Management Information Systems: Theory, Methodology and Practice

Editor Assist. Prof., Gülsade Kale, Ph.D.

Management Information Systems: Theory, Methodology and Practice

Editor

Assist. Prof., Gülsade Kale, Ph.D.

Publisher

Platanus Publishing®

Editor in Chief

Assist. Prof., Gülsade Kale, Ph.D.

Cover & Interior Design

Platanus Publishing®

The First Edition

October, 2025

ISBN

978-625-6454-78-1

©copyright

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, or any information storage or retrieval system, without permission from the publisher.

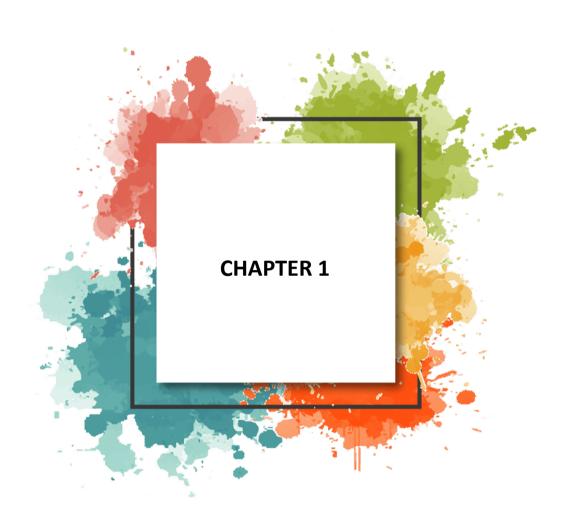
Platanus Publishing®

Address: Natoyolu Cad. Fahri Korutürk Mah. 157/B, 06480, Mamak, Ankara, Turkey.

Phone: +90 312 390 1 118 **web:** www.platanuspublishing.com **e-mail:** platanuskitap@gmail.com

İÇİNDEKİLER

HAPTER 1	5
Ai-Driven Innovations in E-Commerce: Transforming the Digital	
Marketplace	
Busra Ozdenizci Kose & Farid Huseynov	
HAPTER 2	. 3 9
Machine Learning-Based Decision Support System for Imbalanced Clinic	al
Data: The Case of Acute Appendicitis	
Voycor Sahinhas & Soving Gülsoson	



Ai-Driven Innovations in E-Commerce: Transforming the Digital Marketplace

Busra Ozdenizci Kose¹ & Farid Huseynov²

INTRODUCTION

Artificial Intelligence (AI) has become a cornerstone of the digital era, significantly transforming how businesses operate and how consumers engage across diverse sectors. Acting as a key driver of digital transformation, AI enables organizations to leverage complex algorithms and vast datasets to automate tasks, enhance decision-making processes, and optimize performance (Al-Surmi et al., 2022; Chintala & Thiyagarajan, 2023; Nalini, 2024). From streamlining operations to enabling predictive analytics, AI has evolved into an indispensable tool for companies aiming to innovate and stay competitive in a rapidly changing digital landscape.

The evolution of AI in commerce can be traced back to the mid-20th century, beginning with basic computational models and gradually advancing to today's highly sophisticated systems (Cai et al., 2021; Rana et al., 2022; Cheok et al., 2024). From the early development of neural networks to the implementation of the first recommendation engines in the 1990s, each technological development has paved the way for more advanced applications. By the 2010s, deep learning had revolutionized AI's capabilities, especially in image and speech recognition, significantly enhancing user interfaces on *e-commerce* platforms.

In the context of e-commerce, AI adoption began with basic product recommendation engines and has since progressed to encompass a wide range of functionalities. Initially, AI was used to suggest products based on purchase history, but today, it encompasses advanced capabilities like real-time customer service via chatbots, predictive inventory management, and automated marketing campaigns. These developments reflect a shift from traditional data analytics to more complex applications driven by machine learning, deep learning, and natural language processing—technologies that collectively enhance both operational efficiency and customer engagement (Bawack et al., 2022; Fedorko et al., 2022; Khrais, 2020).

Today, AI plays a central role in revolutionizing e-commerce by improving customer experiences and optimizing backend operations (Pallathadka et al.,

 $^{^{1}}$ Assoc. Prof., Management Information Systems, Gebze Technical University, Turkey ORCID: 0000-0002-8414-5252

² Assoc. Prof., Management Information Systems, Gebze Technical University, Turkey ORCID: 0000-0002-9936-0596

2023; Rane et al., 2024). By integrating AI, online retailers can deliver personalized shopping experiences, optimize supply chains, and adapt dynamically to market demands. AI-based systems analyze consumer behavior to tailor recommendations and promotions, streamline logistics, and manage inventory more efficiently. This high level of personalization enhances customer satisfaction and also contributes to sustained business growth by increasing conversion rates and reducing operational costs.

The transformative impact of AI on e-commerce is supported by strong statistical evidence. According to Precedence Research (2024), the global AI in retail market was valued at USD 9.97 billion in 2023 and rose to USD 11.83 billion in 2024 (Figure 1). The market is projected to reach USD 54.92 billion by 2033, reflecting a compound annual growth rate (CAGR) of 18.6% from 2024 to 2033. Additionally, in 2023, 42 percent of consumers familiar with generative AI reported using chatbots for post-purchase support. Other widely adopted applications of AI in online shopping include personalized loyalty programs, automated product review summaries, social media content generation, and real-time customer interaction via chatbots. These trends underscore AI's critical role not only in boosting sales but also in enhancing customer service and engagement throughout the e-commerce sector.

To better understand the influence of AI in e-commerce, it is essential to examine the underlying technologies that support its capabilities. Core technologies such as Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and Generative AI form the foundation for a wide range of e-commerce innovations. Together, these technologies enable more intelligent, efficient, and scalable systems that power modern digital marketplaces.

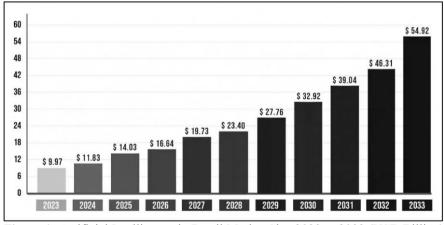


Figure 1: Artificial Intelligence in Retail Market Size 2023 to 2033 (USD Billion) (*Source: Precedence Research, 2024*)

Machine Learning (ML) remains at the forefront of AI in e-commerce (Taye, 2023; Zhang et al., 2023). ML enable systems to autonomously analyze and learn from vast quantities of customer data. This continuous learning process improves the accuracy and efficiency of AI applications over time, allowing retailers to fine-tune marketing strategies, anticipate customer behavior, and manage inventory with remarkable precision. A subset of ML, Deep Learning (DL) provides a more sophisticated approach by using multi-layered neural networks that mimic the complexity of human cognition (Soori et al., 2023; Zhang et al., 2023). This advanced capability is particularly valuable for tasks such as sentiment analysis in customer reviews and enhancing product discovery through image recognition.

Complementing ML and DL, Natural Language Processing (NLP) enables e-commerce platforms to bridge the communication gap between humans and machines. NLP empowers intelligent chatbots and virtual assistants to understand and respond to customer queries in a natural, conversational manner (Babu & Akshara, 2024; Mary Sowjanya & Srividya, 2024; Chang, 2023). These AIdriven tools handle routine inquiries effectively and adapt their responses based on user context, offering personalized shopping support. As a result, they significantly enhance the quality and efficiency of customer service while creating a smooth, intuitive shopping experience.

Generative AI extends the capabilities of these technologies by producing original content based on existing datasets (Feuerriegel et al., 2024). It can automatically generate tailored product descriptions, marketing visuals, and promotional materials. Using advanced models such as Generative Adversarial Networks (GANs) and Transformers, Generative AI enhances creativity in ecommerce, enables businesses to craft personalized and engaging experiences, streamlines content creation, and boosts customer interaction at scale (Ayemowa et al., 2024; Fui-Hoon Nah et al., 2023).

By leveraging these cutting-edge technologies, e-commerce platforms are able to deliver personalized, responsive, and secure shopping experiences, illustrating the transformative role of AI in reshaping the digital marketplace. This chapter provides a comprehensive analysis of how AI-driven innovations are redefining the e-commerce landscape. It examines various AI applications that enhance customer engagement and optimize operational efficiency, while also addressing key challenges and ethical considerations such as data privacy and algorithmic bias. Additionally, the chapter explores how emerging technologies are expected to further transform e-commerce by enabling more immersive, intelligent, and efficient consumer experiences.

METHODOLOGY

This section outlines the methodology adopted in this chapter, detailing the approach taken to gather, analyze, and structure relevant academic and industry sources to provide a comprehensive examination of AI's role in e-commerce. To guide the content and thematic structure of this chapter, a comprehensive literature review was conducted. The review focused on studies published in recent years, with earlier works included where necessary to provide historical context. Literature was sourced from major academic databases such as Scopus, Web of Science, IEEE Xplore, and Google Scholar, along with industry reports from sources such as Gartner, Statista, and Precedence Research. Keywords included combinations of terms like "AI in e-commerce," "machine learning in retail," "recommendation systems," "chatbots in e-commerce," and "generative AI in online shopping." Sources were selected based on their relevance, recency, and contribution to understanding AI's role in e-commerce. The literature was then categorized thematically -covering recommendation systems, chatbots and virtual assistants, dynamic pricing strategies, fraud detection, and supply chain optimization- to offer a comprehensive and organized exploration of current developments and practical applications.

In addition, this chapter also addresses the challenges and limitations of AI in e-commerce -including implementation costs and technical barriers, ethical concerns, data quality issues, and over-reliance on automation- providing a critical perspective on the constraints businesses may encounter. Furthermore, emerging future trends such as the integration of AI with the Internet of Things (IoT), Augmented Reality (AR), and Virtual Reality (VR); AI-driven hyperpersonalization; the integration of AI with blockchain; and conversational AI and voice commerce are explored to highlight the evolving landscape and potential opportunities for innovation in the field. By the end of this chapter, readers will have a well-rounded understanding of AI's transformative role in modern ecommerce. This structured review not only highlights key advancements but also provides practical insights into how businesses can leverage these technologies to enhance efficiency, customer engagement, and decision-making processes.

AI APPLICATIONS IN E-COMMERCE

This section outlines the transformative applications of AI in e-commerce and showcases how it enhances customer experiences, optimizes operations, and secures transactions through innovations in personalization, customer service, inventory management, pricing strategies, and fraud detection.

Recommendation Systems

AI has revolutionized customer interactions with businesses by enabling highly personalized experiences that cater to individual needs and preferences. In e-commerce, one of the most effective applications of AI is in creating personalized product recommendations that transform how customers shop online. By analyzing vast amounts of data, such as browsing history, purchase behavior, search patterns, and even social media activity, AI-powered recommender systems can predict what a customer is most likely to want or need (Roy & Dutta, 2022; Zhao et al., 2023). This level of personalization extends beyond suggesting products; it involves tailoring the entire shopping experience. For instance, AI can customize the layout of an e-commerce site, prioritize displaying products that align with a user's style or preferences, and even adjust pricing and promotions to appeal to individual customers. Personalized recommendations not only help customers discover products they might not have found on their own but also save time by reducing decision fatigue. Moreover, AI enables dynamic updates to recommendations based on real-time interactions. If a customer abandons a cart, for example, the system might suggest complementary products or offer discounts to re-engage them. Advanced AI algorithms also consider external factors, such as seasonal trends, geographic location, and user demographics, to refine personalization further. Through these methods, businesses can create a seamless and engaging customer journey that enhances satisfaction, boosts loyalty, and drives revenue growth. These systems significantly improve the customer experience by addressing the challenges of information overload, enhancing decision-making, and fostering long-term customer loyalty. Through these methods, businesses can create a seamless and engaging customer journey that enhances satisfaction, boosts loyalty, and drives revenue growth.

Modern e-commerce platforms offer a vast array of products and services, often presenting customers with an overwhelming amount of choices. As the number of online options increases, information overload can hinder customers' ability to make confident decisions, reducing satisfaction. Information overload occurs when the demand to process information exceeds the mind's capacity, leading to frustration and discouragement, as the mind becomes distracted by the sheer volume of information and struggles to allocate attention effectively to all available options (Bartosz, 2022). Recommender systems address this issue by filtering the choices down to a manageable and relevant subset, allowing customers to focus on the most suitable products (Huseynov, 2020). Today, AI plays a crucial role in powering recommender systems, which leverage advanced algorithms and machine learning techniques to analyze users' past interactions such as browsing history, purchases, and reviews (Necula & Păvăloaia, 2023). AI systems can identify patterns within this data, providing highly personalized suggestions tailored to individual preferences. This not only saves time for users but also reduces the cognitive load involved in decision-making. Beyond simply narrowing choices, AI-powered systems can adapt dynamically to customer

behavior in real time, ensuring that recommendations remain relevant as users engage with the platform. This adaptability allows AI to offer more accurate suggestions, evolving with customers' changing preferences and needs. For example, AI may prioritize new or trending products for users who enjoy discovering novel items, while offering consistent suggestions to those with stable preferences. This ability to personalize and adapt helps alleviate information overload, significantly improving the user experience by delivering timely and contextually appropriate recommendations. While traditional recommender systems were once more limited in their capabilities, they have greatly improved over time with advancements in AI, leading to more effective and personalized user experiences. AI-based recommender systems are now integral to many businesses across various sectors, using advanced techniques such as machine learning, deep learning, and natural language processing (NLP) to analyze user data and enhance customer satisfaction. Table 1 compares traditional recommender systems and AI-enhanced ones, highlighting the evolution of these technologies in improving customer interactions.

