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1. Introduction 

Sustainability and biomaterial concepts are among the subjects of study that 

have recently gained importance. The consumption needs of developing societies 

are increasing and changing every passing day. In particular, the unabated rise of 

technology creates disadvantages for the environment and nature, as well as its 

advantages. The consumption frenzy has prioritized the design, production and 

application principles of sustainable materials, revealing the importance of the 

carbon footprint. 

Sustainability is defined as the ability to be permanent in the most general 

sense and emphasizes this ability of the biosphere and civilization in the 21st 

century. It refers to change in a balanced environment that preserves the potential 

to meet the needs of both present and future generations, in which resource 

utilization, investment decisions, technological advancement, and institutional 

transformations are aligned and coordinated. Sustainability, which is founded on 

three basic domains of influence: environment, economy and social, also covers 

cultural, technological and political sub-domains. Sustainable development, on 

the other hand, entered the literature as defined in the Brundtland Report (1987), 

it refers to development that satisfies present needs without hindering future 

generations from fulfilling their own, and while it is the main principle of 

sustainability for some, it is a contradictory concept for others (Capra, 2015; 

Ecology; James, 2014; Magee et al., 2013; "Sustainability Primer," ; "What is 

sustainability?," ; Williams & Millington, 2004). 

2. Design Principles 

Design is a set of 2 or 3-dimensional shapes that describe the general form and 

function of an object, product, system, structure, or process, created in a way that 

suits aesthetics and user needs. Computer-aided design (CAD) involves utilizing 

a computer to present designs, apply modifications, and compute and visualize 

the outcomes. It refers to the application of computer systems to support the 

creation, adjustment, analysis, and enhancement of a design. 

Design Types: 

• Industrial Design: The process of designing the aesthetic and 

functional aspects of products. Industrial design, or industrial product 

design, involves creating innovative and contemporary products 

suitable for mass production by taking into account various factors 

such as aesthetics, creativity, technical benefits, functionality, 

ergonomics, material knowledge, marketability, production 

techniques, and feasibility — all in alignment with consumer needs 

and challenges ("Endüstriyel tasarım,") (Figure 1). 
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Figure 1. A 3D designed hair dryer (D. D. A. G. Doç. Dr. Kadir Gök, Mert Tümsek; Kadir Gök, 2018) 

 

• Interior Design: Organizing living and working spaces. It includes 

the processes of designing more comfortable, flexible and useful 

spaces specifically for the person or need (Figure 2). 

 

Figure 2. An interior design designed with CAD 

 

• Mold Design: Advanced modeling techniques should be used to 

create complex forms for mass production companies. Mold designs 

for these products are performed in mold design modules of programs 

with advanced modeling techniques (Figure 3). 
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Figure 3. Mold designs designed with CAD 

 

• Mechanical Part Design: Monolithic and assembly models and 

technical drawings of mechanical systems formed by the combination 

of many components, especially in the automotive industry, are 

created (Figure 4). 
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Figure 4. Mechanical assemblies designed with CAD (SOLIDWORKS) 

 

• Shoe Design: Using developing modeling techniques, personalized 

insole and orthopedic shoe designs are gaining importance in terms of 

both flexibility and comfort (Figure 5). 

 

Figure 5. Shoes and insoles designed with CAD  (Blog) 

 

• Medical Device Design: Medical device design is the process of 

developing medical devices, instruments, software and other 

materials that are used for the diagnosis, prognosis and treatment of 

diseases. This process encompasses much more than just technical 

engineering work; it also includes ethical, legal and commercial 

dimensions (Figure 6). 
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Figure 6. Ultrasound device (Kadir Gok) 

 

• Unmanned Aerial Vehicle (UAV) Design: Today, it is possible to 

make a 3D design of a UAV optimized for a specific mission using 

CAD software, perform aerodynamic and structural analyses, and 

evaluate its suitability for production (Figure 7). 
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Figure 7. A Drone design designed with CAD  (D. D. A. G. Doç. Dr. Kadir Gök, Görkem Karagöz, 2018) 

 

• Custom Implant and Prosthesis Design: It is a highly innovative 

and important field at the intersection of modern medicine, 

biomedical and biomaterial engineering, as well as additive 

manufacturing technologies. With advanced design tools, 

personalized implant and prosthesis designs can be realized today. 

Recently, computer aided finite element analyses (FEA) and computational 

fluid dynamics (CFD) were used to solve processes such as metal turning, bone 

drilling, bone screwing, water jet process and erosion corrosion processes, fatique 

behavior of implant materials, simulations of COVID-19 and other infections and 

optimal configuration of implant materials as seen in Figure 8 (ADA, ERDEM, 

& GOK, 2021; ERDEM, GOK, GOKCE, & GOK, 2017; A. Gok, Gok, & Bilgin, 

2015; Arif Gok, Urtekin, Gok, Ada, & Nalbant, 2023; Kadir Gok; KADIR GOK, 

2015; Kadir Gok, Erdem, Kisioglu, Gok, & Tumsek, 2021; Kadir Gok & Gok, 

2024; K. Gok & Inal, 2015; Kadir Gok, Inal, Gok, & Pinar, 2017; Kadir Gok, 

Inal, Urtekin, & Gok, 2019; Gök, Selçuk, & Gök, 2021; Inal, Gok, Gok, 

Uzumcugil, & Kuyubasi, 2018; Pirhan, Gök, & Gök, 2020; Türkes, Erdem, Gok, 

& Gok, 2020). 
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Figure 8. A personalized hip fracture implant 

 

• Sustainable Design: After explaining the general design and types 

above, we can define Sustainable Design, which is the main focus of 

our department, as follows. 

Sustainable design is an approach that takes into account environmental, 

economic and social impacts; aims to protect the environment and natural 

resources, and aims to provide maximum benefit with minimum harm throughout 

the life cycle. In other words, it is a design approach that takes into account the 

needs of future generations while taking into account today's needs. 

Basic Features of Sustainable Design: 

1. Optimal Resource Utilization: Reducing the consumption of 

energy, water, and raw materials to a minimum. 

2. Environmentally Friendly Materials: Preferring recyclable, 

reusable or nature-friendly materials. 

3. Life Cycle Analysis: Evaluating the environmental impacts of all 

stages from product design to manufacturing, from life cycle to 

disposal. 

4. Reducing Carbon Footprint: Reducing energy consumption and 

emissions. 

5. Longevity and Durability: The ability of products or structures to be 

used for a long time. 
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3. Biomaterials 

They are natural or synthetic materials that are used to perform or support the 

functions of living tissues in the human body and that come into contact with 

body fluids (blood, etc.) continuously or at certain intervals. Generally, 

"Biomaterials" includes many materials. Metals, ceramics, polymers, glasses, 

carbons, and composite materials are all included. Besides these types of 

materials, components such as molded or machined parts, coatings, fibers, films, 

foams, and fabrics are also utilized (Ratner, Hoffman, Schoen, & Lemons, 2004). 

Table 1 presents various applications of Synthetic and Modified Natural 

Materials within the medical field. As illustrated in Table 1, numerous 

Biomaterials and their diverse applications exist, and this area has evolved into a 

significant global commercial market. This market encompasses sectors such as 

the Skeletal System, Cardiovascular System, Dental Implants, Organs, Sensory 

Systems, Support Devices, and others. Considering the points outlined above, it 

is clear that Biomaterials science—more so than many other modern 

technological fields—requires collaboration and open communication among 

researchers from various disciplines. It is also important to emphasize that this 

field is inherently interdisciplinary. Figure 9 displays a dental implant 

manufactured from Ti6Al4V alloy. 

Table 1. Example applications of synthetic and modified natural materials (Ratner et al., 2004) 

Application Material Type 

Skeletal System 
 

Joint prostheses (hip, knee) Titanium, Ti – Al – V alloy, stainless steel 

Fracture bone plate fixation Steel, polyethylene 

Bone defect repair Stainless steel, cobalt-chromium alloy 

Artificial tendon and ligament Hydroxyapatite 

Dental implant fixation Teflon, Dacron  
Titanium, alumina, calcium phosphate 

Cardiovascular System 
 

Blood vessel prosthesis Dacron, Teflon, polyurethane 

Heart valve Processed tissue, stainless steel, carbon 

Catheter Silicone rubber, Teflon, polyurethane 

Organs 
 

Artificial heart Polyurethane 

Skin repair patch Silicone-collagen composite 

Artificial kidney Cellulose, polyacrylonitrile 

Heart-lung machine Silicone, rubber 

Senses 
 

Intraocular lens Methyl methacrylate, silicone, rubber, hydrogel 

Contact lens Silicone-acrylate, hydrogel 

Corneal bandage Collagen, hydrogel 
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Figure 9. Dental implant made of Ti6Al4V alloy (Kadir Gok) 

 

4. Production Methods and Application Fields 

As a solution to today's urgent environmental problems, environmentally 

friendly materials and production techniques are of great importance; this 

approach aims to minimize the negative impact on our planet by adopting 

principles such as energy efficiency, waste reduction and water saving in 

production processes while encouraging the use of renewable and recycled 

resources such as bamboo and recycled plastic, thus contributing to the protection 

of natural resources, reducing pollution and combating climate change, and 

helping to build a more sustainable future.  

In recent years, traditional machining and chipless manufacturing methods 

and developing additive manufacturing (3D printing) technologies have focused 

on environmentally friendly approaches. While the use of minimum quantity 

lubrication (MQL) is among the target points in machining, higher efficiencies 

are achieved in waste and energy consumption with chip recycling and energy-

efficient machines. In parallel, in chipless manufacturing, energy and material 

optimization come to the fore with high-efficiency molds and waste heat 

recovery. 

Additive manufacturing, which stands out with its features such as providing 

minimum material waste by nature and enabling the production of complex and 

lightweight parts, offers a particularly environmentally friendly potential with its 

ability to use biodegradable materials that can be recycled. These features 
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contribute to a more sustainable future by significantly reducing the industry's 

carbon footprint.  

Three-dimensional Printing (3D Printing) technology has transformed the 

production of orthopedic implants by allowing the use of patient-specific and 

personalized designs. The integration of biomaterials such as biodegradable 

polymers, titanium alloys and composite materials plays a critical role in ensuring 

biocompatibility and mechanical reliability (Meng et al., 2023; Wu et al., 2023; 

Zhu et al., 2025). This technology enables the creation of complex geometries 

and porous structures, increasing osseointegration and extending implant life, 

which reduces replacement frequency and minimizes medical waste. An example 

of articular cartilage produced by 3D printing is presented in Figure 10. 

 

 
Figure 10. The articular cartilage manufactured by 3D printing (Kadir Gok). 

The overall process underscores the implementation of a closed-loop system 

aimed at minimizing waste generation and optimizing resource efficiency—an 

approach that aligns with the fundamental tenets of circular economy and 
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sustainability, particularly within the realm of 3D-printed orthopedic implant 

development. The background imagery appears to depict various natural or bio-

based materials, potentially serving to subtly reinforce concepts of environmental 

sustainability and biological integration. Figure 11 illustrates 3D printable 

orthopaedic implant’s circular economy and sustainability. 

 
Figure 11. 3D printable orthopaedic implant’s circular economy and sustainability (Yadav, Garg, Ahlawat, & 

Chhabra, 2020) 

 

Biocompatibility is the ability of a material to be compatible with living 

systems, meaning it does not cause a toxic or harmful reaction in the body; this 

is especially vital for medical implants and devices. The life cycle of a product or 

material covers all stages from extraction of raw materials to production, 

distribution, use and waste management; this comprehensive analysis is used to 

understand and reduce environmental impacts. Finally, recycling is the process 

of collecting and converting waste materials into new products, thus conserving 

natural resources, saving energy and reducing waste. These three concepts 

together provide a basic framework for fully assessing a product’s sustainability 

potential and environmental footprint. 

6. Future Perspective 

Today, sustainability has become a global priority, with new technologies 

being a key driver of developments in this area. Artificial intelligence and 

machine learning are improving efficiency by optimizing energy use and 

reducing the carbon footprint of supply chains, while developments such as solar 

and wind energy storage solutions are accelerating the integration of renewable 

energy. IoT-enabled smart waste management systems and biotechnology are 

supporting a circular economy by generating new materials and energy from 

waste, while technologies such as blockchain are enabling transparency and 

traceability in sustainable supply chains. These technological advances not only 

offer environmental benefits, but also open new doors for economic growth, 

helping us build a greener and more livable future. 
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1. Introduction 

The aviation and aerospace industry constantly needs lighter yet high-strength 

components in order to increase fuel efficiency, optimize performance, and 

reduce operational costs [1] . To meet this need, subtractive manufacturing 

methods such as Computer Numerical Control (CNC) have traditionally been 

widely used. CNC technology enables the production of complex parts with high 

precision and repeatability by removing material from a metal block, but it has 

disadvantages such as high material waste and certain geometric limitations [2] . 

In recent years, additive manufacturing (AM), or more commonly known as 

3D printing, has emerged as a revolutionary technology that is changing 

production paradigms. AM, which creates three-dimensional objects by adding 

material layer by layer, enables the production of complex and organic 

geometries that are impossible to produce using traditional methods, especially 

when integrated with design tools such as topology optimization [3] . This 

capability offers unique opportunities for achieving weight reduction 

(lightweighting) goals, which are critical for the aviation industry. Lighter 

components directly reduce fuel consumption, thereby lowering both 

environmental impact and operational costs [4] . 

One of the most concrete and industry-wide examples of this potential is the 

aircraft engine bracket design competition organized by General Electric (GE). 

In this competition, engineers and designers from around the world were asked 

to redesign an existing titanium engine bracket using additive manufacturing 

technologies and topology optimization tools.  

The use of additive manufacturing in aviation is increasingly widespread in 

various critical applications such as engine brackets, turbine blades, fuel nozzles, 

and cabin interior components following such pioneering examples [5] . 

However, the mechanical properties of parts produced using AM may differ from 

those of traditional forged or machined counterparts due to potential internal 

defects such as anisotropy, residual stresses, and porosity inherent to the layered 

production process [7]. 

The primary objective of this study is to compare the maximum stress 

strengths of two different competition designs, which are geometrically 

optimized to meet the same functional requirements as the original GE motor 

bracket produced by CNC and are planned to be produced by AM, using the finite 

element analysis (FEA) method. This study demonstrates that a part designed 

using EIM can provide significant benefits despite its negligible disadvantages. 
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2. Materials and Methods 

In this section, the selection of geometric models of parts subjected to 

comparative analysis, the properties of the material used in the analysis, the 

process of creating the finite element model, the quality of the mesh structure, the 

boundary conditions applied, and the analysis steps are systematically detailed. 

This methodology is designed to ensure the repeatability of the study and the 

reliability of the results. 

2.1. Selection and Definition of Geometric Models 

As mentioned in the introduction, the geometric models examined in this study 

were selected from the iconic General Electric (GE) Aircraft Engine Bracket 

Competition, which showcases the potential of additive manufacturing on an 

industrial scale. This approach aims to quantitatively highlight the structural 

performance difference between traditional and AM-focused designs based on a 

proven case study in the industry rather than theoretical designs. The two models 

examined are: 

• Additive Manufacturing Design: The two additive manufacturing (AM) 

designs selected for comparison were chosen from among hundreds of innovative 

designs submitted to and awarded in this competition. This design is the product 

of topology optimization and generative design algorithms. 

 

Figure 1: AM Geometry 

 

• CNC Reference Part: This model represents the geometry of the original GE 

motor bracket, which is the starting point of the competition and is manufactured 

using traditional machining methods. 
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Figure 2: CNC Design 

 

The CAD data of the models used in the analysis were obtained from files 

publicly available on GrabCAD [7] , an engineering and design community 

platform. All models were prepared in .STEP format to ensure full compatibility 

with the analysis software. 

2.2. Material Properties and Selection 

Although the original GE bracket is made of titanium alloy, in this study, all 

models were standardized to stainless steel in order to isolate and examine the 

effect of geometric differences between designs on structural performance. This 

approach eliminates the material variable, ensuring that the comparison focuses 

entirely on the topological efficiency and structural superiority of the designs. 

Since the analyses focus on the material's behavior in the linear elastic region, the 

material model is assumed to be isotropic and linearly elastic. The basic 

mechanical properties used in the analysis are presented in Table 1. 
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Table 1. Stainless Steel Material Properties (Source: Ansys) 

 

2.3. Finite Element Analysis (FEA) Methodology 

2.3.1. Creation and Validation of the Finite Element Model 

The structural performance of the parts was evaluated using the Static 

Structural module in ANSYS Workbench 2024 R2, an industry-standard software 

based on the widely accepted finite element methodology for the numerical 

solution of engineering problems [8] . Mesh refinement was applied locally in 

critical areas where stress concentration was expected (around holes, in narrow 

sections). 

 

Figure 3: Mesh 
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2.3.2. Boundary Conditions and Loading 

The following boundary conditions have been applied as standard for all three 

models in order to simulate the actual operating conditions of the part: 

• Fixed Support: “Fixed Support” has been applied to the two hole 

surfaces defined as the mounting surfaces of the part. 

 
 

 
 

 

 

 

 

 

 

Figure 4: Fixed Support 
 

• Bearing Load: To represent the operational load of the part, a 

“Bearing Load” of 10,000 N was applied in the +Y direction to the 

inner surface of the load-bearing pin hole. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

Figure 5: Bearing Load 

 

As a result of the analyses, von Mises equivalent stress was selected as the 

basic evaluation criterion. 
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3. Results 

As a result of the analyses, the mechanical responses obtained on both parts 

were evaluated comparatively. The total weight of the part produced by additive 

manufacturing was measured as 0.60513 kg, while the part produced by CNC 

weighed 2.2419 kg. This difference demonstrates how additive manufacturing's 

design flexibility can enhance structural efficiency. 

When evaluated in terms of mechanical behavior, the maximum von Mises 

stress value was 292.76 MPa for the additive manufacturing part and 280.48 MPa 

for the CNC part. When examining deformation values, the additive 

manufacturing part exhibited 0.255 mm of deformation, while the CNC part was 

subjected to 0.108 mm of deformation. Maximum shear stresses were recorded 

as 165.4 MPa (AM) and 150.88 MPa (CNC), respectively. 

These results demonstrate that the additive manufacturing part can operate 

under similar mechanical loads despite being lighter. Both parts remained within 

safe stress limits under the specified loading scenario. 

The stress distributions obtained from the analysis results are shown in Figures 

6 and 7. 

 

Figure 6: Von Mises Stress Distribution of AM-Design 1 

Figure 7: Von-Mises Stress Distribution of CNC Reference Part 
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4. Conclusion   

The analysis results showed that both parts exhibited very similar maximum 

stress values under similar loads. Despite having a more complex and lightweight 

geometry, the part produced using additive manufacturing demonstrated similar 

performance to the CNC-produced part in terms of strength. This supports the 

potential use of additive manufacturing in high-safety industries such as aviation. 

The fact that the part produced using additive manufacturing is approximately 

73% lighter clearly demonstrates the possibility of structural weight reduction. 

This is a significant advantage, particularly in aerospace and space applications, 

where fuel savings and cost optimization are of great importance. However, this 

advantage must be carefully evaluated, taking into account the stresses the part 

will be subjected to, the loading scenario, and post-production processes. 

Although the maximum stress and deformation values obtained in this study 

remained within safe limits, real-world usage conditions can be much more 

complex. For example, factors such as fatigue resistance, thermal expansion, 

surface roughness, internal voids, and production defects can significantly affect 

the behavior of parts produced using additive manufacturing.   

Therefore, when choosing between additive manufacturing and CNC, factors 

such as production tolerances, cost, production time, and quality control must 

also be considered, not just mechanical strength. Especially for critical structural 

components, a case-by-case evaluation considering the specific conditions of 

each application is the most appropriate approach. 

Additionally, by combining advanced topology optimization and simulation-

supported design processes with additive manufacturing, it is now possible to 

safely produce geometries that were previously impossible with traditional 

methods. However, for the reliability of these technologies to be fully ensured, 

standardization and certification processes must be developed. 

In the future, this work can be developed in different directions. First, the 

evaluations conducted in this study under static loading on a single axis can be 

expanded to include dynamic loading conditions such as fatigue and impact 

resistance. Especially in aerospace applications, where parts are often subjected 

to repetitive loading, fatigue life analyses will be critical. 
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1. INTRODUCTION 

The rapidly increasing energy demand worldwide necessitates the orientation 

towards sustainable and efficient technologies in energy production. Acceleration 

of industrialization, population growth, urbanization and technological 

developments; While increasing energy demand, they also bring environmental 

pressures. In this context, countries act with the dual goal of ensuring supply 

security on the one hand and reducing greenhouse gas emissions on the other. 

The role of fossil fuels in current energy policies is still quite large; especially 

coal continues to be a strategic resource that meets nearly 35% of world energy 

production (IEA, 2022). 

Worldwide energy consumption is approximately 620 EJ (exajoule) as of 

2023. Approximately 26% of this is provided by coal (Davenport, 2023). In 

Turkey, nearly 30% of electricity production in 2023 was provided by coal-fired 

power plants. When this situation is evaluated within the scope of domestic and 

national energy policies, it reveals that Turkey needs to use its domestic coal 

resources in a more efficient and environmentally friendly manner. Figure 1 

shows the global energy consumption. 

 

Figure 1. World Energy Consumption Values (Davenport, 2023) 

Coal is still used as an important energy source in electricity generation 

worldwide. Although dependence on fossil resources seems to have decreased, 

coal has strategic importance for many countries due to energy security, supply 

continuity and economic factors. In Turkey, coal plays an important role in 

energy supply, especially thanks to domestic lignite reserves (Ural etc, 2016). 

