
Consuming APIs Using .Net Core
and MVC

Adding External Data to Your Web App

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Role of APIs in Modern Web Development 2

Setting Up Your Development Environment 3

Implementing Asynchronous API Calls in .NET Core MVC 5

Handling API Responses 7

Error Handling Strategies 9

Connecting to a Public API 10

Building a Weather Application Using Live Data 16

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Role of APIs in Modern Web Development Page 2

Introduction

In the digital age, the ability to interact with external data sources and services through
APIs has become a fundamental skill for developers. APIs are the backbone of modern
web services, allowing your applications to remain scalable, modular, and efficient. This
guide focuses on leveraging the .NET Core framework and MVC architecture to consume
APIs effectively, ensuring that your applications can access a wide range of functionalities
from external services.

Role of APIs in Modern Web Development

In modern web development, APIs (Application Programming Interfaces) serve as critical
facilitators of connectivity and functionality across various digital platforms and systems.
They are the building blocks that enable developers to enhance and extend the capabilities
of their applications by interfacing with external services and resources. The influence of
APIs spans across numerous aspects of technology, making them indispensable tools in
the developer’s toolkit.

Enabling Data Exchange and Integration

APIs provide a standardized way for applications to communicate with each other. They
allow web applications to seamlessly send or receive data from external servers, facilitating
real-time data exchanges that are pivotal in today’s interconnected digital ecosystem. For
example, when a user books a flight through an online travel service, APIs are what allow
the website to interface with airline databases to retrieve flight options, make bookings,
and even check seat availability—all in real time.

Integrating Third-Party Services

Beyond basic data exchange, APIs empower web applications to integrate functionality
from third-party services. This can include embedding social media feeds, processing
payments through gateways like PayPal or Stripe, or utilizing Google Maps for geoloca-
tion services. These integrations are made possible by APIs, which dictate how software
components should interact without requiring developers to share all the code of their ap-
plications. This encapsulation of functionality allows developers to add complex features
to an application without building them from scratch, significantly reducing development
time and costs.

Supporting Scalability and Flexibility

APIs are designed to be independent of the underlying implementation details. This ab-
straction allows businesses to scale and evolve their applications without major overhauls.
For example, if an application uses an API to fetch data, it doesn’t need to care where
the data comes from or how it is generated. This means that if the data source needs
to change or scale up, the API can often handle this without any changes needed on the
part of the client application.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Setting Up Your Development Environment Page 3

Enhancing User Experience

By leveraging APIs, developers can create more responsive, intuitive, and feature-rich
applications. APIs facilitate the creation of applications that can provide users with a
seamless experience, regardless of where the data resides or what type of device they are
using. This is particularly important in an era where users expect real-time interactions
and services that are tailored to their needs and preferences.

Facilitating Innovation

APIs foster innovation by enabling developers to build upon existing platforms and ser-
vices. By providing the ”lego blocks” of functionality, APIs allow developers to experi-
ment with new ideas and solutions quickly and cost-effectively. This ecosystem of APIs
has led to the rapid expansion of digital services and products, propelling forward the
modern web development landscape.

Setting Up Your Development Environment

Installing and Configuring .NET Core

.NET Core is a versatile, high-performance framework designed for building modern
applications across any platform. The first step in leveraging this powerful framework is
to install it.

Step-by-Step Installation Guide

1. Download the .NET Core SDK

• Visit the official .NET download page.

• Select the SDK according to your operating system (Windows, Linux, or ma-
cOS).

2. Installation

• Follow the platform-specific instructions provided on the download page to
install the .NET Core SDK.

3. Verification

• Once installed, open your command line interface (CLI) and run the following
command to verify the installation

dotnet --version

• This command should return the version of the .NET Core SDK that you
installed, confirming that it is ready for use.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

https://dotnet.microsoft.com/download

Setting Up Your Development Environment Page 4

Overview of the MVC Architecture

Model-View-Controller (MVC) is an architectural pattern widely used in web applica-
tion development. MVC separates the application into three interconnected components,
making it easier to manage complexity and development

• Model: The central component of the pattern. It directly manages the data, logic,
and rules of the application.

• View: Any representation of information, such as a chart, diagram, or table. Mul-
tiple views of the same information are possible.

• Controller: Accepts input and converts it to commands for the model or view.

In the context of .NET Core, MVC provides a powerful way to build scalable and testable
web applications.

