

Features

- 100x92 mm^2 writing
- 3-5µm feature size
- Options for writing on SU8/Epoxy photoresists
- Ultra compact design ideal for fume hood or glove box usage
- Integrated confocal microscope for laser focusing, aligning and inspection
- Laser spot size can be changed using industry standard microscope objectives
- Tilted/warped substrate compensation via 3-point focus or 4-point bilinear measurement
- Multiple designs from different files can be written in one process

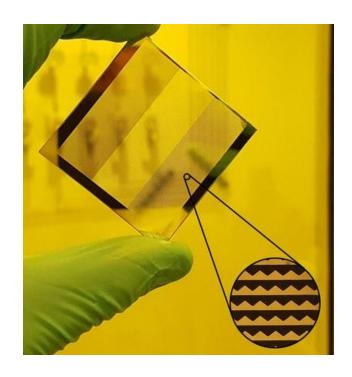
Mutech microlaser

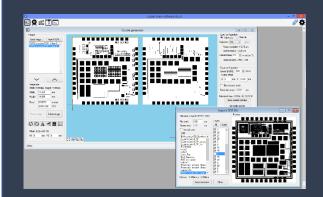
Mutech microsystems microlaser is a high value direct laser lithography writer, oriented to universities and research facilities looking to expand their capabilities.

It writes on a photosensitive resist coated surface with a laser at submicron pixel resolution on big areas.

You can write anything from photomasks to research prototypes for basic or applied science

Microlaser comes with a confocal integrated camera and yellow illumitation to focus the laser, align the writing with existing features and to inspect the designs after writing.




Direct laser lithography


Direct laser lithography greatly reduces costs and execution times in areas such as microfluidics, microelectronics, micromechanics and material science research, by eliminating the dependence of external suppliers for the production of photomasks.

Ultra compact design

microLaser size is only 510x360x455mm and weighs 16kg, making it ideal for use inside of a fume hood or a glove box simplifying installation, reducing requirements and improving the cleanliness of microfabrication processes.

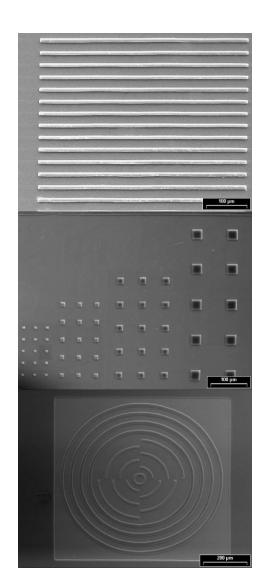
Software

 μ Laser is delivered with its control software on a PC. It allows you to import the designs to be written from cells of GDSII files or directly from PNG images.

Everything is done from a user friendly graphical interface that allows you preview the design to write before executing it.

Multiple designs can be combined in a single process, in addition to applying transformations such as rotations, reflections, inversions or scale adjustments to each design.

The writings can be aligned with previous designs on the substrate using the confocal camera.

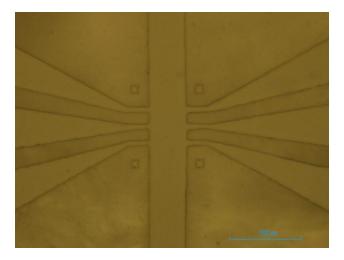

Technical specifications

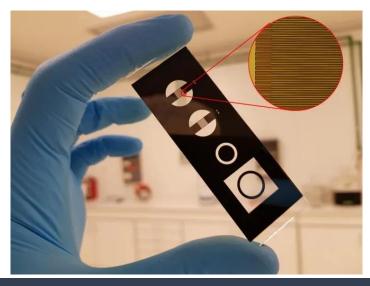
Mechanics		
Size (WxDxH)	510 x 360 x 455 mm	
Weight	16 kg	
Power	110v/220v 400w	

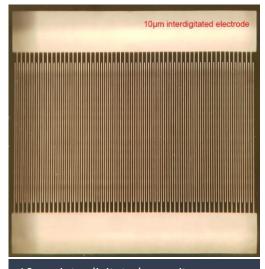
XY stage		
Typical writing speed	100-120 mm/s	
Maximum area	100x92 mm^2	
Unidirectional positioning step	X = 0.16 μm, Y = 1.00 μm	
Mechanical noise on the X axis	≈ 150nm RMS	
Mechanical noise on the Y axis	≈ 50nm RMS	
Multi layer aligning accuracy	5-10 μm (Optional rotary stage for easier aligning)	
Realistic minimum feature size: 2-4µm de	epending on the feature	

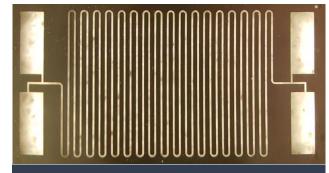
Software		
Supported formats	PNG,GDSII	
In-software transformations	Rotation, Reflection, Inversion, Rescaling, Add border	
Multiple designs from different files can be written in one process		
Tilted/warped substrate compensation via 3-point linear or 4-point bilinear focus measurement		
Mesh type calibration for full-bed curvature compensation		
Unidirectional or bidirectional writing modes		

Opt	ics			
405nm	405nm (Optional 375nm)			
ocusing, aligning and	dinspection			
illumination				
using industry stand	ard microscope objectives			
Included objectives				
Raster step	Speed on big areas (unidirectional)			
0.8 μm	2.0 mm^2/min			
0.96 μm	2.50 mm^2/min			
2 μm	4.25 mm^2/min			
5 μm	12.6 mm^2/min			
	ocusing, aligning and illumination using industry stand Included c Raster step 0.8 μm 0.96 μm 2 μm			

