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MULTI-ATTRIBUTE DECISION-MAKING AND DATA VISUALIZATION FOR 

MULTI-DISCIPLINARY GROUP BUILDING PROJECT DECISIONS  

Abraham, K.,1 Flager, F.2, Macedo, J.3, Gerber, D.4 and Lepech, M.5 

ABSTRACT 

With improvements in computer modeling that allow AEC professionals to rapidly simulate 

trillions of design and construction alternatives, decision-makers need a way to efficiently and 

effectively interpret and explore the vast design space while building team and organizational 

consensus around a solution. Multi-attribute decision-making (MADM) and data visualization 

methods play an important role in successfully achieving these goals. However, while the 

prescriptive benefits of these methods are widely acknowledged, the precise impact that they 

have on design team performance and project quality has not been fully described. This paper 

presents the descriptive findings from four early-stage building design charrettes that 

implemented normative data visualization and MADM techniques. Key metrics considered are 

normalized solution quality, level of design exploration, and consensus among multiple decision-

makers. Empirically, the results show that MADM is associated with higher rates of group 

consensus, and that a combination of MADM and visual aids generates the greatest improvement 

in solution quality over time. 

KEYWORDS: Multi-attribute decision-making, simple additive weighting, data visualization, 

consensus building, design decision support 

 

INTRODUCTION 

Throughout a building project, architecture, engineering, and construction (AEC) 

consultants predict and evaluate the performance of many different design and construction 

options. The daily design-construction recommendations AEC consultants make to the client 

have significant impacts on building cost, schedule, and life cycle performance. Often, teams of 

AEC consultants must collaborate and communicate across disciplines to select the best 

alternative to recommend to the client, all while under strict budget and schedule constraints.  

While architects, designers, engineers, contractors, and building managers have 

historically relied on the collective experience of AEC consulting teams to efficiently and 

accurately guide exploration of project design and construction options, such heuristic methods 

are becoming less capable of guiding design. Improvements in computer modeling are allowing 

AEC teams to rapidly simulate trillions of design options. (Basbagill et al. 2013), making 

exploration of design spaces using collective experience or “rules-of-thumb” impractical. 

Moreover, new design metrics such as CO2-equivalent footprint, life cycle eco-points, or 

pollutant emissions can be rapidly modeled for each design option (Basbagill et al. 2013). The 
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consideration of these new metrics may negate industry experience, transforming experienced 

groups of AEC professionals into neophytes.    

Thus, AEC consultants need fair, open, and legitimate decision-making processes to meet 

client goals and deliver high quality design and construction solutions that consider a number of 

diverse metrics. Multi-attribute decision-making (MADM) methods and data visualization play 

an important role in successfully achieving this goal (Blasco et al. 2008); yet, there is a lack of 

agreement and understanding about appropriate processes in research and in practice (Grierson 

2008), and the relationship between formal decision methods and visualization tools (Al-Kassab 

et al. 2014). This paper evaluates the separate and joint implementation of MADM and Pareto 

front visualization in a team-structured building design charrette with multi-disciplinary 

objectives, time and resource constraints, and a limited, pre-determined design space. The 

objective of this work is to determine if such tools can lead to improved decision-making in a 

limited design space, thus making a case for the potential of such tools in navigating a more 

massive design space. 

This paper begins with the theoretical foundations for decision-making and decision 

problem visualization. The research methodology, decision problem, and design charrettes are 

then explained. Empirical findings for the study are summarized, followed by a discussion of 

results and conclusions. 

 

THEORETICAL FOUNDATIONS 

Decision-Making 

Multi-Criteria Decision-Making 

The multidisciplinary nature of AEC decision-making and the engagement of multiple 

stakeholders often result in decision problems with multiple, conflicting objectives. This 

particular structure of decision-making calls for a set of approaches referred to as multi-criteria 

decision-making (MCDM). MCDM methods structure and model the imprecise goals of multi-

dimensional decision problems in terms of a set of individual decision criteria, where each 

criterion characterizes a single dimension of the problem to be evaluated. Typically, each 

criterion has a different unit of measurement. (Hwang & Yoon 1981) The general framework for 

most MCDM involves decomposing the decision problem into components, evaluating each 

component individually, and reassembling the components to provide overall insights and 

recommendations. (Seppälä et al. 2002) Decision makers may then evaluate and select the best 

alternative among a finite set of previously defined alternatives (multi-attribute decision-making 

