IBM Sustainability

AI, GenAI and Watsonx in Sustainability Software

Klaus Roder kroder@us.ibm.com Data, AI & Sustainability Enthusiast Program Director, IBM Sustainability Software

Agenda

• How Foundation Models Work

- GenAI in Sustainability Software (Maximo)
- AI in Sustainability Software

IBM Sustainability Software / © 2024 IBM Corporation

Sustainability is a BIG problem

Sustainability Goals are best accomplished when they are in sync with key Business Imperatives

My personal question ...

How can I, How can we, working for, in, with companies implement sustainability in action?

Where is the opportunity in sustainable operations?

Companies with a network of Physical Assets

Reduce emissions

Energy efficient facilities and assets

Longer asset life

Climate risk mitigation

Regulatory compliance

Companies with a large IT Infrastructure

Reduce emissions

Lower cost of IT

Reduced cloud and

data center consumption

Improved power utilization

30% in 6mo.

Regulatory compliance

Companies with complex Supply Chains

Enable track and trace

Lower product carbon footprints

Reduce fuel consumption

Deliver sustainable sourcing

Scope 3 emissions

Regulatory compliance

52%

Reduction in expedited freight costs

20%-30%

Increased productivity

Agenda

How Foundation Models Work

- GenAI in Sustainability Software (Maximo)
- AI in Sustainability Software

IBM Sustainability Software / © 2024 IBM Corporation

How do foundation models *work?*

IBM Sustainability Software / © 2024 IBM Corporation

Generative AI and foundation models

The story of AI is a story of data representations

Expert systems

Hand-crafted symbolic representations

Machine learning

Task-specific hand-crafted feature representations

Deep learning

Task-specific learnt feature representations

Foundation models

Generalizable & adaptable learnt representations

Foundation models establish a new paradigm for AI capabilities

Traditional AI models Training Tasks AI Image: Second second

- Individual siloed models
- Require task specific training
- Lots of human supervised training

Foundation models

- Massive multi-tasking model
- Adaptable with minimized training
- Pre-trained unsupervised learning

Enhanced capabilities

- Summarization
- Conversational Knowledge
- Content Creation
- Code Co-Creation

Key advantages

- Lower upfront costs through less labeling
- Faster deployment through fine tuning and inferencing
- Equal or better accuracy for multiple use cases
- Incremental revenue. through better performance

up to **70% reduction** in certain NLP tasks

Classical AI models: purpose-built and siloed

Translation

Summarization

Question Answering

Each model performs a discrete task

Foundation models

Foundation model training: a lot of unlabeled data + a little labeled data

The farmer plowed the field Here's looking at you kid	President George The piano has black keys	Washington slept here For breakfast	I'm shopping at the mall I have eggs	
Cloudy with a chance of meatballs Going to the gas station The car signaled to turn	I baked a birthday cake			
Knowledge comes, but wisdom stays	at cheese V	'here there'	's smoke there's fire	8)
Go ahead make my day Claude Shannon was a scientist It's raining ca	The dog chased the cat Big Brot ts and dogs	her is watching you	Follow the yellow brick road	
Babe Ruth hit 60 home runs		[®] Beauty is only	skin deep	
A penny for your thoughts Disney bought Twen George Washington crossed the Delaware	tieth Century Fox	You mak	e me very happy There's no place like home	
IBM acquisition of Red	Hat	in runs very last	The horse jumped the fence	
Every action has a consequence All great achievements require	Do	n't cry over spilled m	Your call may be reco	orded

Training a foundation model: Self-supervision

Foundation model training: a lot of unlabeled data + a little labeled data

Unlabeled data for training: 100 billion sentences IBM Sustainability Software / © 2024 IBM Corporation Labeled data for fine tuning: 1000 examples

Foundation models

Fine tuning a trained Foundation Model

Labeled data for fine tuning

Fine tuning: One trained Foundation Model for many tasks

18

Foundation models: How do they work?

