited by the two harmonic forces of amplitudes Fi, F5 and frequencies

wy and ws.
Produce
1. the differential equation of the small vibrations of the system in the matrix form
Answer:
Mx+Cx+Kx=F ) ) \ , ,
| da 0 | | ca®  —ca® | | kia® + kb* +mags: —kb
M= 0 Ip |’ C= —ca® ca® |’ K= —kb? kaa? + kb% 4+ magss
N S _ | Fab 0
x—l%}, F—[ 0 coswit + _Flecoswﬂ
2. the expression for the forced vibrations of the rods
Answer:
X=X;+ X,
X - particular solutionof equation Mx + Cx + Kx = [ ng coswit
X, - particular solutionof equation Mx + Cx + Kx = 2 b } coS wat
—1I'3

3. the expression for the dynamic reaction at the point A.
Answer:
Ra = Poaks; ®, - the lower element of the matrix X
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Problem 33
-t b B
1
|
Ly
g
C
A
ki

Figure 47

The rigid beam 1 (see Fig. 47) is hinged at the point A and is supported at
the point C' by means of the spring of stiffness k; and the damper of the damping
coefficient c¢;. Its mass and its moment of inertia about A are m; and I4 respectively.
The motor 3 is mounted on this beam. It can be approximated by a particle of the
mass M that is concentrated at the point GG that is located by the dimensions h and
a. The rotor of this motor rotates with the constant velocity w. Its mass is equal
to m and its unbalance is pu. To attenuate the vibrations of the beam the block 2
of mass my was attached. The damping coefficient of the damper between the beam
and the block is denoted by ¢y and the stiffness of the supporting spring in denoted
by ]{72.

Produce
1. the differential equation of motion of the system and present it in the standard
matrix form.

Answer:

Mx+Cx+Kx=F ) , )
M:{IA—FM(h +a*) O ]; C:{clb + coa —CQG]; K:lklb 0 }

0 o —C2a Cy 0 kg ’

2. /12 L o2
x:lj}; F:{muw h+alcoswt
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a - the angular displacement of the beam1; x - the linear displacement of the block
2
2. Produce the expression for the interaction forces at the point A and D.
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Problem 34

Figure 48

Three uniform platforms each of the length [, the mass m and the moment
of inertia about axis through its centre of gravity I; are hinged together to form a
bridge that is shown in Fig. 48. This bridge is supported by means of two springs
each of the stiffness k. This system has two degree of freedom and the two generalized
coordinates are denoted by o and 3. There is an excitation force F' applied at the
hinge C. This force can be adopted in the following form

F = F,coswt

Produce:
1. the differential equations of motion of the system and present them in the standard
form

Answer:
Mx + Kg( = F1
2 = 10 « 0
— 3 6 2. — 2. — . —
M {_% glmhK [Ollkl,x [5]7]? [Fol]coswt
2. the equation for the natural frequencies of the system

Answer:
K—-1w,| =0
3. the expression for the amplitude of the forced vibrations of the system
Answer: A
2 -1 0 —
X =[-w*M + K] l o coswt = | o

4. the expression for the interaction force between the spring attached to the hinge
B and the ground

Answer:
R = Akl coswt
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Problem 35
1 - L
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Figure 49

Figure. 49 shows the physical model of a trolley. It was modelled as a system
with two degree of freedom. Its position is determined by two generalized coordinates
x and . The moment of inertia of he trolley about the point A is denoted by I4 and
its mass by m;. The dynamic properties of the shock-absorber are approximated by
the spring of stiffness k and damper of the damping coefficient c. Mass of the wheels
2 are denoted by m and the stiffness of its tire is k;. Motion of the trolley is excited
by roughnees of the road. It causes motion of the point B according to the following
function.

y = Asinwt

Produce:
1. the differential equation of motion of the system
2. the equation for the natural frequencies of the system
3. the expression for the amplitudes of the steady state vibration of the system
4. the expression for the amplitude of the interaction force between the tire
and suface of the road..
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Problem 36
y
A
C3 ks 3
mg n 2
r 4
my, |2
ko 1
ki
o my °
B
Figure 50

In Fig. 50 the physical model of a winch is shown. The blocks 1 and 3 are
rigid and their masses are respectively m; and ms respectively. The rigid pulley 2
has radius r, mass my and the moment of inertia about its axis of rotation I5. The
elastic properties of the rope 4 are modeled by two springs of stiffness k; and k5. The
point A moves with respect to the axis y according to the following equation.

Y = acoswt

Produce:
1. the differential equation of motion of the system and present it in the following
matrix form.

Mx+Cx+Kx=F
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Answer:
my 0 0 cc 0 0
M= 0 Mo + M3 0 ; C= 0 C3 0
0 0 Iy 0 0 O
lfl —lfl —kfl’l" 0 T
K=| —ki ki+ko+ks kir—kor F=| aks | coswt; x=| a9
—]{317" ]{71T — ]{727" (l{?l + kQ) 7”2 0 (2

21 - the linear displacement of the block 1

xo - the linear displacement of the pulley 2 and the block 3

© - the angular displacement of the pulley 2

2. the expression for the amplitudes of the forced vibrations of the system
Answer:

The particular solution x, of the equation M% + Cx + Kx = F

The first element x,; of the matrix x, represents displacement of the block 1

3. the expression for the interaction force at point B.
Answer

RB = Cli‘pl
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Problem 37

I
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T ki ko ks
Figure 51

Figure 51 shows the physical model of a compressor. The disks of moment of
inertia I, I, and I3 are connected to each other by means of the massless shafts that
the torsional stiffness are k1, ko and k3 respectively. The shaft k; is connected to the
shaft ks by means of the gear of ratio i = D;/D,. There is a torque T3 applied to the
disk I5. It can be approximated by the following function

T3 =T coswt

Produce:
1. the differential equation of motion of the system and present it in the following
matrix form.

Mx+Cx+Kx=F

2. the expression for the amplitudes of the forced vibrations of the system
3. the expression for the toque transmitted through the shaft k1.
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Solution
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Figure 52

T3

To produce the equations of motion of the system one may split it into five

rigid bodies (Newton approach) and write the following set of equations

5Ligy
0

0

I,
I35

where Iy Fy; stand for the interaction forces between the rear D; and Ds.

—k1oy + k1o

D
—kipn + ki + 1171271

D
'—k2¢224‘k2¢2—‘55rzf

— (ko 4 k3)pq + kapgg + kay
_k3903 + k3§02 + T3

In the above equations not all variables are independent.

P9 = 1Py

Hence the equations can be rewritten as follows

Ligy
0

0

12,
T304

—kipy + kippy

D

—k1p11 + k1py + F1271
, D
_k22§011 + k2()02 - F2172

_(k2 + k3)902 + Koty + k33
—ksps + kgpy + T

According to the third Newton’s law we have

F12:F21

(2.229)

(2.230)

(2.231)

(2.232)
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Hence the second and third equation yields

2 2 .
Fip = D, (krpyy — krpy) = D, (—koipyy + katpy) = Fiy (2.233)
1 2
D .
ki1 — k1o = F; (—kaipyy + k2802)

The equation 2.233 allows the angular displacement ¢,; to be expressed in terms of
the displacements ¢,and ¢,.

k ko

1
= — —_— 2.234
Y11 Ty + kot Y1+ by + kot? P2 ( )

Introduction of this relationship into the first, second and fifth equation of the set
2.231 one can get

k2 ikiko
[ . — —k/‘ —1 _owliva
11 o T R T e 22
. k1 kot i%k32
I = —(ky+k k 2.235
209 (K2 + ka)ps + k _I_k,QZ-g‘Pl + i +k2i2% + K33 ( )
I393 = —ksps + kspy + 15
or
1 .
Z.—Zfl (i) = —ke(ipy) + kepy
Iypy = —kepy — k3ipy + ke (i1) + ks (2.236)
I3p; = —ksps+ ks + 15
where ik
ke = — 2 2.237
ky + ko ( )
The above set of equations can be now presented in the matrix form
M + Cx + Kx = F (2.238)
where
%2[1 ke —k. 0 11
M= Iy ; C=0;, K=| -k ketks —ks |;x=] ¥y
I3 0 —kz k3 ©3
0
F= 0 (2.239)
T coswt

The same results one can get by means of the Lagrange’s equations
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The kinetic energy function and the potential energy function of the system

considered are ] ]
3 Ly + = 13¢5

1.
T:—h(p%—i— 5

2

1 1 1
Vo= §k1(9011 — )% + Sha(py — ©20)” + Shs(ps — )" =

2 2
1 9, 1 N 2
= §k1(9011—901) "‘5]‘52(902—29011) +§k73(803—902)
Hence
dor
Aoy,
dor
dtop, 2
aor
dtop, 78
or oo
O, Oy Jps
oV 1 011 1 , .0y
— = =k2 — -1 —Fko2 — — =
Do 5 (011 — 1) <8g01 + 572 (g —i011) Za%
ov 1 011 1 , 014 1
o k(g - ko2( iy — 1 “hy2( 05 — ) (—1) =
T = ghden =) (G2 + ghes —iew) (1= G2 ) + ghiles =) (<)

= —keip; + (ke + k3)0g — keips

ov

1
3_4,03 = 574?32(803 - 902) (1) =

= —kspy + k3ps
The virtual work produced by the impressed forces acting on the system is
W = (0) ¢y + (0) oy + (T3) 3

Introduction of the above expressions into the following Lagrange’s equations

daor or oV

dt 0p, - 0y, * iy = @
d oT oT oV
— — = 2.24
dt Opy O, * iy @ ( 0)
d oT or ov

= Q3

dt Opz  Opg  Ops
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yields the wanted equations of motion of the system considered

Loy + kepy —ikepy = 0
LIypy + —keipy + (ke + k3)py — keps = 0
I35 + —k3py + k33 = T3

or

I . .
<Z_21) (017) + ke (¢17) — kepy = 0
Iy — ke (919) + (ke + k3)py — keps = 0 (2.241)
I303 + —kzpy + k33 = T3

They are identical with the equation 2.239.

It is easy to see that precisely the same equations possesses the system pre-
sented in Fig. 53

. |1|—: |1 / i2
Q=@ )~ 2 ¥3 I3
k]_r: k]_ / iz ¢_2
7774 77777
(S [N\
T3
Dy D
ko ka
Figure 53
In this figure
. I k1
o1 =ty L= =2 ki, = = (2.242)

stands for so called reduced displacement, reduced moment of inertia and reduced
stiffness. The equivalent stiffness of the shaft assembled of the shaft £y and £, can
be produced from the following equation

1 1 1 1 1
R R R 2.24
ke klr i k2 ]:_21 i k2 ( 3)
It is ok
ke 2 (2.244)

"+ 2k,
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Hence, the equations of motion of the system presented in Fig. 53 are as follows

I\ . . .

72 (@19) + ke (p17) — kepy = 0

Iapy — ke (p17) + (e + k3)py — keps = 0 (2.245)
L33 + —kspy + k3ps = T3
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Problem 38

#ﬁw \ M=M,cosat
) ——

C2

" G2 \\ //

Y X

Figure 54

Two rigid bodies 1 and 2 were hinged together at the point A to form the
double pendulum whose physical model is shown in Fig.??. These bodies possess
masses m; and mg and the moments of inertia about the axis through their centers
of gravity (G1, G2) are I; and I, respectively. The system has two degrees of freedom
and the generalized coordinates are denoted by ¢; and ¢,. Vibrations of the pendulum

about the horizontal axis Z are excited by the harmonic moment M applied to the
body 1.

Produce:

1. the differential equation of small oscillations of the pendulum and present it in the
following matrix form

Mx+Cx+Kx=F
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Take advantage of Lagrange’s equations.

Answer:
@ | Iz +macd + I +ma(l 4+ c2)?  Iga + maca(l + co) .
X = ) M = 2 )
G2 Igo + maoca(l + ¢3) Igamacy
K — | ™9a + mog(l + c2) e Lo 0 0 T M,
MagCo magcs + 2kb? | 0 2ca?® |’ 0

2. the expression for the amplitudes of the forced vibrations of the pendulum

143

3. the expression for the interaction force between the damper and the body 1 at the

point B.
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Problem 39

Figure 55

The assembly of the ventilator V' and its base B (see Fig. 55) can be considered
as a rigid body. This assembly is free to rotate about the horizontal axis X-X and is
kept in the horizontal position by means of two springs each of stiffness %k, and two
dampers each of the damping coefficient c,. Its moment of inertia about the axis
X-X is Ix. The angular displacement « defines the instantaneous position of this
assembly:.

The rotor R of the ventilator V possesses a mass mp and rotates with a
constant angular velocity €). Its centre of gravity G, is located by the distances a
and b. This rotor is unbalanced and its centre of gravity is off from its axis of rotation
by L.

This assembly is furnished with the dynamic absorber of vibrations. It is made
of the block D of mass mg4, the spring of stiffness k4 and the damper of the damping
coefficient c4. The block D can translate along the inertial axis = only.

Produce:

1. The differential equation of small oscillations of the system shown in Fig.1 and
present it in the following matrix form

Mx+Cx+Kx=F
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Answer, ) ) , )
| 1L 0] | 2cp€® gl —cal | | 2kyd® + kgl® kgl |
M= 0 m |’ C= [ —Cdl Cq ’ K= [ —kdl ]Cd ’
2 /72 112
X = i ; F = mRMQOCL +b cos (Ot

2. The expression for the amplitudes of the forced vibrations of the system along the
coordinates x and «
3. The expression for the force transmitted to foundation by the damper c,.
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Problem 40

o~

Figure 56

The uniform rod 7 of mass m and length [ shown in Fig. 56 is hinged at the
point A to the support 5. The support 5 moves along the horizontal axis Y according
to the following function

Y =acoswt

The lower end of the rod is connected to the blocks 2 and & by means of two springs 4
each of stiffness k. The blocks mass is my and mg respectively. The system performs
small oscillation in the vertical plane XY. It possesses three degrees of freedom and
the three independent coordinates are denoted by ¥y, and ys.

Produce:
1. The differential equation of small oscillations of the and present it in the following
matrix form.

Mx+Cx+Kx=F

2. The expression for the amplitudes of the forced vibrations of the system.
3. The expression for the driving force that must be applied to the point A in order
to assure the assumed motion Y'(¢).
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Solution
e o '
2
-
L | :
i - :
00 0 O
Figure 57
Motion of the system is governed by the Lagrange equations.
dor _or v
dt0a  da  da
dor or oV
_— 4+ =0 2.246
@05, on ' ows (2.246)
dor or oV 0

— — — +
dt9ys  Oys  Jys
To produce the kinetic energy function 7" associated with the the rod 1, let us develop
the position vector of its centre of gravity Gj.
[ [
rg1 =J(Y + 3 sina) + 1(5 oS v) (2.247)

Its first derivative provide us with the absolute velocity of the centre of gravity.
o1 [
rer =J(Y + 5(’)4 cos o) + I(—§d sin ) (2.248)

Hence, the kinetic energy of the rod is
1 g l . 2 l .. 2 1 .92
T = 5 (Y + drcos a)” + (—504 sina)® ) + §IG104 (2.249)
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Since the kinetic energy of the blocks 2 and 3 is as follows

1 . r .
T = §m2y§ I3 = §m3y§ (2.250)

the total kinetic energy of the whole system is

1 . 1 . 1 1 1 1
T =T+T+Ts = §mY2—|—§led cosa+gml2a2+§IG1a2+§m2y§+§mgy§ (2.251)

The potential energy of the springs 4 is
1 1
V, = §k2(y2 —Y —Isina)?* + §k3(—y3 +Y + Isina)? (2.252)

The potential energy due to gravitation is

[
V, = —mgragiy = —Mmgz cosa (2.253)

Hence, the total potential energy is
]. . 2 ]. . 2 l
V=V,+V, = §k2(y2 —Y —lsina)” + 51{:3(—3/3 +Y +Isina)” — mg§ cosav (2.254)

Introducing the expressions 2.251 and 2.254 into equations 2.246 one can get the
required equation in the following matrix form.

