
Python Data Structures

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Overview of Python Data Structures 2

Creating and Accessing Lists 3

Creating and Accessing Tuples 6

Creating and Accessing Dictionaries 8

Creating and Accessing Sets 12

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Overview of Python Data Structures Page 2

Overview of Python Data Structures

Data structures are a way of organizing and storing data so that they can be accessed
and worked with efficiently. The choice of data structure can significantly impact the
performance and clarity of your code. Python offers a variety of built-in data structures,
each tailored to handle different types of data and operations.

Lists

Lists are one of the most versatile data structures in Python. They are ordered, mutable,
and allow duplicate elements. Lists are particularly useful when you need to maintain a
collection of items that can change over time.

Tuples

Tuples are similar to lists, but with one key difference: they are immutable. Once a tuple
is created, its contents cannot be changed. This immutability makes tuples useful for
data that should not be modified.

Dictionaries

Dictionaries are powerful data structures that store data in key-value pairs. They are
unordered, mutable, and indexed by keys, which must be unique and immutable. Dictio-
naries are ideal for scenarios where you need to associate values with keys and perform
fast lookups.

Sets

Sets are unordered collections of unique elements. They are mutable and do not allow
duplicate values, making them useful for membership testing and eliminating duplicate
entries.

Choosing the Right Data Structure

Choosing the appropriate data structure is crucial for optimizing performance and ensur-
ing code readability. Here are some guidelines:

• Use Lists: When you need an ordered collection of items that may change over
time.

• Use Tuples: When you need an immutable sequence of items.

• Use Dictionaries: When you need to associate values with unique keys and per-
form fast lookups.

• Use Sets: When you need a collection of unique items and set operations.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Lists Page 3

Creating and Accessing Lists

Lists in Python are one of the most versatile and frequently used data structures. They
provide an ordered collection of items, which can be of mixed types, although typically,
items are of the same type for consistency. Lists are mutable, meaning their contents
can be changed after they are created, making them highly flexible for a wide range of
applications.

Creating a List

Creating a list in Python is straightforward. Lists are defined using square brackets [],
and the items within the list are separated by commas.

fruits = [’apple ’, ’banana ’, ’cherry ’]

In this example, fruits is a list containing three string elements. Lists can contain
elements of different data types, such as integers, strings, and even other lists:

mixed_list = [1, ’apple ’, 3.14, [2, 4, 6]]

Here, mixed list includes an integer, a string, a float, and another list.

Accessing List Elements

Elements in a list are accessed using their index, which starts at 0 for the first element.
Negative indices can also be used to access elements from the end of the list, where -1
refers to the last element, -2 to the second last, and so on.

print(fruits [0]) # Output: apple

print(fruits [-1]) # Output: cherry

You can also access a range of elements using slicing. Slicing syntax is list[start:end],
where start is the index of the first element to include, and end is the index of the first
element to exclude.

print(fruits [1:3]) # Output: [’banana ’, ’cherry ’]

Modifying Lists: Adding, Removing, and Changing Elements

Lists are mutable, meaning you can modify their content after they are created. Python
provides several methods to add, remove, and change elements in a list.

Adding Elements

You can add elements to a list using the append() method to add a single element at the
end, or the extend() method to add multiple elements.

fruits.append(’orange ’)

print(fruits) # Output: [’apple ’, ’banana ’, ’cherry ’, ’orange ’]

fruits.extend ([’mango’, ’grape’])

print(fruits) # Output: [’apple ’, ’banana ’, ’cherry ’, ’orange ’, ’mango

’, ’grape ’]

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Lists Page 4

To add an element at a specific position, use the insert() method, which takes two
arguments: the index at which to insert the element and the element itself.

fruits.insert(1, ’blueberry ’)

print(fruits) # Output: [’apple ’, ’blueberry ’, ’banana ’, ’cherry ’, ’

orange ’, ’mango ’, ’grape ’]

Removing Elements

You can remove elements from a list using the remove() method to remove the first
occurrence of a value, the pop() method to remove an element at a specific index (or the
last element if no index is specified), or the clear() method to remove all elements.