(MADM)) or design the best alternative (multi-objective decision-making (MODM)) over all 

criteria. (Hwang & Yoon 1981)  

AEC professionals and researchers are actively investigating MCDM processes in design 

and pre-construction to select projects for investment (e.g., Lam et al. 2001, Dey 2006), choose 

project procurement methods (e.g., Kumaraswamy & Dissanayaka 2001, Anderson & Oyetunji 

2003, Mahdi & Alreshaid 2005), and enhance early-stage design (e.g., Ugwu & Haupt 2007, 

Turskis et al. 2009, Flager et al. 2012). The majority of MCDM methods examined in the 

building design and construction literature and implemented in practice are value-based MADM 

techniques. Value or utility theory approaches ask decision makers to develop a numerical score 

or value for each decision alternative and choose the alternative with the highest value. Examples 
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include multi-attribute utility theory (MAUT) (Keeney & Raiffa 1976), the analytic hierarchy 

process (AHP) (Saaty 1980), simple additive weighting (SAW) (Hwang & Yoon 1981), and 

Choosing By Advantages (CBA) (Suhr 1999). While MADM methods are currently being 

explored academically or applied in AEC organizations, few researchers have considered the 

impact of these normative methods on building project decision-making, including design 

decision quality and group consensus-building, or the implications for project team organization. 

Simple Additive Weighting 

Simple additive weighting (SAW) method is a compensatory MADM technique that 

weights the contributions from each attribute according to the decision maker’s preferences. 

SAW is a simple, intuitive process that is quick and easy for new decision makers to learn. As 

such, it is one of the best-known and most widely used MADM methods. To set up the SAW 

method, the decision maker assigns importance weights to each of the n attributes. These weights 

are usually normalized so that ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . The decision maker also numerically scales the 

intra-attribute values to be comparable, often normalizing them between 0 and 1. Next, the 

decision maker calculates the weighted average value for each of the m alternatives as follows: 

𝐴𝑖 = ∑ 𝑤𝑗𝑟𝑖𝑗(𝑥𝑖𝑗),      𝑖 = 1, . . , mn
𝑗=1 ,      0 ≤ 𝐴𝑖 ≤ 1 ,     (1) 

where 𝑟𝑖𝑗(𝑥𝑖𝑗) is the normalized value of the ith alternative about the jth attribute. The 

most preferred alternative, 𝐴∗, is determined by the equation below: 

𝐴∗ = {𝐴𝑖| max
𝑖

∑ 𝑤𝑗𝑟𝑖𝑗(𝑥𝑖𝑗)}𝑛
𝑗=1  .     (2) 

Since SAW converts attributes measured using a ratio scale into normalized, 

dimensionless values, the method can account for qualitative as well as quantitative attributes so 

long as the qualitative attributes can be compared numerically. Though simplistic, SAW 

produces close approximations to more sophisticated non-linear forms (e.g. weighted product 

methods). In reality, however, attribute values are not necessarily additive or multiplicative. 

Decision makers often experience challenges with assigning consistent preferences, and may 

employ manipulation of weighting schemes to reinforce intuition. Moreover, SAW methods 

assume preference independence and utility independence. Important complementarities between 

the attributes are ignored by necessity, which may give misleading results. (Hwang & Yoon 

1981) When assigning weights, decision makers must find a reasonable basis to reflect the 

importance of each attribute, which may require a high level of abstraction (e.g. comparing 

operational energy to schedule duration). Nonetheless, SAW is a popular technique within 

project organizations and in MADM literature. Hwang and Yoon (1995) recommend SAW and 

other scoring methods for “unsophisticated” (or inexperienced) decision makers.  

