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Chapter 5 – Sines, Cosines, and Tangents 

 

Basic Trigonometric Ratios 
A right triangle has one right angle; 
a right angle is 90°, what a 
carpenter might call “square”. The 
right angle is often shown as a small 
square at the angle, as in the figure. 
I’ve designated the other angles as 
α and ω, alpha and omega. The 
sides are designated as a, o, and h, 
for adjacent, opposite, and hypotenuse. The terms adjacent and opposite 
refer to angle ω; the adjacent side is adjacent to the angle ω, and the 
opposite side is opposite. If we were going to focus on angle α, then we 
would have to reverse the adjacent/opposite designations. The 
hypotenuse is always the same; it is the long side of the right triangle. It is 
convenient (though at first somewhat annoying) to call the angles by 
Greek letters. When you see a Greek letter, you’ll know we’re talking 
about an angle. Normal English letters a, o, h, refer to a side, or to the 
length of a side. 

With three sides, there are six possible ways to make ratios of the lengths of 
sides, and mathematicians have names for each of these, as tabulated below. 
Even stodgy mathematicians can get carried away in the heat of the moment. 
99% of the time, we can ignore secants and cosecants. Let’s focus mainly on the 

-15.00	

-10.00	

-5.00	

0.00	

5.00	

10.00	

15.00	

-15.00	 -10.00	 -5.00	 0.00	 5.00	 10.00	 15.00	

liss	2:3		2.4	

liss	2:3		2.4	

a (adjacent)

o (opposite)h (hypotenuse) α

ω

Figure 5-1 Right triangle for trigonometry 
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first three: sine, cosine, and tangent. Millions of students remember their 
definitions by means of a very bad story, whose pun ending is SOH-CAH-TOA, 
which embodies in one phrase – Sine = Opposite/Hypoteneuse, 
Cosine=Adjacent/Hypoteneuse, Tangent = Opposite/Adjacent. 

Table 5-1 Trigonometric Ratios 

ratio o / h a / h o / a a / o h / a h / o 

trig sine cosine tangent cotangent secant cosecant 

abbrev. sin(ω) cos(ω) tan(ω) cot(ω) sec(ω) csc(ω) 

 

The origin of the word “sine” is buried in Indian history. It was originally a 
Sanskrit term, which was translated sort of phonetically into Arabic, and then 
mis-translated into the Latin sinus, from which we get our English words sine and 
cosine. Tangent refers to a line tangent to a circle – in the same plane as the 
circle and just touching. It will take another diagram to show exactly how a 
tangent line relates to the trigonometric ratio o/a.  

We read an expression like sin(ω) as “sine of ω”, and cos(ω) as “cosine of ω”. 
Tan(ω) may be read as “tangent of ω”. Sometimes the last two get shortened to 
just “cos ω” and  “tan ω”. Sin(ω) is still usually pronounced “sine ω.” 

The triangle shown in Figure 5-1 may have given you the impression that trig 
ratios for angles of 90° and greater are undefined, because we can’t have a 
triangle with two right angles, or a right angle and an obtuse (>90°) angle. True, 
but we want to define the trig functions for any angle – for 90°, 237°, 873°, 
whatever real number we can think of. We’ll need a bigger protractor. 
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Consider this confusing 
figure. We start with the 
familiar x and y axes, and 
then draw a circle with a 
radius = 1, centered on the 
origin. Then we draw in a 
radial line from the origin to 
the circle, at an angle ω to 
the x axis. With this in place, 
we achieve three things: 

1. The angle ω can be 
anything. If between 0 and 
90°, then the radial line will 
go into the first quadrant, as 
shown. If between 90° and 

180°, it would be in the 
second quadrant, etc. If ω 

is greater than 360°, then just think of the line rotating around more than 
a full revolution; ω = 390° will put the line in the same position as ω = 30°. 

2. If you consider the x,y coordinates of the intersection of the radial line 
with the circle, you will realize that the coordinates are ( cos(ω), sin(ω) ). 
The circle has a radius of 1, so the hypotenuse is always 1, forcing the x 
and y coordinates to equal the trig ratios. 

3. Finally, you can see at a glance that sin(ω) is positive in quadrants 1 and 2 
(from 0° to 180°) and negative from 180° to 360°. Similarly, cos(ω) is 
positive in quadrants 1 and 4, and negative in quadrants 2 and 3. 