Mx 4+ Cx + Kx = F cos wt (2.255)
where
[ IG + %le 0 0 %mgl + k’ng + k3l2 —kfgl —k’gl
| 0 0 ms —kgl 0 ]{73
[ —ImY — (kol + k3l) Y +imlaw? — a (kal + ksl) o
F = kY = koa ;o x=| y2 (2.256)
| lng kga Ys

To verify the above equations of motion let us employ the Newton-Euler
method for modeling of the system considered. The free body diagrams are shown in
Fig. 58
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>
Y
2
@)
Figure 58
For the rod one can produce the following two equations
. 1 1 1
Ioca = _iRAYl + §R2yl —+ §R3yl
maagy = Ray + Roy + Rsy (2.257)

The second equation can be used for determination of the unknown interaction force
Ry .
Ray = magiy — Ray — Rsy (2258)

Introduction of the above expression into the first equation of 2.257 gives
1
IG& = —§lmaGlY + Rzyl + ngl (2259)

In the latest equation ag1y stands for the component Y of the absolute acceleration of
the centre of gravity G;. It can be obtained by differentiation of the absolute velocity
vector 2.247.

. [ l
o1 =J(Y + 5& cos v — 5(’12 sin @) + I(—§d sina — §d2 Ccos ) (2.260)
Hence l l
acly =Y + 5& cos a — 5(342 sin «v (2.261)
After linearization ]
acly =Y + =i (2.262)

2



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 150

Introduction of 2.262 into 2.259 results in the following equation

1 S
]ijé = —ilm(Y + 50[) + Rzyl + ngl (2263)

The interaction forces between the rod and the springs are can be expressed as follows
RQY = lfg(yg -Y — Oél); ng = kg(yg -Y — Oél) (2264)

Introducing them into equation 2.263 one can obtain
1 1 .
(IG + ZmZQ)a + ICQZQOé + kglza — k’glyg — k’glyg = —§le — kle — k’gly (2265)

The Newton’s law if apply to the blocks 2 and 3 yields

malis = —Roy
mays = —Rsy (2.266)

Since the interaction forces are defined by 2.264 we have

Mmaljo + kayp — kolae = kY
maljs + ksys + ksla = k3Y (2.267)

Hence, the governing equations are

1 1. -
(IG + ZTTLF)O{ + k2l2Oé + k3l20é - kglyg - k3ly3 = —Ele — /{ZQZY - ]Cle

m2y2 + k‘gyg — k’glOé = ]{TQY (2268)
mgyg + k3y3 + k3lOé = k3Y

They are identical with 2.255.
Mx 4+ Kx = F cos wt (2.269)

The amplitudes of the forced vibration could be obtained from the particular solution
of the above equation. It can be predicted as

x = A coswt (2.270)
Introducing it into the equation of motion we have
(-w*M+K)A=F (2.271)
The wanted vector of the amplitudes of the system forced vibrations is

Ao
A=(—"M+K)'F=| Ap (2.272)
Ay
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Now, the interaction force R4y can be produced as an explicit function of time from
2.258

Ray = magiy — Ray — Ray
= m<§7+%d)—kg(yg—Y—al)—kg(yg—Y—al)
= m (—aw2 — éAaoﬂ) coswt + (2.273)

—ka(Ays —a — Ayl) coswt — k3(Ays —a — Ayl) coswt
= (m (—a — %Aa> w? — ko(Ays —a — Anl) — ks(Ays —a — Aal)> coswt
= |Ray|coswt

where |Ray| = ‘m (—a— %Aa) w? — ko(Ayp —a— All) — k3(Ays —a — Aal)‘
is the amplitude of the interaction force.

2.3 ENGINEERING APPLICATIONS

2.3.1 Balancing of rotors

Let us consider a rigid rotor that rotates with an angular velocity w about the axis
A — A (see Fig. 59).

Figure 59

In a general case, due to the limited accuracy of manufacturing, the centres
of gravity of the individual cross-sections do not have to coincide with this axis of
rotation. They are distributed along, usually unknown, line B — B. Its follows that
due to rotation of this body at each cross-section ¢ there exists the centrifugal force U;
(see Fig. 59). Each of this forces can be replaced by two forces U;; and U, acting in
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two arbitrarily chosen planes. Each of them is perpendicular to the axis of rotation,
therefore their resultants U; and U, are perpendicular to the axis of rotation too.
Hence, one can eliminate this unbalance of the rotor by means of two weights of
mass my; and ms attached at such a position that the centrifugal forces F; and Fy
balance the resultant forces U; and U,. The process of searching for magnitude of
the unbalance forces U; and U, and their phases ¢, and ¢, is called balancing. The
balancing of a rotor can be performed with help of a specially design machines before
it is installed or can be carried out after its installation ’in its own bearings’. The
second approach for balancing rotors is consider in this section.

1 2
] 0O o o o o o/o o o/o o o o o
o o
o o
o o
o o
.o
o a °lo
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\‘O X X2 o
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Figure 60

Let us consider the rotating machine shown in Fig. 60. According to the
above discussion, if the rotor of this machine can be approximated by a rigid body,
the unbalance forces can be represented by forces U;and U, in two arbitrarily chosen
plane. These two arbitrarily chosen planes,denoted in Fig. 60 by nubers 7 and 2, are
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called balancing plane. Although the selection of the balancing planes is arbitrary,
there are numerous practical considerations for proper selection. For long rotors, for
example, the balancing planes should be chosen as far apart as possible. Furthermore,
these plane should offer an easy access and allow additional weights to be attached.
These unbalance forces excite vibrations of this machine. Let us arrange for these
vibrations to be recorded in two arbitrarily chosen planes. These planes, marked in
Fig. 60 by numbers & and 4, are called measurement planes. Let az and a4 be the
complex displacements measured in the measurement plasen along the coordinates
xsand x4 with help of the two transducers 8 and 4. The transducer 4, which is
called key phasor, creates a timing reference mark on the rotor. This mark, shown
in Fig. 60 by A, allows the phases of the unbalance forces (¢, p,) and the phases
of the recorded displacements (3, ;) to be measured. The equation 2.96 offers
the relationship between the unknown unbalance forces U;and Us and the measured
displacements asand ay.

] = [t} R 1154 oo
where

as = agoew?’, a4 = a406i64, U1 = Uloei(’pl, U2 = U2O€i<ﬂ2 (2275)

If the transfer functions R; j(iw) would be known, this relation would allow the un-
know magnitudes of the unbalance as well as their phases to be determined. In order
to identify the transfer functions two additional tests are required.

Test (1)

Figure 61
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An additionl trial weight of mass m™) (see Fig 61) is attached in the balancing
plane 1 at the known (with respect to the key phasor’s mark) phase 01 and the know
distance (Y. The system is now excited by both the residual unbalance forces (U;
and U,) and the centrifugal force produced by the trial weight U(). The amplitude
of this force UM is

UM = m® M, (2.276)
The response of the system is recorded in both measurment planes so the amplitudes
aglo) and CLS)) as well as the phases ﬁél) and Bfll) can be obtained. There is the following
relationship between the measured parameters and the transfer functions.

ay’ | _ [ Ra(iw) Rsliw) ] [ Uy +UW (2.277)
Clz(ll) Ry (iw) Ras(iw) U

aél) B a:()j))eiﬁgl)’ ag) _ afé)ew‘(ll), Uy = Uper, Uy = Upe?2, UM = Uo(l)@igo(l)

(2.278)

Figure 62

An additional trial weight of mass m® (see Fig 62) is attached in the balancing
plane 2 at the known (with respect to the key phasor’s mark) phase ¢®) and the know
distance p(?). The system is now excited by both the residual unbalance forces (U;
and U,) and the centrifugal force produced by the trial weight U?). The amplitude
of this force U® is

U =m® ;2,2 (2.279)

The response of the system is recorded in both measurement planes so the amplitudes

agi) and aﬁ) as well as the phases 5&2) and 5&2) can be obtained. There is the following
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relationship between the measured parameters and the transfer functions.

CLgf) _ R31 (ZCL)) RgQ(’LCU) Ul (2 280)
a‘(f) R41 (w)) R42(iw) U2 + U(2) '
a:(f) = az(’,zo)eiﬁgz)> af) = aﬁ)@i'g‘(‘z)a U = Uio€™t, Uy = Uspe™2, U® = Uo@)@w(z)

(2.281)
The formulated equations 2.274, 2.277 and 2.280 allow the unknown transfer functions
and the wanted unbalances U; and Us to be computed. To achieve that let us subtract
the equations 2.274 from 2.277

([6]-Ta])- [t ] ([ ]-[4))
oV —a3 | [ Ras(iw) Rasliw) ][ UO
[ af’) - ay ] N [ Ry (iw)  Rap(iw) ] 0 ]

[ aél) — as

[ Ra(iw)UW
| Ry (iw)UW

Cbé(ll) — ay

. o(1) .
agl) —as ag})ew?’ — CL3067’53
U(l) B Uél)ei@(l)

R31 (’LCL)) =

(1) (1) gt i3
, L oay —ag ay e — age’
R41(ZW) = U(l) = U(gl)eigo(l) (2282)

Similarly, if one subtracts equations 2.274 from 2.280 one can get
ag) —as aéi)eiﬂff) — ag,e"’

Rss (ZW) U2 - Ué2) 6i90(2)

(2) (2) B i
, oay —ag agei — age’
R42(Zw) — U(Q) - UO(Q)eiQO(Z) (2283)

Now, the wanted complex imbalances U; and Us in the plane 1 and 2 may be computed
from the equation 2.274

o] ] o] a8t

where a3 and a4 represent the know response of the system without the additional
weights.

[ U, ] _ [ Ry(iw)  Rap(iw) ]1 [ o’ ] _ | Uroe (2.285)

U2 R41(i&)) R42(iw) B [ U20€i<‘02 ]
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The amplitudes Uy, and U, determine the weights m; and ms that should be attached
in the balancing planes

%
m =
! 7"1&)2
Uz
= 2.286
2 7”2(,02 ( )

These weights, to balance the rotor, should be place at angular position (see Fig. 63)

62 == ].800 + g02 (2.287)
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Figure 63
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2.3.2 Dynamic absorber of vibrations

Let us consider vibration of the ventilator shown in Fig. 64a). Vibration of this
ventilator are due to the imbalance u if its rotor.

VU >

<

Figure 64

Let us assume that the system has the following parameters:
M =100 kg - total mass of the ventilator
m, = 20 kg - mass of rotor of the ventilator
K =9000000 N/m - stiffness of the supporting beam
w = 314 rad/s the ventilator’s operating speed
i =.0001 m - distance between the axis of rotation and the centre of gravity
u=m,pu=20-.0001 =.002 kgm - imbalance of the rotor
The natural frequency of the system is

K 9000000
n p— —_— —_— 2-2
wo =1/ 7 \/ g = 300 (2.288)

Hence, within the range of the rotor angular speed 0 < w < 500 the system can be
approximated by system with one degree of freedom. Its physical model is shown in
Fig. 64b). The following mathematical model

Mi + Kz = m,uw? cos wt (2.289)
i+wlr = qcoswt (2.290)
u o 0.002 , 9

= —w?P=—"Tu2=. 2 2.291

¢= v 100 Y 0000 2w (2.291)
allows the amplitude of the forced vibrations of the ventilator A to be predicted.
q .0000 2w?
A= = 2.292
w? — w? ‘ 3002 — w? ( )

Its values, as a function of the angular speed of the rotor is shown in Fig. 65
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Figure 65

As it can be seen from this diagram, the ventilator develops large vibration in
vicinity of its working speed w = 314 rad/s and has to pass the critical speed during
the run up. Such a solution is not acceptable. One of a possible way of reducing
these vibration is to furnish the ventilator with the absorber of vibration shown in
fig 66

Figure 66

It comprises block of mass m, elastic element of stiffness £ and damper of the
damping coefficient c¢. Application of the Newton’s - Euler’s method, results in the
following mathematical model.

Mi+ (K+k)x—ky+ci—cy = uwcoswt
miyj—kx+ky—ct+cy = 0 (2.293)



ENGINEERING APPLICATIONS 159

Its matrix form is

o) e A ) ]

(2.294)
To analyze the forced vibrations let us introduce the complex excitation
M 0 s +c —c T K+k —k x
.|+ .|+ =
0 m ] —c +c U —k +k Yy (2.205)
[ ww?coswt +iuw?sinwt | [ wwe™t | [ uww?® |, '
|0 10 “lo |°

Introducing notations

R - S e R d

0 m —c +c —k +k 0
(2.296)
The above equations takes form
mi + cx + kx = ge™’ (2.297)
If one predicts the particular solution as
X = Ae™! (2.298)

and than introduces it into the equation 2.297 one obtains the formula for the am-
plitude of the forced vibration

A = |(—w’m-+iwe + k) q| (2.299)

Remarkable results we are getting if parameters k and m of the absorber fulfill the
To show it let us assume

following relationship
[ k
—=w=314 (2.300)
m
m = 25 kg

and compute the value of the stiffness k£ from the formula 2.300

k= mw? = 25- 3142 = 2.4649 x 10° N/m
Introduction of this data into equation 2.299 and the zero damping results in the
following response A; and A, of the system along the coordinates x and y respectively.

AL

A=l
e ft00 7 o 0] [ils 2466\ [ 0.002-w
“loo2s ™0 o0 ~2.46 2.46 0

(2.301)

Amplitude A;, representing vibrations of the ventilator, as a function of the angular
speed of its rotor is presented in Fig. 67:
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One can notice that the amplitude of vibration for the working speed w = 314
rad/s is equal to zero. But the ventilator still has to pass resonance in vicinity of
w = 240 rad/s. To improve the dynamic response, let us analyze the influence of the
damping coefficient c.

A |
-

—1
100 0 e e 115  —2.46 0.002 - w?
_ 42 3 6
_(”{o 25]+Mlc0110+[—2.46 2. 46 110) {o 1
(2.302)

The amplitudes of the forced vibration of the ventilator for different values of the
damping coefficient ¢, computed according to the formula 2.302 are collected in the
Table 1. It can be noticed, that by increasing the damping coefficient ¢ one can lower
amplitude of vibrations in all region of frequency. The best results of attenuation of
vibrations can be achieved if the two local maxima are equal to each other. This case
is shown in the last raw of the table 1. Application of the absorber of vibrations offers
a safe operation in region of the angular speed 0 < w < 500 rad/s. The amplitude is
less than 0.00004 m. Damping coefficient lager then 5000 results in increment of the
amplitude of the ventilator’s forced vibrations. If the damping tends to infinity, The
relative motion is ceased and the system behaves like the undamped system with one
degree of freedom.
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Table 1
0.0001
m = 25 A \
k= 2.46 x 10 i
c=0
0 100 200 300 400 [ Us]
0.0001
m = 25 A \
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c = 1000 o
0 100 200 300 400 1
0.0001
m =25 A
k=2.46 x 108
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0
0 100 200 300 400 a1
0.0001F
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¢ = 5000
0
0 100 200 300 400 o Us
0.0001 T
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Chapter 3
VIBRATION OF CONTINUOUS SYSTEMS

3.1 MODELLING OF CONTINUOUS SYSTEMS

3.1.1 Modelling of strings, rods and shafts
Modelling of stings

oy(zt) . IyVizh)
Jz Jz2 dz

Figure 1

Strings are elastic elements that are subjected to tensile forces (see Fig. 1).
It is assumed that the tensile force T is large enough to neglect its variations due to
small motion of the string around its equilibrium position. In the Fig. 1 A(z) stands
for area of cross-section of the string and o(z) is its density. Motion of the string is
caused by the unit vertical load f(z,t) that in a general case can be a function of
time ¢ and the position z. Let us consider element dz of the sting. Its position is
determined by the coordinate z and its mass dm is

dm = A(z)o(z)dz (3.1)

The free body diagram of this element is shown in Fig. 1. According to the second
Newton’s law

Py(z,t) _ _T(?y(z,t) LT <8y(z,t) N D?*y(z,t)

dm—7s3 2 0z 022

dz) + f(z,t)dz (3.2)
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Introduction of Eq. 3.1 into Eq. 3.2 and its simplification yields

A(z)g(z)—az%(;’ ) dz — Téﬂy(Z’ )

022

dz = f(z,t)dz (3.3)

If one divide this equation by A(z2)(z)dz it takes form

Py(z,t) T Pylzt)  f(z1)
ot? A(2)o(z) 022 A(2)o(2) (34)

If the string is uniform ( A and p are independent of z ) the equation of motion is

82y(z, t) 2 82y(2’, t)

8t2 322 = Q(Z7 t) (35)
where T )
2 _ ~ . — 2,
Modelling of rods
f(zt) R
e
—< Z
F(z1) F(zt) + &%Zz’\t)dz
—
\Q§
y(z.t) d
- “ = E@,A@.00
- z — dz
F(zt)
F(zt) + %ZZ—'t)dz
F(zt) ‘
\

|

Figure 2
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Rods are elastic elements that are subjected to the axial forces. Let as consider
a rod of the cross-section A(z), Young’s modulus F(z) and the density o(z). Motion
of the rod is excited by the axial force f(z,t) that, in a general case, can be a function
of position z and time ¢. Let us consider the highlighted in Fig. 2 element dz. Its
instantaneous position is determined by the displacement y(z,t). Application of the
second Newton’s law to the free body diagram of the element yields.

