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EVALUATING THE POTENTIAL OF 
NEUROIMAGING METHODS TO STUDY 

ENGINEERING COGNITION AND PROJECT-
LEVEL DECISION MAKING  

Tripp Shealy1, Mo Hu2 

ABSTRACT 
The field of engineering and project management is well suited to partner with 
cognitive neuroscientists, developmental psychologists, and others to consider how 
neuroimaging methods can complement pressing research needs. Many empirical 
studies have investigated the cognitive processes of engineering (i.e. processing 
information, knowledge attainment, decision making, recognition, and perception), 
however, a key limitation of this previous work is the subjectivity and imperfection 
that comes with observational studies, participant self-reporting, and critique of the 
product or process. A benefit of adopting neuroimaging methods is the clear and 
consistent mappings between events at the neural level and events at the behavioral 
level. Measuring neurobiological function is already making an impact in economics. 
For example, the neural correlates of decision making in reciprocal exchange and 
bargaining games can predict trust among partners. Thus, these neuroimaging 
methods do not just measure individual behavior but group and social interactions, 
which should be of interest to those studying engineering and project management. 
The purpose of this paper is to introduce neuroimaging methods to study engineering 
cognition and propose a path towards similar advances in engineering and project 
management as more recently seen in economics. An overview of cognitive 
neuroscience leads to a discussion of opportunities and challenges of integrating 
engineering and neuroscience methods. From the discussion of overarching rationale, 
the paper transitions to a specific focus on engineering through a brief literature 
review and suggested areas of future research. An ongoing project is also described, 
not to report findings, but to offer an example of what research designs could look 
like and the associated data collection and insight gleaned from these methods.  

KEYWORDS 
Cognitive neuroscience, neuroimaging, functional near infrared spectroscopy, 
engineering cognition, engineering decision making.  
 
INTRODUCTION 
Too frequent, engineering acts as if the decision maker is fully informed and assumes 
preferences exist priori (Gonzalez et al., 2005). Cognitive psychology approaches 
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decision making from another perspective, more descriptive than normative, 
analyzing how individual preferences are constructed and cognitive limitations 
influence choice. Fields including finance (Benartzi & Thaler, 2007), law (Johnson, 
1993), and medicine (Johnson & Goldstein, 2003) have improved their theoretical 
foundations by incorporating these factors. Similarly, engineering and project 
management hold to improve understanding of crucial early-phase decisions during 
project delivery. 

The same brain that decides what car to buy (economics) is the same brain that learns 
to recognize faces (psychology) (Hardman, 2009). Further still, is the same brain that 
negotiates between tradeoffs like rigidity, weight, and performance when choosing a 
material for a combustion engine (engineering). Thus, no matter the context, decision-
making processes, at some level, deal with human ability to identify and choose 
alternatives based on their values and preferences. This process is measurable, not 
just by the engineering design outcomes, but by the neurological mechanisms in the 
brain. For example, decision makers more consistent with expected value 
maximization tend to collect information sequentially calculating the expected value 
of each choice. Where as decision makers who deviate from value maximization, are 
more likely to choose the less risky option, and are observed to not collect 
information in a sequential mental process. In other words, measuring cognition can 
lead to a better understanding about how information informs decision making. It is 
not just about what decision makers see but how they see it and cognitively manage 
the information (Aimone et al., 2016).  

Measuring cognition provides another layer of detail otherwise lost to researchers 
who in the past were only measuring outcomes of behavioral or decision interventions. 
Indeed, national academies and foundations recognize the need to understand brain-
behavior relationships, specifically in how “collective interactions between brain 
function and our physical and social environment enable complex behavior” 
(Understanding the Brain - Special Report | NSF - National Science Foundation). 
This is a prominent part of the NSF-issued report ED 2030: Strategic Plan for 
Engineering Design, whose authors envision a future where design tools and methods 
not only support analysis and decision making from a technological point of view, but 
also account for psychological and sociological factors. 
 
