Knights Tour

Ashwin Karthikeyan
Hriday Chheda
Yifan Ruan

January 6, 2024

1 Abstract

SAT solvers have made impressive advances in recent years in scalability, enabling increasingly large com-
binatorial problems to become tractable - both decision and counting versions. An important decision that
can greatly affect this scalability is the encoding method used to generate the CNF formula used. While
there is a body of work studying this problem for regular SAT, it is not well studied within the domain of
model counting. In this work, we examine how different encodings perform on the approximate counting
version of a well-known combinatorial problem, the Knight’s Tour, and compare relative performances with
the decision version.

2 Introduction

When using SAT solvers to tackle problems, one must encode the problem into a propositional formula in
Conjunctive Normal Form (CNF). For any given problem, there are many different ways to do so. It is
known that the choice of such an encoding method can have great effects on the performance of a solver on
any given problem. In the past few decades, there have been a variety of encodings that have been proposed
and studied. However, despite recent advancements in approximate model-counting, not much work has
been done to investigate how encodings can affect performance in this problem setting.

We focus on Knight’s tour, a well-known subclass of the Hamiltonian cycle path finding problem. There
has been work examining the optimality of different encodings for the decision version of this problem [1]. In
this work, they find that the binary encoding with preprocessing is the clear winner for the decision version
of the problem.

2.1 Problem Statement

The Knight’s Tour is the problem of finding a path a knight can take on the chess board that visits each
square on the board exactly once. The chessboard can be formulated as a graph where each square is a node
and an edge exists between any pair of squares that can be visited consecutively by a knight, which frames
the problem as a subclass of the Hamiltonian path problem.

A path is said to be closed when the starting and ending square are neighbors. Otherwise, it is said to
be open.

This problem can be generalized to differently shaped boards - we will focus on the n x n case, which
presents a good benchmark for testing the performance and scalability of different encoding methods. It is
well-known that odd instances of the closed knight’s tour problem have no solutions because such boards
have different numbers of white and black squares, and each square is only adjacent to squares of the other
color.

5

Aol | IR
LKL

OO IIN
Q) PSS
NN

NN LN
e R YNy,

@

Q

(a) A closed tour (b) An open tour

Figure 1: Examples of paths a knight can take

3 Method

3.1 Direct Encoding

Let V;; be a variable that indicates whether square ¢ on the n x n chess board (numbered left to right from
0 to n? — 1) is the 5" node on the Hamiltonian path starting at a given start node. Let N (i) denote the set
of neighbouring squares for square i. For example, if i = 0, N (i) = {10, 17}.

An obvious choice for encoding the knight’s tour problem as a CNF formula under the given setup is to take
the conjunction of the following subformulas:

1) Vje{o,...,n> -1}, (\/?_251 V)

2) Vj€{0,...,n* =1},0< s <t < (n® = 1), (=V; V V)

3) Vie{0,...,n2 -1}, (\/fgl V)

4) Vje{0,...,n? =1},0<s <t < (n?—1),(2Vis VVy)

5) Vi € {0,...,n? —1},Vj € {0,...,n% — 2}, <ﬁVij Vien Vk(jﬂ))
6) Vpo. Where p is the start node. Note: If we want to make this a closed tour, we can add the following

clause: (\/kEN(p) Vk(n2_1)>

Subformulas (1) and (2) ensure that for all positions j on the Hamiltonian path, exactly one square takes
that position. Subformulas (3) and (4) ensure that for all squares ¢ on the board, the square appears exactly
once on the Hamiltonian path. Subformula (5) ensures that if the knight is on square i at the j** node on
the Hamiltonian path, then the knight performs on of its valid moves to get to the next square, and that
square is the j + 1'* node on the Hamiltonian path. Finally, subformula (6) ensures the desired start node
(optionally the desired tour type: closed/open). Note that a heuristic that we use to compute closed tours is
picking the left top corner square as the starting square and picking on of its neighbours as the last square
(the neighbours of the corner square are reflections of each other).