Here's looking at you kid		Washington slept here	I'm shopping at the mall I have eggs
Knowledge comes, but wisdom stays	eat cheese W	here there'	's smoke there's fire
2 plus 2 equals 4 Claude Shannon was a scientist It's raining ca	The dog chased the cat Big Broth		
Babe Ruth hit 60 home runs		Beauty is only	one day at a time one day at a time
IBM acquisition of Red	Hat		
Every action has a consequence All great achievements require	Dor e sacrifice	N't cry over spilled m	ilk Your call may be record

Foundation model

But the implications of foundation models go well beyond Large Language Models (LLMs)

We collaborated with NASA to develop a Geospatial foundation model trained on HLS data.

The Harmonized Landsat Sentinel-2 (HLS) dataset provides global land observations every 2-3 days at 30 meter resolution.

NASA - IBM Partnership

IBM's AI will now help NASA analyze Earth data <u>Fast Company</u>

NASA partners with IBM to build AI foundation models to advance climate science

Venture Beat

NASA, IBM Join Forces to Advance Earth Science Research With Artificial Intelligence and Tackle Climate Change <u>Science Times</u>

Short-wave infrared (SWIR) false color composite of glacial retreat near Innarsuit, Greenland from 2013 – present. (Source: NASA IMPACT)

Fine tuning a trained Foundation Model

Geospatial Foundation Model Training Result

Training a foundation model: Self-supervision

Masked Input

Reconstructed Input

Two core types of geospatial data relevant for sustainability

Satellite and aerial imagery

 Multimodal – images from multiple satellites representing different spectral bands

Weather measurements & forecasts

• Multimodal – time series from different processes (temperature, precipitation, wind,...)

Foundation models for sustainability

Why NASA, IBM, And Hugging Face's Open Source Model Is A Big Deal

Ted Schadler, VP, Principal Analyst AUG 16 2023

What do you get when you combine an open source platform, a massive and critically useful dataset, and an ability to open-source an AI foundation model?

If you're NASA, IBM, and Hugging Face, you get a massive opportunity to make geospatial data available to all through an open source <u>geospatial AI foundation</u> <u>model</u>. We like this open source geospatial intelligence resource and commitment for three reasons:

Data is the lifeblood of AI

Harmonized Landsat Sentinel-2

Harmonized Landsat Sentinel-2 (HLS-2) provides consistent global observations of the land.

- Data available in tiles, aligned with the Military Grid Reference System (MGRS).
- Global 30m resolution imagery every 2-3 days
- Each tile has 3660 x 3660 pixels, corresponding to ~110 x 110 km.

Near Infrared (NIR)

In remote sensing applications, the nearinfrared (NIR) band, together with the visible spectrum (RGB), provide abundant information about ground objects

Near Infrared (NIR) is a subset of the infrared band of the electromagnetic spectrum, covering the wavelengths ranging from 0.7 to 1.4 microns. This wavelength is just outside the range of what humans can see and can sometimes offers clearer details than what is achievable with visible light imaging.

Short-wave infrared (SWIR)

defines a specific wavelength range over which optical and electronic components are designed and coated. SWIR imaging offers a number of advantages compared to visible when used for inspection, sorting, surveillance, quality control, and host of other applications.

Short Wave IR (SWIR) is a subset of the infrared band in the electromagnetic spectrum, covering the wavelengths ranging from 1.4 to 3 microns. This wavelength is not visible to human eyes and as a result can often offer a better image than what is achievable with visible light imaging

NIR and SWIR

Forrester

This is also a great reminder to technology executives that you will incorporate many intelligences into your genAI-fueled applications. Do not expect or plan to rely solely on a large language model from Microsoft or Google. Most of the specific value will lie in these domain-specific genAI intelligences.

You will create real applications by orchestrating the intelligences you need (including your own knowledge foundation models and your machine-learning models and software).

Agenda

- How Foundation Models Work
- GenAI in Sustainability Software (Maximo)
- AI in Sustainability Software

IBM Sustainability Software / © 2024 IBM Corporation

IBM Sustainability: Turning ambition into action

IBM helps companies achieve their sustainability goals by infusing data with AI into daily operations enabled by expertise to deliver profit and purpose.