With engineering researchers already pushing the boundaries of knowledge with 
practice of complex engineering skills, the field of engineering and project 
management is well poised to partner with cognitive neuroscientists, developmental 
psychologists, and others to consider how neuroimaging can complement or 
supplement pressing research questions relevant to human behavior and decision 
making. While neuroscience is the broad study of the structure and function of the 
brain, cognitive neuroscience focuses on empirical data from both human behavior 
and the brain in order to explore human cognition (thinking, planning, decision 
making) (Eysenck & Keane, 2015). Neuroimaging techniques are increasingly used to 
understand how the brain processes information. The approach is frequently a 
systems view about how brain regions function together and how context influence 
brain regions of interest (Rick, 2011). The current cross-disciplinary work by 
neuroscientists and economists is leading to new advances in decision theory (Platt & 
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Glimcher, 1999). For example, descriptive decision theories posit that decision-
makers behave as though different options have different subjective values and 
through neuroimaging this can be observed in the brain (Kable & Glimcher, 2007).  
 
The purpose of this paper is to introduce neuroimaging techniques as a method to 
study engineering cognition (i.e. processing information, knowledge attainment, 
decision making, recognition, and perception) and to propose opportunities for similar 
advances to engineering as those seen in economics. In the first section, an overview 
of cognitive neuroscience is provided that will enable a discussion of opportunities 
and challenges of integrating engineering decision making and neuroscience research. 
The second section transitions from the discussion of overarching rationale to a 
specific focus on engineering contexts through a literature review and suggested areas 
of future research.  The final section of the paper, lists experimental design methods 
and an ongoing project is described, not to report findings, but to offer an example of 
what research designs could look like and the associated data collection and insight 
gleaned from these methods.  
 
COGNITIVE NEUROSCIENCE  
Broadly, cognitive neuroscience is making sense of brain-behavior relations in a 
search to understand the functional architectures of cognitive systems (Coltheart, 
2001; Eysenck & Keane, 2015). For example, how does some function of interest 
(e.g., risky decision making) occur and in what region? To explore such a question 
requires a model about how the brain works and is organized.  Significant bodies of 
research are built upon the simplifying assumption of modularity. In terms of 
scientific inquiry, this means that merely a function must be induced (e.g., present the 
image of jobsite safety hazard), identify the specific areas of the brain involved, and 
we will have reliably characterized the architecture of that function (e.g., 
environmental risk). Further, if we see those areas of the brain involved in any future 
task then assumptions can be made that the participant is performing the function of 
interest. Though, as imaging techniques and computational power have improved, the 
modularity assumption has loosened to instead investigate correlations between 
modules and identify the networks involved with specific functions (Eysenck & 
Keane, 2015).   
 
Today, researchers can construct a more detailed understanding of the time of neural 
processing and network coordination between brain regions. Understanding the 
demand patterns and functional coordination of activation in the brain is important 
because researchers can begin to assess where deficiencies occur and, for example, 
how training and mnemonics may enhance either the temporal response (how fast we 
detect) or reduce the cognitive load (the energy required) to comprehend, forecast, 
and make a decision. While the focus here is on decision making related to 
engineering and project management, these novel techniques and methods, bridging 
neuroscience to engineering, can also advance fields such as transportation, from 
individual driver behavior to air traffic controllers’ ability to detect flight collision. 
This could lead to future work exploring differences in cognition between real world 
risks and those experienced in virtual reality. There are also opportunities to advance 
cognitive neuroscience by addressing the data collection challenges that arise when 
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extending methods from lab experiments to more cognitively complex real-world 
field experiments that engineering and project management can provide. 
 
COLLECTION TECHNIQUES 
Two common methods used to explore neural processes of decision-making under 
laboratory conditions are electroencephalography (EEG) and functional magnetic 
resonance imaging (fMRI). EEG involves a head cap which places electrodes on the 
scalp and measures electrical changes in the brain. Temporal resolution is very good 
(detects millisecond level changes) though spatial resolution (where the change 
occurs) is poor because signals often interfere with one another and make it difficult 
to pinpoint specific brain regions involved in the processing. EEG methods are 
mainly of value when stimuli are simple and the task involves basic processes (e.g., 
target detection) triggered by task stimuli  (Eysenck & Keane, 2015).  
 