Off on a tangent 
Where does the tangent fit in, and why is it called the tangent? This chapter 
focuses mainly on the sine and cosine ratios, and their usefulness. However, I 
don’t remember knowing why the trigonometric tangent is so-named until 
recently, and I wanted to make sure readers have this little nugget of 
information early. 
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Figure 5-2 Sine and cosine ratios 
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The figure on the left illustrates a tangent line. The official 
definition is that a tangent line is a straight line that 
intersects a curve at exactly one point, without crossing 
the curve. The curve can be any curve, not just a circle. 
And officially, the definition can be extended to planes 
and curved surfaces; a line could be tangent to a sphere, 
and a plane could be tangent to an ellipsoid. For the 
trigonometric tangent ratio, we are specifically concerned 

with lines tangent to a circle. (The English figure of speech “off on a tangent” 
refers to a line of thought or speech which starts off on one subject, but veers off 
into matters only remotely related to the original topic – like when you ask your 
math teacher a simple question about the homework, and before you know it, 
he’s telling you about the Australian rabbit problem.) 

 

On the right is a partial re-drawing of the 
figure we used to define the cosine and 
sine functions. Two lines have been 
added; horizontal line ED  tangent to the 
circle, which  intersects the circle at (0,1). 
The other is vertical line BC, also tangent 
to the circle, which intersects the circle at 
(1,0). The radial line that intersects the 
circle has been extended far enough to 
intersect both the horizontal and vertical 
tangents.  

Looking first at triangle ABC, we see that BC/AB is by definition tan(ω). Since AB 
= 1, BC must be tan(ω).  

Similarly, looking at triangle ADE, we first note that the angle at point D must be 
the same size as ω. Thus by definition, cot(ω) must be ED/EA. Again, since 
EA=1, ED has to be cot(ω). 

Caution – About the Inverse Trig Functions 
Excel and most calculators costing $15 or more have built in trig functions. In 
the olden days, there were tables in which the sines, cosines etc. could be 
looked up, as well as logarithms of the trig functions. Count yourselves lucky 
that you’re learning trig now, with inexpensive calculators readily available.  

Figure 0-3 A tangent line 
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Figure 5-3 A tangent line 

Figure 5-4 Tangent and cotangent ratios 
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A calculator will generally have the so-called inverse trig functions also. These 
may be labeled arcsin, arccos, arctan, or possibly simply sin–1, cos–1, tan–1. The 
second form, the sin–1 style, was chosen mostly to save space, but the notation is 
unfortunate; anywhere else if you see n–1, it has the meaning 1/n. But sin–1 does 
not mean 1/sin, it really means arcsin. If sin(30°) = 0.50, then arcsin(0.50) = 30°; 
arcsin(0.50) means the arc whose sine is 0.50.  

Excel uses ASIN(x) for the arcsin function. ACOS(x) and ATAN(x) are for arccos 
and arctan. These functions return the angles in radians; the function 
DEGREES(n) will convert radians to degrees. Thus  = DEGREES(ASIN(0.5) will 
return the angle whose sine is 0.5, in degrees, i.e. 30°.  

Even if you have never had trig or geometry in school, you can see that these 
definitions, plus the tabulation of trig ratios (or better yet, incorporation into 
calculators) will allow solving all sorts of surveying problems.  

Given a right triangle with one of the acute angles measured to be 27°, 
and the adjacent side measured to be 170 yards long, how long is the 
hypotenuse? 

And there’s the possibility of coming up with an unending stream of trig puzzles. 

Show that sin(ω)/cos(ω) = tan(ω). 

If that were the extent of the usefulness of trig, I wouldn’t have bothered with 
this chapter. 

Measure of Angles 
Angles are measured with a variety of units – a wide 
variety. We are probably most familiar with 
degrees; an equilateral triangle has three 60° 
angles. 

 

Degrees ° 
We divide a circle into 360 equal divisions; each 
division is one degree. A right angle is 90°; the angles of an equilateral triangle 
are each 60°. One degree must be pretty small …               

1°

60°

60°

60°

Figure 5-5 Equilateral triangle 

Figure 5-6 1° angle 
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Looking at it drawn like this, it seems extremely small. But go outside some 
night and take a look at the full moon.  We say the moon “subtends” a certain 
angle in the sky. If you imagine a giant circle projected on the sky directly 
“above” the earth’s equator, then that circle can be divided into 360 degrees. If 
the moon happened to lie on our imaginary circle, how many degrees would it 
span?  

It varies a bit, because the moon doesn’t have a perfectly circular orbit; 
sometimes the moon is closer to us and appears larger; it subtends a larger 
angle. But generally it subtends about ½ degree. The sun happens to subtend 
roughly ½ degree also, which makes it possible to have solar eclipses, where the 
moon just exactly blocks the sun for a brief interval. If the moon happens to be 
close to the earth at the time of eclipse, then the eclipse is total. If the moon is 
farther out in its orbit, then the eclipse may be annular, with a thin ring of the 
sun still visible behind the moon. 