Setting Up an MVC Project in Visual Studio

Visual Studio is a popular integrated development environment (IDE) from Microsoft. It
offers comprehensive tools and services for developing .NET applications.

Creating a New MVC Project

1. Launch Visual Studio

• Start Visual Studio and select ”Create a new project.”

2. Select the Project Type

• In the search box, type ”MVC” and select ”ASP.NET Core Web App (Model-
View-Controller)” as the project template. Click Next.

3. Configure Your Project

• Enter a project name and location.

• Ensure that the Framework selected is the latest .NET Core version available.

4. Project Settings

• You can configure additional settings such as authentication methods if re-
quired. For a basic setup, you can proceed with the default settings.

5. Create Project

• Click on the ”Create” button to generate your new MVC project.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Implementing Asynchronous API Calls in .NET Core MVC Page 5

Tools and Libraries for API Interaction in .NET Core

To enhance API interaction, several tools and libraries are available that simplify the
processes of sending requests and processing responses.

• Essential Tools and Libraries

– HttpClient: A library used for sending HTTP requests and receiving HTTP
responses from a resource identified by a URI.

– Newtonsoft.Json: Popularly known as Json.NET, this library helps to seri-
alize and deserialize JSON data.

– Postman: While not a .NET library, Postman is an indispensable tool for
testing API requests and responses.

Implementing Asynchronous API Calls in .NET Core

MVC

Asynchronous programming is a powerful feature in .NET Core that helps improve the
performance and responsiveness of applications, especially those that perform I/O-bound
operations like making API calls. The core elements of asynchronous programming in
C# are the async and await keywords, along with the Task-based asynchronous pattern.
Understanding these concepts is crucial for developing efficient web applications in .NET
Core MVC.

The async Keyword

The async keyword is used to define a method as asynchronous. It modifies a method to
indicate that the method contains operations that may need to wait for external resources
or long-running tasks, without blocking the execution thread. An async method always
returns a Task or Task<T> (for methods that return a value) or void (generally used for
event handlers and is not recommended for most other cases due to the difficulty in error
handling).

Key points about async methods

• An async method provides a way for the application to remain responsive and
efficient by allowing other tasks to run while waiting for asynchronous operations
to complete.

• The method itself doesn’t perform the asynchronous work. Instead, it provides
the framework for handling asynchronous operations using await, Task, and other
related asynchronous constructs.

The await Keyword

The await keyword is used within an async method to suspend the method’s execution
until the awaited task completes. await can only be used in methods modified by async.
When an await statement is reached, the current method is paused, and control returns

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Implementing Asynchronous API Calls in .NET Core MVC Page 6

to the caller until the task completes. This feature is essential for managing concurrency
in applications, as it allows the program to perform other operations instead of waiting
and doing nothing (i.e., blocking).

Benefits of using await

• It simplifies the code by allowing asynchronous code to be written as though it were
synchronous, particularly in handling sequential dependencies.

• It helps manage resources efficiently, as the thread handling the await can be used
to execute other tasks when the method is waiting for the asynchronous operation
to complete.

The Task Type

Task represents an asynchronous operation. It is a core component of the Task-based
Asynchronous Pattern (TAP). A Task can tell you if the operation it represents has been
completed and if it was completed successfully. Task<T> is a subclass of Task that can
also provide a result value once the asynchronous operation completes.

Using Task in asynchronous methods

• Methods that perform asynchronous operations return a Task or Task<T>, which
represents the ongoing work.

• The returned Task allows the caller to wait for the operation to complete and, in
the case of Task<T>, to retrieve the result of the operation.

Example: Asynchronous Method Using Task

public async Task <IActionResult > GetTodoItems ()

{

try

{

string jsonResponse = await _httpClient.GetStringAsync("https

:// api.example.com/todos");

var todoItems = JsonSerializer.Deserialize <List <TodoItem >>(

jsonResponse);

return View(todoItems);

}

catch (Exception ex)

{

_logger.LogError("Error fetching todo items", ex);

return View("Error");

}

}

In this example, the GetTodoItems method is declared with the async keyword, in-
dicating it performs asynchronous operations. The await keyword is used to pause the
execution of the method until the GetStringAsync method of the HttpClient completes,
without blocking the thread. The method returns a Task<IActionResult>, indicating
the asynchronous operation will eventually produce an IActionResult.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Handling API Responses Page 7

By integrating async, await, and Task, developers can write more readable, maintain-
able, and performant applications in .NET Core MVC. These tools are essential for
modern web development, where efficiency and responsiveness are key.

