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Chapter 4 – A Number Most Curious 

 
Often when math teachers wish to start at the beginning, they put up the familiar 
number line. 

 
Figure 4-1  The number line 

To an engineer, this is a homogenous line, with about as much internal structure as a 
potato. Any point on the line can be measured and given a value, 4.7238 for instance. 
A rather small number of decimal places are sufficient to give the measurement, to 
within the practical limits of machining. Looked at the other way, we normally only 
measure mechanical objects to the nearest thousandth or perhaps ten thousandth of 
an inch. Optical surfaces are more precise – their curved surfaces differ from the ideal 
by only a few millionths of an inch, but still that amounts to only a couple more decimal 
places. 

But if we leave behind the practical matter of brake rotors, pistons, and telescope 
mirrors, then even a middle school math student knows that not all the numbers on the 
number line can be expressed as decimal fractions. Something as simple as 1/3 is 
stubbornly difficult to write as a decimal fraction, without the dodge of writing 0.333… 
, with those three dots signifying that the 3s continue indefinitely. But if we can write a 
number as a ratio of two integers, then it is a rational (from ratio) number. That takes 
care of 1/3, 3/7, etc. That should cover it, right? No – something as simple as √2 
proves to be not rational; we can’t find an integer ratio x/y which gives 2 when 
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squared. What’s worse, we find that the number line has far more of these irrational 
numbers than it does rational numbers. Still, with rational numbers and irrational 
numbers, we do have the number line covered. Nothing else is going to pop up and 
surprise us. (Well, there are imaginary numbers, but they don’t exactly sit on the 
number line.) 

And that should be that. Of course it isn’t though. To a mathematician, the number line 
is as densely populated with bizarre denizens as the Amazon rainforest. Let’s go have a 
close look at one of these creatures. 

 

A Calculator Trick 
Using a calculator that has a reciprocal function (1/x), do the following: 

Pick a number, 0 or higher.  

1. Add 1 
2. Take the reciprocal 1/x 

Repeat steps 1 and 2 for many iterations, maybe 25 or 30. You should see the 
calculator converge slowly on a number 1.x, whose reciprocal is 0.x. 

I’ve run this loop in Excel, for the purpose of demonstrating the iteration. Here are the 
first few lines. 

 

You can see that the iteration is 
heading towards the pair 1.61-
something, 0.61- something. Carried 
out for another 20 passes, the 
eventual numbers come out to be 
1.61803399 and 0.61803399. These 
two numbers are reciprocals of each 
other. Once you have either of these 
numbers entered in your calculator, 
you can just keep pressing the 
reciprocal 1/x key, and the display just 

toggles between the two numbers. It appears that the only change is that the leading 
digit toggles between 0 and 1, the fractional part of the number remains constant. 

Leonardo Pisano, aka Fibonacci 
Leonardo Pisano, now universally known as Fibonacci, was born in Pisa, Italy in the 12th 
century. He spent his childhood in North Africa, where he was educated by the Moors. 

A B C
1 1	+	1/r 1/r	
2 3.00000000 <--initial	guess
3 4.00000000 0.25000000
4 1.25000000 0.80000000
5 1.80000000 0.55555556
6 1.55555556 0.64285714
7 1.64285714 0.60869565
8 1.60869565 0.62162162
9 1.62162162 0.61666667
10 1.61666667 0.61855670

Figure 4-2 Calculator trick 
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He travelled widely on business through Algeria, Syria, Greece, Sicily, and Egypt. 
Around 1200 he returned to Pisa, where he published a book which introduced the 
decimal number system (0, 1, 2, 3, 4, … instead of  I, II, III, IV…) to the Latin-speaking 
world. By all rights, that is what he should be remembered for. But no, we remember 
him for a side topic in his book, on the mathematics of breeding rabbits. 

Fibonacci’s rabbits 
Fibonacci modeled the rabbit population explosion with this line of reasoning. 

Start with a pair of young rabbits:      total – 1 pair 

1 month later – they’ve grown     total – 1 pair 

1 month later – proud parents    total – 2 pair 

1 month later – parents again, and first children have grown… 

 total – 3 pair 

  



 Chapter 4 51 

1 month later – 2 sets of parents, 1 pair children have grown 

  total – 5 pair 

So the rabbits multiply, obeying 2 simple rules:  

1. Baby rabbits take 1 month to become mature rabbits. 
2. Mature rabbits produce a new pair of babies every month. 

If you continue this process, month by month, you find that the pairs of rabbits multiply 
according to the Fibonacci series – 1, 1, 2, 3, 5, 8, 13, 21, … - where each new element 
is the sum of the previous two entries. The previous entry is last month’s total number 
of rabbit pairs. And the entry before that is the number of rabbit pairs which will give 
birth in the current month. 