Usually degrees are further divided into minutes, sometimes called arcminutes 
or minutes of arc, to avoid confusion with minutes of time. One degree is 60 
minutes; 1° = 60’.  Minutes are further divided into seconds (arcseconds, or 
seconds of arc). One minute is 60 seconds; 1’ = 60”. Alternately, an angle may 
be expressed as a decimal fraction, 47.27° would be the same as 45° 16’ 12”. 
Many GPS receivers can be set to accept latitudes and longitudes in either 
format.  

Incidentally, whenever you come across something measured in divisions of 60 
(or 360), you can generally thank the Babylonians, who lived in and around what 
is now southern Iraq. They used a base 60 number system. Sixty may seem big 
and unwieldy, but consider that 60 can be divided by 2, 3, 4, 5, 6, 10, 12, etc.  
Ten can be divided only by 2 and 5. 

Firearms manufacturers measure the accuracy of their rifles in minutes of arc, or 
MOA. A rifle with a 1 MOA rating can group its shots inside a one arcminute 
circle, which works out to be 1.047 inches at 100 yards. Telescopic sights for 
rifles usually have adjustments that click in increments of ½ or ¼ MOA. 

Circumference of a circle of radius 100 yards =  

2π • 100 yards • 36 inches/yard = 22619.5 inches 

1 degree arc of that circle = 22619.5/360 = 62.832 inches 

1 minute arc of that circle = 62.832/60 = 1.047 inches 

Incidentally, there are two “frames of reference” in common usage for degrees. 
In the world of math and physics, 0° implies a line starting at the origin, pointing 



 
 

77 

to the right along the x-axis. 90° is a line pointing straight up along the y-axis. As 
the angle increases, the line rotates counterclockwise. 

To a navigator however, 0° is due North, and 90° is due East. As the compass 
heading increases, the direction rotates clockwise.  These two systems couldn’t 
be much more different! Be sure you’re using the appropriate system, especially 
if you’re steering a sailboat at night. 

Gradiansg 

This measure is often found on calculators, and is used by surveyors and French 
artillery officers. It is similar to degrees, except that a circle is divided into 400 
gradians. A right angle is 100g. Inconveniently, 30° and 60° angles are 33.333g 
and 66.666g. The unit was introduced along with the other units of the metric 
system, but didn’t gain wide acceptance. Confusingly, the French word 
centigrade meant 1/100 of a gradian; to avoid confusion, the temperature scale 
once known as Centigrade is now called Celsius. Today the grad, or gradian, 
also goes by the name gon. All this should seem a bit confusing, but unless you 
become a surveyor, or sign up for the French Foreign Legion, you will probably 
encounter gradians/grads/gons infrequently. 

Radians 

The other angle measure in common use (favored by mathematicians and 
physicists) is the radian. Imagine the apex of the angle at the center of a circle. 
The angle then defines an arc of the circle. The length of the arc is measured 
along the curve. This would be difficult in practice, but it is not really necessary; 
we’re really just defining how to assign a value to the size of the angle ω. The arc 
length divided by the radius is the measure of the angle, in radians;  
ω = arc_length/radius .  Note that the arc length is some length, let’s say in 
centimeters, and the radius is some length, also in centimeters. The ratio of the 
two lengths is a pure number, really without units of measure. It’s a ratio. We say 
it is some number of radians, but really radians are sort of a non-unit. 

 

The circumference of any 
circle is 2πr, so a 360° angle 
(i.e. one whose arc is the 
entire circle) is 2πr/r = 2π 
radians. 2π radians is 360°. 

Thus one radian = 360°/2π = 57.29578°.  Furthermore: 

 

radius r

arc length l

opposite o

ω
Figure 5-7 Measuring angles in radians 
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Table 5-2 Degrees and radians 

degrees 360° 180° 90° 60° 45° 30° 15° 10° 

π radians 2π  π  π/2 π/3 π/4 π/6 π/12 π/18 

radians 6.2832 3.1416 1.5708 1.0472 0.7854 0.5236 0.2618 0.1745 

 
This does take some getting used to. I was about to write that I had never seen 
a protractor calibrated in radians; however, a little browsing reveals that one can 
be purchased cheaply enough on Amazon.  

 
Referring back to Figure 5-7, you can see that the angle in radians = arc_length/r 
is defined in a similar way to the sine of an angle, sin(ω) = o/r .  And you can see 
from the illustration that as the angle ω gets smaller and smaller, the arc_length 
and the opposite side get closer and closer; therefore ω and sin(ω) get closer 
and closer . For sufficiently small angles sin(x) is very close to the angle x 
measured in radians. The same is true for tan(x) and the angle x in radians. This 
is sometimes useful in simplifying formulas in physics, in situations where one 
can guarantee that the angles are never going to be large. 

The following table compares the angle in radians to the sine and tangent of the 
angle. You can see numerically how close the three are for angles less than a few 
degrees. That closeness is useful to engineers and scientists, but there is an 

Figure 5-8 Radian protractors do exist! 
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additional huge reason why radians are favored, which we’ll come to in a few 
chapters. 

