GitHub for Beginners

Comprehensive Guide to Collaboration

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials
(©) 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

[Overview and Purpose of GitHub| 2
[Creating a GitHub Account)| 4
[Creating a New Repository| 7
[Cloning a Repository from GitHub| 9
[Forking Repositories| 12
(Making Pull Requests| 14
[Reviewing and Merging Pull Requests| 16
(Issues and Project Boards| 18
[Overview of GitHub Pages| 20
[Creating and Deploying a GitHub Pages Site| 22

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Overview and Purpose of GitHub Page 2

Overview and Purpose of GitHub

GitHub is a web-based platform that leverages the power of Git, a distributed version con-
trol system, to facilitate collaborative software development. It provides a user-friendly
interface and a suite of tools designed to enhance the software development workflow.
GitHub allows developers to host their code repositories, manage version control, collab-
orate with other developers, and deploy projects, all in one place.

Primary Purpose of GitHub

The primary purpose of GitHub is to streamline the development process by providing
tools that enable developers to work together more efficiently. By hosting code on GitHub,
teams can keep track of changes, manage project versions, and collaborate seamlessly,
regardless of geographical location.

Key Aspects of GitHub

e GitHub hosts millions of repositories, ranging from small personal projects to large-
scale enterprise software.

e GitHub facilitates collaboration through features like pull requests, code reviews,
and issue tracking.

e GitHub provides tools for managing tasks, tracking progress, and organizing work
using issues and project boards.

e With GitHub Actions, developers can automate testing, building, and deploying
their applications.

Differences between Git and GitHub

While Git and GitHub are closely related, they serve different purposes in the develop-
ment workflow.

Git

Git is a distributed version control system (DVCS) developed by Linus Torvalds in 2005.
It is a command-line tool that allows developers to track changes in their source code over
time. Git enables developers to create branches, merge changes, and manage versions of

their codebase. It operates locally on a developer’s machine, allowing for offline work and
faster operations.

GitHub

GitHub is a web-based platform built on top of Git that provides a graphical interface and
additional features for managing Git repositories. It facilitates collaboration by providing
tools for code review, issue tracking, and project management. GitHub hosts repositories
in the cloud, making it easy to share code and collaborate with others. It integrates with
various tools and services to enhance the development workflow, including continuous
integration (CI) and continuous deployment (CD) pipelines.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Overview and Purpose of GitHub Page 3

Relation between Git and GitHub

Git is the underlying version control system, while GitHub is a platform that makes it
easier to use Git for collaborative development.

Key Features of GitHub

GitHub offers a variety of features that make it a powerful tool for developers.

Repositories
A repository (or repo) is a storage space where your project’s files and their revision

history are kept.

Developers can create repositories to host their code. Repositories can be public (ac-
cessible to anyone) or private (restricted access).

GitHub provides settings to manage repository visibility, collaborators, and integrations.

Branches
Branches are a core feature of Git that allow you to diverge from the main line of devel-

opment and continue to work without affecting that main line.

Developers often use branches to develop features, fix bugs, or experiment with new
ideas. Once the work on a branch is complete, it can be merged back into the main
branch.

Pull Requests
A pull request is a method of submitting contributions to a repository. It lets you no-

tify project maintainers about changes you've pushed to a branch in a GitHub repository.

Pull requests facilitate code review and discussion before merging changes into the main
branch. They provide a way to propose changes, review the differences, and integrate
them after approval.

Issues

Issues are used to track tasks, enhancements, and bugs for your projects.

Issues can be assigned to team members, labeled for categorization, and linked to pull
requests and commits. They are a key tool for project management and communication
within a development team.

Project Boards

Project boards are customizable boards that can be used to organize and prioritize your
work.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating a GitHub Account Page 4

Similar to Kanban boards, project boards allow developers to create and manage tasks,
track their progress, and ensure that work is aligned with project goals.

GitHub Actions

GitHub Actions is a CI/CD platform that allows you to automate your build, test, and
deployment pipeline.

Developers can create workflows that automatically build and test code, deploy applica-
tions, and handle other repetitive tasks.

GitHub Pages

GitHub Pages is a static site hosting service that takes HTML, CSS, and JavaScript files
directly from a repository on GitHub, optionally runs the files through a build process,
and publishes a website.