3.2 Distance Encodings

We can consider each square on the board as a vertex and edges between two squares if there is a valid
knight move between the two. This way we can create a graph, G where the vertex set is the squares on a
chess board and edge set is the pair of squares between which there is a valid knight transition. Finding a
knights tour on the chess board is equivalent to finding a Hamiltonian Cycle in G. Consider a board with
dimensions y/n x y/n, then the number of squares are n and equivalently the number of vertices in G are n.
The distance encoding uses a matrix H of size (y/n x \/n) of Boolean variables where, H;; represents that the
edge (7, 7) is on the Hamiltonian cycle (equivalently the knights tour). Only H;; with valid knight transitions
need to be assigned a variable because if there is no valid knight transition from square ¢ to square j then
we know that (7,7) cannot be in the Hamiltonian cycle. In other words, if (i,j) is not a valid knight move
then H;; = 0. Therefore, the number of variables in H, is twice the number of edges in G.

The following two constraints follow directly from the fact that H represents a Hamiltonian cycle:

Vie{l,..n},) H;=1 (1)
j=1

Vie{l,..,n},y Hj=1 (2)
i=1

The constraints (1) and (2) simply ensure that for every vertex (square) there is exactly one incoming
and outgoing edge on the Hamiltonian cycle.
While H could satisfy constraints (1) and (2), it could still have subcycles and not be a Hamiltonian cycle.
To enforce that no sub-cycles are allowed, the distance encoding adds position based constraints such that
each vertex is mapped to a unique position on the Hamiltonian cycle. Let p(i) be the position of vertex i,
s(p) denote the successor of position p, and s*(p) be the k** successor of p. The following constraints ensure
that the cycle starts at vertex 1 and ends at vertex 1:

Vi € {2,..,n}, Hi; = p(i) = s(1) (3)

Vi€ {2,..,n}, Hy = p(i) =s""*(1) (4)

Constraint (3) and (4) ensure that for all neighbours of the start vertex in the hamiltonian cycle that at
least one of them is the second vertex of the cycle and at least one of them is the last vertex of the cycle.
The following constraints ensure that each vertex is positioned successively in the cycle:

Vie{2,...,n}t,je{2,..,n}i# 7, Hj; = p(j) = s(p()) (5)

Constraint (5) ensures that if edge (i,7) is a part of the Hamiltonian cycle then vertex j should be the
successor of vertex i.

Constraint (1)-(5) ensure that H is a Hamiltonian cycle and this is the structure of the distance based
encoding for the knights tour (equivalently Hamiltonian cyle) problem. There are multiple ways to imple-
ment the successor function and its corresponding variables. One way is to introduce a boolean variable
corresponding to every possible vertex-position combination (like the direct encoding), we describe this as
the unary encoding below. Another attempt is to consider introducing only enough boolean variables to
capture the binary representation of positions corresponding to each vertex. We describe this as the binary
encoding below.

3.2.1 Unary Encoding

The unary encoding introduces a boolean variable, Us ,,, for each square, s, and path position, p, where Us
indicates that the square s is visited at position p in the path.
As such, the successor function is encoded as follows (as described in [1]):

Vi € {2, ,n} Hyy = U
Vi,j S {2, ...,n},i 7é j,Vp S {2, e, n = 1} : Hz'j A Uzp = Uj(p+1)

and for the closed tour case to enforce ending at an adjacent square to the starting square:

Vi € {2, ...,n},Hﬂ = Uin

3.2.2 Binary Adder Encoding

The binary encoding uses a log-encoded domain variable for position P; for each vertex i where the domain
is the set of all possible positions for vertex i. For example, if we consider the 8 x 8 chess board then the
knights tour has 64 squares and 64 possible positions on the tour. Then for each vertex (square), we need
log2(64) = 6 boolean variables to encode the possible positions of the vertex. Where the 6 boolean variables
represent the coefficients of the binary expansion of the position.

Using this log-encoding we can encode (3)-(5) as the following (assuming P(1) = 0):

Vi € {2, ...,’I’L}, Hy; = P(Z) =1 (6)
VZE{Q,,’R}, H11=>P(Z)=Tl—1 (7)
Vi € {2, "'7n}’j € {27 “wn}vi 7& ja Hij :>p(]) :p(l) + 1 (8)

Now all that is left to define is how we encode p(j) = p(¢)+1 from constraint (8) in CNF. Consider P(i) is en-
coded by variables (X,,,_1, ..., X1, Xo) and P(3j) is encoded by variables (Y;,,_1, ..., Y1, Y3). We want to encode:

Xono1.. X1 X0
+ 1
Yoo 1..Y1Yo

This can be encoded using:
o Yy = —Xj (2 clauses)
o (Xo=Y1=-X1)A(-Xo=Y1 =X;) (4 clauses)
e Vice{2,.m—-1},(-YiiAXio1 =Y, =-X)AYio1 V—X,-1 = Y, = X;) (6 clauses for each 7)

The above logic is essentially encoding the carry in adding one to a binary number. Additionally we know
that:

o (Yi=-X)=((YiVXi)A(2Y;V-Xi))
o (Yi=Xi)=((Yiv-Xi) A(2YiV Xy))

We can use all of the above to encode P(j) = P(i) + 1 in CNF.