Table 5-3 Angle in radians vs. sine ratio 

angle ω sine tangent 

degrees radians sin(ω) tan(ω) 

90 1.57079633 1.00000000  

60 1.04719755 0.86602540 1.73205080 

45 0.78539816 0.70710678 1.00000000 

30 0.52359878 0.50000000 0.57735027 

15 0.26179939 0.25881905 0.26794919 

10 0.17453293 0.17364818 0.17632698 

5 0.08726646 0.08715574 0.08748866 

3 0.05235988 0.05233596 0.05240778 

2 0.03490659 0.03489950 0.03492077 

1 0.01745329 0.01745241 0.01745506 

0.5 0.00872665 0.00872654 0.00872687 

0.2 0.00349066 0.00349065 0.00349067 

  

Excel has functions to find the trigonometric values for angles, SIN(ω), COS(ω), 
TAN(ω), and it expects these angles to be expressed in radians. This would be 
pretty annoying, since those radian protractors are still an oddity, however there 
is another Excel function RADIANS(α) which converts α in degrees to radians. So 
the radians column in the table above just has the formula = RADIANS(A2), and 
the sine column has the formula =SINE(B2). If you are working with angles in 
degrees, and don’t really care about radians, you can save some space and just 
nest the formulas   =SINE(RADIANS(A3)) – this will return the sine of A3 degrees 
directly. 
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Sine & Cosine functions 
Before going farther, it is worth tabulating the sine and cosine functions, and 
graphing them. We will encounter these “waveforms” in many situations. Notice 
that the sine and cosine 
values for 360° and 0° 
are the same. The same 
is true for 375° and 15°, 
390° and 30°, etc. The 
sine and cosine functions 
are continuous, and 
repetitive; sine(360° + 
30°) = sine(30°).  Excel 
will handle anything you 
feed it. The formula = 
SIN(RADIANS(N)) will 
handle N = 0, -43, 
5278.3 – any real number 
you care to evaluate.  

The graph shows that the 
sine and cosine functions 
have similar shapes, but 
they are “out of phase.” 
If we evaluated 
sin(x+90°), it would 
exactly overlay the cosine 
graph; you can convince 
yourself of this just by 
looking at the table of 
values. Whenever some 
quantity shows this sort 
of variation, it is almost 
always referred to as a 
sine wave, or sinusoid. Rarely does anyone call something a cosine wave. We’ll 
get back to sine waves in more depth in a couple of chapters. For now, let’s 
focus on the direct utility of the sine and cosine functions for vector arithmetic. 

A B C D
1 degrees radians sine cosine
2 0 0.000 0.000 1.000
3 15 0.262 0.259 0.966
4 30 0.524 0.500 0.866
5 45 0.785 0.707 0.707
6 60 1.047 0.866 0.500
7 75 1.309 0.966 0.259
8 90 1.571 1.000 0.000
9 105 1.833 0.966 -0.259
10 120 2.094 0.866 -0.500
11 135 2.356 0.707 -0.707
12 150 2.618 0.500 -0.866
13 165 2.880 0.259 -0.966
14 180 3.142 0.000 -1.000
15 195 3.403 -0.259 -0.966
16 210 3.665 -0.500 -0.866
17 225 3.927 -0.707 -0.707
18 240 4.189 -0.866 -0.500
19 255 4.451 -0.966 -0.259
20 270 4.712 -1.000 0.000
21 285 4.974 -0.966 0.259
22 300 5.236 -0.866 0.500
23 315 5.498 -0.707 0.707
24 330 5.760 -0.500 0.866
25 345 6.021 -0.259 0.966
26 360 6.283 0.000 1.000
27 375 6.545 0.259 0.966
28 390 6.807 0.500 0.866

Figure 5-9 Sine and cosine functions 
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Figure 5-10 Graph of sine and cosine functions 

Vectors 
What is this all good for? Well, a great many things; 
manipulating vectors is high on the list. A vector is a 
mathematical entity, consisting of a magnitude coupled with a 
direction. It can be as simple as say:  500 meters, Northwest. 
Let’s stick with this example for a moment. Instead of 
Northwest, let’s give the directions in the math framework – East 
is 0°, North is 90°, West is 180°, South is 270°. So suppose a 
boat travels: 

• 500 meters @ 135°  (Northwest) 
• 700 meters @ 55° 
• 900 meters @ 85° 
• 600 meters @ 125° 

Where is the boat after the last leg, relative to its starting point?  
The way a navigator might solve this problem is to add the 
vectors on the chart, by drawing them one after the other, 
“head to tail”, using a protractor to set the direction, and a ruler 
to mark the length of the vector. 

