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Chapter 3 - The Practical Matter of the Atmosphere 

 
Congratulations! You’ve made it through a couple of somewhat dry introductory 
chapters, and in the process become familiar with Excel basic operation. Now let’s 
apply that know-how to a practical matter – how thick is the earth’s atmosphere?  

The question is poorly stated. We can measure the depth of the ocean at a particular 
place pretty closely. With the atmosphere, the air gets less and less dense as we go up. 
There is no well-defined upper surface. We experience the drop in pressure ourselves 
in a very direct fashion. 

• Airlines keep their cabin pressure roughly equal to the pressure at 8000 feet. 
This is generally sufficient for healthy passengers. (Women in late stages of 
pregnancy are discouraged from flying.) 

• At 12,500 feet, hang glider pilots are advised to use supplemental oxygen. 
• 16,700 feet is the elevation of the highest permanently occupied village in the 

world – La Rinconada in Peru. 
• Mountain climbers venture higher – briefly. 95% of the climbers of Mt. Everest 

(29,029 feet) use supplemental oxygen; only 5% reach the summit without 
oxygen tanks. Note: climbing Everest without supplemental oxygen doubles the 
risk of dying on the mountain.  
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• There are a few species of birds that fly at these altitudes – the bar-headed 
goose (29,000 feet) and the common crane (33,000 feet) migrate over the 

Himalayas. Rüppell’s 
griffon vulture (37,000 
feet) lives in central 
Africa. It soars, like 
most vultures, as a 
means of spotting 
food. (37,000 feet? 
Doubtful it could see a 
dead whale from that 
height, but that’s the 
explanation always 
given for vultures 
soaring to high 
altitudes.) Its ability to 
soar to that extreme 

height was confirmed by an airliner flying at that altitude, which sucked the 
unfortunate bird into an engine. The remains were identifiable – barely. 

• 43,000 feet – maximum service ceiling of a Boeing 777. 
• 123,500 feet is the record altitude reached by a jet plane (piloted by Alexandr 

Fedotov, in a MiG-25M). 
• 980,000 feet (~300 kilometers) is the minimum altitude for a satellite. Below this 

altitude, drag from the atmosphere will cause the satellite to slow and crash 
back to earth.  

So the question really should be – how does air pressure vary with altitude? To answer 
this question, we start off with a few well-known (or easily Googled) bits of information. 

1. Air pressure at sea level  14.7 pounds per square inch 
2. Density of air at sea level  .0765 pounds per cubic foot 
3. Volume of a gas sample is proportional to absolute temperature 
4. Volume of a gas sample is inversely proportional to its pressure 

Air Pressure 
Air pressure is measured directly by an instrument called a barometer. There are 
several variations of this instrument: 

  

Figure 3-1 Rüppell's Griffon Vulture 
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Aneroid barometer – has a small evacuated can, which contracts 
and expands as the atmospheric air pressure rises and falls (most 
of the expansion/contraction occurs at one end of the can, which 
is made of a thinner gauge metal). Levers and gears translate this 
motion into the rotation of an indicator needle over a dial face. 

Electronic – a semiconductor pressure sensor. These are small 
enough to be incorporated in cell phones and GPS receivers. 
The early versions of these ICs (integrated circuits) needed additional ICs to translate 
the output to some useful digital format. Today’s ICs integrate the interface logic with 
the sensor, so that a microprocessor can read the 
pressure over a serial port. Often these are used for 
determining altitude. 

Mercury barometer – used to be a fixture in college and 
even high school physics labs, until instructors became 
alarmed at the incidence of mercury poisoning (mainly 
among instructors, since their exposure extended over 
many years.). However, its simplicity makes the concept 
of air pressure intuitively understandable. The 
atmosphere presses down on the surface of mercury in 
the open cup, which pushes the mercury up the inverted 
tube – until the weight of mercury in the column exerts a pressure equal to the 
atmospheric pressure. The “empty” part of the tube, at 
the top, really is empty, a vacuum, no air, no gas of any 
sort. A scale attached to the tube allows reading the height of the mercury column. 
Pressure readings are still sometimes given in inches of mercury, or millimeters of 
mercury, although the use of mercury for pressure measurements has largely been 
phased out. 
 
Because of its long history, barometric air pressure is given in many different units: atm 
(atmospheres), inches Hg (inches of mercury), mm Hg (millimeters of mercury), torr, 
bars, millibars, pascals, kPa (kilopascals), hPa (hectopascals), and psi (pounds per 
square inch). For the sake of familiarity and convenience, we will use psi in our 
computations, and take the average atmospheric pressure at sea level to be 14.7 psi. 
This means literally that every square inch of horizontal area at sea level sits under 14.7 
pounds of air, which you could imagine as being confined to a column with a cross 
sectional area of 1 square inch, extending upward for miles and miles.  

Figure 3-2 Aneroid Barometer 

Figure 3-3 Mercury barometer 
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An Aside on the Confusion of Units for Pressure 
Evangelista Torricelli, an Italian mathematician and physicist, invented the mercury 
barometer in 1643. If the scale on the tube is marked in millimeters, then the average 
height of the mercury in the tube, at sea level, is 760 mm. To honor Torricelli, one mm 
of Hg is also referred to as 1 torr; thus average barometric pressure at sea level is 760 
torr.  To be absolutely accurate, 1 torr is not exactly 1 mm Hg, but the two are so close 
(within a ten-thousandth of 1%) that they can be used interchangeably for all practical 
purposes.  Note that the meter was not defined until 1795, so Torricelli could not have 
used millimeters to measure the level of mercury in his instrument. At the time, length 
was measured in a hodgepodge of different units, and even the same unit might have 
different definitions in different regions. Traces of that hodgepodge seem to linger in 
the different ways of measuring barometric pressure: 

1. One atmosphere (abbreviated 1 atm) is the average barometric pressure at sea 
level at 49° latitude (i.e. Paris, France – and coincidentally the northern border of 
the state of Washington). 