Coal gasification technology is a more environmentally friendly and efficient 

alternative to traditional coal combustion methods. This technology enables coal 

to be converted into syngas (H₂ + CO) under controlled conditions. Syngas can 

be used both in electricity generation and in chemical processes. It also offers 
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advantages in terms of reducing emissions, ease of integration with carbon 

capture systems and control of by-products (Dong etc., 2018). 

Tola et al. (2021) examined the technical and economic performance of the 

integration of carbon capture and storage (CCS) technologies into coal-fired 

power plants in their study. Ultra supercritical (USC) systems and integrated 

gasification combined cycle (IGCC) systems were compared in both CCS and 

non-CCS configurations. The study determined that USC was more efficient and 

economical than IGCC without CCS, but the energy losses brought by the CCS 

system were higher for USC than for IGCC. As a result, it was emphasized that 

strong incentive policies are needed for CCS technologies to be economically 

viable in the current market conditions. Feng et al. (2021) examined the 

environmental impacts of underground gasification combined cycle (UGCC) 

plants with carbon capture and storage (CCS) technology and separately using 

the life cycle assessment (LCA) method in their study. UGCC and surface 

integrated gasification combined cycle (IGCC) plants were compared and it was 

found that UGCC was more advantageous than IGCC in most environmental 

impact categories. However, it was determined that the global warming potential 

was 16.9% higher for UGCC. The study showed that the UGCC-CCS 

configuration has a lower carbon footprint (249.8 kg CO₂-eq/MWh) and 

suggested strategies for the use of clean coal. In their comprehensive analysis, 

Filippov et al. (2021) examined the current status of coal gasification 

technologies developed worldwide and the demand for these technologies. The 

study stated that although coal maintains its central role in energy production, the 

future of gasification technologies is uncertain due to increasing external 

pressures and carbon emissions. It was emphasized that gasification systems have 

reached technical maturity and are widely used in the production of chemical 

products, especially methanol, ammonia and natural gas substitutes. However, 

the limited number of applications of integrated gasification combined cycle 

(IGCC) plants indicates that the private sector has little interest in this area. The 

authors stated that these technologies have high potential for low-carbon energy 

production, but that this requires the effective disposal of captured CO₂  

In their study, Liu et al. (2022) comparatively examined the technical and 

economic performances of underground coal gasification hydrogen production 

(UCG-H₂) and surface coal gasification-based hydrogen production (SCG-H₂) 

systems. As a result of simulation-based analyses, it was determined that the 

UCG-H₂ system was more advantageous than the SCG-H₂ in terms of both capital 

investment and product cost. In particular, it was revealed that UCG-H₂ was more 

resistant to market fluctuations and economic risks. With a carbon capture rate of 

80%, it was determined that the product cost of the UCG-H₂ system was still low 

and the competitive carbon tax threshold was 124 RMB/t CO₂. These results show 
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that the UCG-H₂ technology is promising in terms of economic viability. Harris 

et al. (2023) examined the potential of coal to be used in the production of high-

efficiency electricity, transportation fuels and chemical products through 

conversion technologies such as gasification and direct liquefaction, beyond its 

use as a fuel. The study comprehensively covers the current applications of these 

technologies, the technical and economic barriers encountered, and the main 

challenges in the field of research. In addition, integrated solutions that offer cost-

effective CO₂ capture from coal-based systems and new generation technologies 

that aim to reduce emissions are also highlighted. Türkiye's shift towards coal 

gasification technologies is important not only economically, but also 

environmentally and strategically. Evaluating domestic coal with advanced 

technologies will contribute to both reducing energy imports and supporting low-

emission production policies. This study covers 

2. COAL GASIFICATION AND ITS SECTORAL IMPORTANCE 

Coal continues to exist as an indispensable resource in energy production due 

to its large reserves and low cost. Coal is the leader in energy production in 

countries such as China, India and the USA. As of 2021, China alone accounted 

for approximately 52% of global coal consumption (BP, 2023). However, it is 

known that traditional coal combustion methods cause serious environmental 

problems such as low efficiency and high carbon emissions. Therefore, the need 

for advanced technologies such as coal gasification to use coal in a cleaner and 

more efficient way is increasing day by day. 

The global coal gasification market is estimated to have reached a 

valuation of USD 13.87 billion in 2024, with expectations to rise 

significantly, projecting a growth from USD 14.68 billion in 2025 to USD 

22.44 billion by 2032. This growth represents a compound annual growth 

rate (CAGR) of 6.25% throughout the forecast period. Notably, the Asia 

Pacific region has established itself as the dominant player in the market, 

capturing an impressive 73.04% share in 2024. Additionally, the coal 

gasification sector in the United States is anticipated to expand 

substantially, with an estimated valuation of USD 1.59 billion expected by 

2032. 
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Figure 2. Market Share Status of Coal Gasification Technology  

(Fortune Business Insights, 2023) 

he advancements in coal gasification are significantly enhancing the 

production capabilities for fertilizers, chemicals, and hydrogen on a global scale, 

with Asia Pacific taking the lead in the adoption of this technology. The 

increasing reliance on methanol-infused fuels in sectors such as aviation and 

hybrid vehicles is anticipated to further propel market expansion in the coming 

years.  

Traditionally, coal has been utilized primarily in conventional coal-fired 

power plants. However, the gasification process offers a transformative approach, 

converting solid coal into gaseous forms, electricity, hydrogen, and a variety of 

other energy products. Coal gasification is a sophisticated thermochemical 

process where heat and pressure decompose coal into its fundamental chemical 

components. The end product, known as synthesis gas or syngas, primarily 

consists of carbon monoxide and hydrogen, along with other possible gaseous 

compounds. 

Syngas serves multiple purposes; it can be harnessed for power generation, 

utilized in energy-efficient fuel cell technology, or employed as versatile 

chemical building blocks for a wide array of industrial applications. Additionally, 

the extraction of hydrogen from syngas is a critical advancement that enhances 

hydrogen conservation and expands its potential as a clean energy source.  

Researchers and industry stakeholders are actively engaged in ongoing 

improvements and innovations within coal gasification technology, aiming to 

unlock further potential applications and improve the efficiency of this process. 

As the demand for cleaner and more sustainable energy solutions continues to 

grow, coal gasification is positioned to play a crucial role in the energy landscape 

of the future. 
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3.COMPARISON OF COAL GASIFICATION  TECHNOLOGIES 

3.1. Fixed Bed Gasifier 

In a fixed bed gasifier, solid coal particles are introduced from the top of the 

reactor. An air and steam mixture is injected from the bottom, creating a reaction 

bed that remains fixed in place. As the coal descends, it undergoes a series of 

oxidation and reduction reactions, facilitating the gasification process. It operates 

effectively at lower temperatures (typically between 600-800°C) compared to 

other gasification methods, which can lead to lower energy consumption. The 

overall investment cost is relatively low because of simpler design and 

construction requirements. The fixed bed structure requires less complex 

technology and maintenance, making it suitable for smaller-scale operations 

(Hobbs etc, 1992).The resulting synthesis gas often contains significant amounts 

of tar, which can complicate downstream processes and require extensive gas 

cleaning. The requirement for larger-sized coal particles can limit feedstock 

options and make the process less versatile. The fixed bed design can lead to 

difficulties in handling and removing ash residues, potentially affecting 

efficiency over time (Ryzhiy etc., 2021). 

3.2. Fluidized Bed Gasifier 

In a fluidized bed gasifier, finely ground coal particles are suspended in a hot 

fluid medium, typically consisting of sand or ash. The introduction of air or 

oxygen creates a fluidized state where the solid particles are mixed continuously 

with the gasifier contents, promoting efficient gasification. The continuous 

mixing of coal particles in the fluidized state allows for uniform temperature 

distribution and maximizes combustion efficiency (Xie etc., 2021). This design 

can accommodate a wide range of coal types and particle sizes, enhancing 

flexibility in feedstock usage. Operators can easily regulate the bed temperature, 

leading to better control of the gasification process and improved product quality. 

Due to the production of particulates and tars, gas produced requires significant 

cleanup before it can be utilized, which can be resource-intensive. Issues can arise 

with the transport of solid particles within the gasifier, potentially leading to 

blockages or uneven flow (Gupta etc., 2022). 

 3.3. Entrained Flow Gasifier 

In an entrained flow gasifier, very finely ground coal, often described as 

pulverized, is mixed with a high-velocity flow of oxygen and steam. The feed is 

injected into the reactor at high speeds, allowing gasification to occur at elevated 

temperatures ranging from 1300 to 1500°C, where the reactions happen 

extremely efficiently. The high operating temperatures prevent the formation of 

tar, leading to the generation of high-quality synthesis gas that contains minimal 

impurities. The resulting syngas possesses a high calorific value and is suitable 
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for subsequent conversion processes into fuels and chemicals (Kong etc., 2021). 

A comparison of the technical specifications of the gasification processes is given 

in Table 1. 

Table 1. Comparison of Coal Gasification Technologies 

 

The need to maintain high temperatures requires considerable energy input, 

which can impact overall process efficiency. Higher capital and operational costs 

are associated with this method due to the extensive processing requirements and 

specialized equipment needed for high-speed feeding and temperature 

maintenance. The necessity for very fine grinding of coal adds complexity and 

further increases operational costs due to the energy required for particle size 

reduction.  

4. CONCLUSION AND RECOMMENDATIONS 

Enhancing the efficiency of electricity generation through coal gasification 

technologies involves several critical technical improvements and system 

integrations. Central to this advancement is the implementation of integrated 

gasification combined cycle systems (IGCC). In an IGCC framework, synthesis 

gas (syngas)—produced from gasifying coal—is first combusted in a gas turbine 

to generate electricity. The exhaust gases from this process are then directed to a 

steam turbine, where their heat is utilized to create steam, further driving 

electricity generation. This dual-turbine approach significantly boosts the overall 

efficiency of the system, as it effectively harnesses energy that would otherwise 

be wasted. 

Key to maximizing the efficacy of the IGCC system is the recovery of waste 

heat from the high-temperature gases generated during the gasification process. 

By utilizing this heat to produce steam, the system enhances its total energy 

output. Furthermore, the cleaning and enrichment of synthesis gas are paramount. 

Removing impurities such as tar, carbon dioxide (CO₂), and hydrogen sulfide 

(H₂S) from the syngas results in a cleaner, high-quality fuel that improves 
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combustion efficiency. Additionally, employing CO-shift reactions can increase 

the hydrogen content within the syngas, creating a more effective fuel for gas 

turbines. 

Conducting the gasification process under elevated pressure also plays a 

crucial role in enhancing reaction rates, thereby leading to increased energy 

production. Implementing preliminary processes—such as reducing the moisture 

content of coal prior to gasification, along with grinding and homogenizing the 

coal—makes the gasification system more balanced and effective. These steps 

ensure that the feedstock is optimized for conversion, leading to improved yields 

of syngas. 

Another vital consideration in the coal gasification process is the capture, 

utilization, and storage of CO₂ (CCUS systems). Although this has a limited 

effect on net energy yield, it significantly enhances environmental performance 

by reducing greenhouse gas emissions, making the process more sustainable. 

Finally, merging coal gasification systems with renewable energy sources, 

such as solar power, enables the development of hybrid energy systems that are 

both efficient and less reliant on fossil fuels. This integration not only diminishes 

overall fuel consumption but also lowers the carbon footprint associated with 

electricity generation. By examining and implementing these collaborative 

strategies, substantial improvements can be realized in both the energy efficiency 

and ecological sustainability of coal gasification-based electricity generation 

systems. Such advancements position coal gasification as a viable player in the 

transition towards a more sustainable energy landscape.  

Coal gasification technologies enable the efficient utilization of Türkiye's low-

quality coal while minimizing its environmental impact. Different gasification 

technologies vary in terms of efficiency, gas composition, installation costs, and 

environmental profiles. For instance, fixed-bed gasifiers are lower in cost but 

have limitations regarding gas quality. In contrast, entrained flow systems are 

more expensive but provide higher efficiency and better gas quality. Coal 

gasification operates on the principle of converting coal into gas under high 

temperatures in a limited oxygen environment. The resulting syngas can be used 

in various chemical processes as well as in electricity generation. When 

integrated with Integrated Gasification Combined Cycle (IGCC) technology, 

plant efficiency can exceed 45%, and carbon emissions can be reduced by 25-

30% compared to conventional power plants. Additionally, these systems can be 

combined with carbon capture and storage (CCS) technologies, bringing the 

concept of "clean coal" closer to reality. 

In the context of Turkey, energy dependence presents a significant challenge. 

Approximately 70% of the country's energy needs are met by imported resources, 
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leading to economic vulnerability. Conversely, Turkey boasts substantial coal 

reserves, especially lignite, with total reserves estimated at around 20 billion tons, 

of which approximately 15 billion tons consist of low-quality lignite. However, 

because of its low calorific value and high sulfur content, the direct combustion 

of this coal severely harms the environment. 
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1. Introduction 

CM and PdM have become indispensable elements of modern industrial 

processes. CM is the process of continuously collecting, processing and analyzing 

data from various sensors to monitor the health of equipment in real time [1]. 

These sensors usually measure physical parameters such as vibration, 

temperature, pressure, oil quality, acoustic signals, electrical currents [2]. For 

example, increased vibration or temperature in an electric motor can be an 

indication of an early failure [3]. Similarly, changes in the number of particles or 

chemical composition through oil analysis can be an indicator of mechanical wear 

or contamination [4]. This data allows to detect deviations from the normal 

operating limits of the equipment and to provide immediate notification to 

maintenance teams 

PdM is the analysis of this continuously collected data with the help of 

artificial intelligence algorithms and statistical models, estimating the remaining 

life of the equipment before failure and proactively planning the maintenance 

time [5]. In this way, maintenance is performed not only when the failure occurs, 

but also before the failure occurs, thus minimizing unplanned downtime, reducing 

maintenance costs and extending the life of the equipment. Predictive 

maintenance tries to determine the type of failures and the time of failure, 

allowing more efficient use of maintenance resources. Condition monitoring and 

predictive maintenance systems were initially limited to simple threshold value 

warnings based on a single parameter. However, today, thanks to the Internet of 

Things (IoT) technology, large data sets can be collected with a large number of 

sensors and this data is processed with big data analysis techniques on cloud 

platforms. Thanks to machine learning and deep learning models, complex 

patterns and anomalies hidden in this big data can be detected more accurately. 

For example, by processing the features obtained by vibration spectrum analysis 

and time-frequency transformations with artificial neural networks and 

convolutional neural networks, different fault types of the equipment can be 

classified with high accuracy [6]. 

Models used in predictive maintenance include regression analysis [7], 

support vector machines [8], random forests [9] and recurrent neural networks 

(RNN, LSTM etc.) [10]. Especially in time series data, the future state of the 

equipment is predicted with these models. In addition, anomaly detection 

methods provide early detection of rare or unknown failure types. These 

approaches are applied not only for production lines but also for power plants, 

transportation vehicles, chemical plants and many other critical infrastructures, 

reducing labor losses and safety risks caused by failures. There are many studies 

on this subject in the literature. An example of this is the study where instead of 

periodic maintenance in wind turbines, predictive maintenance is applied to 
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repair turbine blades or generators before they fail. This significantly reduces 

high maintenance costs and the time the turbine is out of production [11]. 

In conclusion, condition monitoring and predictive maintenance are critical 

components of digital transformation in industrial plants. The effectiveness of 

these methods is directly related to the right selection of sensors, high-quality 

data collection, development of appropriate AI models and good planning of 

maintenance strategies. 

2. Effects of Condition Monitoring and Predictive Maintenance on 

Manufacturing Efficiency  

Condition monitoring and predictive maintenance have become key strategies 

for increasing efficiency in modern manufacturing processes. While traditional 

maintenance methods often result in unplanned downtime and high costs, these 

new approaches help detect failures in advance. Figure 1 summarizes the effects 

of condition monitoring and predictive maintenance on production efficiency.  

 

Figure 1. The effect of CM and PM on the manufacturing efficiency 

By continuously monitoring the condition of the equipment with sensors and 

analysis tools, failure risks can be determined at an early stage. This increases 

production continuity and reduces costs by ensuring that machines are maintained 

only when needed. Companies gain great advantages by using these methods. For 

example, machine vibrations and temperatures are continuously monitored in 
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engine assembly lines using condition monitoring systems in production 

facilities. Thanks to this system, a shaft bearing failure that may occur in a CNC 

machine processing an engine block can be detected days in advance [12]. In this 

way, planned maintenance is implemented, the production line continues to 

operate without stopping and overall efficiency is increased. In another example, 

large compressors and pumps used in refineries are monitored through condition 

monitoring [13]. Since production is completely stopped in the event of a failure 

of critical equipment, this risk is reduced thanks to predictive maintenance. Since 

failures are fixed before they occur, both efficiency is increased and occupational 

safety is ensured.  

Predictive maintenance applications not only reduce the risk of failure, but 

also extend the life of the equipment and optimize the use of resources. By 

preventing unnecessary maintenance operations, both the consumption of spare 

parts is reduced and the workforce is used more efficiently. In this way, the 

machines operate at high performance for a longer period of time. In addition, the 

operation of the equipment under ideal conditions ensures that product quality is 

maintained, and occupational accidents that may be caused by failures are also 

prevented. An example of this situation is the reduction of maintenance and 

emergency response costs for very costly turbine failures used in some sectors. 

Turbine failures in power plants are very costly. Electricity generation facilities 

detect critical situations such as overheating and oil pressure changes in advance 

thanks to the sensors they place in the turbine systems. Thanks to predictive 

maintenance, unplanned stoppages of turbines are minimized and production 

continues uninterrupted, while maintenance costs and emergency response costs 

are reduced. Another example can be given from the cement sector. Sudden 

failure of heavy machinery such as mills and rotary kilns used in cement 

production can lead to millions of liras of production loss [14]. Companies 

constantly monitor these equipment and follow parameters such as bearing 

temperature, vibration and oil quality. Thanks to this system, maintenance 

operations are carried out in a planned manner, downtime due to malfunctions is 

reduced and maintenance and repair costs are reduced accordingly.   

Finally, these technologies support data-driven decision-making processes 

and contribute to the sustainability of production processes. Data collected on 

equipment performance helps businesses optimize maintenance plans, make 

more accurate investment decisions, and increase energy efficiency. In this way, 

condition monitoring and predictive maintenance applications transform not only 

maintenance processes but also general production strategies, creating a more 

competitive and resilient production infrastructure. Companies that have adapted 

technologies such as Industry 4.0 to their production facilities can benefit from 

the advantages of this method included in data management. In automotive 
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production facilities, data from hundreds of machines and robots are collected on 

a central digital platform. This data is used not only in maintenance planning but 

also in investment decisions. System data can be examined for equipment that 

frequently fails in a production line, and a decision can be made to replace it with 

a new and more resilient model, and thus production strategies can be optimized 

based on data [15]. The aviation sector can be given as an example as a different 

sector. Aircraft manufacturers can analyze the data from the machines that 

produce aircraft parts in their production processes and determine which 

processes are more efficient and the potential for failure in the machines. Thanks 

to these analyses, maintenance programs are reshaped, making not only 

production but also the entire supply chain more flexible and sustainable [16]. In 

addition, this data is used in decisions to increase production capacity and 

optimize stock management, thus contributing to increased efficiency. 

3. Condition Monitoring Fundamentals and AI-Assisted Condition 

Monitoring 

Condition Monitoring is a systematic method for assessing the operational 

performance of industrial equipment in real time. The main purpose of this 

method is to prevent unplanned downtime by detecting equipment failures at an 

early stage, reduce maintenance costs and increase production continuity [1]. 

Condition monitoring processes are generally carried out in three basic stages: 

sensor-based data collection, analysis of this data and operation of decision 

support mechanisms based on the results. These basic stages are shown in Figure 

2. 

 
Figure 2. Basic stages of CM 
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In practice, the data obtained from the equipment includes vibration, 

temperature, acoustic emission, oil condition, electrical parameters and other 

physical variables. These data are processed with time/frequency analysis 

techniques, statistical evaluations and artificial intelligence-based models for 

anomaly detection and fault diagnosis. The obtained outputs form the basis for 

the creation of predictive maintenance strategies. Condition monitoring 

techniques vary depending on the type of equipment being monitored, its 

operational conditions and possible failure modes. 

The most commonly used sensors in the industry during CM are shown in 

Table 1. This table provides detailed information about sensor types, their usage 

areas, the parameters they measure, and their intended uses. These sensors form 

the basis of today’s Industry 4.0 and Internet of Things (IoT)-based condition 

monitoring systems. The collected data is analyzed with artificial intelligence and 

machine learning algorithms, allowing for the prediction of failures and the 

implementation of predictive maintenance strategies 

Table 1. Sensors used for CM and their features 

 
Sensor Usage Area and Measured Parameters Examples of Problems Detected 

Vibration 

Sensors 

Measurement of vibration, oscillation, 

speed and acceleration in rotating 

machines. 

Imbalance, misalignment, bearing 

damage, mechanical looseness, gear 

wear. 

Temperature 

Sensors 

Measurement of machine parts, fluids 

and ambient temperature (contact and 
non-contact).  

Overheating, friction, electrical faults, 

cooling system problems, insulation 
failures. 

Pressure Sensors 
Measurement of liquid/gas pressure in 

hydraulic, pneumatic and fluid systems. 

