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Fundamental definitions

e |terated Function Systems
e Stationary probability measures

e \Wasserstein Distances



lterated Function System

Is a finite set of contractions fi./».---»/y in a complete compact metric space 2 .

Hutchinson proved in [Hut1981] that when 2 = R”, there exists a unique non
empty compact invariant set, thatis, § = uf.V:  f(S$) - This set is called attractor.

Examples of attractors
in R”.

[Hut1981] J. Hutchinson, Fractals and Self Similarity, Indiana Univ. Math. J. 30 (5): 713-747
(1981), doi:10.1512/iumj.1981.30.30055



Stationary probability
measure

Given an iterated function systems and a probability vector (py.ps, ..., Py,
there exists a unique regular Borel probability measure such that

N
1(A) = Z pu(f'A) for every A € %,
=1

where & are the subset of Borel of RY.

This probability measure is called stationary probability measure and its
existence and unicity is proved in [Hut1981].
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Example

The cumulative distribution function associated to this stationary probability
measure corresponds to the Cantor function, thatis f.  (x) = u[0,x].

|”T . . 1
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Monge’s problem

Is an engineering problem formulated in 1781:

Optimal transportation of the materials from a mine to another site.




Mathematical model for the
Monge’s problem

A probability measure » models the extracted mass.
A probability measure » models the constructed mass.

A transport function r models the initial and final
position.

A cost functions ¢ models the cost of transporting from
one point to another.



Monge’s problem

Giveny and ¢ , find 7 suchthat v = T~! and such that
minimises the total cost of transport

[c (x, Tx) du(x) .



Wasserstein Distance

* |t corresponds to the transport problem when the cost function satisfies the axiom of a distance on a
Polish space.

e Important in:
e Statistics.
e Limit theorems and approximation of probability measures.
e Theory of propagation of chaos.
e Boltzmann equations.
* Mixing and convergence for Markov chains.
* Rates of fluctuations of empirical measures.
e Large-time behaviour of stochastic partial differential equations.

* Hydrodynamic limits of systems of particles, Ricci curvature, Linearly rigid spaces, Towers of
measures, Bernoulli automorphisms and classification of metric spaces, etc...



Wasserstein Distance

e Given a Polish metric space (2.4) and me[l,0). For any
two probability measures # and v on 4.
The Wasserstein distance of order m» between # and v is
defined by

W (,v) := inf{ [Ed(X, Y)m]% : law(X) = p, law(Y) = v} .

e When m=1 |tis called first Wasserstein distance, when m =2
It IS called second Wasserstein distance, etc...



Kantorovich-Rubinstein
duality theorem

When 2 =R

deu _ [fdv| Nl < 1}

Wl(/’t’ U) = Sup {

This formula gives a reformulation of the first Wasserstein distance.



Jon Fraser’s problem

o | et:
o I =R
e An iterated function system /= /0.
e Two probability vectors 7= ips--.pv) and 4= 19 ---ay)-

e Two stationary probability measures u=uY” and v = u"?
associated to (£p)and (f,¢), respectively.

e FInd or estimate w, (u,v).



Partial solutions

Theorem 1 [J. Fraser, 2015] Explicit formula for the flrst
Wasserstein distance in the case

1
=R, fix) =px+1t,L,(x) =px+1,p € <O,5> O<p+t <t <1

Theorem 2 [J. Fraser, 2015] Estimation for the second
Wasserstein distance in the case

1
X =R, fi(x) =px+1t,L,(x) =px+1,p€E <O’E> O<p+t <t <1

Theorem 3 [I.C and M. Pollicott, 2018] Explicit formula for the
first Wasserstein distance in the case

L = R,ﬁ(X) = p1x+ tl,‘fz(X) = p2x+ t29101’p2 S (0,1),0 < P + tl < t2 < 1.



