
File Operations with Python

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Working with Files and Exceptions 2

Reading and Writing Files 4

Working with Different File Formats 6

Exception Handling 10

Practical Applications of File Handling and Exceptions 13

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Working with Files and Exceptions Page 2

Working with Files and Exceptions

Introduction to File Handling

File handling is a required skill for any programmer, especially when working with real-
world applications. Understanding how to read from and write to files enables you to
manage data efficiently, perform persistent storage, and facilitate data exchange between
different systems. Files serve as a medium to store data permanently on a storage device,
allowing the data to be retained even after the program has finished execution.

Files allow you to share data between different programs. For instance, a program that
generates reports might read data from a file created by another program that collects
user inputs. Additionally, understanding file handling is fundamental when dealing with
configuration files, logging, and serialization. Configuration files store settings and prefer-
ences, which your program can read upon startup to configure itself accordingly. Logging
is essential for tracking the program’s behavior, debugging, and auditing, which is done
by writing logs to files. Serialization, the process of converting an object into a format
that can be easily stored and retrieved, often uses file handling to persist objects’ states.

The importance of file handling extends to data analysis and scientific computing as well.
Analysts and scientists frequently deal with large datasets stored in files, which they
need to process and analyze using their programs. Without file handling, managing and
utilizing such data would be nearly impossible.

File Types: Text and Binary

When dealing with files in Python, it is essential to understand the two main types: text
files and binary files. Each type has its characteristics and uses, influencing how you read
from and write to these files.

Text Files

Text files store data in a human-readable format, typically consisting of characters en-
coded using a character encoding standard such as ASCII or UTF-8. These files are plain
and can be opened and edited using any text editor. Common examples include files with
extensions like .txt, .csv, .html, and .json.

Text files are used for a wide range of purposes, such as configuration files, logs, source
code files, and more. When you read a text file, you retrieve data as strings, and writing
to a text file involves converting your data into a string format.

Here’s an example of how you might read from and write to a text file in Python:

Writing to a text file

with open(’example.txt’, ’w’) as file:

file.write("Hello , World!\n")

file.write("This is a text file.")

Reading from a text file

with open(’example.txt’, ’r’) as file:

content = file.read()

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Working with Files and Exceptions Page 3

print(content)

In this example, the with open() statement is used to open the file, ensuring that it is
properly closed after the operations are completed. The write() method writes strings
to the file, while the read() method reads the entire content of the file as a single string.

Binary Files

Binary files store data in a format that is not intended to be human-readable. Instead
of characters, binary files contain bytes, which can represent any type of data, including
text, images, audio, and video. Examples of binary files include files with extensions like
.bin, .jpg, .mp3, and .dat.

Reading from and writing to binary files involves handling data as bytes rather than
strings. This is crucial when working with non-text data to ensure that it is stored and
retrieved accurately without any alteration.

Here’s an example of how to work with binary files in Python:

Writing to a binary file

data = b’\x48\x65\x6c\x6c\x6f\x2c\x20\x57\x6f\x72\x6c\x64\x21’

with open(’example.bin’, ’wb’) as file:

file.write(data)

Reading from a binary file

with open(’example.bin’, ’rb’) as file:

binary_content = file.read()

print(binary_content)

In this example, the wb mode is used for writing binary data, and the rb mode is used
for reading binary data. The data is written and read as bytes, ensuring that the original
binary content is preserved.

Choosing Between Text and Binary Files

The choice between text and binary files depends on the nature of the data and the
intended use. Text files are ideal for storing human-readable information, such as con-
figuration settings, logs, and documentation. They are easy to edit and review using
standard text editors.

Binary files, on the other hand, are suitable for storing non-text data, such as multimedia
content, serialized objects, and data in proprietary formats. They are more efficient in
terms of storage and performance for these types of data, as they do not require encoding
and decoding like text files.

Understanding the differences between text and binary files and knowing when to use
each type is crucial for effective file handling. It ensures that your data is stored and
processed in the most appropriate format, leading to better performance and reliability
in your applications.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Reading and Writing Files Page 4

Reading and Writing Files

Interacting with files is a fundamental skill that every developer should learn.

Opening and Closing Files

Opening and closing files in Python is straightforward, thanks to the built-in open()

function. When you open a file, Python creates a file object, which provides methods
and attributes to interact with the file’s content.