2. Millimeters of mercury – 760 mm Hg is equal to 1 atmosphere. One mm Hg was 
originally defined to be 1 torr, and is still 1 torr for all practical purposes. Torr is 
commonly used by people working with vacuum pumps. Mechanical vacuum 
pumps can achieve vacuums in the range of 0.01 to 0.1 torr (10 to 100 millitorr). 
Millimeters of mercury, abbreviated mm Hg, is still the standard unit for 
measuring blood pressure. 120 / 80 gives the systolic / diastolic pressures in mm 
Hg. If you ask the nurse if 80 torr is normal for diastolic pressure, he or she quite 
possibly won’t know what you’re talking about, even though 80 torr is equivalent 
to 80 mm Hg. 

3. Inches of mercury – 760 mm = 29.921 inches  
4. Pounds per square inch (abbreviated psi). In the United States, we have a good 

feel for this particular measure; car tires are filled to 30 or 35 psi, bicycle and 
aircraft tires to higher pressure – 100+ psi for some bicycles, 200 psi for tires on 
large aircraft.  Footballs – 13 psi for NFL play.  Basketballs – 8 psi.  

5. The Pascal is the metric unit of pressure, defined as 1 Newton per square meter. 
The Newton is a unit of force, equal to about 0.225 pounds. One square meter 
is about 1550 square inches, so a Pascal is only 0.225/1550 = 0.000145 pounds 
per square inch. One atm comes to 101,325 Pascals. Weather reports 
sometimes give the barometric pressure in hectopascals (abbreviated hPa); one 
hectopascal is 100 Pascals. Thus one atm is 1013.25 hPa. 
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6. The bar is a closely related measure. One bar is 105 Pascals. One atm is slightly 
more than 1 bar (1.01325 x 105 Pascals), thus one atm is 1.01325 bars, or 
1013.25 millibars. Note that a millibar and a hectopascal are equivalent. 
Hectopascals are preferred by metric system purists, but both units - millibars 
and hectopascals – are still in common use. 

Table 3-1 Pressure Equivalents 

 Atmosphere Torr or 
mm Hg 

Inches 
Hg 

pounds/ 
sq inch 

hecto- 
pascal 

milli- 
bar  

 (atm) (Torr) (in Hg) psi hPa mbar 

1 atm 1 760 29.9213 14.696 1013.25 1013.25 

1 Torr 0.0013158 1 0.039370 0.019337 1.3332 1.3332 

1 in Hg 0.033421 25.4 1 0.49116 33.864 33.864 

1 psi 0.068046 51.715 2.0360 1 68.947 68.947 

1 hPa 0.00098692 0.75006 0.02953 0.014504 1 1 

1mbar 0.00098692 0.75006 0.02953 0.014504 1 1 

 

Use the above table by reading from the left, i.e. 1 psi is the same as 0.068046 atm, or 
2.0360 in Hg, or 68.947 hPa.  Thus, to convert a pressure of 8.62 psi, to Torr, multiply 
8.62 x 51.715 = 445.783 Torr. 

There is often a need to distinguish gauge pressure from absolute pressure. When tire 
pressure is 30 psi, this represents the pressure inside the tire, relative to the pressure 
outside. If the pressure outside is 14.7 psi – normal atmospheric pressure, then the 
total pressure inside the tire is actually 44.7 psi. Use gauge pressure if you simply want 
to inflate your tires correctly, i.e. 30 psi. Use absolute pressure if you are trying to 
calculate how much air is inside the tire – perhaps for a chemistry or physics problem.  

SCUBA divers are concerned with absolute pressure. The weight of a 1 square inch 
column of sea water 33 feet high is 14.7 pounds; thus each 33 feet of descent into the 
ocean adds another 1 atmosphere of pressure. A SCUBA regulator (the thingy on the 
tank with all the hoses) insures that air is delivered to the diver at the ambient pressure. 
Thus a diver at a depth of 33 feet is breathing air compressed to 2 atmospheres. At 99 
feet, the diver gets air compressed to 4 atmospheres. (A diver at 99 feet goes through 
a tank of air much faster than a diver at 50 feet.) The recommended maximum depth 
for sport divers varies by country and certifying agency; it is generally around 100 feet, 
for an absolute pressure of 4 atmospheres. The main problem with depth is that more 
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nitrogen becomes dissolved in the bloodstream and body tissues because of the 
increased pressure. This nitrogen has to diffuse back out upon return to the surface. 
Too long a stay at depth, or too rapid an ascent can cause the excess nitrogen to form 
bubbles in the bloodstream, and in joints – a painful affliction called the bends. A large 
part of SCUBA training focuses on this gas diffusion problem, and its consequences. 
The worst case is diving in high mountain lakes – when a return to the lake surface 
brings the diver to a pressure that is even less than 1 atmosphere. 

Density of Air 
By density of air, we really mean simply 
- what does a cubic foot of air weigh? 
This is somewhat difficult to measure in 
practice, because we are surrounded by 
air. It is like trying to weigh water; it’s 
easy to weigh a cup of water while 
standing in the kitchen, but more 
difficult while underwater, for instance 
while submerged in the deep end of the 
local swimming pool. Just as buoyancy 
makes water “weightless” in the pool, 
buoyancy makes air seem weightless 
when weighed at the bottom of the sea 
of air known as the atmosphere. 