fruits.remove(’banana ’)

print(fruits) # Output: [’apple ’, ’blueberry ’, ’cherry ’, ’orange ’, ’

mango ’, ’grape ’]

fruits.pop (2)

print(fruits) # Output: [’apple ’, ’blueberry ’, ’orange ’, ’mango ’, ’

grape ’]

fruits.clear ()

print(fruits) # Output: []

Changing Elements

Since lists are mutable, you can change the value of elements by accessing them directly
by their index.

fruits = [’apple ’, ’banana ’, ’cherry ’]

fruits [1] = ’blueberry ’

print(fruits) # Output: [’apple ’, ’blueberry ’, ’cherry ’]

List Comprehensions

List comprehensions provide a concise way to create lists. They consist of brackets
containing an expression followed by a for clause, and can also include if clauses to
conditionally include elements.

Basic List Comprehension

A simple example of a list comprehension that creates a list of squares of numbers from
0 to 9:

squares = [x**2 for x in range (10)]

print(squares) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

List Comprehension with Conditionals

List comprehensions can also include conditional logic. For example, creating a list of
even numbers from 0 to 9:

evens = [x for x in range (10) if x % 2 == 0]

print(evens) # Output: [0, 2, 4, 6, 8]

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Lists Page 5

Nested List Comprehensions

List comprehensions can be nested to handle more complex structures. For example,
creating a list of products of pairs of numbers:

products = [x * y for x in range(1, 4) for y in range(1, 4)]

print(products) # Output: [1, 2, 3, 2, 4, 6, 3, 6, 9]

List comprehensions provide a powerful way to create and manipulate lists efficiently and
with clear, concise code.

Common List Methods

Python provides a rich set of methods to work with lists, making it easy to perform
common tasks. Here are some of the most frequently used list methods:

• append(x): Adds an element x to the end of the list.

• extend(iterable): Extends the list by appending elements from an iterable.

• insert(i, x): Inserts an element x at position i.

• remove(x): Removes the first occurrence of element x.

• pop([i]): Removes and returns the element at position i. If i is not specified, it
removes and returns the last element.

• clear(): Removes all elements from the list.

• index(x[, start[, end]]): Returns the index of the first occurrence of element
x within the optional range start to end.

• count(x): Returns the number of occurrences of element x.

• sort(key=None, reverse=False): Sorts the list in place. The key parameter can
be a function that serves as a key for the sort comparison, and reverse specifies
whether to sort in descending order.

• reverse(): Reverses the elements of the list in place.

• copy(): Returns a shallow copy of the list.

Examples of Common List Methods

Here are some practical examples of how these methods can be used:

Example list

numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5]

Append

numbers.append (3)

print(numbers) # Output: [3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

Count

print(numbers.count (1)) # Output: 2

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Tuples Page 6

Index

print(numbers.index (5)) # Output: 4

Sort

numbers.sort()

print(numbers) # Output: [1, 1, 2, 3, 3, 4, 5, 5, 6, 9]

Reverse

numbers.reverse ()

print(numbers) # Output: [9, 6, 5, 5, 4, 3, 3, 2, 1, 1]

Copy

numbers_copy = numbers.copy()

print(numbers_copy) # Output: [9, 6, 5, 5, 4, 3, 3, 2, 1, 1]

Creating and Accessing Tuples

Tuples serve as an immutable sequence of values. They provide a simple and efficient
way to group related data together, ensuring that once a tuple is created, its contents
cannot be altered. This immutability makes tuples a reliable choice for certain types of
data storage, where consistency and integrity are paramount.

Creating Tuples

Creating a tuple in Python is straightforward. Tuples are defined by enclosing a comma-
separated sequence of elements within parentheses. Here’s a simple example:

coordinates = (10.0, 20.0)

In this example, coordinates is a tuple containing two floating-point numbers. The
parentheses () are used to define the tuple, and the values inside are separated by com-
mas. Tuples can hold elements of various data types, such as integers, floats, strings, and
even other tuples. Here’s an example of a tuple containing different types of data:

person = ("Alice", 30, "Data Scientist", (2024, 6, 1))

In this case, person is a tuple that includes a string, an integer, another string, and
another tuple representing a date. This demonstrates the flexibility of tuples in grouping
together related but different types of data.