To open a file, you use the open() function, which takes two main arguments: the
filename and the mode. The mode determines how the file will be used, such as for
reading, writing, or appending.

file = open(’example.txt’, ’r’)

In the example above, ’example.txt’ is the name of the file, and ’r’ stands for ”read
mode.” Here are the common file modes:

• ’r’: Read (default mode) - Opens the file for reading.

• ’w’: Write - Opens the file for writing (creates a new file or truncates the existing
file).

• ’a’: Append - Opens the file for appending (creates a new file if it doesn’t exist).

• ’b’: Binary mode - Used with other modes for binary files.

• ’+’: Read and write - Used with other modes for both reading and writing.

To ensure that a file is properly closed after its operations, you should use the close()

method. However, a more convenient and safer way is to use a with statement, which
automatically closes the file when the block is exited.

with open(’example.txt’, ’r’) as file:

content = file.read()

The file is automatically closed here

The with statement is highly recommended because it ensures that the file is properly
closed even if an exception occurs.

Reading from Files

Reading data from a file can be done in several ways, depending on your needs. The
most common methods are read(), readline(), and readlines().

• read(size=-1): Reads the entire file or up to the specified number of bytes if the
size argument is provided.

• readline(size=-1): Reads a single line from the file. If the size argument is
provided, it reads up to that number of bytes from the line.

• readlines(hint=-1): Reads all lines from the file and returns them as a list. If
the hint argument is provided, it reads that many lines.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Reading and Writing Files Page 5

Here is an example of how to use these methods:

with open(’example.txt’, ’r’) as file:

content = file.read()

print(content)

This code reads the entire content of example.txt and prints it to the console. If the
file is large, you might want to read it line by line:

with open(’example.txt’, ’r’) as file:

for line in file:

print(line , end=’’)

This approach is memory efficient as it processes one line at a time.

Writing to Files

Writing data to a file is just as important as reading from it. Python provides several
methods for writing to files: write() and writelines().

• write(string): Writes the specified string to the file.

• writelines(lines): Writes a list of strings to the file.

When writing to a file, you typically use either the ’w’ mode to start with a fresh file or
the ’a’ mode to append to an existing file.

Here’s an example of writing to a file using the write() method:

with open(’example.txt’, ’w’) as file:

file.write("Hello , World!\n")

file.write("This is a test file.")

This code creates (or overwrites) example.txt and writes two lines of text to it. If you
want to append to the file instead of overwriting it, you can use the ’a’ mode:

with open(’example.txt’, ’a’) as file:

file.write("\nAppending a new line.")

For writing multiple lines at once, use the writelines() method:

lines = ["First line\n", "Second line\n", "Third line\n"]

with open(’example.txt’, ’w’) as file:

file.writelines(lines)

This code writes a list of lines to example.txt in one go.

Working with File Paths

Managing file paths is crucial, especially when dealing with files located in different
directories. Python’s os and pathlib modules offer tools to handle file paths effectively.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Working with Different File Formats Page 6

Using the os module

The os module provides functions to interact with the operating system. You can use
os.path to handle file paths.

import os

file_path = os.path.join(’folder ’, ’subfolder ’, ’example.txt’)

print(file_path) # Output: folder/subfolder/example.txt

Using the pathlib module

The pathlib module offers an object-oriented approach to handling file paths, making
the code more readable and expressive.

from pathlib import Path

file_path = Path(’folder ’) / ’subfolder ’ / ’example.txt’

print(file_path) # Output: folder/subfolder/example.txt

pathlib is preferred for its simplicity and modern interface. It also provides methods
for common file operations, such as checking if a file exists, reading and writing files, and
more.

file_path = Path(’example.txt’)

Check if the file exists

if file_path.exists ():

print("File exists.")

else:

print("File does not exist.")

Read the file

if file_path.is_file ():

with file_path.open(’r’) as file:

content = file.read()

print(content)

Working with Different File Formats

Two of the most common formats you’ll encounter are CSV and JSON. Understanding
how to work with these formats will enhance your ability to manage data effectively and
integrate with other systems and applications.

Handling CSV Files

CSV, or Comma-Separated Values, is a simple file format used to store tabular data,
such as a spreadsheet or database. A CSV file consists of lines of text where each line
represents a row in the table, and each value in the row is separated by a comma. This
format is widely supported and easy to process, making it a popular choice for data
exchange.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Working with Different File Formats Page 7

Understanding the Structure of a CSV File

A CSV file typically looks like this:

Name ,Age ,Occupation

John Doe ,30, Software Engineer

Jane Smith ,25,Data Scientist

Each line represents a record, and the fields within a record are separated by commas.
The first line often contains the header, which labels each column.