Main steps in proof
Theorem 3

* Lemma 1 [Dall’Aglio-Vallender]. Let # and v be probability measures
on R.Then

Wi(u, 1) = J |F(t) - G| dr,

—Oo0

where F and G are the cumulative distribution functions of # and v,
respectively.

e Lemma 2 [A. Quas]. Suppose thatp # ¢, then then function D : [0,1] — [0,1]
defined by D(x) := (" — uU9)[0,x] does not change sign.

e Remark.

J1Xdﬂ(ﬁp) _ ptl + (1 _p)t2
0 1 = (pp; + 1 =p)py)



Lemma 1

We really need a weaker result (key lemma).

e Lemma 1’ [J. Bochi]. Let «andv be probability measures

on [0.1], Then
1 X
Wiu,v) = J <[ Cﬂ,,,(t)dt> d(p — v)(x),
0 0

where

(1 if(u-0)x1] >0,
Cusl) 1= {—1 if (u—1)[x,1] <O.



Proof

-

Proof. Suppose that f with || f||j, < 1realises the supremum in dyy, (p¢, ). Then f(z) = [, g(x)dx, where
g :10,1] — [—1, 1] is an integrable function. By an application of Fubini's theorem we have

/f )du(a /f )dv(a /f )d (1 — v)(x)
/ | st - v)(a)
T
:/ "’”./, d(p — v)(z)dt

l
:/ g(t)(pu —v)[t, 1]dt.

- ()

Because of our assumption that f realises the supremum in dw, (y, ), we have that g(x) = C), . (x).



Jon Fraser’s list of specific
problems [J. Fraser, 2015]

Overlaps: Partially solved K | A
W Overlaps: Partially solved (work in progress) \JII‘

’ Different contraction ratios: Solved in [|.C and M. Pollicott,
2018].

,0
e Higher and non-integer moments: Open. k/
A
 Higher dimensions: Open.
v More than two maps: Solved in [I.C preprint, 2018.]

v Extension of the lower bound: Solved in [I.C and M. Pollicott,
2018].



More than two maps

e Theorem 4 [I.C preprint, 2018]. Let /=Ui./»-- /) be an
iterated function systems of positive Lipschitz
contractions on the unit interval such that

J0,1) nf(0,1) = & foralli#;.

If (r.9) Is a pair of probability vectors in (0,1 such that

Zp,-—inO(or <) foreverym=1,2,..., N.
i=1

Then

1 1
W, (Iu(ﬁp),'u(f,q)) — [ xd,u(f’p)(x) _" xd//t(f’p)(x) .
0 0




Positive Lipschitz
contractions

A Lipschitz contraction isamap f: R — R such that

|0 = )|
Ifllip == sup < 1.

x,yER |x—y|

A positive Lipschitz contraction is a differentiable Lipschitz
contraction map with positive derivative.



Example more than two
maps

;0 uIP0.x]

p=(0.1,0.3,0.6) and q=(0.2,0.5,0.3).



More than two

affine maps
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e Corollary. Let /:1[0.11=10.1] defined by /i =px+¢
where p;, € ,1),t.€[01),p,+t<t,,i=1,.,N.
If (».9) Is a pair of probability vectors in (0,1)" such that

Then

Y pi—q;>0(or <) foreverym=12,...N.

i=1

W, (ﬂ(ﬁp),ﬂ(ﬁq)) —

2 P 2 it

L= ppi 1=2.qpi|




Example more than two
affine maps

/ LU (P[0, x] -
02 / / :
- U (f,q)[(), x]

p=(1/2,1/4,1/4) and q = (1/4, 1/4, 1/2)



Example more than two
maps where the theorem does not apply

— u[0x]
_ 7 pI0.]

p=1(0.3,0.1,0.6) and q=(0.2,0.5, ().3).x



Other cases?

* Non-necessarily positive Lipchitz contractions?

o W, (uY",1*?) when the iterated function systems /.
are non necessarily the same and both contains only
positive Lipschitz contraction?

o W, (", u%?) when the iterated functions systems are
non necessarily the same and s contains only positive
Lipschitz contractions whereas ¢ not?



