O-RAN Class Week 4

Sree Harshitha Jonnalagadda

Dominic Catena

Dhruv Ramaswamy

Contents

01	Introduction to Network Function Virtualization (NFV) and its application in Open RAN.	Slide 3
02	Cloud RAN (C-RAN) concepts and the move towards cloud-native RAN.	Slide 4
03	Benefits of virtualization and cloudification: Flexibility, scalability, resource efficiency.	Slide 5-6
04	High-level challenges of virtualizing RAN functions (performance, latency).	Slide 7-8
05	Wrap-up and Questions	Slide 9-10

Network Function Virtualization (NFV)

Role of NFV in Open-RAN:

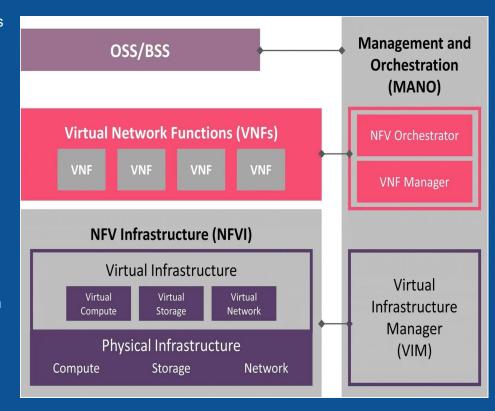
- The NFV in Open-RAN disaggregates the components such as O-RU (Radio Unit), O-DU (Distributed Unit), and O-CU (Centralized Unit).
- The NFV enhances flexibility, scalability, and vendor interoperability.

Applications of NFV Architecture in Open-RAN:

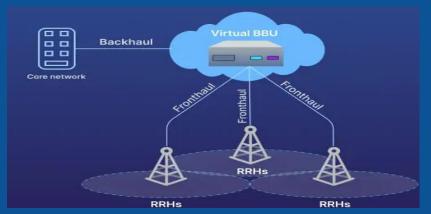
Virtualized RAN Functions (CU/DU):

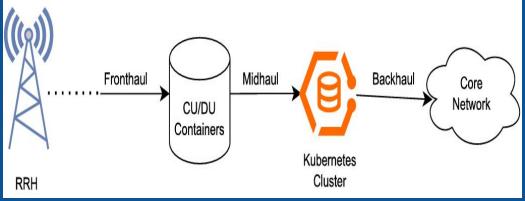
Runs the RAN components as software, improving flexibility.

Dynamic Resource Scaling:


• Automatically scale network resources based on traffic load.

Multi-Vendor Interoperability:


• Supports integration of RAN functions from different vendors in one network.


Simplified Deployment & Maintenance:

Faster in deployments through centralized orchestration.

Evolution from Cloud RAN (C-RAN) to Cloud-Native RAN

Cloud-RAN (C-RAN)

- Virtual / Centralized Baseband processing, which is a VM based virtualization.
- C-RAN is cost effective.
- C-RAN fails at agility, where the scaling and upgrading are very slow due to VM dependency.

Cloud-Native RAN

- The RAN components such as CU, DU are split into independent containers.
- Kubernetes based orchestration, used for scaling and automation.
- Cloud-Native RAN has great flexibility and portability across all cloud environments.

Benefits of virtualization and cloudification: Flexibility, scalability, resource efficiency

Why Virtualization and Cloudification are useful?

These functions provides several benefits like

Hardware Independence:

Decouples network functions from specialized hardware. Runs on standard, off-the-shelf servers.

Faster Deployment:

Virtual functions can be launched quickly without physical installation. Supports automated provisioning and updates.

Scalability and Flexibility:

Easily scale resources based on real-time network demand. Deploy RAN components (CU/DU) centrally or at the edge.

Benefits of virtualization and cloudification: Flexibility, scalability, resource efficiency

- Resource Efficiency:

Optimizes compute, storage, and networking through shared infrastructure. Reduces energy and space requirements.

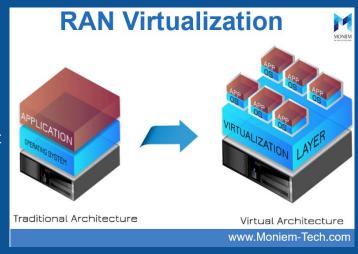
- Cloud-Native Evolution:

Enables migration from VNF (Virtual Machines) to CNF (Containers). CNFs are faster, lighter, and easier to manage via Kubernetes.

- Ideal for Open-RAN:

Supports disaggregation and open interfaces. Enables multi-vendor, cloud-native deployments.

High-level challenges of virtualizing RAN functions (performance, latency)


High-level Challenges:

Real-Time Performance Requirements:

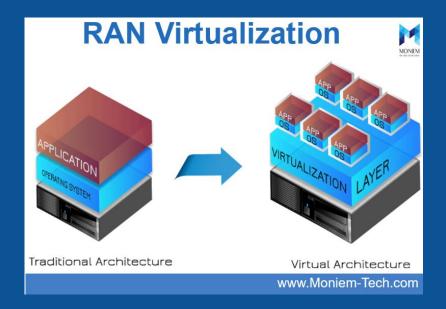
RAN functions (like DU) require ultra-low latency and real-time processing. General-purpose servers may struggle with strict timing needs.

Hardware Acceleration Needs:

Functions like Layer 1 (PHY) often need dedicated hardware. Not all cloud environments support this efficiently.

High-level challenges of virtualizing RAN functions (performance, latency)

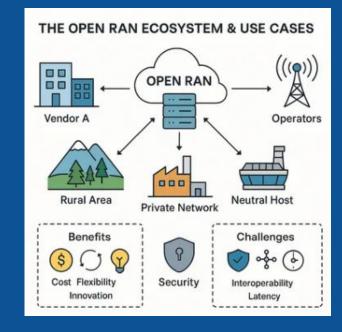
Resource Allocation and Isolation:


Shared cloud infrastructure can lead to jitter or resource contention. Ensuring consistent CPU and memory availability is complex.

• Synchronization and Timing:

Precise time sync (e.g., via GPS or IEEE 1588 PTP) is harder to maintain in virtualized/cloud systems.

Complexity in Orchestration:


Lifecycle management of virtualized RAN components is more complex. Requires integration with Cloud-native tools (etc. Kubernetes).

Coming in week 5

Benefits, Challenges, and Use Cases of Open RAN

- In-depth discussion of the potential benefits of Open RAN for mobile operators and the ecosystem.
- Key challenges and considerations for Open RAN adoption (interoperability, security, performance).
- Overview of emerging Open RAN use cases: Rural deployments, private networks, neutral host.

The evolving Open RAN ecosystem and vendor landscape.

Thank you!

Questions?