Table 1: Comparison of Traditional and AI-Enhanced Recommender Systems

Aspect	Traditional Recommender Systems	AI-based Recommender Systems
Algorithm Type	Rule-based, collaborative filtering, content-based	Machine learning, deep learning, hybrid models
Data Processing	Uses explicit user ratings, historical data	Analyzes large volumes of implicit and explicit data (e.g., browsing behavior, reviews)
Personalization	Limited to predefined filters or simple patterns	Dynamic, real-time adaptation to individual user behavior
Adaptability	Static; does not evolve based on user behavior	Highly adaptive; learns and updates based on user interactions over time
Complexity	Simpler, easier to implement	Complex, requires significant computational resources
Contextual Relevance	Limited to past interactions and static preferences	Highly context-aware, adjusting based on changing user needs, preferences, and trends
Accuracy of Recommendations	Lower accuracy, especially with sparse or new data	Higher accuracy, leveraging deep learning and pattern recognition
Scalability	Struggles with scalability for large datasets	Scalable, capable of handling vast amounts of user data across various platforms

Table 2 highlights a selection of companies and the AI-based recommender systems they use to personalize and streamline customer interactions. As shown in the table, companies leveraging AI-based recommender systems span various industries, including social networks, online retail, and content providers, among others. These systems play a crucial role in reducing information overload by curating personalized suggestions from vast datasets. For instance, they recommend movies and TV shows tailored to user preferences and viewing history, cutting through the overwhelming array of options. They suggest products by analyzing purchase history, browsing behavior, and product features, enabling users to quickly find what they need. Similarly, music platforms reduce the complexity of choice by recommending albums and playlists based on listening history and preferences.

Table 2: Prominent Companies Using Recommender Systems

Compan y	Service Type	Recommender Type	Task for Recommender Systems
Netflix	Streaming Media	Collaborative Filtering	Recommend movies and TV shows based on user preferences and viewing history
Amazon	E-commerce	Collaborative Filtering, Content-Based	Suggest products based on purchase history, browsing behavior, and product features
Spotify	Music Streaming	Collaborative Filtering, Content-Based	Recommend music, albums, and playlists based on listening history and preferences
YouTube	Video Sharing	Collaborative Filtering, Content-Based	Suggest videos based on user watch history, preferences, and trending content
Faceboo k	Social Media	Collaborative Filtering, Content-Based	Recommend posts, groups, and pages based on user activity and interests
Twitter	Social Media	Collaborative Filtering, Content-Based	Suggest tweets, accounts to follow, and trends based on user behavior
LinkedIn	Professional Networking	Collaborative Filtering, Content-Based	Recommend jobs, connections, and content based on professional interests and activity
Pinterest	Social Media	Content-Based, Hybrid	Recommend pins, boards, and products based on visual and behavioral preferences
Google	Search Engine & Ads	Collaborative Filtering, Content-Based	Suggest search results, ads, and products based on search history and preferences

		Collaborative	Recommend	propert	ies	and
Airbnb	Accommodatio	Filtering,	experiences	based	on	user
	n	Content-Based	preferences ar	nd booking	g his	tory

One of the most significant contributions of AI-powered recommendation systems is the improvement in decision-making quality. Customers often struggle to evaluate numerous alternatives, leading to suboptimal purchasing decisions. AI systems improve decision quality by delivering highly relevant suggestions based on user preferences, product attributes, and peer feedback (Huseynov, 2020; He et al., 2024; Gangadharan et al., 2024). These systems leverage advanced algorithms to process vast amounts of data, enabling users to make well-informed choices in a fraction of the time it would take manually. For example, Netflix's recommender system evaluates factors such as viewing history, genre preferences, and even time of day to provide personalized content suggestions. Similarly, Amazon's recommendation engine analyzes browsing behavior, purchase history, and customer reviews to suggest products that closely align with user interests. In addition to simplifying choices, these systems instill greater confidence in customers. Studies have shown that products selected with the help of recommender systems are more likely to align with customer expectations and preferences, leading to increased satisfaction (Huseynov, 2020). AI-powered systems also mitigate the effects of decision fatigue by narrowing the range of choices presented to users, which improves their focus on highquality options. Schnabel et al. (2016) explored the use of shortlists as an interface component in recommender systems to support user decision-making and enhance recommendation quality. A shortlist serves as a temporary collection of items that users are actively considering, reducing cognitive load by acting as digital short-term memory. Additionally, the process of adding items to the shortlist generates implicit feedback, which improves recommendation algorithms without requiring explicit user input. The study, conducted using a movie recommendation setup, revealed that users made better decisions when shortlists were available and showed a clear preference for interfaces with shortlist support. Furthermore, the additional implicit feedback generated during shortlist interactions significantly improved the quality of recommendations, nearly doubling their effectiveness.

AI systems continuously refine their recommendations through feedback loops, ensuring that suggestions remain relevant as user preferences evolve (Tatineni, 2020). This adaptive capability enhances the decision-making process by maintaining timely, accurate, and personalized recommendations. The impact of AI-powered recommender systems goes beyond individual customers, benefiting businesses by fostering trust and long-term loyalty. As customers

consistently experience high-quality decision outcomes, their reliance on and satisfaction with these systems grow, reinforcing AI's role as an essential tool in modern consumer engagement. This enhanced decision-making experience not only increases customer satisfaction but also strengthens loyalty. With each interaction, users gain confidence in the system, leading to repeat engagements and reducing the likelihood of churn. Over time, this sustained trust and satisfaction cultivate a loyal customer base, offering businesses a competitive advantage and supporting long-term growth.

Chatbots and Virtual Assistants

AI-driven chatbots and virtual assistants are increasingly employed in e-commerce to enhance customer interactions and streamline service operation. The primary objective of utilizing these AI technologies is to provide instant, ondemand support to customers, which helps in improving overall customer experience and engagement (Rahevar & Darji, 2024; Uddin et al., 2024; Li & Wang, 2023). By automating responses and handling routine inquiries, chatbots and virtual assistants allow businesses to focus on more complex customer service issues, thus optimizing resource allocation.

Chatbots and virtual assistants in e-commerce utilize AI technologies (Wang et al., 2023; Sidlauskiene et al., 2023) to facilitate conversational and context-aware interactions. These technologies empower chatbots to understand user queries and provide accurate, coherent responses, continuously improving through data-driven learning and contextual analysis.

The integration of AI-driven chatbots and virtual assistants in e-commerce platforms offers multiple advantages (Rani et al., 2024; Gupta et al., 2024; Tamara et al., 2023). First and foremost, automating customer service tasks with AI drastically reduces response times, enabling customers to receive instant support. During peak periods, such as sales events or holidays, chatbots manage thousands of interactions simultaneously without compromising service quality, and ensure scalability and consistent performance.

Additionally, AI-driven chatbots and virtual assistants bring a layer of personalization that was previously unattainable with traditional customer service methods. By analyzing historical interaction data, these intelligent systems can personalize conversations and make recommendations that are tailored to individual customer preferences, significantly enhancing customer satisfaction. This capability makes shopping experiences more engaging and also helps retain customers over time.

Furthermore, AI reduces the workload on human agents by handling routine tasks, and allows teams to focus on complex, high-priority issues that require human expertise. This operational shift improves service quality while significantly lowering costs, as businesses rely less on large customer support teams. These efficiencies and enhancements underline the strategic importance of integrating AI-driven solutions for improving service delivery and operational performance in e-commerce.

Several high-profile e-commerce platforms have successfully integrated AI-driven chatbots and virtual assistants, as discussed below:

H&M's Personal Stylist: H&M's integration of a fashion advice chatbot represents a significant advancement in the use of AI in the retail sector (Master of Code Global, 2021; Chatbot Guide, 2024). Deployed on messaging platforms such as Kik, which boasts over 300 million users, the chatbot interacts with customers to gather information about their style preferences, desired looks, and occasions for which they are shopping. To make the process more engaging, it incorporates visuals of clothing items and allows users to browse pre-existing outfits or participate in style polls, fostering interaction and community engagement. Leveraging ML and NLP, the chatbot analyzes this input alongside current fashion trends and customer data to deliver personalized outfit suggestions tailored to individual tastes. This approach simplifies decisionmaking for customers and enables them to find suitable clothing items quickly, while the chatbot's ability to remember user preferences facilitates retargeting with more refined recommendations in future interactions. By encouraging upselling and cross-selling opportunities, the chatbot increases average order value and exemplifies the transformative potential of AI to revolutionize customer engagement in the fashion retail industry.

Sephora's Personalized Beauty Advice: Sephora's integration of AI-powered chatbots exemplifies the innovative application of artificial intelligence in the beauty retail industry (Parsani, 2024; Chatbot Guide, 2024; Wang, 2021). The chatbot, available on platforms such as Facebook Messenger, acts as a virtual assistant providing personalized beauty advice and product recommendations tailored to individual preferences. By leveraging NLP, the chatbot engages customers in conversational interactions to understand their skin type, beauty goals, and product needs. It also integrates Augmented Reality (AR) technology, that allows users to virtually try on products, such as lipstick or eyeshadow, enhancing the online shopping experience. Additionally, Sephora's chatbot uses ML to analyze customer interactions and refine its recommendations over time, improving accuracy and personalization. This intelligent system simplifies product selection and also enhances customer satisfaction by offering a seamless, interactive shopping journey. Through its innovative use of AI, Sephora demonstrates how virtual assistants can transform customer engagement and drive sales in the highly competitive beauty retail market.

LEGO's Ralph: LEGO has revolutionized customer engagement with its AI-powered chatbot, Ralph, which is designed to provide personalized shopping assistance (Santa Ana, 2022; Master of Code Global, 2021; Clementson, 2017). Deployed on LEGO's website and mobile app, Ralph interacts with users to help them find the perfect LEGO set based on preferences such as age, interests, and budget. The chatbot understands conversational queries and guides customers through the product selection process with tailored recommendations. Ralph's ability to learn from customer interactions ensures continuous improvement in its responses and personalization capabilities. It also integrates seamlessly with LEGO's inventory system, and provides real-time updates on product availability and delivery timelines. By offering a hands-free and engaging shopping experience, Ralph reduces the decision-making effort for customers while boosting sales through targeted recommendations.

Trendyol's Virtual Assistant: As one of Türkiye's leading e-commerce platforms, Trendyol has implemented an advanced AI-driven virtual assistant, Trendyol Assistant, to enhance customer support and user satisfaction (Trendyol Tech., 2023). Available on the app and website, the virtual assistant handles inquiries such as order tracking, delivery status, and return processes in real-time. It continuously refines its responses by analyzing customer data, ensuring accurate and context-aware interactions. The assistant enables users to independently resolve issues through features like proactive delivery updates, self-service ticketing for complaints, and local language support, reducing reliance on live agents and lowering operational costs. Additionally, it integrates with Trendyol's personalized marketing system to provide tailored product recommendations based on user preferences and shopping history. This AI-powered solution demonstrates Trendyol's commitment to leveraging intelligent systems to improve accessibility, streamline operations, and enhance customer experiences in the competitive e-commerce market.

Yemeksepeti's Food Delivery Assistant: As Türkiye's leading online food delivery platform, Yemeksepeti has integrated an AI-powered chatbot into its mobile app and web platform to enhance customer interactions and streamline operations (Yemeksepeti, 2024). This chatbot assists users by tracking orders, resolving payment issues, and addressing frequently asked questions. It leverages ML and NLP to deliver accurate and context-aware responses in Turkish. By automating routine inquiries and significantly reducing wait times, particularly during peak hours, the chatbot improves customer satisfaction and operational efficiency. Additionally, it integrates with Yemeksepeti's backend systems to provide real-time updates on order statuses and delivery times while gathering valuable data to refine personalized recommendations and marketing strategies. This innovative application of AI highlights Yemeksepeti's commitment to

delivering seamless and scalable user experiences in the competitive food delivery sector.

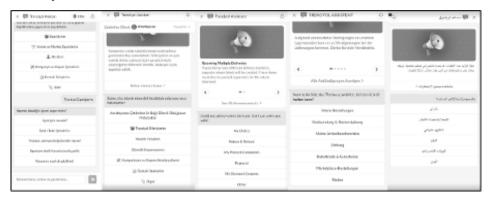


Figure 2: Trendyol Assistant (Source: Trendyol Tech., 2023)

Garanti BBVA's Ugi Virtual Assistant: Garanti BBVA, one of Türkiye's leading banks, has implemented a sophisticated AI-driven chatbot named Ugi to enhance its digital banking services (Garanti BBVA, 2024). Ugi is integrated into the bank's mobile app and website, providing 24/7 support for a wide range of customer needs. The chatbot responds to queries in Turkish, and assists customers with tasks such as checking account balances, transferring funds, managing credit card payments, and locating nearby ATMs. Ugi continuously improves its responses and can handle increasingly complex interactions over time. In addition to addressing routine banking needs, Ugi provides tailored financial advice and recommendations based on user behavior and transaction history, enhancing the overall customer experience. The integration of Ugi reduces the workload on call centers and also demonstrates Garanti BBVA's commitment to innovation and customer-centric digital transformation.