 

Here’s one way you might approach the problem experimentally. Take a full SCUBA 
tank. Weigh it. Then let the air out slowly, collecting it by displacement in something 
handy like a five-gallon jug. SCUBA tanks come in many different sizes; most are in the 
50 to 80 cubic foot range.  

(The sizes refer to the volume of air at 1 atmosphere that can be compressed and 
shoved into the tank; the tanks themselves are comparatively small. The air is 
compressed to 2000 – 3000 psi in the tank, somewhere in the range of 200 
atmospheres.) 

One cubic foot is about 7.48 gallons, so expect to fill and refill a five-gallon jug many 
times. If you filled the jug one hundred times, that would come to 500 gallons of air, 
which would be 66.8 cubic feet of air. Now weigh the SCUBA tank again – how much 
weight has it lost? Ideally, the tank should weigh about 5 pounds less. The density then 
is 5/66.8 = 0.0748 pounds per cubic foot. 

 

Figure 3-4 Weight of air 



 Chapter 3 30 

More careful measurements report the density of air at sea level (i.e. at a pressure of 
14.7 psi), with a temperature of 15° Celsius, to be 0.0765 pounds per cubic foot. Since 
we are working with pressure per square inch, we really need to calculate the density in 
pounds per cubic inch. Let’s use Excel for this step; if an error creeps in somewhere, 
having it in a spreadsheet makes it easy to find and correct later. 

 
Figure 3-5 Useful constants 

Here cell C1 contains the constant value 0.0765, and C2 contains the formula     = 
12^3, which evaluates to 1728. C3 contains the formula as shown, which causes the 
value in C1 to be divided by the value in C2. As soon as the formula is entered (by 
pressing enter/return) the value is calculated to be 4.4271E-05, or 0.000044271.  

We can now calculate the volume of one pound of air, at sea level, at 15° C; the 
volume is just the inverse of the density. (Density is pounds/inch3; volume is 
inch3/pound.)  In excel terms, the formula is:  = 1/C3.  Let’s add this to our Excel table, 
along with the atmospheric pressure at sea level, and the temperature at sea level.  

 
Figure 3-6 Full set of atmospheric constants 

This little block contains all the constants needed for our model of the atmosphere, as 
well as some indication of where the information came from in column B. In particular, 
we will use the constants in: 

• C5 :  22,588.2   - the volume in cubic inches of 1 pound of air at sea level, 15° C 
• C6 : 14.7  - air pressure at sea level 
• C7 : 288  - temperature at sea level, in degrees Kelvin – more about the 

Kelvin temperature scale below… 

A B C D
1 air	density	lbs/cubic	ft wikipedia 0.0765 lbs	/	cubic	ft
2 cubic	in	/	cubic	foot 12^3 1728 cu	in	/	cu	ft
3 air	density	lbs/cubic	in 0.765/1728 =C1/C2 lbs	/	cubic	in

A B C D
1 air	density	lbs/cubic	ft wikipedia 0.0765 lbs	/	cubic	ft
2 cubic	in	/	cubic	foot 12^3 1728 cu	in	/	cu	ft
3 air	density	lbs/cubic	in 0.765/1728 4.4271E-05 lbs	/	cubic	in
4
5 1/density 22,588.2 cubic	inches/lb
6 pressure	at	sea	level wikipedia 14.7 psi
7 temp	at	sea	level wikipedia 288 °K

volume	of	1	pound	air	
at	14.7	psi,	15°C
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Gas Laws – Robert Boyle,  Jacques Charles 
Pressure and volume are inversely related; if the pressure of a gas sample increases, 
the volume decreases (assuming the temperature remains unchanged). For an “ideal” 
gas sample kept at a constant temperature, the product of pressure and volume 
remains constant.  

Suppose there is a gas sample whose original PV values are designated P1 and V1.  If 
the gas sample is expanded into a larger container, its volume increases to V2 and its 
pressure goes down to P2. If the temperature is kept constant, then P1V1 = P2V2. For 
example, if the original pressure and volume is 10 psi, and 2 cubic feet, then when the 
pressure is decreased to 5 psi, what is the new volume? 

P1V1 = P2V2  ß Boyle’s Law   

10 psi • 2 ft3 = 5 psi • V2 

V2 = 2 ft3 • 10psi / 5psi 

V2 = 4 ft3 

This relationship between volume and pressure was first noticed by others, but Robert 
Boyle was the first to publish the results of experiments confirming the “law”, in 1662. 
The physical explanation of air pressure was not understood for another 200 years.  

Is air an “ideal” gas? It is pretty close to ideal, so long as we don’t pressurize it or cool 
it so much that it gets close to becoming a liquid. Most gases behave similarly, though 
there are exceptions. Acetylene gas for example, explodes if compressed too much, 
which is very very non-ideal. (SCUBA tanks are filled to 2000 – 3000 psi. Acetylene 
welding tanks are only filled to around 250 psi, because of the danger of explosion.) 