It’s commonly used for project documentation, personal websites, and portfolio projects.

Wikis
Every GitHub repository comes with a wiki that you can use to share long-form content
about your project.

Wikis are useful for documentation, how-tos, and other detailed information related to
the project.

By leveraging these features, developers can effectively manage their code, collaborate
with team members, and streamline their development workflow.

Creating a GitHub Account

Step-by-step Guide to Creating a GitHub Account
Visit the GitHub Website

Open your web browser and go to GitHub’s website.

Sign Up for an Account
1. Click on the ”Sign up” button located in the upper-right corner of the homepage.

2. Enter your desired username, email address, and a strong password.

3. Click on ”Create account” to proceed.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating a GitHub Account Page 5

Verify Your Email

GitHub will send a verification email to the address you provided. Check your email
inbox and follow the instructions in the email to verify your account.

Complete the Setup

After verifying your email, you will be prompted to complete a few more steps to set
up your account. This includes selecting your plan (free or paid) and personalizing your
experience. Follow the on-screen instructions to complete these steps.

Welcome to GitHub

Once your account is set up, you will be directed to your GitHub dashboard, where you
can start creating and managing repositories.

Configuring Your Profile
Setting Up Your User Profile
Accessing Your Profile Click on your profile picture in the upper-right corner of the

GitHub interface and select ” Your profile” from the dropdown menu.

Editing Your Profile
1. On your profile page, click the ”Edit profile” button.

2. Update your personal information, including your name, bio, location, and website
URL.

3. Upload a profile picture to personalize your account.

Setting Up Your Profile Readme

1. Create a special repository named the same as your username (e.g., username/user-
name).

2. Add a README.md file to this repository. The contents of this file will be displayed
on your GitHub profile page.

3. Use Markdown to format your README, including text, images, links, and badges
to showcase your projects and skills.
Customizing Profile Settings and Preferences
Accessing Settings Click on your profile picture in the upper-right corner and select

”Settings” from the dropdown menu.

Personal Settings

1. Navigate to the ” Account” section to update your account settings, including your
email address and password.

2. In the ”Security” section, enable two-factor authentication (2FA) for added security.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating a GitHub Account Page 6

Notifications Go to the "Notifications” section to customize how you receive updates
about activity on your repositories, issues, and pull requests.

Appearance Adjust the theme and layout of GitHub by visiting the ” Appearance”
section. Choose between light and dark modes according to your preference.

Setting Up SSH Keys for Authentication
What are SSH Keys and Why Use Them?

Definition SSH (Secure Shell) keys are a pair of cryptographic keys used to authenti-
cate your computer to a remote server, such as GitHub, without using a password.

Benefits

e Enhanced security: SSH keys are more secure than traditional username/password
authentication.

e Convenience: Once set up, SSH keys allow you to interact with GitHub without
repeatedly entering your username and password.

Generating SSH Keys

Open a Terminal
e On Windows, you can use Git Bash, PowerShell, or Command Prompt.

e On macOS and Linux, use the built-in Terminal application.

Generate a New SSH Key Pair In the terminal, enter the following command:

ssh-keygen -t ed25519 -C "your_email@example.com"

If your system doesn’t support the ed25519 algorithm, you can use:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

Follow the Prompts When prompted to "Enter a file in which to save the key,”
press Enter to accept the default file location. Enter a secure passphrase when prompted
(optional, but recommended).

Add Your SSH Key to the SSH-Agent Start the SSH agent in the background:

eval "$(ssh-agent -s)"

Add your SSH private key to the SSH agent:

ssh-add ~/.ssh/id_ed25519

For RSA, the command would be:

ssh-add ~/.ssh/id_rsa

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating a New Repository Page 7

Adding SSH Keys to Your GitHub Account

Copy the SSH Key to Your Clipboard Use the following command to copy the
key:

clip < "/.ssh/id_ed25519.pub

For RSA:

clip < "/.ssh/id_rsa.pub

On macOS:
pbcopy < “/.ssh/id_ed25519.pub

On Linux:

cat “/.ssh/id_ed25519.pub

Then, manually copy the output.