OF(z,t)
0z

?y(z,t)

dm—8t2

= —F(z,t)+ F(z,t) +

dz + f(z,t)dz (3.7)

The axial force F'(z,t) is related to the elongation of the element by Hooke’s law

dy(zt) 7., P
— _ 0z T __ y(Z, t)
F(z,t) = A(2)E(2) = A(2)E(2) P (3.8)
Upon introducing the above expression into Eq. 3.7 one may obtain
Py(z1) 0 e
Since mass of the element is
dm = A(z)o(z)dz (3.10)
the equation of motion of the element is
Py(z1) 0 Dy(z, 1)
e - (ApEeE) < fen )
If the rod is uniform ( A, E, ¢ are constant) one can get
a2y(z7 t) 282y(27 t)
T 92 q(z,t) (3.12)
where P o)
A2 =2 f) = 1% 3.13
5 q(z,t) = = . (3.13)
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Modelling of shafts

G(2), )2, A2).p(2

- 2 . dz
P(z1)
o(zt)+ M;)ZZ—’t)dz
P(zt) .
\ —
Figure 3

Shafts are elastic elements that are subjected to torques. Let us assume that the
torque 7(z,t) is distributed along the axis z and is a function of time ¢ (see Fig. 3).
The shaft has the shear modulus G(z), the density o(z), the cross-section area A(z)
and the second moment of area J(z). Due to the moment 7(z,t), the shaft performs
the torsional vibrations and the instantaneous angular position of the cross-section
at z is ¢(z,t). The angular position at the distance z + dz is by the total differential
9elzt) g, greater. Let us consider the element dz of the shaft. Its moment of inertia

0z
about the axis z is

dl = Ar%Ag(z)dz = Q(Z)dZ/AT2dA = J(2)o(z)dz (3.14)

Owning to the generalized Newton’s law we can write the following equation

D*p(z,t)
o2

IT(z,t)

I
d 0z

= —T(z,t) +T(z,t) +

dz 4+ 7(z,t)dz (3.15)
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After introduction of Eq. 3.14 and an elementary simplification the equation 3.15

takes form Po(ent)  OT(2.1)
plz,t) zZ,t)
J(2)o(2) BTE P 7(z,1) (3.16)

If we introduce the relationship between the torque T'(z,t) and the deflection ¢(z,t)

0y(z, t)d T(z,t)dz

9: T R0 (3:.17)
into Eq. 3.16 we are getting
J(z)g(z)% - %G(Z)J(Z) (%) = 7(2,1) (3.18)

If J(z), o(z) and G(z) are constant, the equation of motion takes form.

8290(2:7 t) 2 82()0(27 t)

50 52 q(z,1) (3.19)

where o (.0
A= o) = 1% 3.20
; q(z,t) 7o (3.20)

3.1.2 Modelling of beams

Beams are elastic elements that are subjected to lateral loads (forces or moments
that have their vectors perpendicular to the centre line of a beam). Let us consider
a beam of the second moment of area J(z), cross-section A(z), density o(z) and the
Young’s modulus E(z). The beam performs vibrations due to the external distributed
unit load f(z,t). The instantaneous position of the element dz is highlighted in Fig.
4. The equation of motion of the beam in the z direction is

D*y(z,t)
o2

If one neglect the inertia moment associated with rotation of the element dz, sum of
the moments about the point G' has to be equal to zero

_OV(z,1)

dm op

= V(2 t) — V(2 1)

dz+ f(z,t)dz (3.21)

V(z,t)% + (V(z,t) + %ﬁ’”@) % LM (e t) — (M(z,t) + %d:&) _ 0
(3.22)

Simplification of the above equation and omission of the terms of order higher then
one with respect to dz, yields the relationship between the bending moment M and
the shearing force V.

OM (z,t)

V(z,t) = P

(3.23)
Since mass of the element dz is

dm = A(z)o(z)dz (3.24)
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M(zt)+ <Mzt ';"Zz’t 7

E(2.J2). A2, (2

Figure 4

and taking into account Eq. 3.23, one can get the equation of motion in the following
form

Aol TE2D L OAED _ . (3.25)

The mechanics of solids offers the following relationship between the deflection of the
beam y(z,t) and the bending moment M|z, ).

0%y(z,t)
Introduction of equation 3.26 into equation 3.25 yields
Py(z,t) 0 PPy(z,t)\
160 5+ 5 (Bei0 ™5 ) < e e

If the following parameters of the beam A, J, E and o are constant, motion of the
beam is governed by the following equation

Py(z,t My(z,t
3(252 ) + A2 8(z4 ) =q(z,1) (3.28)
where
2 EJ f(Z, t)
A= A0’ q(z,t) = Ao (3.29)
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3.2 ANALYSIS OF CONTINUOUS SYSTEMS

As could be seen from the previous section, vibrations of strings, rods and shafts are
described by the same mathematical model. Therefore, its analysis can be discussed
simultaneously. The strict solution can be produced only if parameters of the system
considered are constant. In this case the governing equation

aQ?J('Z? t) _ 282y(2, t)
ot? 022

= q(z,1) (3.30)

is classified as linear partial differential equation of two variables ( z and ¢ ) with
constant coefficients ( A% ). The general solution, a function of two variables, is sum
of the general solution of the homogeneous equation and the particular solution of
the non-homogeneous equation. If the external excitation ¢(z,t) = 0, the equation
3.30 describes the free vibration of the system due to a non-zero initial excitation
determined by the initial conditions.

3.2.1 Free vibration of strings, rods and shafts

The free vibrations (natural vibrations) are governed by the homogeneous equation
of Eq. 3.30
823/(27 t) 2 823/(257 t)
ot? 0z

—0 (3.31)

Boundary conditions - natural frequencies and natural modes

Let us predict the particular solution of the above equation in a form of the product
of two functions. One of them is a function of the position z and the other one is a
function of time ¢.

y(z,t) =Y (2)sinwyt (3.32)

Introduction of the predicted solution 3.32 into equation 3.31 yields the following
ordinary differential equation

—W2Y (2) = XY (2) =0 (3.33)
or
YH(2)+ B2Y(2) =0 (3.34)
where w
Bn =~ (3.35)
The general solution of this equation is
Y, (2) = Spsin B,z + C,, cos 3,z (3.36)
where
A :
B, = wn T for strings (3.37)

ﬁn:wn

En

for rods (3.38)
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B, = wn\/g for shafts (3.39)

The values for the parameter (3, as well as the constants S,, and C), should be chosen
to fulfill the boundary conditions. Some of the boundary conditions for strings, rods
and shafts are shown in the following table.
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Table 3.1
7z
— | — for 0 Y,=0
for z=1 Y, =
ly
string
Z
| for z F=AEY!=0
— — for z=1 F=AEY!=0
free-free rod
| z for z = Y, =0
- — for =z F=AEY! =0
fixed-free rod
Kk
AR
vy \fk z for z Y,=0
! - for  z=1 F=AEY]=-kY,
fixed-elasticaly supported rod
| z for z = Y,=0
— — for z Y, =0
fixed-fixed rod
?
| for z T=GJY! =
——- — for z T=GJY!=
free-free shaft
| z for z Y,=0
— — for =z T=GJY! =
fixed free shaft
| z for z Y,=0
— — for z Y, =0

fixed-fixed shaft
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To demonstrate the way of the determination of the natural frequencies and
the corresponding natural modes, let us consider the fixed on both ends shaft (last
row of the above Table). For this case the boundary conditions are

for z =0 Y, =0
for z =1 Y,=0 (3.40)

Introduction of this boundary conditions into the solution 3.36, results in a set of two
homogeneous algebraic equations linear with respect to the constants S,, and C,,.

0 =0-5,+1-C,
0 = (sinf,0)S, + (cosB,1)C, (3.41)

{ginﬁnl clzosﬁnl} [gﬂ B [8} (3.42)

This set of equations has non-zero solutions if and only if its characteristic determinant
is equal to zero.

Its matrix form is

0 1
sinf3,l cosf,l

Hence, in this particular case we have
sin 3, =0 (3.44)

This equation is called characteristic equation and has infinite number of solution.
Since (3,, and [ are always positive, only positive roots of the above equation has the
physical meaning

T 2m nw

[

—0 (3.43)

By==, By=2= e n=12..00 (3.45)

Taking advantage of equation 3.39 one can compute the natural frequencies to be

By =wn\/E
wnz/sn\/gzn—”\/E n=1,2,..00 (3.46)
o L \o

For each of this natural frequencies the set of equations 3.41 becomes linearly de-
pendant and one of the constants can be chosen arbitrarily. If one choose arbitrarily
Sp,say S, = 1, according to the first equation of the set 3.41, C,, has to be equal to
0. Therefore we can conclude that the predicted solution, according to 3.36, in the

case considered is
nmw

Y, (z) =sin 3,z = sin . n=1,2,..00 (3.47)
The functions Y,,(z)are called eigenfunctions or natural modes and the corresponding
roots w, are called eigenvalues or natural frequencies. The above analysis allows to
conclude that a continuous system possesses infinite number of the natural frequencies
and infinite number of the corresponding natural modes. The first mode is called
fundamental mode and the corresponding frequency is called fundamental natural
frequency. In the case of free vibrations of the shaft, the natural modes determine
the angular positions of the cross-section of the shaft ¢(z). A few first of them are
shown in Fig. 5
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Orthogonality of the natural modes

Let us consider two arbitrarily chosen natural modes Y;(z) and Yj(z). Both of them
must fulfill the equation 3.33

—w2Y (2) = MY (2) =0
Hence

~wiYi(2) = XY (z) = 0 (3.48)
—wiYi(z) = XYM (z) = 0 (3.49)

Premultiplying the equation 3.48 by Y;(z) and the equation 3.49 by Y;(z) and then
integrating them side by side one can get

o [ Y)Y+ X / Y)Y = 0

0

W} / lY}(z)Yi(z)dz+)\2 / l}fjff(z)n(z)dz =0 (3.50)

The second integrals can be integrated by parts. Hence
! !

o [ VEyEE 2 (VEYE)) - [ ey = o
0 0

l !
W /O Y (2¥i(2)dz + X (VIYi)]) - 2 /O VIV (2)dz = 0 (351)
Substraction of the second equation from the first one yields

(=) [ VM + 3 (0T @V @), - (FEREL) =0 652)
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It is easy to show that for any boundary conditions the second expression is equal to
zero

(Y @Y5(2) ]y — (T @YR)], = Y OY;(0)=Y (0)Y;(0)=Y] (Vi(1)+Y] (0)¥;(0) = 0

Hence,

The above property of the eigenfunctions is called orthogonality condition.

General solution of the homogeneous equation

According to 3.32 one of the particular solution of the equation 3.31 can be adopted
in the following form
y(z,t) =Y (2) sinw,t (3.55)

At this stage of consideration the function Y'(z) is known and we are able to produce
infinite number of such particular solutions.

Yn(2,t) = Yo(2)sinw,t n=1,2,3.....00 (3.56)

Since the equation 3.31 is of second order with respect to time, to fulfill initial con-
ditions we need second set of linearly independent solution. It the same manner as
it was done in the previous section one may prove that the following functions form
the required linearly independent set of solution.

Yn(2,t) = Yo (2) cosw,t n=1,2,3.....00 (3.57)
Hence, the general solution of the equation 3.31 eventually may be adopted in the

following form.

y(z,t) = Z SnYn(2) sinw,t + C,Y,(2) coswyt (3.58)

n=1

This solution has to fulfill the initial conditions. The initial conditions determine the
initial position Yy(z) and the initial velocity Vy(z) of the system considered for the

time ¢ equal to zero.
y(z,0) =Yo(z) 5.4(2,0) = Vo(2) (3.59)

To produce the constant S,and C,, let us introduce the solution 3.58 into the above
initial conditions. This operation results in the following two equations.

YO(Z) = Z Cnyn(z)

Vo(2) = D SawnYa(2) (3.60)
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To determine the unknown constants S,, and C,,, let us multiply the above equations
by Y,.(z) and then integrate them side by side

AWWMWWZZ@AW@WWh
/0 Vol2)Ym(2)dz = ) Spwn /0 Y, (2) Yo (2)d2 (3.61)

Taking advantage of the developed orthogonality conditions 3.54 the wanted constants
S, and C,, are

¢, = b
onnQ(Z)dz
g - Ll o

Wn, fol Y2(2)dz

For the example considered in the previous section the above formulae, according to
3.47, take form

fol Yo(2) sin 2% zdz
fol (sin ”l—”z)2 dz
I -
[ 1 }/0(:2) sin T2zdz (363)
Wi [0 (sin2Tz)" dz

3.2.2 PFree vibrations of beams

C, =

For the uniform beam the equation of motion was derived to be

82:9(27 t) + )\2 a4y(27 t)
ot? 0z4
This equation can be classified as linear partial differential equation of two variables
( z and t ) with constant coefficients ( A\* ). Its order with respect to time is 2 and
with respect to z is equal to 4. The general solution, a function of two variables, is
sum of the general solution of the homogeneous equation and the particular solution
of the non-homogeneous equation. If the external excitation ¢(z,t) = 0, the equation
3.64 describes the free vibration of the beam due to a non-zero initial conditions.
The free vibrations (natural vibrations) are governed by the homogeneous
equation of 3.64.

=q(z,1) (3.64)

a2y(z7t> 284y<z7t)
ot? + A 0z4

=0 (3.65)

Boundary conditions - natural frequencies and natural modes

Similarly to the analysis of strings and shafts, let us predict the solution of the above
equation in the form of a product of two functions. One of them is a function of the
position z and the other is the function of time ¢.

y(z,t) =Y (2)sinw,t (3.66)
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Introduction of the predicted solution 3.66 into equation 3.65 yields the following
ordinary differential equation

—W2Y (2) + XYV (2) = (3.67)
or
YV(2) = BLY(2) =0 (3.68)
where ) y
4 _ W _ AP 9
The standard form of its particular solution is
Y(z)=¢€" (3.70)
Introduction of this solution into the equation 3.68 yields the characteristic equation
rt =31 (3.71)
Its roots
™ = /6n Ty = _Bn r3 = Zﬁn Ty = _Zﬁn (372)
determine the set of the linearly independent particular solution.
Yi(z) = e’ Ya(2) = e % Yi(z) = PnF Yi(2) = e (3.73)

Alternatively, one can choose their combinations as the set of the independent solu-
tions

Yi(z) = w =sinh 3,z Yi(z) = e/ﬁ’nz_|_—2€f5nz = cosh (3,2
Y3(z) = M =sinf,z Ya(z) = w =cosf,z (3.74)
A graphical interpretation of these functions for 3, = 1 is given in Fig. 6.
Y, (2
@
€]
Y,

41

Figure 6
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The general solution of the equation 3.68, as a linear combination of these
particular solutions is

Y,.(2) = A,sinhf,z+ B, cosh 3,z + Cy,sinf,,z + D, cos 3,2
(3.75)
Values for the parameter 3, as well as for the constants A, B,,, C, and D,, should
be chosen to fulfill boundary conditions. Since this equation is of fourth order, one
has to produce four boundary conditions reflecting the conditions at both ends of the

beam. They involve the function Y(z) and its first three derivatives with respect to
z.