Leaks, blockages, valve failures, 

overload. 

Acoustic 

Emission Sensors 

High-frequency sound waves resulting 
from micro-level stresses and 

deformations within the material. 

Crack propagation, corrosion, 

cavitation, premature bear.  

Oil Analysis 

Sensors 

Analysis of quality, contamination and 

wear particles of lubricating and 
hydraulic fluids 

Oil degradation, contamination (water, 

fuel), wear particles, overheating. 

Current and 

Voltage Sensors 

Current draw, voltage fluctuations and 

power consumption of electric motors 
and systems. 

Motor electrical faults, winding 

problems, energy inefficiency. 

Proximity 
Sensors 

Shaft position, movement, displacement 

and clearance measurement (non-

contact). 

Shaft runout, bearing clearances, 
eccentricity. 

Flow Sensors 
Measurement of flow rate and volume of 

liquids or gases in pipes.  

Blockages, leaks, pump failures, cooling 

insufficiency. 

Level Sensors 
Detection of material (liquid, powder, 
granule) level in tanks or hoppers. 

Overflows, pumps running dry, material 
supply problems. 

Force Sensors 
Measurement of mechanical force 

(tension, compression) (load cells). 

Overload, material fatigue, mechanical 

stress, unbalanced load distribution. 

Humidity 

Sensors 

Measurement of humidity in the 

environment or in the system. 

Corrosion, condensation, electrical 
faults, product quality problems in 

moisture-sensitive processes. 
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Complementary techniques used alongside these basic measurement devices 

significantly increase the accuracy and scope of fault detection. Electrical 

parameter monitoring is effective in diagnosing electrical anomalies such as short 

circuits in motor windings, insulation failures and voltage imbalances; while 

ultrasonic tests are preferred in determining conditions such as sealing problems, 

valve failures and insufficient lubrication. In addition, current and power analysis 

techniques allow the analysis of energy efficiency and load behavior of electric 

motors and performance evaluation. The selection of data collection equipment 

and techniques to be used greatly affects data collection strategies, data 

processing and the use of advanced analysis methods. Today, the integration of 

artificial intelligence and machine learning-based models in this field increases 

the accuracy of fault prediction and ensures that maintenance plans are placed on 

a more reliable basis. 

The data obtained from such monitoring techniques, although providing 

limited information in raw form, are transformed into meaningful results through 

advanced data analysis methods and artificial intelligence-supported models. In 

some cases, while one sensor data is sufficient, there are applications where 

multiple sensors are used. Using data from multiple sensors increases the 

accuracy of the analysis while also increasing the processing load. For this reason, 

it is necessary to create a balance according to the system being worked on. 

Thanks to big data infrastructures, data from multiple equipment is processed 

simultaneously and central maintenance management is supported. 

Figure 3 shows the necessary steps for interpreting and processing the data 

coming from the sensors before proceeding to the decision-making process. After 

the raw data coming from the sensors are collected, they are subjected to pre-

processing processes such as noise reduction, filtering, normalization and missing 

data completion before the analysis process and during these processes, they are 

cleaned, organized and prepared using various signal processing techniques. 

Noise reduction and filtering at this stage are very important to eliminate 

unwanted signals or random distortions that may hide critical information. 

Techniques such as low-pass filters or moving averages are widely used here. 

Normalization or standardization is necessary to ensure comparability between 

different sensor types and scales. This process scales the data to a consistent range 

or adjusts it according to statistical properties. In addition, missing data 

management usually eliminates gaps in the data set by entering values with 

methods such as carrying forward the last known value or using regression-based 

estimates. In addition, sensor failures or early signs of failure can be determined 

by detecting outliers. 
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Figure 3. The steps of data processing in CM 

The primary objective of data processing in predictive maintenance is to 

enable informed decision-making and timely action by detecting faults early and 

planning maintenance to avoid failures. This process begins with pre-processing 

and feature extraction, where meaningful indicators of equipment health—such 

as time, frequency, and time-frequency domain features—are derived from raw 

signals. Analytical techniques like threshold-based monitoring, trend analysis, 

and statistical process control (SPC) are then used to evaluate equipment 

condition. Machine learning methods further enhance predictive capabilities: 

supervised learning classifies conditions or predicts remaining useful life (RUL), 

unsupervised learning detects anomalies, and deep learning models such as CNNs 

and RNNs (especially LSTMs) offer automatic feature extraction and improved 

fault diagnosis with large datasets. Additionally, model-based diagnostics 

compare sensor data with physical models to identify inconsistencies and faults 

[17-19]. 

Another important issue is the increasing importance of multi-technology 

integration. The combined use of different condition monitoring techniques 

provides higher accuracy and reliability in fault diagnosis. For example, an 

anomaly detected in vibration analysis can be verified by supporting it with 

thermal imaging, while the findings obtained from oil analysis provide 

complementary information for root cause analysis of mechanical failures. This 

holistic approach increases the effectiveness of predictive maintenance strategies, 

while also providing significant gains in critical areas such as reducing unplanned 

downtime in industrial facilities, reducing maintenance costs, optimizing spare 

parts usage, increasing human safety and energy efficiency. 

As a result, CM techniques have become an indispensable component in 

industrial facilities to increase system reliability, increase operational efficiency 
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and include maintenance activities in the optimization process. Integrating these 

techniques with artificial intelligence-based decision support systems plays a 

critical role in shaping maintenance paradigms of Industry 4.0 and beyond by 

forming the basic building blocks of intelligent maintenance systems. 

4. Adoption of Next-Generation Technologies for AI-Enabled Condition 

Monitoring 

New technological trends are extremely important for condition monitoring 

and are driving a paradigm shift from reactive or time-based maintenance to 

highly proactive, predictive, and even prescriptive approaches. One of the 

prominent technologies in this field is digital twin technology. Digital twin 

technology enables the creation of virtual copies of physical assets fed with real-

time data. Digital twins continuously monitor, analyze, and predict potential 

failures by creating dynamic, virtual copies of physical assets that process real-

time sensor data. They provide advanced fault detection, predictive maintenance, 

and performance optimization by simulating equipment behavior under various 

conditions. In this way, maintenance activities are improved, business continuity 

is increased, and risks are minimized [20]. Through integration with AI and IoT, 

digital twins make maintenance more accurate, cost-effective, and proactive, 

paving the way for Industry 4.0 and beyond. Several examples of the use of digital 

twin technology in industry for CM are provided in Figure 4. 

 

Figure 4. Examples of using digital twin for condition monitoring purposes 
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Another advanced technology that is increasingly being adopted in CM is 

Augmented Reality (AR). AR-based Condition Monitoring combines immersive 

visualization technologies with real-time industrial data to enhance predictive 

maintenance, asset management, and decision making. It supports field workers’ 

decision-making processes by adding digital information layers to the physical 

world. Key Applications of AR-based Condition Monitoring include 

maintenance, training, and remote collaboration. Remote assistance becomes 

more effective through AR, as experts can guide field workers using visual 

explanations and live broadcasts. In addition, AR enhances situational awareness 

and predictive diagnostics by supporting the visualization of digital twins. With 

the help of this technology, maintenance personnel can view the current status of 

equipment, access fault codes, and follow step-by-step repair instructions through 

AR-enabled glasses or tablets. This technology reduces intervention times, 

lowers error rates, and makes specialized operations more accessible. It also 

significantly speeds up training and information access processes [21,22]. 

Blockchain technology provides a distributed registry structure that allows 

data to be stored transparently, securely, and immutably. CM, which enables the 

tracking and interpretation of data collected through sensors, plays a critical role 

in ensuring the reliability of sensor data and in verifying the source. By 

integrating Blockchain with condition monitoring systems, sensor data from 

machines is recorded in an immutable ledger. This ensures that historical 

performance and maintenance records of assets cannot be changed. Blockchain 

prevents data manipulation while increasing the traceability of the system. In 

predictive maintenance, this increases trust and accountability by creating a 

transparent and auditable trail for machine health data and maintenance events. 

Additionally, combining Blockchain with IoT and AI creates a robust ecosystem 

where data integrity feeds reliable machine learning models and improves real-

time decision making [23]. 

These technologies make significant contributions to the digitalization process 

of industrial systems. The visibility and foresight capabilities provided by digital 

twins, fast and accurate interventions supported by AR, and data integrity 

guaranteed by Blockchain are becoming the basic building blocks of modern 

industrial systems. In addition, research continues on the use of new generation 

technologies for CM purposes and the development of new systems in this 

direction. 

Next-generation systems are moving towards Edge AI and real-time analytics, 

where data is processed locally on the machine using intelligent algorithms. This 

reduces latency and reliance on cloud infrastructure, enabling instantaneous fault 

detection. Furthermore, self-learning and continuously learning systems are 

emerging; these models adapt over time without retraining from scratch, 
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ensuring that condition monitoring systems maintain accuracy as the 

machine ages or operating conditions change [24]. Another important 

trend is the use of multimodal and sensor fusion AI, which combines data 

from a variety of sensors (such as vibration, acoustic, and thermal) for a 

more accurate and holistic view of machine health [25]. 

As trust and transparency become more important, it is driving the adoption 

of Explainable AI (XAI) to make model decisions understandable to human 

operators. At the same time, the integration of 5G and Industrial IoT (IIoT) is 

enabling ultra-fast communication between machines and systems, facilitating 

real-time condition monitoring at scale [26]. 

Federated learning and privacy-preserving AI enable models to be trained 

across multiple sites or machines without sharing sensitive data, while automated 

machine learning (AutoML) [27] has simplified AI deployment by automating 

model development for non-experts. Finally, AI-powered root cause analysis 

(RCA) [28] is transforming fault diagnostics by automatically identifying the 

source of problems in complex systems, significantly reducing downtime and 

repair costs. 

Collectively, these trends reflect a shift toward smarter, faster, more 

transparent, and decentralized condition monitoring systems driven by AI. Figure 

5 shows these future technologies. 

 

Figure 5. Future trends in AI powered CM systems 
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AI-supported condition monitoring system architectures can directly affect 

not only maintenance processes but also production, energy management and 

supply chain decisions. These systems provide a foundation for Predictive 

Maintenance strategies; They offer multi-dimensional benefits such as reducing 

unplanned stops, shortening downtimes, efficient use of maintenance resources 

and increasing occupational safety.   

As a result, it is clear that these AI-supported architectural structures are of 

strategic importance in the realization of Industry 4.0 and the rising Industry 5.0 

visions. In the coming periods, these systems are expected to develop further in 

the axis of digitalization, sustainability and AI ethics. 

5. Artificial Intelligence-Assisted Predictive Maintenance  

Predictive Maintenance is an advanced maintenance strategy that aims to 

monitor industrial assets and systems before they fail and optimize maintenance 

processes by predicting possible breakdowns [5]. While traditional periodic 

maintenance practices often bring unnecessary costs and unplanned downtime 

risks, PdM approaches enable decisions to be made based on real-time data. In 

order to make the advantages that PdM has shown over traditional maintenance 

methods applicable, integration with AI has become extremely important today. 

PdM systems require AI due to the complexity, data volume and speed required 

to accurately predict equipment failures. While traditional maintenance relies on 

programmed checks or reacting to failures, PdM aims to predict problems before 

they occur, and AI is the most important technology that can make this possible 

at scale and with the necessary precision. Figure 6 shows the intended uses of 

PdM integration with AI. 

 

Figure 6. Purposes of using AI integration with PdM 

Thanks to the Internet of Things (IoT) and widespread sensor usage, modern 

industrial equipment generates a tremendous amount of real-time data, such as 

vibration, temperature, pressure, acoustic signals, current, engine speed, and 
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more. Manually sifting through and interpreting this constant stream of data is 

time-consuming and labor-intensive. AI algorithms, particularly ML, are 

specifically designed to efficiently process, analyze, and learn from these massive 

data sets. AI’s ability to drive PdM is based on its advanced capabilities in ML 

and deep learning (DL). These advanced algorithms empower PdM systems with 

the ability to not only analyze but also “learn” from vast amounts of historical 

and real-time equipment data. Through this continuous learning process, AI 

models are able to identify complex correlations and indicators that precede 

equipment failures, allowing for highly accurate predictions about when a 

component is likely to fail. 

Another important benefit of AI integration is the ability to identify 

undetectable differences that could lead to equipment failure. Equipment failure 

often manifests itself with subtle changes in performance metrics long before a 

failure. These subtle deviations may not trigger traditional threshold-based alarms 

or be unnoticed by human operators. Through its sophisticated pattern 

recognition capabilities, AI can detect these tiny anomalies and hidden 

correlations in data that indicate an impending problem. This impact, which will 

provide major benefits for many productivity drivers, highlights the importance 

of using AI. In addition to detecting an anomaly, true predictive maintenance 

requires an estimate of when equipment is likely to fail. AI models excel at 

learning temporal dependencies in data. This allows them to analyze historical 

failure trends and real-time operational data to provide an accurate estimate of a 

component’s remaining lifespan. With this information, organizations can 

optimize their maintenance programs, ensure interventions are performed exactly 

when needed, minimize unnecessary downtime, and maximize the operational 

life of critical assets. This capability provided by AI transforms maintenance from 

a reactive frenzy into a targeted and efficient operation. 

Equipment health is often affected by the complex interaction of multiple 

parameters. For example, a sudden drop in efficiency may not be related to 

temperature alone, but rather to a combination of slightly elevated temperature, 

increased vibration at a certain frequency, and unusual power draw. AI 

algorithms can automatically identify these complex, nonlinear relationships 

between different sensor readings and operational parameters and determine their 

significance. Another positive effect of AI is preventing production disruptions 

due to false alarms. Traditional alarm systems often have the disadvantage of 

flagging healthy equipment or missing real problems. This is mainly because they 

do not consider all possibilities for situations that require alarms, defined by 

certain fixed criteria. AI models are trained on a variety of datasets representing 

both healthy and faulty conditions, and can learn to distinguish between normal 
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operational variations and real signs of failure. This leads to more accurate 

predictions and less unnecessary intervention. 

In summary, AI transforms predictive maintenance from a challenging, data-

intensive goal into a practical, powerful reality. It enables organizations to use 

the vast amount of data generated by their assets to make intelligent, proactive 

decisions that significantly reduce costs, minimize downtime, extend asset life, 

and increase overall operational efficiency and safety. In this context, AI 

algorithms form the fundamental building blocks of PdM systems, enabling 

meaningful inferences to be made. AI not only goes beyond human perception, 

but also significantly contributes to the process of digitizing maintenance 

practices by increasing the self-learning, adaptability, and decision-making 

capabilities of systems 

5.1. AI-based Learning Algorithms 

In line with the advantages and contributions brought by AI, it is seen that 

learning with the help of algorithms using the collected and processed data and 

learning success are the most important factors for all purposes. AI learning 

algorithms overcome the limitations of traditional methods by equipping 

predictive maintenance with the ability to "estimation". Thanks to these 

algorithms, businesses can switch from a failure-focused approach to a data-

driven, proactive and optimized asset management strategy. This provides 

significant benefits not only in terms of cost savings and increased efficiency, but 

also operational safety and environmental sustainability. Figure 7 shows learning 

algorithms. Learning algorithms are grouped under 5 main headings.  

 

Figure 7. Learning algorithms 
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Supervised learning, using labeled historical datasets, is widely applied in 

predictive maintenance (PdM) to predict failure types, maintenance schedules, or 

remaining useful life (RUL), leveraging algorithms such as Decision Trees, 

Random Forest, SVM, k-Nearest Neighbor, and regression methods for high 

prediction accuracy [29, 30]. In contrast, unsupervised learning is effective when 

labeled data is scarce, employing clustering (e.g., K-Means [31], Hierarchical 

Clustering [32]) and dimensionality reduction (e.g., PCA [33]) to detect patterns 

and anomalies in unlabeled data. Semi-supervised learning (SSL) bridges the gap 

between labeled and unlabeled data, enhancing model performance with limited 

labeled failure data by using methods like pseudo-labeling [34] and graph-based 

models [35], enabling scalable and cost-effective PdM. Reinforcement learning 

(RL), through techniques such as Q-Learning, DQN, and Actor-Critic models, 

optimizes long-term maintenance strategies by learning through interaction, 

balancing preventive actions with operational efficiency. Deep learning (DL), 

increasingly prominent in PdM, excels at processing complex data using 

architectures like CNNs for image and vibration analysis [36], LSTM and GRU 

for time series prediction [37, 38], and models like Autoencoders [39] and GANs 

[40] for anomaly detection and synthetic data generation. Table 2 provides details 

on these learning algorithms and their usage. 

Table 2. The typical use cases of the learning algorithms 

Category Algorithm Name Typical Use Cases 

Supervised Learning 

Linear Regression 
Predicting continuous values (e.g., temperature, 

wear rate) 

Logistic Regression Binary classification (e.g., fault/no-fault) 

Support Vector Machines Complex classification and regression 

Decision Trees Interpretable classification and decision support 

Random Forest  Ensemble classification, high accuracy 

k-Nearest Neighbors Instance-based classification 

Unsupervised 

Learning 

k-Means Clustering Grouping machine states or failure modes 

Hierarchical Clustering Fault taxonomy and failure mode clustering 

DBSCAN Anomaly detection in noisy industrial data 

Principal Component Analysis Dimensionality reduction, sensor fusion 

Semi-Supervised 

Learning 

Pseudo-Labeling Predictive maintenance with limited labeled data 

Graph-based Models Structure-based pattern recognition 

Reinforcement 

Learning 

Q-Learning Adaptive control systems 

Deep Q-Networks Real-time scheduling, robot navigation 

Policy Gradient Methods Dynamic decision policies 

Actor-Critic Models Energy-efficient control strategies 

Deep Learning 

Convolutional Neural Networks Image/spectrogram analysis, visual inspection 

Recurrent Neural Networks Time-series forecasting (e.g., RUL prediction) 

Transformers Advanced sequence modeling, anomaly detection 
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Category Algorithm Name Typical Use Cases 

Generative Adversarial 

Networks 
Synthetic data generation for rare faults 

As a result, AI algorithms are key components of the analytics and decision 

support infrastructure of predictive maintenance systems. By providing 

comprehensive analysis of sensor data, they enable not only early detection of 

faults but also the development of sustainable and autonomous management 

strategies for equipment health. With advances in AI, it is anticipated that PdM 

applications will evolve into more proactive, contextually aware, and 

continuously learning systems. This transformation will play a critical role in the 

realization of visions such as digital twins, smart manufacturing, and autonomous 

system management in Industry 4.0 and beyond. 

6. Application Areas of AI-Enabled Predictive Maintenance 

As mentioned above, AI-enabled predictive maintenance systems have 

become one of the fundamental components of digital transformation processes. 

AI-enabled predictive maintenance technologies are currently being implemented 

in many sectors, primarily manufacturing, energy, transportation, oil and gas, 

mining, aviation and defense industries. Each sector customizes and uses AI-

based systems in line with its own operational risks, equipment dynamics and 

maintenance strategies. Figure 8 shows the main application areas of AI-enabled 

PdM.  

 

Figure 8. Application areas of AI based PdM 

As can be seen from the Figure 8, these sectors are among the sectors where 

productivity should be at the highest level today. The manufacturing sector is one 
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of the areas where artificial intelligence-supported maintenance systems are most 

widely used. Especially in businesses with continuous lines such as automotive 

[41], electronics [42] and food production [43], temperature, vibration, sound and 

electrical signal data from production machines are analyzed with AI algorithms 

to predict failure probabilities. For example, microscopic vibration changes in 

joint motors in robotic welding systems are classified as pre-failure symptoms. 

In this way, unplanned stops are prevented, maintenance time is optimized and 

the efficiency of the production line is increased. 

The Energy Sector is another area where AI-supported PdM systems are of 

critical importance, especially in renewable energy sources. Thousands of sensor 

data from wind turbines [44], solar panel inverters [45], hydroelectric power 

plants [46] and transformer substations [47] are continuously analyzed by 

machine learning algorithms. Early detection of cracks thanks to aerodynamic 

vibration analysis of rotor blades in wind turbines is one of the areas of activity 

of AI-supported architecture. In this way, both energy production continues 

uninterrupted and maintenance processes are made cost-effective. 

In the transportation sector, AI-supported systems are used to monitor brake 

systems, engines, wheel sets and suspension components in railway systems, 

maritime transport and road transport vehicles. Especially in railway networks, 

rail deformations and wheel planes are analyzed using time series data obtained 

by on-rail sensor systems [48]. Similarly, in aircraft engines, temperature and 

vibration data can be processed with convolutional neural networks to determine 

maintenance requirements before the flight [49]. These applications both increase 

passenger safety and contribute to the on-time operation of flights. 

Aviation sector are also one of the most sophisticated areas where AI-

supported maintenance technologies are applied. Many components of aircraft, 

from engines to landing gear, avionics systems to fuel systems, continuously 

produce data during and after flight. These large data sets can be analyzed by AI-

supported systems, and conditions such as wear, temperature increase or pressure 

changes in critical components can be detected at an early stage [50]. 

Manufacturers such as Boeing and Airbus track the real-time maintenance status 

of aircraft using AI-supported digital twin technologies. This not only increases 

operational continuity but also greatly increases flight safety. 