Group Decision-Making 

Group decisions are defined as “decisions where a group of two or more individuals must 

collectively select an alternative from a set of two or more alternatives that best satisfies the 

group’s objectives.” (Keeney 2013) No single individual has veto power. This assumption may 

not hold in design and construction projects in which the client requires direct consultation on all 

decisions. In this context, the group of AEC professionals is selecting an alternative to 

recommend to the client, who ultimately decides whether or not it will be chosen. From the 

group’s perspective, it is advantageous to suggest an alternative that they believe the client will 

approve. Individual preferences can and do differ from the group preferences, but group decision 

making is interactive – each stakeholder’s anticipated actions affect the choices of others – so 
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there are interdependencies between the stakeholders. (Sebenius 2009) Moreover, building 

projects are comprised of not one but many decisions and AEC firms may be required to 

collaborate on future projects, so group recommendations and decisions may be characterized as 

stochastic repeated negotiations (of uncertain number). Although individuals may profit from 

taking advantage of others in the short-term (one decision), the group’s loss of faith in that 

individual can set up loss for the group as a whole. (Luce & Raiffa 1957) 

Instead, the group members should strive for consensus on the decision or 

recommendation. Consensus building is associated with a number of desirable outcomes: 

innovative strategies, new social, intellectual, and political capital, and high-quality agreements. 

Indirectly, consensus building may lead to the formation of new partnerships, implementation of 

agreements, and improved coordination and joint action. (Innes & Booher 1999) With multi-

disciplinary, multi-objective, and multi-stakeholder decision problems, achieving absolute 

consensus among different stakeholders is often impossible. To develop a satisfactory level of 

support and realize the benefits of consensus building, the group must regard the decision 

process as “fair, open, inclusive, accountable, and otherwise legitimate.” (Innes & Booher 1999) 

MADM alone may not satisfy these criteria. Despite providing a structured framework and fair 

approach, MADM methods may not be seen as open and inclusive, especially if decision makers 

require training to be able to implement them. 

 

Decision Problem Visualization 

Decision visualization tools and models can play an important part in the transparency 

and accessibility of a decision process. Classic decision models include decision tables, decision 

trees, and influence diagrams. (French et al. 2009) Decision support systems may also be built on 

other graphical representations of data that are appropriate for more complex decision methods 

or decision problems with a larger set of alternatives, including 2-dimensional Pareto fronts, 

Level Graphs, and other multi-dimensional Pareto representations. (Blasco et al. 2008) 

According to Blasco et al. (2008), it is “widely accepted” that decision visualization tools are 

“valuable and provide decision-makers with a meaningful method to analyze the (Pareto) set and 

select good solutions.” However, few studies have been done that demonstrate the ability of 

decision visualization tools to enhance decision-making and consensus building, nor that 

examine the use of decision visualization tools in relation to MADM methods in a group 

decision setting.  

 

RESEARCH METHODOLOGY 

Four charrettes were conducted with 30 industry professionals and 59 graduate students 

in architecture and engineering as detailed in Table 1. The separate involvement of both 

experienced industry professionals and graduate students (i.e. AEC professional “novices”) was 

done to better assess the usefulness of the decision-making and visualization tools in each group. 

Participants were divided into teams of 3 to 5 individuals, each serving a unique AEC role on the 

team (i.e. owner, architect, etc.), and asked to solve a simple building design problem that 

minimized life cycle cost, capital cost, and construction schedule duration. Teams could alter six 

discrete design parameters, providing 144 unique design alternatives. Cost and schedule 

performance were available for each design. Teams were split into four experimental groups, 
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each of which received up to two tools to aid their decision-making. Note that teams with no 

Pareto front visualizations and no MADM method effectively serve as control groups. Both team 

and experimental group assignments were random to avoid as much bias as possible. The first 

tool used simple additive weighting (SAW) to provide a normalized score (0-1) for each 

alternative relative to the complete population of designs, thus allowing teams to view the score 

for each alternative in each of the three objective categories, as well as an overall score. The 

second tool graphically plotted design alternatives on two Pareto fronts: First Cost vs. Life-Cycle 

Cost and First Cost vs. Construction Schedule. Participants also completed surveys before and 

after the charrette to gather qualitative data related to satisfaction with the decision-making 

process and level of consensus around the team’s final recommendation. 