Obviously this is a simplified model, which ignores lots of important biology. The 
rabbits never die, and they give birth to exactly two offspring, every month, like 
clockwork. But even with these simplistic assumptions, some truths about rabbits do 
emerge.  Australians probably wish their forebears had paid more attention to 
Fibonacci before they imported a few dozen rabbits in 1857 – 1859. Ten years later, 
the population had exploded. By that time, they were shooting and trapping more 
than 2 million rabbits every year, with no noticeable decrease in the rabbit population. 
In 1950 myxoma virus was introduced to control the population, which was then 
estimated to be around 600 million. The virus worked well at first, dropping the 
population to around 100 million. However, some of the rabbits were genetically 
resistant; by 1990 the population was back up to an estimated 200-300 million. Control 
efforts continue. 

Australia’s rabbit problem aside, what does the Fibonacci series have to do with the 
number 1.618033989 ?  As the numbers of the series get larger and larger, the ratio of 
the N+1 term to the N term takes on a familiar look. We can resort to Excel to show 
this easily. 
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A pair of 1s are entered at the top of column F. 
Then, for the third element, we enter the formula    
= F2 + F3, which gives 2 when entered (the sum of 1 
+ 1). When we drag that formula down to repeat it 
in column F, the relative cell references insure that 
each new entry is the sum of the previous two, and 
we get the Fibonacci series, as far as you and Excel 
care to go.  

Cell G3 contains the formula   = F3/F2, which is just 
the ratio of the current Fibonacci element (1) to the 
previous element (1). That formula is repeated down 
through column G. So the ratio of 13/8 is 1.625, for 
example. By the 25th entry, the ratio has reached 
1.61803399.  

This result isn’t really dependent on the numbers in 
the first two cells – the 1s in cells F2 and F3. 
Regardless of the starting numbers, the resulting 
series will be Fibonacci-ish, and the ratio of 
successive values will approach 1.618…  (OK – the 
two starting numbers can’t both be 0; that gives a 
very boring series.) This result was proved by the 
astronomer/mathematician Johannes Kepler around 
the year 1600. If you have replicated this series in 
Excel, you can easily tinker with it – try changing the 
initial values to bigger integers, fractions, or even a 

positive and a negative number. 

Newton’s Method 
There are faster ways to arrive at this number. One way, which relies on a touch of 
calculus, is to guess a value n, and then calculate the next n – let’s call it n’ – as:  n’ = 
(n2 + 1)/(2n-1). Repeat this iteratively, each time using the latest value of n as the 
starting value for the next calculation. Here’s how to get it started: 

F G
1 fib	series ratio	of	terms
2 1
3 1 1.00000000
4 2 2.00000000
5 3 1.50000000
6 5 1.66666667
7 8 1.60000000
8 13 1.62500000
9 21 1.61538462
10 34 1.61904762
11 55 1.61764706
12 89 1.61818182
13 144 1.61797753
14 233 1.61805556
15 377 1.61802575
16 610 1.61803714
17 987 1.61803279
18 1597 1.61803445
19 2584 1.61803381
20 4181 1.61803406
21 6765 1.61803396
22 10946 1.61803400
23 17711 1.61803399
24 28657 1.61803399
25 46368 1.61803399

Figure 4-3 Fibonacci series & ratio of 
terms 



 Chapter 4 53 

 
Figure 4-4 Newton's method 

The initial guess is 3. The formulas used in the columns are given at the heads of the 
columns.  n2 + 1  formatted for Excel is   = D2^2 + 1,  2n – 1 is                   = 2*D2 – 1, 
etc. How many iterations do you anticipate needing to get to 1.618033989 ? Our 
previous Excel treatments have taken over 20 iterations. I’ve suggested that this will be 
faster, and Newton seems to have been a pretty smart cookie. I’ve shown the first 2 
iterations. Will it take  (a) five iterations or fewer total, (b) 6 to 10 iterations total, or (c) 
11 to 15 iterations total? A clever student might be able to place a wager with an 
unsuspecting math teacher, resulting in treats for the class. 

