
Angular Basics

A Pathway to Modern Web Applications

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

What is Angular? 2

History and Versions 2

Angular vs. Other Frameworks (React, Vue) 3

Setting Up the Development Environment 4

Installing Angular CLI 6

Understanding the Angular Project Structure 8

Components and Modules 9

Templates and Data Binding 11

Directives and Pipes 12

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

History and Versions Page 2

What is Angular?

Angular is a robust platform and framework that is engineered specifically for building
dynamic client-side applications. Its core purpose is to simplify both the development and
the testing of such applications by providing a framework to construct the application
structure. Born out of the need to extend HTML’s capabilities for dynamic content,
Angular incorporates HTML as a template language and then expands its syntax to
express your application’s components clearly and succinctly.

Built in TypeScript

At its heart, Angular is built in TypeScript, which ensures higher security with strong
typing and object-oriented features that make the code more manageable and less prone
to runtime errors. This pairing with TypeScript not only enhances application perfor-
mance but also improves developer productivity through advanced editing and debugging
capabilities.

Component Based Architecture

Angular’s architecture is designed around components—a fundamental concept in An-
gular. Each component is essentially a self-contained segment of user interface, with
its own functionality and typically its own view. This modular approach allows you to
build large-scale applications composed of small, manageable, reusable pieces that can
be developed in parallel by different teams. This component-based architecture is what
makes Angular particularly well-suited for enterprise-level applications where scalability
and maintainability are key concerns.

Active Support Channels

Moreover, Angular’s ecosystem includes a range of tools and libraries that support rout-
ing, form management, client-server communication, and more, providing everything you
need to build sophisticated, modern web applications. Angular is continuously updated
by Google and a community of developers, ensuring it remains cutting-edge and robust
for modern development needs.
This framework not only assists developers in creating efficient applications but also
ensures they are future-proof, adapting smoothly to new web technologies as they emerge.
For those looking to dive into web development with a tool that scales with your needs,
Angular offers a compelling choice.

History and Versions

Angular’s journey began with AngularJS, first released in 2010 by Google. AngularJS
marked a significant shift in the way developers build web applications, introducing the
concept of single-page applications (SPAs) where much of the work is done on the client
side, making websites feel faster and more responsive. It used JavaScript and presented
a new way of adding interactivity through directives, which extended HTML attributes
with custom functionality.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Angular vs. Other Frameworks (React, Vue) Page 3

Angular 2

However, as web applications grew in complexity and scale, AngularJS began to show
its limitations in performance and scalability. Recognizing these challenges, the Angular
team at Google decided to undertake a complete rewrite of the framework. This led to the
release of Angular 2 in 2016, which was not just an update but an entirely new framework,
built from the ground up. This version introduced TypeScript as the standard language,
replacing JavaScript, to provide better tooling and scalability options. Angular 2’s release
marked the beginning of a new naming convention as well—dropping the ”JS” from its
name to simply ”Angular,” symbolizing its complete overhaul and broader capabilities
beyond just JavaScript.

Continually Improving

From Angular 2 onwards, the development team adopted semantic versioning and a sched-
uled release cycle, ensuring more predictable and manageable updates. Angular has since
seen multiple versions, with each new release bringing enhancements in performance, ad-
ditional features, and more refined practices. Notable versions include Angular 4 (2017),
which introduced smaller generated code bundles, and Angular 5 (2017), which improved
application speed and a focus on material design compatibility.

The most recent versions have continued to build on this foundation, focusing on improv-
ing the developer experience and streamlining the application development process. Each
version aims to be backward compatible with the last, with deprecations and breaking
changes handled with care to ensure a smooth transition for existing projects.

Angular’s history reflects its evolution from a pioneering yet somewhat experimental
framework into a mature, enterprise-ready platform that powers applications for some
of the world’s largest companies. Each iteration has been a step forward in addressing
the needs of modern web developers, making it one of the most popular and reliable
frameworks in the industry today.

Angular vs. Other Frameworks (React, Vue)

Angular, React, and Vue are among the most popular frameworks for developing mod-
ern web applications. Each of these frameworks has its strengths and is best suited
for different types of projects and developer preferences. Here’s a comparative analysis
highlighting the key aspects of Angular versus React and Vue:

Angular

• Angular is a full-fledged framework that includes everything you need to build a
complex application. It offers a robust set of features out of the box, such as
dependency injection, routing, animations, and form validation.

