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Presentation Outline

• Con Edison’s HV breaker program
• Preventive maintenance (PM) strategy
• HV breaker DT frequency analysis

– Data collection and exploration
– Machine learning (ML) model fitting
– Inference & optimization

• Lessons learned & key takeaways
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Project Overview
• A few years ago, Con Ed decreased the frequency 

of diagnostic tests (DTs) on high-voltage (HV) 
breakers from every 5 years to every 7 years
– This was based on subject matter expertise and 

operating experience
– Was this a good move? Could they go even longer?

• What can we learn from 12 years of maintenance 
data?
– Assess/predict how DT frequency impacts CM 

(Corrective Maintenance) needs
– Recommend how frequently to do DTs to minimize 

total maintenance costs (DT + CM)
Image credit: https://electrical-engineering-
portal.com/wp-content/uploads/2018/05/high-voltage-
circuit-breakers-fundamentals.jpg



PM FREQUENCY OPTIMIZATION
○ Preventive Maintenance (PM) is a core 

part of any equipment maintenance 
program
• Ensures equipment is running properly
• Enables early issue detection
• Complies with standards and regulations

○ Need to find the PM “sweet spot”
• Too much PM can be a waste of resources and 

create additional maintenance issues
• Too little PM can lead to high corrective 

maintenance (CM) costs and reliability issues
Image generated with AI using DALL-E 3



OPTIMIZING HV BREAKER DT 
FREQUENCIES
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Gather 
Data

• Collect asset & 
maintenance 
history data

• Find CM hours 
that occur 
between PMs

Explore 
Data

• Check 
frequencies & 
distributions

• Select features 
for predicting  
CM hours

Fit ML 
Models

• Regression to 
predict CM 
labor hours

• Train & evaluate 
multiple 
algorithms

Run & 
Optimize

• Run model at 
different PM 
intervals

• Recommend PM 
frequency to 
minimize labor 
hours



DATA OVERVIEW
○ Diagnostic test (DT) records

• 1,590 DTs on 495 breakers over 13 years
• Only ~5 failed DTs per year

○ Corrective maintenance (CM) records
• 11,486 CM activities
• Data quality concerns re. which DTs/PMs/CMs were charged

○ Merged dataset
• For each DT, calculate CM labor hours on that asset from 

end of DT through end of next DT
• Avg ~100 CM labor hours per asset between DTs
• 601 DTs with a complete DT interval that follows
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DATA EXPLORATION
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Each point represents 
total CM labor hours 
over a full DT cycle



MACHINE LEARNING (ML) 
ARCHITECTURE
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Inputs Model Output

Breaker specifications
Breaker location
DT labor hours
DT frequency

CM labor hours 
between DTs

Pre-trained machine 
learning (ML) model



INPUTS (FEATURES) SELECTED
○ Categorical

• Manufacturer & model
• Location (region & station)
• Voltage (69, 138, or 345 kV)
• Insulating medium (SF6, air, or oil)

○ Numerical
• DT frequency
• Actual labor hours of DT
• Asset age
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Inputs

Model

Output



MACHINE LEARNING APPROACH
1. Exploration: Train and evaluate 

model alternatives
• Test multiple algorithms & settings
• Use train/test sets with cross-validation

2. Training: Select & train final model
3. Inference: Run each breaker 

through model across a range of DT 
intervals to observe predicted trends
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Inputs

Model

Output



GRADIENT BOOST ML MODEL
○ Quality of fit

• R2 = 0.975
• RMSE = 30 (CM labor hours)
• Compare to dataset average 55, 

range 0-1000

○ Useful for exploring 
behavior/trends, not for 
accurately predicting 
labor hours
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Image credit: https://catboost.ai/news/catboost-enables-
fast-gradient-boosting-on-decision-trees-using-gpus



INFERENCE RESULTS BY ASSET
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○ Ran each 
breaker through 
ML model

○ What are 
expected annual 
maintenance 
hours at 
different DT 
intervals?



INFERENCE RESULTS BY MODEL
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FITTING TRENDLINES
○ Many plots have 

unclear/non-obvious 
trends

○ To quantify the behavior, 
we fit linear trendlines

○ Slope tells us direction of 
trend, p-value tells us 
confidence in trend

14Image credit: https://pub.towardsai.net/linear-regression-explained-f5cc85ae2c5c



CLEAR DOWNWARD TREND (62% OF BREAKERS)
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UNCLEAR DOWNWARD TREND (20% OF BREAKERS)
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UPWARD TREND (18% OF BREAKERS)
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RECOMMENDATIONS
○ Overall: For most HV breakers, total 

maintenance costs should go down with 
longer DT intervals

○ Three alternative strategies proposed:
• Strategy A: Adjust DT intervals by specific breaker
• Strategy B: Adjust DT intervals by model
• Strategy C: Adjust by model, then fine-tune by asset risk
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CHALLENGES AND LESSONS LEARNED
○ Data

• Despite 13 years of data, only 601 samples
• Changes in data collection over time influence data 

quality/consistency
• No data available with DTs more than 8 years apart
• Intimate knowledge of dataset is needed for meaningful ML

○ Process
• Close collaboration between SMEs and ML/AI team essential
• Scope out data & model architecture prior to project 

commitment
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THANK YOU

Steven Hoffenson

(302) 543-5055 x 277

shoffenson@endevorllc.com

http://www.endevor.com 

Shaun Ramkishun

(646) 740-7477

ramkishuns@coned.com

http://www.endevor.com/
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