Add the SSH Key to GitHub

1. In GitHub, click on your profile picture in the upper-right corner and select ”Set-
tings.”

2. Navigate to ”SSH and GPG keys” in the left sidebar.
3. Click the "New SSH key” button.

4. Provide a descriptive title for the key, paste your SSH key into the "Key” field, and
click ”Add SSH key.”

Verify Your SSH Key Setup Test your SSH connection with the following command:

ssh -T git@github.com

If successful, you will see a message confirming that you have successfully authenticated.

By following these steps, you will have successfully created and configured your GitHub
account, set up your user profile, and enabled SSH key authentication for secure and
convenient interactions with GitHub.

Creating a New Repository

Creating a new repository on GitHub is straightforward and can be done directly through
the GitHub interface.

Steps to Create a Repository from the GitHub Interface
Sign In to GitHub

1. Open your web browser and go to GitHub’s website.

2. Sign in to your GitHub account using your username and password.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating a New Repository Page 8

Navigate to the New Repository Page

1.

2.

Click on the "+ icon in the upper-right corner of the GitHub interface.

From the dropdown menu, select ”New repository.”

Fill Out Repository Details

Owner: Select the owner of the repository. If you belong to an organization, you
can choose the organization or your personal account.

Repository Name: Enter a name for your repository. The name should be unique
within the selected owner’s repositories and relevant to your project.

Description (optional): Provide a brief description of your repository. This
is optional but recommended as it helps others understand the purpose of your
project.

Choose Repository Visibility

Public: Select this option if you want anyone to see your repository. Public repos-
itories are ideal for open source projects.

Private: Select this option if you want to restrict access to your repository. Private
repositories are suitable for personal or proprietary projects.

Initialize the Repository

You have the option to initialize your repository with several default files. Initializing
the repository with these files helps you get started quickly.

Initializing a Repository with a README, .gitignore, and License

Add

Add

a README File
Check the box labeled "Add a README file.”

A README file is essential as it provides an overview of your project. You can edit
the README file later to include detailed information about your project, usage
instructions, and more.

a .gitignore File
Check the box labeled ” Add .gitignore.”

From the dropdown menu, select the type of project you are working on (e.g., Node,
Python, Java). This selection will create a .gitignore file tailored to your project,
which specifies which files and directories Git should ignore. This is useful for ex-
cluding files that are not meant to be tracked, such as build artifacts, dependencies,
and environment-specific files.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Cloning a Repository from GitHub Page 9

Add a License
e Check the box labeled ”Choose a license.”

e From the dropdown menu, select a license that best suits your project. Common
licenses include MIT, Apache 2.0, and GPL. Including a license file in your reposi-
tory is important for open source projects as it defines the terms under which others
can use, modify, and distribute your code.

Create Repository

Once you have filled out all the necessary details and selected your initialization options,
click the ” Create repository” button at the bottom of the page. GitHub will create your
new repository and redirect you to its main page, where you can start managing your
project.

Cloning a Repository from GitHub

Cloning a repository from GitHub allows you to create a local copy of the repository on
your computer. This enables you to work on the project offline and use Git commands
to manage changes.

Cloning Repositories to Your Local Machine
Sign In to GitHub

1. Open your web browser and go to GitHub’s website.

2. Sign in to your GitHub account using your username and password.

Navigate to the Repository
1. Find the repository you want to clone. You can use the search bar at the top of
the GitHub interface or navigate to the repository from your list of repositories.
Copy the Repository URL

1. On the main page of the repository, click the ”Code” button located above the list
of files.

2. Ensure you are on the "HTTPS” tab and click the clipboard icon to copy the
repository URL. The URL will look something like this:

https://github.com/username/repository-name.git

Open a Terminal

Open your terminal application. On Windows, you can use Git Bash, Command Prompt,
or PowerShell. On macOS and Linux, use the built-in Terminal application.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Cloning a Repository from GitHub Page 10

Navigate to Your Desired Directory

Use the cd command to navigate to the directory where you want to clone the repository.
For example:

cd path/to/your/directory

Clone the Repository

Use the git clone command followed by the repository URL you copied earlier:

git clone https://github.com/username/repository-name.git

Git will create a new directory named after the repository and download all the files,
branches, and commit history to your local machine.

