
Python and Object-Oriented
Programming

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Introduction to Object-Oriented Programming (OOP) 2

Creating Classes and Objects 4

Class Attributes and Methods 6

Understanding Inheritance 10

Encapsulation and Data Hiding 12

Polymorphism 16

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Introduction to Object-Oriented Programming (OOP) Page 2

Introduction to Object-Oriented Programming (OOP)

Object-Oriented Programming, commonly abbreviated as OOP, is a programming paradigm
that uses ”objects” to design applications and computer programs. These objects can
be thought of as real-world entities that have both attributes (which define their state)
and behaviors (which define what they can do). OOP is based on several foundational
principles that help in structuring software in a way that is both modular and reusable.

In traditional procedural programming, the focus is on functions or procedures that op-
erate on data. In contrast, OOP shifts the focus to the data itself by encapsulating it
within objects. This encapsulation helps in modeling complex systems more intuitively
and naturally. For example, in a banking system, you can have objects like Customer,
Account, and Transaction, each with its own attributes and behaviors.

Imagine a car manufacturing company. Instead of focusing solely on the processes (like
assembling parts or painting), the company focuses on creating different models of cars,
where each car model is an object with its own set of characteristics (color, model, engine
type) and behaviors (drive, brake, honk).

Key Concepts of OOP: Classes and Objects

At the heart of OOP are two fundamental concepts: classes and objects.

Classes

A class can be thought of as a blueprint or template for creating objects. It defines a
set of attributes and methods that the created objects will have. For instance, consider
the Car class in our previous example. The Car class would define attributes like color,
model, and engine type, and methods like drive, brake, and honk.

Objects

An object is an instance of a class. When you create an object from a class, you are es-
sentially creating a specific example based on the class blueprint. For instance, you could
create an object my car from the Car class with the attributes color = red, model =

sedan, and engine type = electric. This object can then use the methods defined in
the Car class, such as drive() or brake().

Here’s a simple Python example to illustrate the concepts of classes and objects:

class Car:

def __init__(self , color , model , engine_type):

self.color = color

self.model = model

self.engine_type = engine_type

def drive(self):

print(f"The {self.color} {self.model} is driving.")

def brake(self):

print(f"The {self.color} {self.model} is braking.")

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Introduction to Object-Oriented Programming (OOP) Page 3

Creating an object of the Car class

my_car = Car("red", "sedan", "electric")

Using the methods of the Car class

my_car.drive ()

my_car.brake ()

In this example, Car is the class, and my car is an object of the Car class. The init

method is a special method called a constructor that initializes the object’s attributes.
The drive and brake methods define the behaviors of the Car class.

Benefits of OOP

OOP offers several advantages that make it a popular choice for software development:

• Modularity: By dividing the program into objects, OOP makes it easier to man-
age and understand complex systems. Each object can be developed and tested
independently.

• Reusability: Classes can be reused across different programs. Once a class is
written, it can be used to create multiple objects without rewriting the code. For
example, the Car class can be used to create many car objects with different at-
tributes.

• Extensibility: OOP allows for extending existing code without modifying it. This
is achieved through inheritance, where new classes can inherit attributes and meth-
ods from existing classes. For instance, you could create a SportsCar class that
inherits from the Car class and adds additional features like turbo boost.

• Maintainability: OOP makes it easier to maintain and update code. Because
objects encapsulate their data and behaviors, changes to one part of the system
can be made with minimal impact on other parts. This encapsulation leads to a
more organized and modular codebase.

• Real-World Modeling: OOP helps in creating systems that are closer to real-
world entities and interactions. This makes it easier for developers to map their
software to real-world scenarios, improving both design and implementation.

• Security: By using access modifiers (like private and protected attributes), OOP
allows control over how data is accessed and modified. This data hiding ensures that
objects are used only in intended ways, reducing the risk of unintended interactions.

