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Motivation
A list of questions in a paper that Jon Fraser wrote when was here!



Fundamental definitions

• Iterated Function Systems


• Stationary probability measures


• Wasserstein Distances



Iterated Function System
Is a finite set of contractions                       in a complete compact metric space     .f1, f2, …, fN 𝒳

Hutchinson proved in [Hut1981] that when             , there exists a unique non 
empty compact invariant set, that is,                          .  This set is called attractor.

[Hut1981] J. Hutchinson, Fractals and Self Similarity, Indiana Univ. Math. J. 30 (5): 713-747 
(1981), doi:10.1512/iumj.1981.30.30055

𝒳 = ℝn

𝒮 = ∪N
i=1 fi(𝒮)

Examples of attractors 
in      .ℝ2



Stationary probability 
measure

μ(A) =
N

∑
i=1

piμ( f −1
i A) for every A ∈ ℬ,

Given an iterated function systems  and a probability vector                    ,  
there exists a unique regular Borel probability measure such that

(p1, p2, …, pN)

where     are the subset of Borel of     .  
 

ℬ ℝN

This probability measure is called stationary probability measure and its 
existence and unicity is proved in [Hut1981].  
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Let                               such thatμ = μ(f1, f2),( 1
2 , 1

2 )



Example
The cumulative distribution function associated to this stationary probability 
measure corresponds to the Cantor function, that is  fCantor(x) = μ[0,x] .



Monge’s problem
Is an engineering problem formulated in 1781: 

Optimal transportation of the materials from a mine to another site.



Mathematical model for the 
Monge’s problem

• A probability measure     models the extracted mass.


• A probability measure     models the constructed mass.


• A transport function     models the initial and final 
position.


• A cost functions    models the cost of transporting from 
one point to another.

μ

ν

T

c



Monge’s problem

μ ν T

∫ c (x, Tx) dμ(x) .

ν = μ ∘ T−1Given    and      , find     such that                   and such that  
minimises the total cost of transport 



Wasserstein Distance
• It corresponds to the transport problem when the cost function satisfies the axiom of a distance on a 

Polish space.


• Important in: 


• Statistics.


• Limit theorems and approximation of probability measures.


• Theory of propagation of chaos.


• Boltzmann equations.


• Mixing and convergence for Markov chains.


• Rates of fluctuations of empirical measures.


• Large-time behaviour of stochastic partial differential equations.


• Hydrodynamic limits of systems of particles, Ricci curvature, Linearly rigid spaces, Towers of 
measures, Bernoulli automorphisms and classification of metric spaces, etc…



Wasserstein Distance

(𝒳, d) m ∈ [1,∞)
μ ν

Wm(μ, ν) := inf {[𝔼d(X, Y )m]
1
m :  law(X) = μ,  law(Y ) = ν} .

• Given a Polish metric space            and              . For any 
two probability measures      and     on     .                      
The Wasserstein distance of order      between     and     is 
defined by 

𝒳
μ νm

• When           it is called first Wasserstein distance, when    
it is called second Wasserstein distance, etc… 

m = 1 m = 2



Kantorovich-Rubinstein 
duality theorem 

When                             𝒳 = ℝ

W1(μ, ν) = sup { ∫ fdμ − ∫ fdν : ∥f∥Lip ≤ 1}

This formula gives a reformulation of the first Wasserstein distance. 



Jon Fraser’s problem
• Let:       


•  


• An iterated function system


• Two probability vectors                        and 


• Two stationary probability measures                   
associated to                    , respectively.


• Find or estimate

𝒳 = ℝd .

p = (p1, p2, …, pN) q = (q1, q2, …, qN) .

f = ( f1, f2, …, fN) .

Wm(μ, ν) .

μ = μ( f,p) and ν = μ( f,q)

( f, p) and ( f, q)



Partial solutions
• Theorem 1 [J. Fraser, 2015] Explicit formula for the first 

Wasserstein distance in the case 
 

• Theorem 2 [J. Fraser, 2015] Estimation for the second 
Wasserstein distance in the case 
 

• Theorem 3 [I.C and M. Pollicott, 2018] Explicit formula for the 
first Wasserstein distance in the case 
 

𝒳 = ℝ, f1(x) = ρx + t1, f2(x) = ρx + t2, ρ ∈ (0,
1
2 ) ,0 < ρ + t1 < t2 ≤ 1.

𝒳 = ℝ, f1(x) = ρx + t1, f2(x) = ρx + t2, ρ ∈ (0,
1
2 ) ,0 < ρ + t1 < t2 ≤ 1.