Handling Errors in Asynchronous Operations

Handling errors in asynchronous code involves catching exceptions that may be thrown
during the execution of async tasks. Use try-catch blocks to manage exceptions and en-
sure that your application can gracefully handle errors and continue operation.

Example of Error Handling in an Asynchronous Method

public async Task <IActionResult > UpdateTodoItem(TodoItem item)

{

try

{

var json = JsonSerializer.Serialize(item);

var content = new StringContent(json , Encoding.UTF8 , "

application/json");

HttpResponseMessage response = await _httpClient.PutAsync($"
https ://api.example.com/todos /{item.Id}", content);

response.EnsureSuccessStatusCode ();

return RedirectToAction(nameof(Index));

}

catch (Exception e)

{

_logger.LogError("Failed to update todo item", e);

return View("Error", new ErrorViewModel { RequestId = Activity.

Current ?.Id ?? HttpContext.TraceIdentifier , Message = "Failed to

update item." });

}

}

This example demonstrates the implementation of error handling in an asynchronous
operation within a .NET Core MVC application. The try-catch block is effectively
used to catch any exceptions that occur during the HTTP PUT request operation. If an
error occurs, it is logged, and a user-friendly error page is displayed. This method ensures
that the application handles errors robustly, maintaining a smooth user experience and
minimizing disruptions in service.

Handling API Responses

Interpreting JSON Responses

When interacting with web APIs, it’s common to encounter responses formatted in JSON
(JavaScript Object Notation). JSON is a universally adopted data interchange format
known for its readability and straightforward structure, making it both easy for humans
to understand and simple for machines to parse. In the context of .NET Core appli-
cations, developers must be adept at interpreting these JSON responses to effectively
manage the data returned by APIs.

Example of a JSON response

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Handling API Responses Page 8

Here is a typical JSON response you might receive from an API

{

"userId": 1,

"id": 1,

"title": "delectus aut autem",

"completed": false

}

This JSON snippet represents an object with four properties: userId, id, title, and com-
pleted, where userId and id are integers, title is a string, and completed is a boolean.

Deserializing JSON in .NET Core

.NET Core provides robust tools for handling JSON. Two primary libraries used for
JSON data manipulation are System.Text.Json—which is built into .NET Core 3.0 and
later—and Newtonsoft.Json, a widely used third-party library that offers additional flex-
ibility and features.

To work with JSON data, first, you’ll need to map the JSON structure to a .NET class.
Here’s how you might define a class in C# that corresponds to the JSON data shown
above

public class TodoItem

{

public int UserId { get; set; }

public int Id { get; set; }

public string Title { get; set; }

public bool Completed { get; set; }

}

In this class, TodoItem, each property corresponds to a key in the JSON object. The
names and data types of the properties are made to match those of the JSON keys to
ensure accurate and seamless data parsing.

Deserialization Process

Deserialization is the process of converting the JSON format back into a .NET object.
This can be done using either System.Text.Json or Newtonsoft.Json.

Using System.Text.Json: This library is integrated into .NET Core and optimized
for performance. It provides straightforward mechanisms for serializing and deserializing
data. Here’s how you might deserialize the JSON response into a TodoItem object using
System.Text.Json

var todoItem = JsonSerializer.Deserialize <TodoItem >(jsonString);

In this line of code, jsonString represents the JSON data as a string. The Deserialize
method is used to convert this string into an instance of TodoItem.

Using Newtonsoft.Json: Also known as Json.NET, this library offers extensive features
for handling JSON, including settings to ignore missing members, handle null values, and
customize date formats. Here’s an example of deserializing using Newtonsoft.Json

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Error Handling Strategies Page 9

var settings = new JsonSerializerSettings { MissingMemberHandling =

MissingMemberHandling.Ignore };

var todoItem = JsonConvert.DeserializeObject <TodoItem >(jsonString ,

settings);

In this example, settings is configured to ignore any JSON properties that do not match
properties in the TodoItem class. This is particularly useful for working with API re-
sponses that may include varying sets of data elements.

Error Handling Strategies

Proper error handling is crucial for building resilient applications, particularly when in-
tegrating external APIs. When consuming APIs, several challenges may surface, such as
network issues, API downtime, or unexpected response formats. Implementing robust
error handling practices can significantly enhance the reliability and user experience of
your applications.