In contrast to EEG, fMRI technology measures activity indirectly through changes in 
blood flow in the brain. As a brain region is activated, the body sends more blood to 
that region and fMRI detects these changes by imaging the blood oxygen level-
dependent contrast (BOLD) signal in a special magnetic scanner (Eysenck & Keane, 
2015). Blood flow changes occur over time, so the temporal resolution of fMRI is not 
as fast as EEG (i.e. order of seconds compared to milliseconds), but the spatial 
resolution is very high and thus amenable to pinpointing changes within specific 
regions. Data collection can be uncomfortable and constraining as participants must 
remain still while partially enclosed inside the MRI scanner.  
 
A third option, called functional near infrared spectroscopy (fNIRS), overcomes the 
limitations of EEG (spatial recognition) and fMRI (unrealistic environment) to study 
complex processes in more realistic environments. fNIRS is unique compared to EEG 
because of the spatial resolution, better able to detect regions of activation. fNIRS is 
unique compared to fMRI because participants can operate a computer or perform a 
task in an upright sitting position. fNIRS is also safe, portable and noninvasive. It is 
worn as a cap, similar to EEG, and emits light at specific wavelengths (700-900 nm) 
into the scalp. The light scatters, and some is absorbed, before reflecting back to the 
sensor. Oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) absorb more light than 
water and tissue in the brain. An increase in neural activity produces an increase in 
the ratio of HbO relative to HbR. The change in HbO and HbR is measured by the 
amount of near infrared light being reflected or absorbed.  
  
The drawback from fNIRS is its lack of depth in high spatial resolution compared to 
fMRI. It is effective to investigate areas such as the prefrontal cortex associated with 
executive function (e.g., planning, problem solving, decision making, and design) but 
not sub-cortical regions like emotions.  
 
BRAIN REGIONS OF INTEREST  
The cerebral cortex is the outer surface of the brain and is divided into two 
hemispheres and four lobes: the frontal lobes, where much of our conscious thinking 
seems to occur including language, attention, reasoning, decision making, planning 
self-regulation, learning strategies, problem solving, consciously controlled 
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movements, and interpretation of other’s behaviors; the parietal lobes, which receive 
and interpret information about temperature, pressure, texture and pain also actively 
involved in paying attention, processing word sounds, and thinking about the spatial 
characteristics of objects and events; the occipital lobes, which are responsible for 
interpreting and remembering visual information; and the temporal lobes, which 
interpret and remember complex auditory information and appear to be important in 
memory for information over the long run.  
 
One of the primary uses of neuroimaging is to pre-identify regions of interest in the 
brain indicated by the literature. This is necessary because baseline brain activity 
even at rest is still very active and thus it is best to demonstrate both that a stimulus 
causes additional activation in a region of interest and that it does not cause additional 
activation in a nonrelated region. Brodmann’s areas are numbered regions which 
researchers commonly use to describe specific regions within the lobes of the cerebral 
cortex (Brodmann, 2007). These regions are discrete and well defined. In particular, 
the prefrontal cortex (PFC) associated with executive function (planning, decision 
making, trade-offs, rationalizing future consequences) includes Brodmann areas 8, 9, 
10, 11, 12, 45, 46, and 47. These areas are directly related to engineering cognition 
and shown in Figure 1, an example of fNIRS placement along the dorsolateral pre-
frontal cortex and result sensitivity analysis showing increased activation during an 
engineering task. 
 