Navigate to the Cloned Repository

Change into the newly created repository directory:

cd repository-name

Understanding the Structure of a Cloned Repository

Once you have cloned a repository, it’s important to understand its structure and how
Git organizes the files and directories:

Root Directory

The root directory of the cloned repository contains the main project files and directories.
This is where you will find the README.md, .gitignore, and LICENSE files if they were
initialized.

.git Directory

Inside the root directory, there is a hidden directory named .git. This directory con-
tains all the metadata and history for the repository, including configurations, branches,
and commit history. This directory is crucial for Git to track changes and manage the
repository.

Project Files and Directories

The remaining files and directories are the actual contents of your project. These can
include source code files, documentation, assets, configuration files, and more. The struc-
ture of these files will vary depending on the type of project.

Common Files

¢ README.md: A Markdown file that typically contains an introduction and
instructions for the project. It’s displayed on the repository’s main page on GitHub.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Cloning a Repository from GitHub Page 11

e .gitignore: A file that specifies which files and directories should be ignored by
Git. This helps prevent unnecessary files (like build artifacts or temporary files)
from being tracked.

e LICENSE: A file that defines the legal terms under which the project can be used,
modified, and distributed.

Understanding Repository Settings

Configuring your repository settings is essential for managing your project effectively on
GitHub.

Configuring Repository Settings (Description, Topics, Visibility)
Accessing Repository Settings

1. Navigate to the repository you want to configure.

2. Click on the ”Settings” tab located on the right side of the repository’s navigation
bar.
Configuring the Repository Description

e In the "Options” section, you will find the ”Repository name and description”
area. FEnter a brief and informative description of your repository. This helps
others understand the purpose and scope of your project.

e Optionally, you can add a URL to the repository’s homepage or documentation
site.
Adding Topics to Your Repository

e Below the description, you can add topics (tags) to categorize your repository.
Topics help improve discoverability on GitHub.

e To add topics, click on the "Manage topics” button, enter relevant keywords, and
press Enter. Topics might include programming languages, frameworks, or specific
technologies related to your project.

Configuring Repository Visibility

e Scroll down to the "Danger Zone” section to change the visibility of your repository.

e Public Repository: Select this option if you want anyone to see your repository.
Public repositories are ideal for open-source projects.

e Private Repository: Select this option if you want to restrict access to your
repository. Private repositories are suitable for personal or proprietary projects.

e To change the visibility, click on ”Change repository visibility,” select the desired
option, and confirm the change.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Forking Repositories Page 12

Managing Collaborators and Permissions
Accessing Collaborators Settings

1. In the repository settings, click on the ”Manage access” tab on the left sidebar.

Inviting Collaborators

1. To add collaborators to your repository, click on the ”Invite a collaborator” button.
2. Enter the GitHub username or email address of the person you want to invite.
3. Select the appropriate permission level for the collaborator:

e Read: Allows the collaborator to view and clone the repository.
e Triage: Allows the collaborator to manage issues and pull requests.

e Write: Allows the collaborator to push commits to the repository and manage
issues and pull requests.

e Maintain: Allows the collaborator to manage repository settings, including
adding collaborators.

e Admin: Grants full access to the repository, including the ability to delete
the repository.

4. Click ”Add” to send the invitation.

Managing Existing Collaborators

e In the "Manage access” section, you can see the list of current collaborators and
their permission levels.

e To change a collaborator’s permission level, click on the "Edit” button next to their
name and select the new permission level.

e To remove a collaborator, click on the "Remove” button next to their name.

Forking Repositories

Forking a repository is a common practice on GitHub, especially in open-source projects.
It allows you to create your own copy of someone else’s repository so you can make
changes without affecting the original project.

Why Use Forking?

e Forking allows you to experiment with changes without affecting the original repos-
itory. You can try new ideas, build features, or test bug fixes in your forked copy.

e When you fork a repository, you can contribute to the original project by submitting
pull requests. This is a common workflow in open-source projects where multiple
developers collaborate.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Forking Repositories Page 13

e You can customize the project to meet your specific needs or integrate it into your
own projects while still being able to pull in updates from the original repository.

e Forking a repository is a great way to learn from other developers’ code. You can
explore how a project is structured and try making your own improvements.

How to Fork a Repository
Sign In to GitHub
1. Open your web browser and go to GitHub’s website.