Y,.(2) = A,sinh(,z+ B, cosh 3,z + Cy,sin 3,z + D, cos 3,2

(3.76)
Y!(z) = A,B,coshf,z+ B,3,sinh B,z + C,f, cos B,z — D,3, sin 3,z
(3.77)
YH(z) = A.p%sinhf,z 4+ B,32 cosh 3,z — C, B2 sin B,z — D, cos 3,
(3.78)
Yi(2) = A.B3coshf,z+ B33 sinh 3,z — C,52 cos B,z = D, 3> sin 3, =
(3.79)
The boundary conditions for some cases of beams are shown in Table 3.2.
Table 3.2
© Z | for 2=0 M(0)=EJY(0)=0
- - for z=0 V(0)=FEJYHU(0)=0
Y for z=1 M()= E’JYH():
free-free beam for z=1 V()=EJY"()=
o — for z=0 Y(0)=0
I - for 2=0 YZ(0)=0
Iv for z=1 M()=EJY'(])=
for z2=1 V()= EJY(]) =
fixed-free beam
o} - for z=0 Y(0)=0
I for z=0 M(0)=EJY(0)=0
: - for z=1 Y()=0
. for z2=1 YI(I)=0
pined-fixed beam
° 2
Ck <k for z=0 M(0)=EJY'(0)=0
iw | for 2=0 V(0)=EJY!(0)= —kY( )
™ = for z=1 M(l)=EJY() =
|y for z2=1 V()= EJY(])=+kY(l)
elasticaly supported beam
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Let us take advantage of the boundary conditions corresponding to the free-
free beam in order to determine the natural frequencies and the natural modes.

for 2=0 M(0)=EJY(0)=0
for 2=0 V(0)=EJYHI(0)=0
for z=1 M()=EJY"(l)=0
for z=1 V(I)=EJY"()=0

(3.80)

Introduction of the functions 3.78 and 3.79 into the above boundary conditions results
in the following set of algebraic equations that are linear with respect to the constants
A,, B,, C, and D,,.

0 5 0 —6 Ay 0
B sinhB i Bcoshfil —Bisinpl —Beospi |||~ ]0]| G
B2 coshB,1 B2sinhB,l —f32cosB,l [sinf,l D, 0

They have a non-zero solution if and only if their characteristic determinant is equal
to zero. This condition forms the characteristic equation

0 1 0 -1
1 0 -1 0
sinh3,l coshf3,l —sinf,l —cosB,l | 0 (3.82)
cosh 3,1 sinhf,l —cosf,l sinf,l
that, after simplification, takes the following form
cosh 8,lcos B, —1=0 (3.83)

This characteristic equation is transcendental and therefore has infinite number of
roots. Solution of this equation, within a limited range of the parameter 3! is shown
in Fig. 7

The first few roots are

Bol =0 Bl =473 Byl =785 Bgl=11...... (3.84)

As one can see from the diagram 7, the characteristic equation has double root of zero
magnitude. Since the beam considered is free-free in space, this root is associated with
the possible translation and rotation of the beam as a rigid body. These two modes,
corresponding to the zero root are shown in Fig. 8a) and b). Modes corresponding
to the non-zero roots can be produced according to the following procedure.

For any root of the characteristic equation the set of equations 3.81, since
its characteristic determinant is zero, becomes linearly dependant. Therefore, it is
possible to choose arbitrarily one of the constants (for example A,) and the other
can be obtained from three arbitrarily chosen equations 3.81. If we take advantage
of the second, third and fourth equation we are getting

0 -1 0 B, 1
coshf,l —sinf,l —cosp,l C, | =—| sinh3,l | A, (3.85)
sinh 8,1 —cosf,l sinf,l D, cosh (3,1
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coshlgnl cos,qql -1=0
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Figure 7
Hence, for A,, = —1 we have
B, 0 -1 0 Tl
Cn, | = | coshp,l —sinfp,l —cosp,l sinh 3,0 (3.86)
D, sinhf3,l —cosf,l sinf,l cosh 3,1

For the first non-zero root 3, = 4.73 the above set of equations yields values for
constants By, 7 and D,

-1

B 0 —1 0 1 1.0178

Cy | = | coshd.73 —sin4.73 —cos4.73 sinh4.73 | = —1.0

Dy sinh4.73 —cos4.73 sin4.73 cosh4.73 1.0177
(3.87)

Hence, the corresponding mode, according to Eq. 3.75 is
Yi(z) = —1.0sinh 4.73z 4+ 1.0178 cosh 4.73z — 1.0sin4.73z + 1.0177 cos 4.73z  (3.88)

Its graphical representation is shown in Fig. 8c¢).

In the same manner one can produce modes for all the other characteristic
roots. Modes for Gyl = 7.85 and 53] = 11 are shown in Fig. 8d) and e) respectively.
The formula 3.69 allows the natural frequencies to be computed.

B EJ (B0 |EJ
‘”n—ﬁi*/A—p—T2 1/14_,0 (3.89)

Eventually, taking into account the predicted solution 3.66, the particular solution is

y(z,t) = S, Y, (2) sinw,t (3.90)
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where Y,,(z) and w,, are uniquely determined and S, is an arbitrarily chosen constant.
In the same manner we can show that the function

y(z,t) = C,Y,(2) coswyt (3.91)

is the linearly independent particular solution too. It follows that the following linear
combination

3

Z Y, (2) (S, sinwpt 4+ Cy, cos wy,t) (3.92)
n=1
where
Yi(2) = —1.0sinh4.732 4+ 1.0178 cosh4.73z — 1.0sin4.732 4+ 1.0177 cos 4.73z
Yo(2) = oo (3.93)

is the general solution of the equation 3.65. The constants S,, and C, should be
chosen to fulfill the initial conditions.

Orthogonality of the natural modes Let us consider two arbitrarily cho-
sen natural modes Y;(z) and Y;(z). Both of them must fulfill the equation 3.67

—W2Y (2) + XYV (2) =0
Hence

—W2Y(2) + NYV(z) = 0 (3.94)
—wiYi(2) + XY V() = 0 (3.95)

Premultiplying the equation 3.94 by Y;(z) and the equation 3.95 by Y;(2) and then
integrating them side by side one can get

! !
~ [ Ve [ YV EYeE = o0
—w?/le(z)Y;(z)dz+)\Q/ZY;-IV(z)Y;(z)dz =0 (3.96)

The second integrals can be integrated by parts. Hence
! l
—t [ Ve (YY) -2 [ Ve e = o

—u? / Y Vile)s + 2 (YY) - X2 / VY = 0
(3.97)
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Let us apply the same procedure to the last integral again

—? [1Yi(2)Yj(2)dz + N2 (Y]H( )Y;(Z)‘f)) T
=3 (YY) + X fy Y)Y ()dz = 0

)

(3.98)

0

—? 1Y)V (2)dz + X2 (YHI( )Y(z)\l) +
_)\2 (Y;H(Z)Y;I( )‘ >+)\2f0 YH YH( )dZ:()

Substraction of the second equation from the first one yields
(w? = w?) fo Y (2)Yi(z)dz+
- (VHE)Y(:)]o) + 22 (Y Y )])

2 (VY -2 (Y E)) =0

The expression

= (YY) 2 (VY )] )+ (Vv ) -2 (VY )]

(3.100)
depends exclusively on boundary conditions. It is easy to show that for any possible
boundary conditions this expression is equal to zero. Hence,

/l Y;(2)Yi(2)dz =0 (3.101)

The above property of the natural modes is called orthogonality condition and play
a very important role in further development of the theory of vibrations.
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3.2.3 Problems
Problem 41

G, A, 01, 1
uiupPea

Go, Ao, o3, B
PRl TR

~T

Figure 9

For the shaft shown in Fig. 9 produce equation for its natural frequencies.
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Solution
For
0<z<l (3.102)

motion of the system, according to 3.19, is governed by the following equation

32901('2’ t) 2 82901(Z7 t)

Y -0 3.103
ot? b 922 ( )
where o
A= (3.104)
01
Similarly, one may say that within range
h<z<li+1 (3105)
motion of the shaft is governed by
82302(27 t) 2 82302(27 t)
_ =0 3.106
ot? 2022 ( )
where o
A== (3.107)
02

Both parts of the shaft must have the same natural frequencies. Therefore the par-
ticular solution of the above equations must be of the following form

p1(z,t) = P1(2)sinwnt (3.108)
902(Z7t> - ®2(Z)Sinwnt (3109)

Introduction of these solutions into the equations of motion yields, according to 3.34,

O (2) + B ®i(2) = 0 (3.110)
O (2) + B2, Pa(2) = 0 (3.111)
where w w
= == 112
ﬁnl )\1 6712 )\2 (3 )
These two equations are coupled together by the following boundary conditions
forz = 0 ®,(0)=0
for z = ll (I)1<l1) = q)g(ll)
for z = ll Gljlq){(ll) = GQJQ@é(ll)
forz = LL+ly @Yl +1y) =0 (3.113)

The first boundary condition reflects the fact that the left hand end of the shaft is
fixed. The second and the third condition represent the continuity of the angular
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displacement and continuity of the torque. The last condition says that the torque
at the free end is zero. Since the general solution of equation 3.110 and 3.111are

®i(2) = Spisin ﬁz + C,,1 cos &z (3.114)
A1 A

Dy(2) = Sppsinalz + Chycos 2z (3.115)
A2 A2

the formulated boundary conditions results in the following set of equations

Cn=0

S,1 sin ‘;—’fll + ()1 cos “/(—’;ll — S,2 8in “/(—’2112 — ()2 cos ‘;—’;ZQ =0
SanlJlu)\)—;l CcoSs w" ll — Canle]lL;” sin w" l1+ (3116)

— HQGQJQWH CcOoS wn ll + CnQGQJQ Yn SlIl w" ll =0

+Sn2 52 cos §2 (l1 + lg) Cha52 sin 42 (l1 —|— lg) =0

Its matrix for is

Snl
[A] G | g (3.117)
Sn2
Cn?
where
0 1 0 0
A sin {2 l1 cos §* l1 —sin ‘;—glg — Cos w"l
[ ] o G1J1 u;\" cos w”ll —G1J1 u;\" SlIl ll _GQJQ‘;’" CcOoS w" ll GoJs U;\" SlIl ll
0 0 (;—; COs w” (ll—f-lg) —)\—2 sin w;‘ (l1+l2)

This homogeneous set of equations has the non-zero solutions if and only if its char-
acteristic determinant is equal to zero.

0 1 0 0

sin —l1 cos 5= 11 —sin —lg — cos §* lg

G1J1 5 cos ‘;—’fll G1J1 sz sin °/<" 1 Gng“” cos w"l GQJQ‘”" sin "J”l =0

0 0 L2 cos w; (ll‘l—lg) — = sin §= (l1+l2)
(3.118)

Solution of this equation for the roots w, yields the wanted natural frequencies of the
shaft.
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Problem 42

|2

Figure 10

The uniform rod 1, shown in Fig. 10, is connected to the block 2 of mass
m. Compute the natural frequencies and the corresponding natural modes of this
assembly:.
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Solution
The equation of motion of the rod, according to Eq. 3.12, is

82y(z,t) 2823/(257 t)

_ = A1
512 A 5.7 0 (3.119)
where B
N == (3.120)
0

To produce the boundary conditions let us consider the block 2 with the adjusted
infinitesimal element (see Fig. 11).

F(,t) y
! Pyt
A
m
|z
Figure 11

Equation of motion of the block, according to the Newton’s law, is

9?y(l,t)
—— L = —F(l,t 3.121
o (1) (3121)
or, taking advantage of the relationship 3.8
0%y(z, t) dy(z, 1)
— = —AF ——~ 3.122
TR 0z |, (3122)

This equation together with the condition corresponding to the upper end of the rod
y(0,t) =0 (3.123)

forms boundary conditions for the equation 3.119.

{ y(0,t) =0

y(=.1) (3.124)

_ oy(z:t)
— AR 2t

2
ot z=l

Introduction of the particular solution (see Eq. 3.32)

z=l

y(z,t) =Y (2)sinw,t (3.125)
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into the equation of motion 3.119 and the boundary conditions 3.124 yields the ordi-

nary differential equation
YH() +B8Y (2) =05 B, =~

with boundary conditions

Y(0) =0
{ mw?Y (1) — AEYI(l) =0

The general solution of the equation 3.126, according to 3.36, is
Y, (z) = S, sin B,z + C,, cos 3,2

Introduction of this solution into boundary conditions yields

(3.126)

(3.127)

(3.128)

Cn=0
{ mw? (S, sin 3,z + C,, cos B8,,2) — AE (S,.f3,,cos B,z — C,,3,sin 3,2) =0

or

(mwi sin 3,2 — AES,, cos 3,2) S, = 0

Hence, the characteristic equation, after taking advantage of 3.126, is

. wn wn wn
mw? sin —z — AE=2 cos —2 =0

" A A A
or after simplification
fan 277 — AE 0
A Awnm

For the following numerical data
[=1m
E =21 x 10" N/m?
A=25x%x10"*m?
p = 7800kg/m3
A= \/g — 5188.7m/s
m, = A X1 x p=19.5kg - mass of the rod
m = 20kg - mass of the block
the characteristic equation takes the following form

n 5059.0
w ) B _0

f(wn) = tan (5188.7

Wn

Its solution f(w = 0 is shown in Fig. 12.

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)
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The first three natural frequencies, according to the diagram 12 are
wy = 4400, wy = 17720, wy = 33400 s * (3.134)

The corresponding natural modes, according to 3.128, are

Wn

: L Wn o
Y, (z) = Spsin B,z = S, sin 72 =5, sin 5188.72 (3.135)
For the first three natural frequencies the corresponding natural modes
4400 17720 33400
Yi(z) = Y3 (z) = si Y3(z) = si 1
() =singagme Yola) =singragme Yalz) =sinpragme (3-136)

are presented in Fig. 13, 14 and 15 respectively.If we neglect the mass of the rod, the
system becomes of one degree of freedom and its the only one natural frequency is

EA  [21x 10" x 25 x 10*
Y L \/ _ X A0 X 25 X MTE 59361 (3.137)
m Im 20

and the corresponding mode is a straight line.
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Problem 43

Produce natural frequencies and the corresponding natural modes for the fixed-
elastically supported beam shown in Fig. 16

O
d z
<>k
I WQT
1y

Figure 16
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Solution
According to the equation 3.65, the equation of motion of the beam is

D?y(z,t) L2 My(z,t)

T o =0 (3.138)

Its particular solution can be sought in the following form
y(z,t) = Y, (2) sinwyt (3.139)

the above solution has to fulfill boundary conditions. At the left hand end the dis-
placement and gradient of the beam have to be equal to zero. Hence,

y(z,t)|,.g = 0 (3.140)
dy(z,1)

— 141
7|, 0 (3.141)

The right hand end, with the forces acting on it, is shown in Fig. 17. Equilibrium

dz
O — e
- _
Z VA
P K
. | ASSNY NRNN
ky(zb)| -
' y

Figure 17

conditions for the element dz which have to be fulfill for any instant of time, forms
the boundary conditions associated with the right hand end

9%y(z,t)

M(z,t)|,., = E(2)J(z) 5| = 0 (3.142)
z=l
 OM(zt)| 0 Py(z,t)|
V(z,t).., = el 8zEJ 0 |~ ky(z,t)] ., (3.143)

Introduction of the solution 3.139 into the above boundary conditions yields

Il
o o o o

(3.144)
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where

_EJ
ok

According to the equations 3.76 to 3.79 the expressions for the natural modes Y;,(2)
and their derivatives are

a (3.145)

Y,(z) = A, sinh 38,z + B, cosh 5,z + C, sin 8,z + D,, cos 3,z

Y!(z) = A,B, cosh B,z + B,f3, sinh 8,z + C,3, cos 3,z — D, 3, sin B3, 2
Y!H(2) = A,B2sinh 8,z + B2 cosh 3,2 — C, /3> sin B3,z — D, 32 cos 3,2

YHI(z) = A,B2cosh B,z + B,Bsinh 8,2 — C./3° cos 8,2 + D, 32 sin 3, 2
(3.146)

where (see Eq. 3.69)

54:“)_31_ﬁ 2

2B
Introduction of the above expressions into the boundary conditions 3.144 results in
the following set of algebraic equations that is linear with respect to the constants
A,, B,, C, and D,.