Table 1: Design Charrette Experimental Set-Up  

 Date and 

Location 

Number of 

Participants 

Participant Type and 

Average Experience 

Experimental Groups  

(Number of Teams) 

1 6/10/2013 

Stanford,  

CA 

30 All professionals (architects, 

structural engineers, 

construction managers, 

developers) with an average 

of 15 years of AEC 

experience 

a) No MADM/No Pareto (1*) 

b) SAW/No Pareto (2) 

c) No MADM/Pareto (2) 

d) SAW/Pareto (2) 

2 10/22/2013 

Los Angeles, 

CA 

24 All graduate students (civil 

engineering) with an 

average of less than 5 years 

of AEC experience 

a) No MADM/No Pareto (1*) 

b) SAW/No Pareto (2) 

c) No MADM/Pareto (1) 

d) SAW/Pareto (1) 

3 10/23/2013 

Los Angeles, 

CA 

8 All graduate students 

(architecture) with an 

average of less than 5 years 

of AEC experience 

c) No MADM/Pareto (1) 

d) SAW/Pareto (1) 

4 10/23/2013 

Los Angeles, 

CA 

27 Undergraduate and graduate 

students (architecture) with 

an average of less than 5 

years of AEC experience 

a) No MADM/No Pareto (1) 

b) SAW/No Pareto (2) 

c) No MADM/Pareto (1*) 

d) SAW/Pareto (1) 

* Experimental groups that initially had two teams; however, data for one of the teams had to be 

discarded due to failure to submit complete information to the researchers or total disregard for the 

charrette instructions (e.g. maximizing instead of minimizing performance metrics). 

 

Decision Problem 

Teams were asked to develop a project of 1 to 2 building footprints to house 2,000 

occupants with 50ft2/occupant (100,000ft2 total). Each team was required to recommend a design 

alternative at the end of the charrette that best matched the owner’s objectives, which were all 

equally weighted. The three objectives of the design problem were to: 

 Minimize the capital cost of the building. 

 Minimize the life-cycle cost for the building’s operation. 

 Minimize construction schedule duration. 
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Design teams had six design variables to consider, each with a prescribed set of possible 

values listed in Table 2. Given the number of possible values for each variable, design teams 

could select among 14 values to create a design alternative. A particular configuration of the 

variables represented a design alternative and the collection of all design alternatives represented 

the design space. Thus, as mentioned, the design space consisted of 144 design alternatives. The 

generation and analysis of a single design alternative represented one complete design iteration. 

Table 2: Design Variables and Possible Values for the Building Decision Problem 

Design Variable Possible Values 

Number of Buildings 1, 2 

Number of Floors 5, 7, 9 

Building Shape Rectangle, L-Shaped 

Glazing Percentage 50%, 70% 

Orientation 0, 45, 90 degrees 

Structure Type Steel, Concrete 
 

In order to simplify the design space, the researchers established four design constraints. 

For all designs, Total Gross Floor Area was 100,000ft2, Floor-to-Floor Height was 13ft, and the 

Building Aspect Ratio (L1/W) was fixed at 2. For the L-shaped design, the L-shape Aspect Ratio 

(L1/L2) was set at 1. Dimension variables are indicated in Figure 1. 

All teams were able to request performance information for a specific design alternative. 

To mimic project latency, teams could get information for only one alternative at a time but 

could explore as many alternatives as they liked within the charrette time constraint of 20 

minutes. The cost performance metrics were generated by Beck Technology, an AEC firm, based 

on the Architectural Design and Performance Tool (ADAPT) created by researchers at Stanford 

University. (Basbagill et al. 2013) The construction schedule duration estimates came from the 

Space Constraint Method (SCM) developed at Stanford. (Morkos 2014) 

 

Figure 1: Rectangular and L-Shape Building Layouts for the Design Charrette with Dimensions 

 