2. Sign in to your GitHub account using your username and password.

Navigate to the Repository

Find the repository you want to fork. You can use the search bar at the top of the GitHub
interface or navigate to the repository from another user’s profile or an organization’s

page.
Fork the Repository

1. On the repository’s main page, click the ”Fork” button located in the upper-right
corner of the page. The button is typically next to the ”Star” button.

2. GitHub will ask you where you want to fork the repository. Choose your personal
account or one of your organizations.

3. GitHub will create a copy of the repository under your account. This process might
take a few moments, depending on the size of the repository.
Access Your Forked Repository

Once the forking process is complete, GitHub will redirect you to the newly forked repos-
itory under your account. The URL will look something like this:

https://github.com/your-username/forked-repository

Clone Your Forked Repository (Optional)

To start working on your forked repository locally, you need to clone it to your machine.
1. Copy the URL of your forked repository from the "Code” button.

2. Open your terminal application and navigate to the directory where you want to
clone the repository.

3. Use the git clone command followed by the repository URL:

git clone https://github.com/your-username/forked-repository.git

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Making Pull Requests Page 14

Making Changes and Contributing
You can now make changes to your forked repository. Once you’re ready to contribute

your changes back to the original repository, you can create a pull request.

To do this, push your changes to a branch in your forked repository and then navi-
gate to the original repository. GitHub will suggest creating a pull request from your
branch.

Making Pull Requests

Pull requests are a core feature of collaborative development on GitHub. They allow
you to propose changes to a repository, discuss them with the repository owners and
contributors, and ultimately have your changes merged into the main project.

What are Pull Requests?

e A pull request (PR) is a method of submitting contributions to a project. It lets
you notify project maintainers about changes you've pushed to a branch in your
fork or branch of the repository.

e Pull requests facilitate code review and discussion. Other developers can see your
changes, provide feedback, suggest improvements, and approve or request changes
before your code is merged.

Purpose of Pull Requests

e Pull requests allow for peer review of code changes, ensuring code quality and
consistency.

e They provide a platform for collaboration and discussion, making it easier for mul-
tiple developers to work together on a project.

e Pull requests keep a record of changes and discussions, which is useful for future
reference and understanding the evolution of the project.

Creating and Submitting a Pull Request
Make Changes on a Branch

Before creating a pull request, make sure your changes are on a separate branch. This
branch should be based on the branch you want to merge into (e.g., main or develop).

git checkout -b my-feature-branch

Make your changes

git add

git commit -m "Description of the changes"

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Making Pull Requests Page 15

Push Your Branch to GitHub

Push your branch to your fork or the repository:

git push origin my-feature-branch

Navigate to the Repository on GitHub

Go to the repository on GitHub where you want to submit the pull request. This can be
either your fork or the original repository.

Initiate a Pull Request

e If your branch is in your fork, navigate to the original repository and GitHub will
prompt you to create a pull request from your recent push. Click the ”Compare
pull request” button.

e If you are on the repository page, click the ”"Pull requests” tab, then click the "New
pull request” button.

e Select the branch you want to merge into (e.g., main) and the branch with your
changes (e.g., my-feature-branch).

Fill Out the Pull Request Form

e Title: Provide a clear and concise title for your pull request.

e Description: Write a detailed description of the changes you've made. Explain
why the changes are necessary, what problem they solve, and any other relevant
context.

Submit the Pull Request

Once you've filled out the form, click the ”Create pull request” button to submit your
pull request. Your pull request will be listed in the ”Pull requests” tab of the repository,
where maintainers and collaborators can review and discuss it.

Best Practices for Pull Request Descriptions

e Write a clear and concise title and description. The title should summarize the
changes, and the description should provide detailed context.

e Explain what changes you made and why. Include details about the problem you
are solving or the feature you are adding.

e If your pull request addresses an issue, reference it in the description using the issue
number (e.g., "Fixes #123”). This links the pull request to the issue and provides
additional context.

e Provide any relevant background information or context that will help reviewers
understand your changes. This might include design decisions, screenshots, or per-
formance implications.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Reviewing and Merging Pull Requests Page 16

e Highlight the most important changes, especially if your pull request is large. This
helps reviewers focus on the critical parts of your submission.

e If you need feedback on particular aspects of your changes, mention this in the
description. Directing reviewers’ attention to specific areas can make the review
process more efficient.

e Describe how you tested your changes and any steps reviewers should take to verify
them. This can include automated tests, manual testing steps, or screenshots of
the changes in action.

