
15th	Engineering	Project	Organization	Conference	
with	

5th	International	Megaprojects	Workshop	
Stanford	Sierra	Camp,	California	

June	5-7,	2017	

Working	Paper	Proceedings	

Evaluating	the	Spatial	Reach	of	Energy	Use	Spillover	
Effects	in	Urban	System	Fluctuations	

John	Taylor,	Georgia	Tech,	USA	

Neda	Mohammadi,	Georgia	Tech,	USA	

©	Copyright	belongs	to	the	authors.	All	rights	reserved.	Please	contact	authors	for	citation	details.	

Proceedings	Editors	
Ashwin	Mahalingam,	IIT	 Madras,	 Tripp	Shealy,	Virginia	Tech, and Nuno Gil, University of Manchester	



1 

EVALUATING THE SPATIAL REACH OF 

ENERGY USE SPILLOVER EFFECTS IN URBAN 

SYSTEM FLUCTUATIONS 

Neda Mohammadi1 and John E. Taylor2 

ABSTRACT 

The rate at which we consume energy in urban areas cannot be regarded as being 

independently generated as a result of infrastructure characteristics, without some 

consideration of possible dynamic effects and externalities. Previous studies focused 

on identifying the endogenous and exogenous determinants of urban energy 

consumption have examined the spatiotemporal relationships between urban human 

mobility and energy use and determined an underlying spatial structure, which 

explains their interdependencies. However, it is not yet clear to what extent changes 

in endogenous and exogenous determinants identified affect this structure. In this 

study, we examine the spatial reach of energy use spillover effects in urban systems 

through statistical analysis and network-based clustering methods by considering the 

diffusion of energy consumption through both spatial structures (i.e. urban 

infrastructure and population flow) across 4,835 areas in Greater London. Integrating 

spatial regression models with spatially-constrained network clustering of energy use 

and human mobility, we compared 2,305,001 positional records from an online social 

networking platform, namely Twitter, with energy consumption measures using 

information garnered from 3,438,939 electricity meters across London over the 

course of a single month, May 2014. We found that there is a predominant spillover 

effect from the urban infrastructure and population flow on energy use, with an 

overall stronger effect from urban infrastructure. The results presented here provide 

valuable insights that will contribute to the development of a better understanding of 

energy use transmittal effects in urban areas as part of a complex human-

infrastructure system. 
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INTRODUCTION 

Urban areas already consume up to 80% of the world’s energy production (EIA 

2013), and the projected increase of their population to nearly 70% of the global 

population by 2050 will inevitably drive further increases in energy consumption (UN 

2014). The rate at which we consume energy cannot be regarded as being 

independently a function of buildings (Boulaire et al. 2014; Farzana et al. 2014) or 
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city infrastructure attributes (Choudhary 2012; Mikkola and Lund 2014). Research 

quantifying the underlying spatial structure for urban energy use has confirmed the 

presence of spatial spillover effects among neighboring units based on the statistically 

significant spatial dependencies that exist in relatively densely populated urban 

spaces (Mohammadi et al. 2017; Mohammadi and Taylor 2017). Spillover effects 

(Anselin 2003; Capello 2009; LeSage 2008) in an economic context are regarded as 

events (in this case, building energy use) that occur because of something else (here, 

human mobility) in different contexts. The future growth in population and 

urbanization will most likely increase interdependencies between infrastructure and 

individuals, thus further enhancing both the magnitude and spatial reach of energy 

use spillover effects across urban spaces. These spillover effects are not necessarily 

always positive as they are driven by the evolving underlying infrastructure and the 

intra-urban flow of population as residents move through their daily routines, 

instigating both desirable and unwanted energy use effects as they do so. The spatial 

reach of energy use spillover effects thus fluctuates across space, however, although 

the magnitude and extent of this spatial reach can be measured, it is not yet clear 

which drivers have the most significant impact on spatial reach. Here, we examine 

fluctuations in spatial reach and the associated energy use spillover effects in order to 

tease out the underlying dynamics that create energy use spillover effects with the 

greatest spatial reach. We conceptualize the spatial structure, in which the dynamics 

of the diffusion of use of energy resources take place; we examine two underlying 

spatial structures: urban infrastructure and population flow, and take into account the 

dependency of energy use on human mobility to evaluate the spatial reach of spillover 

effects in urban energy systems.  