Accessing Tuple Elements

To access elements in a tuple, you use indexing, just like with lists. Tuple indices start
at 0, and negative indexing is also supported. Here’s how you can access elements in the
person tuple:

name = person [0] # "Alice"

age = person [1] # 30

profession = person [2] # "Data Scientist"

date = person [3] # (2024, 6, 1)

You can also use negative indexing to access elements from the end of the tuple:

last_element = person [-1] # (2024, 6, 1)

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Tuples Page 7

Tuple Unpacking

Tuple unpacking is a powerful feature in Python that allows you to assign the values of a
tuple to multiple variables in a single statement. This can make your code more readable
and concise. Here’s an example of tuple unpacking:

coordinates = (10.0, 20.0)

x, y = coordinates

In this example, the values in the coordinates tuple are unpacked and assigned to the
variables x and y. This is particularly useful when a function returns a tuple, and you
want to assign the returned values to separate variables immediately.
Tuple unpacking also works with nested tuples. Consider the person tuple we defined
earlier:

name , age , profession , (year , month , day) = person

In this case, not only are the top-level elements unpacked into name, age, and profession,
but the nested tuple representing the date is also unpacked into year, month, and day.
Another common use of tuple unpacking is in looping constructs, such as when iterating
over a list of tuples. Here’s an example:

students = [("Alice", 30), ("Bob", 25), ("Charlie", 35)]

for name , age in students:

print(f"{name} is {age} years old.")

In this loop, each tuple in the students list is unpacked into the name and age variables,
making the code inside the loop cleaner and more intuitive.

Immutability and Its Implications

One of the defining characteristics of tuples is their immutability. Once a tuple is created,
its contents cannot be modified. This immutability has several important implications:

Safety and Integrity

Since tuples cannot be altered, they are a safe way to ensure that the data remains con-
sistent throughout the execution of a program. This is particularly useful for representing
fixed collections of data, such as the coordinates of a point, the RGB values of a color,
or configuration settings.

Hashability

Because tuples are immutable, they can be used as keys in dictionaries and stored in sets,
which require their elements to be hashable. Lists, which are mutable, do not have this
property.

Performance

Tuples can be more memory-efficient and faster to create than lists, especially for large
sequences of data that do not need to be modified. This performance benefit can be
significant in scenarios where large, immutable sequences of data are used frequently.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Dictionaries Page 8

Predictability

Immutability ensures that functions and methods that receive tuples as arguments cannot
inadvertently modify the data. This predictability makes it easier to reason about the
behavior of your code and to avoid unintended side effects.
However, the immutability of tuples also means that if you need to change the data, you
will need to create a new tuple with the desired modifications. This can involve copying
and manipulating data, which may be less efficient than modifying a list in place.

When to Use Tuples

Tuples are best used in scenarios where the immutability, hashability, and efficiency they
provide are advantageous. Here are some common use cases for tuples:

• Fixed Collections of Items: When you have a collection of items that should
not change, such as the dimensions of a rectangle, the coordinates of a point, or
configuration settings.

• Function Returns: When a function needs to return multiple values, using a
tuple is a natural and efficient choice. This allows the caller to immediately unpack
the returned values into separate variables.

• Dictionary Keys: When you need to use compound keys in a dictionary, tuples
are an excellent choice because they are immutable and hashable.

• Ensuring Data Integrity: In scenarios where data integrity is critical, using
tuples can prevent accidental modifications. For example, tuples can be used to
store the days of the week, months of the year, or other constant collections.

• Iterating with Enumerated Values: The enumerate function returns tuples
containing a count and a value, making it easy to loop through a sequence and keep
track of the index.

• Data Exchange Between Functions: Tuples provide a simple way to group
multiple pieces of data together and pass them between functions, ensuring that
the grouped data remains intact and unmodified.

