Warwick Mathematics Institute, Ergodic Theory and Dynamical Systems seminar

On the Wasserstein distance between stationary probability measures

14 FEB, 2019

Italo Cipriano

Facultad de Matemáticas Pontificia Universidad Católica de Chile Proyecto Anillo ACT172001 PIA 583-17

Motivation

A list of questions in a paper that Jon Fraser wrote when was here!

First and second moments for self-similar couplings and Wasserstein distances

Jonathan M. Fraser

Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, UK e-mail: jon.fraser32@gmail.com

January 29, 2014

Fundamental definitions

- Iterated Function Systems
- Stationary probability measures
- Wasserstein Distances

Iterated Function System

Is a finite set of contractions $f_1, f_2, ..., f_N$ in a complete compact metric space \mathscr{X} .

Hutchinson proved in [Hut1981] that when $\mathscr{X} = \mathbb{R}^n$, there exists a unique non empty compact invariant set, that is, $\mathscr{S} = \bigcup_{i=1}^N f_i(\mathscr{S})$. This set is called <u>attractor</u>.

[Hut1981] J. Hutchinson, Fractals and Self Similarity, Indiana Univ. Math. J. 30 (5): 713-747 (1981), doi:10.1512/iumj.1981.30.30055

Stationary probability measure

Given an iterated function systems and a probability vector $(p_1, p_2, ..., p_N)$ there exists a unique regular Borel probability measure such that

$$\mu(A) = \sum_{i=1}^{N} p_i \mu(f_i^{-1}A) \text{ for every } A \in \mathscr{B},$$

where \mathscr{B} are the subset of Borel of \mathbb{R}^N .

This probability measure is called <u>stationary probability measure</u> and its existence and unicity is proved in [Hut1981].

Let
$$\mu = \mu^{(f_1, f_2), (\frac{1}{2}, \frac{1}{2})}$$
 such that

$$\mu(A) = \sum_{i=1}^{N} \frac{1}{2} \mu(f_i^{-1}A) \text{ for every } A \in \mathscr{B}$$

Example

The cumulative distribution function associated to this stationary probability measure corresponds to the Cantor function, that is $f_{Cantor}(x) = \mu[0,x]$.

Monge's problem

Is an engineering problem formulated in 1781:

Optimal transportation of the materials from a mine to another site.

Mathematical model for the Monge's problem

- A probability measure μ models the extracted mass.
- A probability measure ν models the constructed mass.
- A transport function *T* models the initial and final position.
- A cost functions *c* models the cost of transporting from one point to another.

Monge's problem

Given μ and ν , find T such that $\nu = \mu \circ T^{-1}$ and such that minimises the total cost of transport

 $\int c(x,Tx)\,d\mu(x)\,.$

Wasserstein Distance

- It corresponds to the transport problem when the cost function satisfies the axiom of a distance on a Polish space.
- Important in:
 - Statistics.
 - Limit theorems and approximation of probability measures.
 - Theory of propagation of chaos.
 - Boltzmann equations.
 - Mixing and convergence for Markov chains.
 - Rates of fluctuations of empirical measures.
 - Large-time behaviour of stochastic partial differential equations.
 - Hydrodynamic limits of systems of particles, Ricci curvature, Linearly rigid spaces, Towers of measures, Bernoulli automorphisms and classification of metric spaces, etc...

Wasserstein Distance

Given a Polish metric space (𝔅, d) and m∈ [1,∞). For any two probability measures µ and ν on 𝔅.
 The Wasserstein distance of order m between µ and ν is defined by

$$W_m(\mu,\nu) := \inf \left\{ \left[\mathbb{E}d(X,Y)^m \right]^{\frac{1}{m}} : \ \mathbf{law}(X) = \mu, \ \mathbf{law}(Y) = \nu \right\}.$$

• When m = 1 it is called first Wasserstein distance, when m = 2 it is called second Wasserstein distance, etc...

Kantorovich-Rubinstein duality theorem

When $\mathscr{X} = \mathbb{R}$

$$W_1(\mu,\nu) = \sup\left\{ \left| \int f d\mu - \int f d\nu \right| : \|f\|_{Lip} \le 1 \right\}$$

This formula gives a reformulation of the first Wasserstein distance.