Here we’ve drawn in the vectors scaled to a convenient size, 
with the angles as specified. When all four are added in this 
way, the final position, as measured with ruler and protractor, is 

found to be ~2,328 meters at an angle of ~95°. This method is a little 
tedious, but it is an acceptable if a small number of vectors are involved. 
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Figure 5-11 Graphic 
addition of vectors 
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Note that the order of addition doesn’t really matter; the end point will be the 
same. 

A second way to do this is to take the first two vectors – the 500 meter and the 
700 meter vector – and treat them as two sides of a triangle. Then use 
trigonometry to find the third side, let’s call it V12, which will itself be a vector 
from the start of the 500 m vector to the end of the 700 m vector. Then use this 
new vector, in combination with the 900 m vector to find V123, which is the vector 
from the start of the 500 m to the end of the 900 m vector. Then use V123 in 
combination with the 600 m vector to find V1234, which is the sum of all 4 vectors. 
This is a horrible and tedious way to add the vectors. Forget we even mentioned 
it. 

But there’s a nicer way to do this. Consider the first vector, 500 meters @ 135°. 
Instead of using it in that raw form, suppose we find a pair of vectors that add 
together to give that vector. That would just be more work, unless we think of 
something clever: 

 

We will treat the vector as though it is the sum of a vector 
parallel to the x-axis, plus a vector parallel to the y-axis. We can 
readily calculate these vectors. The x-component is 500 cos(ω); 
the y-component is 500 sin(ω). We’ll do this for all four vectors, 
then we can add the x and y vectors separately. It may sound like 
a lot of work, but Excel automates the process. 

 
Figure 5-13 Adding X and Y vectors 

The numbers in column C are from the formula =B2*COS( RADIANS(A2)). 
Column D uses the formula  = B2*SIN( RADIANS(A2)). Those formulas are 
dragged down to repeat for all four vectors. 

A B C D
1 heading distance x y
2 135 500 -354 354
3 55 700 402 573
4 85 900 78 897
5 125 600 -344 491
6
7 SUM -218 2315

500

353.5

353.5

Figure 5-12 X & 
Y components of 
a vector 
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The sum in C7 is = SUM(C2:C5), and similarly the sum in D7 is = SUM(D2:D5). 
The final result gives the position of the boat in x,y coordinate form, (-218, 
2315).  

If you want the position in the form heading and distance, Excel has a very 
useful function ATAN2 that takes in x, y coordinates, and gives back the angle 
from the x-axis. The formula = ATAN2(G6, H6) will give the heading, in radians. 
To get the answer in degrees, use: 

   = DEGREES(ATAN2(G6, H6)) 

And the Pythagorean theorem will give us the length, it is just !𝑥! + 𝑦!, which in 
Excel form is   = SQRT(G6^2 + H6^2). Let’s add these two formulas to the 
spreadsheet. The formulas are in cells C9 and C10; they are also entered in text 
form in column D, just as a reminder of how the conversion works. 

 
Figure 5-14 Result in x,y form, and distance-heading form 

This is not in perfect agreement with the results of our original graphic addition 
(2325 meters instead of 2328 meters), but it is close. Doing things with 
protractor and ruler is never going to give a perfect answer. The Excel answer is 
presumably closer, but in reality, this problem was about the movement of a 
boat. None of the numbers are very precise, neither the headings nor the 
distances travelled. The distances could all be off by 10 meters; the headings 
could be off by a few degrees. Either approach is sufficiently accurate, given the 
nature of the data. 

A B C D
1 heading distance x y
2 135 500 -354 354
3 55 700 402 573
4 85 900 78 897
5 125 600 -344 491
6
7 SUM -218 2315
8
9 Heading 95 =DEGREES(ATAN2(C7,D7))
10 Distance 2325 =SQRT(C7^2	+	D7^2)
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Let’s summarize this section on vectors: 

• a vector has a magnitude and a direction, i.e. 300, 60° 
• alternately, it can be given in the form (x-component, y-component) 
• to go from magnitude, direction to x,y 

x = magnitude*COS(RADIANS(direction°)) 
y = magnitude*SIN(RADIANS(direction°)) 

• to go from x, y to magnitude, direction 
magnitude = SQRT(x^2 + y^2) 
direction° = DEGREES(ATAN2(x,y)) 

Vector Lab 
This is a common lab exercise for physics classes. It is equally suitable for a math 
class. The objective is to experimentally measure a set of force vectors that are 
expected to add to 0, and verify that they do so by adding them graphically, 
and by using x, y vectors. 

Materials 

• Three or more identical spring balances, max force 2 Kg / 4 pounds or 
less (Doesn’t matter if calibrated in ounces, grams, or newtons, but 
should not be heavy duty scales like fisherman use that can weigh up to 
40 lbs.) 