Creating and Accessing Dictionaries

Dictionaries are among the most powerful and flexible data structures in Python, offering
a way to store and manage data in key-value pairs. This characteristic makes dictionar-
ies particularly suitable for applications where data relationships are essential, such as
databases, configuration files, and various data manipulation tasks.

Dictionaries in Python are created using curly braces {} and consist of key-value pairs,
where each key is unique and immutable (strings, numbers, or tuples) and the value can
be of any type. Here’s how you can create a dictionary:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Dictionaries Page 9

Creating a Dictionary

student = {

’name’: ’Alice’,

’age’: 25,

’course ’: ’Data Science ’

}

In this example, student is a dictionary with three key-value pairs. The keys ’name’,
’age’, and ’course’ are strings, each associated with their respective values.

Accessing Values in a Dictionary

To access values in a dictionary, you use the keys. This is done using square brackets []:

print(student[’name’]) # Output: Alice

If you attempt to access a key that doesn’t exist in the dictionary, Python will raise a
KeyError. To avoid this, you can use the get method, which allows you to provide a
default value if the key is not found:

print(student.get(’grade ’, ’N/A’)) # Output: N/A

The getmethod is particularly useful for safely accessing dictionary values without risking
a runtime error.

Adding, Modifying, and Removing Key-Value Pairs

Dictionaries are mutable, meaning you can add, modify, and remove key-value pairs after
the dictionary has been created.

Adding Key-Value Pairs

To add a new key-value pair to a dictionary, you simply assign a value to a new key:

student[’grade’] = ’A’

print(student) # Output: {’name ’: ’Alice ’, ’age ’: 25, ’course ’: ’Data

Science ’, ’grade ’: ’A’}

Modifying Key-Value Pairs

Modifying an existing key-value pair is done by reassigning a new value to the key:

student[’age’] = 26

print(student) # Output: {’name ’: ’Alice ’, ’age ’: 26, ’course ’: ’Data

Science ’, ’grade ’: ’A’}

Removing Key-Value Pairs

To remove a key-value pair, you can use the del statement or the pop method. The del
statement removes the key-value pair without returning the value, while pop removes the
pair and returns the value:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Dictionaries Page 10

del student[’grade’]

print(student) # Output: {’name ’: ’Alice ’, ’age ’: 26, ’course ’: ’Data

Science ’}

age = student.pop(’age’)

print(age) # Output: 26

print(student) # Output: {’name ’: ’Alice ’, ’course ’: ’Data Science ’}

The pop method is particularly useful when you need the value that was associated with
the key before it was removed.

Clearing a Dictionary

If you need to remove all key-value pairs from a dictionary, you can use the clearmethod:

student.clear()

print(student) # Output: {}

This effectively resets the dictionary to an empty state.

Dictionary Comprehensions

Dictionary comprehensions provide a concise way to create dictionaries. Similar to list
comprehensions, dictionary comprehensions allow you to construct dictionaries in a single
line of code using an iterable.

Basic Dictionary Comprehension

Here’s an example of a simple dictionary comprehension that creates a dictionary of
squares:

squares = {x: x*x for x in range(1, 6)}

print(squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

In this example, the comprehension iterates over a range of numbers from 1 to 5, setting
each number as a key and its square as the corresponding value.

Conditional Dictionary Comprehension

You can also include conditions in dictionary comprehensions. For example, to create a
dictionary of squares only for even numbers:

even_squares = {x: x*x for x in range(1, 6) if x % 2 == 0}

print(even_squares) # Output: {2: 4, 4: 16}

The condition if x % 2 == 0 ensures that only even numbers are included in the result-
ing dictionary.

Complex Dictionary Comprehension

Dictionary comprehensions can also be used to transform or filter data from existing
dictionaries. For instance, suppose you have a dictionary of student grades and you want
to create a new dictionary with only students who passed:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Dictionaries Page 11

grades = {’Alice ’: 85, ’Bob’: 70, ’Charlie ’: 50, ’Diana’: 90}

passing_grades = {student: grade for student , grade in grades.items()

if grade >= 60}

print(passing_grades) # Output: {’Alice ’: 85, ’Bob ’: 70, ’Diana ’: 90}

Here, the comprehension iterates over the grades dictionary, including only those stu-
dents with grades 60 or above.