The binary encoding, uses constraint (1), (2) and (6) - (8) to ensure that H is a hamiltonian cycle. The
number of variables included in H is O(nd) where d is the maximum degree in G and n is the number of
squares. The number of binary position variables is O(nloga(n)) because for every position we add loga(n)
variables. Therefore, the number of variables in the binary encoding is in O(nlogz(n)). The number of
clauses is dominated by constraint (8), which is O(n x d x loga(n)), the O(loga2(n)) comes from the number
of clauses needed for P(j) = P(i) + 1 and we add these many clauses for every possible edge (i, j) in both
directions, hence we get at most n x d of such additions.

3.3 Preprocessing

As discussed in [1], we experimented with using a limited amount of preprocessing to reduce the search space
for the SAT solver. However, we were only able to get this working with the unary encoding.

The idea is to not include variables that will never be true. Since it is highly time-consuming to identify
whether a there exists a path of length [from a start square to every other square for every [in range
1,n x n, we follow [1] by calculating the shortest path to each square on the board and omitting variables
that encode impossible combinations of square and position.

For instance, if the minimum path length from the starting square to square i is m, then the variables
U;; under the unary encoding where j < m and j > n? — m are impossible and can thus be omitted from
the propositional formula.

We found that preprocessing somewaht improved solve times for the unary encoding, so we used it in our
experiments.

4 Experiments and Results

The base code used for this section can be found here: https://github.com/yifanr/knights . Modifications
to the code required for experiments are described in the corresponding subsections.

4.1 Size of Encodings

Size of board Direct Encoding Unary Encoding Binary Encoding
of Variables | # of Clauses | # of Variables | # of Clauses | # of Variables | # of Clauses
6x6 1296 46692 1291 22784 370 5605
8 x 8 4096 262208 4055 127236 714 12161
10 x 10 10000 1000100 9855 482250 1269 24669
12 x 12 20736 2986128 20375 1433980 2024 43385
14 x 14 38416 7529732 37699 3610940 2808 62021

Table 1: Comparison of size of different encodings across various board sizes

As expected, the binary encoding has the smallest number of variables and clauses followed by the unary
encoding followed by the largest number of variables and clauses in the direct encoding.

However, note that the difference in number of variables for unary and direct is very small but the number
of clauses are roughly halved going from direct to unary.

4.2 Solve time (decision version)

Next, we compare the solve times of the decision version of the knights tour problem across the three
encodings.

We used the SAT solver Cadicall53 from the python pysat library on a Macbook Air (2023) machine with
M2 chip for this experiment. As expected, the binary encoding (whose encoding size is much smaller) has
the lowest solve time with a less than 2 second solve time for all instances up to a 14 x 14 board size. This
is expected because the number of variables and number of clauses for the binary encoding are significantly
lesser than the direct or unary. We were also expecting the solve time for unary to be lower than direct but
to our surprise, the direct encoding is usually faster than the binary encoding (except on the last instance).
We expected it to be the opposite especially since the number of clauses are approximately halved in the
unary encoding when compared to the direct encoding. We are unsure why this is the case but our hunch
is that the learning mechanism of the solvers might be less efficient in unary encodings due to the nature of
the conflicts encountered. While we have no way of guaranteeing this could be the reason, it could be an
interesting direction for future work.

Knights tour (decision version) solve times across different encodings

100 4 —8— Direct Encoding
—&— Unary Encoding
—&— Binary Encoding

80 -

60

Time (seconds)

40 A

20 A

0+ L » L

T
10 11 12 13 14
Board Size

(=]
~
w
w4

4.3 Counting Knights Tour

Note that minor adjustments to the encodings above allow us to use these encodings for open and closed
tours. For the direct encoding, we can perform open tour counting by following not including the clause

(Vke N(p) Vk(n2_1)>. For unary and binary encodings, we add a constraint that allows every node that is

not the start node to have a valid move to the start node. This combined with the constraints for path
length ensure that the returned satisfying assignment for the CNF formula is indeed a hamiltonian path.
Additionally, we remove any preprocessing that doesn’t allow for open tours to be included.