Jon Fraser's problem

- Let:
 - $\mathscr{X} = \mathbb{R}^d$.
 - An iterated function system $f = (f_1, f_2, ..., f_N)$.
 - Two probability vectors $p = (p_1, p_2, ..., p_N)$ and $q = (q_1, q_2, ..., q_N)$.
 - Two stationary probability measures $\mu = \mu^{(f,p)}$ and $\nu = \mu^{(f,q)}$ associated to (f,p) and (f,q), respectively.
- Find or estimate $W_m(\mu, \nu)$.

Partial solutions

• **Theorem 1 [J. Fraser, 2015]** Explicit formula for the first Wasserstein distance in the case

$$\mathcal{X} = \mathbb{R}, f_1(x) = \rho x + t_1, f_2(x) = \rho x + t_2, \rho \in \left(0, \frac{1}{2}\right), 0 < \rho + t_1 < t_2 \le 1.$$

• Theorem 2 [J. Fraser, 2015] Estimation for the second Wasserstein distance in the case

$$\mathcal{X} = \mathbb{R}, f_1(x) = \rho x + t_1, f_2(x) = \rho x + t_2, \rho \in \left(0, \frac{1}{2}\right), 0 < \rho + t_1 < t_2 \le 1.$$

• Theorem 3 [I.C and M. Pollicott, 2018] Explicit formula for the first Wasserstein distance in the case

$$\mathcal{X} = \mathbb{R}, f_1(x) = \rho_1 x + t_1, f_2(x) = \rho_2 x + t_2, \rho_1, \rho_2 \in (0,1), 0 < \rho + t_1 \le t_2 \le 1.$$

Main steps in proof Theorem 3

• Lemma 1 [Dall'Aglio-Vallender]. Let μ and ν be probability measures on \mathbb{R} . Then

$$W_1(\mu,\nu) = \int_{-\infty}^{\infty} \left| F(t) - G(t) \right| dt,$$

where F and G are the cumulative distribution functions of μ and ν , respectively.

• Lemma 2 [A. Quas]. Suppose that $p \neq q$, then then function $D : [0,1] \rightarrow [0,1]$ defined by $D(x) := (\mu^{(f,p)} - \mu^{(f,q)})[0,x]$ does not change sign.

• **Remark.**
$$\int_0^1 x d\mu^{(f,p)} = \frac{pt_1 + (1-p)t_2}{1 - (p\rho_1 + (1-p)\rho_2)}.$$

Lemma 1

We really need a weaker result (key lemma).

• Lemma 1' [J. Bochi]. Let μ and ν be probability measures on [0,1]. Then

$$W_{1}(\mu,\nu) = \int_{0}^{1} \left(\int_{0}^{x} C_{\mu,\nu}(t) dt \right) d(\mu-\nu)(x),$$

where

$$C_{\mu,\nu}(x) := \begin{cases} 1 & \text{if } (\mu - \nu)[x,1] > 0, \\ -1 & \text{if } (\mu - \nu)[x,1] < 0. \end{cases}$$

Proof

Proof. Suppose that f with $||f||_{\text{Lip}} \leq 1$ realises the supremum in $d_{W_1}(\mu, \nu)$. Then $f(x) = \int_0^x g(x) dx$, where $g: [0,1] \rightarrow [-1,1]$ is an integrable function. By an application of Fubini's theorem we have

$$\begin{split} \int_{0}^{1} f(x)d\mu(x) &- \int_{0}^{1} f(x)d\nu(x) = \int_{0}^{1} f(x)d(\mu - \nu)(x) \\ &= \int_{0}^{1} \int_{0}^{x} g(t)dtd(\mu - \nu)(x) \\ &= \int_{0}^{1} \int_{t}^{1} g(t)d(\mu - \nu)(x)dt \\ &= \int_{0}^{1} g(t) \int_{t}^{1} d(\mu - \nu)(x)dt \\ &= \int_{0}^{1} g(t)(\mu - \nu)[t, 1]dt. \end{split}$$

Because of our assumption that f realises the supremum in $d_{W_1}(\mu, \nu)$, we have that $g(x) = C_{\mu,\nu}(x)$.