𝒳 = ℝ, f1(x) = ρ1x + t1, f2(x) = ρ2x + t2, ρ1, ρ2 ∈ (0,1) ,0 < ρ + t1 ≤ t2 ≤ 1.



Main steps in proof 
Theorem 3

• Lemma 1 [Dall’Aglio-Vallender]. Let    and    be probability measures 
on     Then 
  
 
where    and    are the cumulative distribution functions of    and   , 
respectively. 

• Lemma 2 [A. Quas]. Suppose that        , then then function                
defined by                                         does not change sign.  
 

• Remark.  
 
 

μ

ν

F

W1(μ, ν) = ∫
∞

−∞
F(t) − G(t) dt,

D : [0,1] → [0,1]
D(x) := (μ( f,p) − μ( f,q))[0,x]

ℝ .
μ

νG

p ≠ q

∫
1

0
xdμ( f,p) =

pt1 + (1 − p)t2
1 − (pρ1 + (1 − p)ρ2)

.



Lemma 1

• Lemma 1’ [J. Bochi]. Let             be probability measures 
on      . Then    
 
 
where 
  
 

μ and ν
[0,1]

W1(μ, ν) = ∫
1

0 (∫
x

0
Cμ,ν(t)dt) d(μ − ν)(x),

Cμ,ν(x) := {1  if (μ − ν)[x,1] > 0,
−1  if (μ − ν)[x,1] < 0.

We really need a weaker result (key lemma).



Proof



Jon Fraser’s list of specific 
problems [J. Fraser, 2015]

• Overlaps: Partially solved (work in progress).


• Different contraction ratios: Solved in [I.C and M. Pollicott, 
2018]. 


• Higher and non-integer moments: Open.


• Higher dimensions: Open.


• More than two maps: Solved in [I.C preprint, 2018.] 

• Extension of the lower bound: Solved in [I.C and M. Pollicott, 
2018].



More than two maps

• Theorem 4 [I.C preprint, 2018]. Let                        be an 
iterated function systems of positive Lipschitz 
contractions on the unit interval such that 
 
If         is a pair of probability vectors in           such that  
 
 
Then 
 

f = ( f1, f2, …, fN)

fi(0,1) ∩ fj(0,1) = ∅ for all i ≠ j .

(p, q) (0,1)N

m

∑
i=1

pi − qi ≥ 0 ( or  ≤ )  for every m = 1,2,…, N .

W1 (μ( f,p), μ( f,q)) = ∫
1

0
xdμ( f,p)(x) − ∫

1

0
xdμ( f,p)(x) .



Positive Lipschitz 
contractions

f : ℝ → ℝ such that

∥f∥Lip := sup
x,y∈ℝ

f(x) − f(y)

|x − y |
< 1.

A Lipschitz contraction is a map 

A positive Lipschitz contraction is a differentiable Lipschitz 
contraction map with positive derivative. 



Example more than two  
maps 

p = (0.1, 0.3, 0.6) and q = (0.2, 0.5, 0.3). 

μ( f,p)[0,x]

μ( f,q)[0,x]



More than two  
affine maps 

• Corollary. Let                       defined by   
 where       
If         is a pair of probability vectors in         such that  
 
 
Then 
 

fi : [0,1] → [0,1]

(p, q) (0,1)N

W1 (μ( f,p), μ( f,q)) =
∑i piti

1 − ∑i piρi
−

∑i qiti
1 − ∑i qiρi

.

ρi ∈ (0,1), ti ∈ [0,1), ρi + ti ≤ ti+1, i = 1,…, N .

m

∑
i=1

pi − qi ≥ 0 ( or  ≤ )  for every m = 1,2,…, N .

fi(x) = ρix + ti,



Example more than two  
affine maps 

p = (1/2, 1/4, 1/4) and q = (1/4, 1/4, 1/2) 

μ( f,p)[0,x]

μ( f,q)[0,x]



Example more than two  
maps where the theorem does not apply

p = (0.3, 0.1, 0.6) and q = (0.2, 0.5, 0.3). 

μ( f,p)[0,x]

μ( f,q)[0,x]



Other cases?
• Non-necessarily positive Lipchitz contractions? 

•                       when the iterated function systems       
are non necessarily the same and both contains only 
positive Lipschitz contraction? 

•                     when the iterated functions systems are 
non necessarily the same and    contains only positive 
Lipschitz contractions whereas    not? 
 

W1 (μ( f,p), μ(g,q)) f, g

W1 (μ( f,p), μ(g,q))
f

g



Non-necessarily positive 
Lipchitz contractions
r ∈ (2,∞) .

f1(x) =
x
r

,

f2(x) = 1 −
x
r

.