 
Figure 1: Example fNIRS placement along the frontal cortex (left and middle) and 

result sensitivity analysis showing increased activation during engineering task (right) 

 
INTEGRATING ENGINEERING DECISION MAKING AND 
NEUROSCIENCE RESEARCH 
The field of engineering project management is suited to partner with cognitive 
neuroscientists, to consider how neuroimaging can complement or supplement 
pressing research questions. For example, building and transportation systems 
account for the vast majority of human energy use and associated climate changing 
emissions, yet design continues to yield oversized, uncomfortable homes and 
sprawling, crowded highways that do not meet our needs and damage the natural 
environment. It is therefore vital to understand the cognitive processes that yield 
various design outcomes. However, this is an area where brain imaging research is 
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scarce, in part because study requires the integrated understanding of both design and 
neuroscience that this paper is suggesting be developed.  

Design cognition is increasingly recognized across engineering, architecture, and 
psychology, with the construct of “design thinking” being applied to physical, social, 
and societal (e.g., business and medicine) problems. Learning, exploration and 
development are also key concepts in cognitive/social development and education. 
There is little research related to engineering using cognitive approaches to 
investigate cognition related to design or decision-making processes in engineering. 
Most studies still investigate basic cognitive processes and use simple cognitive tasks 
and focus mainly on technological progresses and data analyzing procedures (Ferrari 
& Quaresima, 2012).  

LITERATURE REVIEW 

To better understand the degree to which neuroimaging research is being discussed 
and reported in engineering, all ASCE journals and the Engineering Project 
Organization Journal was searched for any mention of EEG, fMRI, and fNIRS. The 
review was stretched further to capture possible human-computer interaction research 
including the Automation in Construction Journal. To capture possible engineering 
education studies, the Journal of Engineering Education (JEE) and proceedings from 
American Society of Engineering Education were also included. None revealed 
current research using fNIRS. Two papers were related to EEG in construction from 
Automation in Construction. However, both papers relate to safety, missing the 
opportunity to explore project level decision making. Althoguht, the results about 
safety were intriguing. One paper provides experimental results showing that neural 
signals are valid for mental load assessment of construction workers. The research 
also describes the development of a prototype for a wearable electroencephalography 
(EEG) safety helmet that enables the collection of the neural information required as 
input for the measurement approach (Chen et al., 2016). The second paper provides 
similar findings that EEG can effectively reflect and quantify construction workers' 
perceived risk level. The results were from a small pilot study of construction workers 
suggests future implementation of wearable EEG devices on jobsites needs to be 
more thoroughly tested (Wang et al., 2017). 
 
Six papers mentioned fMRI in ASCE journals but after further review none of the 
papers actually used fMRI. Rather, the papers mention the possibility of using fMRI 
or relate their findings to a study that used fMRI. EEG was mentioned 64 times and 
fMRI 18 times in ASEE proceedings. Although, none report the results of empirical 
studies that specifically used either method. Almost all papers related to EEG or 
fMRI were discussing engineering instrumentation labs or signal processing. Only 
one paper discussed fMRI as being a useful methodology to study how engineering 
students solve problems that are expected to promote critical thinking, reflection, or 
transfer (Hicks et al., 2014) but, again, falls short in testing the method.  
 
Further still, looking outside of engineering for research related to decision making 
but not necessary about engineering, many articles exist. Notably, in Science, 
Neurobiology, Nature Neuroscience, and the Journal of Neuroscience, Psychology, 
and Economics. Now, this is not a full systematic review. Rather, the purpose is to 
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highlight areas of potential overlap related to similar challenges and problems faced 
in cognitive science and engineering project management. Research that probes the 
neural basis of decision making in the context of social interactions combines 
behavioral paradigms from game theory with a variety of methods from neuroscience. 
The neural correlates of decision making in reciprocal exchange and bargaining 
games can help explain a set of brain regions and neurotransmitter systems involved 
in decision making in social interactions (Rilling et al., 2008). This is leading to 
neuro-mechanistic accounts of how information from others is integrated with 
individual preferences that may explain preference-congruent susceptibility to social 
signals of safety and risk (Chung et al., 2015). For example, in an economic trust 
game, data showed how one player strongly predicts future trust expressed by their 
partner (King-Casas et al., 2005). Thus, neuroscience does not just measure 
individual behavior but group and social interactions, which should be of interest to 
those studying engineering project organizations. 
 