(3.147)

B,+D, =0
A, +C, =0
A3 sinh 8,1 + B, cosh 8,1 — C,32sin 8,l — D32 cos3,] = 0
Anﬁfba cosh 3,0 + Bnﬁfba sinh 3,1 — C’nﬁf’la cos 3,1 + Dnﬁfba sin 3,1
—(A,sinh 5,0 + By, cosh 5,1 + C,,sin 3,1 + D, cos 5,,1) =0

(3.148)
The matrix form of these equations is presented below

0 1 0 1 A 0

1 0 1 0 B 0

sinh 3,1 cosh (3,1 —sing,! —cos 3,1 C" = 1o
BacoshB,l | BlasinhB,l | —BlacosB,l | Basinp,l Dn 0

—sinh 3,1 —cosh 3,1 —sin 3,1 —cos 3,0 || "
(3.149)

The non-zero solution of this set of equations exists if and only if its characteristic
determinant is equal to zero.

0 1 0 1
1 0 1 0
sinh 3,1 cosh 3,1 —sin f,1 —cos 3,1 =0 (3.150)
B2acoshB,l | B2asinhf,l —BacosB,l | Basinf,l
—sinh 3,1 —cosh 3,1 —sin 3,1 —cos 3,1




ANALYSIS OF CONTINUOUS SYSTEMS 193
For the following data
E =21x 10" N/m?
p = 7800kg/m3
A =10.03 x 0.01 = 0.0003m?
3 _
J = 80000 — 2.5 x 10-°m*
k = 10000N/m
[=1m
EJ . 11 . -9
o= £ — 2.1x10 10>(<)(2J05><10 = 0.0525
the characteristic equation takes form
0 1 0 1
1 0 1 0
sinh /3, cosh 3, —sinf,, —cosf3,, =0
052532 cosh 3, | .05253: sinh 3, —.052532 cos 3, 0525432 sin 3,
—sinh 3, —cosh 3, —sinf,, —cos (3,
(3.151)
Solution of this equation for its roots [3,, is presented in Fig.18
2007
100 T
0 2 4 6 8 B
-100 T
-200 ~
Figure 18
From this diagram the first three roots are
B, = 2.942m7*
By, = 4.884m~! (3.152)
B, = T7.888m~!
The relationship 3.147
Ap
L
Bn - ijn
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offers values for the wanted natural frequencies

BIEJ

wy = v =129.65"1
iEJ

Wy = ﬁi;p = 357.357! (3.153)
4

Wy = b 3E‘]=932.05—1
Ap

For each of these roots the set of equations 3.149 becomes linearly dependant. Hence
one of the unknown constants can be chosen arbitrarily (e.g. D,, = 1) and the last
equation can be crossed out. The three remaining equations allow the constants A,
B,,, and C,, to be computed.

0 1 0 1 g” 0
1 0 1 0 C" =10 (3.154)
sinh 3,1 | cosh 8,1 | —sinf,l | —cos 3,1 1" 0
0 1 0 A, 1 0
1 0 1 B, | + 0 =10 (3.155)
sinh 3,1 | cosh 3,1l | —sinpg,1 Cn — Cos ﬁ l 0
A, 0 1 0
B, | =— 1 0 1 (3.156)
C, sinh 8,0 | cosh 5,1 | —sin 3,1 — cos B [
For the first three roots the numerical values of these constants are
A .883 A, 1.02 As 1.0
&) —.883 Cy —-1.02 Cs —-1.0

Introducing them into the first function of 3.146 and remembering that D, = 1, we
are getting the corresponding natural modes

Y1(z) = .883sinh 2.942z — 1.0 cosh 2.942z — .8835in2.9422 + 1 cos 2.9422

Y5(2) = 1.02sinh 4.884z — 1.0 cosh 4.884z — 1.02sin 4.884z + 1 cos4.884z
Y3(2) = 1.0sinh 7.8882 — 1.0 cosh 7.888z — 1.0sin 7.888z + 1 cos 7.888z  (3.158)

The graphical interpretation of these natural modes is given in Fig. 19
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Y,(2) %2 Y%

Figure 19
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Problem 44

p1G1‘J0 1 2 2

A

A

S

Figure 20

The left hand end of the shaft 1 shown in Fig. 20 is fixed. Its right hand end is
supported by means of the massless and rigid beam 2 of length L that is connected to
two springs each of the stiffness k. Produce the equation for the natural frequencies

of the shaft.

Answer:

Qfgg%”cot 22l +1=0 where £\ = %
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Problem 45
2 2
2,6, Jo 1
ASSNN AN\
>
| b4
- -
Figure 21

Two rigid discs 2 (see Fig. 21) are joined together by means of the shaft 1 of
the length [. The moment of inertia of each disc about the axis z is I.
Produce the equation for the natural frequencies of the assembly.

Answer:
n Qp, — 0
B, cosB,l —a,sinfp,l —f,sinp,l — a,cosf,l
T 2
where (3, = wn\/& oy, = Gﬂjo
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Problem 46

|1 El ‘]; A’p

L
D

!

Figure 22

The uniform beam is supported as shown in Fig. 22.
Produce the equations for the natural frequencies of this beam
Answer:

sinh §,,l cos 3,1 —sin3,lcosh 3,1 =0 B, = /% A= f‘—i

Solution
According to the equation 3.65, the equation of motion of the beam is
Py(z,t) | 20%(z 1)
: A - =0 3.159
o o (3.159)

Its particular solution can be sought in the following form
y(z,t) = Y, (2) sinw,t (3.160)

the above solution has to fulfill boundary conditions. At the left hand end the dis-
placement and gradient of the beam have to be equal to zero. Hence,

Yz, )|,y = 0 (3.161)
dy(z,1)
o | 0 (3.162)

The right hand end The displacement and the bending moment has to be equal to
zero. Hence,

Yt = 0 (3163
D?y(z,t)

022

M(z,t)., = E(2)J(2) =0 (3.164)

z=l

Introduction of the solution 3.160 into the above boundary conditions yields

Yn(z)|z:0 =0
)

0
Z)‘z:l =0
0 (3.165)
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According to the equations 3.76 to 3.79 the expressions for the natural modes Y;,(2)
and their derivatives are

Y, (z) = Ansinh 8,2 + By, cosh 3,z + C,, sin 3,z + D,, cos (5,2

Y!(z) = A,B, cosh B,z + B,f3, sinh 8,z + C,3, cos 3,z — D, 3, sin 3, 2
Y (2) = A, 32 sinh 3,z + B, 32 cosh B,z — C, % sin 3,2 — D,,32 cos 3,z

YH(z) = A,B2cosh B,z + B,B2sinh B,z — C,f3° cos 8,z + D, 32 sin 3, 2
(3.166)

where (see Eq. 3.69)

4 WQ_APQ

10

Introduction of the above expressions into the boundary conditions 3.165 results in
the following set of algebraic equations that is linear with respect to the constants

A,, B,, C, and D,.

B, + D, 0
A, +C, = 0
Apsinh 8,1+ B, cosh 8,1 + C,,sin3,,l + D, cos3,l = 0
A3 sinh 8,1 + B, cosh 8,1 — C,32sin 8,1 — D, 32 cos3,] = 0
(3.168)
The matrix form of these equations is presented below
0 1 0 1 A, 0
1 0 1 0 B, B 0
sinh 8,1 | cosh 8,1 | sinf3,l | cosf,l Cp 10
sinh 3,0 | cosh8,l | -sin3,l | -cos 3,1 D, 0
(3.169)

The non-zero solution of this set of equations exists if and only if its characteristic
determinant is equal to zero.

0 1 0 1

1 0 1 0
sinh 8,0 | cosh 8,1 | sinf,! cos 3,1
sinh 8,0 | cosh 3, | —sinf,l | —cosf,l

=0 (3.170)

A development of the above determinant results in the following equation for the
unknown parameter 3, [

Bplsinh 8, lcos 3,0 —sinf,lcosh 3,1 =0 (3.171)

where:
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Wn

_EJ

S ] A= — 172
Bu=1/3 - (3172)
The roots f3,,l of the equation 3.171 allows the natural frequences to be produced
N EJ
wn = ABy, = aBa) (8,0)° (3.173)

2 Apl2
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Problem 47

A
1
p,EA
I
y
2
<§/
<> k
=
Yz
Figure 23

The uniform rod 1 shown in Fig. 23 is supported by means of the massless
spring of stiffness k.
Produce the equation for the natural frequencies.

Problem 48
|l E! ‘]l Ayp

L -

|~

i}

Figure 24
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The uniform beam is supported as shown in Fig. 24.

Produce:

1. the boundary conditions for the equation (1)
Answer:

for z=10 (HY =0 (2)Y"=0

for z =1 B)Y' =0 4)Y"=0

2. the equations for the natural frequencies of this beam
Answer:

cosfl =0

where § = ¢ %

202
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Problem 49

= !
7t

~Y

\\ J
\

P15 G, Jo1 \ P2, G2, Jo2

Figure 25

The left hand ends of the two shafts (1 and 2) depicted in the Fig. 25 are
welded to a motionless wall. Their right hand ends are welded to the plate 3. The
moment of inertia of the plate about the axis z is I,. This assembly performs the
torsional vibration about axis z. The dynamic properties of the shafts are defined
by their density p; and ps, their shear modulus G; and G, and the second polar
moment of area Jo; and J oy respectively.

Produce the equation for the natural frequencies of the assembly described.

The differential equation of motion of a shaft is.

a2¢(27 t) . 282Q0(Z7 t)

ot? 022 0
where
v-9
p
G - shear modulus
p — density
Answer:

Wy Wnl 1. . _ Joip;. _ Joz2ps. _  /Gi. _  /Gs
Bycot 52l+ [, cot §2l =1; where; ) = =G, [fy = =F2; A = o Ay = ™
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Problem 50
m
A
Q 2
1 2
a
|
.
- o
vy

Figure 26

The string 1 shown in Fig.26 of length [, density p and area of its cross-section
A is under the constant tension 7. At the position defined by the distance a the
element 2 is attached. This element can be treated as a particle of mass m.

Produce the equation for the natural frequencies of the system described.
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Solution

yi(z.t) W, (21, V2(zt) | Yi(ZD)|z=a=Ya(Z)]=a
/i az /7
o) \. \ Y I/ -
z
[l
T
- -
vy 9y, (1) |
oz
Figure 27
Let the differential equation of motion of the uniform string in the region
0<z<a (3.174)
be
ale (27 t) 2 azyl(zv t)
_ = 1
BT A 5.2 0 (3.175)
where
T
N=— 3.176
P (3.176)
Similarly, in the region
a<z<l (3.177)
the equation of motion is
Pys(z,t) 50%a(2,1)
— — A —~ =0 3.178
ot? 0z? ( )
where
T
= — 1
A, (3.179)
Solutions of the above equations are of the following form
Yin(z,t) = Yi,(2)sinw,t (3.180)
Yon(z,t) = Yo,(2)sinw,t (3.181)

where w,, stands for the natural frequency that is common for both parts of the string.
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These solutions must fulfil boundary conditions (z = 0, z = [) and compati-
bility conditions at z = a. They are

Yin(z,t) ;=0 = 0 (3.182)
Yin(2,0) li=a = Y2u(2:1) |o=a (3.183)
82y1(z, t) B Oy1(z,t) 0ya(z, 1)
52 . = T 0 . + T 5 . (3.184)
Yon(z,8) .= = 0 (3.185)

Introduction of the solutions 3.180 and 3.181 into the equations 3.175 and 3.178
results in the following set of differential equations

Yin(2) + BeYin(z) = 0 (3.186)
Yo (2) + B2Yau(2) = 0 (3.187)
where ) A2
2 ﬂ — PWy,
=5 =5 (3.188)
The general solution of these equations can be predicted as follows
Yin(2) = Sipsinf,z + Cy,cosf,2 (3.189)
Yon(2) = Sousinf, z + Cyy, cos 3,z (3.190)

Introduction of the solutions 3.180 into the conditions 3.181 yields

Yin(2)|:=0 = 0 (3.191)
Yin(2) :=a = Yan(2) [:=a (3.192)
—mwiYin(2)|,_, = “TYi(2)|  +TY,,(2)| (3.193)
You(2) ot = 0 - - (3.194)

Introduction of the solutions 3.189 and 3.190 into the conditions above one can get
the following set of homogeneous linear equations

(0) S1n + (1) Chp + (0) Sap + (0) Cop, = 0
(sin B,a) S1n, + (cos 5,,a) Cp, — (sin B,,a) Sa, — (cos 5,,a) Cap, = 0
(—mw? sin B,,a + T, cos B,a) S1,, + (—mw? sin B,,a — T3, sin 3,,a) Cy,, +
— (T8, 08 3,a) Son + (T, sin 3,a) Car, = 0
(0) S1, + (0) Cyy, + (sin B,,0) Sapn + (cos 5,1) Cap, = 0
(3.195)
This set of equations possesses non-trivial solutions if and only if its characteristic
determinant is equal to zero.

0 1 0 0
sin ,,a cos 3,,a —sinf3,a —cos f3,,a
—mw? sin 3,a + —mw? sin 8,,a + ‘ —0
—I—Tﬁn COs 671@ _Tﬁn sin Bna _Tﬁn cos ﬁna Tﬁn S 6na
0 0 sin 3,1 cos 3,1

(3.196)
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Roots j3,, of the above equation, with help of the relationship 3.188 allow the
natural frequencies to be produced

anﬁn A_p



ANALYSIS OF CONTINUOUS SYSTEMS 208

Problem 51
Pi Al P2 A2
>
Z
1 e
Iy l2
4‘ T
Y y
Figure 28

Two strings of length [; and [, are loaded with tension 7. Their dynamic
properties are determined by the density o and the area of their cross-section A.

Produce the natural frequencies of the system described and the corresponding
natural modes
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Solution
Let the differential equation of motion of the uniform string in the region

0<z<l (3.197)
. Pu(e,t)  0P(0)
U1 Zut 2 U1 Zut
_ — 1
BT 5.2 0 (3.198)
where
T
£\ = 3.199
1 A1,01 ( )
Similarly, in the region
h<z<li+l1 (3200)
the equation of motion is
D?ys(2,1) 0 0%ys(2, 1)
BT — A 2 0 (3.201)
where
T
M\ = 3.202
2 A2,02 ( )

Solutions of the above equations are of the following form

yin(z,t) = Yi,(2)sinw,t
Yan(2,1) = Yau(2)sinwnt (3.203)

These solutions must fulfil boundary conditions (z = 0, z = [; + 1) and compatibility
conditions at z = [;. They are

yln(zvt) |z:0 = 0

yln(za t) |Z:l1 - an(Z, t) ’Z:ll—‘rlg
Oy (2, 1) Oy1(z,1) Oya(z,t)
dm ——>— = T ——= AR 3.204
AT a—ly 0z |, + 9z |, ( )
Yon(2,) o=ty = 0

The third condition we are getting by application of the Newton law to the element
of the string associated with z = [;. Since dm stands for an infinitesimal mass of this
element, the above conditions can rewritten as follows

y1n(2,t)|z:0 =0

y1n<z= t) |Z=11 = y2n(27 t) |Z=l1+lz
Oy (z,t) 0ya(z,t)
B N AR =0 3.205
0z ol 0z ol ( )

y2n(z7t) |Z:l1+12 =0
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Introduction of the solutions 3.203 into the equations 3.198 and 3.201 results in the
following set of differential equations

Yi,(2) + B Yin(2) = 0 (3.206)
You(2) + BraYou(2) = 0 (3.207)
where > 4 ) 2 4 )
2 Wy 1P1Wy 2 Wy 22Wn,
— 7 — . _ —— = .2
The general solution of these equations can be predicted as follows
Yin(z) = Sipsinfy,z + Cyy, cos (4,2 (3.209)
Yon(2) = SousinfBy,2 + Cay, cos By, 2 (3.210)

Introduction of the solutions 3.203 into the conditions 3.205 yields

}/171(2) |z:0 =0
len(z) |z:l1 = }/2n<’2) |Z:l1
)| e = o (3:211)

z=l1 z=l1

Yon(2) lo=ty41, = 0

Introduction of the solutions 3.209 and 3.210 into the conditions above one can get
the following set of homogeneous linear equations

(0) Sln+(1) Oln+( )SZn ( )

(sin B1,,01) S1n + (cos By,01) Crpy — (8in By, l1) San — (08 By,l1) Cop = 0

(Bln COoS ﬁlnll) Sln - (ﬁln sin Blnll) Cln - (5271 COoS 627111) 5271 (6271 sin 627111) 0271 =0

(0) Sln + (0) Cln + (Sin 6271([1 + lz)) Sgn (COS 6271([1 + lz)) an =0

(3.212)

This set of equations possesses non-trivial solutions if and only if its characteristic
determinant is equal to zero.

