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New Guinea is located (Fig. 1) at the northern boundary of the: Australian tectonic

- plate. The plate boundary is obliquely convergent with the Pacific plate moving at
253° (WSW) at 1.2 cm/yr with respect to the Australian Plate. This oblique collision
results in both a southwesterly verging fold and thrust belt and major left-lateral strike-
slip faults.

Most of the recent petroleum industry activity in New Guinea has focused along the
fold and thrust belt, especially in Papua New Guinea (Fig. 2). Several major oil and
gas accumulations have been discovered in the mid-eighties, principally by Nuigini
Gulf, a consortium of Chevron, British Petroleum and minor interest holders.
Numerous oil and gas seeps promise additional reserves yet to be discovered.

The Joint Australian New Guinea Indonesian Study (JANIS) was formed in 1987 to
study the New Guinea foldbelt and guide Exxon’s participation in the play. Team
members were recruited from Esso Australia, Exxon International and Exxon
Production Research Company. The principal methods for investigating the structural
architecture of the foldbelt including supplimenting geologic maps with Landsat and
Synthetic Aperature Radar imagery, constructing regional scale balanced cross
sections and checking the structural interpretations with gravity modelling (where data
were available, e.g. Figs 3,4). Most of the conclusions presented here arose from this
study.

Most of the principal stratigraphic play elements (source, resevoir and seal) were
deposited in Mesozoic time, prior to significant compressional structural development
(Fig. 5). The fold and thrust belt developed in stages in Cenozoic time, with an Eocene
stage largely confined to the present hinterland of the foldbelt and a middle Miocene
and younger stage that is continuing to transgress southward. The younger stage
developed most of the traps being prospected for hydrocarbons today. Maturation
modelling indicates that foredeep and thrust sheet loading within the last 8 million
years is generating hydrocarbons filling today’s traps.

The JANIS Project divided the foldbelt into subdivisions characterized by particular
fold and fault relationships (Fig. 6). The subdivisions include areas dominated by:
fault-bend and fault-propagation folds, duplex zones, delta zones, thrust sheets with
crystalline basement, and foreland basement-involved structures (Fig. 7). The
distribution of these structural divisions depicts important along-strike variations in the
thrust belt (Fig. 8). The segment of the foldbelt north of the Gulf of Papua is an
imbricated wedge of Mesozoic rift/sag and Tertiary foredeep sediments (Fig. 8C). Only
the extreme northern part of the foldbelt here includes basement thrust sheets.
Towards the northwest, in central Papua, the basal detachment ramps laterally
downward into crystalline rocks so that basement-involved sheets are involved in the
frontal parts of the foldbelt. The location of the basement ramp is close to the transition




of unextended continental crust of the Australian craton to extended continental crust
underlying Mesozoic and Tertiary sedimentary basin north and east of the craton.
Prior to basement-involved thrusting, the thrust wedge included only supracrustal
rocks. This earlier thrust belt is now extinct and riding southward upon the basement-
involved sheets (Fig. 8B). Large hanging-wall ramp anticlines:of crystalline rock form
the Juha, Muller (Fig. 3) and nearby anticlines. Basement-involved sheets continue to
dominate the fold and thrust belt to the beginning of the “Bird’s Neck” area of Irian
Jaya. In the southern Bird’s Neck area the basal detachment rises laterally out of
crystalline rock into the Mesozoic sedimentary rocks. The principal detachment levels
in this western sedimentary basin are near the base of the Mesozoic sequence and
within Pliocene foredeep strata, thus creating thick thrust sheets with large fault-bend
and fault-propagation folds (Fig. 8A). The number of thrust sheets comprising the
foldbelt decreases towards the west, concurrent with the appearance of the Terera-
Aiduna strike-slip fault which continues westward from the thrust belt to the Seram
Trench. Northwest of the Terera-Aiduna fault, in the central and upper portions of the
Bird’s Neck area, the northerly-trending Lengguru Foldbelt diverges from the main
WNW-ESE New Guinea Foldbelt trend. The Lengguru Foldbelt (Fig. 3) is structurally
similar to the western part of the New Guinea Foldbelt. The thrustbelt consists of thick
sheets of Meszoic through Pliocene strata. Intervening detachment levels are present
mostly in the interior part of the Foldbelt where the Upper Cretaceous strata contain an
important detachment horizon. :

Besides hydrocarbon accumulations, an important aspect of the New Guinea Foldbelt
is it’s current geological activity - it provides a natural laboratory to study the processes
of foldbelt dynamics. Abers and McCaffrey (1988) are involved in studying the
earthquake activity on New Guinea and the nature of ongoing deformation in the
Foldbelt. Maps of shallow seismicity (<70 km deep) of the area (Fig. 9) show an
abundance of earthquakes at or near the leading edge of the Foldbelt. Most of these
events have reverse or thrust fault focal plane solutions (Fig. 10). Events in the interior
of the foldbelt tend to have deeper hypocenters (about 20 km) and probably originate
at deep ramps along the basal fault. In the central part of the foldbelt (Fig. 11) where
basement-involved sheets are present, left-lateral strike-slip faults occur in the interior
parts of the foldbelt. These strike-slip events have hypocenters above reverse fault
events suggesting the strike-slip faults are detached at the basal thrust. At the west
end of the New Guinea thrust belt (Fig. 12) reverse and strike-slip earthquakes are
intermixed. The nature of the transition from thrust belt to strike-slip fault is unclear. A
single event at about 19 km depth along the Aiduna fault west of the thrust belt
indicates the strike-slip fault there dips at 30° to the northwest! Our current level of
understanding leads to the conclusion that the strain resulting from the oblique
collision of the Pacific plate and the Australian Plate is partitioned into a southerly
convergent component and a westerly left-lateral strike-slip component. Within the
fold and thrust belt, the strike-slip component appears to be detached (Fig. 13),
resulting in a flake of crust that is moving both south and west, relative to the
Australian plate. Strike-slip faulting appears not to be a significant component of
seismic deformation in the Papuan segment of the fold and thrust belt.
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