• Uses TypeScript, which provides strong typing and object-oriented features. This
can lead to more reliable code that is easier to refactor and maintain.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Setting Up the Development Environment Page 4

• Has a steeper learning curve due to its comprehensive nature and the need to
understand various concepts like modules, components, services, and dependency
injection.

• Best suited for enterprise-grade applications or projects where a scalable architec-
ture is needed from the start.

React

• React is a library focused on building user interfaces, particularly through the use
of components. It is less prescriptive about architecture, offering more flexibility in
how to structure an application.

• Uses JavaScript with JSX, which allows HTML to be written within JavaScript
code. This approach can be more intuitive for developers familiar with JavaScript.

• Generally considered easier to start with due to its focused approach, but complexity
can increase as you need to integrate other libraries for routing, state management,
etc.

• Ideal for single-page applications and situations where the developer wishes to in-
tegrate with other libraries and frameworks for flexibility.

Vue

• Vue offers a balanced approach with a core library focused on the view layer and
accompanying libraries for advanced needs like routing and state management.

• Uses JavaScript and an HTML-based template syntax that can be more approach-
able for developers new to modern JavaScript frameworks.

• Known for its simplicity and fine documentation, Vue provides a gentle learning
curve while still offering powerful features.

• Great for both small projects due to its simplicity and large-scale applications, as
it is robust enough to handle complex applications.

In summary, the choice between Angular, React, and Vue can often come down to the
specific requirements of the project, team expertise, and personal or organizational pref-
erences in terms of ecosystem and design philosophy. Angular is comprehensive, React
is flexible, and Vue strikes a balance between the two, offering a progressive approach to
web development.

Setting Up the Development Environment

Before diving into Angular development, it’s essential to set up the right tools and soft-
ware on your machine. The foundation of an Angular development environment starts
with Node.js and npm (Node Package Manager). Here’s a detailed guide on installing
these critical components:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Setting Up the Development Environment Page 5

Installing Node.js and npm

Node.js is a runtime environment that allows you to run JavaScript on the server-side,
and npm is a package manager that facilitates the installation of JavaScript libraries and
tools.

Download Node.js:

• Go to the official Node.js website.

• You’ll find options to download Node.js for various platforms (Windows, MacOS,
Linux). Select the version recommended for most users, which will include npm
automatically.

Install Node.js and npm:

Windows:

• Run the downloaded installer (.msi file). Follow the installation prompts. Ensure
that the installer adds Node.js and npm to your PATH so they can be accessed
from the command line.

MacOS:

• Open the .pkg file you downloaded and follow the instructions to install Node.js
and npm.

• Optionally, you can use Homebrew (a package manager for MacOS). If you have
Homebrew installed, simply run brew install node in the terminal.

Linux:

• Use a package manager appropriate for your Linux distribution. For example, on
Ubuntu, you can run sudo apt-get install nodejs and sudo apt-get install

npm in the terminal.

• Ensure that your Linux distribution is running a suitable version of Node.js and
npm by checking their versions. Run node -v and npm -v in the terminal to see if
they are properly installed.

Verify Installation:

Once installation is complete, you can verify it by opening your command line or terminal
and typing:

• node -v - This should display the current version of Node.js.

• npm -v - This will show the current version of npm installed on your system.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Installing Angular CLI Page 6

Update npm:

It’s a good practice to ensure that npm is updated to its latest version. You can update
npm using the command:

npm install npm@latest -g

After setting up Node.js and npm, you have the necessary environment to start working
with Angular. This setup will allow you to install the Angular CLI and other necessary
libraries using npm, paving the way for you to begin developing applications with Angular.

Installing Angular CLI

The Angular Command Line Interface (CLI) is a powerful tool that simplifies the pro-
cess of creating, managing, and testing Angular applications. It automates a lot of
development tasks, making it an essential part of setting up your Angular development
environment. Here’s how you can install the Angular CLI:

Open your Command Line or Terminal

Ensure that Node.js and npm are installed by running node -v and npm -v. If these
commands return versions, you’re ready to proceed.

Install Angular CLI

Run the following command to install the Angular CLI globally on your machine:

npm install -g @angular/cli

Installing it globally allows you to run ng commands from anywhere on your system.