Cy, =0

0 1 0 0
sin 34,11 cos 31,11 —sin 35,01 — c0s 35,1 _ 0 (3.213)
61n COos Blnll _Bln sin 61nl1 _5211 COS ﬁ2nll +62n sin B2nl1 '
0 0 sin By, (I1 + 12)  cos By, (11 + I2)
Introducing 3.208 into the above equation we have3;, = 5V
0 1 0 0
sin —ll cos 5= l1 —sin —l1 — cos g% ll
Wn wnl __Wn l Wn Wnl Wn l = 0 (3214)
N, COS 1 N Sm 1 —/\—2 Cos J2l1 +A sm 1
0 0 sin ﬂ(ll + lg) Ccos w;‘ (ll —f‘ lg)

Now, the equation can be solved for the natural frequencies of the string. The solution
is presented for the following set of numerical data.
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ly = .5m, Iy = 1.m, 07 = 0y = 7800kg/m3, A1 =2-107%m? Ay =1-107%m?
T = 500N.

AL = \/AlTp1 \/24105*%07800 = 179.03m/s, Ay = \/Afp2 = \/1,105,%07800 = 253.18m/s

0 1 0 0
sin (1'—759wn) CoS (%wn) —sin (2—53wn) — Cos (%wn) —0
ﬁ cos mwn) —% sin Emwn) —% cos E%wn) —}—ﬁ sin (%wn)
0 0 sin 6%(5 + 1)wy) cos (555 + 1)wy)

(3.215)
The magnitude of the determinant as a function of the frequency w, is presented in
Fig. 29

107
5T
0 Il 1 1 1 l
0 1000 1500 2000 250
frequency [fad/s]
5T
-10T

Figure 29

It allows the natural frequencies to be determined. They are
w1 =483; we =920; w3=1437; wy=1861; w5 = 2344[rad/s] (3.216)

The so far unknown constants Si,, Ci,, San, Co, can be computed from the homo-
geneous set of linear equations 3.212. From the first equation one can see that the
constant (', must be equal to zero

Cln - O
(Sinﬁlnll) Sln - (Sin 6211[1) S2n - (COS ﬁ2nll) CQn =0
(ﬁln COS Blnll) Sln - (627@ COoS 527@11) SQ” + (527@ sin 527@11) 0271 =0 (3217)

(0) Sln + (sin 5271([1 + lz)) Szn + (COS 52n(ll + lz)) an =0
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Since the equations is linearly dependent for roots of its characteristic determinant,
one of them must be crossed out and one of the constant can be assumed arbitrarily.
Hence let us crossed out the second equation and assume Cs, = 1.

Coy =1
The set of equations for determination of the remaining constants Sy, and Ss,is

(Sinﬁlnll) Sln - (Sinﬁ%@ll) S2n = COs 6271[1
(0) Sln —+ (Sil’l an(ll + lg)) Sgn = — COS /Bgn(ll + ZQ)

Hence
—¢08 [y, (I1 + 13)
8271 N
sin By, (1 + {2)
08 By, 11 — (sin By,11) %m
Sln = N -
(SlI] Blnll)
For n = 1, 2,3 the constants Sy, and Sy, are
n=1

w1 =483; 81 = & = proes = 2697 By = ¢ = 5 =191

1796'030 o ~ 253.18
cos
S, — cos By 11 —(sin By 1) g2 gy cos 1.907-0.5—(sin 1.907-0.5) L5 1.907-1.5 _ 348

Bl flin)ﬁllll) - - (sin2.697-0.5)
__ —cos __ —cosl1.907-1.5 __
So1 = sin,f;’;bljrl; — Tsin1.907-1.5 3.46Y11(2)
Y11(z) = Siisin By, 2 = 3.48sin2.697z for0<2z<0.5
Yo1(z) = Sa18in Bgy2 + 1 cos By 2 = 3.468in1.912 + 1cos 1.91z for 0.5 <z < 1.5
n=2
— 99()- _wp _ 920 _ _wp _ 920 _
Wo = 920, /812 f — 179.03 513 /322 ; — 9253.18 363
g - cos By 1—(sin Byl ) 52272 _ c0s3.630.5—(sin3.63.0.5) L0809 115
12 Bl (Slin)/812ll) (sin5.13-0.5) .
__ —cos +l2) _ —cos3.63-1.5 __
Spz = sin,8222?l1}H2)2 o s;:r(l)z,63~1.5 = 0.899
Yi2(z) = Si2sin 8152 = 1.15sin5.132 for 0<z<05
Yo2(2) = Saasin Bg9z + 1 cos gz = 0.899sin3.632 + 1 c0s3.63z for0.5b <z < 1.5
n=3
_ ws _ 1437 _ _ 1437 _
wy = UBT; fiy =5 = 855 =8.026 Oy, = 53 = 5 = 5.7
cos gl —(sin Ba3h1) S g28 0% cos5.675-0.5— (sin 5.675-0.5) osB-675:-15
s Brali M) MR = Gns 005y s = 0944
__ —cos __ —co0sb5.675-1.5 __
So3 = sinﬂﬁllilg; - sicn5.675-1.5 =0.773
Yi3(z) = Sizsin 5132 = 0.944 sin 8.0262 for 0<2<0.5

Yo3(2) = Sazsin Ba3z + 1 cos fy32 = 0.7738in5.672z + 1 cos5.67z for 0.5 <z < 1.5

A plot of the natural modes is shown in Fig. 30



ANALYSIS OF CONTINUOUS SYSTEMS 213

natural modes

q ols \/ 1
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\J

z [m]

Figure 30
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3.3 DISCRETE MODEL OF THE FREE-FREE BEAMS

The commercially available computer packages allow to produce stiffness and inertia
matrix of free in space beam along coordinates y, and ¢, (see Fig. 31) associated
with an arbitrary chosen number N of points. These distinguished points n are called
nodes. The most popular approaches for creation of the stiffness and inertia matrices

1 2. N N
—I—cﬂ\%—w—y&— ofof ©- O o= O |-
= N

%

Figure 31

are called Rigid Element Method and Finite Element Method.
3.3.1 Rigid Elements Method.

Inertia and stiffness matrix for the free-free beam

According to the Rigid Element Method, the beam is divided into a sufficient, for
necessary accuracy, number of segments I of constant cross-section (Fig . 32a))The
bending and shearing properties of each segment are represented by two springs of
stiffness ks, and kg, respectively (Fig. 32.b). Equivalence of both, the actual element
(Fig. 33a) and its model (Fig. 33b) requires equal angular deflection ( J,, = d, )
caused by the same bending moment M.

Since:
M;l; M;
0y, = — d 0p, = — 21
‘“omy, M “ T 2, (3:218)
the bending stiffness is
EJ;
kng, = l‘j (3.219)
Similarly, the equivalence of shearing deflections (y., = v.,) caused by the same
shearing force T; (Fig. 33c and Fig. 33d)
Til; T;
=y, = = d =y = — 3.220
o=l =ga wd g = (3.220)
yields ’
G4
kr. = (3.221)

i lz
The right hand part of the segment /,_; and the left hand part of the subsequent

segment [; , form a section (Fig. 32c). KEach section is considered rigid and its
inertia properties are represented by mass m; and moments of inertia ;. In this
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way a complete symmetry is obtained that gives simple programming for computer
analysis.

Application of the Lagrange’s equations to the physical model is shown in Fig.
32d) results in the following equations of motion.

my + ky =0 (3.222)
where: -~ .
My, .. 0 0 o .0
0 . M., 0 0 0
m=[0 .0 M, 0 0 (3.223)
0 . 0 0 M1 0
0 .0 0 0 . Myy |
(K .. 0 0 0 L0
0 . Ki—l,i—l Ki—l,i 0 ... 0
k: 0 .. Ki,i—l Ki,i Kz‘77;+1 .. O (3224)
0 . 0 Kiy1i Kij1ie1 - 0
(0 .0 0 0 . Kyn |
_ i -
Yi-1
Yo=| Yi (3.225)
Yit1
L YN
N=T+1 (3.226)
I m; 0
M;; = 0 Ll (3.227)
—kT. _kT- Zpi
Ki P i—1 i—17Ti—1 3'228
ot l +k‘lTi71le‘ _k‘Mifl + leiflz"'iflzli 1 ( )
+kp,_, +kp, +kr._, 2z, + k7. 2,
K‘ J— i—1 7 1—17t 7 7 22
vt |: +kTi—lzli + kTizﬁz +kM1:—1 + kTi—lzl%' + szzi :| (3 9)
R _kTi +kTiZli+l
KM+1 o l —k:Tizri _kMi + kJTiZlHeri (3230)
Yi
i = 3.231
Y [ Py ] (3:230)

The geometrical interpretation of the vector of coordinates 3.231 is given in Fig.
34.The coordinates y;, ¢,; are associated with nodes which are located at the centre
of gravity of the rigid elements.
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node 1 nodliex node N
¥ %

|y

Figure 34

Introduction of the external forces

If there is a set of forces acting on the rigid element, each of them (e.g. F;) can be
equivalently replaced by the force F; applied to the node O; and the moment M; =
a; - F; as shown in Fig. 35This equivalent set of forces along the nodal coordinates

Fi

Mj dement i
f KV
i o -
a; nodei
F X 4

Figure 35

Yi, ,; should be added to the mathematical model 3.232. In a general case these forces
can be independent of time (static forces) or they can depend on time (excitation
forces). Introducing notations Fy for the static forces and F(t) for the excitation
forces, the equation of motion of the free-free beam takes the following form.

my + ky = F, + F(¢) (3.232)
3.3.2 Finite Elements Method.
Inertia and stiffness matrix for the free-free beam

According to the Finite Elements Method, the shaft is divided into a number of the
uniform and flexible elements. The i — th element is shown in Fig. 36.
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EiJ A A

| i \I(Dyig

Figure 36

In this figure E;, J;, A;, and p, stand for Young modulus, second moment of
area about the neutral axis, area of cross-section and the unit mass of the element.
The differential equation of the statically deflected line of the element in the plane

Yz is

d'y(2)
dz*
Integration of the above equation four times yields

E;J;

=0 (3.233)

1 1
y(Z) = 60123 + 50222 + 032 + 04 (3234)

The constants of integration C; (j = 1,2, 3,4) must be chosen to fulfill the following
boundary conditions

dy(2) dy(2)
y(z)‘zzo = Yir; dz = @yil y(z)’z:li = Yi2; dz = Spyz? (3235)

z=l;

2=0

The parameters y;; and y;» are called nodal displacements and the parameters ¢,
and @, are called nodal rotations. The nodes are denoted by numbers 1 and 2. Intro-
duction of solution 3.234 into the above boundary conditions results in the following
set of algebraic equations linear with respect to the constants C.

0O 0 01 (& Yi1
0 1 0 CQ pril
%l? %lf li 1 Cs | Yi2 (3'236)
§l§ [, 10 Cy Dyio

Its solution yields the integration constants C}.

Cl 0 0 01 ! Yi1 %(2y%1 + ligpyil - 2%2 + lispyi2>

Cy | _ : 10 Lo Oyir | _ %(—3%1 = 2l;pyi1 + iz — 1;0,i0)
= 3 172 =1 "

03 §l22 Ell ll 1 Yi2 pril

Cy sl L 10 Pyio Yi1

(3.237)



DISCRETE MODEL OF THE FREE-FREE BEAMS 219

After introduction of Eq. 3.237 into the equation of the deflected line 3.234 one may
get it in the following form.

o = () w2 () e [(B) 2 () + () oo
o (3) -2(3) oo |- () + (7)o
= {H()}" {y} (3.238)
where:

{HEY =1 ' = E (3.239)

{yy =3 v (3.240)

Pyi2

Functions Hy, Hy, Hs, Hy (see Eq. 3.239) are known as Hermite cubics or shape func-
tions. The matrix {y} contains the nodal coordinates. As it can be seen from Eq.
3.238 the deflected line of the finite element is assembled of terms which are linear
with respect to the nodal coordinates.

If the finite element performs motion with respect to the stationary system of
coordinates xyz, it is assumed that the motion in the plane yz can be approximated
by the following equation.

y(z.t) = {H()} {y (1)} (3.241)

As one can see from the equation 3.241, the dynamic deflection line is approximated
by the static deflection line. It should be noted that this assumption is acceptable
only if the considered element is reasonably short.

The following mathematical manipulations are aimed to replace the continues
mathematical model of the element considered

'y(z,t) D*y(z,t)

E;J; — p; = 242
N N I (3:242)
by its discreet representation along the nodal coordinates

[ma) {3 ()} + [kl {y (1)} = 0. (3.243)

In the above equations p; stands for the unit mass of the finite element and [m;] and
[k;] stands for the inertia and stiffness matrix respectively. These two matrices are
going to be developed from the two following criterions:
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1. The kinetic energy of the continues physical model of the finite element
must be equal to the kinetic energy of its discreet physical model.

2. The potential energy of the continues physical model of the finite element
must be equal to the potential energy of its discreet physical model.

The kinetic energy of the continues physical model of the finite element is

(5 ()

1

= 3 [ o (0 (HER) (116 (503

{5}y _pi/oi {H()}H (=)} dZ] {y (1)}

H?  HH,, HHs HH,,
l.
| HyHy, H22 HyHsl, HyH, .
Pi /0 H3H, HyHsl, H?  HyH,, dz | (1)}
HyHyl, HyHy? HyHsl, H3I?

(3.244)

It is easy to see that the last row of Eq. 3.244 represents kinetic energy function
of the discreet physical model along the nodal coordinates yi1 ¢, Yz @ye With
the following matrix of inertia.

H?  HyHy, H.H; HHy
N "\ HyHyl, HZI? HyHsl, HyH,?
N /0 HiH, HyH,l, H?  HyH,l
HyHyl, HyHsl? HyHsl, H2I?

dz

13 Al 9 _13
35 2104 70 420"
Al L2 Ly L2
= pil; 210" 105" 420" 140"
% 9 13 13 1
70 420" 35 210 i
L8, L1y i, 12
420" 14077 10" 10577
13 AL g 9 13
35 210" 70 420"
1l L2 I S
_ 210" 1057 420" 14077
N I T -t S s (3.245)
70, 420" 5 104
A3, L2 i, L2
420" 140" 0% 105

In the last formula m; stands for mass of the finite element.
To take advantage of the second criterion let us produce expression for the
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potential energy function for the continues physical model of the finite element.
1 0%y(z,t)\’
V = 3 /0 E;J; < 822 ) dz
1 [l
) /0 < 822 )( 82’2 )
1t r (d*H PH()\"
- 3w (wor {52 ({7 }W -
1 T b d?H(2) d2H()
= Sy s o [N v

//2

1) H/Hyl; H/ H; H H,
/ HHl (H”)2l2 HyHl; HyH,I?
H,H, H;H,l; (H;)*> HyH,I;
HyH/l; H/H,I? H,Hjl; (Hj)?

dz | {y ()}

(3.246)

As one can see from Eq. 3.246, to fulfill the second criterion, the stiffness matrix
along the nodal coordinates i1 ¢, Yz @ 2 must be as follows.