• Small metal ring – available at lock shops for key rings 
• Protractor 
• Ruler 
• Large sheet of paper – butcher paper, kraft paper … 

 
Figure 5-15 Spring balance 

Procedure 

1. Connect the hooks of 3, 4, or 5 spring balances to the metal ring. 
2. Position the balances over a large sheet of paper. 
3. Have the students each pull on their balances. Adjust the pull strengths 

so that all balances are in range, somewhere between 0 and max pull. 
You could have the balances equally spaced, but it is more interesting to 
use more varied angles. 

0 2 4 6 8 10 121 3 5 7 9 11 13
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4. On the paper, mark: 
a. The center of the metal ring 
b. The direction of each scale 
c. The force registered on each scale 

 

 
Figure 5-16 Force vectors - setup and marks 

 

5. Remove the balances. 
6. Draw lines from the center point to each of the scale direction marks. 
7. Use the protractor to measure the angles of the lines drawn in (6). Pick 

any one of the lines to start, call it 0°, and measure the other lines relative 
to that first line.  
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Figure 5-17 Force vectors from direct measurement 

 
 

8. You now have measured a set of force vectors – one vector for each 
spring balance. In the example we’ve been showing, we have put the 
vectors into table 5-4. Tabulate your vectors in a similar form. 

 
                 Table 5-4 Force vectors 

force direction 
4.6 0° 
5.0 136° 
3.6 254° 

  

9. Add your set of vectors together graphically, using a compass and ruler. 
Draw the first vector; then draw the second vector starting at the end of 

4.6  0°

5.0  136°

3.6   254°
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the first vector; then draw the third vector starting at the end of the 
second vector; etc. Ideally, the last vector should end at the start of the 
first vector. (If it is way off, the usual problem is misreading the protractor. 
Looking at lines drawn through the origin on an x-y graph, lines in the first 
quadrant are 0° – 90°, second quadrant are 90° - 180°, etc.) 

10.  And finally, once you have the graphic vector addition straightened out, 
use Excel to add the vectors together using the x-y components of the 
vectors. 

 

 

 

Geography and GPS – an aside on angle measurement on earth’s surface 
 

The earth spins one revolution per day, 15° per hour, 1° every four minutes. The 
sun, moon, and stars move through the sky at that rate. Thus the moon, only ½° 
wide, moves across the sky by its angular diameter, ½°, every two minutes. If 
you can estimate how many degrees separate the moon and the western 
horizon, you can estimate how long it will take for the moon to set;  3° è 12 
minutes, maybe a bit more if the moon is moving toward the horizon on a 
slanted course. (The moon, sun, and stars don’t move at exactly the same rate 
however. In a year’s time, the earth rotates 366.25 full turns relative to the stars. 
The earth’s orbital motion “unwinds” one turn from the sun’s apparent motion, 
so we get only 365.25 solar days. The moon’s orbital motion adds another twist; 
the moon rises about 50 minutes later each night, due to its orbital motion.) 

Mapmakers have divided the earth with lines of 
longitude (the north-south lines) and latitude 
(the east-west lines, parallel to the equator). 
One degree of latitude is 69 miles. One degree 
of longitude varies; at the equator it is 69 miles, 
but if you travel closer to the poles, the distance 
decreases, because the lines of longitude 

converge. One arcminute of latitude is 69/60 = 1.15 miles approximately. This 
was at one time the definition of a nautical mile. Definitions change – the 
nautical mile is now set by international agreement to be exactly 1,852 meters, 
but still very close to the length at the surface of the earth of 1 arcminute. 

Latitude Longitude

Figure 5-18 Latitude and Longitude 
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One arcsecond of latitude is 1.15 miles/60, approximately 101 feet. High quality 
GPS receivers can pinpoint horizontal position with an accuracy of ~11 feet, so 
they are accurate to roughly 1/10 arcsecond. I mention this mainly to emphasize 
that we can and do resolve angles to exceedingly fine levels. An even better 
example is found in astronomy.  

Astronomers, the Masters of Angle Measurement – An Aside on Parallax 
Measuring the distance to stars using parallax is nothing more than surveying on 
a grand (dare I say cosmic) scale. In 
surveying, if you can get a bearing on a 
distant object from two points 
separated by a known distance, then 
you can use trig to find the unknown 
sides of the triangle, and thus the 
distance to the distant object, in this 
case a telephone pole. 