Verify Installation

After the installation process is complete, verify that the Angular CLI is correctly installed
by checking its version:

ng version

This command will display the version of Angular CLI along with some additional en-
vironment information. It’s useful for confirming that the CLI is ready to use and to
troubleshoot any issues with the installation.

Create a New Project

Initiate the creation of a new project by running:

ng new my -first -angular -app

Replace my-first-angular-app with the desired name of your project.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Installing Angular CLI Page 7

Respond to Prompts

After initiating the project creation, the CLI will ask you a few questions to configure
your project.

Stylesheet Format Prompt

Prompt: ”Which stylesheet format would you like to use?”
Options: CSS, SCSS, Sass, Less, Stylus
Recommended Selection: CSS (as it’s the most straightforward and widely used

format)
Explanation: This choice determines the styling format for your application. CSS is

the standard and most familiar styling language, making it a great choice for those new
to Angular or web development.

Server-Side Rendering Prompt

Prompt: ”Do you want to enable server-side rendering?”
Options: Yes, No
Recommended Selection: No (for simplicity in your first application)
Explanation: Server-side rendering (SSR) can improve the performance and SEO

of your application by rendering components on the server before sending them to the
browser. However, for learning purposes or a basic application, it’s simpler to start
without SSR.

Project Creation Process

Once you’ve answered the prompts, the CLI will proceed to set up your new project.
This process can take a few minutes as it involves generating the necessary files and
downloading dependencies.

Navigate into Your Project

Change into your project directory:

cd my -first -angular -app

Serve Your Application

Start the development server and launch your application by running:

ng serve

This command compiles the application and hosts it on a local web server. By default,
the Angular application will be available at http://localhost:4200/.

View Your Application

Open a web browser and go to http://localhost:4200/ to see your new Angular appli-
cation in action. You should see a welcome message and some default content provided
by Angular.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

http://localhost:4200/
http://localhost:4200/

Understanding the Angular Project Structure Page 8

Understanding the Angular Project Structure

Angular applications follow a modular structure that helps in organizing the code in a
scalable and maintainable way. Each part of this structure serves a specific purpose and
plays a critical role in the application development lifecycle.

Project Root Directory

At the root level of an Angular project, you’ll find several configuration files along with
the source folder. Each file and folder has a specific purpose:

• /node modules/: Contains all packages that your project depends on. These
packages are installed via npm (Node Package Manager) and are defined in your
package.json file.

• /src/: The source folder where you develop your application. This is where your
application’s components, templates, styles, images, and anything else your appli-
cation needs are stored.

• /.angular/: Stores configuration files specific to the Angular CLI which help in
managing builds, deployments, and other CLI processes.

• .editorconfig: Helps maintain consistent coding styles for developers working on
your project across various editors and IDEs.

• .gitignore: Specifies intentionally untracked files that Git should ignore. Files like
system dependencies, build outputs, etc., are typically listed here.

• angular.json: Angular CLI configuration file for the entire project. It specifies the
schematics of projects, build options, server options, and more.

• package.json: Lists the dependencies and versions that your project relies on and
may define scripts for running and building the application.

• package-lock.json or yarn.lock: Automatically generated files which ensure that
the same version of each dependency will be used whenever you install them.

• README.md: A markdown file where you can write about your project, instal-
lation instructions, and other important details.

• tsconfig.*.json: Configuration files for TypeScript. They define options for the
TypeScript compiler.

/src/ Folder

This is the core directory where most of your Angular’s source code resides:

• /app/: Contains the logic and data of Angular components, services, directives,
pipes, and more:

– app.component.*: Defines the root component with its HTML template,
CSS, and spec (test) files.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Components and Modules Page 9

– app.module.ts: Defines the root module that tells Angular how to assemble
the application.

• /assets/: Used for static files like images, icons, PDFs, etc., which are not part of
Angular’s compilation process.

• /environments/: Contains configuration files for different destination environ-
ments, like production or development.

• favicon.ico: The small icon displayed in the browser tab.

• index.html: The main HTML entry point of your application. It’s mostly bare as
Angular dynamically inserts views depending on the current router state.

• main.ts: The main entry point for your application’s module, bootstrapping the
AppModule defined in app.module.ts.

• polyfills.ts: Different browsers have different levels of support for web standards.
Polyfills help normalize those differences.