Volume and temperature are directly related; increase the temperature, and the 
volume will increase as well, provided the pressure is kept constant. For an ideal gas, if 
the pressure is constant – 

V1 / T1 = V2 / T2   ß Charles law 

There is one complication here – we have to use absolute temperature. Temperature is 
a measure of molecular kinetic energy. With a gas held in a container, the molecules 
are bouncing around, colliding with each other and with the walls of the container. The 
constant barrage of tiny collisions is how the gas exerts a measurable pressure. The 
average speed of the molecules determines the temperature. At 0° Celsius, the 
average speed of the molecules making up air is roughly 1000 miles per hour. As the 
air is chilled more and more, the molecules travel slower and slower. (This is where we 
need our “ideal” gas. Air will turn to a liquid if chilled to -196° C. Our hypothetical 
ideal gas remains a gas, no matter what.) The temperature at which these ideal 
molecules finally come to rest is absolute zero, defined to be 0° Kelvin, which is  -
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273.15° C. (A physicist would qualify this statement – even at absolute zero, the 
molecules will still have a little quantum jitter, so they don’t like to say that the 
molecules actually come to rest. Instead, they would say that all the molecules have 
come to the lowest possible energy state, and no more heat energy can be extracted.) 
So temperatures will be expressed in degrees Kelvin, obtained by adding 273.15 to the 

Celsius temperature. (There is also a Rankine scale, which does 
for Fahrenheit what Kelvin does for Celsius. Rankine = 
Fahrenheit + 459.67°. You could use Rankine for these 
calculations, though you might well be the only person in the 
world using the Rankine scale for anything…)  

Suppose a gas sample has an original volume and temperature 
of 4 cubic feet at 300° K. If the pressure stays constant and the 
temperature drops to 250° K, what is the new volume? 

V1 / T1 = V2 / T2      

4 cu ft / 300° = V2 / 250° 

V2 = 4 cu ft • 250°/300° = 3.333 cu ft 

This relationship was first formulated by Jacques Charles in 
1780, who did not publish his work. In 1801, John Dalton 
published the details of his experiments which pointed to the 
same law; his work was confirmed a few months later by Joseph 
Gay-Lussac, who credited the original discovery to the 
unpublished work of Jacques Charles twenty years earlier. 
Apparently the general relationship between volume and 
temperature had been known for a century, but the 
mathematically precise relationship had to wait until temperature 
could be measured more accurately. 

We can combine the two equations – the one for volume and 
pressure, and the one for volume and temperature – into one 
equation. 

!"#"
$"

 = !%#%
$%

   <- Boyle’s & Charles’ Laws combined 

V2  =   
#"
#%

  •  
$%
$"

  • V1     Rearranging to solve for V2   

P1, V1, T1 are the original pressure, volume, and temperature. 

P2, V2, T2 are the new pressure, volume, and temperature. 
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Figure 3-7 Segmenting the atmosphere 



 Chapter 3 33 

Note that the pressure ratio is P1/P2, while the temperature ratio is T2/T1. Pressure and 
volume are inversely proportional, while temperature and volume are directly 
proportional; this leads to the two ratios being opposite… 

So we can express the new volume V2 as the original volume V1 times a pressure ratio 
times a temperature ratio, where the ratios are as shown above. This is the formula we 
will use in Excel to do the real work of modeling the atmosphere. 

 

The Atmospheric Model 
Start with a mental image of a one inch square column of air, extending from sea level 
upwards. To model the atmosphere, we will divide this air column into one pound 
segments.  The figure “Segmenting the atmosphere” just shows how we are 
segmenting the calculations; it is not a scale drawing of the successive segments. Each 
successively higher segment will be at a lower pressure, and therefore have a larger 
volume. Exactly how much larger depends on both pressure and temperature – we’ll 
let Excel handle the hard work. 

Starting at the bottom of the column, the pressure at the bottom of the first segment is 
14.7 psi. At the top of the segment, the pressure is only 13.7 psi; there is one pound of 
air in the first segment, and therefore only 13.7 pounds of air above. To calculate the 
volume of the first segment, we’ll use the average pressure, i.e. the average of 14.7 
and 13.7, which is 14.2 psi. Similarly, the average pressures of the other segments are 
13.2, 12.2, 11.2 … down to 1.2 psi. The last segment only contains 0.7 pounds of air; 
its average pressure is 0.35 psi. We’ll hold off on calculations for the last 0.7 pound 
segment; some additional thought will be needed to model this last bit of the 
atmosphere. 

For temperature, the average sea level temperature is taken to be 15° C, or (273 + 15) 
= 288° K. We know that temperature declines with altitude. There’s no simple way to 
calculate just exactly what the temperature is for each segment, so we’ll take a wild 
guess, and claim that each successive segment is 4° K colder than the segment below 
it. This sounds pretty sloppy; the good news is that the pressure drop is much more 
important to the calculation than the temperature drop. To be consistent, we will use 
the average temperature of the segment, i.e. for the bottom segment, the average of 
the temperature at sea level (288°), and the temperature at the top of the segment 
(284°), is 286°. 

Our general strategy is this: 

1. Tabulate the average temperature and pressure for the segments 
2. Calculate the pressure ratios and temperature ratios for the segments 
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3. Use the ratios to calculate the volume of each segment 
4. Convert the volumes to feet by simply dividing by 12 (this works because we are 

mentally working on a column of air with a one square inch cross section) 
5. Accumulate the thicknesses of the segments (from step 3) into total altitude. 
6. Finally add columns giving the temperatures and pressures at each of the 

calculated altitudes.  

We’ll execute this step-by-step, so it will hopefully be clear how we get to the end 
result. One could collapse several of these steps into one step, using a big long 
formula, but that makes it harder to follow what is going on, and also makes it harder 
to determine if a mistake has crept into the calculations. 

 

Start by entering 14.2 and 13.2 in column E as shown. Similarly, enter 286 and 282 in 
column F.  