In summary, OOP provides a robust framework for building scalable, reusable, and main-
tainable software. Its principles of encapsulation, inheritance, and polymorphism offer
a powerful way to manage complexity and enhance the clarity of code. By focusing on
objects rather than procedures, OOP aligns closely with how we perceive and interact
with the world, making it an intuitive and effective approach to programming.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating Classes and Objects Page 4

Creating Classes and Objects

Defining a Class

Classes are the fundamental building blocks of Object-Oriented Programming (OOP).
They serve as a blueprint for creating objects, which are instances of the class, like a
template, outlining the properties and behaviors that its objects will have.

To define a class in Python, you use the class keyword followed by the class name and
a colon. By convention, class names typically use CamelCase notation, where the first
letter of each word is capitalized.

Here’s a basic example of a class definition:

class Dog:

pass

In this example, Dog is a class with no properties or methods. The pass statement in-
dicates that the class is empty. While this class doesn’t do much, it serves as a starting
point for defining more complex classes.

Classes in Python can contain several components:

• Attributes: Variables that hold data pertaining to the class.

• Methods: Functions defined within a class that describe the behaviors of the
objects created from the class.

Let’s enhance our Dog class by adding some attributes and methods.

class Dog:

Class attribute

species = "Canis familiaris"

Initializer / Instance attributes

def __init__(self , name , age):

self.name = name

self.age = age

Method to describe the dog

def description(self):

return f"{self.name} is {self.age} years old."

Method to simulate a dog barking

def bark(self , sound):

return f"{self.name} says {sound}"

In this improved version, we have:

• Class Attribute: species is shared by all instances of the Dog class.

• Instance Attributes: name and age are unique to each instance.

• Methods: description and bark perform actions using the object’s data.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Creating Classes and Objects Page 5

Creating Objects from Classes

Once you’ve defined a class, you can create objects, or instances, of that class. Each
instance is an independent object with its own set of attributes and methods.

To create an instance of a class, you call the class using its name followed by parentheses.
Inside the parentheses, you pass any arguments that the init method requires.

Here’s how you can create instances of the Dog class:

Create instances of the Dog class

my_dog = Dog("Buddy", 3)

your_dog = Dog("Milo", 5)

In this example:

• my dog is an instance of the Dog class with the name ”Buddy” and age 3.

• your dog is another instance with the name ”Milo” and age 5.

Each object has its own unique attributes, though they share the same class attribute
species.

You can access the attributes and methods of these instances using dot notation:

print(my_dog.description ()) # Output: Buddy is 3 years old.

print(your_dog.bark("Woof!")) # Output: Milo says Woof!

This code demonstrates how to interact with the objects you’ve created, utilizing their
attributes and methods.

The init Method

The init method, also known as the initializer or constructor, is a special method in
Python classes. It’s automatically called when a new instance of the class is created. The
purpose of init is to initialize the object’s attributes with values provided by the user.

The init method always takes at least one parameter, self, which refers to the
instance being created. Additional parameters can be added to accept values that will
initialize the object’s attributes.

Here’s a closer look at the init method from our Dog class:

def __init__(self , name , age):

self.name = name

self.age = age

In this method:

• self.name = name assigns the value of the name parameter to the name attribute
of the object.

• self.age = age does the same for the age attribute.

When you create a new Dog object, you provide values for name and age, which are passed
to the init method and used to set the object’s attributes.
Consider this example:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Class Attributes and Methods Page 6

new_dog = Dog("Charlie", 2)

print(new_dog.name) # Output: Charlie

print(new_dog.age) # Output: 2

In this snippet:

• A new Dog object named new dog is created with the name ”Charlie” and age 2.

• The init method sets the name and age attributes accordingly.

• You can access these attributes using dot notation.

The init method ensures that each instance of the class starts with a valid state,
with all necessary attributes properly initialized.

Class Attributes and Methods

In Python’s object-oriented programming paradigm, understanding the distinction be-
tween instance attributes and class attributes is crucial for creating robust and maintain-
able code.