Dynamic Pricing Strategies

Dynamic pricing strategies, powered by AI, have fundamentally transformed the way businesses manage and optimize pricing models to remain competitive and responsive to market dynamics. These systems utilize advanced algorithms and machine learning techniques to analyze vast amounts of real-time data, including market trends, consumer behaviors, inventory levels, competitor pricing, and external factors such as seasonality or global events. By processing this data at unprecedented speeds, AI-driven pricing models allow businesses to adjust their prices dynamically, ensuring they maximize profitability while simultaneously meeting customer expectations (Gayam, 2021; Yin & Han, 2021; Smith et al., 2024). This approach not only empowers businesses to react swiftly to fluctuations in supply and demand but also enables predictive pricing by

forecasting future trends. For example, in the retail sector, dynamic pricing helps ensure optimal sales during peak seasons by balancing inventory levels and profit margins. Similarly, industries like travel and hospitality use dynamic pricing to offer competitive rates that reflect demand surges, such as during holidays or special events. Through these capabilities, AI-driven pricing models bridge the gap between business objectives and customer satisfaction, delivering tailored pricing solutions that resonate with individual purchasing behaviors and market conditions.

Table 3 showcases how AI-based dynamic pricing is utilized across various industries to optimize pricing strategies in real time. Companies like Amazon and Walmart in the e-commerce and retail sectors leverage AI to adjust product prices based on demand, inventory levels, and competitor analysis, ensuring competitiveness and profitability (Awais, 2024). Similarly, service-based industries such as ride-sharing (Uber) and hospitality (Airbnb) use dynamic pricing to respond to fluctuating demand, offering competitive rates during peak times or high-demand periods. In the travel industry, companies like Delta Airlines and Expedia dynamically set ticket and accommodation prices by analyzing booking patterns, market trends, and capacity. Streaming platforms like Netflix and delivery services such as Grubhub also benefit from AI-powered pricing strategies to personalize their offerings and manage operational efficiency. This table highlights the widespread adoption of AI-based pricing models, which enhance customer satisfaction while maximizing business outcomes.

Two critical aspects of AI-driven dynamic pricing include real-time pricing adjustments and the mutual benefits they bring to both businesses and consumers.

Real-time AI-powered pricing adjustments utilize advanced machine learning algorithms to analyze multiple factors, such as supply and demand fluctuations, competitor pricing, inventory levels, customer purchase behavior, and external conditions like seasonal trends or events (Agnihotri & Raj, 2024; Smith et al., 2024). These systems process and interpret vast amounts of data almost instantaneously, enabling businesses to set optimal prices that reflect the current market landscape. For instance, e-commerce platforms often employ AI to adjust product prices dynamically based on browsing patterns, purchase likelihood, and inventory levels. Similarly, industries like ride-sharing and travel rely on AI-powered pricing models to manage surge pricing during high-demand periods effectively. AI systems not only automate the pricing process but also refine their accuracy over time by learning from historical data and real-time customer interactions. This adaptability ensures that prices remain competitive while reflecting value to the consumer, fostering a seamless and personalized purchasing experience.

Table 3: Examples of Companies Leveraging AI-Based Dynamic Pricing Across Industries

Comp any	Sector	Purpose of Using AI-Based Dynamic Pricing	
Amazo n	E- commerce	To adjust product prices in real-time based on factors like inventory levels, demand, and competitor pricing.	
Uber	Ride- sharing	To implement surge pricing during peak demand periods optimizing driver availability and revenue.	
Airbnb	Hospitalit y	To recommend competitive pricing for listings by analyzing seasonal trends, booking patterns, and location.	
Walma rt	Retail	To dynamically optimize prices for products to star competitive and clear excess inventory efficiently.	
Expedi a	Travel	To offer competitive pricing for flights and accommodations by analyzing demand, booking windows, and trends.	
Netflix Streaming Services To experiment with subscription pricing models tailor user preferences and market competition.		To experiment with subscription pricing models tailored to user preferences and market competition.	
Grubh ub	Food Delivery	To balance delivery fees and menu prices dynamically based on restaurant demand and delivery driver availability.	
Delta Airline S Aviation S Aviation Aviation S Aviation S Aviation Aviation S		To adjust ticket prices in real-time based on booking patterns, flight capacity, and market conditions.	

AI-driven dynamic pricing offers significant advantages for both businesses and consumers. For businesses, it optimizes revenue generation by identifying and capitalizing on opportunities to adjust prices strategically (Kalusivalingam et al., 2020; Gayam, 2021; Huseynov, 2021). Dynamic pricing also helps manage inventory more efficiently, ensuring that products or services are neither overstocked nor underpriced. Moreover, AI systems enable predictive pricing models, allowing businesses to anticipate demand shifts and prepare accordingly. From a consumer perspective, dynamic pricing can enhance the shopping experience by offering personalized pricing tailored to individual preferences and behaviors (Kalusivalingam et al., 2020). Customers benefit from competitive pricing during periods of lower demand and access to exclusive deals or discounts driven by AI insights. Additionally, these systems promote transparency by aligning prices with real-time market conditions, making purchasing decisions more informed and satisfying. The symbiotic relationship fostered by AI-based

dynamic pricing strategies creates a win-win scenario: businesses gain the tools to maximize profitability and operational efficiency, while consumers enjoy a more tailored and rewarding shopping experience. As AI technologies continue to evolve, their role in dynamic pricing will undoubtedly become even more sophisticated, driving further innovation in commerce and customer engagement.

Fraud Detection and Security

Fraud detection and security have become critical priorities in the rapidly growing e-commerce industry. The sheer volume of transactions and the increasing sophistication of fraudulent schemes necessitate robust and adaptive solutions. AI-powered systems play a pivotal role in safeguarding e-commerce platforms by leveraging advanced algorithms to detect and prevent fraudulent activities in real time. AI employs various techniques, including machine learning, natural language processing (NLP), and anomaly detection, to identify fraudulent behavior (Abakarim et al., 2018; Najadat et al., 2020; Mutemi & Bacao, 2024). Machine learning models, trained on historical transaction data, can identify patterns associated with fraudulent activities, such as unusual purchasing behavior, multiple failed login attempts, or deviations from typical spending habits. NLP is used to analyze user communication, such as email or chat messages, to detect phishing attempts or scam-related content. Anomaly detection systems flag irregularities that deviate significantly from established patterns. For instance, an unusually large purchase from a new device or IP address may trigger an alert, prompting further investigation. These systems operate in real time, enabling e-commerce platforms to respond swiftly to potential threats. By continuously learning from new data, AI systems adapt to evolving fraud tactics, ensuring that security measures remain effective over time. Additionally, AI-driven fraud detection reduces the need for manual reviews, improving operational efficiency and reducing costs for businesses.

For consumers, these advancements foster trust in e-commerce platforms by providing a secure shopping experience. Customers are less likely to encounter fraudulent sellers or unauthorized transactions, enhancing their confidence in online shopping. Prominent e-commerce platforms have successfully implemented AI for fraud detection. For example, PayPal uses predictive analytics to detect and prevent fraud by monitoring transaction data for unusual patterns. This proactive approach reduces fraud losses and enhances security, building user trust (Komandla & Chilkuri, 2019). Amazon employs AI algorithms to identify fake reviews, counterfeit products, and account takeovers, safeguarding its marketplace and customers (Bansal et al., 2024; Aaron, 2024). Similarly, Shopify integrates AI-powered tools to help merchants monitor and mitigate fraudulent chargebacks (Usmani, 2023).

Table 4 highlights various artificial intelligence methods and their applications in identifying fraudulent activities across e-commerce platforms. It covers a range of techniques, including machine learning, deep learning, NLP, and image processing, each serving different purposes such as detecting anomalous behavior, identifying fake product listings, and analyzing transaction patterns. These AI-driven approaches help improve the accuracy and efficiency of fraud detection, allowing businesses to combat emerging fraud tactics and ensure a secure online shopping experience.

Table 4: AI Techniques for Fraud Detection in E-Commerce

Table 4: At Techniques for Fraud Detection in E-Commerce				
Technique	Application for Fraud Detection	Description		
Machine Learning (ML)	Fraudulent transaction detection; Behavior analysis	ML algorithms like decision trees, SVM, and random forests analyze transaction data, identifying patterns indicative of fraud.		
Deep Learning (DL)	Anomaly detection; Pattern recognition	Deep neural networks can learn complex patterns and behaviors from large datasets, identifying subtle fraudulent actions that traditional models might miss.		
Natural Language Processing (NLP)	Fake reviews detection; Phishing content detection	NLP can analyze product reviews, comments, or messages to detect suspicious or fraudulent content by understanding context and sentiment.		
Image Processing	Fraudulent product listing identification; Fake product images detection	Image recognition techniques can detect fake or altered images in product listings by comparing features with known legitimate images.		
Clustering Algorithms	Unusual buyer behavior analysis; Fraud group identification	Algorithms like k-means can group similar transactions, identifying outliers that deviate from normal buying behavior, potentially flagging fraudulent activity.		
Association Rule Learning	Identifying suspicious transaction patterns	Association rules can uncover relationships between different types of fraudulent activities, such as certain products being commonly involved in fraud.		
Anomaly Detection	Real-time fraud detection; Transaction flagging	Unsupervised algorithms can be used to identify transactions that deviate significantly from typical behavior, raising flags for potential fraud.		
Reinforcement Learning	Dynamic fraud detection; Adaptive fraud models	Reinforcement learning models continuously adapt to new fraud tactics by learning from their successes and failures in detecting fraud.		
Graph Analytics	Link analysis; Detecting fraud rings; Multi- account fraud	Analyzing relationships between users, transactions, and devices can reveal networks of fraudsters, such as interconnected accounts engaging in coordinated fraud.		

Optical Character Recognition (OCR)	Fake document detection; Identity theft prevention	OCR can be used to analyze uploaded documents (e.g., ID proofs) and verify their authenticity by checking for discrepancies or signs of tampering.
--	--	--

Inventory and Supply Chain Optimization

The integration of AI in inventory and supply chain optimization plays a critical role in enhancing operational efficiency and enabling e-commerce platforms to respond effectively to market demands. The primary goals include reducing costs associated with inventory mismanagement, such as overstocking or understocking, and streamlining supply chain processes to ensure timely and reliable product delivery (Kondapaka, 2021; Sahu, 2021; Albayrak Unal et al., 2023). By optimizing these processes, AI maintains a balance between supply and demand, thus preventing revenue loss and minimizing capital tied up in excess inventory. This ensures that resources are allocated efficiently, ultimately supporting both operational agility and cost-effectiveness.

AI technologies in inventory and supply chain management enhance logistical precision and operational efficiency by leveraging advanced algorithms and data-driven approaches (Tang et al., 2023; Ma et al., 2024; Dunka, 2024). ML algorithms analyze historical sales data, market trends, and external factors like seasonal variations to predict demand and ensure accurate stock adjustments. Predictive analytics further complements this by forecasting potential disruptions and optimizing stock levels, effectively mitigating overstocking costs and lost sales from stockouts. For more complex supply chains, DL can analyze extensive datasets, such as global logistics metrics and supplier reliability, to support nuanced, data-driven decision-making that improves the overall supply chain network.

According to a survey of Gartner (2024), in addition to AI, generative AI has emerged as a top digital investment priority for supply chain leaders. Strong supplier relationships are essential for resilient supply chains, and Generative AI contributes by providing insights into negotiation strategies, contract management, and dispute resolution. Acting as a bridge for effective communication, it ensures transparency and collaboration between stakeholders, fostering mutual understanding and more efficient supply chain operations. This integration of AI technologies transforms supply chains into responsive and intelligent systems, achieving a level of accuracy and adaptability beyond human capabilities.

The implementation of AI in inventory and supply chain management brings significant benefits to e-commerce operations, fundamentally transforming how businesses manage their logistics and stock (Dwivedi, 2024; Pasupuleti et al.,

2024; Khedr, 2024). AI's predictive capabilities ensure optimal inventory levels to meet customer demand while minimizing holding costs and stockouts, which directly impacts profit margins. Automated data analysis and decision-making processes reduce human error, and ensure accurate and timely fulfillment of customer orders, thereby bolstering reliability and customer satisfaction.

Moreover, AI enhances scalability in supply chain operations. As businesses grow, managing increasingly complex logistics becomes more challenging. AI systems adapt seamlessly to expanded operations, and handle higher volumes and complexities without requiring proportional increases in human resources. This scalability makes AI a valuable tool for businesses planning to expand their market reach or product offerings.

Lastly, AI's impact extends to customer satisfaction. By ensuring products are consistently available and delivered promptly, AI enhances the shopping experience, builds customer loyalty, and encourages repeat business. In today's competitive e-commerce landscape, the ability to consistently meet customer expectations with efficiency and reliability can set a business apart, making AI a vital tool in modern inventory and supply chain management.