Multi-Attribute Decision-Making 

Teams with MADM received a macro-enabled spreadsheet that implemented the SAW 

method to facilitate a formal decision-making process. The researchers predetermined the 

weights in accordance with the stated owner objectives, which meant that each metric was 

weighted equally, 𝑤 = {𝑤1, 𝑤2, 𝑤3}, 𝑤1 = 𝑤2 = 𝑤3 = 𝑤. The weights were normalized such 

that ∑ 𝑤𝑗 = 13
𝑗=1 , so 𝑤 = 1/3 and  𝑤 = {1 3⁄ , 1 3⁄ , 1 3⁄ }. The score for the ith alternative was 

calculated using a linear scale transformation to normalize performance metric values, 𝑟𝑖𝑗,  
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𝑟𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑗

min

𝑥𝑗
∗−𝑥𝑗

min   where 𝑥𝑗
∗ = max

𝑖
𝑥𝑖𝑗 ,      0 ≤ 𝑟𝑖𝑗 ≤ 1,     (3) 

and a linear weighted average to obtain the total score across all performance metrics, 𝐴𝑖, 

𝐴𝑖 = ∑ 𝑤𝑗𝑟𝑖𝑗(𝑥𝑖𝑗),      𝑖 = 1, . . ,1443
𝑗=1 ,      0 ≤ 𝐴𝑖 ≤ 1.    (4) 

The overall design alternative scores were approximately normally distributed (Figure 2). 

 

Figure 2: Histogram of Overall Owner Objective Scores, 𝐴𝑖, for All 144 Possible Design 

Alternatives Included Within the Design Charrette  

Since the objective was to minimize performance metrics, a lower overall score 

represented a better alternative, with the most preferred alternative, 𝐴∗, computed as 

𝐴∗ = {𝐴𝑖| min
𝑖

∑ 𝑤𝑗𝑟𝑖𝑗(𝑥𝑖𝑗)}𝑛
𝑗=1 .     (5) 

Teams were instructed to input the performance information for a particular design 

alternative into the spreadsheet, which then calculated the normalized rating for each 

performance metric for the alternative. Teams were shown the normalized rating for each 

performance metric of a particular design alternative (0-1) as well as the overall score for each 

design alternative (0-1) in the outputs tab. Teams could also compare the scores graphically as 

demonstrated in Figure 3. 

 

Figure 3: Sample Output of the SAW Spreadsheet Tool for Six Design Alternatives (Design 

Numbers 120, 135, 136, 96, 140, and 66) Showing Normalized Scores for Total Performance, 

First Cost, Life Cycle Cost, and Schedule Performance 
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Pareto Front Visualization 

Teams with Pareto visualization received an Excel spreadsheet that mapped each design 

alternative explored in two scatter plots representing the overall design space. The two Pareto 

fronts were created using the performance metrics generated for every design from ADAPT 

(Basbagill et al. 2013) and SCM (Morkos 2014). Both graphs included the performance for all 

144 designs to allow teams to view the performance of their alternatives in the context of the 

feasible design space as displayed in Figure 4. 

 

a) First Cost vs. Life-Cycle Cost 

 

b) First Cost vs. Schedule 

Figure 4: Sample Output of the Pareto Visualization Tool for Six Design Alternatives (Design 

Numbers 120, 135, 136, 96, 140, and 66) Showing the Relative Positions vis-à-vis (a) First Cost 

vs. Life Cycle Cost and (b) First Cost vs. Schedule 

 

EMPIRICAL FINDINGS 

Solution Quality 

Solution quality, 𝑄𝑖, was assessed by normalizing the overall score for design alternatives 

between 0 and 1, 

𝑄𝑖 = 1 −
𝐴∗−𝐴𝑖

𝐴∗−𝐴max
     where     𝐴max = {𝐴𝑖| max

𝑖
∑ 𝑤𝑗𝑟𝑖𝑗(𝑥𝑖𝑗)}𝑛

𝑗=1 ,      0 ≤ 𝑄𝑖 ≤ 1,     (6) 

such that a normalized score of 0 represented the least-preferred design and a normalized 

score of 1 represented the most-preferred design. All figures that follow use normalized solution 

quality as the measure of overall design performance. The average score for each experimental 

group is shown in Figure 5. 
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Figure 5: Final Normalized Solution Quality by Experimental Group over All Charrettes 

(Professional and Student). Error bars indicate range of design solution quality (i.e., best and 

worst teams within the experimental group). 