Jon Fraser's list of specific problems [J. Fraser, 2015]

Overlaps: Partially solved (work in progress).

Different contraction ratios: Solved in [I.C and M. Pollicott, 2018].

- Higher and non-integer moments: Open. 🎊
- Higher dimensions: Open. 🏠

More than two maps: Solved in [I.C preprint, 2018.]

Extension of the lower bound: Solved in [I.C and M. Pollicott, 2018].

More than two maps

- Theorem 4 [I.C preprint, 2018]. Let $f = (f_1, f_2, ..., f_N)$ be an iterated function systems of <u>positive Lipschitz</u> <u>contractions</u> on the unit interval such that $f_i(0,1) \cap f_i(0,1) = \emptyset$ for all $i \neq j$.
 - If (p,q) is a pair of probability vectors in $(0,1)^N$ such that $\sum_{i=1}^m p_i - q_i \ge 0 \text{ (or } \le \text{) for every } m = 1,2,\ldots,N.$

Then

$$W_1\left(\mu^{(f,p)},\mu^{(f,q)}\right) = \left|\int_0^1 x d\mu^{(f,p)}(x) - \int_0^1 x d\mu^{(f,p)}(x)\right|.$$

Positive Lipschitz contractions

A Lipschitz contraction is a map $f: \mathbb{R} \to \mathbb{R}$ such that

$$||f||_{Lip} := \sup_{x,y \in \mathbb{R}} \frac{\left|f(x) - f(y)\right|}{|x - y|} < 1.$$

A positive Lipschitz contraction is a differentiable Lipschitz contraction map with positive derivative.

Example more than two maps

p = (0.1, 0.3, 0.6) and q = (0.2, 0.5, 0.3).

More than two affine maps

• **Corollary.** Let $f_i : [0,1] \rightarrow [0,1]$ defined by $f_i(x) = \rho_i x + t_i$, where $\rho_i \in (0,1), t_i \in [0,1), \rho_i + t_i \le t_{i+1}, i = 1,...,N$. If (p,q) is a pair of probability vectors in $(0,1)^N$ such that

$$\sum_{i=1}^{m} p_i - q_i \ge 0 \text{ (or } \le \text{) for every } m = 1, 2, ..., N.$$

Then

$$W_1\left(\mu^{(f,p)},\mu^{(f,q)}\right) = \left|\frac{\sum_i p_i t_i}{1-\sum_i p_i \rho_i} - \frac{\sum_i q_i t_i}{1-\sum_i q_i \rho_i}\right|.$$

Example more than two affine maps

p = (1/2, 1/4, 1/4) and q = (1/4, 1/4, 1/2)

Example more than two maps where the theorem does not apply

Other cases?

- Non-necessarily positive Lipchitz contractions?
- $W_1(\mu^{(f,p)},\mu^{(g,q)})$ when the iterated function systems f,gare non necessarily the same and both contains only positive Lipschitz contraction?
- W₁ (µ^(f,p), µ^(g,q)) when the iterated functions systems are non necessarily the same and *f* contains only positive Lipschitz contractions whereas *g* not?

Non-necessarily positive Lipchitz contractions

Let $r \in (2,\infty)$.

Let consider the iterated function system defined by $f_1(x) = \frac{x}{r}$, $f_2(x) = 1 - \frac{x}{r}$.

Theorem [I.C preprint, 2018]. Let $k \in \mathbb{N}$ and $r \in (2k + 1, \infty)$.

Then for $p = (p_1, p_2) = \left(\frac{1}{2k+1}, \frac{2k}{2k+1}\right)$ and $q = (p_2, p_1)$ we have that $W_1(\mu, \nu) = \int_0^1 c_r(x) d(\mu - \nu)(x)$

where
$$c_r(x) := \begin{cases} -x & \text{if } x < \frac{r^2}{r^2 + 1}, \\ x & \text{if } x > \frac{r^2}{r^2 + 1}. \end{cases}$$

Example: Non-necessarily positive Lipchitz contractions

$$f_1(x) = \frac{x}{3}, \qquad p = \left(\frac{1}{3}, \frac{2}{3}\right),$$

$$f_2(x) = 1 - \frac{x}{3}, \qquad q = \left(\frac{2}{3}, \frac{1}{3}\right)$$

Non-necessarily the same iterated function system

Theorem [I.C preprint, 2018]. Let $f = (f_1, f_2)$ and $g = (g_1, g_2)$ be iterated function systems of positive Lipschitz contractions on the unit interval.