METHODOLOGY 

DATA  

The dataset used in this study consists of energy (residential electricity consumption) 

measures from 3,438,939 electricity meters across 33 Boroughs (BOR) (4,835 Lower 

Level Super Output Areas (LSOA)) in Greater London over the course of a single 

month, May 2014. Figure 1(a) depicts the two nested spatial divisions used in this 

study. Additionally, individual positional records were collected from an online social 

network (Twitter) across the same spatiotemporal dimensions to account for 

population flow. 

In order to quantify the spillover effects off population flow from human mobility 

patterns, we have adopted the human mobility radius of gyration (Eq. 2) around the 

center of mass of the mobility of an individual (Eq. 1) as our metric (González et al. 

2008): 
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Here, N is the total number of observations n.  
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The radius of gyration is calculated at three spatial levels. First, the individual-

level rgi(t)–which represents the characteristic distance traveled by a user when 

observed in time t–is obtained per Greater London BOR or LSOA per individual per 

day. Then, the BOR and LSOA-level human mobility radius of gyrations are obtained 

per each spatial division over the period of the study (i.e., month of May).  

 

  

(a) 33 BOR and 4,835 LSOA Spatial Divisions (b) Adjacency Graph 

Figure 1: Greater London (a) nested spatial divisions, and (b) adjacency graph.  

SPATIALLY-CONSTRAINED CLUSTERING  

In order to reliably examine the spatial reach of spillover effects across LSOAs, we 

first partitioned the BOR-level spatial divisions into spatial clusters that are grouped 

in terms of both attribute similarity (i.e., contiguity) as well as spatial similarity (i.e., 

proximity) using the graph-based SKATER algorithm (Assunção et al. 2006). The 

contiguity is taken into account by identifying the 4,835 LSOAs as nodes of an 

undirected weighted or adjacency graph (Figure 1(b)) such that each LSOA is 

connected to its adjacent node if they share neighboring boundaries. A vector of xi= 

(xie, xim) consisting of numerical values of energy consumption, as well as human 

mobility, is associated with LSOA i. The edge weight value associated with each 

connection measuring the dissimilarities between LSOA i and j with respect to their 

attribute vectors represents the distance between the two nodes in multivariate space. 

Higher values of the edge weights show that the corresponding LSOA pairs are 

farther apart in multivariate space. With the objective of minimizing the overall 

dissimilarity so the clusters are internally the most similar, we generated a minimum 

spanning tree of adjacency graph based on the aforementioned pairwise distance 

measures of dissimilarity across LSOAs and partitioned the graph. By partitioning the 

graph such that the sum of the intra-cluster square deviations is minimized, we ensure 

that the clusters are generated with maximized homogeneity with respect to the 

energy use and human mobility attributes. 

Figure 2 shows the results of this clustering, spatially constrained to urban 

infrastructure (Figure 2(a)), and population flow (Figure 2(b)) grouped into five 

classes at the BOR level in Greater London.  
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(a) Urban Infrastructure (b) Population Flow 

Figure 2: Spatially constrained unsupervised clustering of Greater London Boroughs 

(BOR) for (a) urban infrastructure, and (b) population flow, May 2014.  

SPILLOVER EFFECT 

The spillover effects are examined across the spatially constrained classes identified 

in Figure 2 for urban infrastructure and population flow. First, the significance of an 

underlying spatial structure is examined through an exploratory spatial autoregressive 

analysis. We explore whether the spatial distribution of energy use in each clustering 

group is related to urban infrastructure or population flow attributes of its neighboring 

spatial divisions and, if so, to answer how they are associated and the extent of their 

direct, indirect (spillover), and total effects.  