Non-necessarily positive
Lipchitz contractions

Let r € (2,00).
Let consider the iterated function system defined by  f,(x) = 1,
r

X
Hx)=1——.
r
Theorem [I.C preprint, 2018]. Let k€N and r € (2k+ 1,00).

1 2k
2k+1 2k+1

Then for p=(p;,py) = < ) and ¢ = (p,,p;) we have that

1

Wy, v) = J c(x)d (4 —v)(x)

0

2

Where —X |f X < 4

r2+1’
c(x) := 3 ,

X ifx>——.
g r2+1




Example: Non-necessarily
positive Lipchitz contractions

2

=5 =(33)

X 2 1

Hx)=1——. —(Z —

2 30 (3 3)
ﬂ(f,q)[()\x]‘

0.8}
0.6F
0.4t
0.2} \
‘ ‘
0.2 0.4

p (fsp) [0,x]




Non-necessarily the same
Iiterated function system

Theorem [I.C preprint, 2018]. Let f = (/1./5) and g = (&, &) be iterated
function systems of positive Lipschitz contractions on the unit interval.

Suppose that f(0) = g,(0), /(0) = £,(0), g,(x) < fi(x), 8:(x) < f(x) forall x € [0,1].

If (p,q) is a pair of probability vectors » = (p1,1 —p1) and ¢ = (¢1.1 —¢q,) such
that p < 4.

Then |

Wl(ﬂ(ﬁp),ﬂ(g,q)) — J xd (M(f,p) — ,u(g"”)(x)
0



Non-necessarily the same
affine iterated function systems

Corollary. Let f,g;: [0,11 = [0,1] be defined by /fi¥) = ax+1
g(x)=px+1

where p; € (0,1),5,€ 0O,p;] and 1, € O,p] for i=1,2.
Assume that f=(f;,/,) and g =(g;,&,) satisfy that
£100,1) n/,(0,1) = £,(0,1) N g,(0,1) = @.

If (p,q) is a pair of probability vectors p = (p;,1 —p;) and ¢ = (¢;,1 — g;) such
that P1 < ¢:-Then

2.4, 2. it

Wi ( ,u(f’p), y(g,q)) — _ .
1 - zi%ﬂi 1 - zipiai




Example: Non-necessarily the same
affine iterated function systems

23
i) ==, g (x) = =, p=<§,5>
3 6
X 2 X g _ ll
fz(X)—5+§. gz(x)—g+§. a=(57)-

0.8 / o8 (g 9) [O x] ,—l




Example: Non-necessarily the same
affine iterated function systems, where
theorem does not work
r=(33)

X
fix) = 3
+3. 82(X)=£+2. q:<zai>-
3 6 3 55

Jolx) =

X
Ea
X
3




Overlaps

0.2 0.4 0.6 0.8 1



Bernoulli convolutions

Consider the iterated function systems f,(x) =px and L&) =px+1—-p
where p € (1/2,1) is the reciprocal of a simple Pisot number, i.e., the inverse
of the unique positive root of the polynomial x*—x*!'— ... —x—-1 (k=23,...).

The stationary probability measure associated to the weight (1/2,1/2) js
called Bernoulli convolution with parameter .

The stationary probability measure associated to the weights (x,1 —x) for
x € (0,1)\{1/2} is called biased Bernoulli convolution.

Erdds proved that the Bernoulli convolution with parameter ¢ reciprocal of a
Pissot number is totally singular.

Feng studied multifractal formalism and give an explicit formula for the local
dimension of biased Bernoulli convolutions in the case of , < (1/2,1) Isthe
reciprocal of a simple Pisot number.



First Wasserstein distance
between Bernoulli convolutions

Theorem. Let 7 € (1/2,1) be the reciprocal of a simple Pisot number and

f1(x) = px,
L) =px+1-p.

If P,q are two probability vectors in (0»1)2. Then

|

1
W, (lu(ﬁp),’u(f,q)) — [ xd,u(f’p)(x) _J xd,u(f’p)(x) .
0 0




Thanks !