Reviewing and Merging Pull Requests

Effective review and merging of pull requests (PRs) are critical to maintaining the quality
and stability of a codebase.

Accessing the Pull Request
1. Navigate to the repository on GitHub.

2. Click on the ”Pull requests” tab to see a list of open PRs.

3. Select the pull request you want to review.

Understanding the Changes

e On the pull request page, you will see a summary of the changes, including the
title, description, and any linked issues.

e Review the description to understand the purpose and context of the changes.

Viewing the Code Changes
1. Click on the "Files changed” tab to see the modified files and lines of code.
2. GitHub will show a diff view, highlighting additions in green and deletions in red.
3. Carefully review the changes, looking for potential issues, improvements, or incon-

sistencies.

Discussing and Making Code Review Comments
Adding Comments

1. To comment on a specific line of code, click on the ”+” icon next to the line number.

2. Enter your feedback, suggestions, or questions in the comment box and click ”Start
a review” or ”Add single comment.”

3. Use inline comments to provide precise feedback on specific parts of the code.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Reviewing and Merging Pull Requests Page 17

Starting a Review

1. If you have multiple comments, click ”Start a review” for the first comment. This
allows you to submit all comments together.

2. Continue adding comments as needed. They will be collected into a single review.

Submitting Your Review

1. Once you have finished adding comments, click the ”"Review changes” button at the
top right.

2. Select the appropriate option:

e Comment: Submit your comments without approving or requesting changes.
e Approve: Approve the changes if you find them satisfactory.

e Request changes: Request changes if there are issues that need to be addressed
before merging.

3. Click ”Submit review” to finalize your feedback.

Engaging in Discussion

e Engage in discussions with the PR author and other reviewers. Use the comment
threads to clarify questions, discuss alternatives, and iterate on the code changes.

e Be respectful and constructive in your feedback, aiming to improve the code quality
and facilitate learning.

Merging Pull Requests and Resolving Conflicts
Merging the Pull Request

1. Once the pull request has been reviewed and approved, it can be merged into the
target branch.

2. Navigate to the bottom of the PR page and click the "Merge pull request” button.
3. Choose the merge method:

e Create a merge commit: Keeps all commits from the feature branch.
e Squash and merge: Combines all commits into a single commit.
e Rebase and merge: Reapplies commits from the feature branch onto the base

branch.

4. Enter a commit message if required and click ”Confirm merge.”

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Issues and Project Boards Page 18

Resolving Merge Conflicts

Sometimes, conflicts arise when the changes in the PR conflict with the target branch.
GitHub will alert you if there are merge conflicts.

1. Click the "Resolve conflicts” button.
2. GitHub will show the conflicting files and sections.

3. Manually edit the files to resolve the conflicts. Look for markers like <<<<<<|
======_and >>>>>> to identify conflicting sections.

4. After resolving conflicts, mark the file as resolved and commit the changes.

Finalizing the Merge

1. After resolving conflicts, you may need to re-review the PR to ensure the conflicts
were resolved correctly.

2. Once the PR is ready, repeat the merging process to merge the PR into the target
branch.

Issues and Project Boards

Effectively managing issues and organizing work with project boards are crucial for main-
taining a well-structured and productive project.

Creating an Issue
1. Navigate to the repository on GitHub.
2. Click on the "Issues” tab.
3. Click the "New issue” button to open the issue creation form.
4. Title: Provide a concise and descriptive title for the issue.

5. Description: Write a detailed description of the issue, including any relevant
information such as steps to reproduce a bug, expected behavior, actual behavior,
and any screenshots or logs.

6. Templates: Use issue templates if available. Templates provide a structured for-
mat for reporting bugs, requesting features, or submitting other types of issues.

Submitting the Issue

After filling out the issue details, click the ”Submit new issue” button. The issue will be
added to the list of open issues for the repository, where it can be tracked and managed.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Issues and Project Boards Page 19

Managing Issues

1. To update an issue, navigate to the issue and click the "Edit” button.

2. You can comment on issues to provide updates, ask for additional information, or
discuss potential solutions.

3. Close an issue when it has been resolved by clicking the ”Close issue” button. You
can also close issues automatically by including keywords like " Fixes #123” in your
commit messages.