The spatial interaction and spillover effects are then measured via a Spatial 

Durbin Model (Anselin 1988; LeSage and Pace 2010), in which the characteristics of 

a cluster are simultaneously considered in the analysis (Eq. 3). This model explicitly 

takes into account both the endogenous and exogenous interaction relationships. 
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Where, y is an n×1 vector of energy use; W is the spatial weight matrix, where Wy 

represents the spatial lagged endogenous effects (e.g., urban infrastructure);  denotes 

the effect of y or spatial autoregressive coefficient. In is an n×1 vector of ones 

associated with the intercept parameter α. X represents an n×1 matrix of human 

mobility measures, which are related to the parameters β; WX reflects the spatial 

lagged exogenous effects (e.g., population flow); and θ denotes a k×1 vector of the 

effects of WX.  

FINDINGS 

SPATIAL AUTOCORRELATION  

Table 1 shows the results of the spatial autocorrelation for both urban infrastructure 

and population flow. Moran’s I, describes the degree of spatial concentration in each 

case per spatially constrained cluster division. Statistically significant positive values 

for most of the clustered divisions indicates that the values of energy use and human 
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mobility in one location depend on the values observed at adjacent locations, and this 

dependency exists continuously throughout the course of the month (May 2014).  

Table 1: Moran’s I.  

 Urban Infrastructure Population Flow 

 I p-value I p-value 

C1 -0.21104137 0.517 -0.23733847 0.5639 

C2 0.214331516 9.072e-06 0.099639711 0.01743 

C3 4.378072e-01 < 2.2e-16 0.046077118 0.1261 

C4 0.4857757481 < 2.2e-16 0.1579332503 < 2.2e-16 

C5 0.492889834 < 2.2e-16 0.1599057663 < 2.2e-16 

DIRECT AND INDIRECT (SPILLOVER) EFFECTS  

Since energy use and human mobility exhibited a statistically significant spatial 

dependence over C2-C5 clusters in both urban infrastructure and population flow 

cases, we examined the spatial dependency conditions as well as direct, indirect 

(spillover), and total effects in each case by modeling the spatial interdependencies 

(Table 2). Spatial Durbin model allows for separately evaluating the direct (within 

LSOA) impact of an attribute (e.g., urban infrastructure, or population flow) as well 

as indirect (to/from neighboring LSOAs) impact on energy use (Fischer and Wang 

2011; LeSage and Pace 2009). This identifies whether and to what extent change in 

the urban infrastructure, or population flow in one LSOA, will not only lead to the 

change in energy use in the same LSOA (direct impact) but also affect the energy use 

in other LSOAs (indirect impact) (Table 3). 

Table 2: Spatial Durbin Model. 

 Rho z-value p-value Log-likelihood AIC 

Urban Infrastructure      

C1 NA NA NA NA NA 

C2 0.38502 3.7835 0.00037505 -205.5207 421.04 

C3 0.67721 42.482 < 2.22e-16 -4358.368 8726.7 

C4 0.68648 21.975 < 2.22e-16 -1019.47 2048.9 

C5 0.68324 13.111 < 2.22e-16 -330.8827 671.77 

Population Flow      

C1 NA NA NA NA NA 

C2 0.70838 9.8262 9.206e-13 -152.8083 315.62 

C3 0.32264 2.9512 0.005132 -223.5279 457.06 

C4 0.71381 28.385 < 2.22e-16 -1442.414 2894.8 

C5 0.66788 39.734 < 2.22e-16 -4058.457 8126.9 

 

The significant direct effects for both urban infrastructure and population flow 

clusters confirms that the attributes of surrounding LSOAs are important determinants 

of energy use. Four of five urban infrastructure clusters, as well as three of five 

population flow clusters exhibited spillover effects on energy use. For example, a 

one-unit increase in an exogenous variable (e.g., human mobility) in surrounding 

LSOAs of C2 of urban infrastructure clusters can be associated with roughly a 0.36 
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increase in energy use of one unit. Interestingly, this relationship within a C2 LSOA 

(direct effect) exhibited much a weaker  spillover effect. In other words, the same 

increase was only related to a roughly 0.02 increase in energy use within an LSOA.  