Fibonacci Backwards 
We generate the Fibonacci series by adding the previous two elements to generate the 
next element, like this: 

1 

1 

1+1 = 2 

2+1 = 3 

3+2 = 5 

5+3 = 8   etc. 

You can readily see that we could drop into the series at an arbitrary point, and 
generate the preceding elements, like so: 

8 

5 

8-5 = 3 

5-3 = 2 

3-2 = 1 

2-1 = 1 

1-1 = 0 and there is really nothing that forces us to stop here, so… 

A B D C
1 n2	+	1 2n	-	1 (n2+1)/(2n-1)
2 3.00000000 <-	initial	guess
3 10.00000000 5.00000000 2.00000000
4 5.00000000 3.00000000 1.66666667
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1-0 = 1 

0-1= -1 

1-(-1) = 2 

-1 -2 = -3 

2-(-3) = 5 

-3-5 = -8 etc.   

We find we have a strange extension to the Fibonacci series, with the same numbers as 
before, but alternating signs. Is this just a curiosity? It doesn’t shed any new insights on 
rabbits – that’s for sure! But will it pop up again somewhere? 

Euclid and a Host of Others 
The number 1.618… was known in antiquity. It has a way of popping up in seemingly 
unrelated areas; we’ll cover a few more in this section. It comes up so often that it has 
been given a symbol, in the same way that 3.14159… has been given the symbol 
π.		The symbol for 1.618033989 is φ,	a lower case letter of the Greek alphabet, usually 
pronounced fy (rhyming with fly), though pronounced by some as fee. (Purists point out 
that Greeks pronounce it as fee. However, Greeks also pronounce π  as pee, so if you 
demand linguistic purity, you will be in for a lifetime of confusion and snickering.) The 
same symbol φ also stands for a variety of other things in other contexts; it isn’t so 
unambiguous as π, which seems always to represent 3.14159. 

It was first designated by the Greek letter φ in the early 1900’s. Apparently	φ was 
chosen to represent this number, because it was the first letter of the name of the 
Greek mathematician/sculptor Phidias, who was known to have used it to proportion 
sculptures for the Parthenon. Plato apparently was familiar with it, and Euclid (365 – 
300 BC) included it in his book of geometry, Elements. “A straight line is said to have 
been cut in extreme and mean ratio when, as the whole line is to the greater segment, 
so is the greater to the lesser.” Perhaps a diagram will clarify this unfamiliar wording.  

Euclid is saying that we have cut the line according to this special ratio when: 

 

!"#$%&	()	*&(!"	!+#"
!(#$",	-"$."#%

  =  !(#$",	-"$."#%
-&(,%",	-"$."#%

   or, in terms of 1 and x shown in the figure: 

x 1

Figure 4-5 Euclid's definition 
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/01
/

  =  /
1
        convert this to standard quadratic form 

x2 – x – 1 = 0    now substitute into quadratic equation 

x = 1±	√104
5

    

x = 10	√6
5

 , 17	√6
5

    = 1.61803399…  ,  - 0.61803399… 

(And we sort of ignore the negative value, since we are looking for a positive line 
length.)  This may be the quickest way to find the value of 𝜑; find the square root of 5, 
add 1, and divide by 2. 

This number has come to be known as the golden ratio. Another common way of 
introducing it is by this construction: 

 

The constraint is that the length to 
width ratio of the small rectangle, 
namely !

"
 , must be the same as the 

length to width ratio of the overall 

rectangle, 
801
8

 , that is:   
801
8

  =  8
1
   

This is the equation we just solved 
with Euclid’s line segments, so of 
course we again arrive at x = 
1.618033989…   , and the rectangle 
is known as the golden rectangle. 

Much has been made of this rectangle as being in some sense perfectly proportioned. 
Certainly artists and sculptors have used it from time to time in proportioning their 
works. In the context of art and architecture, φ is commonly called the golden ratio, 

and is  
10	√6
5

, which in decimal form is 1.61803399…   

Where else does it show up? Pentagons and pentagrams, for example: 

x 1

x x

Figure 4-6 Golden rectangle 
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The ratio of the length of diagonal AC to side AB is φ.  
The ratio of length AB to length BG is φ. The ratio of 
length BG to length FG is φ. Segment AG has the same 
length as side AB, so AG has the same relationships to 
AC and BG that AB has. 