Related to other areas of engineering, fNIRS is used more frequently in human factors 
engineering (McKendrick et al., 2017), transportation engineering (Tsunashima & 
Yanagisawa, 2009) and virtual reality and simulations (Karim et al., 2012). For 
example, related to aviation operations, increasing the number of aircrafts managed 
by a controller led to an increase in cognitive work load up until about 18 aircrafts 
and then saturation was reached in cognitive activation. Through training, the number 
of aircrafts being managed increased before reaching the same saturation level 
(Bunce et al., 2011). The aircraft example illustrates the ability to measure cognitive 
ability expanding through training. While fNIRS are providing insight into other areas 
of engineering, empirical research lacks in combining engineering project level 
decision making (or engineering education for that matter) with neuroimaging. The 
next section explores possible rationale for why such integration would be beneficial.      
 
SUGGESTED AREAS OF FUTURE RESEARCH 
A benefit of cognitive neuroscience is the clear and consistent mappings between 
events at the neural level and events at the behavioral level and neurobiological 
function can provide valuable new measurements to advance theories in engineering 
and project management. Though, brainstorming a complete list of needed research or 
opportunities to combine neuroimaging with engineering is not realistic, rather the list 
below is meant to illustrate examples within the context of engineering risky decision 
making, engineering design cognition, systems thinking, and hazard detection 
because these domains are within the domains of research conducted by the author. 
 
DESIGN COGNITION 
To date, many empirical studies have investigated the cognitive processes of 
individuals during the design processes (Coley et al., 2007; Cross, 2001; Daly, 
Christian, Yilmaz, Seifert, & Gonzalez, 2012; Daly, Mosyjowski, & Seifert, 2014). 
However, a key limitation of this previous work is the subjectivity and imperfection 
that comes with observational studies. For example, cognition is usually not directly 
measured, instead only the products of an individual’s thinking are observed and 
recorded. Neuroimaging can provide researchers an additional tool to better 
triangulate behavioral findings. fNIRS in particular is well suited because of its 
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spatial abilities to identify activation. This type of data holds promise to revolutionize 
the study of design cognition because this type of information can help construct a 
more detailed understanding of the processes and the network coordination between 
brain regions during thinking. fNIRS can be used in naturalistic settings in the real 
world, compared to fMRI, during actual events and design tasks. 
 
SYSTEMS THINKING  
The ability to think in systems is critical to advance, for instance, sustainability 
because inherently sustainability is a systems problem that requires a shift in thinking 
from individual parts to the relationships between them (Olson, 2006). For example, 
an ecosystem is not just a collection of species, but a series of living things 
interacting with each other and their environment. However, traditional education 
may over emphasize linear, or analytical thinking, which may reduce an engineers’ 
ability to think about sustainability as a system (Mulder, 2004). Neuroimaging 
techniques can help measure systems versus linear thinking related to challenges like 
sustainability. The expectation is linear thinking, will not lead to the same conceptual 
understanding and will require less cognitive activation compared to systems thinking. 
Through practice, the expectation is the temporal response and magnitude of response 
becomes less for systems thinking. Thus, neuroimaging provides a gauge of how 
quickly subjects can process information as a system. Quickness does not just mean 
the temporal response in activation but also the functional connectivity between brain 
regions of interest (i.e. how fast regions coordinate). Training, context, and 
experience influence the way in which participants approach problems. Neuroimaging 
can help account for these variations in “styles of reasoning” among engineering 
professionals by measuring the discernable differences in patterns and response time. 
Overtime, patterns of activation across subjects may help predict behavioral or 
decision outcomes. Thus, leading to new types of interventions in training elicit 
cognitive activation that facilities the appropriate response.   
 