Table 3: Decomposition estimates of the direct and indirect (Spillover) effects of 

urban infrastructure and population flow on energy use. 

 Direct Effects Indirect Effects Total Effects 

Urban Infrastructure    

C1 NA NA NA 

C2 0.02072484 0.3552555 0.3759804 

C3 0.02102907 0.2498894 0.2709185 

C4 0.02923902 0.4017431 0.4309821 

C5 -0.05334096 -0.0814139 -0.1347549 

Population Flow    

C1 NA NA NA 

C2 -0.08097876 -0.0310392 -0.112018 

C3 -0.193315 -0.2701312 -0.4634463 

C4 0.01717194 0.1649943 0.1821662 

C5 0.02770776 0.3195341 0.3472419 

DISCUSSION 

Our initial findings indicate that the spatial reach of spillover effects fluctuates across 

spatially-constrained clusters of urban infrastructure and population flow as a result 

of the underlying statistically significant spatial dependencies that arise due to energy 

use and human mobility. To investigate whether neighboring areas have a diffusive 

effect on each other and whether spatial spillovers—where changes occurring in one 

area have an impact on neighboring areas—exist, we performed a spatial regression 

analysis on the data. The spatial Durbin models used here permit the magnitude and 

significance of direct, indirect (spillover), and total effects to be assessed, thus 

showing how changes in human mobility and energy use at a particular spatial unit 

will be transmitted to all other locations and hence how they are likely to affect the 

energy consumption at those locations. Interestingly, the statistically significant 

values of these effects imply that the effects of human mobility and energy use in 

both urban infrastructure and population flow predominantly exhibit an indirect 

spillover effect. In smaller clusters of population flow, this effect may dissipate quite 

rapidly, approaching zero after a comparatively short distance; the effect decays more 

slowly as we move to higher order neighbors in LSOAs, however. This may indicate 

that urban infrastructure has a weaker direct effect on urban energy use compared to 

the exogenous and changing effects that take place in its surroundings. The types of 

spillover effects found here reflect the broader perspective needed when considering 

urban building energy consumption over a larger scale. These results provide a clear 

picture of the diverse nature of the spatial reach of energy use spillover effects and its 

drivers, establishing a useful foundation for localized and contextualized 

interventions to reduce energy consumption. Spatial dependence is the product of an 

underlying location-specific activity process that leads to clusters of energy use 

spillover effects with fluctuating spatial reach. One significant implication of this 

approach to identifying the drivers of spatial reach for the energy use spillover effect 
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in urban systems is that it becomes possible to determine how changes in energy use 

at each spatial unit will be diffused across neighboring locations and consequently 

predict how the size of this diffusion is likely to fluctuate across different spatial units. 

This can help city managers and policy makers identify appropriate interventions that 

will enable them to influence energy use at the corresponding locations by supporting 

positive energy efficient spillover effects with greater spatial reach and minimizing 

undesirable and excessive energy use spillovers, which may lead to more effective 

energy efficiency opportunities (Armstrong et al. 2016).  

CONCLUSIONS 

In our evaluation of the varying effects from endogenous and exogenous determinates 

of urban energy use fluctuations, we used spatially-constrained clustering and spatial 

regression analysis methods to determine the extent of spatial reach for urban 

infrastructure and population flow spillover effects.  We found that exogenous effects 

predominantly indirectly affect energy use in both conditions. This finding may have 

significant implications on location-specific energy efficiency interventions, which 

can be achieved through targeting the underlying spatial structure by implementing 

interventions that focus on the influential infrastructure governing the spatial reach of 

the spillover effects. An alternative could be to instigate diffusion by modifying the 

population mobility flow, for example, by targeting influential individuals. The new 

approach presented here provides valuable insights that will contribute to the 

development of a better understanding of energy use transmittal effects in urban areas 

as part of a complex human-infrastructure system. 
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