Let consider the iterated function system defined by

Theorem [I.C preprint, 2018]. Let                and                                         


 Then for                                                      and                       we have that 


where 

W1(μ, ν) = ∫
1

0
cr(x)d (μ − ν)(x)

cr(x) :=
−x  if x < r2

r2 + 1
,

x  if x > r2

r2 + 1
.

k ∈ ℕ r ∈ (2k + 1,∞) .

p = (p1, p2) = ( 1
2k + 1

,
2k

2k + 1 ) q = (p2, p1)

Let



Example: Non-necessarily 
positive Lipchitz contractions

f1(x) =
x
3

,

f2(x) = 1 −
x
3

.

p = ( 1
3

,
2
3 ),

q = ( 2
3

,
1
3 ) .

μ( f,p)[0,x]

μ( f,q)[0,x]



Non-necessarily the same 
iterated function system

Theorem [I.C preprint, 2018]. Let                  and                    be iterated 
function systems of positive Lipschitz contractions on the unit interval. 

Suppose that                                                                                 for all 

 
If           is a pair of probability vectors                        and                         such 
that            . 


Then           


 
W1(μ( f,p), μ(g,q)) = ∫

1

0
xd (μ( f,p) − μ(g,q))(x)

f = ( f1, f2) g = (g1, g2)

f1(0) = g1(0), f2(0) = g2(0), g1(x) ≤ f1(x), g2(x) ≤ f2(x) x ∈ [0,1] .

(p, q) p = (p1,1 − p1) q = (q1,1 − q1)
p1 ≤ q1



Non-necessarily the same 
affine iterated function systems

Corollary. Let                                  be defined by                            
 
 
where                                    and                   for  

Assume that                     and                    satisfy that   
   

If          is a pair of probability vectors                         and                         such 
that               Then           


W1(μ( f,p), ν(g,q)) =
∑i qiti

1 − ∑i qiβi
−

∑i piti
1 − ∑i piαi

.

fi, gi : [0,1] → [0,1] fi(x) = αix + ti
gi(x) = βix + ti

ρi ∈ (0,1), βi ∈ (0,ρi] ti ∈ (0,ρi] i = 1,2.

f = ( f1, f2) g = (g1, g2)

f1(0,1) ∩ f2(0,1) = g1(0,1) ∩ g2(0,1) = ∅ .

(p, q) p = (p1,1 − p1) q = (q1,1 − q1)
p1 ≤ q1 .



Example: Non-necessarily the same 
affine iterated function systems

f1(x) =
x
3

,

f2(x) =
x
3

+
2
3

.

p = ( 2
5

,
3
5 ),

q = ( 1
2

,
1
2 ) .

μ( f,p)[0,x]

μ(g,q)[0,x]

g1(x) =
x
6

,

g2(x) =
x
6

+
2
3

.



Example: Non-necessarily the same 
affine iterated function systems, where 

theorem does not work
f1(x) =

x
3

,

f2(x) =
x
3

+
2
3

.

p = ( 1
2

,
1
2 ),

q = ( 2
5

,
3
5 ) .

μ( f,p)[0,x]

μ(g,q)[0,x]

g1(x) =
x
6

,

g2(x) =
x
6

+
2
3

.



Overlaps



Bernoulli convolutions
• Consider the iterated function systems                  and                            , 

where                  is the reciprocal of a simple Pisot number, i.e., the inverse 
of the unique positive root of the polynomial                                                                 


• The stationary probability measure associated to the weight               is 
called Bernoulli convolution with parameter    .


• The stationary probability measure associated to the weights                  for 
                         is called biased Bernoulli convolution. 


• Erdős proved that the Bernoulli convolution with parameter    reciprocal of a 
Pissot number is totally singular.


• Feng studied multifractal formalism and give an explicit formula for the local 
dimension of biased Bernoulli convolutions in the case of                      is the 
reciprocal of a simple Pisot number.

f1(x) = ρx f2(x) = ρx + 1 − ρ
ρ ∈ (1/2,1)

xk − xk−1 − … − x − 1

ρ

(x,1 − x)
x ∈ (0,1)∖{1/2}

ρ ∈ (1/2,1)

(k = 2,3,…) .

(1/2,1/2)

ρ



First Wasserstein distance 
between Bernoulli convolutions

Theorem. Let                      be the reciprocal of a simple Pisot number and  


 
 
If          are two probability vectors in           . Then


 

ρ ∈ (1/2,1)

f1(x) = ρx,
f2(x) = ρx + 1 − ρ .

W1 (μ( f,p), μ( f,q)) = ∫
1

0
xdμ( f,p)(x) − ∫

1

0
xdμ( f,p)(x) .

p, q (0,1)2



Thanks !