CONTEXTUAL COMPLEXITIES OF ENGINEERING PROBLEMS  
If/how engineers attend to embedded social, cultural, political, and/or ethical 
complexities and context in generating solutions to design problems is exceptionally 
relevant to those studying engineering project organizations. Context is necessary for 
every action, interaction and intra-action. While think-alouds, observational studies, 
and analysis of solution artifacts may lend some insights, neuroimaging can help see 
specifically if and when such complexities and context are cognitively attended to 
because of the very different areas of the brain that may be involved in these 
processes. Better accounting for embedded complexities and contextual specificities 
from real life is possible with relatively new techniques like fNIRS that are more 
mobile allowing research participants to walk, talk and interact with others in the real 
world.  
 
HAZARD DETECTION 
By measuring cognitive demand and localization of brain activation during hazard 
detection, researchers can construct a more detailed understanding of time, neural 
processing and network coordination between brain regions. Understanding the 
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demand patterns and regions of activation in the brain is important because 
researchers can begin to assess where deficiencies occur and how training can 
enhance either the temporal response or reduce the cognitive load to comprehend, 
forecast, and make a decision towards hazard reduction. The expectation is a high 
correlation in temporal response and the magnitude of risk associated with hazards 
and significant difference in the cognitive load (i.e. BOLD response) to comprehend 
(interpret and evaluate) hazards of different energy types (i.e. gravity, chemical, 
mechanical). Once a baseline is established, empirical interventions could then be 
tested and new measurements of the temporal responses and pattern of activation 
could then be measured to gauge response. While the focus of the previous examples 
is professionals, here the scope could include construction workers. Varying levels of 
experience and training associated with a trade may likely influence response time 
and hazard detection by type.  
 
RISKY DECISION MAKING  
Knowing the mechanistic activation in the brain can help devise new mathematical 
representation of risky decision making and can be useful in better describing and 
predicting behavior. For example, the notion of hyperbolic time discounting that 
predicts people behave impulsively when faced with the right combination of 
incentives does not actually seem to hold true given new data from neuroimaging 
studies (Benhabib et al., 2004, 2010). Greater relative activity in affective cognitive 
systems was associated with choosing earlier rewards more often. Understanding that 
hyperbolic time discounting stems, in part, from competition between the affective 
and cognitive systems, leads to the prediction that factors that strengthen or weaken 
one or the other of these influences will cause people to behave more or less 
impulsively. Thus, the notion of quasi-hyperbolic time discounting provides a more 
accurate mathematical representation of precisely such a two processes system in the 
brain (Benhabib et al., 2010).  
 
This bridge between decision making and neuroscience is already making an impact 
in economics. In fact, neuroscience is suggesting new insights and useful perspectives 
on old problems. For example, the economic model assumes that the utility for money 
is indirect, only valued for the goods and services it can procure. Thus, standard 
economics would view the pleasure from food and the pleasure from obtaining money 
as two different experiences. However, neural evidence suggests, the same reward 
pattern in the brain is activated for a wide variety of reinforcements: cultural objects 
like cars (Erk et al., 2002),  drugs (Schultz, 2002), and money (Peterson, 2005) 
provide a similar arousal of dopamine.  
 
EXPERIMENTAL DESIGN METHODS 
Necessary to note, there are two general experimental setups: block and event related 
design. A block design is the separation of experimental conditions into distinct 
chunks so that each condition is presented for an extended period of time. The 
difference between blocks is the independent variable. The independent variable is 
kept at a constant level throughout the block and transition between blocks represent 
changes in the level of the independent variable. Another approach is the alternating 
block design, which two or more different conditions are alternated in order to 
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determine the differences between the two conditions, or a control may be included in 
the presentation occurring between the two conditions. Trials typically last between 
10 seconds to 1 minute. As mentioned earlier, the BOLD response lags behind 
neuronal activation. On average 5 seconds to the peak HbO response. So, if blocks 
are too short the response per trial may appear as a peak response for the entire block. 
Further, too long and fatigue is a consideration. Block length should be chosen so that 
the same mental processes are evoked throughout and best determined by rehearsal 
with subjects and validated for face and content validity.   
 