In addition to these sectors, AI-supported PdM has become a frequently used 

method in the Defense Industry application areas, which always maintains its 

importance. It requires high-cost and vital equipment to operate safely for a long 

time. AI-supported PdM systems used in military platforms such as tanks, radar 

systems, missile launch units, fighter jets and submarines have strategic value in 

terms of mission continuity and efficiency. Propeller vibration analyses can be 

performed with data from the engine system in an unmanned aerial vehicle, and 
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preventive intervention can be planned without interrupting the mission in an 

abnormal situation [51]. At the same time, these PdM systems provide advantages 

such as optimizing spare part stocks in logistics management and making post-

mission maintenance plans more effective. 

The success of AI-supported PdM systems depends not only on the power of 

technology, but also on the organizational capabilities, data management 

infrastructures, and human resources of companies. It is of great importance for 

trained personnel to understand AI systems, correctly interpret decision support 

mechanisms, and ensure that outputs are transferred to practice. For this reason, 

many leading companies are developing technical training programs and digital 

transformation strategies in order to adopt a digital maintenance culture at the 

corporate level. AI-supported maintenance solutions offer integrated benefits not 

only in terms of fault prevention of industrial operations, but also in terms of cost 

management, resource planning, and environmental sustainability. In the coming 

years, these systems will become more intelligent, autonomous, and 

customizable; It will enable the development of digital maintenance standards 

across sectors and increase reliability across the industry. 

7. Challenges and Solutions in AI-enabled Predictive Maintenance 

The effective and sustainable implementation of AI-based PdM systems 

brings with it many challenges at many levels, from data management to 

modeling processes, from system integration to organizational change. The 

success of AI models is directly related to the quality and accessibility of the 

obtained data to a large extent. In industrial environments, data from sensors can 

often be noisy, incomplete or inconsistent. The meaningful information carrying 

capacity of the obtained data decreases due to sensor-related distortions, 

calibration errors or electromagnetic interference, which limits the learning 

ability of the models. In addition, communication problems or system outages 

cause incomplete data; devices from different manufacturers, various data 

protocols and incompatible formats threaten data integrity. Advanced data 

preprocessing techniques, statistical interpolation and ML-based data completion 

methods are used to overcome such problems. In addition, data lakes and ETL 

processes are put into operation for data integration, and heterogeneous data 

sources are harmonized in a common schema. Periodic maintenance and 

calibration of sensors should not be ignored in terms of continuity of data quality, 

and it is of great importance to obtain accurate data from the field. 

Another important difficulty encountered in PdM applications is the process 

of labeling data. The effective operation of supervised learning algorithms 

depends on labeled data sets of past failures. However, the fact that failures occur 

infrequently in industrial systems makes it difficult to collect and label this data. 

Moreover, the need for technical expertise in this process is high, and human 
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resource and time costs can reach significant dimensions. In this direction, the 

learning capacity of the model with minimum labeled data is increased with 

unsupervised and semi-supervised learning approaches, and the labeling process 

can be optimized by presenting the examples that the model finds uncertain to 

expert approval with active learning techniques. In addition, artificial failure data 

is created with physical modeling and simulation-based data generation, and 

knowledge obtained from similar systems can be transferred to existing models 

with transfer learning [52]. 

Another difficulty encountered in the modeling process is the ability of the 

model to generalize across different operating conditions and equipment types. 

Models trained with homogeneous and limited data sets can only show high 

accuracy under certain conditions, but serious performance degradation can occur 

under different environmental factors or after equipment modifications. Transfer 

learning strategies and online learning methods are applied to prevent such 

generalization problems [53, 54]. In these methods, the model gains adaptation 

ability by updating itself in the light of new incoming data. In order to prevent 

overfitting, techniques such as regularization, cross-validation, dropout and early 

stopping are preferred, and context sensitivity is increased by including 

environmental data as a feature in the model. 

Another important issue encountered in the implementation of AI-supported 

PdM systems is the complexity of integration processes with existing automation 

infrastructures, control systems and IT infrastructures. The diversity of industrial 

communication protocols, data incompatibilities and time synchronization 

problems make this integration difficult. 

In addition, while the hardware and software investments required for the 

implementation of new systems constitute significant cost items, the adaptation 

of operational personnel to new technologies also stands out as a separate 

problem. These problems can be overcome with modular and open architectural 

designs and system preferences that comply with standards. In addition, the 

establishment of common data platforms and cooperation between IT and 

operational units are some of the solutions to overcome these problems. In this 

context, microservice-based structures and API-supported solutions increase the 

scalability and sustainability of the system. 

Along with all this, cybersecurity and data privacy risks also come to the fore 

in PdM systems. Industrial IoT devices and cloud-based data platforms are 

vulnerable to threats such as ransomware, DDoS attacks or data manipulation due 

to their exposure to the internet. In order to prevent these threats, measures such 

as multi-layered security strategies, encryption algorithms, multi-factor 

authentication and access controls are implemented. In addition, networks are 

constantly monitored with attack detection and prevention systems. Companies 
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ensure that security is addressed holistically by providing regular penetration 

tests, security audits and cyber awareness training for employees. 

The human factor and organizational structures also play a major role in the 

success of AI-supported systems. Lack of technical knowledge, resistance to 

change, and communication gaps can prevent effective use of systems. In this 

context, technical and practical training programs, change management strategies 

that support active participation of employees in the process, and the 

establishment of open communication channels are of great importance. The 

support of senior management, the leadership role, and performance-based 

feedback mechanisms are decisive in the success of such transformation 

processes. 

As a result, the successful and sustainable implementation of AI-supported 

PdM systems is not limited to technical modeling accuracy alone; it also requires 

balanced management of data quality, integration, security, and human-

management interactions. This multi-dimensional approach emerges as a 

fundamental requirement for the success of digital transformation processes at 

both operational and strategic levels. 

8. Future Trends in AI-Based Predictive Maintenance 

PdM technologies are rapidly advancing alongside the digital transformation 

of industry, bringing enhanced reliability, efficiency, and sustainability to 

maintenance processes. These systems leverage artificial intelligence, big data 

analytics, IoT, edge computing, and digital twins to detect faults in advance, 

reduce maintenance costs, and improve system performance. While current 

maintenance decisions still depend heavily on human expertise, emerging 

autonomous systems are expected to take over these processes. Such systems can 

monitor equipment in real time, detect anomalies instantly, and autonomously 

plan and execute maintenance actions—thereby increasing operational 

efficiency, safety, and cost-effectiveness. 

The integration of edge computing and 5G is playing a crucial role in enabling 

real-time, on-site data processing. This reduces dependence on cloud 

infrastructure, minimizes latency, and ensures continuous operation even in 

remote or critical environments such as defense and energy sectors. At the same 

time, XAI is gaining importance for increasing the transparency and 

accountability of AI systems. XAI helps users understand how decisions are 

made, builds trust, supports regulatory compliance, and enables the diagnosis and 

correction of system errors—key for deploying AI in sensitive industrial 

environments. 

Sustainability is also becoming a central concern in AI-supported PdM. These 

systems contribute to environmental goals by optimizing energy usage, reducing 
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waste through timely interventions, and extending equipment lifespan. The rise 

of hybrid models combining human intelligence with AI further enhances these 

benefits, enabling safer and more informed decision-making. Ultimately, AI-

supported PdM is reshaping industrial maintenance into a holistic, strategic 

function aligned not just with cost-efficiency but also with broader goals like 

safety, environmental responsibility, transparency, and human-machine 

collaboration. 

Conclusion 

Artificial intelligence-supported condition monitoring and predictive 

maintenance systems offer very important solutions in terms of sustainability, 

efficiency and reliability in industrial production. In this section, the basic 

principles of condition monitoring to increase production efficiency are discussed 

and the integration of artificial intelligence technologies into this field is detailed. 

Then, the critical role of artificial intelligence-based learning algorithms to 

perform tasks such as predicting equipment failures and optimizing maintenance 

schedules more efficiently, as well as artificial intelligence-supported predictive 

maintenance, is emphasized. The use of artificial intelligence in predictive 

maintenance offers many important advantages for businesses. These advantages 

provide significant improvements in operational efficiency, cost savings and 

overall reliability compared to traditional maintenance methods. Thus, by 

enabling businesses to switch from a reactive to a proactive maintenance 

approach, costs are reduced, operational efficiency is increased, equipment 

reliability and life are extended and overall workplace safety is improved. This 

provides a competitive advantage and a more sustainable operation in the long 

term. With the advancement of technology, AI-based CM and PdM processes are 

also improved. The integration of next-generation technologies such as IoT, 

digital twins, augmented reality, and blockchain enables these systems to operate 

more effectively, scalable, and in real time. 

Application examples in different sectors clearly demonstrate the prevalence 

and value of these technologies. However, there are also some technical and 

operational challenges such as data quality, explainability of algorithms, system 

integration and security. Solution strategies developed for these problems pave 

the way for more widespread and effective use of systems. In the future, the role 

of more autonomous systems, explainable artificial intelligence, edge computing 

and self-adaptive algorithms will increase in this area. These developments will 

enable predictive maintenance systems to evolve from tools that only predict 

failures to decision support systems. As a result, AI-supported condition 

monitoring and predictive maintenance will become an integral part of the digital 

transformation process, enabling industrial systems to become more intelligent, 

flexible and resilient. 
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As a result, AI transforms condition monitoring and predictive maintenance 

from mere technological tools into a strategic asset that increases the 

competitiveness of businesses, reduces costs, improves safety and supports 

sustainability. In the process of adapting to Industry 4.0 technologies, AI-

supported maintenance has become an indispensable part of achieving 

operational excellence. 
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1. Introduction 

The trend towards automation, which means sharing a job between humans 

and machines, and the demand for industrial robots have increased significantly. 

From 2015 to 2020, annual installations have increased by an average of 9% each 

year. The five largest markets for industrial robots are China, Japan, the United 

States, the Republic of Korea, and Germany. These countries account for 76% of 

global robot installations. When looking at the sectors where robots are used the 

most in the industry, the electrical-electronics, automotive, and metal-machinery 

sectors are at the top [1].  

With the increasing use of robots in production, the importance of robot-

human interaction, an important concept, is emerging. Human-robot 

collaboration is a key factor for the development of factories of the future where 

humans and robots can work together and perform tasks. Robots can make 

powerful movements that can pose a danger to people around them. Therefore, 

since the potential danger from robots will also increase significantly, new 

occupational safety and health issues are on the agenda. Both OSHA and RIA 

have issued standards on this subject and have introduced regulations for robot 

production, installation, operation and maintenance. When OSHA records since 

1984 are examined, it has been determined that there have been 46 robot accidents 

in the USA, but these accidents have been more frequent in the last 10 years when 

the use of robots in industry has increased. Another situation that stands out 

according to these records is that the death rate in industrial robot accidents is 

quite high [2,3]. 

The complexity of tasks performed by robots, the degree of autonomy and 

self-learning capabilities of robots have been constantly increasing since the 

creation of the first industrial robot in 1937. Currently, there are three categories 

of robots: i) industrial robots; ii) professional and personal service robots, and iii) 

collaborative robots. 

The International Organization for Standardization (ISO) defines an industrial 

robot as “an automatically controlled, reprogrammable, multi-purpose 

manipulator that can be programmed in three or more axes, fixed in place or 

mobile, for use in industrial automation applications.” [4]. Figure 1 shows the 

workspace of an industrial robot. 
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Figure 1. Working space of an industrial robot [5] 

This figure shows the regions and components: 1. maximum space, 2. 

restricted space, 3. operating space, 4. workpiece, 5. end-effector, 6. Manipulator, 

7. safeguarded space and 8. protective device or barrier. Industrial robots are 

characterized by high strength, durability and precision and are widely used for 

welding, painting, assembly, transportation and testing. These robots can make 

powerful movements that can be dangerous to people around them. Considering 

that today, people must cooperate more closely with robots than ever before to 

ensure production efficiency, quality and continuity, the potential for robots to 

harm people is also increasing day by day. The most important question we face 

here is whether these industrial robots, which are widely used in production, can 

be used collaboratively. 

The IFR defines industrial cobots as robots designed for collaboration in 

industrial environments, typically complying with safety standards such as ISO 

10218-1 [6]. Their main advantages include improved safety, increased flexibility 

and ease of programming, simpler integration, potential cost efficiency, improved 

productivity and quality, space savings, and assistance in eliminating labor 

shortages. Despite these benefits, cobots have certain limitations. They generally 

have lower payload and speed capacities than traditional industrial robots, 

making them less suitable for very heavy or high-speed tasks. They may also not 

be ideal for high-precision applications. These disadvantages have a detrimental 

effect on production efficiency. For this reason, the high operating speeds of 

industrial robots also necessitate the design of an effective safety system that will 

increase human-robot interaction. 
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2. Effect of Robot Safety Application on the Efficiency of Manufacturing 

Implementing robot safety applications in production ensures workplace 

safety while significantly increasing operational efficiency. These systems 

prevent accidents and injuries, while also positively affecting productivity, 

reliability and workflow flexibility. Safety measures such as emergency stop 

systems, collision prevention mechanisms and protective barriers help prevent 

accidents such as collisions and injuries that can stop production [7]. 

The development of collaborative robots that include sensors and force-

limiting features makes it possible for humans and robots to work side by side 

safely, reducing the need for physical barriers such as cages, allowing for more 

flexible workflows and more efficient use of floor space. This allows workers to 

interact directly with robots, significantly increasing task allocation and the speed 

of response to changing production needs. In terms of productivity, adaptive 

safety applications allow robots to adjust their speed and behavior according to 

human proximity. For example, a robot can work at full speed when there is no 

human around, but when a person enters the work area, it can automatically 

change its speed according to the proximity of the human. This dynamic 

operation helps maintain high productivity levels while keeping safety at the 

forefront and ensures continuous/efficient work in production. 

In addition to increased productivity, another important aspect is the 

contribution of safety systems to occupational safety. These robot safety systems 

contribute significantly to reducing injuries that occur as a result of errors made 

by employees in the robot operating environment. By preventing human presence 

or predicting and anticipating human movements, potential accidents are 

prevented and human health is prioritized in the working environment. Although 

the integration of robot safety applications involves significant initial costs and 

system complexity, these investments are usually offset by long-term benefits. 

Increased safety means fewer interruptions, better compliance with safety 

regulations, and lower overall operational risks, allowing manufacturers to better 

comply with international safety standards. Finally, since many modern robot 

safety systems also include monitoring and data collection capabilities, these 

systems provide valuable information about robot-human interactions, near-miss 

accidents, and usage habits. Manufacturers can analyze this data to continuously 

improve processes and conduct studies on safety/performance optimization. 

Table 1 briefly summarizes the effects of robotic safety systems on production 

efficiency. 
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Table 1. The effects of the robot safety system on manufacturing efficiency 
Effect Positive Impact on Efficiency 

Accident prevention Reduces downtime and production halts 

Human-robot collaboration Enables flexible, efficient workflows 

Adaptive robot behavior Balances speed and safety for optimized productivity 

Lower injury and error rates Improves worker availability and task accuracy 

Real-time data from safety systems Improves worker availability and task accuracy 

 

3. Hazards Posed by Industrial Robots 

The ANSI Standard recommends that the speed of robots not exceed 250 

mm/sec while performing their tasks [8]. It is almost impossible for robots 

moving at these speeds to stop in time when a person or object enters the work 

area. Most industrial robots are unaware of their surroundings and can be 

dangerous to humans. Industrial robots can pose the following types of dangers 

depending on their type and the tasks they perform [9]. 

• Mechanical hazards, such as those resulting from unintended and 

unexpected movements or release of tools 

• Electrical hazards, such as contact with live parts and connections or 

exposure to arc flash 

• Thermal hazards such as hot surfaces or exposure to extreme 

temperatures 

• noise hazards 

• other hazards such as vibration, radiation and chemicals 

Due to all these dangers, an effective robotic safety system is needed that will 

also regulate the cooperation of humans and robots. Otherwise, the robot may not 

notice a human entering the work area and may cause injury or death. On the 

other hand, if the robot stops after detecting a human entering the work area, it 

will reduce production efficiency and increase production costs in the time it 

takes to work again. An effective robotic safety system must take all these 

situations into account and provide the most active and efficient safety according 

to certain criteria. The right choice of a robotic safety system should be based on 

the hazard analysis of the operation involving a particular robot.  
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Figure 2. Robot danger sources 

 

Figure 2 shows common sources of danger associated with industrial robots. 

Human errors, such as misunderstandings about the direction of motion or 

incorrect activation of controls during integration and programming, are major 

concerns. Control errors resulting from software errors, electromagnetic effects, 

or problems with the robot’s hydraulic, pneumatic, or electrical sub-controls can 

also lead to dangerous unexpected actions. Furthermore, unauthorized access to 

restricted robot areas poses risks due to lack of familiarity with hazards and safety 

precautions. Additional critical hazard sources include cumulative wear that is 

not addressed, time pressures leading to ignored safety procedures, and 

mechanical failures due to adverse environmental conditions such as exposure to 

water, heat, or flammable atmospheres. Power system failures or failures in 

pneumatic, hydraulic, or electrical components can disrupt robot operation and 

create risks of fire or electric shock. Finally, improper assembly and installation 

that do not comply with safety codes and standards can create inherent hazards 

within the design and layout of the robot application. Therefore, proactively 

addressing these potential hazards throughout the robot’s life cycle is crucial to 

ensuring a safe work environment [5,10].  

There are two main categories of worker injuries that result from working 

around robots: engineering errors and human errors, as shown in Figure 3. 



77 

 
Figure 3. Sources of worker injuries in robot-human interaction 

 

Engineering errors include errors in the robot’s mechanics and errors made by 

the controller. For example, robots may not stop, or a robot arm may produce 

high, uncontrolled speeds, sudden movements, or accelerations. Programming 

errors include errors such as failure to communicate between interfaces and 

failure to successfully interpret data from sensors used for human detection. 

These errors can result in unpredictable movements or actions by the robot that 

could result in personnel injury or equipment failure. 

4. Industrial Robot - Human Interaction and Safety  

Human-robot interaction (HRI) is an interdisciplinary field of study in which 

humans communicate and collaborate directly or indirectly with robots. This 

interaction must be designed to enable robots to work safely, efficiently and 

effectively with humans. HRI is directly related not only to the technical 

characteristics of the robot but also to human psychology, perception capacity 

and social behavior. 

4.1. Human Robot Interaction Principles 

The basic principles of HRI consist of five main points. Figure 4 shows these 

main principles [11]. 
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Figure 4. Five basic principles of robot-human interaction 

 

The definition, applications and benefits of these principles are summarized 

in Table 2.  

Table 2. Basic principles of human-robot interaction 

Principle Definition Technical Application Benefits 

Transparency 

Providing information to 

the user about what the 

robot is doing and why it is 
doing it 

Status indicators, 

audio/visual 

notifications, explainable 
AI 

Trust formation, 
user awareness, ease 

of control 

Predictability 
Consistency and 

predictability of robot 
behavior 

Fixed timing, repetitive 
movements, advance 

warning signs 

Ease of 
coordination, error 
reduction, security 

Responsiveness 

The robot responds quickly 

and appropriately to 

environmental and user 
inputs 

Real-time sensors, voice 
command recognition, 

fast response algorithms 

Efficiency, user 
satisfaction, 

intervention safety 

Security 

Design approach that 
provides protection from 

physical and cognitive 
hazards 

Force-limiting systems, 
collision avoidance 

devices, emergency stop 
buttons 

Reducing accidents, 
legal compliance, 

user safety 

Proper Division 
of Tasks 

Sharing of human and 

robot tasks according to 
capabilities 

Dynamic task 
assignment, hybrid 

decision systems, 

competency-based 
distribution 

Collaboration 

efficiency, load 
balancing, system 

flexibility 

 

5.2. Human Robot Interaction Models  

HRI can be defined by various models according to the nature of the 

interaction, the level of decision sharing and the task structure. These models help 

designers and developers to make systems more understandable, safe and 

efficient. HRI models facilitate decision making in the design, evaluation and 
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implementation processes of human-robot systems. The choice of model type 

depends on the application context, task type, user profile and security 

requirements. HRI models are shown in Figure 5.  

 

Figure 5. Models of HRI 

5.2.1. Levels of Autonomy 

The robot's decision-making capacity and control level are classified 

according to their autonomy levels. This model is used especially when making 

critical decisions in terms of work safety, system complexity and user experience 

[12]. This classification and usage areas are given in Figure 6. 

 

Figure 6. Levels of Autonomy 

5.2.2. Interaction Paradigms 

This model, classified according to the structure of the interaction, defines the 

relationship between the human and the robot on the task. This model is important 

in terms of defining the role of the robot and the user expectations [13]. Table 3 

also provides the contents and application areas of these relationship types. 
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Table 3. Interaction Paradigms Model Features and Applications 

Paradigm Definition Application Areas 

Teleoperation [14] The human controls the robot in real 

time. 

Medical robots, military 

robots 

Task Based Interaction [15] The human gives the goal, the robot 

determines the appropriate steps. 

Logistics robots, cleaning 

robots 

Cooperative Cooperation 

[16] 

Human and robot perform the same task 

together, physically or cognitively. 

Assembly line cobots 

Social Interaction [17] The robot responds to the human in a 

socially appropriate manner. 

Social assistant robots, 

service robots 

 

5.2.3. Role-Based Models 

In this approach, the roles of the human and the robot within the task are 

clearly defined. These roles can be variable and reassigned according to the 

context. In the Supervisor model, the human controls the entire process and the 

robot implements the given tasks. In the Teammate model, the human and the 

robot share the work equally in the process being worked on and the work is 

carried out with a 50% partnership. In another model, the Assistant model, the 

human is involved in the process and performs the tasks. The robot acts as an 

assistant supporting the human. In the Trainer/Student model, the roles are shared 

as trainer and learner [18,19]. One of the robots or humans helps the other learn 

tasks and supports the learning process in this process. Role-based models are 

used in contextual areas such as education, health and rehabilitation. 