Suppose that $f_1(0) = g_1(0), f_2(0) = g_2(0), g_1(x) \le f_1(x), g_2(x) \le f_2(x)$ for all $x \in [0,1]$.

If (p,q) is a pair of probability vectors $p = (p_1, 1 - p_1)$ and $q = (q_1, 1 - q_1)$ such that $p_1 \le q_1$.

Then

$$W_1(\mu^{(f,p)},\mu^{(g,q)}) = \int_0^1 x d\left(\mu^{(f,p)} - \mu^{(g,q)}\right)(x)$$

Non-necessarily the same affine iterated function systems

Corollary. Let $f_i, g_i : [0,1] \rightarrow [0,1]$ be defined by $f_i(x) = \alpha_i x + t_i$ $g_i(x) = \beta_i x + t_i$

where $\rho_i \in (0,1), \beta_i \in (0,\rho_i]$ and $t_i \in (0,\rho_i]$ for i = 1,2.

Assume that $f = (f_1, f_2)$ and $g = (g_1, g_2)$ satisfy that

 $f_1(0,1) \cap f_2(0,1) = g_1(0,1) \cap g_2(0,1) = \emptyset$.

If (p,q) is a pair of probability vectors $p = (p_1, 1 - p_1)$ and $q = (q_1, 1 - q_1)$ such that $p_1 \le q_1 \cdot$ Then

$$W_{1}(\mu^{(f,p)},\nu^{(g,q)}) = \frac{\sum_{i} q_{i} t_{i}}{1 - \sum_{i} q_{i} \beta_{i}} - \frac{\sum_{i} p_{i} t_{i}}{1 - \sum_{i} p_{i} \alpha_{i}}$$

Example: Non-necessarily the same affine iterated function systems

(2)

$$f_1(x) = \frac{x}{3}, \qquad g_1(x) = \frac{x}{6}, \qquad p = \left(\frac{2}{5}, \frac{3}{5}\right),$$

$$f_2(x) = \frac{x}{3} + \frac{2}{3}. \qquad g_2(x) = \frac{x}{6} + \frac{2}{3}. \qquad q = \left(\frac{1}{2}, \frac{1}{2}\right).$$

Example: Non-necessarily the same affine iterated function systems, where theorem does not work

Overlaps

Bernoulli convolutions

- Consider the iterated function systems $f_1(x) = \rho x$ and $f_2(x) = \rho x + 1 \rho$, where $\rho \in (1/2,1)$ is the reciprocal of a simple Pisot number, i.e., the inverse of the unique positive root of the polynomial $x^k - x^{k-1} - \ldots - x - 1$ $(k = 2,3,\ldots)$.
- The stationary probability measure associated to the weight (1/2,1/2) is called <u>Bernoulli convolution</u> with parameter ρ .
- The stationary probability measure associated to the weights (x,1 − x) for x ∈ (0,1)\{1/2} is called biased Bernoulli convolution.
- Erdős proved that the Bernoulli convolution with parameter ρ reciprocal of a Pissot number is totally singular.
- Feng studied multifractal formalism and give an explicit formula for the local dimension of biased Bernoulli convolutions in the case of $\rho \in (1/2,1)$ is the reciprocal of a simple Pisot number.

First Wasserstein distance between Bernoulli convolutions

Theorem. Let $\rho \in (1/2,1)$ be the reciprocal of a simple Pisot number and

 $f_1(x) = \rho x,$ $f_2(x) = \rho x + 1 - \rho.$

If p,q are two probability vectors in $(0,1)^2$. Then

$$W_1\left(\mu^{(f,p)},\mu^{(f,q)}\right) = \left|\int_0^1 x d\mu^{(f,p)}(x) - \int_0^1 x d\mu^{(f,p)}(x)\right|$$

Thanks !