 

The complication in astronomy is that even the 
closest stars are very far away. If you tried to get 
a bearing on a star from two points on the 
earth’s surface, separated by a few thousand 
kilometers, you wouldn’t detect any difference 
in the angle as measured from the two points. In 
order to get a longer baseline, the practice has 
been to check the angle at six-month intervals. 
By doing this, the baseline is the diameter of the 
earth’s orbit around the sun, roughly 300 million 
kilometers. Even with this, the difference in the 
angle from the two points is less than two 
seconds of arc for even the closest stars (not 
counting the sun). This is too small to read from 
any protractor-like scale fixed to a telescope. 
(Telescopes used to have setting circles, 
essentially full 360° protractors, fixed to their 
mounts. Nowadays this hardware has given way 
to computers, which display the angles, and 
control the motion and direction of the 
telescope. But even these computerized systems 

are not precise enough to measure arc seconds.) Instead, the change in angle is 

earth's orbitsun

earth 6 months laterearth

distant star

70°
100 m

Figure 5-19 Typical surveying problem 

Figure 5-20 Principle of parallax 
measurement 
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determined by noting the apparent shift of the star relative to a distant scale, 
depicted in the figure as a protractor scale. Unfortunately, the ruled scale at the 
edge of space doesn’t exist. But there are lots of stars handy, and most of them 
are so extremely distant that they show no shift whatsoever. These extremely 
distant stars are used as the scale.  

Given an image with stars of known positions, the scale of the image can be 
calculated, i.e 1 centimeter on the image = 1 arc minute. The apparent 
movement of a nearby star relative to a distant star can be measured, and scaled 
to some number of arc seconds (typically just a fraction of an arc second). 

 
Figure 5-21 Position shift due to parallax 

In this figure, all the stars are extremely distant except the one shown as a circle. 
If you look closely, you will notice that it has shifted slightly in the second 
picture, while all the others have remained stationary. (With a little practice, you 
may be able to view these two pictures as a 3D image, if you can persuade your 
left eye to look at the left image, while the right eye looks at the right image.) 

How distant would a star be if it showed one arc second of displacement? The 
diameter of earth’s orbit is 2.992 x 108 Km, so … 

 

 

 

 

tan(θ) = 2.992 x 108 / d 

d = 2.992 x 108 / tan(1 arc second)  Let’s use Excel to do the math… 

  

January 1 July 1

2.992 x 10
8 

km
d

θ = 1 arc sec

Figure 5-22 Parallax measurement of 1 arc second 
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Figure 5-23 Distance for 1 arcsecond angle 

So the distance would be 61.71 x 1012 kilometers, or 61.71 x 1015 meters. There 
is a metric prefix for 1015, peta, so we could say 61.7 petameters, although 
honestly, no one would know what you are talking about, certainly not 
astronomers. 

Astronomers measure nearby objects (within the solar system) in astronomical 
units. 1 A.U. is the average distance from the sun to the earth, 1.496 x 108 
meters or 1.496 x 105 kilometers.  

Larger distances – to stars, other galaxies, etc. – are measured in parsecs. One 
parsec is just exactly one half the distance we calculated in the Excel snippet 
above – 3.086 x 1013 kilometers. Why is it half? Instead of using the full diameter 
of the earth’s orbit in the calculation (2.992 x 108 kilometers), astronomers use 
one A.U., which is just half of 2.992 x 108 kilometers. Furthermore, the parallax 
of an object is defined to be ½ of the change in angle measured from the earth 
at opposite sides of its orbit. In practice, the angles are measured whenever 
weather permits, and when time on the telescope is available. Whatever the 
earth’s displacement happens to be between two observations, the parallax 
angle for a given object is scaled to what it would be if the earth’s displacement 
were exactly 1 A.U.  

And once the parallax angle is obtained, the distance in parsecs is just the 
reciprocal of the angle. 1 arcsecond => 1 parsec, ½ arcsecond => 2 parsecs, 
1/10 arcsecond => 10 parsecs,  0.22 arcsecond => 1/0.22 = 4.55 parsecs, etc. 
Note that this works perfectly well for these small angles. But don’t expect it to 
work if you’re dealing with big angles in your trigonometry class. Tan(70°) is not 
2x tan(35°)  (2.75 ≠ 2 x 0.70). But when the angles are measured in arc seconds, 
the tangent function is very linear, i.e.  

tan(2 arc seconds) ≅ 2*tan(1 arc second)   

0.000009696 ≅ 2 * 0.000004848)  

B
1 2.992E+08
2 1
3 0.016667
4 0.000278
5 4.84814E-06
6 4.84814E-06
7
8 6.171E+13

tan(θ)	=	θ	for	small	angles,	=	B5
tan(θ)	=	2.992E+08/d
d	=	2.992E+08/tan(θ)		=	B1/B6

A
diameter	of	earth's	orbit	in	kilometers
θ	in	arcseconds
θ	in	arcminutes	=	B2/60
θ	in	degrees	=	B3/60
θ	in	radians	=	RADIANS(B4)
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For angles of an arcsecond or less, the approximation is nearly perfect. 