 

Figure 3-8 Set-up for temps and pressures 

Then select the four-cell block as shown, grab the selection box at the bottom right, 
and drag it down, extending the average pressure values to 1.2 

E F G H
1 P2	Pressure T2	Temp P	ratio T	ratio
2 psi °K P1	/	P2 T2	/	T1
3
4 14.2 286
5 13.2 282
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Figure 3-9 Drag to fill in pressures and temperatures 

→TIP – you can see that we’re leaving a blank row, which will come in handy later. 
Generally, when you realize “too late” that you should have left a blank row or column, 
you can reposition a block of your spreadsheet quickly and easily by selecting the 
block, using ⌘x to delete the block, and then ⌘v to paste the block back where you 
want it to be. You don’t have to select a full area for the paste, just select the cell 
where you want the top left corner of the block to go. Double check the results, just in 
case a reference doesn’t keep up. Alternately you can select an entire column or row 
(select in the lettered index cells at the very top to select a column, or the numbered 
index cells at the very left of the spreadsheet to select a row), and then insert a row or 
column of blank cells. In either case, the existing cells will get bumped over or down, 
and all the cell references will be updated as needed. 

Next we calculate the Pressure ratios and the Temperature ratios. The pressure ratio is 
P1/P2, where P1 is 14.7 psi (which is entered in cell $C$6), and the P2 values are in 
column E. The formula we enter in cell G4 is:   = $C$6 / E4.  

Similarly, the temperature ratio is T2/T1, where T1 is 288 degrees Kelvin, which is in 
cell $C$7. The formula we enter in cell H4 is:   = F4 / $C$7.  

E F G H
1 P2	Pressure T2	Temp P	ratio T	ratio
2 psi °K P1	/	P2 T2	/	T1
3
4 14.2 286
5 13.2 282
6 12.2 278
7 11.2 274
8 10.2 270
9 9.2 266
10 8.2 262
11 7.2 258
12 6.2 254
13 5.2 250
14 4.2 246
15 3.2 242
16 2.2 238
17 1.2 234
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Figure 3-10 Formulas for P and T ratios 

When cells G4 and H4 are selected, formatted as numbers with 3 decimal places, and 
pulled down to populate cell in columns G and H down to row 17, we get this: 

 
Figure 3-11 Pressure and temperature ratios 

A bit of checking at this point is worthwhile. The pressure ratios start at slightly more 
than 1 for the first segment, and increase as we go to lower pressures. This is what we 
expect – lower pressures will cause the volume to increase. The temperature ratio starts 
at slightly less than 1, and decrease to 0.813 as we get higher in the atmosphere. Also 
as expected – lower temperatures cause the gas to contract. But notice the difference 
in magnitude. The pressure ratio is 12.25 for the last segment in the table; the 
temperature ratio is 0.81. The expansion due to lower pressure is over 1000%, whereas 
the contraction due to lower temperature is around 20%; the pressure ratio is the 
dominant factor by far. 

Now we can go ahead and calculate the volumes of each segment; the volume is just 
V1 • Pratio • Tratio, where V1 is the volume 22,588.2 cubic inches, which is stored in 

E F G H
1 P2	Pressure T2	Temp P	ratio T	ratio
2 psi °K P1	/	P2 T2	/	T1
3
4 14.2 286 =$C$6/E4 =F4/$C$7
5 13.2 282

E F G H
1 P2	Pressure T2	Temp P	ratio T	ratio
2 psi °K P1	/	P2 T2	/	T1
3
4 14.2 286 1.035 0.993
5 13.2 282 1.114 0.979
6 12.2 278 1.205 0.965
7 11.2 274 1.313 0.951
8 10.2 270 1.441 0.938
9 9.2 266 1.598 0.924
10 8.2 262 1.793 0.910
11 7.2 258 2.042 0.896
12 6.2 254 2.371 0.882
13 5.2 250 2.827 0.868
14 4.2 246 3.500 0.854
15 3.2 242 4.594 0.840
16 2.2 238 6.682 0.826
17 1.2 234 12.250 0.813
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cell $C$5, and the P and T ratios are in columns G and H. So the formula in cell I4 is:   
= $C$5 * G4 * H4.  

That gives the volume in cubic inches, but numerically it is also the thickness of the 
segment of the air column. We would rather have this measurement in feet, so we’ll 
use column J to convert to feet. The formula in J4 is:  
= I4/12.  

Enter these formulas, and drag down through all rows of the table. That should 
produce the following spreadsheet. (Remember – if your spreadsheet entries 
misbehave, more often than not it is a cell reference problem.) 

 
Figure 3-12 Find the segment volumes and thicknesses 

 

 

An aside on constants 

There are three referenced cells used in the calculations: 

1. $C$5 is 22,588.2 – the volume of one pound of air in cubic inches 
2. $C$6 is 14.7 - the average sea level air pressure in pounds/square inch 
3. $C$7 is 288 - the average sea level temperature in degrees Kelvin (15° C) 

You could just enter the constants in the cell formulas. But by putting the constants in 
cells somewhere, you can change the constant later by just changing that one cell 

E F G H I J
1 P2	Pressure T2	Temp P	ratio T	ratio V2 thickness
2 psi °K P1	/	P2 T2	/	T1 cubic	inches feet
3
4 14.2 286 1.035 0.993 23,221 1,935
5 13.2 282 1.114 0.979 24,631 2,053
6 12.2 278 1.205 0.965 26,272 2,189
7 11.2 274 1.313 0.951 28,206 2,350
8 10.2 270 1.441 0.938 30,519 2,543
9 9.2 266 1.598 0.924 33,335 2,778
10 8.2 262 1.793 0.910 36,838 3,070
11 7.2 258 2.042 0.896 41,314 3,443
12 6.2 254 2.371 0.882 47,233 3,936
13 5.2 250 2.827 0.868 55,430 4,619
14 4.2 246 3.500 0.854 67,529 5,627
15 3.2 242 4.594 0.840 87,191 7,266
16 2.2 238 6.682 0.826 124,727 10,394
17 1.2 234 12.250 0.813 224,824 18,735
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entry, instead of having to update the formulas in a range of cells (and possibly missing 
some cells that need to be updated). 