Several companies have successfully integrated AI-driven inventory and supply chain management systems to achieve significant operational improvements:

Amazon's AI-driven Supply Chain: For operational excellence, Amazon has transformed its inventory and supply chain management through the integration of AI and automation technologies. The company utilizes sophisticated predictive analytics systems and ML algorithms to analyze vast datasets, including customer demand, seasonal trends, and external factors such as weather conditions, economic indicators. This approach enables Amazon to forecast demand with exceptional accuracy, optimizing inventory levels to minimize both overstocking and stockouts. As reported by Krause (2024) from CDO TIMES Research, these advancements have significantly improved Amazon's inventory turnover rate, increasing from 8.2 in 2019 to 8.9 in 2023 as shown in Figure 3. In its fulfillment centers, Amazon employs AI-powered robotics, developed by Amazon Robotics (formerly Kiva Systems), to automate warehouse operations. These robots efficiently retrieve, sort and transport items, which significantly reduce processing times from hours to mere minutes. This technology, combined with AI-enhanced delivery networks, has also contributed to faster delivery times, with average delivery times decreasing from 3.5 days in 2019 to 2.8 days in 2023 as shown in Figure 3 (Krause, 2024). Amazon's AI systems optimize shipping routes and identify potential logistical bottlenecks, ensuring timely deliveries even during high-demand periods such as Black Friday and Prime Day. By embedding AI across its supply chain operations, Amazon achieves operational

efficiency and provides a seamless customer experience, maintaining its position as a leader in the e-commerce industry.

Alibaba's Smart Logistics: As a global e-commerce giant, Alibaba has harnessed the power of AI and big data to revolutionize its supply chain management, particularly through its Cainiao logistics network (Alibaba Cloud, 2024). This advanced system integrates ML and big data analytics to manage Alibaba's vast operations, even during high-demand periods like the Double 11 Global Shopping Festival. Predictive analytics enable Cainiao to forecast delivery volumes, optimize warehouse operations, and plan shipping routes with exceptional precision, ensuring seamless logistics performance under extreme order surges. In warehouses, AI-powered automation reduces manual processes, enhances accuracy, and increases operational speed. The system also utilizes real-time logistics data to detect potential disruptions and reroute deliveries, effectively minimizing delays. For end-users, AI-driven tools provide accurate delivery timelines, live tracking updates, and improved reliability. By leveraging AI technologies, Alibaba has set a new standard in supply chain efficiency, demonstrating the transformative potential of intelligent systems.

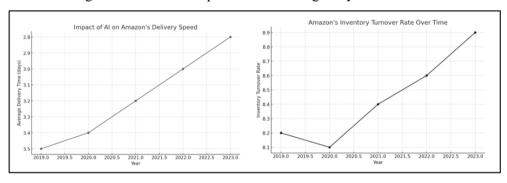


Figure 3: Impact of AI on Amazon's Supply Chain Operations (Source: Krause, 2024)

Walmart's Route Optimization: Walmart has revolutionized supply chain management by utilizing AI-powered logistics technologies, and now it is extending these innovations to other businesses through its Software as a Service (SaaS) offering, Route Optimization, under Walmart Commerce Technologies (Walmart, 2024). This award-winning tool, recognized with the Franz Edelman Award in 2023, enhances supply chain efficiency by optimizing driving routes, trailer packing, and inventory management. Within Walmart's operations, Route Optimization eliminated 30 million unnecessary miles, bypassed 110,000 inefficient routes, and avoided 94 million pounds of CO² emissions. Key features include AI-driven route mapping that ensures timely deliveries, optimal trailer packing to maximize space while maintaining product quality, and dynamic adjustments based on real-time traffic and weather patterns. It also supports

backhaul planning to minimize empty trailer trips and provides insights on trailer usage and trip metrics. By sharing this technology, Walmart helps businesses improve logistics, reduce environmental impact, and enhance customer service, demonstrating its leadership in sustainable supply chain solutions.

Zara's AI-driven Supply Chain: As a leader in the fast fashion industry, Zara has also revolutionized its supply chain management with AI technologies in order to respond swiftly to market trends and consumer demands (Li et al., 2024; Cao, 2024). By employing ML algorithms and predictive analytics, Zara analyzes real-time sales data, customer preferences, and emerging trends from platforms like social media. This enables precise demand forecasting and timely production adjustments, and ensures that inventory aligns with the latest fashion styles. The company's supply chain efficiency is further enhanced through AI-driven inventory allocation, optimizing product distribution to stores based on local purchasing behavior. Zara also employs smart systems, such as microchipenabled security tags, for real-time inventory tracking and visibility across its supply chain. This integration minimizes overstock, reduces outdated inventory, and enables Zara to update collections multiple times a week, which meets customer demand for fresh styles.

IKEA's Sustainable Supply Chain: IKEA has transformed its supply chain operations by integrating AI to enhance efficiency, reduce costs, and minimize environmental impact (Mehl, 2024). AI-powered tools are utilized to optimize truck loading, ensuring maximum space utilization while reducing logistics expenses. Additionally, AI algorithms support IKEA's stores, which now function as delivery centers, by determining the most efficient shipping methods based on cost and sustainability goals. Advanced inventory management technologies, including drones, are employed to monitor stock levels across warehouses, while autonomous mobile robots streamline picking and packing processes in distribution centers. These innovations not only improve operational efficiency but also support IKEA's commitment to sustainability by reducing emissions and waste. Ethical considerations are integral to IKEA's AI strategy, with a comprehensive digital ethics policy guiding the implementation of transparent and responsible AI solutions (Mehl, 2024). These advancements highlight how AI can revolutionize supply chain management in the modern retail landscape while fostering enhanced customer satisfaction and upholding environmental sustainability.

CHALLENGES AND LIMITATIONS OF ALIN E-COMMERCE

While AI holds transformative potential for e-commerce, its implementation comes with significant challenges and limitations (Figure 4). Businesses integrating AI solutions often encounter several key issues, including high implementation costs and technical barriers, privacy concerns and ethical

dilemmas, dependence on quality data, and the risk of over-reliance on automation. Addressing these obstacles is essential to fully realize the benefits of AI while ensuring ethical and practical integration into e-commerce operations.

High implementation costs and technical barriers are among the key issues businesses face when adopting AI in e-commerce. Adopting AI requires significant investment in technology infrastructure, skilled personnel, and ongoing maintenance, making it a resource-intensive endeavor (Sinha, 2024; Bidollahkhani & Kunkel, 2024). Building and maintaining AI systems often involve procuring advanced hardware, cloud services, and software tools, which can be prohibitively expensive. Small and medium-sized enterprises (SMEs), in particular, frequently face challenges in securing the financial resources needed to implement and sustain AI technologies, limiting their ability to compete with larger organizations that have more substantial budgets. Moreover, the technical complexity of deploying AI systems poses additional hurdles. Training machine learning models requires expertise in data science and AI development, which may not be readily available within many organizations (Davenport, 2018). Businesses often need to hire or upskill specialized personnel to design, train, and manage AI solutions effectively. Furthermore, integrating AI systems with existing e-commerce platforms and workflows can be challenging, as it demands seamless compatibility with legacy systems, real-time data processing, and scalability. These technical and financial barriers can slow down or hinder the adoption of AI in e-commerce, particularly for businesses with limited resources or technical expertise.

Privacy concerns and ethical dilemmas form another major challenge in adopting AI within e-commerce (Youssef & Hossam, 2023). AI systems frequently depend on collecting and analyzing vast amounts of customer data, ranging from browsing behavior and purchase history to personal preferences and demographic information. While this data is crucial for powering accurate predictions and recommendations, it also raises significant concerns about privacy and potential misuse. Customers are increasingly wary of how their data is collected, stored, and shared, which can lead to trust issues if businesses fail to be transparent. Governments and regulatory bodies worldwide have implemented stringent data protection laws to address these concerns. These regulations emphasize safeguarding user information and require businesses to obtain explicit consent, ensure data security, and provide options for users to control their data. Non-compliance can result in severe legal and financial consequences, as well as reputational damage. Beyond privacy, ethical challenges also emerge. AI models can unintentionally reinforce biases present in the training data, leading to unfair or discriminatory outcomes. For instance, biased recommendations or pricing discrepancies may alienate certain customer groups.

Additionally, a lack of transparency in how AI systems make decisions can undermine customer trust, as users may feel uneasy about "black box" algorithms influencing their shopping experience. Addressing these challenges requires a commitment to ethical AI practices, robust data governance, and transparent communication with users.

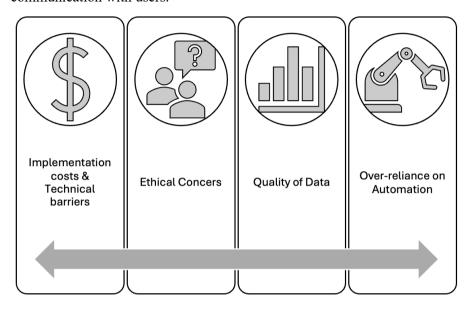


Figure 4: Challenges and Limitations of AI in E-commerce

Dependence on quality data is another significant challenge in adopting AI for e-commerce. The effectiveness of AI systems is directly tied to the quality and quantity of the data they are trained on (Budach et al., 2022; Zha et al., 2023). High-quality data ensures that AI algorithms can make accurate predictions, generate meaningful insights, and provide personalized recommendations (Deekshith, 2021). However, data that is inaccurate, incomplete, outdated, or biased can result in flawed outputs, leading to poor customer experiences, reduced trust, and missed business opportunities. For instance, biased data may disproportionately favor certain customer segments, while incomplete data could cause AI systems to overlook critical patterns or trends. Ensuring consistent data quality requires businesses to invest in robust data collection, cleaning, and validation processes. This can be particularly challenging in e-commerce, where data is often sourced from multiple channels, including website interactions, mobile apps, social media, and third-party vendors. Integrating and harmonizing these disparate datasets demands both technical expertise and continuous oversight. Additionally, businesses must address data gaps, especially when entering new markets or dealing with underrepresented customer groups. Overcoming these challenges not only improves the performance of AI systems

but also helps build customer trust by delivering relevant and reliable recommendations. Establishing clear data governance policies and leveraging tools for real-time data quality monitoring can help businesses mitigate these risks effectively.

The final challenge to consider is the risk of over-reliance on automation in AI systems. While AI can significantly streamline processes, enhance efficiency, and reduce operational costs, excessive dependence on automation may have unintended consequences (Nagar, 2018; Al-Naseri, 2021; Abdelwanis et al., 2024). One key issue is the reduction of human oversight, which can lead to missed nuances in customer interactions and a lack of personalized service. Customers may feel disconnected or frustrated if they are repeatedly guided through automated responses, especially when dealing with complex issues or seeking tailored recommendations. The personal touch that human employees bring to customer service is difficult to replicate by AI, and its absence can negatively impact customer satisfaction and loyalty. Furthermore, overreliance on AI systems leaves businesses vulnerable to unforeseen challenges. AI models are trained on historical data, and if market conditions change suddenly or if AI systems encounter new, previously unseen situations, they may struggle to adapt quickly. For instance, AI systems may not be able to respond effectively during times of crisis or to unexpected consumer behavior shifts. In such cases, businesses may find themselves ill-equipped to handle issues without human intervention. Balancing automation with human expertise is crucial to ensuring that AI serves as an augmentation to, rather than a replacement for, human decision-making, especially in unpredictable environments.

Addressing these challenges requires a balanced approach that combines technological advancement with ethical considerations, robust data practices, and an understanding of AI's limitations. Businesses must prioritize transparency and ethical AI development, ensuring that systems are designed to be fair, unbiased, and accountable. Additionally, ongoing investment in data governance is essential to maintain the integrity and accuracy of the data used to train AI models. By continually monitoring and evaluating AI performance, businesses can mitigate risks associated with over-reliance on automation and ensure that human oversight remains a key component of decision-making processes. This holistic approach enables companies to leverage the full potential of AI while minimizing its risks and maximizing its long-term benefits.

CONCLUSIONS AND FUTURE TRENDS

The transformative impact of AI on e-commerce is undeniable. It is changing how businesses interact with customers, streamline operations, and drive growth in an increasingly competitive market. This chapter explored key applications of AI in e-commerce, including enhancing customer interactions through chatbots

and virtual assistants, optimizing supply chains with predictive analytics and robotics, and personalizing shopping experiences with advanced recommendation systems. Additionally, it addressed dynamic pricing strategies, fraud detection, and the challenges of implementing AI, providing a comprehensive view of both its potential and complexities.