 

 

 

 

Johannes Kepler was certainly a “fan” of φ. As 
mentioned earlier, he was the first to prove that ratio of successive elements of the 
Fibonacci series approaches 𝜑. Furthermore, he wrote: 

Geometry has two great treasures: one is the theorem of Pythagoras, the other 
the division of a line into mean and extreme ratio. The first we may compare to a 
mass of gold, the second we may call a precious jewel. 

Because φ2  = 1 + φ (see below), he realized 
he could construct a right triangle with sides of 
length 1, 2φ, and φ. This triangle is known as 
a Kepler triangle, and combines what he 
considered to be the gold and jewel of 
mathematics into one entity. 

Proof: Since 𝜑 = 
10√6	
5

 ,  

𝜑2	=		(	10	√6
5
	)2	=	10605√6	

4
	

						=		40505√6	
4

					rearranging	terms		

						=		1	+	
10√6	
5
		,	or	simply			1	+	𝜑.		Thus	𝜑2	=	1	

+	𝜑	

 

 

Beware the Mumbo Jumbo! 
There is a branch of superstition known as numerology, which associates divine 
mystical relationships between numbers and one’s fate. While it is clearly hooey, most 

Area = 1

Area = φ 

Area = φ² 

φ

1

√φ

Kepler's

Triangle

Figure 4-8 Kepler's triangle 

A

B

CF G

DE

Figure 4-7 Pentagons and the 
golden ratio 
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of us are not entirely immune. Do you perk up when your birth day-of-the-month (i.e. 
12, if you were born on the 12th of the month) happens to come up in some unrelated 
context – maybe as the jersey number of a football player? Are you superstitious about 
the number 13? (This is formally called triskaidekaphobia, which is a mash-up of Greek 
words meaning three-and-ten-fear. If you like that word, you’ll really like fear of Friday 
the 13th, which throws in the Norse goddess Frigg, for whom Friday is named – 
friggatriskaidekaphobia.) There are so many people who fear the number 13 that 
buildings with more than 13 floors often have no button marked “13” in the elevators. 
Trump Tower in Chicago labels the 13th floor as the Mezzanine floor, thus dodging the 
issue.  φ has gotten more than its share of attention from numerologists, due to its 
unexpected emergence from so many lines of numerical reasoning. In particular, the 
pentagram (the five pointed star) is itself associated with a number of religions, some of 
them leaning towards the occult. But quite aside from the mumbo jumbo, it is an 
interesting number, and it has been studied by mathematicians from Pythagoras (570 
B.C.) to Kepler (1571) to Roger Penrose (1931). 

Geometric and/or Fibonacci Series 
By now, we’ve learned a few things about φ. The calculator trick that kicked off this 
chapter showed that the reciprocal of 1.618… is 0.618…  In terms of φ,    1/ φ = φ – 1.  
And in the section on Kepler’s triangle, we showed that φ2 = 1+ φ. We’ve got four 
elements of some kind of series, but is it Fibonacci or geometric? 

φ -1 =  φ – 1 (remember that x-1 is the same thing as 1/x) 

φ0 = 1    (because anything to the 0 power is 1, except ironically 0) 

φ1 = φ 

φ2 = φ + 1 

Let’s start with a generalized geometric series, one that extends in both directions: 

… x-3,   x-2,   x-1,   1,   x,   x2,   x3 … 

If we want a geometric series which doubles as a Fibonacci-ish series, then we can say 
that each element must be the sum of the previous two elements, for instance: 

x2 = x + 1 

x2 –x -1 =0   the same equation we keep running into … 

x = φ  

So we have a series that we can write in the form of a geometric series, or in the form 
of a Fibonacci-ish series. 
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geometric Fibonacci decimal 

φ-4 –3φ + 5  

φ-3   2φ – 3  

φ-2 –1φ + 2 0.38196601 

φ-1   1φ  – 1 0.61803399 

1   0φ + 1 1.00000000 

φ   1φ + 0 1.61803399 

φ2   1φ + 1  

φ3   2φ + 1  

φ4   3φ + 2  

Figure 4-9 Geometric/Fibonacci-ish series 

If you aren’t quite convinced, you can: 

1. Use Excel (or a calculator) to evaluate the elements in the geometric and 
Fibonacci series, and show that they come out to be the same, when expressed 
as decimal fractions. 

2. Or use the value of  φ = "#√%	
'

, and verify through algebraic manipulations that 
the terms are equivalent. 