Try-Catch Blocks

To safeguard your application against runtime exceptions during API calls, implement-
ing try-catch blocks is essential. This method captures exceptions that occur due to
network failures, server errors, or malformed responses. In an MVC application, rather
than logging errors directly to the console, it is more appropriate to handle these within
the application flow, such as logging to a file or database and providing user-friendly error
messages or notifications.

Example of a refined try-catch block in an API request in MVC

public async Task <ActionResult > GetTodoItem ()

{

try

{

var response = await httpClient.GetAsync("https ://api.example.

com/todos/1");

// Throws an exception if the HTTP response status is an error

code.

response.EnsureSuccessStatusCode ();

var json = await response.Content.ReadAsStringAsync ();

var todoItem = JsonSerializer.Deserialize <TodoItem >(json);

return View(todoItem);

}

catch (HttpRequestException e)

{

// Log error and provide feedback to the user

_logger.LogError($"An error occurred when calling the API: {e.

Message}");

return View("Error", new ErrorViewModel { RequestId = Activity.

Current ?.Id ?? HttpContext.TraceIdentifier });

}

}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Connecting to a Public API Page 10

HTTP Status Codes

Handling HTTP status codes effectively is another critical aspect of robust API con-
sumption. These codes are standardized indicators that describe the outcome of an
API request. Checking these codes allows your application to appropriately respond to
different scenarios, such as a successful request, an unauthorized access attempt, or a
server-side error.

Key HTTP Status Codes to Handle:

• 200 OK: The request has been successfully processed by the server.

• 401 Unauthorized: The request lacks valid authentication credentials.

• 404 Not Found: The requested resource does not exist on the server.

• 500 Internal Server Error: A generic error occurred on the server which prevents
it from fulfilling the request.

Handling these status codes in MVC typically involves conditional checks and
tailored responses based on the outcome, as illustrated below

var response = await httpClient.GetAsync("https ://api.example.com/todos

/1");

if (response.IsSuccessStatusCode)

{

var json = await response.Content.ReadAsStringAsync ();

var todoItem = JsonSerializer.Deserialize <TodoItem >(json);

return View(todoItem);

}

else if (response.StatusCode == System.Net.HttpStatusCode.NotFound)

{

return View("NotFound");

}

else if (response.StatusCode == System.Net.HttpStatusCode.Unauthorized)

{

return RedirectToAction("Login", "Account");

}

else

{

return View("Error");

}

Connecting to a Public API

In this section, we’ll explore how to connect to the GitHub API. The GitHub API is
accessible without authentication for basic requests, such as fetching public user data.
This makes it an excellent starting point for learning how to interact with APIs.

Example: Fetching User Data from GitHub

Setting Up Your MVC Project

1. Create a New MVC Project in Visual Studio

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Connecting to a Public API Page 11

• Open Visual Studio and select File - New - Project.

• Choose ASP.NET Core Web App (Model-View-Controller and click Next.

• Name your project and choose a suitable location for it.

• Select .NET Core and ASP.NET Core 8 (or later) from the dropdown, and
click Create.

2. Install Newtonsoft.Json for JSON Parsing

• Right-click on your project in the Solution Explorer and select Manage NuGet
Packages.

• Search for Newtonsoft.Json and install the latest stable version. This package
is essential for deserializing the JSON data returned from the API into .NET
objects.

Creating the Artifacts

To display the user data in your UserProfile.cshtml view using Razor syntax, you will
need to prepare the view to accept a model of type User (assuming User is a class that
reflects the data structure returned by the GitHub API). Here’s how you can set up the
view and use Razor syntax to render the properties of the User object.

Defining the User Model

First, ensure that your User model is properly defined, something like this

public class User

{

public string Login { get; set; } // GitHub username

public string Name { get; set; } // User’s full name

[JsonProperty("avatar_url")]

public string AvatarUrl { get; set; } // URL of the user’s avatar

public int PublicRepos { get; set; } // Number of public

repositories

public string Bio { get; set; } // Biography

}

Create the UserProfile View

To properly set up a view for displaying user data in an ASP.NET Core MVC application,
follow these steps to create and configure the view file using Razor syntax.