5.2.4. Cognitive Models 

Cognitive models developed in the field of HRI allow the robot to better 

predict human behavior by taking into account important psychological factors 

such as decision making, attention allocation, and trust. Trust Models allow the 

robot to perform its function by adjusting its behavior according to the user's trust 

level [20]. Cognitive Load Models [21], which monitor the mental load on the 

human and enable the robot to take more responsibility according to the situation, 

and Intention Prediction Models [22], which enable the robot to take supportive 

actions by predicting what the human wants to do, are among the most frequently 

used cognitive models. Such cognitive approaches contribute greatly to making 

the interaction between humans and robots more fluid, efficient and personalized, 

especially in artificial intelligence-based HRI systems. 

5.2.5. Adaptive and Learning Models 

Adaptability and learning, a critical dimension for HRI, involves robot 

systems optimizing their behavior by learning according to user habits, 
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environmental conditions, or task characteristics. In this context, Reinforcement 

Learning-Based Interaction approaches stand out, which enable the robot to learn 

from experience and collaborate better with humans [23]. Additionally, models 

such as User Profile-Based Adaptation [24], which allows the robot to optimize 

its response patterns according to different user types, and Human-Error 

Compensatory Systems [25], which detect and automatically correct human 

errors, are also being developed. Such adaptive and learning models form the 

basis for human-centered and personalized interactions. 

5.2.6. Situation Awareness Models 

For operating HRI systems reliably and effectively, it is a basic requirement 

that the robot accurately perceives and understands environmental conditions, 

human movements and contextual information, and acts accordingly [26]. This 

critical capability is often addressed through a staged model: The first level is 

Perception, which involves the robot using sensor data to recognize and locate 

objects, people, and their key features in its environment. The second level, 

Understanding, involves taking this perceived information and interpreting the 

meaning of the current situation, establishing relationships between events, and 

figuring out the context of the interaction; that is, not just seeing what happened, 

but understanding why or how it happened. Finally, the third level, Prediction, 

aims to predict what might happen in the future, specifically the human’s next 

move, intention, or potential problem, based on the current level of perception 

and understanding. The robot’s ability to use this perception, understanding, and 

prediction capabilities in an integrated manner is of great importance for the 

stability, safety, and smooth interaction of HRI systems, especially in 

environments where variable and complex multitasking is performed [27]. 

6. Robotic Safety 

Since robots can make high-energy and fast movements beyond their size, the 

serious dangers they can create were given in the previous section. Even small 

changes in the working environment can affect the behavior of the robot. In 

addition, maintenance workers, operators or programmers may have to work in 

narrow spaces with systems under energy. This increases the risk of injury from 

physical contact, pinching or flying objects. Although robots are usually equipped 

with safety monitoring systems, software or hardware failures can also lead to 

unexpected dangerous situations. For this reason, robots must constantly monitor 

the people in the environment and adapt their behavior according to many 

variables. 

Robotic Safety refers to systems, standards, and practices designed to ensure 

that robotic systems operate without harming people, equipment, or the 

environment [28]. As robots become increasingly autonomous and integrated into 
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human environments, security has become multidimensional. Robot security is 

generally divided into three main types: ethical security, physical security, and 

functional security. Ethical (Socio-Technical) Security, a critical aspect of robotic 

security that is becoming increasingly evident and goes beyond mere technical 

dimensions, addresses the broad moral, legal, and social implications of robot 

behavior. The main goal of this type of security is to ensure that robots’ actions, 

especially in autonomous decision-making processes, are consistent with human 

values, existing laws, and established ethical norms. This area covers basics such 

as ensuring that robot decisions are transparent and explainable in a way that can 

be understood by humans, avoiding harmful outcomes such as manipulating 

humans, and protecting individuals’ privacy and data. Areas that interact directly 

with humans, such as healthcare robots, social and service robots, and potentially 

sensitive applications such as autonomous weapons and surveillance systems, are 

common areas where ethical security is of the utmost importance [29]. 

Physical Safety focuses on the mechanical design of the robot and the spatial 

configuration of the workspace to minimize the risk of injury that may arise from 

physical interaction between humans and robots. This type of safety primarily 

emphasizes hardware-level measures. It can be provided by measures taken 

within the robot itself (e.g. mechanical restraints or software-implemented 

force/torque limits) and is reinforced by strategies that regulate the robot’s 

environment. These strategies include creating protective barriers and cages that 

prevent humans from entering the robot’s dangerous movement area. Also, using 

cooperative modes such as Force and Force Limitation in situations where 

humans and robots share the same space is part of physical security [30]. The 

process of determining and implementing all these physical security measures 

begins with risk assessment and hazard identification studies in line with 

standards such as ISO 12100 and can be supported by technologies such as work 

area monitoring systems. 

Functional Safety focuses on ensuring that the robot's control systems and 

software behave safely even in the event of malfunctions or unexpected 

situations. The main purpose of this approach is to prevent dangerous 

situations that may arise from system malfunctions, software errors or 

control system irregularities. The sub-components of this approach include 

emergency stop functions that can be activated at any time, redundant 

sensors and actuators, safe motion control mechanisms that keep the 

robot's speed, force and motion trajectory within safe limits, and controlled 

stop functions defined according to standards [31]. 
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6.1. Standards 

In order for robotic systems to work safely in their workplaces, it has become 

necessary to take into account certain standards from production to application. 

For this purpose, standards have been regulated at both international and national 

levels. Three of the most widely known and complementary standards are ISO 

10218, ISO/TS 15066 and ANSI/RIA R15.06. The ISO 10218 standard is the 

primary international safety framework for industrial robot systems and focuses 

on traditional separate workspace safety. ISO/TS 15066 is a supplementary guide 

to ISO 10218-2 that provides more detailed requirements for collaborative robot 

applications that ensure the safety of humans and robots in shared or shared 

workspaces. ANSI/RIA R15.06 is the US equivalent of ISO 10218. The basic 

safety principles are the same but include details specific to US laws and 

practices. When designing and integrating a collaborative robot system, the basic 

safety requirements of ISO 10218 (ANSI/RIA R15.06) must first be met and then 

the additional guidelines and requirements in ISO/TS 15066 for collaborative 

features must be applied. Table 4 compares these standards with each other. 

Table 4. Comparison of the international and national standards. 

Property ISO 10218 [6] ISO/TS 15066 [32] ANSI/RIA R15.06 [33] 

Primary Focus / 

Scope 

Basic safety requirements 

of industrial robots and 

robot systems. Addresses 

common hazards. 

Additional requirements 

and guidelines specifically 

for collaborative robots 

(cobots) and collaborative 

applications 

Safety requirements for 

industrial robots and 

robot systems in the 

USA. Essentially the 

same scope as ISO 

10218. 

Basic Concepts 

and 

Requirements 

Risk assessment (basic), 

safety functions (safety-

rated stops, speed limits), 

protective measures 

(fences, light curtains), 

layout requirements, 

testing, documentation. 

Focuses on traditional 

industrial robot safety 

(zone separation). 

Based on risk assessment in 

ISO 10218. Detailed 

requirements specific to 

types of collaborative work, 

including power and force 

limitation (PFL) details, 

pain threshold limits for 

different body parts 

(informative appendix), 

safety-rated supervised 

stance, speed/distance 

monitoring and hand 

guidance. 

It covers largely the same 

concepts as ISO 10218. 

Risk assessment, safety 

functions, system layout, 

etc. There may be some 

minor differences or 

references specific to US 

practices or regulations 

(e.g. OSHA). 

HRI Emphasis Focuses on separating 

humans from hazardous 

robot movements with 

physical barriers or safety 

functions. Limited focus 

on direct human-robot 

interaction during 

operation. 

Very high emphasis. 

Details the safety of 

collaborative work types 

where humans can safely 

share the same workspace 

with robots and even 

physically interact with 

them under controlled 

conditions. 

Focuses on traditional 

separation methods, 

similar to ISO 10218. For 

collaborative HRI, 

reference is usually made 

to the relevant parts of 

ISO/TS 15066 or its US 

adaptations. 
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6.2. Modes of Collaborative Operations  

Four basic collaborative operation modes have been defined by international 

standards: Safety-Rated Monitored Stop (SMS), Hand Guiding (HG), Speed and 

Separation Monitoring (SSM), and Power and Force Limiting (PFL). These 

modes have been developed to ensure safe human-robot interaction, and each 

includes different safety approaches. These modes directly affect the safety and 

efficiency of collaborative applications and, depending on the application 

context, a single mode or a combination of them can be preferred. A 

comprehensive risk assessment during the design and commissioning of 

collaborative robot systems is essential to ensure the correct and safe 

implementation of these modes. 

SMS mode is the most basic collaborative mode. When a human operator 

enters the collaborative work area, the robot is safely stopped by the safety system 

and this stop is constantly monitored. The robot does not move until the human 

leaves the area or safety conditions are met. This mode is used when people work 

separately from the robot but occasionally need to enter the robot's work area 

[6,32]. 

 
Figure 7. Level 1: Safety-rated monitored stop 

 
Figure 8. Level 2: Hand Guiding 
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In HG mode, the operator moves the robot directly by hand or using a hand-

guided device. It is typically used for teaching or precise positioning tasks. Safety 

is ensured by limiting the robot’s speed to a certain degree while it is being guided 

by a human, and by triggering a rapid safety stop in the event of an emergency 

(e.g. releasing the hand-guided button, applying excessive force) [6,32]. 

SSM mode is a mode that increases productivity for production. In this mode, 

the robot's speed is dynamically adjusted according to the distance between the 

human and the robot. The robot constantly monitors the human's position and 

speed. The robot slows down as the human approaches and automatically 

switches to SMS mode when the minimum safe distance defined in the safety 

standard is exceeded. This mode is suitable for applications where humans and 

robots work in the same area but without physical contact [6,32]. 

 

Figure 9. Level 3: Speed and seperation monitoring 

 

Figure 10. Level 4: Power and force limiting 

The PFL mode is designed for applications where physical contact between 

humans and robots is expected or occurs in a controlled manner. Safety is ensured 
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by limiting the robot’s power and the forces it can apply in a way that will not 

harm the human or exceed pain thresholds in the event of a collision. The ISO/TS 

15066 standard provides detailed guidelines on the force and pressure limits that 

can be applied to different body parts for this mode. This mode is used in 

scenarios where the robot works in direct contact with humans and requires the 

highest level of risk assessment sensitivity [6,32]. The comparisons of these 

modes are given in the table below. 

Table 5. The comparison of the four forms of collaboration 

Mode Description 
Physical 

Contact 

Sensor 

Requirements 
Advantages Limitations 

Typical 

Application 

SMS 

Robot stops 

when a human 

enters the shared 

workspace; 

resumes when 

the human 

leaves 

No 
Area scanners, 

safety sensors 

Simple setup, 

compatible with 

conventional 

robots 

Process stops during 

human interaction 

CNC loading, 

packaging 

HG 

Human directly 

guides or 

positions the 

robot by hand 

Yes 

(controlled) 

Force-sensing 

end-effector 

No 

programming 

needed, user-

friendly 

Limited to 

teaching/programming 

phases 

Training, 

positioning 

SSM 

Robot slows or 

stops as a 

human 

approach; no 

physical contact 

occurs 

No 

Cameras, 

LIDAR, radar, 

etc. 

High 

productivity, 

contact-free 

collaboration 

Requires complex 

sensing infrastructure 

Palletizing, 

material 

handling 

PFL 

Robot stops 

automatically 

upon contact; 

force and speed 

are limited to 

ensure safe 

interaction 

Yes 
Force/Torque 

sensors 

Safe physical 

interaction, 

direct 

collaboration 

Limited payload and 

speed 

Assembly, 

test lines 

 

6.3. Basic Components of Robotic Safety Systems 

Robotic safety design elements are important components that ensure the safe 

operation of robots, especially when robots interact with humans or operate in 

environments where errors/failures can lead to accidents. The main approach to 
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industrial robot safety is to maintain a safe distance between human workers and 

working robots by creating “protected areas.” Workers entering a safe protected 

area will require the robot to be shut down. Shutting down a robot for safety 

reasons on a robot assembly line can significantly reduce productivity. In 

addition, it has been observed that fencing in the robot work area reduces the 

space utilization efficiency of the factory. This measure is impossible to use when 

robots work collaboratively with humans. This reduces both the layout efficiency 

and the production efficiency.  

For this reason, new proactive solutions have been developed for security 

measures with the developing technology. These more technological security 

elements include sensors, locks and emergency stops. These components play 

critical roles in protecting both humans and machines from hazards. Integrating 

these security elements is very important to protect workers, optimize human-

robot collaboration and maintain system reliability. Table 6 provides brief 

descriptions of these components, their basic features and main examples in robot 

systems. 

Table 6. The comparison of the four forms of collaboration 

Element Description Key Function Example 

Sensors 

Detect environmental 

conditions and robot 

behavior 

Enable safe interaction, 

collision avoidance 

Proximity sensors, vision 

systems, force sensors 

Interlocks 

Safety mechanisms that 

prevent unsafe robot 

actions 

Prevent robot operation in 

unsafe conditions 

Physical interlocks 

(gates), software 

interlocks (limits), 

electrical interlocks 

Emergency 

Stops 

Immediate manual or 

automatic stop of robot 

operations 

Provide a fail-safe 

mechanism to halt 

operations 

Emergency stop buttons, 

automatic stops via 

sensors 

 

6.4. Technological Solutions and Innovations on Robotic Safety 

In HRI environments where humans interact directly with robots, human 

safety is at the forefront. Technology areas aimed at improving robot safety 

include advanced sensing systems, AI-supported intent recognition and behavior 

prediction, real-time safety monitoring and safety mechanisms, and the use of 

simulation and digital twins for safety testing and verification using wearable and 

environmental sensors that detect human presence. These technologies positively 

affect both human safety and production efficiency by focusing on preventing 

accidents, reducing hazards, and increasing productivity through smarter and 

safer systems [34]. A robot's ability to perceive its environment enables 
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navigation, obstacle avoidance, and informed decision making for safe operation 

[35].  

Table 7. Comparison of Advanced Perception Sensor Modalities for Robotic Safety [36,37] 

 Key Strengths Key Weaknesses Primary Safety App. 

Lidar • High accuracy distance 

measurement; 

• 3D mapping; 

• Good resolution; 

• Verifiable geometric 

algorithms 

• Adverse weather 

sensitivity; 

• Poor detection of 

transparent/reflective 

objects; 

• Cost; 

• Potential 

speed/accuracy trade-off 

• SLAM; 

• Obstacle 

avoidance; 

• Navigation; 

• Safety zone 

monitoring; 

• Distance 

measurement 

Vision • Rich 

semantic/color/texture 

info; 

• Object recognition; 

• Relatively low cost 

(cameras) 

• Lighting/weather 

dependent;  

• Occlusion sensitive;  

• High computational 

cost; 

• Verifiability issues;  

• Privacy concerns 

• Human 

detection/tracking; 

• Gesture/Action 

recognition; 

• Object 

identification; 

• SLAM; 

• Grasping validation 

Radar • Robust in adverse 

weather; 

• Direct velocity 

measurement; 

• Good range 

• Lower resolution; 

• Poor detection of static 

objects; 

• Limited semantic info 

• Collision 

avoidance; 

• Velocity 

estimation; 

• Long-range 

detection 

Proximi

ty 
• Detects 

transparent/reflective 

objects (Ultrasonic); 

• Contact/Force sensing 

(Tactile); 

• Low cost; 

• Occlusion-free (Skins) 

• Limited range; 

• Environmental 

sensitivity; 

• Lower accuracy 

/resolution; 

• Limited detection scope 

• Close-range 

obstacle avoidance; 

• Physical contact 

detection; 

• Proximity alerts; 

• Tactile interaction 

 

As mentioned above, data from LIDAR, camera, radar and proximity sensors 

can be processed together or alone to create a large amount of data for an effective 

security system. In addition to many studies where data from these sensors are 

used alone, sensor fusion techniques are also frequently used in the literature to 

use and interpret data from these sensors together for more advanced and high-

perception systems. Because there are certain advantages and disadvantages in 

using these sensors alone. A comparison of these sensors is given in Table 7. 

Given that individual sensors have inherent limitations, sensor fusion is a key 

requirement to achieve robust and reliable perception in complex and dynamic 

environments. This approach overcomes the shortcomings of a single sensor, 

offering significant benefits such as higher accuracy, improved reliability against 

sensor failures or adverse conditions, and the ability to perform more complex 

perception tasks required for safety [38]. However, sensor fusion brings its own 

challenges. System complexity increases significantly, and accurate data 
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synchronization and temporal alignment across different sensors can be 

challenging. Additionally, processing multiple data streams and running fusion 

algorithms can be computationally expensive. Precise calibration across different 

sensor coordinate frames is essential, and it is necessary to design optimal 

strategies that effectively combine information from multiple sources [39]. 

Although advanced artificial intelligence techniques provide high detection 

performance, the difficulty of formal verifiability in terms of security limits the 

use of these techniques in critical applications. Therefore, hybrid architectures 

such as the Simplex model and layered security systems are gaining importance 

[40]. With future developments, more transparent artificial intelligence models 

and secure system designs integrating components with different verification 

levels will also help increase security levels.  

Artificial intelligence (AI) is moving beyond reactive obstacle avoidance to 

enable proactive systems that can understand human intentions and predict future 

behaviors. This capability is critical to achieving safe and smooth HRI. AI-

powered predictive capabilities significantly increase robot safety by enabling 

proactive and adaptive behaviors. This allows robots to predict human trajectories 

to avoid collisions, adjust their movements accordingly, and synchronize tasks 

more efficiently by understanding human intent. Additionally, robots can adapt 

their behavior to human states, such as fatigue or focus, and use tools such as 

augmented reality to structure workspaces that guide human movement and 

increase predictability. Despite these advances, several challenges prevent the 

full realization of AI-powered safety in robotics [41]. Predictive models are 

inherently probabilistic, which can compromise security if not handled properly. 

Real-time performance is limited by computational demands, especially on 

limited hardware. Furthermore, human trust in predictive robots should also be 

questioned, as both mistrust and overconfidence can pose risks. Trust in the 

awareness of robot systems to correctly interpret human actions is difficult to 

achieve. Finally, it raises ethical concerns around privacy, potential misuse of 

predictive systems, and questions of accountability in AI-driven decisions. 

To address these concerns, robotic systems must meet certain design 

principles. Real-time monitoring of system status (Safety monitors etc.) is crucial 

to ensure a safe condition in the event of component failures, incorrect predictions 

or violation of safety restrictions [42]. The fail-safe design principle ensures that 

the system switches to a safe mode in the event of a failure, and Runtime 

Assurance architectures offer hybrid control systems where verified safe 

controllers replace potentially unsafe high-performance controllers [43,44]. 

Various software frameworks support the implementation of these security 

policies. Robot Operating System (ROS)-based systems allow for the automatic 

creation of monitoring nodes with tools such as FRET and Copilot [45,46]. RTA 
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frameworks such as SOTER [47] provide modular and verifiable control 

structures. Layered architectures and programmable controllers (PLCs) enable 

safety-critical functions to override higher-level commands. Digital twins 

provide continuous monitoring by comparing real-time behavior of robots with 

virtual models [48]. 

Another technology is to ensure human safety through wearable technologies. 

Wearable sensors are worn by human operators and provide direct information 

about the operators’ status, position or actions. Common examples include IMUs, 

EMG sensors, ECG/EEG, UWB or RF tags, capacitive vests, smart textiles and 

gloves containing various sensors, and AR headsets with embedded sensors for 

location tracking [34]. This wearable technology provides direct, potentially 

highly accurate measurements of user state and movement. However, it also has 

its drawbacks. It requires active participation and compliance from users, and 

raises issues of comfort, intrusiveness, and acceptance. Disadvantages include 

limited battery life, potential sensor drift, signal noise, cost, and setup/calibration 

time [49]. 

Digital Twins (DTs) are used for the design, testing, validation and 

optimization of robotic systems and safety features [50]. Virtual environments 

offer comprehensive methods for safety testing and verification of robot systems. 

Simulation-based testing enables testing of both software and hardware 

components by evaluating robot controllers and system behaviors in virtual 

environments with tools such as Gazebo, Pybullet or Unreal Engin [51]. Digital 

twins provide bidirectional data flow between both virtual and physical systems 

by synchronizing with real-time data from physical robots. These structures 

enable the safe testing of various operational scenarios, verification of virtual 

security zones and sensor placements, and control of security systems before 

they are deployed [50]. 

In addition, by integrating digital human models into simulations, ergonomic 

risks can be analyzed and safety protocols can be tested in tasks involving HRI. 

AI algorithms can be trained and tested safely in these virtual environments to 

prevent accidents that may occur in the real world; this is especially critical for 

complex systems such as reinforcement learning and perception models. In 

addition, DTs can be integrated into optimization processes to find ideal system 

parameters in terms of both safety and efficiency [52].  
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Table 8. Comparison of advanced perception sensor modalities for robotic safety 

Benefit Description 

Cost and Time Efficiency Reduces the need for physical prototypes and real-world trials, 
speeding up design, validation, and deployment processes. 

Enhanced Safety during 

Development 

Enables testing of hazardous scenarios without risking human safety or 

equipment; supports proactive risk management. 