Now, we use the encodings listed above to get an approximation on the number of all knight’s tours (open
and closed) starting at square 0 (or equivalently, square (0,0)) for board size 5 x 5, and use the unmodified
encodings to find the number of closed knight’s tours for board size 6 x 6. The following results were produced
with the following code setup:

(5 x 5) All encodings: ¢ = 0.8, § = 0.2 projected on all variables.
Timeout: 10 secs

(6 x 6) Direct: ¢ = 0.8, § = 0.2 projected on variables corresponding to the 41" 8" 16" 20" 24" and 3274
nodes of the circuit.
Unary: € = 0.8, § = 0.2 projected on every 4** variable starting at 1 till 157.
Binary: ¢ = 0.8, § = 0.2 projected on first 161 variables.
Timeout: 210 secs

(8 x 8) Direct: ¢ = 0.8, § = 0.2 projected on variables corresponding to the 12t" 24t 36" 48" and 60"
nodes of the circuit.
Unary: ¢ = 0.8,6 = 0.2 projected on every 16" variable starting at 1 till 305.
Binary: € = 0.8,0 = 0.2 projected on every 4*" variable starting at 1 till 317.
Timeout: 5000

Note that all closed tours are counted no matter what start node we pick. Now, for every satisfying assign-
ment on the closed tour variant, the corresponding closed tour is counted twice as the tour with the opposite
direction is a different satisfying assignment. So, we divide the approximate count by 2 (Note: We should
not divide by 2 for the direct encoding because the heuristic mentioned at the end of section 3.1 accounts
for reflections/the opposite direction). The choice of 161 for Unary and Binary (in 6 x 6) is because the
H matrix contains the first 160 variables. The choice of stopping at 317 is because the H matrix has 336

variables and we wanted to project onto a subset of variables in the H matrix.

The system setup for the results are as follows:

Device: Dell inspiron 15 7567 laptop.

Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.80 GHz.

RAM: 16GB.

The results are as follows:

Size of Board

Exact number of

with Direct Encoding

with Unary Encoding

with Binary Encoding

(All/Closed) knights tours (Time - secs) (Time - secs) (Time - secs)
5 x 5 (Al 304 288 (< 1) 206 (12) 304 (6)
6 x 6 (Closed) 9,862 6656 (175) 6,400 (143) 9,216 (41)
8 x 8 (Closed) | 13,267,364,410,532 16,777,216 (1907) Timeout 755,014,244,006 (4,529)

Table 2: Comparing the performance of approximate counting the number of knight tours using different
encodings. (Exact count for 6 x 6 and 8 x 8 is from [2] and [3])

For 8x8, closed tours, if the direct encoding was projected onto variables corresponding to the 12t 24t 32nd 36" 48t

and 60*" nodes of the circuit, then the runtime jumps to 20652 seconds. The approximate count obtained
was 385,875,968.

5 Discussion and Future Work

The Binary Adder encoding had the shortest solve time across all encodings explored in this project. More-
over, the Binary Adder encoding scaled well and performed with highest accuracy across all other encodings
compared in this project in the approximate counting version of the problem.

We would like to explore the following directions of work for this problem:

1) Testing the effects of preprocessing as mentioned in section 3.3 for different encodings, comparing its
effects on the decision and counting versions of the problem.

2) Finding more effective heuristics for picking variables to project on while using ApproxMC.

3) Finding a heuristic for the order of variables for performing BCP for each encoding.

6 References

[1] Zhou, NF. (2020). In Pursuit of an Efficient SAT Encoding for the Hamiltonian Cycle Problem. In:
Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer
Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_34

[2] Alwan, K., & Waters, K. (1992). Finding re-entrant knight’s tours on n-by-m boards. ACM Southeast
Regional Conference: Proceedings of the 30th Annual Southeast Regional Conference; 08-10 Apr. 1992,
377-382. https://doi.org/10.1145/503720.503806

[3] Brendan McKay, D. (1997). Knight’s tours of an 8 x 8 chessboard. [Working/Technical Paper]. Australian
National University. http://hdl.handle.net/1885/40759

	Abstract
	Introduction
	Problem Statement

	Method
	Direct Encoding
	Distance Encodings
	Unary Encoding
	Binary Adder Encoding

	Preprocessing

	Experiments and Results
	Size of Encodings
	Solve time (decision version)
	Counting Knights Tour

	Discussion and Future Work
	References