A couple of interesting trends emerge when comparing the final solution quality across 

the experimental and control teams. Teams provided with Pareto visualization but no MADM 

method tended to produce solutions of lower quality than teams with no Pareto visualization and 

no MADM method (control groups). This trend was supported by observations during the 

charrette and during post-charrette discussions with the participants, which suggested that the 

usefulness of added insight into the objective tradeoffs was diminished because of the small 

number of alternatives (i.e., only 144 designs in the solution space) and familiarity with 

estimating cost and schedule performance (i.e., past professional AEC experience). The 

combination of a small design space and professional familiarity allowed for successful solution 

by intuition in very few iterations. In fact, charrette participants with no encumbrance of 

decision-making tools or visualization support, on average, arrived at the best final solutions 

within the charrette time constraint. However, post-charrette discussions implied that this may 

not the case with a much larger design space and additional design metrics.  

The data also suggest that the unfamiliar representation of design performance in the 

graphical form increased the complexity of the problem, which made the fixed time constraint of 

the charrette an important factor. Teams with Pareto visualization but no MADM method had 

difficulty quickly making sense of the information they received: 60% of these teams were 

unable to identify the best alternative in the set they had explored and recommended a worse 

option (Figure 6). A structured approach to interpreting the tradeoffs – here a simple, quantitative 

decision method – was necessary to extract meaningful information from the Pareto 

visualizations, as teams with SAW and Pareto fronts recommended final solutions of higher 

quality. Regardless, all teams with SAW were all within one variable change of the best design 

alternative. Teams with both SAW and Pareto fronts recommended the best alternative in the set 

they had evaluated. 
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a) No MADM and No Pareto Fronts 

 

b) SAW and No Pareto Fronts 

 

c) No MADM and Pareto Fronts  

 

d) SAW and Pareto Fronts  

Figure 6: Final Design vs. Best Design by Experimental Groups. One team each in (a) and (b) 

and three teams in (c) failed to identify the highest quality solution in the set of designs explored. 

 

Design Exploration 

For the professional charrette specifically, teams with Pareto visualization but no MADM 

method actually had a negative average improvement in solution quality by iteration; that is, 

there was an average decrease in solution quality of 1.38% during the design process. In fact, 

teams with no Pareto visualization and no MADM method (i.e. control groups) performed better 

than their counterparts with Pareto fronts with an average improvement of 2.80%. Teams with 

SAW had a greater average improvement in solution quality by iteration than those teams 

without SAW, and teams with Pareto fronts and with SAW did the best on average. These results 

are shown in Figure 7a. 
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a) Professional Teams Only 

 

b) All Charrette Teams 

Figure 7: Average Improvement in Solution Quality by Iteration for (a) Professional AEC 

Charrette Participants and (b) All AEC Charrette Participants  

When the graduate student charrette results were included in the analysis, the trend was 

the same. Again, teams with Pareto fronts and no MADM performed worse than teams with no 

Pareto fronts and no MADM (2.57% vs. 3.08% average improvement). Teams with SAW 

achieved greater average improvement in solution quality by iteration. Although these teams 

conducted fewer design iterations on average than teams without MADM, they were able to use 

iterations more effectively. In other words, teams were able to learn about the interdependencies 

between objectives and direct their search towards the non-dominated solution. Of all the 

experimental groups, teams with both Pareto visualization and the SAW method exhibited the 

greatest improvement in average solution quality by iteration at 4.47%. These teams performed 

the fewest number of iterations on average but were the most efficient at navigating the design 

space. The combined results for both professional and student teams are given in Figure 7b. 

Values were calculated using solution quality data for all iterations. Figure 8 on the next 

page shows the normalized solution quality (scaled between 0 and 1 as part of the analysis) for 

each team and is graphed by experimental group. 