Improved Analysis and 
Optimization 

Offers a platform for detailed performance assessments, 
layout/trajectory optimization, and predictive maintenance planning. 

Data Generation Produces large, labeled synthetic datasets essential for training AI 

models, especially in data-scarce environments. 

Thoroughness and Repeatability Allows exhaustive testing under diverse conditions with high 
repeatability, unlike variable real-world testing environments. 

 

All these technological solutions and innovations pave the way for robots to 

collaborate safely and efficiently with humans in industrial and service 

environments, thus increasing both occupational safety and significantly 

increasing operational efficiency. 

7. Future Outlook and Research Directions 

In the future, robot security systems will gain great importance in an 

environment where robots work more closely with humans, their autonomy levels 

increase, and decision-making mechanisms become more complex. In this 

direction, physical security systems will be equipped with more advanced 

perception and response capabilities. Thanks to lidar, radar, depth cameras, and 

artificial intelligence-supported sensors, robots will be able to perceive people, 

objects, and potential dangers around them much more precisely. These 

perception systems, combined with collision prevention algorithms, will enable 

robots to operate safely without harming their surroundings. 

As robots become smarter and integrate with AI, future systems will rely 

heavily on seamless human-AI collaboration. The focus in the future will be on 

developing frameworks that define how humans and AI systems can interact 

more effectively toward a specific goal. These frameworks will aim to optimize 

task allocation, decision-making, and real-time adaptation, and to ensure that AI 

complements rather than replaces human capabilities. Effective human-robot-AI 

collaboration will become essential in high-risk environments such as healthcare, 

defense, and disaster response. As robot systems and multi-human and multi-

robot environments increasingly increase the efficiency of work, ensuring robot 

safety is becoming significantly more complex. It is anticipated that there will be 

an increasing need for scalable security architectures that can manage dynamic 

interactions between robots and humans, such as evaluating data from multiple 

sensors and integrating security systems with technologies such as AI. This 

includes decentralized coordination, predictive collision prevention, and robust 

fail-safe mechanisms that operate in real time. Such systems should also be 



92 

flexible enough to accommodate unpredictable human behaviors and 

heterogeneous robotic platforms. In addition, the fact that robots will operate 

more networked and data-driven in the future will also bring cybersecurity risks 

to the forefront. Strong authentication systems, end-to-end data encryption, and 

secure communication protocols will ensure that robots are protected against both 

external threats and internal threats.  

To build trust and accountability in automated systems, robots must be able to 

explain their decisions and actions in terms that humans can understand. Future 

research will focus on developing intuitive interfaces and visualization tools that 

help users understand robotic reasoning, allowing for better control and faster 

resolution of errors or unexpected actions. The development of Explainable 

Artificial Intelligence (XAI) techniques and the ability to provide customized 

explanations to different user groups is also an important subfield. XAI describes 

the ability of humans to understand how AI systems work so that they can trust 

them [53]. Therefore, explainability is not only a technical requirement but also 

a legal and social imperative. 

8. Conclusion 

In this section, the basics of robot-human interaction and its effects on 

productivity are examined in general. In this context, robot hazards, human-robot 

interaction principles and modes determined by standards are emphasized. 

Afterwards, robot safety systems, components and more technological solutions 

offered for safety systems are mentioned. When all these are considered, it is seen 

that robotic safety systems are very important in terms of both productivity and 

work safety.  

In terms of work safety, these systems minimize potential hazards by 

preventing or stopping human entry into the robots' work areas. Thanks to 

equipment such as emergency stop buttons, safety sensors and laser scanners, the 

risk of injury to personnel working with robots is significantly reduced. This both 

protects the health of employees and reduces costs (medical expenses, 

compensation, loss of production, etc.) resulting from work accidents. 

In terms of production efficiency, robot safety systems reduce malfunctions 

and downtime, ensuring the uninterrupted operation of the production line. A safe 

working environment leads to more motivated and focused employees, which 

reduces errors and the need for rework. In addition, the ability of robots to work 

faster and more safely increases production capacity and shortens delivery times. 

As a result, robot safety systems both protect human life and fulfill social 

responsibility, while also providing a competitive advantage by helping 

businesses achieve operational excellence. 
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Robot security systems are expected to become much more effective as 

technology advances with AI, digital twins, advanced equipment and software. 

The future of these systems will be shaped by a holistic approach that focuses not 

only on physical security but also cybersecurity, ethical principles and legal 

compliance. These developments will enable robots to work more closely and 

safely with humans, while also contributing to the creation of systems that are 

more resilient to new risks brought about by technology. 
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The 21st century is a period in which humanity faces a major dilemma: the 

climate crisis, biodiversity loss, and the collapse of ecosystems caused by fossil 

fuel dependence have made the pursuit of a sustainable future imperative (Hansen 

et al., 2013). Climate change manifests itself through rising global temperatures, 

sea level rise, and extreme weather events. The primary cause of this 

phenomenon—fossil fuel consumption—has elevated greenhouse gas 

concentrations in the atmosphere to critical levels (IPCC, 2021). In this context, 

renewable energy sources are not merely an alternative; they have become the 

key to preserving the ecological balance of our planet (Jacobson et al., 2017). 

Global issues such as biodiversity loss and ecosystem collapse highlight the 

urgent need for action (Díaz et al., 2019). Particularly, deforestation, industrial 

activities, and fossil fuel consumption exert severe pressure on ecosystems and 

threaten biodiversity (WWF, 2020; Almond & Petersen, 2020). The world order 

established through industrialization has not only endangered the future of our 

own species but has also evolved into a scenario that threatens the entire living 

ecosystem on Earth. This reality reminds us that, at least in the near future, we 

have no other home to live in, prompting the need to first slow down the 

unsustainable systems we have created and then define processes to transform 

them into sustainable structures. The undeniable central theme of these processes 

is the concept of sustainability. 

Our home, which we call Earth, is surrounded by a layer of air known as the 

atmosphere. Due to the energy coming from the Sun, different pressure zones 

form within the atmosphere. These varying pressure regions cause the air to 

move, giving rise to the wind phenomenon—one of the most familiar natural 

events in our daily lives. The use of kinetic energy within air masses is an idea 

that dates back almost as far as human history itself. Today, modern wind turbines 

are classified as mature industrial products. According to the Global Wind Energy 

Council (GWEC, 2023), wind energy accounted for 7% of global electricity 

generation in 2023, making it one of the most dynamic components of the 

renewable energy portfolio. Wind farms have taken a central role in achieving 

the Sustainable Development Goals (SDGs) with their potential to reduce carbon 

emissions, ensure energy security, and support economic growth (GWEC, 2023). 

Wind energy can significantly reduce carbon emissions by replacing fossil fuels 

and can play a key role in combating climate change (Luderer et al., 2017). 

Moreover, wind farms enhance energy security by reducing fossil fuel 

dependency and contribute to local economic development (Sovacool, 2017). The 

United Nations (UN, 2019) emphasizes that wind energy plays a vital role in 

achieving the Sustainable Development Goals, particularly in terms of clean 

energy access and climate action. 
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In current energy and environmental discussions, global warming and the 

negative impacts of fossil fuels have come to the forefront. Fossil fuel 

consumption, the primary driving force behind climate change, increases the 

concentration of carbon dioxide (CO₂) in the atmosphere, leading to global 

temperature rises (Change, 2023). Fossil fuels—especially coal, oil, and natural 

gas—account for a significant portion of global carbon emissions, accelerating 

the climate crisis (Friedlingstein et al., 2022). In addition to fossil fuels, 

deforestation and industrial activities also contribute to greenhouse gas 

emissions, placing severe pressure on ecosystems. In this context, the transition 

to renewable energy sources has become not only an environmental necessity but 

also an economic and social imperative for sustainability. 

Wind energy is one of the most important components of this transition 

process. It has been proven that wind energy can significantly reduce carbon 

emissions by replacing fossil fuels and play a key role in combating climate 

change (Jacobson et al., 2017). Moreover, the International Renewable Energy 

Agency (IRENA, 2021) states that, with decreasing costs, wind energy has 

become a more cost-effective and environmentally friendly alternative compared 

to fossil fuels. Wind farms not only provide environmental benefits but also 

support local economic growth and enhance energy security (Sovacool, 2017). 

Therefore, wind farms are considered an indispensable tool both in addressing 

the climate crisis and in building a sustainable future. 

Evaluation of Wind Energy in Terms of Sustainability 

Wind energy offers distinct advantages over other renewable energy sources 

in terms of reducing carbon emissions and improving economic outcomes 

(Mubarak, Rezaee, & Wood, 2024). These advantages are particularly evident in 

studies where environmental benefits are quantitatively assessed. For instance, it 

has been reported that wind energy can reach very low emission levels, such as 

3.0 g CO₂ kWh-1, which corresponds to only 4% of emissions from coal-based 

energy production (Rule, Worth, & Boyle, 2009). Moreover, its emission profile 

is 10–20% lower compared to gas turbines, making wind energy environmentally 

superior to fossil fuel alternatives. This demonstrates that wind energy can play 

a significant role in combating climate change. Life cycle analyses show that 

wind energy generally has low or minimal environmental impact. However, in 

some cases, photovoltaic systems may exhibit a more favorable profile during 

their production and recycling phases (Osman et al., 2022). These comparisons 

indicate that the environmental impacts of wind energy can vary depending on 

context and technological developments. 
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Figure 1. Modern Wind Turbines Located in A Wind Farm 

In terms of economic advantages, wind energy holds significant potential. 

From 2010 to 2021, the cost of wind energy dropped by 68%, with the levelized 

cost of electricity decreasing from $0.08 to $0.03 per kilowatt-hour (Mubarak, 

Rezaee, & Wood, 2024). This cost reduction can be attributed primarily to 

technological innovations and economies of scale. Advances in turbine 

technology have enabled the production of more efficient and durable equipment, 

while improvements in mass production and installation processes have further 

reduced costs. Additionally, the wind energy sector has had a notable positive 

impact on the labor market. For instance, the creation of 117,000 new jobs in the 

United States demonstrates the tangible role of wind energy in driving economic 

development (Mubarak, Rezaee, & Wood, 2024). These employment 

opportunities extend not only to the installation and maintenance of turbines but 

also significantly affect supporting industries. 
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Figure 2. Technician Working on Wind Turbine Installation 

The impact of wind energy on economic development is not limited to job 

creation. Its potential use as an efficient energy source in innovative applications 

such as hydrogen production indicates that wind energy could play a strategic 

role in future energy systems. One of the major disadvantages of wind energy lies 

in the intermittent nature of the wind resource. Air movements in the atmosphere 

do not consider the patterns of daily electricity demand. To address this issue, 

research on energy storage systems has gained momentum. In particular, green 

hydrogen production stands out as a promising solution to balance the 

intermittent nature of wind energy. However, several challenges must be 

overcome for this potential to be fully realized. Chief among these are grid 

integration problems and the inadequacy of current energy storage technologies, 

which pose significant barriers due to the variability of wind energy (Zhao et al., 

2021). Since wind energy production varies with wind speed, the development of 

effective energy storage systems remains one of the most critical needs in this 

field. 

Regional factors and local economic conditions significantly shape the 

effectiveness of wind energy. For example, in regions with high wind potential 

but weak infrastructure, the installation and maintenance costs of turbines may 

increase, or the distribution of energy may remain limited (Zhao et al., 2021). In 
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such areas, expanding transmission lines and improving grid infrastructure are 

vital to fully harness the potential of wind energy. In contrast, well-developed 

grid systems in Europe and North America facilitate the integration of wind 

energy, contributing to greater success in these regions. In these areas, innovative 

solutions such as energy storage technologies and smart grid systems enable more 

efficient utilization of wind energy. 

In conclusion, wind energy stands out as an indispensable option in terms of 

both environmental and economic sustainability. Its potential to reduce carbon 

emissions, low costs, and capacity to create employment place wind energy at the 

center of the global energy transition. However, to fully realize this potential, 

challenges such as grid integration, energy storage, and infrastructure 

investments must be addressed. Overcoming these challenges will allow wind 

energy to play an even more significant role in future energy systems. 

Effects on Ecosystems 

Wind turbines have significant ecological impacts, particularly on birds and 

marine life. Birds of prey may exhibit avoidance behavior near wind farms, 

leading to reduced populations in these areas. Large soaring species are especially 

at risk of turbine collisions due to their wingspan and flight altitude (Estellés‐

Domingo & López‐López, 2024). Additionally, the barrier effect may force 

migratory birds to alter their traditional routes, resulting in longer, more energy-

consuming paths that threaten the long-term resilience of their populations 

(Drewitt & Langston, 2006). This poses a serious problem, especially for 

migratory species that rely on specific routes to conserve energy during 

migration. 

Floating turbines present unique challenges, such as the risk of marine animals 

becoming entangled in mooring lines and the displacement of seabirds from their 

natural habitats (Maxwell et al., 2022). Marine mammals (e.g., whales, dolphins) 

and deep-sea fish face entanglement risks with the mooring lines of turbines, 

which can lead to physical injuries or fatalities. Additionally, seabed excavation 

during turbine installation disrupts the habitats of benthic organisms and 

negatively impacts the marine food chain. Seabirds (e.g., cormorants, gulls) may 

abandon nesting areas due to turbine noise and artificial lighting, leading to 

declines in local populations. 



107 

 
Figure 3. Floating Wind Turbines Installed Offshore 

Wind farms can lead to bird fatalities, noise pollution, visual disturbance, 

deforestation, and soil erosion (Nazir et al., 2020). The primary impacts on birds 

include collisions, displacement, barrier effects, and habitat loss (Drewitt & 

Langston, 2006). In particular, deforestation and soil erosion result from land 

clearing activities carried out during turbine construction. These activities can 

degrade local ecosystems and reduce biodiversity. To mitigate these adverse 

effects, several strategies have been proposed, such as curtailment on demand, 

deterrent measures, smart siting, and micrositing (Estellés‐Domingo & López‐

López, 2024; Maxwell et al., 2022). Curtailment on demand involves temporarily 

shutting down turbines during peak migration periods when bird activity is high. 

Deterrent measures use auditory or visual signals to keep birds away from 

turbines. Smart siting and micrositing aim to position turbines away from bird 

migration routes and critical habitats, thereby reducing the risk of collisions. 

Standardized policies, careful environmental assessments, and post-

construction monitoring are vital for minimizing adverse impacts (Nazir et al., 

2020; Drewitt & Langston, 2006). Environmental assessments require a detailed 

analysis of the biodiversity and ecosystem dynamics of the proposed turbine 

installation sites. Post-construction monitoring ensures the continuous 
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observation of the environmental impacts during the operational phase of the 

turbines and enables the implementation of necessary mitigation measures. 

Further research is needed to develop effective mitigation strategies and 

ensure sustainable wind energy production. In particular, a better understanding 

of the long-term effects of turbines on birds and marine life, the development of 

innovative technologies to reduce these impacts, and the collection of 

comprehensive data to guide policymakers are essential. These efforts will help 

minimize the environmental costs of wind energy while enabling the achievement 

of global renewable energy goals. 

Environmental Impacts 

Wind energy offers significant environmental benefits by reducing 

greenhouse gas emissions and air pollution associated with fossil fuel-based 

energy sources (Jaber, 2013; Adeyeye et al., 2020). By the year 2020, it was 

estimated that wind energy could reduce carbon dioxide emissions in the energy 

sector by approximately 4.5% (Council, 2007). Wind power requires virtually no 

water and generates near-zero pollutant emissions, contributing to improved air 

quality (Ledec et al., 2011). Due to its renewable nature and potential to reduce 

mining activities, the environmental benefits of wind energy are generally viewed 

positively (Jaber, 2013). However, wind energy projects can have some adverse 

effects on biodiversity, posing threats particularly to birds, bats, and natural 

habitats (Ledec et al., 2011). Despite these challenges, wind energy is regarded 

as a key component of a low-carbon energy future with high environmental 

sustainability, thanks to its economic competitiveness and environmentally 

favorable characteristics (Ledec et al., 2011; Adeyeye et al., 2020). 

Although wind energy is considered a green alternative to fossil fuels, it has 

potential adverse environmental impacts. These include visual pollution, noise 

disturbance, electromagnetic interference, and effects on land use (Nazir et al., 

2020; Zamot et al., 2005). Wind farms can have significant impacts on local 

ecosystems and natural landscapes, with larger installations producing more 

substantial effects than individual turbines (Ma, 2008). Bird mortality is a 

particular concern, especially in forested areas and natural habitats (Nazir et al., 

2020; Zamot et al., 2005). The effects on birds and bats have been extensively 

studied, especially in Europe and North America. However, many of these 

impacts are case-specific, and more generalizable research is needed (Sander et 

al., 2024). Stakeholders must collaborate to standardize policies that promote 

sustainable wind energy development while minimizing environmental impacts 

(Nazir et al., 2020). 

While wind energy plays a critical role in sustainable development and climate 

goals, it also presents environmental challenges that require careful management. 
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The main impacts include noise pollution, visual disturbance, and particularly, 

effects on flying animals (Sebestyén, 2021; Kondili, 2021). Technological 

advancements such as larger turbine designs and floating wind turbines have 

increased efficiency and reduced costs, making wind energy more competitive 

with fossil fuels (Uzondu & Lele, 2024). To address environmental concerns, 

comprehensive impact assessments and mitigation measures are essential 

(Kondili, 2021). These measures may include noise control techniques, visual 

impact reduction strategies, and wildlife protection efforts. Public acceptance is 

crucial for the successful implementation of wind projects (Uzondu & Lele, 

2024). Especially with the growth in size and capacity of wind farms, an 

integrated life cycle approach is recommended to address the complexity of 

environmental impacts (Kondili, 2021). 

Social Impacts 

Although wind energy projects are widely supported by the general public, 

they often face resistance at the local level. While this resistance has traditionally 

been explained by the NIMBYism (Not In My Backyard) approach (Petrova, 

2013), recent research reveals that opposition is rooted in far more complex and 

multidimensional reasons. Local communities express deep concerns about the 

environmental and social impacts of these projects. In particular, negative 

changes to the landscape can degrade natural beauty, reduce quality of life, and 

lead to significant declines in property values. Furthermore, feelings of exclusion 

from decision-making processes among local residents can intensify this 

resistance (Wright, 2012). This issue is often linked to the failure to adequately 

consider community opinions during the planning phase or to ensure a transparent 

process. Such shortcomings undermine trust in the projects and may lead to long-

term conflicts. To address these concerns, it is crucial to ensure the active 

participation of local communities in the planning and implementation phases of 

wind energy projects (Wright, 2012; Akerboom, 2018). Involving local residents 

not only increases the acceptability of projects but also allows for the 

development of solutions that better align with the needs and expectations of the 

community. In this context, approaches such as the ENUF framework (Engage – 

Don’t Use the Term NIMBY – Understand – Facilitate) offer an effective way to 

understand and address the concerns of local communities (Petrova, 2013). This 

framework encourages project developers to communicate more effectively with 

residents and to produce solutions that take their concerns into account. 

Moreover, the establishment of legal and administrative regulations that balance 

global energy needs with local interests plays a critical role in the successful 

implementation of wind energy projects (Olsen, 2010; Wright, 2012). Such 

regulations help minimize both environmental and social impacts, thereby 
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enabling progress toward global energy targets while preserving local quality of 

life. 

 
Figure 4. Rural Life Integrated with Renewable Energy Sources 

Wind energy projects have significant impacts on local and regional 

economies. While these projects create employment opportunities at the local 

level, they can also cause certain disruptions within communities (Brown, 2011). 

For example, although temporary jobs may be provided during the construction 

phase of projects, there can be uncertainties regarding the sustainability of this 

employment in the long term. Nevertheless, at the regional level, wind energy 

projects offer considerable economic benefits, such as increases in per capita 

GDP, income, and property values (Brunner & Schwegman, 2022). Additionally, 

these projects promote regional economic diversification by shifting employment 

from agricultural sectors to non-agricultural ones, particularly construction and 

manufacturing. To maximize these benefits and reduce negative impacts, project 

developers should focus on delivering greater value to local communities and 

minimizing disruptions (Brown, 2011). Furthermore, policymakers can 

implement supportive policies and provide technical assistance to promote the 

wind energy sector and foster sustainable economic development (Dinh et al., 

2024). 
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Effective strategies for public participation and communication in wind 

energy projects are crucial for increasing community engagement and support. 

The early and systematic involvement of local communities is necessary to 

reduce negative reactions and project delays (Dütschke et al., 2017). In this 

process, key factors such as procedural justice—which offers opportunities for 

public participation in planning, site selection, and approval stages—and 

distributive justice—which ensures the fair distribution of costs and benefits—

should be taken into account. Procedural justice enables local communities to 

actively participate in decision-making processes, while distributive justice 

guarantees that the benefits and burdens of projects are shared equitably. 

Furthermore, financial participation of local communities can enhance project 

acceptance (Luca et al., 2020). For instance, allowing local residents to receive a 

share of the revenues generated by the projects or involving them in project 

management can strengthen community support. Cooperation with local 

governments and stakeholders is also essential for successful project 

implementation and public support (Horbaty et al., 2012). Such collaboration 

ensures that projects are designed and executed in line with local needs and 

expectations, thereby supporting both environmental and social sustainability. 

Technological and Planning Approaches 

Recent advancements in wind turbine technology play a critical role in 

achieving the efficiency and sustainability goals of the renewable energy sector. 