Reading CSV Files

Python’s built-in csv module provides functionality to read and write CSV files efficiently.
To read a CSV file, you can use the csv.reader object. Here’s how you can do it:

import csv

with open(’data.csv’, mode=’r’) as file:

csv_reader = csv.reader(file)

header = next(csv_reader) # Read the header

for row in csv_reader:

print(row)

In this example, we open the CSV file in read mode and create a csv reader object.
The next function reads the header row, and then we iterate over the remaining rows to
process the data.

Writing CSV Files

To write data to a CSV file, you use the csv.writer object. Here’s an example:

import csv

data = [

[’Name’, ’Age’, ’Occupation ’],

[’John Doe’, 30, ’Software Engineer ’],

[’Jane Smith ’, 25, ’Data Scientist ’]

]

with open(’data.csv’, mode=’w’, newline=’’) as file:

csv_writer = csv.writer(file)

csv_writer.writerows(data)

In this code snippet, we define the data as a list of lists and use the csv writer to write
the data to a file. The writerows method writes all rows to the file.

Using DictReader and DictWriter

The csv module also provides DictReader and DictWriter for working with CSV files as
dictionaries, which can be more intuitive when dealing with named columns.

import csv

with open(’data.csv’, mode=’r’) as file:

csv_reader = csv.DictReader(file)

for row in csv_reader:

print(row[’Name’], row[’Age’], row[’Occupation ’])

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Working with Different File Formats Page 8

Here, DictReader reads each row into an OrderedDict, allowing you to access values by
their column names.

For writing, you can use DictWriter:

import csv

data = [

{’Name’: ’John Doe’, ’Age’: 30, ’Occupation ’: ’Software Engineer ’},

{’Name’: ’Jane Smith ’, ’Age’: 25, ’Occupation ’: ’Data Scientist ’}

]

with open(’data.csv’, mode=’w’, newline=’’) as file:

fieldnames = [’Name’, ’Age’, ’Occupation ’]

csv_writer = csv.DictWriter(file , fieldnames=fieldnames)

csv_writer.writeheader ()

csv_writer.writerows(data)

In this example, DictWriter writes dictionaries to the CSV file, ensuring that the field-
names are used as headers.

Best Practices for Handling CSV Files

• Always specify the newline parameter when opening a file in write mode to avoid
extra blank lines on Windows.

• Use DictReader and DictWriter for more readable and maintainable code when
working with CSV files that have headers.

• Handle exceptions using try-except blocks to manage errors such as file not found
or permission issues.

Handling JSON Files

JSON, or JavaScript Object Notation, is a lightweight data interchange format that is
easy for humans to read and write, and easy for machines to parse and generate. JSON
is widely used for data exchange in web applications and APIs due to its simplicity and
flexibility.

Understanding the Structure of a JSON File

A JSON file represents data as nested key-value pairs, arrays, and other JSON objects.
Here’s an example of a JSON structure:

{

"employees": [

{

"name": "John Doe",

"age": 30,

"occupation": "Software Engineer"

},

{

"name": "Jane Smith",

"age": 25,

"occupation": "Data Scientist"

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Working with Different File Formats Page 9

}

]

}

In this example, employees is an array of objects, each representing an employee with
their respective attributes.

Reading JSON Files

Python provides the json module to read and write JSON data. To read a JSON file,
you can use the json.load function:

import json

with open(’data.json’, mode=’r’) as file:

data = json.load(file)

for employee in data[’employees ’]:

print(employee[’name’], employee[’age’], employee[’occupation ’

])

This code opens a JSON file in read mode and loads the data into a Python dictionary.
We then iterate over the employees array to access each employee’s details.

Writing JSON Files

To write data to a JSON file, you use the json.dump function. Here’s an example:

import json

data = {

"employees": [

{"name": "John Doe", "age": 30, "occupation": "Software

Engineer"},

{"name": "Jane Smith", "age": 25, "occupation": "Data Scientist

"}

]

}

with open(’data.json’, mode=’w’) as file:

json.dump(data , file , indent =4)

In this code snippet, we define the data as a dictionary and use json.dump to write it to
a file. The indent parameter makes the JSON output more readable.