"y 2

(Hy)" H,Hyl; H/H; H H;

l; "o ” - 7
ki - EZ Jz / H2H]J1//li <I_7’/-2 )?llg H2 133 lz H%/Hl}/lg dZ
o | HaHy o Hy Ml (Hy)" o Hy Hyl
H4H1 ll H4H2lz2 H4H3 l”b (H4 )2lz2
12 6l;, —12 6l
_ 6l, 42 —6l, 2 217

B -12 -6, 12 6,
6l, 20> —6l; 4l

Hence, the mathematical model of the element considered can be written as
m;y; + kiy; = Ry, (3.248)
The vector R; represents the interaction forces between the neighborhood elements.
Ryi=| Ryn Ry Ry Ryyio ]T (3.249)

In exactly the same manner one can create mathematical model for the next
to the right hand side element of the shaft, say element j.

mjj'fj -+ kjyj = Ryj (3250)
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where:

13 1. 9 137
35 210"J 70 420°J
peiyy L2 A3 ; 12

— . 210°J 10577 4207 140°J
m; = my 9 137 13 g
420 0"J 35 210"7

By Ap i

T 420" T 140°7  210%7 105%j

12 6, -12 6l
EjA; | 6l 42 —6l; 20

K= T c2 ey 12—l (3.251)
6, 202 —6l; 412
T
vi=l[un e v ¢y ] (3.252)
T
Ryi:[Ryjl RSOyjl Rng Rgoij} (3253)

These two equations of motion (3.248 3.250), associated with the two elements 4
and j, haveto fulfill the compatibility (continuity and equilibrium) conditions. These
conditions allow to join those two elements to create one mathematical model rep-
resenting both elements. In the case considered here, the compatibility conditions
between the two elements ¢ and j correspond to the left hand side node of the ele-
ment ¢ and the right hand side node of the element j. For these nodes the continuity
conditions take form

[ Yi2 ] _ [ Y1 ] _ { Yij 1 (3.254)
Pyi2 Pyj1 Pyij
and the equilibrium conditions are
Ry Ryj 0
+ — 3.255
{ Rwyﬂ 1 l R<pyj1 0 ( )
They results in the following mathematical model of the joint elements.
mijj}ij + kijyl-j = Ryij (3256)
where:
- 13 11 9 13 .
T L G L o 0
Tglzmz @lz m; 13 mlﬂm " —mll m; . 0
m;, = 71%mi glﬂ;bi 1% (m + my) f<_2limi+éjmj) 1?mj 70 émj
J —sslimi —oglimi 55(— lgmri—l M) 1—5(li1;n,~—|—ljmj) 42103l 1M @ljmj
b T g T e i
I 0 0 —T0liM; YL, —510ki™Mi To5lM
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pES ohA  _oBA o8 0 0
Y L 0
—12088 B 19(E 4 By (—Bhy By 1080 6Enu
o 7 [3 [3 7 7 J J
KT ek 2BA G(-BA G BA) a(BhaB) Sk ofA
[3 (3 (3 7 K3 J
s e s s~
J J
0 0 6EJZ-;4]- 2EJZ-A’.]- _6Ejl-;4j 4EJZ-A7J-
i 3 j i i
(3.258)
T
Yii = Y1 @y Ui Py Yz Pyj2 ] (3.259)
T
Rij: [ Ryil chyil 0 0 Rng RthJQ] (3260)

Repetition of the described procedure to all elements of the shaft results in
the mathematical model of the shaft in the plane yz.

my + ky = 0 (3.261)

The geometrical interpretation of the nodal coordinates appearing in the Eq. 3.259 is
given in Fig. 37.The coordinates y;, ¢,,; are associated with nodes which are located

dement 1 dement i dement N-1

o)

|

X -
node 1 nodei node N
y Ri
y
Figure 37

at the ends of the finite elements.

Introduction of the external forces

Since the finite element is considered elastic, the treatment of the external forces
presented in the previous section can not be applied. In this case one has to take
advantage of the principle of the virtual work. It says that the virtual work produced
by a force F; (see Fig. 38) on the displacement y; is equal to the virtual work produced
by a set of forces along the coordinates yi ¢ 1 Uiz ¥y Hence

Yi1

OW; = Fi - yi(ai,t) = {Fn, Miy, Fip, Min} flyﬂ (3.262)
i2
(pyi2
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In

But according to 3.241

2 3 y T
1-3(#) +2(t
2 3 .
(®) -2 ()] | [
1 1 1 Puit L (3.263)

y(ai t) = {H(a)}' {y ()} = | N2 \3 :
B, ) o

Introduction of the above expression into the expression for the virtual work yields
/ 2 3 \ T
s () +2(%)
2 3 :
()= )] | [ 2
’ ’ Pyil (3.264)

K3

OW; = F, - 3
3(1) (%)
‘ 4 Pyi2

|

2
a; 2 a;
() ()
\ K2 T
Hence, the vector of forces along the nodal coordinates is
2 3 )
-a(s) e2(3)
. 2 3
AN GO
Mil l; l; L ?
=F- 2 3 (3.265)
JORI
I, )
Mio i :
a; 2 a; 3
ROROIE
\ o v J
This forces have to be introduced into the equation of motion 3.261

m§ +ky = F, + F(t)

where, similarly as before, F stands for the static forces and F(¢) stands for the

I$

o~

(3.266)

excitation forces.
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3.4 BOUNDARY CONDITIONS

O

Figure 39

Let us assume that the free-free beam is rigidly supported upon several supports B;
(see Fig. 39). The instantaneous position of these supports is determine with respect
to the stationary system of coordinates zyz by coordinates by, (t) . Let us denote by
b vector of such coordinates.

b= by;(t) (3.267)

Let us reorganize vector of coordinates of the shaft

T
y = {%Na Y1Py1s weeee ?JNSDyN} (3.268)

in such a way that its upper part y, contains coordinates along which the shaft is
rigidly supported and its lower part y, contains all the remaining coordinates

y = { ?’ } (3.269)

Let us assume that the mathematical model of the beam
my +ky =F (3.270)
is organized with respect to the above vector y of coordinates.
my, 1y, Vo ky, kpy vo | | Fy
|im7"b mrr‘|[yr‘|+|ikrb krr‘||iY7“|_[F7“| (3271)
Partitioning of the above equations results in the following set of equations

myyy, +my, Y, + kpy, +kyy, = Fy
m?"byb + mrrj}r + krbe + krrYr - Fr (3272)
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Motion of the beam along the coordinates y; is determined by the boundary condi-

tions 3.267. Hence, the vector y, in the mathematical model 3.272 must be replaced
by b.

myb + my, ¥, +kyb + kyy, = Fy
mrbB + mrryr + krbb + krTyr = F, (3273)

The second equation governs motion of the supported beam and can be rewritten as
follows .
mrryr + krrYr - Fr - mrbbb - krsbb (3274)

The last two terms represent the kinemetic excitation of the beam cause by motion
of its supports. The vector b, in a general case, is a known function of time. Hence
the above equation can be solved. Let

ve = Y, (1) (3.275)

be a solution of this equation. This solution approximate motion of the beam along
the remining coordinates y,.

The vector Fy, in the first equation of the set 3.273 represents the forces of
interaction between the moving beam and its supports. These interaction forces can
be now determined.

F, = mbbi:; + mbr?r + kb + kY, (t) (3276)

3.5 CONDENSATION OF THE DISCREET SYSTEMS

In meny engineering problems, due to large number of the uniform sections of the
element to be modeld, number of the final elements is large too. It follows that the
size of the matrices involved in the discreet mathematical model

my + cy + ky = F (3.277)

is too large to enable the necessary analysis of the mathematical model to be carried
out. In this section the procedures for reducing the size of mathematical models will
be developed.

Let us assume, that the equation 3.277 is arranged in such a way that the
coordinates which are to be eliminated due to the condensation procedure y. are
located in the upper part of the vector y and these which are to be retained for
further consideration y, are located in its lower part.

y = { z } (3.278)

Partitioning of the equations 3.277 yields

mee mer 5}6 Cee Cer S’e kee ker Ye _ Fe
|:m7'6 mrr:||:yr:|+|:cre C’f"f‘}|:y’f‘}+|:k7‘e kT’T’:|{yT’:|_{FT‘:|(3.279)
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To eliminate the coordinates y. from the mathematical model 3.279, one have to
determine the relationship between the coordinates y. and the coordinates y,. One
of many possibilities is to assume that the coordinates y. are obeyed to the static

relationship.
kee ker Ye o 0
{km krrl [yr 1 - lO} (3:280)

Hence, upon partitioning equation 3.280 one may obtain
Keeyetkey,=0 (3.281)
Therefore the sought relationship is
y.= hy, (3.282)

where

h = -k 'k, (3.283)

Once the relationship is established, one may formulate the following criteria of con-
densation:

1. Kinetic energy of the system before and after condensation must be the
same.

2. Dissipation function of the system before and after condensation must be
the same.

3. Potential energy of the system before and after condensation must be the
same.

4. Virtual work done by all the external forces before and after condensation
must be the same.

3.5.1 Condensation of the inertia matrix.

According to the first criterion, the kinetic energy of the system before and after
condensation must be the same. The kinetic energy of the system before condensation
is

. 1 T T M. 1My Ve
T_E[ye y’“}lmm mrr][j’r]
1

= 5 (Femee + Y meYr + ¥y m0Fe + 7m0 3) (3.284)
Introduction of 3.282 yields
T = % ([hyr]T m,hy, + [hy,]" m.,y. + 37 mrehyﬁyz’mr?ﬂyr)
= % (yrh"m.hy,+y, h"'m.,y,+y, m,hy,+y, m,.y,)
= % (37 (A" meh + h"m,,+m,.h +m,.]y,) (3.285)

Hence, if the kinetic energy after condensation is to be the same, the inertia matrix
after condensation m. must be equal to

m.= h'm.h+ h'm,+m,.h + m,, (3.286)
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3.5.2 Condensation of the damping matriz.

Since formula for the dissipation function is of the same form as formula for the
kinetic energy, repetition of the above derivation leads to the following definition of
the condensed damping matrix

c.=h'c..h+h'c,+c,.h+ ¢, (3.287)
3.5.8 Condensation of the stiffness matriz.

Taking advantage from definition of potential energy of the system considered

— 1 T T kee ker Ye
Vo= gl¥ yr}[km kHy]
1
- 5 (yzkeeYG+yzkeTY7“+ygkreye+yszTYT) (3288)

one can arrive to conclusion that the condensed stiffness matrix is of the form 3.289
k.= h'k,h + h'k,+k, h +k,, (3.289)

It is easy to show that sum of the first two terms in the above expression is equal to
zero. Indeed, according to 3.283, they can be transformed as following.
theeh + ther - (_kgelker)Tkee<_k;elker) + (_kgelker>Tker
= —(-k'ke) ke + (k' ker) ke, = 0 (3.290)
Hence,
k.= k..h+k,, (3.291)
3.5.4 Condensation of the external forces.

The virtual work performed by external forces F' on the displacements y is

SW=1[yl' yI'] { ]E: 1 =y!F.+y'F, (3.292)
Introduction of 3.282 into the above equation yields
W = (hy,)" F4y'F, = (y'h") F.+y'F,= y! (h'F.+F,) (3.293)
Hence,
F.=(h"F +F,) (3.294)

The condensed mathematical model, according to the above consideration, can be
adopted as follows

m.y.+c.yctkey.=F. (3.295)
where
Y=Y, (3.296)
The relationship 3.282
ye=hy,

permits to produce displacement along the 'cut off” coordinates on the base of solution
of the equation 3.295
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3.6 PROBLEMS
Problem 52

Produce the natural frequencies and the corresponding natural modes for the

fixed-elastically supported uniform beam shown in Fig. 40.

data

o
<7
k
4 BOSIDIIY
1y

Figure 40

The exact solution of this problem is presented in page 191 for the following

E =21 x 10" N/m?
p = 7800kg/m3
A =0.03 x 0.01 = 0.0003m?

J = Q0800 — 9 5 x 10~m!

k = 10000N/m
[=1m
o = BJ — 21x1011x25x107% _ () 9595

10000

Use this data to produce the solution by means of approximation of this beam with
10 finite elements.
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Solution
To create the mathematical model of the free-free beam, it was divided into

ten finite elements as shown in Fig. 41. The computed mathematical model is

CoO-— 0 0 0 0 0 0 0 0 0O Q=

‘ V4
Y1 VY2 Y11
Q1 @2 Q11
[
y
Figure 41
my +ky =0; ¥ ={y1, 01, Y2 Par e, Y11, P11} (3.297)

The influence of the spring can be represented by the force —ky;; acting along the
coordinate yy; (see Fig. 42).

Y11
O D11
O OO O O O O O O O ==
]l z
|
— T s
1y Yo

Figure 42

This force should be introduced to the right hand side of the equation 3.297.

[ 0 ] 0 0 ... ... 0 [ y ]
0 o 0 ... ... 0 N
my + ky = — = | .. L e | = =k1y (3.298)
kyu 0 0 ... k 0 Y11
0] L0 0 ... 0 0 | | e ]

Therefore, the equation of the beam supported by the spring is

my +k,y =0 (3.299)
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where
0O 0 ... ... 0
0O 0 ... ... O
ki=k+k =k+| ... ... ... . .. (3.300)
0O 0 ... k& O
O 0 ... 0 O

To introduce the boundary conditions associated with the left hand side of the beam,
let us partition the above mathematical model in such a manner that all the coordi-
nates involved in this boundary conditions are included in the vector y;.

mjp; 1Mo Y1 + ko1 Ksi2 Y1 -0 (3.301)
my; 1Moy Y2 ko1 ka2 Y2
where
y1 =1y, 901}T Y2 = {Y2, P2, e Y11, S011}T (3.302)
R yu
M P11
oab O OO0 O 0O O O O O
y1=0 Y2 z
©=0 92 <>
! >
y -kyns
Figure 43
According to the boundary conditions (see Fig. 43)
yi={ye} ={0,0}" (3.303)
and
R, = {R,M}" (3.304)
Introduction of 3.303 and 3.304 into 3.301 yields
mj; Imj3 0 ko1 Ksio 0 R,
.. = 3.305
[mm m22:||:y2:|+|:ks21 ks22}{}’2] {0} ( )

This equation is equivalent to two equations as follows
mypys + kepy2 = Ry (3.306)

my2ys + Ksooy2 = 0 (3.307)
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The second equation 3.307 is the equation of motion of the supported beam. It was
solved for the natural modes and the natural frequencies. Results of this computation
is shown in Fig. 44 by boxes and in the first column of the Table below. This results
are compare with natural modes (continuous line in Fig. 44) and natural frequencies
(second column in the Table) obtained by solving the continuous mathematical model
( see problem page 190). The equation 3.306 allows the vector of the interation forces

R to be computed.

i o
2T | K
1 - -
~
| vy
1 4
I Y2 Y22 Y2
0 NI
1
2]

Figure 44

Table

natural frequenciesof
the descreet system

natural frequencies of
the continuous system

[1/sec] [1/sec]
1 129.5 129.65
2 357.6 357.3
3 933.4 932.0




PROBLEMS 233

Problem 53

The mathematical model of a free-free beam shown in Fig. 45 along coordi-
nates x1, ra, T3, T4 is as follows

mx +kx =0 (3.308)
myp MMy MMz Mig ki1 ko ki mag T
_ | Ma1 M2 Moz Mg | | k — For koo Koz kos . N )
m = ) - ’ X =
mgy Tga 133 134 ka1 ksa ks ksa X3
My Mg g3 Mgy kar kao Kag ks T4
(3.309)
1 2 3 4
X1 % X3 X4
Figure 45

This beam is supported upon three rigid pedestals along coordinates x1, x5, r3
as shown in Fig. 46.

L 2y 3 —
ﬁ>c | | Z
K e,
X & Snwt
Figure 46

The motion of these supports with respect to the inertial system of coordinate
X7 is given by the following equations

Xl - O
X9 = agsinwt
X3 = as (3310)

Derive expressions for :
1. the static deflection curve,
2. the interaction forces between the beam and the supports
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Solution
Partitioning of the equations 3.308 with respect to the vector of boundary
conditions 3.310 results in the following equation

mXx + kx =R (3.311)
where - ke k
mj; Imjs X1 11 Ki2 X1 R,
. + = 3.312
lmm m22]lX2_ [km k22][X2} [R2] ( )
my; Mz M3 [ My
my= | Ma1 Moz Me3 | ; Miz= | Mag | ; m21:[m41 My2 M43 ]; Moo= 144
m3; M3z M33 | 71034
(3.313)
ki k2 ks K14
kin=| ka1 koo hkos |5 Kkio=| kaa |5 ka= [ ka1 kao ka3 } ; Koo= ks
k31 ks2 ka3 k34
(3.314)
I R1
xXi=| 23 |; Xo=w4; Ri=| Ry |; Ry=0 (3.315)
T3 R3
or
mlliil + 1’1’1125&2 + k11X1 + k12X2 = R1 (3316)
m215&1 —+ mggig + k21X1 + k22X2 =0 (3317)

Introduction of boundary conditions 3.310 into the equation 3.317 yields

i’l T
Magiiy + kaats = — [ mar maz mug | | Go | — [k ke kas || 22 (3.318)
j’g €3
where
i’l 0 T 0
Fy | = | —aw?sinwt | ; To | = | agsinwt (3.319)
i’g 0 T3 as
or
m44i4 + ]{544I4 == (m42a2w2 — ]{74QCL2) sin wt — ]{3436L3 (3320)

The static deflection is due to the time independent term —ky3a3 in the right hand
side of the equation 3.320.

m44fé4 -+ /f44l'4 = —k43a3 (3321)
The particular solution of the equation 3.321 is
Ty = Ty (3.322)

]{344.Is = —k43a3 (3323)
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- —kazas
s =
Kaa

Its graphical representation is given in Fig. 47

(3.324)

1 w2 3 4 44

L = S

X ' X
Figure 47

The forced response due to motion of the support 2 (X3 = ag sinwt) is repre-
sented by the particular solution due to the time dependant term.

m445ﬁ4 + k’44l’4 == (m42a2w2 — k:42a2) sin wt (3325)
For the above equation, the particular solution may be predicted as follows
Ty = Tgsinwt (3.326)

Implementation of the solution 3.326 into the equation 3.325 yields the wanted am-
plitude of the forced vibration x,.