Instance Attributes

Instance attributes are specific to each object created from a class. When you define
an instance attribute, you do so within a method, typically the init method. These
attributes are unique to each instance of the class, meaning that each object can hold
different values for these attributes.

Consider the following example:

class Dog:

def __init__(self , name , age):

self.name = name

self.age = age

Creating instances of the Dog class

dog1 = Dog("Buddy", 3)

dog2 = Dog("Lucy", 5)

print(dog1.name) # Output: Buddy

print(dog2.name) # Output: Lucy

In this example, name and age are instance attributes. Each Dog instance has its own
name and age, demonstrating that instance attributes are tied to the specific instance of
the class.

Class Attributes

Class attributes, on the other hand, are shared across all instances of a class. They are
defined directly within the class but outside any methods. Class attributes are typically
used for constants or attributes that should be the same for every instance.

Here’s an example to illustrate:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Class Attributes and Methods Page 7

class Dog:

species = "Canis familiaris" # Class attribute

def __init__(self , name , age):

self.name = name

self.age = age

Creating instances of the Dog class

dog1 = Dog("Buddy", 3)

dog2 = Dog("Lucy", 5)

print(dog1.species) # Output: Canis familiaris

print(dog2.species) # Output: Canis familiaris

In this case, species is a class attribute. Regardless of how many Dog instances you
create, the species attribute will always be "Canis familiaris".

Understanding when to use instance versus class attributes is key to leveraging Python’s
OOP capabilities effectively. Instance attributes are ideal for data unique to each instance,
while class attributes are useful for data shared across all instances.

Defining Methods

Methods in Python are functions defined within a class that describe the behaviors of
the objects created from the class. Methods are essentially functions that operate on
the data contained in the class (i.e., instance or class attributes) and typically modify or
perform actions using this data.

Instance Methods

Instance methods are the most common type of method in Python classes. They operate
on an instance of the class and have access to the instance through the self parameter.
These methods can modify the object’s state by changing its instance attributes.

Here’s an example:

class Dog:

def __init__(self , name , age):

self.name = name

self.age = age

def bark(self):

return f"{self.name} is barking."

def birthday(self):

self.age += 1

return f"Happy Birthday {self.name}! You are now {self.age}

years old."

Creating an instance of the Dog class

dog1 = Dog("Buddy", 3)

print(dog1.bark()) # Output: Buddy is barking.

print(dog1.birthday ()) # Output: Happy Birthday Buddy! You are now 4

years old.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Class Attributes and Methods Page 8

In this example, bark and birthday are instance methods. They can access and modify
the instance attributes (name and age) using the self parameter.

Class Methods

Class methods are methods that operate on the class itself rather than on instances of
the class. They are defined using the @classmethod decorator and take a cls parameter
instead of self. This parameter refers to the class, and through it, class methods can
modify class attributes.

Example:

class Dog:

species = "Canis familiaris"

def __init__(self , name , age):

self.name = name

self.age = age

@classmethod

def set_species(cls , species_name):

cls.species = species_name

Changing the class attribute using the class method

Dog.set_species("Canis lupus familiaris")

Creating an instance of the Dog class

dog1 = Dog("Buddy", 3)

print(dog1.species) # Output: Canis lupus familiaris

In this example, set species is a class method that changes the class attribute species
for all instances of the Dog class.

Static Methods

Static methods are similar to class methods but don’t operate on class or instance at-
tributes. They are defined using the @staticmethod decorator and don’t take a self or
cls parameter. Static methods are utility functions that perform a task in isolation.

Example:

class Dog:

def __init__(self , name , age):

self.name = name

self.age = age

@staticmethod

def is_adult(age):

return age >= 2

Using the static method

print(Dog.is_adult (3)) # Output: True

print(Dog.is_adult (1)) # Output: False

In this example, is adult is a static method that determines if a dog is an adult based on
its age. It doesn’t need to access any class or instance attributes to perform its function.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Class Attributes and Methods Page 9

Using self in Methods

The self parameter is an essential part of defining instance methods in Python. It refers
to the instance calling the method, allowing access to the instance’s attributes and other
methods.