Using Labels, Milestones, and Assignees

Labels are tags that help categorize and prioritize issues.

e Creating Labels: Navigate to the ”Labels” section under the "Issues” tab. Click
"New label” to create a label, provide a name and description, and choose a color.

e Applying Labels: Open an issue and click the "Labels” button on the right
sidebar. Select the relevant labels to apply them to the issue.

Milestones are used to group issues that are related to a specific goal or timeframe.

e Creating Milestones: Navigate to the ”"Milestones” section under the ”Issues”
tab. Click "New milestone,” provide a title, description, and due date (optional),
and click ” Create milestone.”

e Assigning Issues to Milestones: Open an issue and click the ”Milestone” button
on the right sidebar. Select the relevant milestone to associate it with the issue.

Assignees are team members responsible for addressing an issue.
e Assigning Issues: Open an issue and click the 7 Assignees” button on the right

sidebar. Select one or more team members to assign them to the issue.

Organizing Work with Project Boards (Kanban Style)
Creating a Project Board
1. Navigate to the repository on GitHub.

2. Click on the "Projects” tab.
3. Click the ”"New project” button to create a new project board.
4. Project Name: Provide a name for the project.

5. Template: Choose a template, such as ”Basic Kanban,” which includes columns
for ”To do,” ”In progress,” and ”"Done.”

6. Click ”Create project” to set up the board.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Overview of GitHub Pages Page 20

Adding Columns

Customize your project board by adding or renaming columns. Click "Add column”
to create new columns as needed. Common columns include ”Backlog,” ”Review,” and
"Testing.”

Adding Issues to the Project Board
e To add issues to the project board, navigate to the "Issues” tab.
e Open the issue you want to add and click the ”Projects” button on the right sidebar.
Select the relevant project board and the column to place the issue in.

Managing Issues on the Project Board

e Drag and drop issues between columns to update their status. For example, move
an issue from ”To do” to "In progress” when work begins.

e Use the board to visualize the workflow, track progress, and ensure that work is
moving forward efficiently.

Tracking Progress with Project Boards

e Use the project board to monitor the overall progress of your project. Columns
give a clear view of which tasks are pending, in progress, or completed.

e Update issues and move them across columns as work progresses to keep the project
board up to date.

By using issues, labels, milestones, assignees, and project boards effectively, you can en-
hance project management, improve team collaboration, and maintain a clear and orga-
nized workflow. This structured approach helps ensure that tasks are tracked, prioritized,
and completed efficiently.

Overview of GitHub Pages

GitHub Pages is a static site hosting service provided by GitHub. It allows you to host web
pages directly from a GitHub repository. These pages can be HTML, CSS, JavaScript,
or generated from a variety of static site generators such as Jekyll, Hugo, or others. The
service is free and can be used to host personal, project, or organization sites.

Key Features of GitHub Pages

e Hosting a website on GitHub Pages is straightforward and involves pushing your
web files to a GitHub repository.

e You can configure custom domains for your GitHub Pages site.

e GitHub Pages supports HT'TPS for secure connections, and GitHub automatically
provides SSL certificates for custom domains.

e Changes to your website can be made via commits to your repository, fitting seam-

lessly into your Git workflow.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Overview of GitHub Pages Page 21

Use Cases for GitHub Pages

GitHub Pages is versatile and can be used for various purposes. Here are some common
use cases:

Personal Websites and Portfolios

e Developers, designers, and other professionals use GitHub Pages to create personal
websites and portfolios. This is an excellent way to showcase projects, skills, and
achievements.

e You can host an online resume or CV, making it easily accessible to potential
employers and collaborators.

Project Documentation

e Many open-source projects use GitHub Pages to host detailed user guides, man-
uals, and API documentation. This makes it easier for users and contributors to
understand and use the project.

e GitHub Pages can serve as a wiki or knowledge base for a project, providing a
centralized location for information and resources.
Blogs and Technical Writing

e Developers often use GitHub Pages to host personal blogs where they share tutori-
als, technical articles, and thoughts on various topics.

e Technical writers and educators use GitHub Pages to create and share tutorials,
course materials, and other educational content.