As the industry evolves, several emerging trends and future directions are set to shape the next wave of advancements in e-commerce platforms. These developments promise to redefine how businesses operate and interact with their customers, paving the way for more innovative, efficient, and engaging online shopping experiences. Some potential future trends in e-commerce are outlined below:

- Integration of AI with Internet of Things (IoT), Augmented Reality (AR) and Virtual Reality (VR) to deliver immersive, personalized shopping experiences and enable smarter inventory management by utilizing connected devices and advanced visualization technologies.
- Autonomous Delivery Systems and Robotics to revolutionize logistics operations, ensure faster and more efficient deliveries through AIpowered drones, autonomous vehicles, and warehouse robotics.
- AI-Driven Sustainable Systems to leverage advanced algorithms that
 minimize waste, optimize resource utilization, and integrate ecofriendly practices across supply chain operations, product design, and
 delivery logistics, fostering a greener and more sustainable ecommerce ecosystem.
- Predictive Consumer Behavior Profiling to analyze customer preferences, purchasing habits, and emerging trends through advanced AI algorithms, enabling businesses to anticipate demand, tailor marketing strategies, and enhance product offerings.
- Hyper-Personalization of Customer Journeys to deliver highly tailored shopping experiences by leveraging real-time data and contextual insights, exceeding the capabilities of traditional recommendation systems.
- Conversational AI and Voice Commerce to enhance hands-free shopping experiences by utilizing AI-driven voice assistants and advanced NLP, and enabling seamless and personalized interactions.
- Integration of AI with Blockchain to transform security and transparency in transactions by combining blockchain's immutable ledger with AI's capabilities for real-time fraud detection, supply chain traceability, and trust-building in e-commerce operations.

These emerging trends highlight the immense potential of AI to drive innovation and redefine the boundaries of e-commerce. As businesses adopt these advancements, AI combined with new technologies will create a more efficient, personalized, and sustainable future for e-commerce.

REFERENCES

- Aaron, W. (2024, November 19). Anomaly and fraud detection in AWS Using Machine Learning, Artificial Intelligence and data... Medium. https://medium.com/@waaron.icloud/anomaly-and-fraud-detection-in-aws-using-machine-learning-artificial-intelligence-and-data-5f3a47d8ef33
- Abakarim, Y., Lahby, M., & Attioui, A. (2018, October). An efficient real time model for credit card fraud detection based on deep learning. In Proceedings of the 12th international conference on intelligent systems: theories and applications (pp. 1-7).
- Abdelwanis, M., Alarafati, H. K., Tammam, M. M. S., & Simsekler, M. C. E. (2024). Exploring the risks of automation bias in healthcare artificial intelligence applications: A Bowtie analysis. Journal of Safety Science and Resilience.
- Agnihotri, A., & Raj, I. I. (2024, June). Advanced Deep Reinforcement Learning Framework for Dynamic Pricing Optimization in E-commerce Marketplaces. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
- Albayrak Unal, Ö., Erkayman, B., & Usanmaz, B. (2023). Applications of artificial intelligence in inventory management: A systematic review of the literature. Archives of Computational Methods in Engineering, 30(4), 2605-2625.
- Alibaba Cloud (2024). Cainiao logistics: Enhancing global logistics with Alibaba Cloud. Alibaba Cloud. Retrieved December 21, 2024, from https://www.alibabacloud.com/en/customers/cainiao-logistics
- Al-Naseri, N. (2021). The Role of Human Oversight in Al-Driven FinTech. Australian Journal of Machine Learning Research & Applications, 1(1), 297-317.
- Al-Surmi, A., Bashiri, M., & Koliousis, I. (2022). AI based decision making: combining strategies to improve operational performance. International Journal of Production Research, 60(14), 4464-4486.
- Awais, M. (2024). Optimizing Dynamic Pricing through AI-Powered Real-Time Analytics: The Influence of Customer Behavior and Market Competition. Qlantic Journal of Social Sciences, 5(3), 99-108.
- Ayemowa, M. O., Ibrahim, R., & Khan, M. M. (2024). Analysis of recommender system using generative artificial intelligence: A systematic literature review. IEEE Access.
- Babu, C. S., & Akshara, P. M. (2024). Revolutionizing conversational AI: unleashing the power of ChatGPT-Based applications in generative AI and natural language processing. In Advanced applications of generative AI and natural language processing models (pp. 228-248). IGI Global.

- Bansal, U., Bharatwal, S., Bagiyam, D. S., & Kismawadi, E. R. (2024). Fraud detection in the era of AI: Harnessing technology for a safer digital economy. In AI-Driven Decentralized Finance and the Future of Finance (pp. 139-160). IGI Global.
- Bartosz, K. (2022). Information Overload. The real problem or a temporary phenomenon of modern cultures, 1-10.
- Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in E-Commerce: a bibliometric study and literature review. Electronic markets, 32(1), 297-338.
- Bidollahkhani, M., & Kunkel, J. M. (2024). Revolutionizing System Reliability: The Role of AI in Predictive Maintenance Strategies. arXiv preprint arXiv:2404.13454.
- Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., ... & Harmouch, H. (2022). The effects of data quality on machine learning performance. arXiv preprint arXiv:2207.14529.
- Cai, Z., Liu, L., Chen, B., & Wang, Y. (2021). Artificial Intelligence: From Beginning to Date.
- Cao, J. (2024). Enabling ZARA's Operational Innovation and Value Creation with Artificial Intelligence. Advances in Economics, Management and Political Sciences, 86, 81-87.
- Chang, K. H. (2023). Natural Language Processing: Recent Development and Applications. Applied Sciences, 13(20), 11395.
- Chatbot Guide (2024). Your ultimate guide to chatbots and conversational AI. Retrieved December 21, 2024, from https://www.chatbotguide.org
- Cheok, A. D., Edirisinghe, C., & Shrestha, M. L. (2024). The Rise of Machines: Future of Work in the Age of AI. CRC Press.
- Chintala, S., & Thiyagarajan, V. (2023). AI-Driven Business Intelligence: Unlocking the Future of Decision-Making. ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume, 1, 73-84.
- Clementson, M. (2017). Bot review: LEGO's Ralph. Retrieved December 21, 2024, from https://medium.com/hutoma/bot-review-legos-ralph-b273bea9dd5f
- Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73-80.
- Deekshith, A. (2021). Data engineering for AI: Optimizing data quality and accessibility for machine learning models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.

- Dunka, V. (2024). Enhancing Supply Chain Management with AI: Advanced Methods for Inventory Optimization, Demand Forecasting, and Logistics. Distributed Learning and Broad Applications in Scientific Research, 10, 431-471.
- Dwivedi, D. N. (2024). The use of artificial intelligence in supply chain management and logistics. In Leveraging AI and Emotional Intelligence in Contemporary Business Organizations (pp. 306-313). IGI Global.
- Fedorko, R., Kráľ, Š., & Bačík, R. (2022, July). Artificial intelligence in e-commerce: A literature review. In Congress on Intelligent Systems: Proceedings of CIS 2021, Volume 2 (pp. 677-689). Singapore: Springer Nature Singapore.
- Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126.
- Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277-304.
- Gangadharan, K., Malathi, K., Purandaran, A., Subramanian, B., & Jeyaraj, R. (2024). From Data to Decisions: The Transformational Power of Machine Learning in Business Recommendations. arXiv preprint arXiv:2402.08109.
- Garanti BBVA (2024). Smart Assistant Ugi: A new generation experience in digital banking. Retrieved December 21, 2024, from https://www.garantibbva.com.tr/en/digital-banking/smart-assistant-ugi
- Gartner (2024). Gartner survey shows AI and generative AI top digital supply chain investment priorities. Retrieved December 21, 2024, from https://www.gartner.com/en/newsroom/press-releases/2024-10-30-gartner-survey-shows-ai-and-generative-ai-top-digital-supply-chain-investment-priorities
- Gayam, S. R. (2021). Artificial Intelligence in E-Commerce: Advanced Techniques for Personalized Recommendations, Customer Segmentation, and Dynamic Pricing. Journal of Bioinformatics and Artificial Intelligence, 1(1), 105-150.
- Gupta, C. P., Kumar, V. R., & Khurana, A. (2024, February). Artificial Intelligence Application in E-Commerce: Transforming Customer Service, Personalization and Marketing. In 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 10-16). IEEE.
- He, X., Liu, Q., & Jung, S. (2024). The impact of recommendation system on user satisfaction: A moderated mediation approach. Journal of Theoretical and Applied Electronic Commerce Research, 19(1), 448-466.

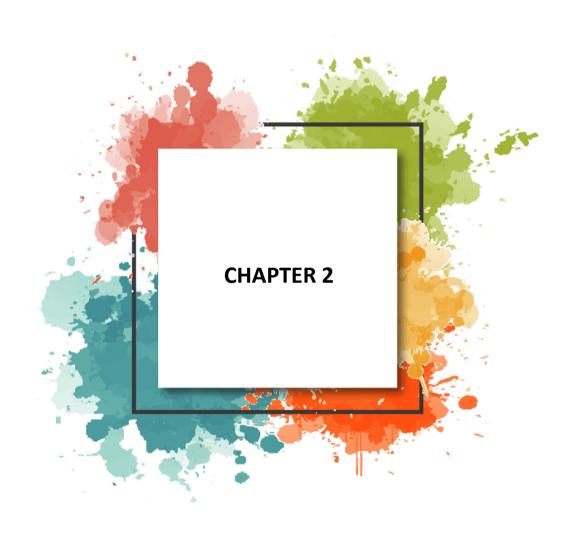
- Huseynov, F. (2020). Intelligent recommender systems in e-commerce: Opportunities and challenges for online customers. Handbook of Research on IT Applications for Strategic Competitive Advantage and Decision Making, 36-51.
- Huseynov, F. (2021). Big data in business: Digital transformation for enhanced decision-making and superior customer experience. In Disruptive Technology and Digital Transformation for Business and Government (pp. 235-249). IGI Global.
- Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2020). Leveraging Reinforcement Learning and Bayesian Optimization for Enhanced Dynamic Pricing Strategies. International Journal of AI and ML, 1(3).
- Khedr, A. M. (2024). Enhancing supply chain management with deep learning and machine learning techniques: A review. Journal of Open Innovation: Technology, Market, and Complexity, 100379.
- Khrais, L. T. (2020). Role of artificial intelligence in shaping consumer demand in E-commerce. Future Internet, 12(12), 226.
- Komandla, V., & Chilkuri, B. (2019). AI and Data Analytics in Personalizing Fintech Online Account Opening Processes. Educational Research (IJMCER), 3(3), 1-11.
- Kondapaka, K. K. (2021). AI-Driven Inventory Optimization in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications. Journal of Bioinformatics and Artificial Intelligence, 1(1), 377-409.
- Krause (2024). CDO Times Research, Case study: Amazon's AI-driven supply chain A blueprint for the future of global logistics. Retrieved December 21, 2024, from https://cdotimes.com/2024/08/23/case-study-amazons-ai-driven-supply-chain-a-blueprint-for-the-future-of-global-logistics
- Li, M., & Wang, R. (2023). Chatbots in e-commerce: The effect of chatbot language style on customers' continuance usage intention and attitude toward brand. Journal of Retailing and Consumer Services, 71, 103209.
- Li, R., Liu, W., & Zhou, S. (2024). Digital Transformation of Supply Chain Management in the Fast Fashion Industry: A Case Study of Zara. In SHS Web of Conferences (Vol. 181, p. 04019). EDP Sciences.
- Ma, X., Zeyu, W., Ni, X., & Ping, G. (2024). Artificial intelligence-based inventory management for retail supply chain optimization: a case study of customer retention and revenue growth. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386, 3(4), 260-273.

- Mary Sowjanya, A., & Srividya, K. (2024). NLP-Driven Chatbots: Applications and Implications in Conversational AI. Conversational Artificial Intelligence, 713-725.
- Master of Code Global (2021). Conversational AI in e-commerce: 9 of the most successful chatbot examples. Medium. Retrieved December 21, 2024, from https://masterofcodeglobal.medium.com/conversational-ai-in-ecommerce-9-of-the-most-successful-chatbot-examples-89bc5e1569b3#:~:text=H%26M%20chatbot%20asks%20users%20a,help%20users%20answer%20style%20questions
- Mehl, B. (2024). AI's role in transforming IKEA's future. Retrieved December 21, 2024, from from https://medium.com/future-sights/ais-role-in-transforming-ikea-s-future-8ce44e1a255d
- Mutemi, A., & Bacao, F. (2024). E-Commerce Fraud Detection Based on Machine Learning Techniques: Systematic Literature Review. Big Data Mining and Analytics, 7(2), 419-444.
- Nagar, G. (2018). Leveraging Artificial Intelligence to Automate and Enhance Security Operations: Balancing Efficiency and Human Oversight. International Journal of Scientific Research and Management (IJSRM), 6(7), 78-94.
- Najadat, H., Altiti, O., Aqouleh, A. A., & Younes, M. (2020, April). Credit card fraud detection based on machine and deep learning. In 2020 11th International Conference on Information and Communication Systems (ICICS) (pp. 204-208). IEEE.
- Nalini, R. (2024). Transformative Power of Artificial Intelligence in Decision-Making, Automation, and Customer Engagement. In Complex AI Dynamics and Interactions in Management (pp. 189-208). IGI Global.
- Necula, S. C., & Păvăloaia, V. D. (2023). AI-Driven Recommendations: A Systematic review of the state of the art in E-Commerce. Applied Sciences, 13(9), 5531.
- Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610-2613.
- Parsani, P. (2024) Beauty and the bot: How Sephora reimagined customer experience with AI. Retrieved December 21, 2024, from https://www.cut-the-saas.com/ai/beauty-and-the-bot-how-sephora-reimagined-customer-experience-with-ai

- Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and sustainability through machine learning: Optimization techniques for logistics and inventory management. Logistics, 8(3), 73.
- Rahevar, M., & Darji, S. (2024). The Adoption of AI-Driven Chatbots into a Recommendation for E-Commerce Systems to Targeted Customer in The Selection of Product. International Journal of Management, Economics and Commerce, 1(2), 128-137.
- Rana, J., Gaur, L., Singh, G., Awan, U., & Rasheed, M. I. (2022). Reinforcing customer journey through artificial intelligence: a review and research agenda. International Journal of Emerging Markets, 17(7), 1738-1758.
- Rane, N., Choudhary, S., & Rane, J. (2024). Artificial Intelligence and Machine Learning in Business Intelligence, Finance, and E-commerce: a Review. Finance, and E-commerce: a Review (May 27, 2024).
- Rani, Y. A., Balaram, A., Sirisha, M. R., Nabi, S. A., Renuka, P., & Kiran, A. (2024, April). AI Enhanced Customer Service Chatbot. In 2024 International Conference on Science Technology Engineering and Management (ICSTEM) (pp. 1-5). IEEE.
- Roy, D., & Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal of Big Data, 9(1), 59.
- Sahu, M. K. (2021). Advanced AI Techniques for Optimizing Inventory Management and Demand Forecasting in Retail Supply Chains. Journal of Bioinformatics and Artificial Intelligence, 1(1), 190-224.
- Santa Ana, K. (2022). E-commerce chatbot: Everything you need to know. Acquire. Retrieved December 21, 2024, from https://www.acquire.io/blog/ecommerce-chatbot
- Schnabel, T., Bennett, P. N., Dumais, S. T., & Joachims, T. (2016, April). Using shortlists to support decision making and improve recommender system performance. In Proceedings of the 25th International Conference on World Wide Web (pp. 987-997).
- Sidlauskiene, J., Joye, Y., & Auruskeviciene, V. (2023). AI-based chatbots in conversational commerce and their effects on product and price perceptions. Electronic Markets, 33(1), 24.
- Sinha, S., & Lee, Y. M. (2024). Challenges with developing and deploying AI models and applications in industrial systems. Discover Artificial Intelligence, 4(1), 55.
- Smith, J., Sanchez, M., & Rossi, G. (2024). The Evolution of Pricing Models in E-Commerce: From Dynamic Pricing to AI-Driven Price Optimization. Business, Marketing, and Finance Open, 1(1), 40-51.

- Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54-70.
- Tamara, C. A. J., Tumbuan, W. J. A., & Gunawan, E. M. (2023). Chatbots in E-Commerce: a Study of Gen Z Customer Experience and Engagement–Friend or Foe?. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 11(3), 161-175.
- Tang, Y. M., Chau, K. Y., Lau, Y. Y., & Zheng, Z. (2023). Data-intensive inventory forecasting with artificial intelligence models for cross-border e-commerce service automation. Applied Sciences, 13(5), 3051.
- Tatineni, S. (2020). Recommendation Systems for Personalized Learning: A Data-Driven Approach in Education. Journal of Computer Engineering and Technology (JCET), 4(2), 18-31.
- Taye, M. M. (2023). Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers, 12(5), 91.
- Trendyol Tech. (2023). Better customer experience: Trendyol assistant journey. Medium. Retrieved December 21, 2024, from https://medium.com/trendyol-tech/better-customer-experience-trendyol-assistant-journey-659a5b1e84e1
- Uddin, M. N., Thiam Low, W., Afjalur Rahman, M., & Mokhtar, S. (2024, May). An Exploration of Millennials' Attitudes Towards the Use of Artificial Intelligence Chatbots for Customer Service within E-commerce Platforms. In Proceedings of the International Conference on Business, Management and Leadership (Vol. 1, No. 1, pp. 1-19).
- Usmani, H. (2023, April 11). The best of e-commerce: Exploring how shopify and ai are shaping the future of online retail in... Medium. https://medium.com/@hishamusmani/the-best-of-e-commerce-exploring-how-shopify-and-ai-are-shaping-the-future-of-online-retail-in-cbe5b452ed1a#detecting-fraudulent-transactions
- Walmart (2024). Walmart Commerce Technologies launches AI-powered logistics product. Retrieved December 21, 2024, from https://corporate.walmart.com/news/2024/03/14/walmart-commerce-technologies-launches-ai-powered-logistics-product
- Wang, A. (2021). Sephora and its beautybots. Medium. Retrieved December 21, 2024, from https://medium.com/marketing-in-the-age-of-digital/sophoraand-its-beautybots-f5d591fd5435
- Wang, C., Li, Y., Fu, W., & Jin, J. (2023). Whether to trust chatbots: Applying the event-related approach to understand consumers' emotional experiences in

- interactions with chatbots in e-commerce. Journal of Retailing and Consumer Services, 73, 103325.
- Yemeksepeti (2024). Yemeksepeti official website. Retrieved December 21, 2024, from https://www.yemeksepeti.com
- Yin, C., & Han, J. (2021). Dynamic pricing model of e-commerce platforms based on deep reinforcement learning. Computer Modeling in Engineering & Sciences, 127(1), 291-307.
- Youssef, H. A. H., & Hossam, A. T. A. (2023). Privacy issues in AI and cloud computing in e-commerce setting: A review. International Journal of Responsible Artificial Intelligence, 13(7), 37-46.
- Zha, D., Bhat, Z. P., Lai, K. H., Yang, F., Jiang, Z., Zhong, S., & Hu, X. (2023). Datacentric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158.
- Zhang, X., Guo, F., Chen, T., Pan, L., Beliakov, G., & Wu, J. (2023). A brief survey of machine learning and deep learning techniques for e-commerce research. Journal of Theoretical and Applied Electronic Commerce Research, 18(4), 2188-2216.
- Zhao, Z., Fan, W., Li, J., Liu, Y., Mei, X., Wang, Y., ... & Li, Q. (2023). Recommender systems in the era of large language models (llms). arXiv preprint arXiv:2307.02046.



Machine Learning-Based Decision Support System for Imbalanced Clinical Data: The Case of Acute Appendicitis

Kevser Şahinbaş¹ & Sevinç Gülseçen²

1. Introduction

Acute appendicitis (AA) is one of the most common surgical emergencies worldwide and ranks among the most frequently encountered surgical pathologies in emergency departments. Accurate diagnosis is crucial to prevent complications and avoid unnecessary surgical interventions. However, diagnostic difficulties lead to negative appendectomy in approximately 15–25% of patients, which poses risks to patient safety and imposes unnecessary costs on the healthcare system (Flum et al., 2008; Hale, 1997).

Although classical clinical examination, laboratory findings, and imaging techniques aid in diagnosis, they are not sufficient on their own. In particular, variability in clinical presentations among children, women, and elderly patients complicates diagnosis (Pieper, 1982). Therefore, there is a need for decision support systems that can learn from clinical data to assist physicians in making fast and accurate decisions.

Machine learning algorithms have recently emerged as powerful tools for enhancing diagnostic accuracy in clinical practice. However, the class imbalance problem—a situation where one class has significantly more samples than the other—is frequently encountered in healthcare data and can negatively affect the performance of classifiers (Chawla, 2004; Liu, 2009). Addressing the class imbalance problem can enhance the effectiveness of machine learning—based decision support systems in diagnosing acute appendicitis.

Among patients presenting with abdominal pain, acute appendicitis is the most common emergency condition, and appendectomy is widely recognized as a standard emergency surgical procedure worldwide (Andersson, 2007). Negative appendectomy, which refers to unnecessary surgery in cases with a healthy appendix, increases patient morbidity and health system burden. False-negative diagnoses may delay treatment, thereby increasing morbidity, mortality, and legal

ORCID: 0000-0001-8537-7111

¹ Assoc. Prof., Istanbul Beykent University, Faculty of Arts-Sciences, Department of Information Systems and Technologies, ORCID: 0000-0002-8076-3678

² Prof. Dr., Istanbul University, Department of Informatics

consequences (Yang et al., 2006). Studies have reported negative appendectomy rates ranging from 4% to 75% (Eskelinen et al., 1992; Munir et al., 2008; Seetahal et al., 2011). Among women of reproductive age, early surgical interventions can result in negative appendectomy rates of 20–30%, reflecting diagnostic challenges and false-positive surgical indications (DeKoning, 2016).

Clinical scoring systems are commonly used in diagnosing acute appendicitis. The Alvarado Score (Alvarado, 1986) is one of the most widely known diagnostic tools, but it provides only limited diagnostic accuracy when used alone. Studies have shown that laboratory findings and epidemiological factors play a significant role in diagnosis.

Machine learning methods are increasingly used in clinical decision support systems. Class imbalance is one of the most critical challenges in this field. Algorithms such as Synthetic Minority Oversampling Technique (SMOTE) can generate synthetic minority class samples, thereby addressing class imbalance and improving classification performance (Chawla, 2002). Moreover, the role of artificial intelligence and machine learning in clinical decision support systems is growing (Adlung, 2021).

This study aims is to determine the most accurate classification algorithm to distinguish acute appendicitis (AA) in patients presenting with abdominal pain and to develop a Decision Support System accordingly. Another objective is to evaluate the impact of class imbalance handling algorithms on the performance of data mining methods.

The contributions of this study can be summarized as follows: In this research, the Alvarado Score, which is commonly used in acute appendicitis diagnosis, was compared with machine learning algorithms. Among the models evaluated, the Support Vector Machine (SVM) algorithm achieved the highest accuracy in correctly classifying patients presenting with abdominal pain. By performing parameter optimization and incorporating age and gender variables in addition to the Alvarado Score, 100% accuracy was achieved using data from 1,454 patients. In addition, Random Oversampling (ROS) was applied to address class imbalance. A user interface was developed for the best-performing SVM algorithm, enabling a Decision Support System that can assist physicians in the diagnostic process. Furthermore, it was concluded that the Alvarado Score should be updated in light of the new critical values identified in this study. The importance of age and gender in acute appendicitis diagnosis was also analyzed, and the contribution and ranking of these variables were evaluated.

In this context, addressing class imbalance in acute appendicitis diagnosis and developing machine learning-based decision support systems are of great

importance for improving diagnostic accuracy and reducing negative appendectomy rates.

2. Literature Review

This section provides an overview of the current approaches and a brief summary of the literature on acute appendicitis.

Diagnosing acute appendicitis is a clinical challenge due to its complexity and the need for rapid decision-making. It has been reported that the accuracy of clinical diagnosis of acute appendicitis is 78% in men and 58% in women (Pieper, Keger & Niisman, 1982). The negative laparotomy rate for AA has been reported to range between 4% and 75% (Eskelinen & Lipponen, 1992).

Machine learning has significantly contributed to modern clinical decision-making processes. Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN) are commonly applied supervised classification methods in complex clinical scenarios (Hsieh, Lu, Lee & Li, 2011). Hsieh and colleagues proposed models for diagnosing acute appendicitis using Random Forest, Support Vector Machine, and Artificial Neural Network algorithms. Based on data from 180 patients, the Random Forest algorithm achieved the best performance with sensitivity, specificity, and positive and negative predictive values of 94%, 100%, 100%, and 87%, respectively (Hsieh, Lu, Lee & Li, 2011).

Several studies have employed Artificial Neural Networks to develop predictive models for diagnosing acute appendicitis, achieving varying levels of success (Eberhart, Dobbins & Hutton, 1991). Prabhudesai et al. developed an ANN model that achieved 100% sensitivity, 97% specificity, 96% positive predictive value, and 96% negative predictive value (Prabhudesai, Gould, Rekhraj, Glazer & Ziprin, 2008). In a study by Sakai et al., AUC analysis showed a moderate level of diagnostic performance for ANNs (Sakai, Kobayashi, Toyabe, Mandai & Akazawa, 2007).

3. Materials

To assess the risk of acute appendicitis, data on appetite loss, nausea/vomiting, pain migration, right lower quadrant tenderness, fever, and rebound pain—factors included in the Alvarado Score—were utilized. Laboratory findings such as WBC and NE% were incorporated numerically. Histopathological results were recorded as 0 (no diagnosis) and 1 (positive diagnosis), and age and gender were also included to assess their impact on classification.

The machine learning algorithms applied included Random Forest, Logistic Regression, Artificial Neural Networks, Support Vector Machine, Naive Bayes classifier, K-Nearest Neighbors, and Decision Tree. For imbalanced datasets, the

Random Oversampling method was applied. Stratified holdout validation was used to evaluate the algorithms. Performance metrics included accuracy, precision, recall, and F-measure values.

Figure 1 presents a schematic overview of the implementation process for the proposed model.

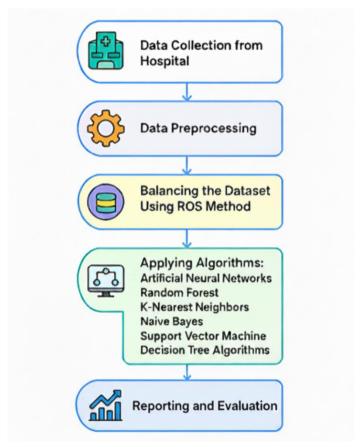


Figure 1. System Overview

4. Dataset

In this study, a retrospective dataset was used to support the diagnosis of acute appendicitis. Clinical data from 1,454 patients who underwent surgery with a preliminary diagnosis of acute appendicitis were collected from three different hospitals: Medipol Mega Üniversite Hastanesi (796 patients), Başkent Üniversitesi Tıp Fakültesi (74 patients), and İstanbul Esenyurt Necmi Kadıoğlu Devlet Hastanesi (584 patients).