 

We now have the thickness of each atmospheric segment – each one pound segment 
of the 14.7 pounds of air above every square inch of the earth’s surface. It would be 
more convenient to have the cumulative altitude – the height of the current segment 
plus all the lower segments. That’s easy:  

• Enter a 0 in cell K3 
• In cell K4 enter the formula = K3 + J4.    This adds the current segment height 

(J4) to the previous total height.  
• Extend the formula to the bottom of the spreadsheet. 

 
Figure 3-13 Almost done ... 

 

Let’s assess what we have so far. The altitude column tells us that the first segment of 
the atmosphere (the first pound of air) starts at 0 feet above sea level, and extends to 
1935 feet. The next segment starts at 1935, and ends at 3988 feet. We can continue in 
this way to the last segment, which starts at 52,204 feet and extends up to 70,939 feet. 
The altitudes we have calculated represent the boundaries between the segments.  

Finally, for completeness we’d like to have the pressures and temperatures at these 
boundary altitudes. This doesn’t require any new calculation; we stated at the outset 
that the pressures at the boundaries would be 14.7 psi, 13.7 psi, … 0.7 psi. We can 
add a column for pressure at the boundaries just by entering 14.7 in cell L3 

E F G H I J K
1 P2	Pressure T2	Temp P	ratio T	ratio V2 thickness altitude
2 psi °K P1	/	P2 T2	/	T1 cubic	inches feet feet
3 0
4 14.2 286 1.035 0.993 23,221 1,935 1,935
5 13.2 282 1.114 0.979 24,631 2,053 3,988
6 12.2 278 1.205 0.965 26,272 2,189 6,177
7 11.2 274 1.313 0.951 28,206 2,350 8,528
8 10.2 270 1.441 0.938 30,519 2,543 11,071
9 9.2 266 1.598 0.924 33,335 2,778 13,849
10 8.2 262 1.793 0.910 36,838 3,070 16,918
11 7.2 258 2.042 0.896 41,314 3,443 20,361
12 6.2 254 2.371 0.882 47,233 3,936 24,297
13 5.2 250 2.827 0.868 55,430 4,619 28,917
14 4.2 246 3.500 0.854 67,529 5,627 34,544
15 3.2 242 4.594 0.840 87,191 7,266 41,810
16 2.2 238 6.682 0.826 124,727 10,394 52,204
17 1.2 234 12.250 0.813 224,824 18,735 70,939
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(corresponding to 0 feet altitude), and 13.7 in cell L4 (for altitude of 1935 feet). Then 
select the two cells L3 and L4, and drag down to the bottom of the table to extend the 
series down to 0.7 . 

 Similarly, the temperatures are 288°K, 284°K, etc. Celsius is more common for 
atmospheric measurements. In order to more easily compare our calculations to real-
world data, let’s go back to Celsius. Instead of 288, 284 … we’ll use 15°C, 11°C …  
Just as we did for pressure, enter 15 in cell M3, and 11 in cell M4. Select the two cells, 
and drag down to extend the series. The result should look like this: 

 
Figure 3-14 The atmosphere - pressure and temperature vs. altitude 

 

Note that our spreadsheet effectively stops when we reach 70,939 feet, at a pressure 
of 0.7 psi. If our results are close to measured values, maybe we can find a way to 
extend the model to cover the last 0.7 psi. 

Real-world Measurements 
The American Vacuum Society (AVS) has published online a table of measured 
pressures and temperatures at altitudes ranging from 0 to 2 million feet. To compare 
the model against their measured values, I’ve combined both sets of data into the 
table below.  

  

E F G H I J K L M
1 P2	Pressure T2	Temp P	ratio T	ratio V2 thickness altitude Pressure Temperature
2 psi °K P1	/	P2 T2	/	T1 cubic	inches feet feet psi °C
3 0 14.7 15
4 14.2 286 1.035 0.993 23,221 1,935 1,935 13.7 11
5 13.2 282 1.114 0.979 24,631 2,053 3,988 12.7 7
6 12.2 278 1.205 0.965 26,272 2,189 6,177 11.7 3
7 11.2 274 1.313 0.951 28,206 2,350 8,528 10.7 -1
8 10.2 270 1.441 0.938 30,519 2,543 11,071 9.7 -5
9 9.2 266 1.598 0.924 33,335 2,778 13,849 8.7 -9
10 8.2 262 1.793 0.910 36,838 3,070 16,918 7.7 -13
11 7.2 258 2.042 0.896 41,314 3,443 20,361 6.7 -17
12 6.2 254 2.371 0.882 47,233 3,936 24,297 5.7 -21
13 5.2 250 2.827 0.868 55,430 4,619 28,917 4.7 -25
14 4.2 246 3.500 0.854 67,529 5,627 34,544 3.7 -29
15 3.2 242 4.594 0.840 87,191 7,266 41,810 2.7 -33
16 2.2 238 6.682 0.826 124,727 10,394 52,204 1.7 -37
17 1.2 234 12.250 0.813 224,824 18,735 70,939 0.7 -41
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Table 3-2 Atmospheric model vs measured values 

MODEL AVS MEASURED VALUES 
altitude temp pressure altitude temp pressure 

0 15 14.7 0 15 14.7 
1,935 11 13.7 2,000 11 13.66 
3,988 7 12.7 4,000 7 12.69 
6,177 3 11.7 6,000 3 11.78 
8,528 -1 10.7 8,000 -1 10.91 