Research focusing particularly on turbine blade design and maintenance 

strategies aims to both increase energy production capacity and minimize 

environmental impacts. Today, researchers are testing active and passive flow 

control devices (e.g., micro surface protrusions, wingtip devices) and biomimetic 

designs (e.g., structures inspired by dolphin fins or owl wings) to improve 

aerodynamic performance and reduce noise levels. These adaptations help 

optimize energy production even at low wind speeds while enhancing 

aeroacoustic performance, thereby reducing negative impacts on local 

ecosystems (Krishnan et al., 2023). In addition, the use of advanced composite 

materials such as carbon fiber and graphene-reinforced polymers allows for 

lighter blades with increased fatigue resistance, thus extending the operational 

lifespan of turbines. 

In the context of performance optimization, parameters such as annual energy 

yield and power coefficient are dynamically analyzed to enable turbines to adapt 

to varying wind profiles. For instance, reducing blade mass allows turbines to 

generate energy even at low cut-in speeds, which ensures a stable energy output 

even in regions with irregular wind patterns (Rehman et al., 2018). At the same 

time, condition-based maintenance strategies supported by smart sensor 

technologies and machine learning algorithms enable real-time monitoring of 
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turbine components, preventing unexpected failures and reducing maintenance 

costs. In particular, advanced vibration analysis and thermal imaging techniques 

allow for the early detection of issues such as blade cracks or gearbox wear, 

enabling proactive intervention (Besnard & Bertling, 2010). 

The integration of these technologies into large-scale projects offers important 

insights for the future of the sector. For example, the Hornsea Project One (United 

Kingdom), with a capacity of 1.2 GW, stands as the world’s largest offshore wind 

farm and demonstrates resilience to high wave and saline water conditions thanks 

to adaptive blade angles and hydrodynamic foundation designs. Similarly, 

China’s Gansu Wind Farm project, with a capacity of 20 GW, has enhanced 

abrasion resistance by using specially developed composite blade coatings 

designed to withstand sandstorms. These projects have proven that the synergy 

between dynamic aerodynamic optimization and materials engineering can 

extend turbine lifespan (Firoozi et al., 2024). 

On a global scale, these technological advancements are being supported in 

alignment with regulatory frameworks such as the European Union’s Green Deal 

objectives and the Paris Agreement. In particular, decarbonization policies and 

renewable energy incentives are compelling companies to develop more efficient 

and environmentally friendly turbine designs. As a result, the wind energy sector 

maintains its potential to be a key player in achieving the net-zero emissions 

targets by 2050 through technological innovation and policy-driven investments. 

Case Studies and Examples 

Wind energy has demonstrated significant potential and growth worldwide. 

Turkey, in particular, offers considerable resources in both wind and wave 

energy. Studies have shown that Turkey's theoretical wind energy potential is 

approximately 88,000 MW annually, with successful implementations already in 

place (Ozgener et al., 2004). This potential is especially concentrated in the 

Aegean, Marmara, and Mediterranean regions, which are considered ideal for 

wind energy production due to high wind speeds and favorable topographic 

conditions. Furthermore, Turkey’s geographical location provides a strategic 

advantage for integration into both European and Asian energy markets. This 

makes Turkey a strong candidate to become a regional hub in the field of 

renewable energy. However, challenges such as political and market-related 

factors, site selection issues, environmental conflicts, and social acceptance 

continue to pose obstacles to the development of wind energy (Gartman et al., 

2014). In particular, site selection processes require careful planning due to the 

environmental and social impacts associated with turbine placement. Moreover, 

resistance from local communities can hinder social acceptance, potentially 

delaying project implementation and increasing costs. Environmental conflicts, 
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especially those related to protected areas and wildlife, also represent a significant 

barrier. 

The European Union has made significant progress in wind energy, surpassing 

previous targets and recognizing its reliability and cost-effectiveness in reducing 

CO₂ emissions (Kaygusuz, 2006). EU countries have made substantial 

investments in wind energy to achieve their renewable energy targets and have 

become global leaders in this field. Offshore wind farms, in particular, hold a 

significant share in the EU’s energy portfolio. This success has been made 

possible through both technological innovation and effective policies and 

regulations. The EU's experience serves as an important example for other 

countries such as Turkey. 

Case studies such as Istanbul’s Çatalca district demonstrate the feasibility of 

wind energy projects in Turkey, with annual average wind power densities 

ranging between 400.31 and 611.02 W/m² at various altitudes (Wadi et al., 2019). 

These data indicate that Çatalca is a suitable region for wind energy production. 

Moreover, the successful implementation of such projects contributes to the local 

economy and creates employment opportunities. However, for these projects to 

be scaled up, local community participation and the minimization of 

environmental impacts are of great importance. Addressing challenges through 

adaptive management and innovative solutions can improve the future of wind 

energy applications (Gartman et al., 2014). In particular, including local 

communities in projects and carefully assessing environmental impacts can 

enhance social acceptance. In addition, technological innovations and smart grid 

systems can help balance the intermittent nature of wind energy and address 

energy storage issues. Such solutions could enable the wider deployment of wind 

energy and contribute to the global energy transition. In conclusion, wind energy 

is a significant renewable energy source for both Turkey and the world. However, 

realizing its full potential requires overcoming political, environmental, and 

social challenges. In this process, innovative solutions and effective policy 

implementation will shape the future of wind energy. 

Conclusion and Evaluation 

This comprehensive review of the ecosystemic, environmental, and social 

impacts of wind energy projects reveals the complex dynamics of the renewable 

energy transition. The main findings indicate that, in addition to global benefits 

such as reducing carbon emissions and promoting energy independence, wind 

farms pose significant ecological risks—particularly to bird populations and 

marine ecosystems. For instance, the increased collision rates among raptors and 

the habitat loss for marine species highlight the necessity of making these projects 

compatible with wildlife (Estellés-Domingo & López-López, 2024; Maxwell et 

al., 2022). On the social side, local resistance to projects is linked not only to the 
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NIMBY (Not In My Backyard) syndrome, but also to structural issues such as the 

lack of involvement in decision-making processes and the unequal distribution of 

economic benefits (Wright, 2012; Petrova, 2013). From an economic perspective, 

while wind energy positively influences regional GDP and employment (Brunner 

& Schwegman, 2022), it also brings technical challenges such as infrastructure 

costs and grid integration—necessitating a careful balancing act. 

While wind farms play an indispensable role in sustainable energy production, 

the effectiveness of this role depends on minimizing environmental and social 

costs. Among the benefits achieved are tangible economic gains such as cost 

reductions between 2010 and 2021 (Mubarak, Rezaee, & Wood, 2024) and the 

creation of 117,000 jobs in the United States. However, alongside these 

successes, the long-term impacts of projects on ecosystems (e.g., disruption of 

bird migration routes) and the lack of communication with local communities 

have been identified as critical barriers to sustainability. The successes achieved 

by the European Union in offshore wind farms (Kaygusuz, 2006) demonstrate the 

importance of transparent policies and participatory planning. In the case of 

Turkey, the high wind potential in regions such as Çatalca (Wadi et al., 2019), if 

evaluated using similar strategies, could enhance the country’s energy 

diversification. 

Future Emphasis and Recommendations 

The principal conclusion derived from this study is that the success of wind 

energy deployment is contingent not only upon technological innovation but also 

on a comprehensive sensitivity to social and ecological dimensions. Accordingly, 

the following rec ommendations are proposed for future applications: 

1. Technological Adaptation: Bird-friendly turbine designs 

(e.g., biomimetic blades) and floating platforms that protect 

marine ecosystems should be developed. Condition-based 

maintenance systems equipped with smart sensors can enhance 

turbine efficiency. 

2. Policy and Governance: Globally standardized environmental 

assessment protocols should be established. Models such as the 

ENUF framework should ensure the integration of local 

communities into wind energy projects. 

3. Community Engagement: Financial participation of local 

residents (e.g., through energy cooperatives) should be 

encouraged in project development processes. This will both 

enhance social acceptance and help reduce economic 

inequalities. 
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4. Research and Collaboration: Long-term field studies should 

be supported to monitor ecosystem impacts. Interdisciplinary 

research must build bridges between engineering and ecology. 

In conclusion, wind energy retains its potential as a critical tool in the fight 

against the climate crisis. However, the realization of this potential depends on 

establishing a balanced dialogue between humanity and nature. The joint efforts 

of science, policy, and society can transform the power of the wind not only into 

energy but also into a sustainable future. 
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1. Introduction 

In recent years, piezoelectric materials, called smart materials, have become 

popular especially in the field of engineering. When it comes to industrial use; it 

comes to the forefront in sensor and actuator applications. The reason for this is 

that piezoelectric materials have the ability to harvest energy by converting 

mechanical energy into electrical energy or vice versa. The basis of this feature 

is based on the formation of an electric charge as a result of the induction of ions 

within the material when a mechanical force is applied to the material. Harvesting 

energy is an important feature that allows the development of self-powered 

devices that do not require a power source by capturing renewable energy in the 

environment and converting it into electrical energy. nergy harvesting is possible 

from sources such as vibration, electromagnetic waves, wind, running water, sun 

or human movement. In particular, providing the power requirements of 

autonomous electronic devices through vibration energy harvesting (VEH) stands 

out as an important option. Different power sources have emerged with the 

importance of small-sized, low-power, easily portable and remotely controlled 

devices in recent years. For example, batteries are not sufficient in such 

applications due to their limited lifespan, need for frequent charging and limited 

energy storage capacity, and the search for alternative power sources has emerged 

[1]. At this point, the concept of collecting energy from ambient sources to 

eliminate the need for batteries or extend the life of the battery has become the 

focus of researchers. Collecting energy from the environment or energy 

harvesting is an important technique that provides advantages especially in 

biomedical devices that are difficult to access, need to be controlled remotely, 

and have expensive maintenance [2,3] and in tracking devices integrated into the 

human body. In addition, limited energy providers are shown as a significant 

challenge for wireless sensor network technologies. The development of efficient 

and high-performance energy harvesting systems to overcome this limitation is 

investigated in the literature [4,5,6]. Vibration energy harvesting systems are 

taking a step forward in areas where battery replacement is difficult, such as 

structural health monitoring [7], biomedical applications [8], environmental 

monitoring [9] and wireless sensor networks [10]. 

Despite significant advances in piezoelectric energy harvesting, many energy 

harvesting systems fail to provide energy conversion efficiency in real system 

applications. One of the biggest challenges in these applications is known as 

frequency sensitivity. Namely, most vibration energy harvesters obtain maximum 

power output at the resonance frequency and are therefore designed to operate at 

or very close to that frequency. However, due to the nature of the work, the 

vibration frequency of the surrounding vibration sources is often variable and 

unpredictable. This environmental frequency is rarely likely to coincide with the 
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resonance frequency of the system. Therefore, even small deviations from the 

designed operating frequency can cause significant reductions in the harvested 

energy, limiting the overall efficiency and applicability of the system [11]. 

Studies on vibration energy harvesting systems are progressing on different 

topics. These can be stated as material properties, structural designs and system-

level application strategies. Thanks to the numerous theoretical and experimental 

studies conducted under these headings, significant progress has been made. 

However, certain limits are still mentioned in the literature on some issues at 

present. Therefore, future research focuses on the integration of smart materials, 

adaptable structures and intelligent control algorithms to develop robust, efficient 

and sustainable energy harvesting systems that can operate reliably even in 

different and unpredictable environmental conditions. Such systems are expected 

to not only increase current energy efficiency but also make resource use more 

efficient by minimizing environmental impacts. Piezoelectric energy harvesting 

is the most intensively studied method due to its many advantages. These 

advantages include; easy applicability, ability to produce high voltage output 

without voltage increase or external source use, high energy density and 

availability of suitable manufacturing techniques for device production at 

different geometric scales. However, alternative methods such as electromagnetic 

induction and electrostatic conversion also offer their own advantages. 

The purpose of this study is to examine energy harvesting systems; especially 

the latest developments in piezoelectric energy harvesting systems, the materials 

used and the properties of these materials, system design principles and 

application areas. The second section includes details of the piezoelectric energy 

harvesting technique, the third section discusses system configurations, the fourth 

section evaluates energy harvesting systems in terms of sustainability, and the 

fifth section focuses on practical application areas. 

2. Fundamental Mechanisms for Vibration Energy Harvesting 

Harvesting vibration energy offers a sustainable and autonomous energy 

solution for microelectronic systems, especially when batteries or wired power 

sources are insufficient or when wired systems are difficult to install. The kinetic 

energy obtained from human motion, the energy obtained from mechanical 

vibrations and the mechanical vibrations coming from the surrounding industrial 

equipment are a type of waste energy with a significant potential to be converted 

into electrical energy. The conversion of this waste mechanical energy can be 

achieved with piezoelectric, electromagnetic, electrostatic or hybrid approaches. 

Each conversion mechanism has its own advantages and disadvantages. Studies 

in the literature show that they are preferred according to their application areas, 

working principles and the amount of energy they harvest. The topics on which 

the conversion performance of VEH systems depends can be summarized as 
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follows; resonance frequency of the system, bandwidth of the system, amount of 

energy absorption of the system, volume of the system and system cost. 

Piezoelectric materials such as quartz, Rochelle salt, tourmaline and barium 

titanate have a special property that they can produce an electrical charge as a 

result of the mechanical stress applied to them. This phenomenon is called the 

direct piezoelectric effect. Conversely, when an electric field is applied to these 

crystalline structures, they undergo mechanical deformation; This is known as 

the “converse piezoelectric effect”. The direct effect is generally used in sensing 

(sensor) and energy conversion applications, while the reverse effect is used in 

actuator systems. This bidirectional electromechanical behavior of piezoelectric 

materials can be mathematically modeled by two basic linearized correlation 

equations [17]. The first of the equations given below represents the direct 

piezoelectric effect, and the second represents the reverse piezoelectric effect, 

 

𝐷𝑖 = 𝑒𝑖𝑗𝐸𝑗 + 𝑑𝑖𝑚𝜎𝑚           (1) 

 

𝜀𝑘 = 𝑑𝑗𝑘𝐸𝑗 + 𝑆𝑘𝑚𝜎𝑚          (2) 

 

where 𝐷𝑖is the dielectric displacement (N/mV or C/𝑚2), 𝑒𝑖𝑗  is the dielectric 

permittivity (N/ 𝑉2 or F/m ), vector 𝐸𝑗 is the applied electric field (V/m),  𝑑𝑖𝑚 

and 𝑑𝑗𝑘 are the piezoelectric constants (m/V or C/N), 𝜎𝑚 is stress vector, 𝜀𝑘 is 

strain vector (N/𝑚2),  𝑆𝑘𝑚 is eleastic compliance matrix (𝑚2/𝑁).  

2.1 Piezoelectric Mechanisms 

The conversion of inert mechanical energy into electrical energy using 

piezoelectric materials is called piezoelectric energy harvesting (PEH) in the 

literature. Considering the studies conducted so far, it has been stated that a small 

amount of energy is collected in the microwatt to milliwatt range with this method 

and is suitable for electronic devices with low power requirements. On the other 

hand, energy conversion systems such as solar, wind, and geothermal from 

renewable energy sources can produce power in the range of hundreds of watts. 

Although it seems disadvantageous when compared from this perspective, it has 

advantages depending on where it is used and is preferred in applications. For 

example, ambient vibrations occurring in an environment where machines are 

constantly operating can be converted with PEH systems, and in such 

environments, neither wind nor solar sources can be mentioned. In other words, 

PEH systems allow for the acquisition of extra energy, albeit in small amounts. 

Since such an energy source is not exposed to natural events, it is relatively stable 
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and less sensitive to environmental changes over time. In other words, 

piezoelectric harvesting systems can work efficiently in places where there is no 

renewable energy that provides high power conversion; this is an important 

advantage for embedded systems and remote monitoring applications. In short, 

PEH systems are widely used to power embedded systems, implantable 

biomedical devices, wireless sensor nodes, and portable electronic devices. 

Piezoelectric energy harvesting systems can provide an autonomous system and 

significantly reduce the costs associated with battery replacement compared to 

traditional energy sources such as batteries. In addition, self-powered energy 

sources allow electronic devices to be integrated into structural components or 

deployed in remote areas. In recent years, the increasing use of low-power 

electronics such as wireless sensors and microelectronic devices has led to a 

significant increase in interest in piezoelectric energy harvesting research. 

As  mentioned above that material properties are one of the main topic of 

development of PEH systems. In this context, especially after the discovery of 

ferroelectric materials such as Barium titanate (BaTiO₃) and lead zirconate 

titanate (PZT), piezoelectric properties have been provided to many synthetic 

materials. Researchers in this field continue their studies to develop new materials 

with different electromechanical, mechanical and thermal properties [12]. 

Materials with piezoelectric properties can be classified into four main groups 

according to their components: piezoelectric ceramics, piezoelectric polymers, 

piezoelectric single crystals and piezoelectric composites. Piezoelectric materials 

with these different material properties are preferred in different application areas 

depending on their physical and electrical properties. 

Piezoelectric ceramics are the most widely used among piezoelectric material 

groups. Among these groups, PZT (Lead Zirconate Titanate) attracts particular 

attention with its high piezoelectric coefficient and structural stability. However, 

it has a brittle structure and since its lead content is harmful to the environment 

and human health, this poses a problem for some studies. PNN-PZT, a more 

advanced type, was developed later by obtaining a much higher coupling 

coefficient compared to traditional PZT ceramics [13]. Such modified ceramics 

are widely used in sensors and sensitive energy harvesting systems. However, 

their price remains higher. 

Piezoelectric polymers are another group used in energy harvesting research; 

they are ideal for applications requiring flexibility and lightness. The most 

important example in this group is PVDF (Polyvinylidene Fluoride), which has 

advantages such as low density, corrosion resistance and easy formability. 

Although it has lower piezoelectric performance compared to ceramics, the 

coupling coefficient is significantly improved by increasing the β-phase content. 

Recent studies in the field of PVDF have focused on improving the performance 
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of this material through the use of processing techniques, piezoelectric additives 

and various filler materials, and these new developments have significantly 

improved the output performance of energy harvesting devices [14]. 

The piezoelectric single crystals group exhibits good piezoelectric 

performance due to their highly ordered atomic structure. An example of this 

group is the piezoelectric material PMN-PT (Lead Magnesium Niobate - Lead 

Titanate). PMN-PT has a much higher binding coefficient compared to PZT. 

Such materials are especially used in applications requiring high sensitivity such 

as medical imaging, ultrasonic transducers and advanced energy harvesting 

systems. However, their high cost and brittle structure limit the wider use of these 

materials [15]. 

Finally, piezoelectric composites are hybrid materials formed by combining 

ceramics and polymers. These materials offer a balanced solution in terms of both 

functionality and durability by combining the high piezoelectric performance of 

ceramics and the mechanical flexibility of polymers. PVDF-based 

nanocomposites can exhibit superior performance compared to other 

piezoelectric structures due to the superior physicochemical properties developed 

by the addition of nanofiller with high surface-to-volume ratio [16]. 

3. Piezoelectric Based Energy Harvester Structural Configurations  

Piezoelectric Energy Harvesting (PEH) systems convert mechanical stress 

into alternating current (AC) voltage through piezoelectric materials. This AC 

output is used after being converted to direct current, i.e. DC current, to power 

low-energy devices. The amount of energy harvested, i.e. the efficiency of energy 

conversion, depends on constants that represent various material properties such 

as elasticity, thermal stability and dielectric constant. Piezoelectric Energy 

Harvesters (PEH) can be classified according to both their structural design and 

the configuration of the piezoelectric material used. This classification is 

structurally categorized as cantilever beam, membrane type, shell structures and 

multi-beam systems. 

The cantilever beam type is the most commonly used configuration due to its 

fixed-end and free-end structure and offers high efficiency under low-frequency 

ambient vibrations. Membrane-type structures are generally widely used in 

MEMS applications and can exhibit multi-directional deformations. Thanks to 

their thin, flexible structures and high sensitivity, piezoelectric membranes are 

also used in a wide variety of applications such as biomedical sensing systems 

and structural health monitoring applications [21, 22]. In the context of energy 

harvesting, these membranes serve as efficient converters that convert 

mechanical energy into electrical energy for autonomous microsystems, 

especially in low-frequency vibration environments such as human motion, 
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environmental mechanical vibrations, and acoustic energy. A schematic 

representation of a membrane-type piezoelectric energy harvester is shown in 

Figure 1b. 

PEH systems using shell structures are also available in the literature. For 

example, a system that harvests energy from wind energy was investigated in one 

study. A cylindrical shell structure was used and a newly developed flow breaker 

integrated into the system was found to significantly improve the aeroelastic 

behavior. In the use of this shell structure, the interaction between the shell and 

wind-induced vibrations was optimized and the efficiency of converting 

mechanical energy into electrical energy was also increased. This clearly 

demonstrates the critical role of shell structures in wind energy harvesting 

applications [22]. Figure 1a shows a cross-sectional view of a typical 

piezoelectric shell structure. 

When we look at the studies conducted on PEH system structures, the most 

common structures are unimorph and bimorph system designs. According to the 

arrangement of the piezoelectric material, they are classified as single-form and 

double-form. Single-form structures consist of a single piezoelectric layer bonded 

to an elastic layer. The simple architecture of these structures makes them easy 

and cost-effective to manufacture; however, their output power is relatively low. 