Generative AI use cases in Sustainability Software

Above ground biomass

Wildfire and flood detection

Scope 3 estimation

Failure mode understanding

Work order intelligence

MAS onboarding assistant

MVI anomaly detection

MVI visual prompt tuning

Failure Mode Context Understanding

Identify common failure points and paths to failure for new assets to improve predictive maintenance and reliability programs

Challenges

- Understanding how assets fail is crucial in providing preventative maintenance and reducing asset downtime.
- Failure Mode and Effects Analysis provides key insights into this area
- However, FMEA data is not available for many kinds of assets, and it can take time to acquire

Solution

- Train a generative model of Uptake data to understand failure points and modes on common assets
- Use the generative model to produce data for assets that we have not worked with in the past
- Auto-populate FMEA rules and maintenance strategies in Maximo Health for new clients
- Identify new tags that can be used for anomaly detection and failure event analysis

Products and Technology:

Maximo Manage, Maximo Health, Maximo Predict, Maximo Monitor and watsonx.ai

- Reduced time to value for asset classes where we have less experience
- More accurate failure assessments
 and preventative maintenance plans
- Automated creation of maintenance strategies for new assets & clients
- Improved Anomaly Detection and Event Prediction capabilities in Maximo Health and Predict

Work Order Intelligence.

Automatically identify and correct inaccurate failure codes in Maximo work orders

Challenges

- Understanding why a work order was created is key in finding patterns and in optimizing operations
- The collection of failure code information in work orders is typically manual and very error prone.
- Clients often do not collect data for all their asset classes, and it can take a significant amount of time to build up an adequate history of failure data

Solution

- Train an LLM to do classify and recommend work order failure codes
- Use that model to verify, correct or suggest the proper failure code for a given work order
- Find similar work orders to identify near-duplicate items and understand first time fix efficiency
- Enable automatic approval of work orders based on work order characteristics

Products and Technology: Maximo Manage, watsonx.ai

- Dramatically reduce the effort required to capture and maintain accurate failure code data
- Better understanding of the patterns of failures and potential problem parts
- Automatic approval of typical workorders enabling technicians to focus on solving the problems

MVI Foundation Models

Leverage foundation models to dramatically improve the anomaly detection capabilities in Maximo Visual Inspection and Maximo for Civil Infrastructure

Challenges

- Maximo Visual Inspection is currently based primarily on opensourced convolutional neural network models
- We have seen that these models are not very accurate for Few-Shot Anomaly Detection problems for visual inspection use cases.
- The current models are also not as performant as they could be in production environments

Solution

• Migrate from CNN-based models to Transformer-based foundation models for anomaly detection

Products and Technology:

Maximo Visual Inspection, Maximo for Civil Infrastructure, watsonx.ai

- Increase MVI supported use cases by ~50% leading to more sales opportunities
- Improved ease of use when creating a detection model
- Time to Value removes the need for a large sample of training data for specific defects
- "Wow" factor with few-shot learning support for PLG

MVI Visual Prompt Tuning

Reduce the effort and training time required to produce a model for Maximo Visual Inspection

Challenges

- Maximo Visual Inspection uses the classic AI pattern of labeling data, training the model and then deploying the model to provide its capabilities
- Even though it does use transfer learning, it still requires several labelled examples for each type of defect that the client wants to detect
- Labeling these examples is time consuming and requires expert knowledge

Solution

• Use a combination of foundation models and prompt-tuning to dramatically reduce the effort required to effectively train the model

Products and Technology: Maximo Visual Inspection, Maximo for Civil Infrastructure

- Significant cost savings to customer in terms of reduced time of experts spent of data labelling
- Ability to use the same foundation model as a basis for prompt-tuning models for other assets and other types of defects

Agenda

- How Foundation Models Work
- GenAI in Sustainability Software (Maximo)
- AI in Sustainability Software

IBM Sustainability Software / © 2024 IBM Corporation

Where is AI in Sustainability Software?