• styles.css or styles.scss: Global stylesheets for your application.

Components and Modules

In Angular, the architecture of an application is primarily built using components and
modules. These elements are foundational to understanding how Angular applications
are structured and function.

Components

Components are the fundamental building blocks of Angular applications. They control
a portion of the screen called a view through their associated template and class. A
component consists of three main parts:

• Class: Written in TypeScript, it handles data and functionality. The class defines
properties and methods that are used by the view.

• Template: An HTML view that declares and visualizes the data provided by
the component’s class. Templates use Angular’s template syntax, allowing you to
enhance the HTML with features like loops, conditionals, and local variables.

• Decorator: A feature of TypeScript that provides metadata about the compo-
nent class, which Angular uses to define how the component should be processed,
instantiated, and used at runtime. The most common decorator in Angular is
@Component.

Each component is designed to be self-contained and reusable, with its own functionality
and typically its own view, making components an effective tool for a modular and
maintainable codebase.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Components and Modules Page 10

Example of a Simple Component

import { Component } from ’@angular/core’;

@Component ({

selector: ’app -hello -world ’,

templateUrl: ’./hello -world.component.html’,

styleUrls: [’./hello -world.component.css’]

})

export class HelloWorldComponent {

title = ’Hello , world!’;

}

In this example, HelloWorldComponent is defined with a template and style URLs point-
ing to its HTML and CSS files, respectively. It manages a property title, which is
displayed in its view.

Modules

Angular modules (or NgModules) organize components and other blocks of code into
cohesive blocks, each focused on a specific application domain, workflow, or closely related
set of capabilities. An NgModule can include components, service providers, and other
code files whose scope is defined by the containing NgModule.

NgModule Decorator

• @NgModule Decorator: Configures the module instance, describing how to com-
pile a component’s template and how to create an injector at runtime. It identifies
the module’s own components, directives, and pipes, making some of them public
so they can be used by the components of other modules.

Example of an Angular Module

import { NgModule } from ’@angular/core’;

import { BrowserModule } from ’@angular/platform -browser ’;

import { HelloWorldComponent } from ’./hello -world.component ’;

@NgModule ({

declarations: [HelloWorldComponent],

imports: [BrowserModule],

providers: [],

bootstrap: [HelloWorldComponent]

})

export class AppModule { }

In the example above, AppModule is the root module that bootstraps the HelloWorldComponent.
It declares which components belong to it (declarations), other modules it depends on
(imports), and which component should be instantiated on the application load (boot-
strap).

Understanding how components and modules interact within an Angular application
provides the foundation for effectively organizing and scaling Angular projects. They

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Templates and Data Binding Page 11

help encapsulate and manage the complexity of large applications by modularizing the
functionality, making the development process more manageable and more maintainable.

Templates and Data Binding

In Angular, templates are used to define the views of your application, and data binding
is a technique to link your application’s data with the view, allowing dynamic updates
to the user interface.

Templates

Templates in Angular are written in HTML and include Angular-specific template syntax,
which allows you to add dynamic behavior to HTML elements. This syntax includes data
binding, structural directives, event bindings, and more, which help you create interactive
applications efficiently.

Data Binding

Data binding in Angular provides various ways to manage the connection between the
DOM (Document Object Model) and your component’s data. The main types of data
binding are:

• Interpolation: {{ value }} - Injects a value from the component into the HTML.

• Property Binding: [property]="value" - Sets a property of a view element to
the value of a template expression.

• Event Binding: (event)="handler()" - Calls a component’s method when a
specific DOM event occurs.

• Two-Way Data Binding: [(ngModel)]="property" - Combines property and
event binding to create a two-way data flow between a form input and the compo-
nent’s property.

Example of Data Binding

Let’s demonstrate a simple use case where we bind a form input to a component’s title
property, allowing it to update dynamically as the user types.

app.component.ts Here’s the default AppComponent class generated by Angular CLI:

import { Component } from ’@angular/core’;

import { RouterOutlet } from ’@angular/router ’;

@Component ({

selector: ’app -root’,

standalone: true ,

imports: [RouterOutlet],

templateUrl: ’./app.component.html’,

styleUrls: [’./app.component.css’]

})

export class AppComponent {

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Directives and Pipes Page 12

title = ’my -first -app’;

}

app.component.html To create a template that binds an input field to the title prop-
erty, modify the app.component.html like this:

<div >

<h1 >Welcome to {{ title }}!</h1 >

<input [(ngModel)]="title" placeholder="Enter title">

</div >

In this template:

• Interpolation ({{ title }}): Displays the value of title within the <h1> tag.