Navigate to the Views folder, then find the folder named Home

Add a New View

1. Right-click on the Home folder.

2. Select Add ¿ New Item....

3. In the dialog that appears, choose Razor View - Empty.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Connecting to a Public API Page 12

4. Name the file UserProfile.cshtml.

5. Click Add to create the view file.

Update the View

1. Define the Model at the Top of the View

@model YourNamespace.Models.User

2. Create HTML to Display User Data

<div class="user -profile">

<h1>User Profile: @Model.Name</h1>

<img src="@Model.AvatarUrl" alt="User Avatar" style="width :150

px; height :150px;">

<p>Username: @Model.Login</p>

<p>Biography: @Model.Bio</p>

<p>Public Repositories: @Model.PublicRepos </p>

</div>

Creating the API Client

• Create a new class called GitHubApiClient

– In the Solution Explorer, right-click on your project, select Add, and then
Class....

– Name the class GitHubApiClient and click Add.

– Configure HttpClient within the GitHubApiClient class

using System;

using System.Net.Http;

using System.Net.Http.Headers;

using System.Threading.Tasks;

public class GitHubApiClient

{

private readonly HttpClient _client;

public GitHubApiClient ()

{

_client = new HttpClient {

BaseAddress = new Uri("https :// api.github.com/"),

DefaultRequestHeaders =

{

UserAgent = { ProductInfoHeaderValue.Parse("YourApp")}

}

};

}

public async Task <string > GetUserProfile(string username)

{

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Connecting to a Public API Page 13

var response = await _client.GetAsync($"users /{ username}");
response.EnsureSuccessStatusCode ();

return await response.Content.ReadAsStringAsync ();

}

}

Explanation: The HttpClient is configured with the base URL of the GitHub API.
The UserAgent header is added because GitHub requires a user agent header to
identify the client making the request.

Updating the Controller

– Update the HomeController

– Inject the GitHubApiClient and fetch user data

– Create the UserProfile action

– Create a POST method for the Index action to get the provided username and
send it to the UserProfile action

using Microsoft.AspNetCore.Mvc;

using Newtonsoft.Json;

public class HomeController : Controller

{

private readonly GitHubApiClient _apiClient;

public HomeController(GitHubApiClient apiClient)

{

_apiClient = apiClient;

}

public IActionResult Index()

{

return View();

}

[HttpPost]

public IActionResult Index(string username)

{

return RedirectToAction("UserProfile", new { username =

username });

}

public async Task <IActionResult > UserProfile(string username)

{

var data = await _apiClient.GetUserProfile(username);

var user = JsonConvert.DeserializeObject <User >(data);

return View(user);

}

}

Explanation: The UserProfile action method calls the GetUserProfile method of
GitHubApiClient to fetch user data from GitHub and deserializes it into a User
object. The data is then passed to the view.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Connecting to a Public API Page 14

Update the Index View

The Index view now needs to be updated to provide the user with the ability to enter a
user name form the API to find.

<h2 >Enter GitHub Username </h2 >

<form method="post" action="@Url.Action("Index", "Home")">

<label for="username">GitHub Username:</label >

<input type="text" id="username" name="username" required />

<button type="submit">Get Profile </button >

</form >

Updating Program.cs for Dependency Injection

In a .NET Core MVC application, particularly in .NET 6 and later where Program.cs

serves as the central configuration point, you handle dependencies and service configu-
rations in this file. We need to add a few lines to Program.cs as part of setting up the
application’s dependency injection (DI) container and configuring HTTP client services.
Here’s how each line of code functions and why it’s important

Add HttpClient Service

AddHttpClient() registers the IHttpClientFactory which allows your application to
create instances of HttpClient with pre-configured settings. The factory is useful for
managing the lifetimes of handlers and allows you to centralize the configuration and
policies for HTTP requests in your app.

builder.Services.AddHttpClient ();

Register GitHubApiClient

By registering GitHubApiClient with AddTransient, you’re telling the dependency in-
jection (DI) container to create a new instance of GitHubApiClient each time it is
requested. Transient services are very suitable for lightweight, stateless services.

builder.Services.AddTransient <GitHubApiClient >();

Test Your Application

Testing your application ensures that all components are correctly integrated and func-
tioning as expected. Here’s how you can run your application and verify that it interacts
properly with the GitHub API.

Run Your Application

1. Start your application and navigate to the Home index URL (typically / or /Home/Index).

2. You should see a form asking for a GitHub username.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Connecting to a Public API Page 15

Enter a Username and Submit

1. Type a valid GitHub username into the form and submit it.

2. The form should redirect to the UserProfile action in the HomeController, where
the user profile data for the entered username will be displayed.