Parsing JSON Strings

Sometimes, you may need to parse JSON data from a string instead of a file. You can
use json.loads for this purpose:

import json

json_string = ’’’

{

"employees ": [

{"name": "John Doe", "age": 30, "occupation ": "Software

Engineer"},

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Exception Handling Page 10

{"name": "Jane Smith", "age": 25, "occupation ": "Data Scientist

"}

]

}

’’’

data = json.loads(json_string)

for employee in data[’employees ’]:

print(employee[’name’], employee[’age’], employee[’occupation ’])

This example demonstrates how to parse a JSON string into a Python dictionary and
iterate over the data.

Best Practices for Handling JSON Files

• Always use the indent parameter in json.dump for better readability of JSON files.

• Handle exceptions using try-except blocks to manage errors such as file not found,
JSON decoding errors, or permission issues.

• Use json.loads and json.dumps for parsing and generating JSON data from strings.

Exception Handling

Exception handling is a critical aspect of writing robust and reliable software. By an-
ticipating and managing potential errors, you can ensure that your programs behave
gracefully under unexpected conditions. Python provides a rich set of tools for handling
exceptions, allowing you to capture, respond to, and even create custom error conditions
in your code.

Understanding Exceptions

In Python, an exception is an event that disrupts the normal flow of a program. When an
error occurs within a function or a block of code, Python raises an exception, signaling
that something has gone wrong. Exceptions can be caused by various issues, such as
invalid input, division by zero, or attempts to access nonexistent files.

To illustrate, consider the following example where we attempt to divide a number by
zero:

def divide(a, b):

return a / b

result = divide (10, 0)

Running this code results in a ZeroDivisionError because dividing by zero is undefined
in mathematics and disallowed in Python.

Common Types of Exceptions

Python has numerous built-in exceptions, each serving different purposes. Some of the
most common ones include:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Exception Handling Page 11

• ValueError: Raised when a function receives an argument of the right type but
an inappropriate value.

• TypeError: Raised when an operation or function is applied to an object of inap-
propriate type.

• IndexError: Raised when trying to access an element from a list or tuple at an
invalid index.

• KeyError: Raised when attempting to access a dictionary with a key that doesn’t
exist.

• FileNotFoundError: Raised when trying to open a file that cannot be found.

Understanding these exceptions helps you anticipate and handle errors effectively in your
code.

The try, except, else, and finally Blocks

Python’s exception handling mechanism revolves around the try and except blocks. The
try block contains the code that might raise an exception, while the except block han-
dles the exception if it occurs.

Consider this example where we handle a potential division by zero error:

def divide(a, b):

try:

result = a / b

except ZeroDivisionError:

print("Error: Cannot divide by zero.")

return None

else:

return result

finally:

print("Execution completed.")

result = divide (10, 0)

Explanation of the Blocks

• try: The code within this block is executed first. If no exceptions occur, the
except block is skipped.

• except: If an exception occurs in the try block, Python jumps to this block. You
can specify the type of exception to catch. In this example, we catch a ZeroDivi-
sionError.

• else: This block is optional and executes if the code in the try block runs without
any exceptions. It’s useful for code that should only run if no exceptions occur.

• finally: This block is also optional and executes regardless of whether an excep-
tion occurs or not. It’s typically used for cleanup actions, such as closing files or
releasing resources.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Exception Handling Page 12

Catching Specific Exceptions

Catching specific exceptions allows you to handle different types of errors in different ways,
improving the robustness and user-friendliness of your code. You can specify multiple
except blocks to handle various exceptions separately.
Here’s an example that demonstrates catching multiple specific exceptions:

def handle_errors ():

try:

value = int(input("Enter a number: "))

result = 10 / value

print("Result:", result)

except ValueError:

print("Error: Invalid input. Please enter a valid integer.")

except ZeroDivisionError:

print("Error: Cannot divide by zero.")

except Exception as e:

print(f"Unexpected error: {e}")

finally:

print("Execution completed.")

handle_errors ()

In this example:

• We catch ValueError if the input is not an integer.

• We catch ZeroDivisionError if the input is zero.

• We catch any other unexpected exceptions using a generic Exception block.

This approach ensures that different error conditions are managed appropriately, provid-
ing clear feedback to the user.

Raising Exceptions

Sometimes, you might want to raise exceptions deliberately to signal that an error con-
dition has occurred. This is especially useful when validating input or enforcing certain
constraints in your code.