Common Dictionary Methods

Python dictionaries come with a variety of built-in methods that facilitate various oper-
ations. Understanding these methods will help you manage dictionaries more effectively.

keys Method

The keysmethod returns a view object that displays a list of all the keys in the dictionary:

keys = student.keys()

print(keys) # Output: dict_keys ([’name ’, ’age ’, ’course ’])

values Method

The values method returns a view object that displays a list of all the values in the
dictionary:

values = student.values ()

print(values) # Output: dict_values ([’Alice ’, 26, ’Data Science ’])

items Method

The items method returns a view object that displays a list of the dictionary’s key-value
pairs as tuples:

items = student.items ()

print(items) # Output: dict_items ([(’name ’, ’Alice ’), (’age ’, 26), (’

course ’, ’Data Science ’)])

update Method

The update method updates the dictionary with elements from another dictionary or an
iterable of key-value pairs:

student.update ({’grade’: ’A’, ’age’: 27})

print(student) # Output: {’name ’: ’Alice ’, ’age ’: 27, ’course ’: ’Data

Science ’, ’grade ’: ’A’}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Sets Page 12

setdefault Method

The setdefault method returns the value of a key if it is in the dictionary; if not, it
inserts the key with a specified default value:

course = student.setdefault(’course ’, ’Mathematics ’)

print(course) # Output: Data Science

level = student.setdefault(’level ’, ’Undergraduate ’)

print(level) # Output: Undergraduate

print(student) # Output: {’name ’: ’Alice ’, ’age ’: 27, ’course ’: ’Data

Science ’, ’grade ’: ’A’, ’level ’: ’Undergraduate ’}

popitem Method

The popitem method removes and returns the last key-value pair as a tuple:

last_item = student.popitem ()

print(last_item) # Output: (’level ’, ’Undergraduate ’)

print(student) # Output: {’name ’: ’Alice ’, ’age ’: 27, ’course ’: ’

Data Science ’, ’grade ’: ’A’}

Creating and Accessing Sets

Sets in Python are a flexible data structure, designed to handle collections of unique
elements. They are particularly useful when you need to ensure that each item in a
collection is distinct, or when you need to perform common mathematical set operations
such as union, intersection, and difference. Sets are mutable, meaning you can add or
remove elements, although they only allow immutable (hashable) types to be included as
elements.

Creating a Set

Creating a set in Python is straightforward. You can define a set using curly braces {}
or the set() function. One of the key features of a set is that it automatically removes
duplicate items, ensuring that all elements are unique.

Using curly braces

fruits = {’apple ’, ’banana ’, ’cherry ’}

print(fruits) # Output: {’apple ’, ’banana ’, ’cherry ’}

Using the set() function

numbers = set([1, 2, 3, 4, 5])

print(numbers) # Output: {1, 2, 3, 4, 5}

When using the set() function, you can pass any iterable (such as a list or a string)
to create a set. The elements are then extracted and added to the set, with duplicates
removed.

Accessing Set Elements

Unlike lists and tuples, sets are unordered, meaning there is no indexing or order to the
elements. Therefore, you cannot access elements by index. However, you can iterate over
the elements of a set using a for loop:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Sets Page 13

for fruit in fruits:

print(fruit)

This code will print each element in the fruits set. Because sets are unordered, the
output may vary each time you run the code.

Adding and Removing Elements

Sets are mutable, which means you can add or remove elements after the set has been
created. Python provides methods to facilitate these modifications.

Adding Elements

To add a single element to a set, you use the add() method. If you want to add multiple
elements, you can use the update() method:

Adding a single element

fruits.add(’orange ’)

print(fruits) # Output: {’apple ’, ’banana ’, ’cherry ’, ’orange ’}

Adding multiple elements

fruits.update ([’mango’, ’grape’])

print(fruits) # Output: {’apple ’, ’banana ’, ’cherry ’, ’orange ’, ’mango

’, ’grape ’}

The add() method is used for adding one item, while update() can take any iterable
(like a list or another set) and add each of its elements to the set.