In contrast, double-form structures consist of two piezoelectric layers arranged 

symmetrically. This configuration provides higher output voltage than single-

forms; however, it requires a more complex manufacturing process and more 

material usage. The most commonly used structures in the design and modeling 

processes of piezoelectric energy harvesters are cantilever-type unimorph and 

bimorph systems. The unimorph structure is formed by bonding a piezoelectric 

layer to an elastic layer, while the bimorph structure is formed by placing an 

elastic layer between two piezoelectric layers. There are many studies in the 

literature on unimorph and bimorph piezoelectric energy harvesting systems, and 

their electromechanical interactions have been modeled in detail [18]. These 

studies have been carried out both theoretically and experimentally and have 

made significant contributions to the development of piezoelectric energy 

harvesting at the millimeter scale. In these studies, models have been developed 

to describe the electromechanical interactions of unimorph and bimorph systems 

under base excitation. Figure 1c presents a schematic representation of a 

unimorph piezoelectric energy harvester with a mass at its tip, while Figure 1d 

presents a schematic representation of an asymmetric bimorph piezoelectric 

energy harvester with a mass at its tip. 

In addition, various theories have been used in the mathematical modeling of 

piezoelectric energy harvesters. These theories include the Euler-Bernoulli, 

Rayleigh and Timoshenko models, which address different levels of deformation 
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and inertia effects. Since mathematical models of PEH systems are a separate and 

comprehensive topic, they will not be discussed in detail in this study. 

   a 

b 

 
 

                                                                                        c 

 
                                                                                       d 

 

Figure 1. Different PEH system design; a) Shell structure [24] b) Membrane type [23] c) Unimorph type 

[19] d) Bimorph type [19]   
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4. Sustainability-Oriented Approaches in Piezoelectric Energy 

Harvesting Systems: Material and Structural Perspectives  

The conversion of mechanical energy to electrical energy using piezoelectric 

materials has been investigated for many years. The ability to harvest inert 

mechanical energy such as fluid-plate interactions [36], human movements (such 

as knee, ankle, heel movement) or ambient vibrations stands out. The energy it 

harvests is used to meet the energy needs of low-power electronic devices, 

sensors and biological implants in a sustainable way. However, from a 

sustainability perspective, not only the energy efficiency of these systems but also 

the environmental friendliness of the materials used, minimum toxicity and high 

recyclability should be taken into account. The most commonly used 

piezoelectric ceramics are usually based on lead-containing compounds (e.g., 

PZT - lead zirconate titanate) and these can pose environmental risks due to their 

toxic components [25]. On the other hand, lead-free material alternatives such as 

barium titanate (BaTiO₃) and potassium sodium niobate (KNN) can be preferred 

as a clean option due to their environmental friendliness, together with bio-based 

polymeric materials such as PVDF derivatives and cellulose-based 

nanocomposites. In recent years, demand for these environmentally friendly 

alternatives has increased over lead-based piezoelectric materials. Lead-free 

piezoelectric materials also have some disadvantages, exemplified by their 

relatively low piezoelectric responses. Studies have attempted to improve the 

performance of these environmentally friendly materials using both experimental 

and numerical methods. 

Considering the entire life cycle of the energy harvesting system, from 

production to use and recycling, is essential for sustainability. Life Cycle 

Assessment (LCA) tools can be used to measure the carbon footprint and overall 

environmental impact of these systems and can guide the development of not only 

efficient but also ecologically responsible energy solutions [26]. 

In other words, with ongoing studies, when piezoelectric energy harvesting 

systems integrated with sustainable design principles are successfully achieved, 

it will be in an environmentally friendly position not only in terms of 

technological innovation but also in the development of future energy solutions. 

5. Practical Applications of Vibration Energy Harvesting 

5.1 Industrial Monitoring 

Many industrial machines and equipment constantly produce vibration. If we 

consider these vibrations as unused idle energy, the idea of generating electrical 

energy from them is the main idea of VEH systems. If vibration energy harvesting 

is done using piezoelectric materials, these systems are called PEH systems. 

These systems provide power to wireless condition monitoring systems, both 
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reducing costs by reducing the need for cables and preventing efficiency loss by 

helping continuity of maintenance [27]. 

PEH systems are also used by being mounted on rotating equipment such as 

pumps and motors in order to provide energy to sensors used in predictive 

maintenance systems. 

Thus, early detection of faults such as bearing wear, imbalance or 

misalignment in the equipment is provided. 

There are many studies in the literature where piezoelectric energy harvesting 

is applied in industrial automation, and it has been shown by these studies that 

PZT-based systems can reliably power low-power elements by taking vibration 

from the environment and converting it into electrical energy [28]. 

In addition, PEH systems have been studied as autonomous sensor solutions 

designed for instantaneous data collection in harsh industrial environments with 

high temperatures, high humidity, and vibrations [29]. 

Another study has shown the successful integration of a piezoelectric collector 

into an industrial HVAC fan motor to power IoT sensors that collect temperature 

and vibration data [30]. 

The progress of PEH systems in the field of industrial monitoring continues, 

and research is being conducted on converting even low-frequency vibrations into 

electrical energy with adaptive resonance tuning techniques. Of course, the 

development of materials science and the development of hybrid energy harvester 

structures are also paving the way for advances in this field. It is possible to say 

that these developments support the development of smarter, energy-

independent, and sustainable industrial monitoring systems in the context of 

Industry 4.0. 

5.2 Structural Health Monitoring 

Structural Health Monitoring (SHM) is an important method developed for 

early detection of possible damage in various engineering structures. 

In recent years, there has been increasing interest in technologies that can 

continuously monitor the integrity and current status of systems and structures in 

many engineering disciplines. 

Autonomous monitoring systems have enabled the development of self-

sufficient SHM systems by integrating sensors, data acquisition units, wireless 

communication modules and energy harvesting technologies. 

In some research, energy has been obtained from energy sources in the 

environment such as vibration, thermal gradients, solar radiation, wind and 
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pressure. In structures under dynamic loading, it is even possible to collect the 

necessary energy directly from the main structure itself. In this context, PEH 

systems have led to the widespread use of piezoelectric materials in the 

construction field or in the field of railway systems through the ability of 

piezoelectric materials to convert mechanical stress into electrical energy. In 

SHM applications, piezoelectric elements are strategically placed at points where 

vibrations or mechanical loads cause stress, and thus electricity is harvested. This 

harvested energy is then used to power low-consumption sensors and wireless 

communication units, enabling the realization of fully self-powered SHM 

systems. 

Integrating such technologies into SHM not only increases the energy 

independence of the systems, but also reduces maintenance requirements over 

time, providing a more sustainable and efficient structural monitoring approach 

[31]. 

Another area of focus is the aviation sector. 

In this field, the availability of renewable energy sources such as solar, wind 

and mechanical vibrations and the possibility of harvesting energy from them 

have recently attracted attention. Harvesting energy from ambient sources has 

become important to ensure the uninterrupted operation of wireless sensors, 

especially in situations where battery maintenance is costly or practically 

impossible. 

As a result, smart structures that can self-generate electricity from 

environmental energy are of interest. These structures are suitable not only for 

powering wireless sensors, but also for powering micro and nano electronic 

devices. At the same time, advanced structural health monitoring ring (SHM) 

methods based on guided wave propagation are being developed to detect early-

stage micro defects in engineered structures. Compared to traditional non-

destructive testing (NDT) techniques, these SHM approaches offer more efficient 

and reliable solutions, especially for aerospace applications [32, 33]. 

5.3 IoT and Wireless Sensor Nodes 

With the rapid advancement of Internet of Things (IoT) technologies, interest 

in autonomous sensor networks is also increasing [34]. There are many examples 

of piezoelectric energy harvesting (PEH) systems that convert ambient energy 

sources into usable electrical power in IoT technologies and more are coming. 

For example, mechanical vibrations are constantly present in many industrial 

and structural environments and can be converted into a reliable and accessible 

energy source to power wireless sensor nodes without requiring frequent 

maintenance. Thus, sensor networks are enabled to operate without maintenance 
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in the long term. As a result, as the energy conversion efficiency is increased with 

the developing material technology and PEH system designs, a directly 

proportional development will be achieved in IoT technologies. 

In addition to energy harvesting, research in this area also focuses on 

minimizing the power consumption of wireless sensor nodes. This dual approach 

increases the overall efficiency of Wireless Sensor Networks (WSNs) and 

supports their deployment in long-term, uninterrupted monitoring applications 

[35]. 

5.4 Biomedical Devices 

In the development of biomedical and implantable devices, the advancement 

of self-powered systems and smart material technologies plays a very important 

role. 

Among these technologies, piezoelectric materials are important due to their 

ability to generate electrical energy in response to applied mechanical stress or 

strain. 

Piezoelectric energy harvesters (PEHs) stand out from other technologies such 

as triboelectric and electromagnetic systems by effectively converting ambient 

mechanical energy into electrical power. 

The efficiency of the piezoelectric effect largely depends on the positive 

properties of these materials, such as high electromechanical coupling 

coefficient, thermal stability, and resistance to changing environmental 

conditions. Current studies and ongoing research in this regard are also leading 

to advances in biomedical applications. 

The variety of available piezoelectric biomaterials and different device 

designs increase their performance and adaptability in various biomedical 

environments. 

Natural human movements and dynamic behavior of internal organs serve as 

consistent and applicable mechanical energy sources that enable PEHs to 

generate electricity from physiological activities such as heartbeat, respiration, 

and muscle contractions. With this feature, PEH systems stand out as energy 

providers for wireless biomedical sensors and devices. 

The applications of PEHs cover a wide range of biomedical fields, including 

real-time health monitoring, cellular and neural stimulation, brain interface 

systems, and tissue engineering. 

Recent studies have increasingly focused on improving material properties, 

optimizing device architecture, and ensuring biocompatibility; all of these are 

critical for the sustainable integration of PEHs into biomedical systems. With 
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ongoing research and development, piezoelectric energy harvesters are expected 

to become a reliable and sustainable energy source for future healthcare 

technologies and implantable medical devices [2]. 

6. Conclusion 

In this section, the design principles, structural configurations, application 

areas and sustainability features of vibration-based piezoelectric energy 

harvesting systems are investigated. The focus is on piezoelectric mechanisms to 

convert mechanical vibration into electrical energy and harvester designs for 

improved performance. In PEH systems, all relevant aspects are considered from 

the materials used, energy conversion efficiency, factors affecting this efficiency 

and studies to improve their compatibility with the environment. In real world 

implementations, prominent applications include industrial condition monitoring, 

structural health monitoring, wireless sensor networks with IoT integration and 

biomedical implants. In general, piezoelectric energy harvesting technology still 

needs innovative structural designs and advancements in materials  to increase 

efficiency. The development of these topics is important in ensuring functionality 

and sustainability in practical engineering applications. Ongoing studies in the 

field of piezoelectric energy harvesting systems play an important role in terms 

of technological development and widening application domains . Future work 

will likely focus on systems that can operate over a wider frequency range and 

materials that have high piezoelectric coefficients and mechanical strength to 

improve energy conversion efficiency. Furthermore, developing scalable, low-

cost, and industry-compatible manufacturing technologies is essential. Much 

work needs to be done to bring compact and fully integrated piezoelectric energy 

harvesters to IoT devices, biomedical sensors, and smart infrastructure systems. 

Overcoming limitations such as low output voltage and narrow bandwidth 

operation requires interdisciplinary collaboration. Therefore, collaboration 

between scientists working in materials, electronics, and mechanical engineering 

is essential. 
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1. INTRODUCTION 

The increasing world population and technological advances are increasing 

countries' energy consumption. Due to the decrease in traditional energy fuels, 

the difficulty of accessing fossil resources, and the negative effects of 

conventional energy fuels on the environment, countries have had to start new 

searches for energy (Arat and Arslan 2017b). Fossil fuels are used in a large part 

of the heating systems in our country. With the recent developments, it has 

become a policy for countries to end the use of fossil fuels that are harmful to the 

environment and use more efficient and cleaner alternative energies. Countries 

need to diversify their energy production sources and increase the ratio of 

renewable energy sources in total production.  

Geothermal energy is a continuous and clean energy source that is not 

dependent on environmental conditions and is relatively less affected by 

environmental conditions among renewable energy sources (Arat and Arslan 

2017a). Geothermal energy is defined as ground heat, but in general, it is defined 

as thermal energy accumulated in the Earth's crust and containing various 

minerals. This thermal energy is obtained from natural fluids in rocks 

underground and in the cracks and pores of these rocks (US Department of 

Energy 2025). Certain conditions must be met in order for geothermal energy to 

be used. The first requirement, being accessibility, occurs through natural 

transport processes such as heat transfer in porous and/or fractured formations or 

heat transfer in the rock itself. A geothermal system has three main elements; heat 

source, fluid carrying the energy, and storage reservoir (Haklidir and Haklidir 

2010). 

Technologies that use geothermal energy at this level are currently being 

developed, and current technology can reach 10,000 meters down into the Earth's 

crust. A geothermal gradient is the temperature behavior linked to increasing 

depth in the Earth's crust. This term is used in studies on the Earth's crust and 

geothermal fluids. The increase in geothermal gradient is approximately 3oC for 

every 100 meters from the Earth's surface (Dincer and Ozturk 2021). The Earth's 

crust has a temperature of about 14 degrees Celsius on its surface, but the 

temperature inside the crust ranges from 1000 to 3500 degrees Celsius, according 

to studies (Earle 2025). The reason for the increase in temperature with depth is 

the heat source at the center of the Earth. The heat source at the Earth's center 

provides temperatures of approximately 5000 C, despite less energy being needed 

from this source than from the Sun (National Geographic 2025). Even though this 

energy source at the Earth's center cannot be directly observed, numerous models 

have been used to explain it. Because it is a necessary and useful energy source 

for the entire world, this energy source, situated in the planet's heart, is a 

significant source of heat (Dickson and Fanelli 2013). 
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Geothermal energy, which was used only for health purposes in the early ages, 

is now widely used in applications such as electricity generation, direct heating 

and hybrid systems. The reason for the variety of application areas is that 

geothermal resources have different enthalpy values due to different 

temperatures. The modified Lindal diagram showing the areas of use of 

geothermal fluid according to temperature values is given in Figure 1 

(Fridleifsson 1998). When the Lindal diagram, named after Baldur Lindal, an 

Icelandic engineer, is examined, it is seen that conventional electricity generation 

is carried out between 140oC and 180oC, while electricity generation with dual 

fluid can be done at lower temperatures. While resources between 30oC and 50oC 

are preferred for health applications such as swimming pools and spas, 

geothermal resources with higher temperatures are used for direct heating, 

cooling and drying operations.  

 
Figure 1. Modified Lindal diagram (Fridleifsson 1998). 

Geothermal energy is independent of environmental conditions because it is 

obtained from the Earth's crust. Compared to other renewable energy systems, it 

is a more reliable and highly usable energy source because it provides stable and 
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continuous energy. It is an environmentally friendly energy type because it does 

not require storage and transportation and does not release harmful gases like 

fossil fuels (Arat and Arslan 2017b).  

The heat source, reservoir, and heat-carrying fluid are the three primary 

components of the geothermal system. The main use of high-temperature 

geothermal resources (>150 °C) is the production of electricity. Geothermal 

resources with low and medium temperatures (less than 150 °C) have a variety of 

uses (DiPippo 2015). Heat pumps are used to heat and cool using geothermal 

resources below 20 °C (Fridleifsson 1998). 

Geothermal fluids having a reservoir temperature of 200°C or higher are used 

to generate electricity. However, geothermal waters with reservoir temperatures 

as low as 150°C can also be used to generate energy, according to new 

technologies that are being developed every day (Fridleifsson 1998). 

Additionally, research has recently been conducted to use water temperatures 

between 70 and 900 °C to produce energy using gasses with low evaporation 

points (Cruz et al. 2021). 

2. GEOTHERMAL BOREHOLE HEAT EXCHANGER 

The costs of the exploration and drilling phases, with the geothermal drilling 

stage accounting for about half of the entire cost, are the primary barriers to 

expanding the geothermal industry. Despite the concerns of corrosion and scale, 

deep borehole heat exchangers are employed to lower this expense (Alimonti, 

Conti, and Soldo 2021). When looking at the studies in the literature, the heat of 

the geothermal source is drawn from the source by the borehole heat exchanger 

and given to the system. This borehole heat exchanger is released into the 

geothermal water in a compact form, as shown in Figure 2, and the heat transfer 

process in the exchanger occurs inside the geothermal water.  
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Figure 2. A system using a borehole heat exchanger. 

When looking at the studies in the literature, L. Lamarche et al. conducted a 

study evaluating the thermal borehole resistance formed between the fluid and 

the borehole and the internal resistances with different approaches. Borehole 

resistance is significant for the sizing of the heat exchanger used in underground 

heat pumps and is also an important parameter used in estimating the required 

drilling depth. The study presented a new method that allows the evaluation of 

borehole resistance and internal resistances with the temperature information at 

the bottom of the U-pipe. This method has the advantage of considering the flow 

rate and the equivalent borehole resistance depth. This study was conducted only 

for single U-pipes (Lamarche, Kajl, and Beauchamp 2010). S. Focaccia and F. 

Tinti brought an innovative design to the borehole heat exchanger in their study. 

They compressed the rods inside the borehole with filling material and immersed 

them in the artificial (brine) fluid. This new system paved the way for the increase 

of heat transfer inside the borehole because it paved the way for the heat transfer 

to start with natural conduction between the vertical rods and the protected 

system. Moreover, this new system increased the reliability and environmental 

protection since it allowed controlling the rods at all times during operation and 

reduced the risk of rod breakage (Focaccia and Tinti 2013).  

C.K. Lee and H.N. Lam performed computer simulations of borehole heat 

exchangers used in geothermal heat pumps using a three-dimensional finite-

difference method with rectangular coordinates. As a result of the study, they 

found that the temperature and loading were not constant throughout the borehole 

heat exchanger. They determined that the results obtained from a single 

connected borehole would not be sufficient to evaluate the performance in the 
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borehole region. They stated that the best way to separate the entire borehole 

region is to simulate all borehole exchangers simultaneously using the rectangular 

coordinate system (Lee and Lam 2008). A. Casasso and R. Sethi analyzed the 

most important parameters affecting the performance of ground source heat 

pumps and estimated the energy consumption of the heat pump in each variation. 

Most of these parameters were analyzed in other studies, but not all were 

considered together in the same framework. As a result of the simulation analysis, 

it was revealed that the most critical design parameter is the length of the borehole 

heat exchanger. The optimum borehole heat exchanger length that minimizes the 

total operating cost should be determined by considering the fluctuation in the 

unit electricity price. It was revealed that the heat-carrying fluid, the location, and 

the distance of the pipes in the borehole are also critical parameters to be 

considered (Casasso and Sethi 2014). R. Al-Khoury et al. presented a finite 

element technique for a double U-tube borehole heat exchanger surrounded by 

soil mass. They stated that this computer solution method made significant 

contributions to the calculation of heat transfer in the borehole heat exchanger in 

a shorter time and in an efficient manner (Al-Khoury, Kölbel, and Schramedei 

2010). 

L. Jun et al. analyzed the effects of seven different factors -operation time, 

body area, borehole depth, pipe velocity, grout thermal conductivity, inlet 

temperature and soil type- on the thermal resistance and heat transfer rate with 

different methods and compared the results. The total thermal resistance and heat 

transfer rate along the depth changed depending on the operation time; the 

thermal resistance of the soil accounted for 68.4% of the total thermal resistance 

of the ground source heat exchanger. A larger body area showed better thermal 

performance. While the drilling costs increased with the increase in borehole 

depth, the heat transfer rate per depth decreased slightly. The increase in fluid 

velocity did not reduce the thermal resistance much, but significantly increased 

the heat transfer rate per depth. They concluded that the soil type significantly 

affected the heat transfer performance of the heat pump (Jun et al. 2009). 

Using a 2D coupled heat conduction-advection model, J. Chan Choi et al. 

examined how the direction and soil water flow rate affected the performance of 

several kinds of borehole heat exchanger arrays. By using three different arrays, 

the heating processes were simulated over 15 years. The results showed that the 

performance of L-type and single-line type arrays was significantly affected by 

the flow rate and the soil water flow direction. When the characteristic length of 

the Peclet number is considered a unit value on the system performance was 

negligible regardless of the array type and flow rate. The comparison of annual 

heat capacity showed that the difference could be up to 13% depending on the 

flow direction. When designing the best BHE arrays, both direction and soil water 
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flow rate may be crucial, particularly for non-square rectangular arrays (Choi, 

Park, and Lee 2013). 

3. CONCLUSION AND RECOMMENDATIONS 

Recent developments have made it a national policy to cease using 

environmentally damaging fossil fuels and switch to cleaner, more efficient 

alternative energy sources. Countries must raise the proportion of renewable 

energy sources in their overall production and diversify their sources of energy 

production. Among renewable energy sources, geothermal energy is a clean, 

continuous energy source that is not reliant on environmental conditions and is 

comparatively less impacted by them. 

In the past, geothermal energy was mainly utilized for medical purposes. It is 

widely used in direct heating, hybrid systems, and electricity generation. Because 

it produces steady and continuous energy, it is a more dependable and highly 

usable energy source than other renewable energy systems. It is an 

environmentally beneficial energy source because it doesn't need to be stored or 

transported, and because it doesn't emit any hazardous gases like fossil fuels do. 

The main obstacles to the growth of the geothermal sector are the expenses of 

the exploration and drilling stages, with the geothermal drilling stage costing 

around half of the total. Deep borehole heat exchangers are used to reduce this 

cost despite corrosion and scale issues. 

By using a borehole heat exchanger, the installation costs can be decreased, 

and less energy is utilized. Therefore, the countries have performed well on the 

zero-carbon emissions target. 
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