To raise an exception, use the raise statement followed by the exception type. You can
also include an error message for more context.

def validate_age(age):

if age < 0:

raise ValueError("Age cannot be negative.")

elif age > 120:

raise ValueError("Age seems unrealistic.")

else:

print("Age is valid.")

try:

validate_age (-5)

except ValueError as e:

print(f"Validation error: {e}")

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Practical Applications of File Handling and Exceptions Page 13

In this example, the validate age function raises a ValueError if the age is negative or
unrealistically high. The try block catches the exception and prints an error message.

Raising exceptions allows you to enforce rules and constraints in your code, ensuring that
only valid data is processed further.

Custom Exceptions

While Python provides many built-in exceptions, you might encounter situations where
you need to create your own custom exceptions. Custom exceptions allow you to define
error conditions specific to your application’s logic, making your code more readable and
maintainable.

To create a custom exception, define a new class that inherits from Python’s built-in
Exception class or any of its subclasses.

Here’s an example of defining and using a custom exception:

class InvalidAgeError(Exception):

def __init__(self , age , message="Invalid age provided."):

self.age = age

self.message = message

super ().__init__(self.message)

def validate_age(age):

if age < 0 or age > 120:

raise InvalidAgeError(age)

try:

validate_age (150)

except InvalidAgeError as e:

print(f"Error: {e}")

In this example:

• We define a custom exception InvalidAgeError that inherits from Exception.

• The custom exception includes an initializer to accept the age and an optional
message.

• The validate age function raises InvalidAgeError if the age is invalid.

• The try block catches the custom exception and prints the error message.

Custom exceptions provide a clear and consistent way to handle specific error conditions
in your application, enhancing code readability and maintainability.

Practical Applications of File Handling and Excep-

tions

Reading and Writing Config Files

Configuration files are a common way to store settings and parameters for an application.
They allow you to separate the configuration from the code, making it easier to manage

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Practical Applications of File Handling and Exceptions Page 14

and modify settings without changing the actual program.

Understanding Config Files

Configuration files can be in various formats, such as INI, JSON, or YAML. The choice of
format depends on the complexity and requirements of your application. For simplicity,
we will focus on INI files, which are widely used and easy to work with.

An INI file typically looks like this:

[settings]

database = my_database

user = admin

password = secret

[paths]

logfile = /var/log/myapp.log

Here, the file is divided into sections ([settings] and [paths]), each containing key-value
pairs.

Reading Config Files

Python’s configparser module makes it easy to read and write INI files. Here’s how you
can read a config file:

import configparser

config = configparser.ConfigParser ()

config.read(’config.ini’)

database = config[’settings ’][’database ’]

user = config[’settings ’][’user’]

password = config[’settings ’][’password ’]

logfile = config[’paths’][’logfile ’]

print(f"Database: {database}, User: {user}, Logfile: {logfile}")

In this example, we create a ConfigParser object and read the config file. We then access
the settings and paths using the section and key names.

Writing Config Files

To write data to a config file, you can use the ConfigParser object as well:

import configparser

config = configparser.ConfigParser ()

config[’settings ’] = {

’database ’: ’my_database ’,

’user’: ’admin’,

’password ’: ’secret ’

}

config[’paths ’] = {

’logfile ’: ’/var/log/myapp.log’

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Practical Applications of File Handling and Exceptions Page 15

}

with open(’config.ini’, ’w’) as configfile:

config.write(configfile)

Here, we define the sections and keys in a dictionary format and write them to a config
file using the write method.

Best Practices for Config Files

• Keep sensitive information secure: Avoid storing plain text passwords in config
files. Use environment variables or secure vaults.

• Validate configuration data: Ensure the configuration values are valid and
within expected ranges to prevent runtime errors.

• Provide default values: Use default values for settings to ensure the application
can run with minimal configuration.

Logging with Files

Logging is an essential part of any application. It helps track the flow of the program,
debug issues, and monitor application performance. Python’s logging module provides a
flexible framework for emitting log messages from Python programs.

Setting Up Basic Logging

Here’s how you can set up basic logging to a file:

import logging

logging.basicConfig(filename=’app.log’, level=logging.INFO ,

format=’%(asctime)s - %(levelname)s - %(message)s’)

logging.info(’This is an informational message.’)

logging.warning(’This is a warning message.’)

logging.error(’This is an error message.’)