 

Decision-Maker Consensus 

Teams with SAW expressed the greatest satisfaction with the decision-making process 

and the highest confidence in the team’s final recommendation. For the design charrette 

including only professionals, 92% of participants applying the SAW method were confident in 

the quality of their team’s final design with 50% reporting very high confidence as seen in Figure 

9. By contrast, only 58% of those with no MADM method were confident in their team’s design 

quality. Professional participants preferred MADM methods to routine practice and 67% 

reported that they felt more engaged in the decision process. Moreover, 78% believed MADM 

was a valuable tool for project management. 
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a) No MADM and No Pareto Fronts 

 

b) SAW and No Pareto Fronts 

 

c) No MADM and Pareto Fronts  

 

d) SAW and Pareto Fronts  

Figure 8: Normalized Solution Quality at Each Iteration of the Design Charrette for Teams with 

(a) No MADM and No Pareto Fronts (control group), (b) SAW and No Pareto Fronts, (c) No 

MADM and Pareto Fronts, and (d) SAW and Pareto Fronts 

 

 

a) Participants on Teams with No MADM 

 

b) Participants on Teams with SAW 

Figure 9: Professional Participants’ Confidence in the Quality of their Team’s Final Charrette 

Design for (a) Participants on Teams with No MADM and (b) Participants on Teams with SAW 
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DISCUSSION AND CONCLUSION 

The experimental data supports the claim that some implementation of MADM methods 

can help guide decision-makers through a complex design space and build consensus within a 

group. The time-constrained format of the charrette, simplicity of the design space, and 

familiarity with the estimation of the objectives may account for the high final solution quality 

for those without decision support tools, particularly among those with more AEC industry 

experience. However, the more significant conclusions lie in the trends in solution quality over 

time. This is especially true for application to more realistic design decision problems with more 

relaxed timelines, a greater number of alternatives, and unfamiliar objectives (e.g. sustainability 

performance metrics). From this perspective, a formal, structured MADM method also enhances 

the value of Pareto visualizations and helps decision makers focus their search on better quality 

solutions. The ability to generate a large set of design possibilities is much more useful if 

decision-makers have a consistent way to interpret the design space. The use of Pareto 

visualizations and quantitative measures of design quality help design and construction 

professionals to better communicate to clients the motivation behind design decisions and can be 

directly related to environmental, economic, and social sustainability outcomes, ensuring that the 

client’s objectives are carried through the design process in a transparent manner.  

While the initial set of experiments does not lead to statistical significance due to the still 

small sample size, the data is descriptively valid and indicates the need for further development 

of the research to lead to improved visualization tools that will further the implementation of 

MADM in the AEC industry. One avenue for future work is the continued study of visualization 

techniques and graphic aids using charrettes to generate a larger statistical pool for further 

analysis. Additional approaches to test the validity in practice are necessary, and may include 

increasing design problem scale by adding more alternatives, examining later phases of building 

design and construction such as detailed design and pre-construction, and introducing new 

objectives like sustainability performance metrics. 

One of the most important findings of this work is that simply adopting decision support 

tools does not strictly improve decision-making. Rather, a smart combination of tools to aid 

decision-making is required. Considering the performance of teams without MADM and with 

Pareto fronts, visualization tools without context and without quantitative decision support do 

not work. More research is necessary to find the right suite of tools to best enhance decision-

making and consensus building on design and construction projects. There is also some small 

evidence that the use of tools allows experienced and neophyte practitioners to come to the same 

conclusions in a similar number of design iterations. This has implications for project staffing, 

organizational learning, etc., and should be explored in the future. 

 

REFERENCES 

Abraham, K., Lepech, M., & Haymaker, J., (2013). “Selection and Application of Decision 

Methods On a Sustainable Corporate Campus Project.” In Proceedings of the 21st Annual 

Conference of the International Group for Lean Construction, Fortaleza, Brazil. 

Al-Kassab, J., Ouertani, Z. M., Schiuma, G., & Neely, A., (2014). International Journal of 

Information Technology & Decision Making, 13, 2, 407-428. 



Proceedings – EPOC 2014 Conference 

14 

 

Anderson, S., & Oyetunji, A., (2003). “Selection procedure for project delivery and contract 

strategy.” In Proceedings of the 2003 ASCE Construction Research Congress (1-9). 

Honolulu, HI: ASCE. 