• Two-Way Data Binding ([(ngModel)]="title"): Binds the input field to the
title property of the component. This allows the title to update automatically
whenever the user types in the input field, and vice versa, updating the input field
if the title property changes programmatically.

Importing FormsModule in a Standalone Component

In Angular’s modular system each component must explicitly import any external mod-
ules it depends on. For ngModel to work, you need to import FormsModule from Angular’s
forms package.

import { Component } from ’@angular/core’;

import { FormsModule } from ’@angular/forms’; // Import FormsModule

import { RouterOutlet } from ’@angular/router ’;

@Component ({

selector: ’app -root’,

standalone: true ,

imports: [

RouterOutlet ,

FormsModule // Add FormsModule to the imports array

],

templateUrl: ’./app.component.html’,

styleUrls: [’./app.component.css’]

})

export class AppComponent {

title = ’my -first -app’;

}

Directives and Pipes

In Angular, directives and pipes are powerful features that help you manipulate the
DOM and format data directly within your templates. Directives come in two main
types—structural and attribute—while pipes are used for transforming displayed values.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Directives and Pipes Page 13

Directives

Structural Directives

Structural Directives change the DOM layout by adding, removing, and manipulating
elements. Common examples include:

• *ngIf: Conditionally includes a block of HTML.

• *ngFor: Repeats a node for each item in a list.

• *ngSwitch: Adds/removes DOM elements by switching over a value.

Attribute Directives

Attribute Directives change the appearance or behavior of an element, component, or
another directive. Examples include:

• ngStyle: Dynamically changes the style of an element.

• ngClass: Adds and removes CSS classes based on an expression.

Pipes

Pipes transform displayed values within template expressions. Angular comes with several
built-in pipes like date, uppercase, and lowercase, and you can also define your own
custom pipes.

Example: Using Directives and Pipes in Angular

Let’s create a simple example in the app.component to demonstrate the usage of directives
and pipes. This example will include an *ngIf directive to conditionally display data, an
*ngFor directive to list items, and a date pipe to format a date.

app.component.ts

Here, we define our component with a list of items and a date value:

import { Component } from ’@angular/core’;

import { FormsModule } from ’@angular/forms’; // Import FormsModule

import { RouterOutlet } from ’@angular/router ’;

import { CommonModule } from ’@angular/common ’;

@Component ({

selector: ’app -root’,

standalone: true ,

imports: [

RouterOutlet ,

FormsModule ,

CommonModule

],

templateUrl: ’./app.component.html’,

styleUrls: [’./app.component.css’]

})

export class AppComponent {

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Directives and Pipes Page 14

title = ’my -first -app’;

items = [’Item 1’, ’Item 2’, ’Item 3’];

currentDate = new Date();

showItems = true;

}

app.component.html

In the template, we’ll use the directives and pipe to interact with these values:

<div >

<h1 >Directives and Pipes Example </h1 >

<!-- Toggle visibility -->

<button (click)="showItems = !showItems" >{{ showItems ? ’Hide’ : ’

Show’ }} Items </button >

<!-- Structural Directive: *ngIf -->

<div *ngIf="showItems">

<h2 >Items List </h2 >

<!-- Structural Directive: *ngFor -->

<li *ngFor="let item of items" >{{ item }}

</div >

<!-- Pipe: date -->

<p>Current Date: {{ currentDate | date:’fullDate ’ }}</p>

</div >

Explanation of the Code

• Button for Toggling Items: When clicked, this button toggles the showItems

property, which in turn toggles the visibility of the list of items using *ngIf.

• *ngIf Directive: This directive checks if showItems is true. If true, it renders the
<div> element and its children.

• *ngFor Directive: This directive iterates over the items array and creates a new
list item for each item.

• Date Pipe: The date pipe formats the currentDate object into a more readable
full date format.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	What is Angular?
	History and Versions
	Angular vs. Other Frameworks (React, Vue)
	Setting Up the Development Environment
	Installing Angular CLI
	Understanding the Angular Project Structure
	Components and Modules
	Templates and Data Binding
	Directives and Pipes

