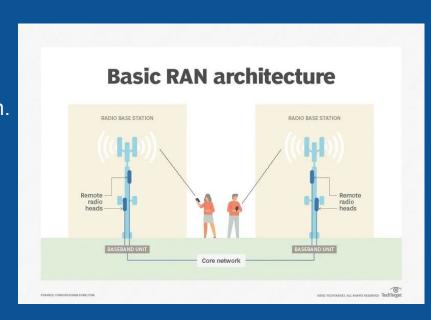
O-RAN Class Week 1

Ayden Wheless

Rahul Biju

Joseph Malkasian


Contents

01	O-RAN	Slide 3-7
02	O-RAN Alliance	Slide 8-10
03	Cosmos Network	Slide 11
04	Wrap-up and Questions	

Fundamentals of Radio Access Networks (RAN)

Functions of the RAN:

- Radio Resource Management: Allocating and managing radio resources (frequency, power, time slots) to ensure efficient and reliable communication.
- Handover Management: Ensuring a seamless handover of calls or data between different base stations as the user moves.
- Interference Management: Reducing interference between different cells and users.
- **Network Optimization:** Adjusting network parameters to optimize performance and capacity.

Evolution of RAN

1G

2G

- Primarily voice and basic text messaging.
- Used GSM (Global System for Mobile communications).

3G

- Added data services like internet browsing and email.
- Introduced packet switching for data

4G

- High-speed data, multimedia, and mobile internet.
- Uses LTE (Long-Term Evolution) technology.

1980s 1990s 2000s 2010s 2020s Analog Voice Phanan-ba Human Early Mobile Phones Digital Voice Limit Speed Data Varies and Sonic Non Mobile Broadband High Speed Data Varies and Sonic Non Mobile Broadband High Speed Data Varies and Systems Varies and Systems Age Committees Committees

5G

- Ultra-reliable, low-latency communication, and support for a wider range of services, including loT and AI.
- Enables: Self-driving cars, remote surgery, AR/VR, smart cities.

Limitations of traditional RAN

1. Vendor Lock-in

- Proprietary hardware/software bundles.
- Limited interoperability between different vendors.
- Difficult and costly to switch vendors or integrate multi-vendor environments.

2. Inflexibility

- Hardware and software are tightly integrated.
- Difficult to upgrade or scale specific components independently.
- Cannot easily introduce new services or technologies.

3. High Costs

- Expensive proprietary hardware.
- High capital (CAPEX) and operational (OPEX) expenditures.
- Long procurement and deployment cycles.

The Emergence of Open RAN

Goals of Open RAN

- Open, Standardized Interfaces
- Disaggregation of RAN Functions
- Vendor Diversity and Ecosystem Growth
- Network Agility and Flexibility
- Support for Software Defined Networks &
 Network Function Virtualization

Potential Benefits of Open RAN

- Reduced Costs
- Increased Innovation
- Faster Time-to-Market
- Improved Automation
- Greater Scalability and Flexibility
- Resilience and Future-Proofing

Key industry players and organizations

- O-RAN Alliance (Open Radio Access Network Alliance)
- TIP (Telecom Infra Project)
- Mobile Network Operators (MNOs)-(Vodafone, Telefonica, etc)
- Technology Vendors and Startups(Parallel Wireless, Mavenir, etc)
- Cloud and Infrastructure Providers(Intel, Red Hat, etc)
- Hyperscalers(AWS, Google Cloud, etc)

O-RAN ALLIANCE Foundation in 2018

O-RAN ALLIANCE has been established as a German entity in August 2018

Merging C-RAN Alliance and XRAN Foundation

5 founding Members

O-RAN Members

Comprised of mobile operators, vendors, research, academic, and government institutions.

- Define open interfaces and architectures.
- Enable intelligent, virtualized RAN components.
- Promote vendor interoperability and multi-vendor deployments.

O-RAN Contributions

O-RAN Software Community

- Open Fronthaul Interface
- RIC (RAN Intelligent Controller) for AI/ML network automation
- Open source software through collaboration with

Linux Foundation (O-RAN Software Community)

COSMOS(WINLAB)


- WINLAB hosts the COSMOS OTIC for the O-RAN Alliance
- Open Testing and Integration Center
- OTICs issue certificates or badges in the
 O-RAN Certification and Badging program
- Ensures products and systems adhere to O-RAN specifications

O-RAN Architecture

Coming in Week 2...

- Disaggregated architecture: O-RU,
 O-CU, O-DU.
- Functional split concepts: (e.g., Fronthaul).
- Control Plane (C-Plane) and User
 Plane (U-Plane) separation in Open
 RAN.
- Logical interfaces within the Open RAN architecture.

Thank you!

Questions?