11,071 -5 9.7 10,000 -5 10.1 
13,849 -9 8.7 15,000 -14 8.29 
16,918 -13 7.7       
20,361 -17 6.7 20,000 -24 6.76 
24,297 -21 5.7 25,000 -34 5.46 
28,917 -25 4.7 30,000 -44 4.37 
34,544 -29 3.7 35,000 -54 3.47 
41,810 -33 2.7 40,000 -57 2.73 
52,204 -37 1.7 50,000 -57 1.69 
70,939 -41 0.7 70,000 -55 0.65 

   90,000 -59 0.26 
      100,000 -46 0.16 
      150,000 - 0.021 

 

Looking at the raw data, a few things are notable: 

1. Our temperature guess worked very nicely up to 10,000 feet or so. But by 
20,000 feet, the measured temperature has dropped more than the model 
expected, and by 35,000 feet the measured temperature is 25° C lower than 
predicted. Also, the measured temperature doesn’t drop much after 35,000 
feet. This altitude is considered to be the lower boundary between the 
troposphere (bottom layer of the atmosphere, where “weather” occurs) and the 
stratosphere (next higher level, which includes the ozone layer). 

2. It is a little hard to compare the two pressure data sets. Our model steps 
through pressure in one pound increments; AVS steps through the data in 
altitude increments of thousands of feet. Sometimes the AVS data happens to 
hit pressures close to n.7 psi, sometimes not. Offhand, the model and the 
measured values seem pretty close. 

 

Excel Graphing 
A quick way to compare the data sets is by graphing both on a common graph. To do 
this, we first copy the AVS measurements into our spreadsheet. They can be copied to 
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columns beside our model data, or anywhere really; we’ll tell Excel where the data is 
for the graph.  

Excel will do the graphing for us; however different versions of Excel let you access the 
graphing options in different ways, so it is hard to give step-by-step instructions that 
will work for everyone. Generally what you want to do is to add an x-y graph; my 
version of Excel lets you add this by clicking the “scatter” icon under the Charts tab. 
This gives several options – a “marked” line indicates where the data points are. 
“Straight” connects the data points with straight line segments; “smooth” lets the lines 
curve as needed to produce a smooth looking graph. For the charts below, “smooth, 
marked scatter” was chosen. (Be sure no active cells of the spreadsheet are selected 
when you select smooth marked scatter; otherwise Excel will take the selected data 
cells and graph them, but not necessarily the way you want.) Once you have picked an 
option, Excel will present you with a empty square where your chart will be. A right-
click on the square will allow you to pick Select Data from the menu, which in turn 
opens a Select Data Source box. With the Select Data Source box open, (with my 
version of Excel): 

1. Click the Add button. This will name a new series of data points as “Series 1”.  
2. There is a Name field. Type “model” there, to name the data “model” instead 

of “Series 1”. 
3. Put the cursor in the X-values box. Then go select the spreadsheet model cells 

that have the altitude – everything from cell K3 to K17. This should automatically 
enter the range of cells into the X-values box. 

4. Put the cursor in the Y-values box. Select the spreadsheet model cells that have 
the temperatures – everything from cell M3 to M17. 

At this point, the graph should display the points for model temperature vs. altitude. 
You can now add a second series of points for the measured values. If the Select Data 
Source box is not still open, select the graph, right click, and Select Data again. With 
the Select Data Source box open again, repeat steps 1 – 4, this time naming the new 
series “measured”. Select the altitudes and temperatures from the AVS table for the X-
values and Y-values respectively; you can stop at 70,000, since we don’t have model 
data above that to compare. This should plot a second line on the graph, this time of 
the AVS data. 
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Figure 3-15 Temperature vs altitude, model vs measured values 

The graph shows very nicely the difference between the modeled temperature and the 
measured temperature. We might have made a more intelligent “guess” about the 
decline in temperature with altitude, but it seems very unlikely that we would have 
predicted that the temperature would level off and even increase above 40,000 feet. 
Despite this difference, the next graph showing the model vs measured pressures 
shows good agreement. 

(We get the pressue graph by repeating the steps above, selecting the altitude cells 
again for the X-values, and this time selecting the pressures for the Y-values. ) 
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Figure 3-16 Pressure vs altitude, model vs measured values 

Let’s take a moment to bask in the warm glow of seeing our model of atmospheric 
pressure agree so well with measurements. We started with just two constants – the air 
pressure at sea level, and the density of air at sea level. Then using only the gas laws 
relating volume to pressure and temperature, we were able to calculate the 
atmospheric pressure from sea level up to 70,000 feet. Some tinkering was required to 
set up the spreadsheet correctly, and along the way you had to put up with the 
untimely death of an unfortunate African vulture, but in the end Excel came through 
and did all the repetitive drudgery for us. 

Our model did stop being useful after 70,000 feet. Can you see a way to extend the 
model, and calculate more accurately the distribution of the last 0.7 pounds of air? 
How would you go about calculating the altitude at which the pressure is 0.6, 0.5, … 
0.1 pounds per square inch? Give it a try on your own. There may be more than one 
approach, especially considering the “guess” we used for temperature. I’ve included 
one approach to extending the model in the table below. 
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Figure 3-17 Extending the model to 0.1 psi 

Without belaboring all the details, the graph comparing the high altitude points of the 
model and measurements should come out like this, more or less. (Don’t forget that 
the volume calculations for the new rows with average pressures of 0.65, 0.55 etc. must 
be multiplied by 1/10, since these rows are for 1/10 pound of air.) 