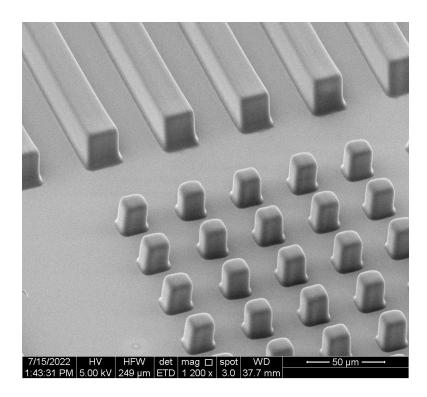


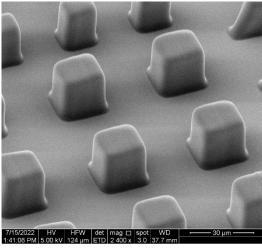

Examples: Electrical transport

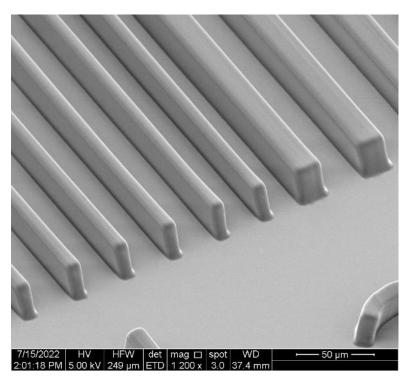


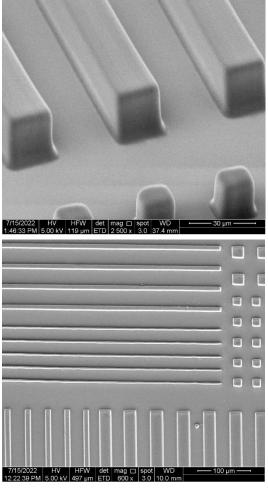

Current and voltage contacts with longitudinal and parallel configuration for hall current measurements

Full microscope slide mask with small 12 μm features

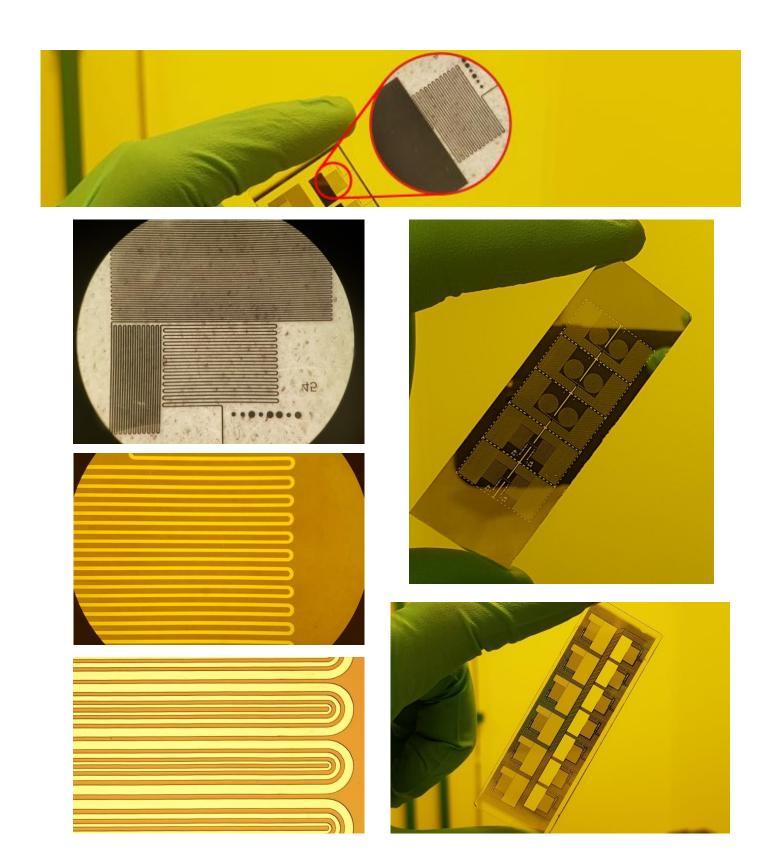

10 μm interdigitated capacitor




Mask for a platinum resistor for temperature measurement (40 μm track)

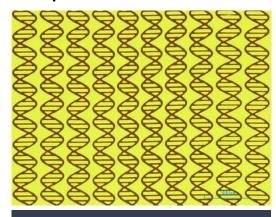


Examples: SU-8 Writing

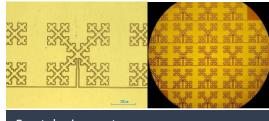


Examples: Microfluidics

CONTACT US



www.mutech.com.ar


MSc. Lucas Neñer Scientific director +54 9 294 4263481 lucas.nener@mutech.com.ar

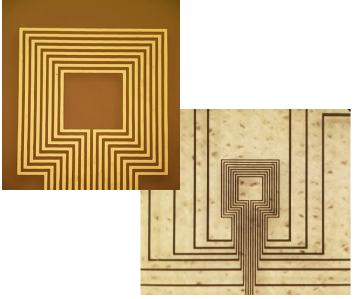
Dr. Martin SirenaBusiness director
+54 9 294 4237776
martin.sirena@mutech.com.ar

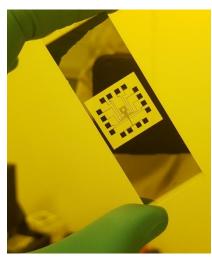
Examples: Other uses

DNA diffraction writing

Fractal micro antennas

MEMS oscillator


Hola Hola


Positive and negative text

Low resolution (fast) mode

This demo is using the 4x objective with 5 µm raster step

- The tracks of the example are 50 μm
- This writing takes 40min in bidirectional mode