Finally, study the entries in the Fibonacci column. The extended Fibonacci series  ( 
…+5, –3, +2, –1, +1, 0, +1, +1, +2, +3…)  is showing up again, both as the coefficients 

of 𝜑, and the constants. The way the Fibonacci terms alternate signs to give the 𝜑-n 
values is really quite beautiful – a Keplerian gem. 

Fibonacci_3 Series, and a Quirky Approach to Solving a Cubic Equation 
Possibly in your high school math class, the teacher has briefly covered solving cubic 
equations, equations of the form ax3 + bx2 + cx + d = 0. Math classes today may be 
different, but when I was introduced to cubics, there was always something fairly easy 
that could be factored out, like (x + 2) for instance. After the first round of factoring, 
what remained was a normal quadratic equation, which could be further factored, or 
plugged into the quadratic formula if the next round of factoring was difficult.  

In the worst case however, there may not be a simple factor to pick out to get things 
started. Let’s try working with one of these cases, a special one closely related to the 
Fibonacci series. 
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Suppose we have a Fibonacci_3 series, where each term is the sum of the preceding 
three terms. If this were a geometric series and a Fibonacci series, we could write x3 = 
x2 + x +1, or in standard form 

x3 – x2 – x –1 = 0 

And this equation turns out to be a booger to solve. There isn’t a cubic formula to plug 
into like there is for quadratics. There is however a process which can be followed to 
eventually arrive at the answer. It is not an easy process to follow, which is evident from 
the final solutions for x. There are two imaginary roots, and one real root; let’s focus on 
the real root for now – it is: 

𝑥 = 	 "
(
(1 + 219 − 3√33

!
 + 219 + 3√33

!
 ), which works out to 1.839286755… 

Can we arrive at this number by tinkering with the Fib_3 series, in the same way we 
found φ by playing with the Fibonacci series? 

The initial values are not too important, but let’s start with 1, 1, 2 – so our series would 
be: 

1, 1, 2, 4, 7, 13,  … 

If we reason that this should behave like the Fibonacci series with larger and larger 
values, then we hope that the ratio of successive terms will be a solution for x3 – x2 – x –
1 = 0. Here’s the start of a spreadsheet that calculates the Fib_3 series, and tracks the 
ratios of successive terms. This will be almost identical to the spreadsheet in Figure 4-3 
Fibonacci series, except that terms are the sum of the preceding 3 terms. 

If you continue this series, how far do you have to 
go to reach a ratio that no longer changes with later 
elements in the series? 

And is that ratio 1.839286755… ?  Or is it just a 
lucky but misleading break that the ratio seems to 
be heading in that direction at the ninth element, 
i.e. 81/44 ? 

Don’t trust anyone! Does that expression for x, with 
the cube roots and square roots, really evaluate to 
1.839286755… ? It’s worth double-checking with 
Excel. Note that there is no cube root function, but 
you can raise a number to the 1/3 power, i.e.  = 

N^(1/3)    which is just another way of specifying cube root. It is in general more 
powerful; you can ask Excel to find the 17th root in the same way, should you ever need 

F G
1 fib_3	series ratio	of	terms
2 1
3 1 1.00000000
4 2 2.00000000
5 4 2.00000000
6 7 1.75000000
7 13 1.85714286
8 24 1.84615385
9 44 1.83333333
10 81 1.84090909

Figure 4-10 Fibonacci 3 series 
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to know, i.e.    = N^(1/17) . Note: by putting the 1/3 inside parentheses, you insure 
that Excel will find the 1/3 power; otherwise it will find N^1, and divide that by 3. 

Finally, check to see that the number 1.839286755 does satisfy the conditions that we 
have specified, namely that if we generate a geometric series based on the number – 
i.e.  1/1.8392867552, 1/1.839286755, 1.0000, 1.839286755, 1.8392867552… then it is 
also true that each term is equal to the sum of the previous three terms. 

How far can you push this method? It’s a good bet that you could use it to find a root 
of x4 – x3 – x2 – x – 1 = 0.  But could you use it to find a root for x3 – x2 – x – 3 = 0 ?  In 
this case, you’re hoping for a Fibonacci-ish series where a term x3 is equal to the sum of 
the previous two terms (x2 + x) plus three times the term before that (the constant 3 in 
the equation). If you find an “answer” via Fibonacci, you can test it by substituting into 
the original equation. This seems to invite some mathematical tinkering… 

 

 

 