If the application is not functioning as expected, use breakpoints and your debugging
skills to find and resolve the issue.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Building a Weather Application Using Live Data Page 16

Building a Weather Application Using Live Data

Next we will develop a small web application using .NET Core and MVC that fetches
live weather data from the OpenWeatherMap API. This project will demonstrate how
to connect to an external API, interpret JSON responses, and display this data in a
user-friendly format.

Registering with OpenWeatherMap API

Before beginning this project, ensure you have an API key

• Sign up for a free API key at OpenWeatherMap.org

• Once registered, you will receive an API key. This key is essential for making
requests to their API.

Setting Up the Project

Create a New MVC Project

1. Open Visual Studio and select ”Create a new project.”

2. Choose ”ASP.NET Core Web App (Model-View-Controller).” Name your project
”WeatherApp.”

3. Ensure your project targets .NET Core 8.0 or later. You can set this in the project
properties under the ”Target framework” dropdown.

Add Required Packages

• Open the Package Manager Console (Tools - NuGet Package Manager - Package
Manager Console).

• Install Newtonsoft.Json by entering Install-Package Newtonsoft.Json.

This initial setup prepares the foundation for developing a web application that can in-
teract with external APIs to fetch and display data, using .NET Core and MVC patterns.
The next steps will guide you through integrating the OpenWeatherMap API into your
application.

Integrating the OpenWeatherMap API

To integrate the OpenWeatherMap API into your .NET Core MVC application, you will
need to securely store and access your API key. Follow these steps to add your API key
to the project

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Building a Weather Application Using Live Data Page 17

Add the API Key

Store your OpenWeatherMap API key in a secure location. For this project, you can
place it in the appsettings.json file to keep it outside your source code and easily
configurable. Here is how you can add it

{

"ApiSettings": {

"OpenWeatherApiKey": "your_api_key_here"

}

}

Configure the API Key

• Create a new file named ApiSettings.cs.

• Add the following code to manage your API settings securely

public class ApiSettings

{

public string ApiKey { get; set; }

}

Register HttpClient and ApiSettings in Dependency Injection Container

• Open the Program.cs file.

• Modify the builder setup to include your ApiSettings configuration

// Add services to the container.

builder.Services.AddControllersWithViews ();

// Register Http Client

builder.Services.AddHttpClient ();

// Register ApiSettings

builder.Services.Configure <ApiSettings >(builder.Configuration.

GetSection("ApiSettings"));

This configuration allows you to maintain the security of your API key while making it
accessible within your application code via configuration management tools provided by
.NET Core. In the next steps, you will see how to use this key to make API requests to
OpenWeatherMap.

Creating the Weather Service

To fetch weather data, you’ll create a service class that handles API requests and response
parsing. This class will directly interact with OpenWeatherMap to pull data based on
user input or predefined criteria.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Building a Weather Application Using Live Data Page 18

Create a Service Class and Inject the HTTP Client and Configuration Options

1. In your MVC project, create a new folder named Services.

2. Inside this folder, create a class file named WeatherService.cs.

public class WeatherService

{

private readonly HttpClient _httpClient;

private readonly string _apiKey;

public WeatherService(HttpClient httpClient , IOptions <ApiSettings >

options)

{

_httpClient = httpClient;

_apiKey = options.Value.OpenWeatherApiKey;

}

}

Implement a Method to Fetch Weather Data Using HttpClient

The WeatherService class will use HttpClient to make HTTP requests to the Open-
WeatherMap API.

public async Task <string > GetWeatherAsync(string cityName)

{

// Construct the URL to access the OpenWeatherMap API

string url = $"https ://api.openweathermap.org/data /2.5/ weather?q={
cityName }&appid ={ _apiKey }&units=metric";

try

{

// Send a GET request to the specified URL

HttpResponseMessage response = await _httpClient.GetAsync(url);

// Ensure the request was successful

response.EnsureSuccessStatusCode ();

// Read the response as a string

return await response.Content.ReadAsStringAsync ();

}

catch (HttpRequestException e)

{

// Handle potential network errors

Console.Error.WriteLine($"Request exception: {e.Message}");

return null;

}

catch (Exception e)

{

// Handle other potential errors

Console.Error.WriteLine($"General exception: {e.Message}");

return null;

}

}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Building a Weather Application Using Live Data Page 19

Register the WeatherService

Register the WeatherService in your Program.cs for dependency injection.