Some experiments cannot use blocked design due to the transience of the neural 
activity. The “n-back” paradigm is an example. In the n-back test, the subject is 
presented with a sequence of stimuli, and the task consists of indicating when the 
current stimulus matches the one from n steps earlier in the sequence. The load 
factor n can be adjusted to make the task more or less difficult. Typically, from one 
step prior to three. This is an event-related design because there is no categorization, 
meaning the independent variable is randomized and the time in between stimuli can 
vary. Event-related design has the potential to address a number of 
cognitive questions with a degree of inferential and statistical power. Each trial can be 
composed of one experimentally controlled (such as the presentation of a word or 
picture) or a participant mediated "event" (such as a motor response).  
 
A mixed design incorporates an event as a trial within a block. Conceptually the 
difference is the grouping of events. The purpose is to maintain a cognitive state 
where as the individual stimuli in an event related design is assumed to evoke a 
particular cognitive process. An important difference between mixed design and the 
other types of designs is that mixed designs allow analysis of independent variables 
that change on different time scales. Mixed design allow identification of separate 
brain systems that underlie state and event related aspects of their task.  
 
As mentioned earlier, fNIRS and EEG are able to be used in more naturalistic 
environments compared to fMRI, where neither a block or controlled standardized 
(discrete) event may occur. Far fewer studies use this approach because of the lack of 
control in independent variable or known occurrence of stimulus. This type of 
approach is more likely seen in real world settings of engineering tasks thus are 
critical in the future.  
 
Inter-disciplinary research set in the real world, without a block or event related 
design, is a small but growing field called neuro-architecture. It is a collaboration 
among neuroscientists and architects to explore, through scientific methods, the range 
of human experiences to validate architectural design (Mallgrave, 2011). The purpose 
is to explore, with neuroscience methods, what is actually happening in people's 
brains when they enter spaces, how dispositions are modified, and how this activity in 
the brain then changes people's frame of mind (Eberhard, 2008). The field is still 
rapidly evolving but hold promise to bridge design and science closer together. In fact, 
there is some evidence that certain types of building spaces actually promote the 
growth of new neurons (Edelstein & Macagno, 2012; Linebaugh, 2013). Though, not 
only is the field about how buildings influence humans but also includes neuroscience 
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of the design process, which looks at the architect’s brain activity in the development 
of a project. Neuro-architecture, measuring the designers brain during a project, is 
closely associated with the proposition of measuring engineering cognition and 
project level decision making using neuroscience methods postulated in this paper.  
 
DATA ANALYSIS  
Field experiments like those of neuro-architecture are very much at the cutting edge 
of neuroimaging ability. This requires complex preparation and timing. Syncing the 
recorded brain activation data, possible video data, or eye tracking data is not 
straightforward. It requires coordinated effort creating markers in each of the data sets 
at the same time. Further, the BOLD response, when using fNIRS, is related to an 
increase in oxygenated blood, which not only occurs during cognitive tasks but 
during physical activity. So, in addition to monitoring cortical activation, scalp 
interference must also be recorded using a short channel separation measuring blood 
at the scalp. The BOLD response can also be influenced by physiological changes in 
heart rate, instrument noise and experimental error. Pre-process filtering using high 
and low band pass filters can help correct these errors. Once the data is filtered, there 
are numerous methods to analyze the data. The most typical methods for analysis 
include some form of measuring:  
 

1. Delta amplitude 
2. Peak amplitude  
3. Time to reach peak  
4. Slope measurement 
5. Area under the curve 

Further analysis includes general linear models, especially for block design 
experiments where the expected response would be an increase in the canonical 
BOLD function during the trial and a return to homeostatic levels following a rest. As 
mentioned earlier, others use a multi-variant approach. More still, a recent approach 
is using Support Vector Machines (Chen, Zhao, Fang, & Wang, 2007). For more on 
data processing methods see (Tak & Ye, 2014).  
 