Accessing Attributes

Within an instance method, self is used to access attributes and methods of the class.
This is crucial for manipulating the state of an object and ensuring that each instance
maintains its own data.

Consider this example:

class Dog:

def __init__(self , name , age):

self.name = name

self.age = age

def description(self):

return f"{self.name} is {self.age} years old."

Creating an instance of the Dog class

dog1 = Dog("Buddy", 3)

print(dog1.description ()) # Output: Buddy is 3 years old.

Here, self.name and self.age within the description method refer to the name and
age attributes of the dog1 instance.

Modifying Attributes

Instance methods often modify the state of an object using self to change the values
of instance attributes. This allows for dynamic changes to an object’s state during its
lifecycle.

Example:

class Dog:

def __init__(self , name , age):

self.name = name

self.age = age

def have_birthday(self):

self.age += 1

return f"Happy Birthday {self.name}! You are now {self.age}

years old."

Creating an instance of the Dog class

dog1 = Dog("Buddy", 3)

print(dog1.have_birthday ()) # Output: Happy Birthday Buddy! You are

now 4 years old.

In this case, self.age += 1 increments the age attribute of the dog1 instance by one,
demonstrating how self is used to modify instance attributes.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Understanding Inheritance Page 10

Calling Other Methods

The self parameter also allows for calling other methods within the class. This promotes
code reuse and modular design by enabling methods to leverage the functionality of other
methods.

Example:

class Dog:

def __init__(self , name , age):

self.name = name

self.age = age

def bark(self):

return f"{self.name} is barking."

def celebrate_birthday(self):

self.age += 1

return f"{self.bark()} Happy Birthday {self.name}! You are now

{self.age} years old."

Creating an instance of the Dog class

dog1 = Dog("Buddy", 3)

print(dog1.celebrate_birthday ()) # Output: Buddy is barking. Happy

Birthday Buddy! You are now 4 years old.

In this example, the celebrate birthdaymethod calls the barkmethod using self.bark(),
demonstrating how methods can interact with each other through self.

In conclusion, self is a powerful mechanism that provides the flexibility to access and
manipulate an object’s attributes and methods, making it a cornerstone of Python’s OOP
capabilities.

Understanding Inheritance

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows
a class to inherit attributes and methods from another class. This mechanism promotes
code reusability and establishes a natural hierarchical relationship between classes. Imag-
ine you are working on a project involving various types of vehicles. Instead of defining
common properties and methods for each vehicle type separately, you can define a general
Vehicle class and let other specific vehicle classes, such as Car, Truck, and Motorcycle,
inherit from it.

In Python, inheritance is implemented by defining a new class that takes an existing class
as its parent. The parent class is often referred to as the base class or superclass, and
the class that inherits from it is called the subclass or derived class.

Creating Subclasses

To create a subclass in Python, you simply define a new class and specify the superclass
in parentheses. This setup allows the subclass to inherit all attributes and methods of

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Understanding Inheritance Page 11

the superclass.

Let’s look at an example. Suppose we have a Vehicle class with some basic properties
and methods:

class Vehicle:

def __init__(self , make , model , year):

self.make = make

self.model = model

self.year = year

def start_engine(self):

print(f"{self.year} {self.make} {self.model}’s engine started."

)

Now, let’s create a subclass called Car that inherits from Vehicle:

class Car(Vehicle):

def __init__(self , make , model , year , num_doors):

super ().__init__(make , model , year)

self.num_doors = num_doors

def honk_horn(self):

print("Beep beep!")

In this example, the Car class inherits from Vehicle. This means Car has access to the
init method and start engine method defined in Vehicle. Additionally, Car introduces

a new attribute, num doors, and a new method, honk horn.