// Add services to the container.

builder.Services.AddControllersWithViews ();

// Register ApiSettings

builder.Services.Configure <ApiSettings >(builder.Configuration.

GetSection("ApiSettings"));

// Register WeatherService

builder.Services.AddTransient <WeatherService >();

Create the MVC Components

To efficiently present weather data fetched from the OpenWeatherMap API, we need to
establish several key MVC components: the model, controller, and view.

Creating the Weather Model

First, define a model to represent the weather data that the API returns. This model
will encapsulate the weather data elements that you wish to display.

public class WeatherModel

{

public string City { get; set; }

public string Temperature { get; set; }

public string Description { get; set; }

public string Humidity { get; set; }

public string WindSpeed { get; set; }

}

This model includes basic weather parameters like temperature, weather description,
humidity, and wind speed. You can expand it based on the data you plan to use from
the API.

Creating the Weather Controller

The controller will use the WeatherService to fetch the weather data and pass it to the
view. It acts as the intermediary between the model and the view.

Make sure you installed the Newtonsoft.Json nuget package

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Building a Weather Application Using Live Data Page 20

using Microsoft.AspNetCore.Mvc;

using WeatherApp.Services;

using WeatherApp.Models;

using Newtonsoft.Json;

public class WeatherController : Controller

{

private readonly WeatherService _weatherService;

public WeatherController(WeatherService weatherService)

{

_weatherService = weatherService;

}

public async Task <IActionResult > Index(string city = "New York")

{

string json = await _weatherService.GetWeatherAsync(city);

var weatherData = JsonConvert.DeserializeObject <dynamic >(json)

;

var model = new WeatherModel

{

City = city ,

Temperature = $"{weatherData.main.temp} C ",

Description = weatherData.weather [0]. description ,

Humidity = $"{weatherData.main.humidity} %",

WindSpeed = $"{weatherData.wind.speed} m/s"

};

return View(model);

} return View(model);

}

}

This controller includes a single action Index that takes a city name as an input parameter
(defaulting to ”New York”) and uses the WeatherService to fetch the weather data. It
constructs a WeatherModel from this data and passes it to the view.

Understanding the dynamic Keyword

The dynamic keyword in C# introduces a way to bypass static type checking. When
you declare an object as dynamic, you are essentially telling the compiler to defer type
checking to runtime. This allows for writing code that is more flexible and can interact
with data structures whose format is not known at compile time.

Usage in JSON Deserialization

When deserializing JSON data, the dynamic type can be particularly useful.

var weatherData = JsonConvert.DeserializeObject <dynamic >(json);

Here, JsonConvert.DeserializeObject<dynamic>(json) uses the dynamic type for the
weatherData variable. This means that the structure of the JSON does not need to be
known beforehand, nor do you need to define a specific class to map the JSON to. The
properties of the JSON can be accessed directly on weatherData as if they were normal
properties, even though they are not statically typed.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Building a Weather Application Using Live Data Page 21

var temperature = weatherData.main.temp;

var description = weatherData.weather [0]. description;

Benefits

• Flexibility: The primary advantage is flexibility. You can write code that handles
data structures that may vary in their format without needing to define numerous
different classes.

• Ease of Use: It simplifies accessing variable properties directly from JSON without
creating a lot of boilerplate classes or using dictionaries. It’s particularly useful
for quick prototypes or when working with complex or frequently changing data
schemas.

Using dynamic enables developers to adapt their code more readily to changing data
specifications, making it a powerful tool for applications that require high levels of flexi-
bility.

Creating the Weather View

Finally, create a view to display the weather information. This view will render the
properties of the WeatherModel in a user-friendly format.

@model WeatherApp.Models.WeatherModel

<h2>Weather for @Model.City</h2>

<div>

<p>Temperature: @Model.Temperature </p>

<p>Description: @Model.Description </p>

<p>Humidity: @Model.Humidity </p>

<p>Wind Speed: @Model.WindSpeed </p>

</div>

This simple view displays the weather data in a straightforward format. Enhancements
can be made with CSS for better styling and additional interactive elements if needed.

Test The Application

Run your application and navigate to the Weather controller. You should see weather
information from New York.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Role of APIs in Modern Web Development
	Setting Up Your Development Environment
	Implementing Asynchronous API Calls in .NET Core MVC
	Handling API Responses
	Error Handling Strategies
	Connecting to a Public API
	Building a Weather Application Using Live Data