Removing Elements

To remove an element from a set, you can use the remove() or discard() methods.
The difference between them is that remove() will raise a KeyError if the element is not
found, whereas discard() will not.

Removing an element

fruits.remove(’banana ’)

print(fruits) # Output: {’apple ’, ’cherry ’, ’orange ’, ’mango ’, ’grape

’}

Using discard

fruits.discard(’apple’)

print(fruits) # Output: {’cherry ’, ’orange ’, ’mango ’, ’grape ’}

Using remove on a non -existent element raises an error

fruits.remove(’pineapple ’) # Raises KeyError

Using discard on a non -existent element does nothing

fruits.discard(’pineapple ’)

print(fruits) # Output: {’cherry ’, ’orange ’, ’mango ’, ’grape ’}

For removing all elements from a set, you can use the clear() method:

fruits.clear ()

print(fruits) # Output: set()

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Sets Page 14

Set Operations: Union, Intersection, Difference

Sets support several standard operations that are useful for mathematical and logical
computations. These operations can be performed using methods or operators.

Union

The union of two sets includes all elements from both sets. This can be done using the
union() method or the | operator.

set1 = {1, 2, 3}

set2 = {3, 4, 5}

Using union () method

union_set = set1.union(set2)

print(union_set) # Output: {1, 2, 3, 4, 5}

Using | operator

union_set = set1 | set2

print(union_set) # Output: {1, 2, 3, 4, 5}

Intersection

The intersection of two sets includes only the elements that are present in both sets. This
can be done using the intersection() method or the & operator.

Using intersection () method

intersection_set = set1.intersection(set2)

print(intersection_set) # Output: {3}

Using & operator

intersection_set = set1 & set2

print(intersection_set) # Output: {3}

Difference

The difference between two sets includes elements that are in the first set but not in the
second. This can be done using the difference() method or the - operator.

Using difference () method

difference_set = set1.difference(set2)

print(difference_set) # Output: {1, 2}

Using - operator

difference_set = set1 - set2

print(difference_set) # Output: {1, 2}

Symmetric Difference

The symmetric difference includes elements that are in either of the sets but not in both.
This can be done using the symmetric difference() method or the ^ operator.

Using symmetric_difference () method

sym_diff_set = set1.symmetric_difference(set2)

print(sym_diff_set) # Output: {1, 2, 4, 5}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating and Accessing Sets Page 15

Using ^ operator

sym_diff_set = set1 ^ set2

print(sym_diff_set) # Output: {1, 2, 4, 5}

Common Set Methods

Besides the set operations discussed above, Python sets provide several other useful meth-
ods that can enhance your ability to manage and manipulate sets.

isdisjoint()

The isdisjoint() method checks if two sets have no elements in common. It returns
True if the sets are disjoint and False otherwise.

set3 = {1, 2}

set4 = {3, 4}

print(set3.isdisjoint(set4)) # Output: True

issubset()

The issubset() method checks if all elements of one set are present in another set. It
returns True if the set is a subset and False otherwise.

set5 = {1, 2}

set6 = {1, 2, 3, 4}

print(set5.issubset(set6)) # Output: True

issuperset()

The issuperset() method checks if a set contains all elements of another set. It returns
True if the set is a superset and False otherwise.

print(set6.issuperset(set5)) # Output: True

copy()

The copy() method creates a shallow copy of a set.

set7 = set5.copy()

print(set7) # Output: {1, 2}

frozenset

While not a method, it’s worth mentioning frozenset, which is an immutable version of
a set. Once created, a frozenset cannot be modified. This can be useful when you need
a set that should not change.

frozen_set = frozenset ([1, 2, 3])

print(frozen_set) # Output: frozenset ({1, 2, 3})

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Overview of Python Data Structures
	Creating and Accessing Lists
	Creating and Accessing Tuples
	Creating and Accessing Dictionaries
	Creating and Accessing Sets