(m42a2002 — kygas) (3.327)

Tqg =
—w?myy + kaa

The resultant motion of the system considered is shown in Fig. 48

1 42y 3 | 4,
T o %

;xd snwt

& Sinwt

Figure 48

This motion causes interaction forces along these coordinates along which the
system is attached to the base. These forces can computed from equation 3.316.

mnil —+ mlgig -+ k11X1 + k12X2 = R1 (3328)

In this equation x; stands for the given boundary conditions

Ty 0 T 0
x1=| 23 | = | aysinwt Ko | B | = | —agw?sinwt (3.329)
T3 as .'1:’3 0
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and x5 represents, known at this stage, motion of the system along the coordinate 4
: . . d? : 2 .
Xo = Ty = Ts + TgSiDwt Xog = Ty = ﬁ(xs + xgsinwt) = —rgw”sinwt;  (3.330)

Hence, the wanted vector of interaction forces is as follows

0 0
R, =my | —aw?sinwt |+ky | agsinwt | +myp(—zew? sinw)+kio(z,+24 sin wt)
0 as

(3.331)
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Chapter 4

MODAL ANALYSIS OF A SYSTEM WITH 3 DEGREES OF
FREEDOM

4.1 DESCRIPTION OF THE LABORATORY INSTALLATION

1 2 4 ) 3 6 7 8

Figure 1

The vibrating object 2, 3, and 4 (see Fig.1) is attached to the base 1. It consists
of the three rectangular blocks 2 joint together by means of the two springs 3. The
spaces between the blocks 2 are filled in with the foam 4 in order to increase the
structural damping. The transducer 5 allows the acceleration of the highest block to
be measured in the horizontal direction. The hammer 6 is used to induce vibrations
of the object. It is furnished with the piezoelectric transducer 7 that permits the
impulse of the force applied to the object to be measured. The rubber tip 8 is used
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to smooth and extend the impulse of force. Both, the acceleration of the object and
the impulse of the force can be simultaneously recorded and stored in the memory
of the spectrum analyzer 10. These data allow the transfer functions to be produced
and sent to the personal computer 11 for further analysis.

4.2 MODELLING OF THE OBJECT
4.2.1 Physical model

X3 a——0O mg
ka
7 AA A 7
C3
—
—
X a——O mp
k
7 AN A 2 7
C2
—
—
X1 --—0 my
Ky
/] AA A 7
C1
—
—
Figure 2

The base 1, which is considered rigid and motionless, forms a reference system
for measuring its vibrations. The blocks 2 are assumed to be rigid and the springs 3 are
by assumption massless. Motion of the blocks is restricted to one horizontal direction
only. Hence, according to these assumptions, the system can be approximated by
three degrees of freedom physical model. The three independent coordinates z1, x-
and x3 are shown in Fig.2. Magnitudes of the stuffiness k;, ko and k3 of the springs
can be analytically assessed. To this end let us consider one spring shown in Fig. 3
The differential equation of the deflection of the spring is

d*x FH

Double integration results in the following equation of the bending line.

dx FH F
EJ— = —z— 2>+ A 4.2
P 7 P73t (42)

FH F
— -2+ A2+ B (4.3)

E —
Jz 1 5
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Az
x(H)

>

M=FH/2 /‘\‘ .

! '
Vo *t
EJ
'
X F l Z‘
k"/I\/IZFH/Z
Figure 3

Taking advantage of the boundary conditions associated with the lower end of the
spring, one can arrived to the following expression for the bending line.

1 (FH , F 4
=— | —2" - = 4.4
YT ET < 176" ) (4.4)
Hence, the deflection of the upper end is
1 (FH_, F_5\ 1 3
x(H)—EJ< 1 H 6H>_12EJFH (4.5)
Therefore the stiffness of one spring is
F 12EJ
= = 4.
g z(H) H3 (4.6)
where 5
wt
= — 4.
J 19 (4.7)

Since we deal with a set of two springs between the blocks, the stiffness k; shown in
the physical model can be computed according to the following formula.
24F; J;

(4.8)

4.2.2  Mathematical model

Application of the Newton’s equations to the developed physical model results in the
following set of differential equations

mliél -+ (C1 + CQ):‘Cl -+ (—CQ)Z"Q -+ (lﬁ + /fg)l‘l —+ (—kg)l'g = F1

mgfz + (—02)561 + (CQ + Cg)iz + (—Cg,).fg + (—k’g)xl + (lfg + k/’3)$2 + (—k’g)xg = Fg
TTL3j3 + (—C3>I.2 + ng'g + (—]{73)1’2 + /C3I3 = F3
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These equations can be rewritten as following

mX +cx+kx=F (4.9)
where
[ mi 0 0 [ C1+ Co —Co 0
m = 0 me O ;. Cc= —Cy Cy+c3 —cC3
| 0 0 ms | 0 —C3 C3
[ kl + kQ —]{72 0 i T F1
k = —k‘g k’g + k‘g —1{33 3 X = T9 ) F = Fg (410)
| 0 —]Cg lfg ] T3 F3

The vector F represents the external excitation that can be applied to the system.

4.3 ANALYSIS OF THE MATHEMATICAL MODEL

4.3.1 Natural frequencies and natural modes of the undamped system.

The matrix of inertia and the matrix of stiffness can be assessed from the dimensions
of the object. Hence, the natural frequencies and the corresponding natural modes
of the undamped system can be produced. Implementation of the particular solution

x = X coswt (4.11)
into the equation of the free motion of the undamped system
mX + kx =F (4.12)

results in a set of the algebraic equations that are linear with respect to the vector
X.
(—w’'m+k)X=0 (4.13)

Solution of the eigenvalue and eigenvector problem yields the natural frequencies and
the corresponding natural modes.

j:wl, ZEWQ, :|ZW3 (414)

(11
Il

[B1, By, Bo (4.15)
For detailed explanation see pages 102 to 105

4.3.2 Equations of motion in terms of the normal coordinates - transfer
functions

If one assume that the damping matrix is of the following form
c =pm-+rk (4.16)

the equations of motion 4.9 can be expressed in terms of the normal coordinates
1 = 2 ' (see section normal coordinates - modal damping page 105)

i, 4 2€, W), +win, = BIF(t), n=123 (4.17)
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The response of the system along the coordinate x, due to the harmonic excitation
F,e™" along the coordinate z,, according to the formula 2.142 (page 107), is

N - =
_ iwt EpnEgnty
T, =ce 5 5 .
Wz — w? + 2¢,wpwt

n=1

(4.18)

Hence the acceleration along the coordinate x,, as the second derivative with respect
to time, is

N = = F
xp — _w2€zwt § 5 p2 q q : (419)
~uwp —w + 2¢,wwi

It follows that the transfer function between the coordinate x, and z,, according to
2.144 is

RPQ(ZW) = F I;wt = _WZF Z')L'wt =
q€ q©
N R — 2 2 —_ - .
_ Z EpnZgn(wWs — w?) — 25 EgnSnWnwi (=123
- - y “y
(W2 —w?)?2 +42w2w? (w2 — w?)? + 462w w?

(4.20)

The modal damping ratios <1, 52 and ¢3 are unknown and are to be identified by fitting
the analytical transfer functions into the experimental ones. Since the transducer
5 (Fig. 1) produces acceleration, the laboratory installation permits to obtain the
acceleration to force transfer function. The theory on the experimental determination
of the transfer functions is given in the section Experimental determination of the
transfer functions (page 100).

4.3.3 Extraction of the natural frequencies and the natural modes from
the transfer functions

The problem of determination of the natural frequencies and the natural modes from
the displacement - force transfer functions was explained in details in section
Determination of natural frequencies and modes from the transfer functions (page
107). Let us do similar manipulation on the acceleration - force transfer function.
First of all let us notice that

—_

) . — —
/Lf ~Y 771 R q(l n) ~Y 2 pn q72L -
1;nLL nW 2§n“nw

<w121 B w2) _Eanqni

> g=1,2,3 (4.21)

Since the real part of the transfer function is equal to zero for w = w,, its absolute
value is equal to the absolute value of the imaginary part.

| Rpq (iwn)| = @ q=1,2,3 (4.22)
Sn
and phase ¢ for w = w,
Im(R,,(iw,
p = arctan (R (ion)) = arctan oo = +90° (4.23)

Re( Ry (iwn))
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Hence, the frequencies w corresponding to the phase +90° are the wanted natural
frequencies w,,.

Because ¢,, and =, are constants, magnitudes of the absolute value of the
transfer functions for w = w,, represents the modes =1,,, Za,, =3, associated with the
n — th natural frequency. An example of extracting the natural frequency and the
corresponding natural mode from the transfer function is shown in Fig. 4

transfer functions myN(modulus)

0.00025
0.0002 -
’ )
0.00015 - R@L.1) LA
------ R(1,2) A .
0.0001H — — — . R(1,3) ',' .
L4 ’ AN
000005 4——————— - v
g I P il U [
0 === | — —
1500 1600 1700 1800 frequency rad/s
4 transfer functions m/N (phase)
3
2 4 R(L.1) I,'- ~N
— - - - - R(1.2) /2
I 4 A »

0 — [~ === natural frequency natural mode

2 A i 72

4
1500 1600 1700 1800 frequency radis \ /
2

NN
=

Figure 4

4.4 EXPERIMENTAL INVESTIGATION

4.4.1 Acquiring of the physical model initial parameters
The physical model is determined by the following parameters
m1, Mo M3 - masses of the blocks

k1, ko ks - stiffness of the springs

c1, ¢y c3 - damping coefficients
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The blocks were weighted before assembly and their masses are

my = 0.670kg
mo = 0.595kg
mg = 0.595kg
The formula 4.7 and 4.8 oLE] 5
wt
w7 T (4.24)

allows the stiffness k; to be computed.
The following set of data is required
E =021 x 102N/m?

W= tirieiriiiinaaaaaann, m to be measured during the laboratory session
b= i, m to be measured during the laboratory session
Hi= ... m to be measured during the laboratory session
Hy= ... m to be measured during the laboratory session
Hy= ., m to be measured during the laboratory session

The damping coefficients ¢; are difficult to be assessed. Alternatively the damping
properties of the system can be uniquely defined by means of the three modal damp-
ing ratios 1, ¢ and g3 (see equation 4.17). £ = 1 corresponds to the critical damping,.
Inspection of the free vibrations of the object lead to the conclusion that the damp-
ing is much smaller then the critical one. Hence, as the first approximation of the
damping, let us adopt the following damping ratios

1 = 001
Gy = 001
Gy — 0.01

4.4.2  Measurements of the transfer functions

According to the description given in section Fxperimental determination of the trans-
fer functions (page 100) to produce the transfer function R,,(iw) you have to measure
response of the system along the coordinate z,, due to impulse along the coordinate
x4. Since the transducer 5 (Fig. 1) is permanently attached to the mass mg and the
impulse can be applied along the coordinates x1, x5 or x3, the laboratory installation
permits the following transfer functions to be obtained.

R31 (ZCU) Rgg(i(d) Rgg(i(d) (425)

The hammer 6 should be used to introduce the impulse. To obtain a reliable result,
10 measurements are to be averaged to get one transfer function. These impulses
should be applied to the middle of the block. The spectrum analyzer must show the
‘waiting for trigger’ sign before the subsequent impulse is applied.

As the equipment used is delicate and expensive, one has to observe the fol-
lowing;

1. always place the hammer on the pad provided when it is not used

2. when applying the impulse to the object make sure that the impulse is not
excessive

Harder impact does not produce better results.
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4.4.8 Identification of the physical model parameters

In a general case, the identification of a physical model parameters from the transfer
functions bases on a very complicated curve fitting procedures. In this experiment,
to fit the analytical transfer functions into the experimental one, we are going to use
the trial and error method. We assume that the following parameters

my, My, M3, H17 H2a H37 w, E (426)
were assessed with a sufficient accuracy. Uncertain are

t? gla §2> €3 (427)

Use the parameter ¢ to shift the natural frequencies (increment of ¢ results in shift
of the natural frequencies to the right). Use the parameters ; to align the picks of
the absolute values of the transfer functions (increment in the modal damping ratio
results in lowering the pick of the analytical transfer function). Work on one (say
Rs3(iw) transfer function only.
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4.5 WORKSHEET

1. Initial parameters of physical model
Measure the missing parameters and insert them to the table below

my = 0.670kg | MO TR PIOA gy | Toneth of the spring
my = 0.505kg | M OO POA gy | Teneth of the spring
my = 0.595kg Mass of ;he block Hy = oo " length of ;he spring
oo | e [m—omengee |
=001 | GRmPMETAO m | Vol e
£ = 0.01 da;?‘;;i%ga;io R m thictgifi;f the

Run program ’Prac3’* and choose menu ’Input data’ to enter the above data.

Set excitation coordinate 3, response coordinate 3.

Save the initial data.
2. Experimental acceleration-force transfer functions Rj3(iw)

Choose menu ’Frequency response measurements’

Set up the spectrum analyzer by execution of the sub-menu ’Setup analyzer’

Choose sub-menu ’Perform measurement’, execute it and apply 10 times im-
pulse along the coordinates 3

Choose sub-menu ’Time/Frequency domain toggle’ to see the measured trans-
fer function

Choose sub-menu ’Transfer TRF to computer’ and execute it

Exit menu ’Frequency response measurements’

Choose 'Response display/plot’ to display the transfer functions
3. Identification of the thickness ¢ and the modal damping ratios ¢,

You can see both the experimental and analytical transfer function Rss(iw).
By varying t, £, &5, {5 in the input data, try to fit the analytical data into the
experimental one. Use the parameter ¢ to shift the natural frequencies (increment
of ¢ results in shift of the natural frequencies to the right). Use the parameters &,
to align the picks of the absolute values of the transfer functions (increment in the
modal damping ratio results in lowering the pick of the analytical transfer function).

*program designed by Dr. T. Chalko
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Record the identified parameters in the following table
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my = 0.670kg Mass of A{he block Hi= ... m length of fhe spring
mq = 0.595kg Mass of ;he block Hy= . m length of ;he spring
my = 0.595kg Mass of ;he block Hy= ... m length of ;he spring
R B S L e
g-o0r | GRmPMETAO . m | Vol e
g =001 | GRmPMETAO |y m | (hicknes of the

Save the identified parameters.

Plot the analytical and the experimental transfer function Rs3(iw)
4. Experimental and analytical transfer functions Rj; (iw) and Rs(iw)

Choose menu ’Input data’ and set the excitation coordinate to 1 and the
response coordinate to 3

Repeat all steps of the section 2

Plot the transfer function Rs;(iw)

Choose menu ’Input data’ and set the excitation coordinate to 2 and the
response coordinate to 3

Repeat all steps of the section 2

Plot the transfer function Rss(iw)
5. Natural frequencies and the corresponding natural modes

Choose menu ’Mode shapes display/plot’ to produce the analytical frequencies
and modes

Plot the natural modes

From plots of the experimental transfer functions Rg;(iw), Rsa(iw), Ras(iw)
determine the natural frequencies and the natural modes

Insert the experimental and analytical frequencies into the table below

natural frequency

natural frequency

natural frequency

analytical

experimental

6. Conclusions