Basbagill, J.P., Lepech, M., Fischer, M.A., & Noble, D., (2013). Integration of Life Cycle 

Assessment and Conceptual Building Design (Doctoral dissertation). Stanford University, 

Stanford, CA. 

Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M., (2008). “A new graphical visualization 

of n-dimensional Pareto front for decision-making in multiobjective optimization.” 

Information Sciences, 178, 20, 3908-3924. 

Flager, F., Basbagill, J., Lepech, M., & Fischer, M., (2012). “Multi-objective building envelope 

optimization for life-cycle cost and global warming potential.” In Gudnason & Scherer 

(Eds.), eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2012 

(193-200). Amsterdam: Taylor & Francis. 

French, S., Maule, J., & Papamichail, N., (2009). Decision behaviour, analysis and 

support. Cambridge, UK: Cambridge University Press. 

Grierson, D. E. (2008). “Pareto multi-criteria decision making.” Advanced Engineering 

Informatics, 22, 3, 371-384. 

Hwang, C. L, & Yoon, K., (1981). Multiple Attribute Decision Making: Methods and 

Applications: a State-of-the-art Survey. Berlin: Springer-Verlag. 

Innes, J. E., & Booher, D. E., (1999). “Consensus Building and Complex Adaptive Systems: A 

Framework for Evaluating Collaborative Planning.” Journal of the American Planning 

Association, 65, 4, 412–423. 

Keeney, R. L., (2013). “Foundations for Group Decision Analysis.” Decision Analysis, 10, 2, 

103-120. 

Keeney, R. L., & Raiffa, H., (1976). Decisions with Multiple Objectives: Preferences and Value 

Tradeoffs. New York: Wiley. 

Kumaraswamy, M. M., & Dissanayaka, S. M., (2001). “Developing a decision support system 

for building project procurement.” Building and Environment, 36, 3, 337–349. 

Lam, K. C., So, A. T. P., Hu, T., Ng, T., Yuen, R. K. K., Lo, S. M., Yang, H., (2001). “An 

integration of the fuzzy reasoning technique and the fuzzy optimization method in 

construction project management decision-making.” Construction Management and 

Economics, 19, 1, 63–76. 

Luce, R. D., & Raiffa, H., (1957). Games and Decisions: Introduction and Critical Survey. New 

York: Wiley. 

Mahdi, I. M., & Alreshaid, K., (2005). “Decision support system for selecting the proper project 

delivery method using analytical hierarchy process (AHP).” International Journal of Project 

Management, 23, 7, 564–572. 

Morkos, R., (2014). Operational Efficiency Frontier: Visualizing, manipulating, and navigating 

the construction scheduling state space with precedence, discrete, and disjunctive constraints 

(Doctoral dissertation in preparation). Stanford University, Stanford, CA. 

Saaty, T. L., (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource 

Allocation. New York: McGraw-Hill International Book Co. 

Sebenius, J. K., (2009). “Negotiation Analysis: From Games to Inferences to Decisions to 

Deals.” Negotiation Journal, 449–465. 

Seppälä, J., Basson, L., & Norris, G. A., (2001). “Decision Analysis Frameworks for Life-Cycle 

Impact Assessment.” Journal of Industrial Ecology, 5, 4, 45-68.  



Proceedings – EPOC 2014 Conference 

15 

 

Suhr, J., (1999). The Choosing By Advantages Decision Making System, Westport, CT: Quarum 

Books. 

Turskis, Z., Zavadskas, E. K., & Peldschus, F., (2009). “Multi-criteria optimization system for 

decision making in construction design and management.” Inzinerine Ekonomika-

Engineering Economics, 1, 61, 7-15. 

Ugwu, O. O., & Haupt, T. C., (2007). “Key performance indicators and assessment methods for 

infrastructure sustainability—a South African construction industry perspective.” Building 

and Environment, 42, 2, 665–680. 

Yoon, K., & Hwang, C. L., (1995). Multiple Attribute Decision Making: An 

Introduction. Thousand Oaks, CA: Sage Publications. 


	Abraham_Flager_Macedo_Gerber_Lepech
	EPOC14-01 - Multi-attribute Decision-making