When we create an instance of Car, it can utilize both its own methods and the inherited
methods:

my_car = Car("Toyota", "Corolla", 2020, 4)

my_car.start_engine () # Inherited method

my_car.honk_horn () # Car’s own method

Overriding Methods

Sometimes, a subclass may need to provide a specific implementation of a method that
is already defined in its superclass. This is known as method overriding. When a method
in a subclass has the same name as a method in the superclass, the subclass’s method
overrides the superclass’s method.

Consider the following example, where the Truck class overrides the start engine method
to include additional behavior:

class Truck(Vehicle):

def __init__(self , make , model , year , cargo_capacity):

super ().__init__(make , model , year)

self.cargo_capacity = cargo_capacity

def start_engine(self):

print(f"{self.year} {self.make} {self.model}’s powerful engine

started.")

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Encapsulation and Data Hiding Page 12

In this case, the Truck class has its own implementation of the start engine method,
which provides a more specific message:

my_truck = Truck("Ford", "F-150", 2021, 1300)

my_truck.start_engine () # Overridden method

When my truck.start engine() is called, the output will be the message defined in the
Truck class, not the one in the Vehicle class.

Using super()

To effectively manage method overriding and ensure that the superclass’s methods are
properly invoked, Python provides the super() function. The super() function returns
a temporary object of the superclass that allows you to call its methods.

In our previous examples, we used super() in the init method of the subclasses to
initialize the attributes of the superclass. Here’s a more detailed look at how super()

works in method overriding:

class ElectricCar(Car):

def __init__(self , make , model , year , num_doors , battery_capacity):

super ().__init__(make , model , year , num_doors)

self.battery_capacity = battery_capacity

def start_engine(self):

super ().start_engine () # Call the superclass ’s start_engine

method

print(f"{self.year} {self.make} {self.model} runs on a {self.

battery_capacity}kWh battery.")

In this example, the ElectricCar class inherits from Car. The start engine method in
ElectricCar calls super().start engine() to execute the start engine method from the
Car class, ensuring that the standard engine start message is printed before adding its
specific message about the battery.

Using super() is a best practice because it allows you to extend the behavior of the
superclass method rather than completely replacing it. This technique promotes code
reuse and maintains a clear hierarchy and structure within your classes.

Encapsulation and Data Hiding

Encapsulation and data hiding are foundational concepts that ensure the integrity and
security of data within a program. These principles promote modular design, making
code more manageable, reusable, and resistant to errors. Encapsulation involves bundling
data and methods that operate on the data within a single unit, typically a class, and
restricting access to some of the object’s components.

Private Attributes and Methods

Encapsulation in Python is primarily achieved through private attributes and methods.
In Python, an attribute or method is considered private when it is intended to be accessed

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Encapsulation and Data Hiding Page 13

only within its class, shielding it from the outside world. While Python does not enforce
strict access controls like some other languages, it follows a convention-based approach.

Understanding Private Attributes

Private attributes in Python are denoted by a single or double underscore prefix. This
naming convention signals to other programmers that these attributes should not be
accessed directly.

• Single Underscore (): This is a weak ”internal use” indicator. It suggests that
the attribute is intended for internal use within the module or class, but it does not
enforce strict privacy.

• Double Underscore (): This triggers name mangling, where the interpreter
changes the attribute name to include the class name, making it harder to access
from outside the class. This provides a stronger form of encapsulation.

Consider the following example:

class Car:

def __init__(self , make , model , year):

self.make = make

self.model = model

self._year = year # Single underscore suggests internal use

self.__odometer = 0 # Double underscore for stronger

encapsulation

def get_odometer(self):

return self.__odometer

def drive(self , miles):

if miles > 0:

self.__odometer += miles

else:

print("Miles must be greater than zero")

my_car = Car("Toyota", "Corolla", 2020)

print(my_car.make) # Accessible

print(my_car._year) # Accessible , but should be treated as internal

print(my_car.__odometer) # AttributeError: ’Car’ object has no

attribute ’__odometer ’

In this example, make and model are public attributes, year is a protected attribute
intended for internal use, and odometer is a private attribute.