The data were obtained retrospectively from anamnesis, physical examination findings, biochemistry test results, and epicrisis reports. Accordingly, 1,294 cases were classified as acute appendicitis positive (+) and 160 cases as negative (-).

Table 3. Attributes for Prediction

Category	Attribute Name	Data Type	Coding / Description
Independent Variables	Migration of pain to the lower right quadrant	Binary	1 = Yes, 0 = No
	Lack of appetite	Binary	1 = Yes, $0 = $ No
	Nausea / vomiting	Binary	1 = Yes, $0 = No$
	Sensitivity in the right lower quadrant	Binary	1 = Yes, 0 = No
	Rebound pain	Binary	1 = Yes, 0 = No
	Fever	Binary	$\geq 38 ^{\circ}\text{C} = 1 (\text{Yes}), < 38 ^{\circ}\text{C} = 0 (\text{No})$
	Leukocytosis (WBC)	Numerical	Continuous
	Neutrophil movement to the left (NE %)	Numerical	Continuous
	Age	Numerical	Continuous
	Gender	Binary	1 = Male, 0 = Female
Dependent Variable	Appendicitis Diagnosis	Binary	1 = Positive (AA+), 0 = Negative (AA-)

5. Methods

5.1. Imbalanced Dataset

In real-world settings, particularly in the healthcare domain, datasets used for diagnosing rare diseases are often far from perfect. Such data used for predictive modeling are usually imbalanced. Because encountering imbalanced datasets in real-world applications is highly likely, analyzing such data using machine learning methods has become an important research topic (Liu & Zhou, 2009).

One of the most prominent challenges in data mining is the issue of class imbalance. Since there was a clear imbalance between the classes in the dataset, the Random Oversampling (ROS) method (He & Garcia, 2009) was applied to address this issue. This method aims to improve classifier performance by

increasing the representation of the minority class. The operation of the ROS algorithm is illustrated in Figure 2.

5.2. Machine Learning Algorithms

Classification of the dataset was conducted using a variety of machine learning algorithms. Support Vector Machine (SVM) was selected as a powerful classifier capable of handling both linear and non-linear separations (Cortes & Vapnik, 1995). Artificial Neural Networks (ANN), inspired by the human brain, belong to a class of algorithms capable of learning complex relationships (Sargent, 2001). Logistic Regression (LR) is a widely used statistical method for binary classification problems (Dreiseitl & Ohno-Machado, 2002). Naive Bayes (NB) classifier is a probability-based algorithm that performs effectively, particularly on small datasets (Friedman, 1997). Random Forest performs classification using an ensemble of decision trees (Kulkarni & Harman, 2011), whereas K-nearest neighbors algorithm (KNN) classifies observations based on similarity measures between data points (Zhang, 2019).

Several metrics, including accuracy, recall, precision, and F-measure, were used to evaluate the performance of these algorithms (Han, Kamber & Pei, 2012). These evaluation criteria were selected to assess both the overall accuracy of the classifiers and their ability to correctly predict the minority class.

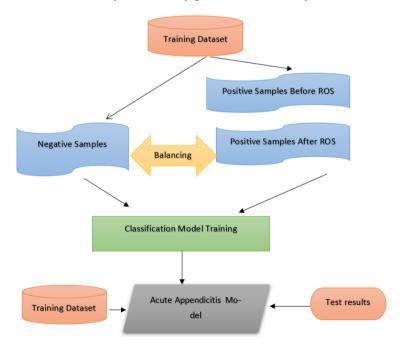


Figure 2. ROS Algorithm (Sun et al., 2018)

6. Acute Appendicitis and Alvarado Scoring

Approximately 10% of emergency department visits are related to abdominal pain, and the most common surgical cause among these cases is acute appendicitis (Addiss et al., 1990; Bhangu et al., 2015). Today, acute appendicitis is one of the most common surgical emergencies, and appendectomy is among the most frequently performed emergency surgical procedures worldwide (Humes & Simpson, 2006). Due to its prevalence, acute appendicitis affects approximately 7–12% of the general population (Bickell et al., 2006).

In the diagnostic process, the Alvarado score system is used, which is based on three symptoms, three clinical findings, and two laboratory parameters. This scoring system allows for a rapid and systematic evaluation of the likelihood of acute appendicitis (Alvarado, 1986). Table 1 presents these findings.

Table 2. Alvorado Scoring

Category	Findings	Sc	ore
Symptoms	Pain in the right lower quadrant	1	
	Loss of appetite	1	
	Nausea or vomiting	1	
Physical Examination Findings	Tenderness in the right lower quadrant	2	
	Rebound tenderness	1	
	Fever (≥37.3 °C)	1	
Laboratory Test Results	Leukocytosis (>10,000/mm³)	2	
	Neutrophilia (>70%)	1	
Total Score			10

7. Findings

A dataset consisting of 1454 patients was used in the study. Based on histopathological reports, 1294 patients were labeled as having acute appendicitis (0), and 160 patients were labeled as not having acute appendicitis (1).

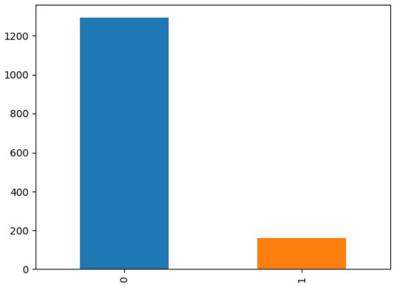


Figure 3. Class Distribution Histogram

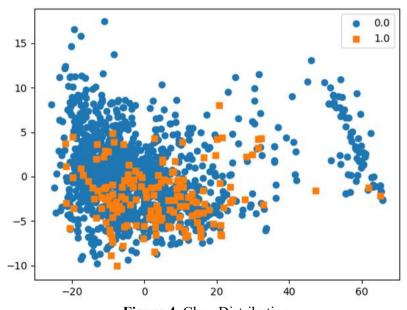


Figure 4. Class Distribution

The Random Over-Sampling (ROS) method is a technique aimed at balancing class distributions by randomly duplicating minority class samples to match the number of majority class samples. In this study, the minority class samples (labeled as 1, n = 160) were randomly oversampled to equal the number of majority class samples (labeled as 0, n = 1,294). While the original data distribution was $\{0: 1,294, 1: 160\}$, the resampled dataset achieved a balanced distribution of $\{0: 1,294, 1: 1,294\}$.

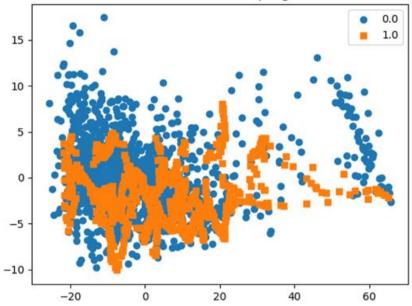


Figure 5. Random Oversampling Data Distribution

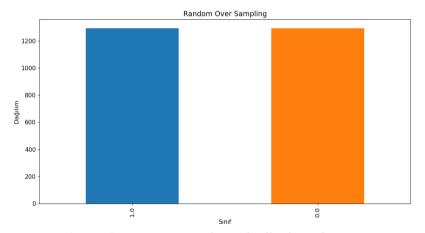


Figure 6. ROS Dataset Class Distribution Histogram

The Alvarado scoring system is traditionally a widely used clinical assessment tool for the diagnosis of acute appendicitis. However, its reliance solely on clinical and laboratory parameters may, in some cases, limit its diagnostic power. In this study, the model's discriminative ability was aimed to be enhanced by incorporating demographic variables, specifically age and gender, into the scoring system.

The findings indicate that considering age and gender provides significant contributions to the diagnosis of acute appendicitis. The literature emphasizes

that, particularly in pediatric and geriatric patient groups, clinical symptoms may present atypically, and gender differences (e.g., similar symptoms in women due to gynecological conditions) may lead to diagnostic challenges. In this context, integrating demographic variables into the Alvarado score has helped mitigate these limitations.

According to the analysis results, the age variable was found to improve specificity, especially in older age groups, while the gender variable effectively reduced false positives. Consequently, the model demonstrated a more balanced and reliable performance compared to the traditional approach based solely on symptoms and laboratory data.

These findings suggest that personalized scoring systems in clinical practice can enhance diagnostic accuracy. In particular, artificial intelligence and machine learning—based models that incorporate demographic variables into classical scoring systems may provide more precise predictions, representing an innovative approach for future diagnostic processes.

The performance results obtained using the ROS method are presented in the table below:

Algorithm	Accuracy	Precision	Recall	F-Measure	
SVM	1.00	1.00	1.00	1.00	
ANN	0.80	0.23	0.50	0.32	
LR	0.65	0.18	0.50	0.26	
NB	0.70	0.20	0.56	0.56	
RF	0.98	0.86	1.00	0.92	
KNN	0.75	0.33	0.95	0.49	

Table 3. Results After Adding Age and Gender Attributes

When examining the classification results obtained using the Random Over-Sampling (ROS) method, notable performance differences among the algorithms are observed. In particular, the Support Vector Machine (SVM) achieved 100% success across all evaluation metrics (accuracy, precision, recall, and F-measure). This finding indicates that SVM possesses a highly robust discriminative capability for the diagnosis of acute appendicitis. However, as highlighted in the literature, achieving such high performance on small sample sizes and balanced datasets generated through resampling methods may carry a risk of overfitting (Cortes & Vapnik, 1995). Therefore, while the SVM results are promising, they should be validated on different datasets and using cross-validation techniques.

The Random Forest algorithm also demonstrated strong performance. With an accuracy of 98.07%, recall of 100%, and an F-measure of 92.92%, this model

correctly classified all true positive cases without missing any positive instances. This represents a critical advantage in clinical applications, as misclassification of acute appendicitis—a condition requiring timely intervention—can lead to serious complications. Moreover, the Random Forest model achieved high accuracy alongside a reasonable precision (86.79%), indicating that the false positive rate remained within acceptable limits. Literature reports similarly highlight the robust performance of Random Forest on imbalanced datasets and its reliable applicability in medical decision support systems (Breiman, 2001; Chen et al., 2020).

The Naive Bayes algorithm exhibited moderate performance, with an accuracy of 70.6% and an F-measure of 56.52%. This outcome may partly result from the class independence assumption not being fully satisfied in medical datasets. Nevertheless, its low computational cost and ease of implementation make Naive Bayes a valuable complementary tool in clinical settings.

The K-Nearest Neighbors (KNN) algorithm displayed high recall (95.65%) but relatively low precision (33.58%). This indicates that while the model effectively identified true positive cases, it also produced a substantial number of false positives. Clinically, KNN's ability to minimize the risk of missing patients is an advantage; however, the high false positive rate may increase the likelihood of negative appendectomies. Consequently, this algorithm may be better suited for preliminary screening rather than as a standalone diagnostic tool.

Artificial Neural Networks (ANN) and Logistic Regression showed comparatively lower performance. ANN achieved an accuracy of 80.21% and an F-measure of 32.07%, whereas Logistic Regression reached only 65.65% accuracy and 26.90% F-measure. These results can be explained by ANN's limited ability to learn complex patterns from a small dataset and Logistic Regression's reliance on linear decision boundaries, which may be insufficient for acute appendicitis diagnosis. Literature also notes that ANN performs better with larger and more diverse datasets, whereas its performance is limited with smaller sample sizes (LeCun et al., 2015).

Overall, the evaluation of the ROS-balanced dataset indicates that the highest performance was achieved by SVM and Random Forest algorithms. Although SVM's perfect performance is noteworthy, it requires validation on other datasets to mitigate potential overfitting. Random Forest, with its high accuracy, 100% recall, and strong F-measure, emerges as both a reliable and clinically applicable alternative. These findings support the potential of machine learning—based decision support systems for the diagnosis of acute appendicitis, as reported in the literature (Kassahun et al., 2016).

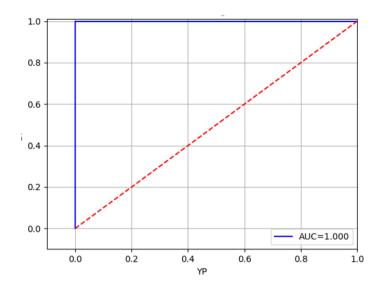


Figure 7. ROC Curve After Adding Age and Gender Attributes to SVM

In the ROC curve obtained after adding age and gender variables to the SVM model, it is seen that the classification performance of the model is at the highest level with an AUC value of 1.

8. Interface Implementation

Migration of pain to the lower right quadrant	Nauses / vomiting
1	0
Lack of appetite	Rebound pain
0	0
Sensitivity in the right lower quadrant	Fever
1	0
Leukocyte (WBC)	NE%
14.15	0
Gender	Age
0	0
RESULT ACUTE APPANDIC	CITIS-MUST BE OPERATED

Figure 8. Example of a patient with AA

Migration of pain to the lower right quadirant	Nausea / vomiting
1	0
ack of appetite	Rebound pain
1	0
Sensitivity in the right lower quadirant	Fever
1	0
Leukocyte (WBC)	NE%
8.76	58.6
Gender	Age
0	50

Figure 9. Example of a patient without AA

In the interface application presented in Figures 8 and 9, a decision support system was designed to assist physicians in diagnosing acute appendicitis (AA) by utilizing patient history, physical examination, and biochemical parameters. The system's data processing pipeline is implemented using Support Vector Machine (SVM)-based data mining techniques. Input to the system includes history and physical examination parameters such as migration of pain to the right lower quadrant, tenderness, rebound pain, loss of appetite, nausea/vomiting, and fever, as well as key biochemical markers including WBC count and neutrophil percentage (NE%). The history and physical examination parameters are encoded as binary values (0: absent, 1: present), whereas WBC and NE% are entered in numerical format.