In this example, we configure the logging to write messages to app.log. The log level is
set to INFO, which means all messages at this level and above will be logged. The format
specifies how the log messages will be displayed, including the timestamp, log level, and
message.

Advanced Logging Configuration

For more complex logging requirements, you can use a configuration file or dictionary to
set up the logging. This allows for greater flexibility and maintainability.

import logging.config

log_config = {

’version ’: 1,

’formatters ’: {

’default ’: {

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Practical Applications of File Handling and Exceptions Page 16

’format ’: ’%(asctime)s - %(name)s - %(levelname)s - %(

message)s’,

},

},

’handlers ’: {

’file’: {

’class ’: ’logging.FileHandler ’,

’filename ’: ’app.log’,

’formatter ’: ’default ’,

},

’console ’: {

’class ’: ’logging.StreamHandler ’,

’formatter ’: ’default ’,

},

},

’root’: {

’level’: ’INFO’,

’handlers ’: [’file’, ’console ’]

}

}

logging.config.dictConfig(log_config)

logging.info(’Logging is configured via dictionary.’)

This configuration logs messages to both a file and the console, making it easier to monitor
the application during development and production.

Best Practices for Logging

• Use appropriate log levels: Use DEBUG for development details, INFO for gen-
eral information, WARNING for potential issues, ERROR for errors, and CRITI-
CAL for severe errors.

• Avoid logging sensitive information: Ensure that sensitive data, such as pass-
words and personal information, are not logged.

• Rotate log files: Use log rotation to prevent log files from growing indefinitely
and consuming disk space. Python’s logging.handlers module provides Rotating-
FileHandler for this purpose.

Error Handling in Real-World Applications

Handling errors gracefully is crucial for building robust applications. Effective error
handling ensures that your program can recover from unexpected issues and provide
meaningful feedback to the user.

Basic Exception Handling

Let’s start with a simple example of handling a file operation error:

try:

with open(’non_existent_file.txt’, ’r’) as file:

data = file.read()

except FileNotFoundError:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Practical Applications of File Handling and Exceptions Page 17

print("File not found. Please check the file path.")

except Exception as e:

print(f"An unexpected error occurred: {e}")

In this example, we use a try block to attempt to open and read a file. If the file does
not exist, a FileNotFoundError is raised, and we handle it by printing a user-friendly
message. The generic Exception catch-all handles any other unexpected errors.

Custom Exception Classes

For more complex applications, defining custom exception classes can help manage specific
error conditions more effectively:

class ConfigurationError(Exception):

pass

def load_config(file_path):

try:

with open(file_path , ’r’) as file:

Simulating a configuration load failure

raise ConfigurationError("Failed to load configuration.")

except ConfigurationError as e:

print(f"Configuration error: {e}")

except Exception as e:

print(f"An unexpected error occurred: {e}")

load_config(’config.ini’)

Here, we define a custom ConfigurationError and raise it if the configuration file fails to
load. This approach makes it easier to identify and handle specific error conditions.

Logging Exceptions

Combining logging with exception handling provides a powerful way to track and diagnose
issues in your application. Here’s an example:

import logging

logging.basicConfig(filename=’app.log’, level=logging.ERROR ,

format=’%(asctime)s - %(levelname)s - %(message)s’)

def divide(a, b):

try:

result = a / b

return result

except ZeroDivisionError as e:

logging.error(f"Error occurred: {e}")

print("Cannot divide by zero.")

except Exception as e:

logging.error(f"Unexpected error: {e}")

print("An unexpected error occurred.")

divide (10, 0)

In this example, we log any exceptions that occur during the division operation. This
way, we can keep track of errors and investigate them later using the log file.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Practical Applications of File Handling and Exceptions Page 18

Best Practices for Error Handling

• Be specific with exceptions: Catch specific exceptions whenever possible to
handle different error conditions appropriately.

• Provide meaningful messages: Ensure that error messages are clear and provide
enough information to understand the issue.

• Clean up resources: Use finally blocks to clean up resources such as file handles
and network connections, ensuring they are closed properly even if an error occurs.

• Fail gracefully: Design your application to continue functioning or shut down
gracefully in the event of an error, providing a good user experience.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Working with Files and Exceptions
	Reading and Writing Files
	Working with Different File Formats
	Exception Handling
	Practical Applications of File Handling and Exceptions