 
Figure 3-18 Pressure vs altitude - to 0.1 psi - model vs measured 

Agreement between model and measurements is still good, all the way up to 113,000 
feet (and 0.1 psi).  Do you notice a similarity in the shape of the first graph (which 
covered altitudes from 0 to 70,000 feet), and this graph, which goes from about 40,000 
feet up to 120,000 feet. This characteristic shape is typical of an exponential function; 
we’ll see it again later. 

We still have the last 0.1 pound of air unaccounted for. We could divide it up into 
1/100 pound increments and run another series of calculations. At some point other 
factors will come into play, and the model will stop agreeing with measurements. I’m 
inclined to stop here and declare victory – that our model has agreed with 
measurements closely up to an altitude of 21 miles, and a pressure of 0.1 psi.  

E F G H I J K L M
15 3.2 242 4.594 0.840 87,191 7,266 41,810 2.7 -33
16 2.2 238 6.682 0.826 124,727 10,394 52,204 1.7 -37
17 1.2 234 12.250 0.813 224,824 18,735 70,939 0.7 -41
18 0.65 232 22.615 0.805 41,116 3,426 74,366 0.6 -41
19 0.55 231 26.727 0.803 48,507 4,042 78,408 0.5 -42
20 0.45 231 32.667 0.802 59,184 4,932 83,340 0.4 -42
21 0.35 231 42.000 0.801 75,962 6,330 89,670 0.3 -42
22 0.25 230 58.800 0.799 106,163 8,847 98,517 0.2 -43
23 0.15 230 98.000 0.798 176,631 14,719 113,236 0.1 -43
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Finally, let’s have one last table that combines all the atmospheric pressure and 
temperature parameters with human (and avian) performance: 

Table 3-3 Altitude vs. biology 

Altitude 

feet 

Pressure 

psi 

Pressure 

%atm 

Temp 

°C avg 

Description 

0 14.70 100 15 sea level 

5000 12.23 83% 5 Denver CO, Albuquerque NM 

Newfound Gap in Smokies 

Mt Katahdin MA 

8000 10.91 74% -1 Mammoth Lakes CA 

airline cabin pressure 

10,000 10.1 69% -5 Leadville CO, Cuzco Peru 

15,000 8.29 56% -14 12,500 – O2 needed for hang gliders 

13,420 – Potosi silver mine, Bolivia 

15,980 – Wenquan, Tibet 

16,700 – La Rinconada, Peru – 
highest permanent settlement 

20,000 6.76 46% -24 19,341 - Mt Kilamanjaro, Tanzania 

19,974 - Huyana Potosi, Bolivia 

20,310 - Denali, Alaska 

25,000 5.46 37% -34 All peaks 25,000 and above are in 
Himalayas – China, India, Nepal, 
Pakistan 

30,000 4.37 30% -44 29,035 – Mt Everest – 95% of 
climbers use oxygen tanks  

Bar-headed geese and common 
crane fly this high! 
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Altitude 

feet 

Pressure 

psi 

Pressure 

%atm 

Temp 

°C avg 

Description 

40,000 2.73 19% -57 37,000 – maximum altitude reached 
by any bird (Rüppel’s vulture) 

40,000 – upper cruising altitude for 
commercial aircraft 

50,000 1.69 11% -57 At this altitude, breathing pure O2 

would not be sufficient to keep one 
from passing out from hypoxia. 
Lower reaches of stratosphere. 
Finally safe from vultures. 

80,000 0.40 2.8% -52 60,000 – max altitude Concorde 

70,000 – max altitude U2 spy plane 

85,000 – max altitude SR-71 

Pressure lower than vapor pressure 
of H2O at body temp => if exposed 
one might experience saliva boiling 
away, just before passing out. 

100,000 0.16 1.1% -46 96,800 – max alt. Helios solar plane 

123,520 – record alt. jet plane 

200,000 0.003 0.022% - 264,000 – USAF awards astronaut 
wings to pilots exceeding this limit 
(50 miles), incl. eight X-15 pilots 

 

We often hear of scientists modeling parts of the natural world. Meteorologists model 
the atmosphere in order to predict weather. Climatologists model on a larger scale to 
make predictions about climate. Astronomers model the motions of stars and galaxies.  
This simple spreadsheet of atmospheric pressure is a mathematical model also. Though 
it is far simpler than any model that can predict weather, it gives a very hands-on idea 
of the nature of a mathematical model. 

Project Ideas 
• Determine the density of air, using the SCUBA tank approach outlined in this 

chapter. You may be able to obtain a “pony” tank – a small backup tank that 
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holds only a few cubic feet of air. This would allow use of a smaller (and more 
accurate) scale for weighing the tank, as well as reducing the tedium of filling a 
five-gallon jug over and over. 

• Determine “absolute zero”, the temperature at which an ideal gas has a volume 
of zero. Start with an air sample at 0°C (in an ice bath). Then measure the 
volume of the same sample when the temperature is increased, say to 40°C. 
Graph the results, volume on the y-axis, temperature on the x-axis. Draw a line 
through the two data points, and see where the line intersects the x-axis. This 
sounds too simplistic to possibly work – but it actually works 
pretty well.  
  

 

 

Volume of bottle plus tube is volume at 0°C. 
Weigh bottle and tube dry. Then fill with water
and weigh again. 1 gram water = 1 ml. 

Dry bottle, then put in ice water bath for 15
minutes (with tube above water).  Transfer
quickly to hot water bath, and measure how 
much air bubbles out at higher temperature.
This excess plus the volume at 0°C is the volume
at higher temperature.

Figure 3-19 Finding "absolute zero" 