9. Discussion and Conclusion

Acute appendicitis is one of the most common surgical emergencies presenting in emergency departments, directly impacting both patient quality of life and the efficiency of healthcare systems. The difficulty of diagnosis, overlapping clinical and laboratory findings with other gastrointestinal conditions, and high rates of negative appendectomy necessitate the development of more reliable decision support mechanisms. In this context, the present study investigated the potential of machine learning algorithms in the diagnosis of AA using retrospective patient data.

The literature reports negative appendectomy rates ranging from 10% to 30%, with some studies indicating rates as high as 75% (Eskelinen et al., 1992; Yang et al., 2006), suggesting that decisions based solely on clinical observation may be insufficient. In this study, more reliable predictions were obtained by complementing classical clinical evaluation methods such as the Alvarado Score with machine learning algorithms. In particular, balancing techniques applied to address imbalanced data distribution significantly improved classification performance.

Random Oversampling (ROS), Random Undersampling (RUS), and SMOTE methods were applied to balance the dataset, facilitating the learning of minority class samples. Among these methods, SMOTE generated synthetic examples, offering a more balanced distribution, although it occasionally introduced noisy data. ROS helped achieve balance by duplicating minority class samples, thereby improving accuracy, particularly for algorithms such as SVM.

Diagnosing AA in patients presenting with abdominal pain is often challenging, potentially leading to unnecessary surgeries. Therefore, this study aimed to enable accurate diagnosis using classification-based machine learning algorithms to determine whether surgical intervention is required. A decision support system was developed to overcome the imbalanced clinical data problem in AA diagnosis. The study included data from 1,454 patients, of whom 1,294 were positive for acute appendicitis and 160 were negative based on histopathology results. Random Oversampling was applied to address data imbalance. Subsequently, classification was performed using Support Vector Machines, Artificial Neural Networks (ANN), Logistic Regression, Naive Bayes, Random Forest, and K-Nearest Neighbors (KNN). Results indicated that SVM achieved high accuracy, and the inclusion of age and gender variables improved model performance.

Comparisons among classification algorithms highlighted the unique strengths and limitations of each method:

Support Vector Machines (SVM): Achieved the highest accuracy when parameters were optimized. Incorporating age and gender resulted in nearly 100% success, enhancing clinical decision support applicability. However, the need for multiple parameter adjustments may pose practical challenges.

Random Forest: Provided high accuracy and relatively easy model implementation, making it advantageous for clinical use. Feature importance rankings visually demonstrate which variables play critical roles in the diagnostic process.

Artificial Neural Networks (ANN): Demonstrated strong performance in learning complex patterns but remained limited in transparency and interpretability.

Naive Bayes and Decision Trees: While achieving lower accuracy, these methods are valuable due to interpretability and ease of application. Decision trees, in particular, allow rapid assessment based on simple rules.

Logistic Regression: Coefficients indicate the relative impact of variables, guiding clinicians on which parameters to prioritize.

These results suggest that employing multiple algorithms in clinical decision support systems may be more beneficial than relying on a single method. Hybrid approaches could combine the interpretability of Random Forest with the high accuracy of SVM.

A key contribution of this study is demonstrating that classical clinical scoring systems, such as the Alvarado Score, are insufficient when used alone and should be supported by machine learning—based approaches. Furthermore, including age and gender significantly increased accuracy, emphasizing the importance of these demographic variables in the diagnostic process.

Another contribution is highlighting the potential of clinical decision support systems to reduce inefficiencies in healthcare. Lowering negative appendectomy rates not only improves patient quality of life but also enhances the cost-effectiveness of healthcare systems.

The findings of this study inform future research directions, including:

The findings of this study provide several avenues for future research. Performance could be further evaluated using alternative data balancing techniques, such as ADASYN, to assess their impact on classification accuracy. Additionally, the application of association rules and clustering algorithms may help uncover new diagnostic patterns for acute appendicitis. Integrating imaging data, including ultrasound and CT scans, into predictive models could further enhance diagnostic precision. The generalizability of the developed algorithms should also be tested on large-scale datasets from diverse geographic regions to ensure broader applicability. Finally, developing user-friendly interfaces that allow clinicians to systematically interact with these decision support systems will be essential for practical clinical implementation.

Overall, this study demonstrates the effectiveness of machine learning algorithms in diagnosing acute appendicitis, with SVM and Random Forest exhibiting particularly high performance. Properly addressing data imbalance directly contributed to classification success. Moreover, integrating classical

clinical scoring with modern data science techniques enables more accurate and reliable clinical decision-making.

In conclusion, the developed decision support system offers a tool that can assist physicians in clinical decision-making, prevent unnecessary surgical interventions, enhance patient safety, and provide cost advantages to healthcare systems. This approach represents a viable AI-based solution not only for acute appendicitis diagnosis but also for a range of other clinical scenarios.

References

- Adlung, L., Cohen, Y., Mor, U., & Elinav, E. (2021). Machine learning in clinical decision making. *Med*, 2(6), 642–665. https://doi.org/10.1016/j.medj.2021.04.010
- Addiss, D. G., Shaffer, N., Fowler, B. S., & Tauxe, R. V. (1990). Epidemiology of appendicitis and appendectomy in the United States. *American Journal of Epidemiology*, 132(5), 910–925. https://doi.org/10.1093/oxfordjournals.aje.a115734
- Andersson, R. E. (2007). The natural history and traditional management of appendicitis revisited: Spontaneous resolution and predominance of prehospital perforations imply that a correct diagnosis is more important than an early diagnosis. *World Journal of Surgery*, 31(1), 86–92. https://doi.org/10.1007/s00268-006-0056-y
- Alvarado, A. (1986). A practical score for the early diagnosis of acute appendicitis.

 Annals of Emergency Medicine, 15(5), 557–564. https://doi.org/10.1016/S0196-0644(86)80993-3
- Bhangu, A., Søreide, K., Di Saverio, S., Assarsson, J. H., & Drake, F. T. (2015). Acute appendicitis: Modern understanding of pathogenesis, diagnosis, and management. *The Lancet*, 386(10000), 1278–1287. https://doi.org/10.1016/S0140-6736(15)00275-5
- Bickell, N. A., Aufses, A. H., Rojas, M., & Bodian, C. (2006). How time affects the risk of rupture in appendicitis. *Journal of the American College of Surgeons*, 202(3), 401–406. https://doi.org/10.1016/j.jamcollsurg.2005.10.010
- Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. *Journal of Artificial Intelligence Research*, 16, 321–357. https://doi.org/10.1613/jair.953
- Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. *SIGKDD Explorations*, 6(1), 1–6. https://doi.org/10.1145/1007730.1007733
- Chen, X., Xu, Y., Yan, R., & Xu, X. (2020). Application of random forest in clinical decision support systems: A review. *Computers in Biology and Medicine*, 127, 104066. https://doi.org/10.1016/j.compbiomed.2020.104066
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. *Machine Learning*, 20(3), 273–297. https://doi.org/10.1007/BF00994018

- Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. *Journal of Biomedical Informatics*, 35(5–6), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0
- Eberhart, R., Dobbins, R., & Hutton, L. (1991). Neural network paradigm comparisons for appendicitis diagnoses. In *Proceedings of the Fourth Annual IEEE Symposium on Computer-Based Medical Systems* (pp. 298–304). IEEE. https://doi.org/10.1109/CBMS.1991.128987
- Eskelinen, M., Ikonen, J., & Lipponen, P. (1992). Clinical diagnosis of acute appendicitis: A prospective study of patients with acute abdominal pain. *Theoretical Surgery*, 7(1), 81–85.
- De Koning, E. P. (2016). Acute appendicitis. In J. E. Tintinalli (Ed.), *Tintinalli's emergency medicine: A comprehensive study guide* (8th ed., pp. 532–535). McGraw-Hill Education.
- Flum, D. R., & Koepsell, T. (2002). The clinical and economic correlates of misdiagnosed appendicitis: Nationwide analysis. *Archives of Surgery*, 137(7), 799–804. https://doi.org/10.1001/archsurg.137.7.799
- Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. *Machine Learning*, 29(2–3), 131–163. https://doi.org/10.1023/A:1007465528199
- Han, J., Kamber, M., & Pei, J. (2012). *Data mining: Concepts and techniques* (3rd ed.). Morgan Kaufmann.
- He, H., & Garcia, E. A. (2009). Learning from imbalanced data. *IEEE Transactions on Knowledge and Data Engineering*, 21(9), 1263–1284. https://doi.org/10.1109/TKDE.2008.239
- Hale, D. A., Molloy, M., Pearl, R. H., Schutt, D. C., & Jaques, D. P. (1997). Appendectomy: A contemporary appraisal. *Annals of Surgery*, 225(3), 252–261. https://doi.org/10.1097/00000658-199703000-00003
- Hsieh, C. H., Lu, R. H., Lee, N. H., Chiu, W. T., Hsu, M. H., & Li, Y. C. (2011). Novel solutions for an old disease: Diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. *Surgery*, *149*(1), 87–93. https://doi.org/10.1016/j.surg.2010.03.023
- Humes, D. J., & Simpson, J. (2006). Acute appendicitis. *BMJ*, *333*(7567), 530–534. https://doi.org/10.1136/bmj.38940.664363.AE
- Kassahun, Y., Yu, B., Tibebu, A. T., Stoyanov, D., Giannarou, S., Metzen, J. H., & Navab, N. (2016). Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions. *International Journal of*

- Computer Assisted Radiology and Surgery, 11(4), 553–568. https://doi.org/10.1007/s11548-016-1468-5
- Kulkarni, S., & Harman, G. (2011). *An elementary introduction to statistical learning theory* (1st ed.). John Wiley & Sons.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, *521*(7553), 436–444. https://doi.org/10.1038/nature14539
- Lee, H., Yoon, S. B., Yang, S. M., & Park, C. M. (2021). Machine learning approaches in acute appendicitis: A systematic review. *Journal of Clinical Medicine*, 10(9), 1921. https://doi.org/10.3390/jcm10091921
- Liu, X. Y., Wu, J., & Zhou, Z. H. (2009). Exploratory undersampling for class-imbalance learning. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39*(2), 539–550. https://doi.org/10.1109/TSMCB.2008.2007853
- Munir, K., Iqbal, J., Mushtaq, U., Ishaque, I., Mudassar, J., & Khalid, A. (2008). Modified Alvarado scoring system in the diagnosis of acute appendicitis. *APMC*, *2*(1), 91–94.
- Pieper, R., Keger, L., & Niisman, P. (1982). Acute appendicitis: A clinical study of 1018 cases of emergency appendectomy. *Acta Chirurgica Scandinavica*, 148(1), 51–62.
- Prabhudesai, S. G., Gould, S., Rekhraj, S., Tekkis, P. P., Glazer, G., & Ziprin, P. (2008). Artificial neural networks: Useful aid in diagnosing acute appendicitis. *World Journal of Surgery*, 32(2), 305–309. https://doi.org/10.1007/s00268-007-9317-y
- Sakai, S., Kobayashi, K., Toyabe, S., Mandai, N., Kanda, T., & Akazawa, K. (2007). Comparison of the levels of accuracy of an artificial neural network model and a logistic regression model for the diagnosis of acute appendicitis.

 Journal of Medical Systems, 31(5), 357–364.
 https://doi.org/10.1007/s10916-007-9078-6
- Seetahal, S. A., Bolorunduro, O., Sookdeo, T. C., et al. (2011). Negative appendectomy: A 10-year review of a nationally representative sample. *American Journal of Surgery*, 201(4), 433–437. https://doi.org/10.1016/j.amjsurg.2010.10.009
- Sargent, D. J. (2001). Comparison of artificial neural networks with other statistical approaches: Results from medical data sets. *Cancer*, 91(8), 1636–1642. https://doi.org/10.1002/1097-0142(20010415)91:8<1636::AID-CNCR1175>3.0.CO;2-I
- Sun, J., Lang, J., Fujita, H., & Li, H. (2018). Imbalanced enterprise evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with

- differentiated sampling rates. *Information Sciences*, 467, 78–89. https://doi.org/10.1016/j.ins.2018.07.056
- Yang, H. R., Wang, Y. C., Chung, P. K., Chen, W. K., Jeng, L. B., & Chen, R. J. (2006). Laboratory tests in patients with acute appendicitis. ANZ Journal of Surgery, 76(1–2), 71–74. https://doi.org/10.1111/j.1445-2197.2006.03649.x
- Zhang, S. (2019). Cost-sensitive KNN classification. *Neurocomputing*, 350, 44–53.https://doi.org/10.1016/j.neucom.2018.11.101.