Organization and Community Sites

e Communities and organizations use GitHub Pages to create websites that serve as
hubs for their activities, announcements, and resources.

e GitHub Pages can be used to create websites for events, such as conferences, mee-
tups, and hackathons, providing information about schedules, speakers, and regis-
tration.

Project Showcases

e Developers use GitHub Pages to create demo sites that showcase the features and
functionality of their projects. This is particularly useful for front-end projects and
libraries.

e Projects can have dedicated landing pages that provide an overview of the project,
its goals, and links to relevant resources.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Deploying a GitHub Pages Site Page 22

Creating and Deploying a GitHub Pages Site

Setting up a GitHub Pages site involves configuring a repository, choosing a publishing
source, and customizing the deployed site. Here’s a step-by-step guide to help you through
the process:

Setting Up a Repository for GitHub Pages
Create a New Repository

1. Sign in to your GitHub account.
2. Click the ”+” icon in the upper-right corner of the page and select ” New repository.”

3. Name your repository. For a user or organization site, name it <username>.github.io
(e.g., myusername.github.io). For project sites, you can use any name.

4. Optionally, add a description.
5. Choose the repository visibility (public or private).
6. Initialize the repository with a README file if desired.

7. Click ”Create repository.”

Add Web Content

1. Clone the repository to your local machine:

git clone https://github.com/yourusername/your -repo-name.git
cd your -repo-name

2. Add your website files to the repository. These can include HTML, CSS, JavaScript,
images, and any other assets.

3. Commit and push the changes:

git add
git commit -m "Initial commit"
git push origin main

Choosing a Publishing Source
Navigate to Repository Settings
1. Go to your repository on GitHub.

2. Click on the ”Settings” tab at the top of the repository page.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Deploying a GitHub Pages Site Page 23

Configure GitHub Pages
1. Scroll down to the ”GitHub Pages” section.

2. Under ”"Source,” select the branch you want to use for your site. Common choices
are:

e main: This is the default branch for most repositories.

e gh-pages: A dedicated branch for GitHub Pages.

3. Optionally, select a folder within the branch, such as /docs, if your site files are
located in a subdirectory.

Save Settings

After selecting the source branch and folder, click ”Save.” GitHub will build and deploy
your site. This may take a few moments.

Deploying and Customizing Your GitHub Pages Site
Access Your Site

Once the deployment is complete, your site will be available at https://<username>.github.io/<repos
or https://<username>.github.io for user/organization sites. You can find the URL
in the ”GitHub Pages” section of the repository settings.

Customizing Your Site

e GitHub Pages offers built-in themes that you can apply to your site. In the " GitHub
Pages” section, click ”Choose a theme” and select a theme. This will create a
_config.yml file in your repository with theme configuration.

e To use a custom domain, go to the "GitHub Pages” section and enter your custom
domain in the "Custom domain” field. Create a DNS record with your domain
registrar pointing to GitHub’s servers (specific instructions are provided in the
GitHub documentation).

e GitHub Pages natively supports Jekyll, a static site generator. You can use Jekyll
to add dynamic content, templates, and layouts. Create a _config.yml file in the
root of your repository and add Jekyll configuration. Organize your content using
Jekyll’s conventions (e.g., _posts for blog posts).

Updating Your Site

To update your site, simply push new commits to the branch you configured as the source
for GitHub Pages. GitHub will automatically rebuild and deploy your site whenever new
changes are pushed.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Deploying a GitHub Pages Site Page 24

Troubleshooting

e If your site fails to build, GitHub will display error messages in the ” GitHub Pages”
section. Review these messages to diagnose and fix the issues.

e Sometimes, changes may not appear immediately due to caching. Clear your
browser cache or wait for the cache to refresh.

By following these steps, you can create, deploy, and customize a GitHub Pages site
effectively. GitHub Pages provides a straightforward way to host static websites, making
it an excellent choice for personal portfolios, project documentation, and more.

Copyright (©) 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Overview and Purpose of GitHub
	Creating a GitHub Account
	Creating a New Repository
	Cloning a Repository from GitHub
	Forking Repositories
	Making Pull Requests
	Reviewing and Merging Pull Requests
	Issues and Project Boards
	Overview of GitHub Pages
	Creating and Deploying a GitHub Pages Site