For unknown reasons, the parsec unit of measurement has never really caught 
on outside the astronomical community. In the popular press, the light year is 
more commonly used. One light year is simply the distance a light beam can 
travel through empty space in one year. Light travels roughly 300,000 km per 
second. Again resorting to excel … 

 
Figure 5-24 One light year, in kilometers 

Although scientists pride themselves on being logical, the variety of length units 
proliferating in astronomy shows a lot of history creeping in. I’ve put together a 
table below that will help you convert from one measure to another. Sometimes 
understanding the units is half the battle in grasping new material. 
 
 kilometers astronomical 

units A.U. 
light years parsecs 

1 kilometer 1 6.68 x 10–9 1.06 x 10–13 3.24 x 10–14 

1 A.U. 1.496 x 108 1 1.58 x 10–5 4.84 x 10–6 

1 light year 9.46 x 1012 6.32 x 104 1 0.307 

1 parsec 3.09 x 1013 2.06 x 105 3.26 1 

Figure 5-25  Common distance units for astronomy 

Astronomers had sought to detect parallax shift for decades, if not centuries. 
Indeed, the inability to detect the parallax shift was a strong argument for 
placing the earth at the center of things with the sun orbiting around it, rather 
than the having the earth orbiting the sun. Galileo was certainly aware of the 
principle, but actual detection had to await better instruments. Friedrich Bessel, 
the German astronomer-mathematician, was the first to find the distance to a 
star by parallax measurements, in 1838. The star was 61 Cygni; its distance is 11 
light-years. Bessel measured its parallax to be 0.3136 arcseconds. He later 
refined his measurements, and concluded that the true angle was 0.348 
arcseconds. Modern measurements reveal that his first measurement was closer; 

B C
1 2.998E+05
2 2.998E+05 kilometers
3 1.799E+07 kilometers
4 1.079E+09 kilometers
5 2.590E+10 kilometers
6 9.461E+12 kilometers

1	light	minute	=	B2	*	60
1	light	hour	=	B3	*	60
1	light	day	=	B4	*	24
1	light	year	=	B5	*	365.25

A
speed	of	light	=	299,800	Km/sec
1	light	second	=	B1
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the value is now taken to be 0.287 arcseconds. Before his measurement, stellar 
distances were purely a matter of speculation and opinion.  

Note that photography was in its infancy in 1838. The first astronomical 
photograph would not be taken until 1851. Bessel had to measure the 
displacement at the eyepiece of his telescope, probably using a bifilar 
micrometer – sort of a crosshair reticle, with an extra moveable crosshair, 
allowing precise measurement of the angular separation of two stars. The 
process of getting a reliable parallax measurement is somewhat more involved 
than I have made it sound; it took him several years to get a measurement that 
he was comfortable with publishing.  

A British astronomer, Thomas Henderson, published a second parallax distance 
measurement two months later. Having been assigned a post in the southern 
hemisphere (at the Cape of Good Hope, a place he described as a “dismal 
swamp” infested with “insidious venomous snakes”) he could observe Alpha 
Centauri, a bright star not visible to European observers in the northern 
hemisphere. His first estimate of the parallax was slightly more than one 
arcsecond. Later measurements have trimmed the parallax down to 0.76 
arcseconds, making the distance 4.3 light-years. It has turned out to be our 
closest neighbor. (It is a triple-star, consisting of two large stars Alpha Centauri A 
and Alpha Centauri B, and a third dim red giant star Proxima Centauri. You may 
have read that Proxima Centauri is the closest star, but all three are close to 
each other, and thus all at nearly the same distance.)  

The ability to measure these small displacements is limited by earth’s 
atmosphere, which “fuzzes” the images of stars. Hipparcos, a satellite launched 
by the European Space Agency ESA in 1989, has measured these parallax 
angles more accurately than is possible by earth-based telescopes. Its resolution 
in measuring parallax is 0.001 arcseconds. Hipparcos is both an acronym – High 
Precision Parallax Collecting Satellite – and a reference to the ancient Greek 
astronomer Hipparchus, who was known for his application of trigonometry to 
astronomy. One result of the Hipparcos satellite measurements is the Hipparcos 
Catalog, which gives the parallax measurements of more than 100,000 stars. 
Note that the precision of the measurements limits it to stars within roughly 
1000 parsecs. As our Milky Way galaxy is over 30,000 parsecs in diameter, the 
stars in the catalog are all within the Milky Way. (Back in the 1960’s, when I first 
learned a little about astronomy, the number of stars close enough for their 
parallax to be determined was only a few dozen.) 

The ESA launched a more sophisticated Gaia spacecraft in late 2013. It has 
several mission goals, including measuring the positions of 1 billion stars, 
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roughly 1% of the stars in the Milky Way, with an accuracy of 20 
microarcseconds for the brighter stars. The observations will be made over a five 
year period. A first catalog is expected to be released in 2016, but parallaxes 
will not be included in this first catalog, as further observations are necessary to 
separate the parallax displacements from displacements due to the stars’ 
motions in their orbits within the galaxy. 

 