EXAMPLE PROJECT 

In an example project, to illustrate the potential of neuroscience methods to inform 
engineering research, freshmen and senior engineering students (n=23) were given 5 
engineering challenges based on Richard Smalley’s list of the most pressing issues 
facing humanity in the next 50 years (Smalley, 2003). The order in which they 
received the challenges was random. Each challenge was displayed on the screen for 
60 seconds followed by a rest period of 30 seconds. Students were asked to verbally 
provide solutions to the challenges and a researcher tallied the number of responses. 
Experiments about brainstorming are typically based on the number or novelty of 
solutions generated. In this study, the number of responses was the main 
measurement because of its objectivity.   

After filtering the data, channels were averaged across the whole prefrontal cortex, 
split between left and right hemisphere and individually analyzed. The hypothesis 
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was that students’ ability to generate solutions varied based on years of education. By 
measuring hemodynamic responses during brainstorming tasks with freshmen (x=14) 
and senior (x=9) engineering students the results indicate significant difference 
(p<0.001) in the cognitive activation. Freshmen engineering students showed 5 times 
greater activation in the dorsolateral prefrontal cortex (known to involve working 
memory, cognitive flexibility, planning, inhibition, and abstract reasoning) compared 
to seniors. While seniors show an average of 10 times increase in activation in the 
premotor cortex (known to be involved in the management of uncertainty, control of 
behavior, and self-reflection in decision making). The number of solutions generated 
was also significant (p=0.032). Freshmen generated more solutions on average during 
the brainstorming activity compared to seniors. In many ways, this initial work serves 
as a proof of concept in using neuroimaging to study the processes involved in 
engineering design. 

 

Figure 2: Average cognitive activation among freshmen engineering students (left) 
compared to average cognitive activation among seniors (right) during brainstorming 

task. Higher cognitive activation is indicated by red and lower activation by blue. 
 
CONCLUSION 
Economists already use neuroimaging methods to understand how risk, uncertainty, 
social norms, and role models affect cognitive states (Holper et al., 2014). At the 
same time a growing field in neuro-architecture is illustrating how design impacts 
bio-physiological states (Adli et al., 2017; Eberhard, 2008). Similar advances are 
possible in engineering. Neuroimaging methods can measure the change in patterns 
across cortical regions (e.g. from visual to working memory), enable predictions 
about behavior or task performance based on the underlying bio-physical response 
(e.g. activation in prefrontal cortex), and triangulate data like subject self-reporting 
(e.g. does their physical response match their reported response?). The intent of this 
paper was to communicate details about these benefits, what is involved in adopting 
these methods, and the procedures required when considering integrating 
neuroimaging into an existing study. The benefits are numerous: offering a new data 
source and opportunity to advance theoretical understanding, which seem to outweigh 
the learning curve associated with the measurement tool and nuances of the 
experimental design to successfully integrate neuroimaging into engineering research. 
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Better understanding the role of certain brain regions during engineering experiments 
like design cognition or risky decision making across a range of subject groups 
appears to hold promise to advance theory related to engineering cognition and 
project level decision making. At the same time, can offer opportunities to advance 
cognitive neuroscience more generally by addressing the data collection challenges 
that arise when extending methods from task-oriented problems to more cognitively 
complex challenges that often lack a standardized event and take place in more real-
world settings. While literature provides a rich understanding of which brain regions 
support which cognitive function (e.g. visual or spatial thinking) there is a lack of 
understanding about how these processes are developed (i.e. from novice to expert), 
evolve over time, vary by context, differ among groups of people, how they are 
influenced by others, or effected by the structure of choices during cognitive 
processing. These are exactly the types of questions and problems engineers, along 
side neuroscientists, can help address. A more detailed understanding of the mental 
processes required for these types of problems can be constructed but only by 
working to blur the lines between fields.  
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