Route maps

Directions in Route planners

- Provide origin
- Provide destination
- Planner plots points between
- Shows route options

÷	from 1 Madison Ave, New York, NY 10010, USA to IBM Corporate Headquarters, 1 Orchard Rd, Ar	Petrol
1 hi via I-	r <mark>13 min (36.2 miles) </mark>	Monsey 287
Faste Pkwy A T	est route now, avoids congestion on Hutchinson Riv / N <mark>his route has tolls</mark> .	(B)
1 Ma New	idison Ave York, NY 10010, USA	Park Ridge

- Get on FDR Dr from Madison Ave and E 42nd St 13 min (2.0 mi)
- Follow FDR Dr, I-87 N and I-287 E to NY-22 N/N Broadway in White Plains. Take exit 6 from I-287 E

34 min (27.8 mi)

> Continue on N Broadway to your destination in Armonk

14 min (6.4 mi) —

IBM Corporate Headquarters

1 Orchard Rd, Armonk, NY 10504, United States

AI+ Offering Map

Offering	Business Imperative	АІ Туре	AI Method	AI Model	AI Capability	Application / Use Case
Above Ground Biomass EIS Outage Prediction EIS Thematic Change Maps EIS Vegetation Mgmt ELM RQA Envizi Maximo Assist Maximo Assist Maximo Predict Maximo Predict Maximo Scheduler Maximo Visual Insights MRO IO SCIS Research Asst SCIS Watson Asst Sterling BTI Sterling BTI Doc Corr Sterling FO TRIRIGA Building Insights	Sustainability Strategy and Roadmap ESG Data, Reporting and Risk Management Intelligent assets, facilities and infrastructure Responsible Computing and Green IT Sustainable supply chain and circularity	Decision Mgmt Interaction Deep Learning Machine Learning Generative/FM	Constraint Satisfaction Dynamic Programming Motion & Manipulation Optimization Perception Probabilistic Models Reinforcement Learning Rules Engine Self-Supervised Learning Simulation Supervised Learning Unsupervised Learning	Classification Closed Form Optimization Clustering Constraint Propagation Constraint Satisfaction Dimension Reduction Direct Policy Search Distributional Methods Dynamic Programming Linear Programming Mixed Integer Programming Nonlinear Programming Regression Search Simulation Structure Discovery Time Series Analysis Value Function Estimation	Anomaly Detection API Task Orchestration Association Rules Augmentation for Supervised Learning Computer Vision Data Augmentation Data Compression Factor analysis Failure Detection Forecasting and Prediction Fraud Detection Gradient Boosted Decision Trees Hierarchy Discovery Image Classification Image Generation Language Understanding Movement Planning Multi-objective Optimization Object Detection	Action Recognition Anomaly removal from data for KPIs Anomaly detection from asset sensors Anomaly detection for doc flows Apportionment Asset Failure Probability Prediction Asset Failure Date Prediction Asset Failure Progression Prediction Business Milestone Interval Prediction Demand and Inventory Prediction Finds documents associated with a business transaction flow Fulfillment optimization Image Classification for assets Inventory Optimization

Reach out to us for all off the details of specific "Route Maps of AI" in our offerings!

Pixel Segmentation Power Outage Forecasting Product Segmentation Product Requirements Quality **Recommendation Systems** Analysis Relationship Discovery Product Usage forecasting Sales Forecasting Q & A Assistant on client data Scheduling optimization Scheduling optimization Spam Detection Scope 3 emissions estimation Text Generation Vegetation proximity to Power **Time Series Forecasting** Lines Time to Failure Visual Change Detection for Video classification Satellite Imagery Video Generation Visual Defect Detection for Visualization assets

```
謝謝
              DZIĘKUJĘ CI
                          TAPADH LEIBH
                                       KEA LEBOHA
            NGIYABONGA 🖞 БАЯРЛАЛАА MISAOTRA ANAO
               DANKIE TERIMA KASIH
     KÖSZÖNÖM
                        B DANKON
       СПАСИБО
               GRAZIE MATUR NUWUN XBAJA BAM MULŢUMESC
               Γ[]3ΓΕ
                    고맙습니다 GRAZIE
                                                \triangleleft
                                                A/
GO RAIBH MAITH AGAT
                                                  ESKERRIK ASKO
                                                H
                    THANKYOU TEŞEKKÜR EDERIM
DANK JE EYXAPIΣΤΩ GRATIAS TIBI SOBRIGADO
AČIŪ SALAMAT MAHALO IĀ 'OE TAKK SKALDU HA
                                                  HVALA
благодаря GRACIAS м
  ТИ БЛАГОДАРАМ ₹
         TAK DANKE ∑
    RAHMAT MERCI
          CẢM ƠN BẠN ≝
                                UA TSAUG RAU KOJ
                  WAZVIITA 
СИПОС
```