Private Methods

Similarly, private methods are created using a double underscore prefix. These methods
are intended to be used only within the class, providing a mechanism to hide internal
logic.

class Car:

def __init__(self , make , model):

self.make = make

self.model = model

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Encapsulation and Data Hiding Page 14

def start(self):

self.__engage_ignition ()

print("Car started")

def __engage_ignition(self):

print("Ignition engaged")

my_car = Car("Toyota", "Corolla")

my_car.start () # This works and calls the private method internally

my_car.__engage_ignition () # AttributeError: ’Car’ object has no

attribute ’__engage_ignition ’

In this scenario, the engage ignition method is a private method, encapsulated within
the Car class, and cannot be called directly from outside the class.

Why Use Private Attributes and Methods?

• Encapsulation: Private attributes and methods bundle data and methods into a
single unit, ensuring that the internal state of an object can only be modified in a
controlled way.

• Data Integrity: They help protect the internal state of an object from unwanted
changes, which might lead to inconsistencies.

• Implementation Hiding: Private members hide the implementation details, ex-
posing only what is necessary through public methods. This promotes modular
design and makes the code easier to understand and maintain.

Property Decorators for Encapsulation

While private attributes and methods offer a way to restrict access, there are times when
controlled access to attributes is necessary. This is where property decorators come into
play. Property decorators in Python provide a way to define methods in a class that act
like attributes, allowing you to encapsulate data and provide a controlled way to access
and modify it.

Introduction to Property Decorators

Property decorators are a built-in feature in Python that allows you to define getter,
setter, and deleter methods for an attribute. This enables you to add logic to attribute
access and modification without changing the interface of the class.

Consider the following example:

class Car:

def __init__(self , make , model):

self._make = make

self._model = model

@property

def make(self):

return self._make

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Encapsulation and Data Hiding Page 15

@make.setter

def make(self , value):

if isinstance(value , str):

self._make = value

else:

raise ValueError("Make must be a string")

@property

def model(self):

return self._model

@model.setter

def model(self , value):

if isinstance(value , str):

self._model = value

else:

raise ValueError("Model must be a string")

my_car = Car("Toyota", "Corolla")

print(my_car.make) # Access using getter

my_car.make = "Honda" # Modify using setter

print(my_car.make) # Access using getter

In this example, the make and model attributes are managed through property decorators,
allowing controlled access and modification.

Benefits of Using Property Decorators

• Controlled Access: Property decorators allow you to control how attributes are
accessed and modified. You can add validation logic to ensure that the attribute
values are valid.

• Read-Only Attributes: You can create read-only attributes by defining only the
getter method, preventing modifications from outside the class.

• Consistency: They help maintain a consistent interface, making the code easier
to use and understand.

Defining Property Decorators

Property decorators consist of three methods:

• @property: Defines the getter method.

• @<property>.setter: Defines the setter method.

• @<property>.deleter: Defines the deleter method.

Let’s extend the previous example to include a read-only attribute and a deleter
method:

class Car:

def __init__(self , make , model , year):

self._make = make

self._model = model

self._year = year

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Polymorphism Page 16

@property

def make(self):

return self._make

@make.setter

def make(self , value):

if isinstance(value , str):

self._make = value

else:

raise ValueError("Make must be a string")

@property

def model(self):

return self._model

@model.setter

def model(self , value):

if isinstance(value , str):

self._model = value

else:

raise ValueError("Model must be a string")

@property

def year(self):

return self._year

@year.deleter

def year(self):

del self._year

my_car = Car("Toyota", "Corolla", 2020)

print(my_car.year) # Access using getter

del my_car.year # Delete using deleter

In this extended example, the year attribute is read-only and can be deleted using the
deleter method.

Polymorphism

Polymorphism refers to the ability of different objects to be treated as instances of the
same class through a common interface. This concept allows objects to be manipulated
based on their shared characteristics rather than their specific types, enabling more flex-
ible and reusable code. In Python, polymorphism is primarily achieved through method
overloading, method overriding, and duck typing.

Method Overloading

Method overloading is the ability to define multiple methods with the same name but
different signatures within the same class. In many programming languages, method
overloading is achieved by varying the number or type of parameters, allowing the same
method name to perform different tasks based on the input arguments. However, Python
does not support traditional method overloading as seen in languages like Java or C++.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Polymorphism Page 17

In Python, a similar effect can be achieved using default arguments, variable-length
arguments, or by checking the types and number of arguments within the method itself.
Here’s how we can simulate method overloading in Python:

class MathOperations:

def add(self , a, b, c=0):

return a + b + c

math_op = MathOperations ()

print(math_op.add(5, 10)) # Output: 15

print(math_op.add(5, 10, 15)) # Output: 30

In this example, the add method can take either two or three arguments. By providing
a default value for the third parameter, the method can handle both scenarios seamlessly.

Another approach to achieve method overloading in Python is through variable-length
arguments using *args and **kwargs:

class MathOperations:

def add(self , *args):

return sum(args)

math_op = MathOperations ()

print(math_op.add(5, 10)) # Output: 15

print(math_op.add(5, 10, 15)) # Output: 30

Here, the add method can accept any number of arguments and sums them up. This flex-
ibility allows the method to handle different numbers of inputs, mimicking the behavior
of method overloading.

Method Overriding

Method overriding occurs when a subclass provides a specific implementation of a method
that is already defined in its superclass. This allows the subclass to customize or com-
pletely replace the behavior of the inherited method. Method overriding is a key feature
in achieving polymorphism and enabling dynamic method dispatch, where the method
to be invoked is determined at runtime based on the object’s type.

Consider the following example of method overriding:

class Animal:

def speak(self):

raise NotImplementedError("Subclasses must implement this

method")

class Dog(Animal):

def speak(self):

return "Woof!"

class Cat(Animal):

def speak(self):

return "Meow!"

animals = [Dog(), Cat()]

for animal in animals:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Polymorphism Page 18

print(animal.speak())

In this example, the Animal class defines a generic speak method that raises an error,
indicating that subclasses must implement it. The Dog and Cat classes override the speak
method to provide specific implementations. When iterating over the list of animals and
calling the speak method, Python dynamically determines the appropriate method to
invoke based on the object’s actual class, demonstrating polymorphism in action.

Duck Typing

Duck typing is a concept related to dynamic typing, where the type or class of an object is
determined by its behavior (methods and properties) rather than its explicit inheritance
or interface. The name comes from the saying, ”If it looks like a duck, swims like a duck,
and quacks like a duck, then it probably is a duck.” In Python, this means that if an
object implements the required methods or properties, it can be used in place of another
object, regardless of its actual type.

Duck typing emphasizes an object’s capabilities rather than its inheritance hierarchy.
Here’s an example to illustrate duck typing:

class Duck:

def quack(self):

return "Quack!"

class Person:

def quack(self):

return "I’m pretending to be a duck!"

def make_it_quack(duck):

return duck.quack()

duck = Duck()

person = Person ()

print(make_it_quack(duck)) # Output: Quack!

print(make_it_quack(person)) # Output: I’m pretending to be a duck!

In this example, both the Duck and Person classes have a quack method. The make it quack
function accepts any object and calls its quack method. Due to duck typing, both Duck
and Person objects can be passed to the function, and it will work correctly regardless of
their actual types.

Duck typing allows for greater flexibility and reduces the need for strict type checking,
enabling more generic and reusable code. It aligns well with Python’s dynamic nature
and is a powerful tool for achieving polymorphism.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Introduction to Object-Oriented Programming (OOP)
	Creating Classes and Objects
	Class Attributes and Methods
	Understanding Inheritance
	Encapsulation and Data Hiding
	Polymorphism

