
Scalable TypeScript Patterns

Structures for Building Reliable, Maintainable Code

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Classes and Object-Oriented Programming 2

Interfaces and Types 4

Error Handling 6

Debugging Techniques 9

Built-In Utility Types 11

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Classes and Object-Oriented Programming Page 2

Classes and Object-Oriented Programming

In TypeScript, classes are pivotal to writing modular and maintainable object-oriented
applications. Classes help organize code into logical units with well-defined behavior and
encapsulate data to foster reuse.

Basic Classes and Inheritance

Declaring Classes with Constructors, Properties, and Methods
Classes in TypeScript follow the familiar object-oriented paradigm. A class comprises
properties to store data and methods to implement behaviors.

• Constructor: A special method that initializes object properties when a new
instance is created.

• Properties: Variables associated with the class, typically initialized via the con-
structor or default values.

• Methods: Functions that define the behaviors of the class.

class Person {

// Properties

private firstName: string;

private lastName: string;

// Constructor

constructor(firstName: string , lastName: string) {

this.firstName = firstName;

this.lastName = lastName;

}

// Method

getFullName (): string {

return ‘${this.firstName} ${this.lastName}‘;
}

}

// Creating an instance

const john = new Person("John", "Doe");

console.log(john.getFullName ()); // Outputs: "John Doe"

Key Points:

• The private keyword ensures encapsulation, restricting access to these properties
from outside the class.

• getFullName() is a public method, so it can be called directly on any instance.

Access Modifiers (public, private, protected)

TypeScript includes three access modifiers to control property and method visibility:

• Public: Accessible from anywhere (default).

• Private: Only accessible within the class.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Classes and Object-Oriented Programming Page 3

• Protected: Accessible within the class and its subclasses.

class Car {

// Public property

public brand: string;

// Private property

private model: string;

// Protected property

protected year: number;

constructor(brand: string , model: string , year: number) {

this.brand = brand;

this.model = model;

this.year = year;

}

public getInfo (): string {

return ‘${this.brand} ${this.model} (${this.year})‘;
}

}

const myCar = new Car("Tesla", "Model 3", 2020);

console.log(myCar.brand); // Accessible

// console.log(myCar.model); // Error: private property

Key Takeaways:

• Access modifiers provide control over what information is exposed.

• Using modifiers correctly leads to more secure, modular code.

Inheritance and Method Overriding

Inheritance allows classes to extend other classes and inherit their properties and methods.
This is useful for creating specialized classes without duplicating common functionality.

class Vehicle {

protected brand: string;

constructor(brand: string) {

this.brand = brand;

}

public start(): string {

return ‘${this.brand} vehicle is starting.‘;

}

}

class Bike extends Vehicle {

private type: string;

constructor(brand: string , type: string) {

super(brand);

this.type = type;

}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Interfaces and Types Page 4

public start(): string {

// Method overriding

return ‘${this.brand} bike (${this.type}) is starting.‘;

}

}

const motorcycle = new Bike("Honda", "Cruiser");

console.log(motorcycle.start()); // Outputs: "Honda bike (Cruiser) is

starting ."

Key Concepts:

• Super: Refers to the parent class. super() invokes the parent class constructor.

• Overriding Methods: Allows child classes to redefine inherited methods for spe-
cialized behavior.

Interfaces and Types

Interfaces and types are essential components of TypeScript’s type system, providing a
structured framework for your data models. They ensure objects have consistent shapes
and enable developers to write code with greater confidence.

Understanding Interfaces

Defining and Implementing Interfaces
An interface acts as a blueprint that defines the required properties for an object. Classes
implementing an interface ensure they include all specified properties.

// Interface definition

interface Employee {

name: string;

role: string;

salary: number;

}

// Implementing the interface in a class

class Manager implements Employee {

name: string;

role: string;

salary: number;

constructor(name: string , salary: number) {

this.name = name;

this.role = "Manager";

this.salary = salary;

}

getDetails (): string {

return ‘${this.name}, Role: ${this.role}, Salary: $${this.
salary}‘;

}

}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Interfaces and Types Page 5

const manager = new Manager("Alice", 120000);

console.log(manager.getDetails ()); // Outputs: "Alice , Role: Manager ,

Salary: $120000"

Explanation:

• The Employee interface defines the shape of an object with name, role, and salary

properties.

• The Manager class implements the Employee interface, ensuring all three properties
are present in the class.

• The getDetails() method outputs information based on these required properties.

Structural Typing

TypeScript employs structural typing (also called ”duck typing”), meaning that object
compatibility is determined by comparing shapes instead of explicit declarations.

interface Point {

x: number;

y: number;

}

function printCoordinates(point: Point): void {

console.log(‘X: ${point.x}, Y: ${point.y}‘);
}

// Structural typing allows an object with matching properties to be

compatible

const pointLike = { x: 10, y: 20, label: "Point A" };

printCoordinates(pointLike); // Outputs: "X: 10, Y: 20"

Explanation:

• The Point interface requires objects to have x and y properties.

• The printCoordinates function accepts any object with these properties, regard-
less of additional properties like label.

• The pointLike object, though containing an extra label property, is compatible
with Point because it matches the required shape.

Using Optional and Readonly Properties

Interfaces can declare properties that are either optional or read-only.

// An interface with optional and read -only properties

interface Product {

id: number;

name: string;

description ?: string; // Optional property

readonly price: number; // Read -only property

}

const product: Product = {

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Error Handling Page 6

id: 1,

name: "Laptop",

price: 999.99

};

// product.price = 899.99; // Error: Cannot assign to ’price’ because

it is a read -only property

Explanation:

• The Product interface uses a ? to mark the description property as optional,
meaning it can be omitted when creating a Product object.

• The readonly modifier ensures that price cannot be reassigned after the initial
value has been set.

Types vs. Interfaces

Comparing Interfaces and Types
In TypeScript, both interfaces and type aliases define object shapes, but they have dif-
ferences that influence their usage.

// Using a type alias to define a union type

type Status = "active" | "inactive" | "suspended";

function updateStatus(status: Status) {

console.log(‘Updating status to: ${status}‘);
}

updateStatus("active"); // Valid

// updateStatus (" archived "); // Error: Type ’"archived"’ is not

assignable to type ’Status ’

Explanation:

• The Status type alias defines a union type, restricting valid values to "active",
"inactive", and "suspended".

• When updateStatus is called with a valid status, it logs the update.

• Calling updateStatus with an invalid status (e.g., "archived") results in a compile-
time error.

Conclusion:

• Interfaces are excellent for defining the shape of objects that need to extend or be
implemented across different files.

• Type aliases are more suitable for union types, intersections, and combining multiple
types efficiently.

Error Handling

Effective error handling is important for building robust applications. TypeScript’s static
typing and enhanced features make it easier to catch issues early, but runtime errors still
need careful management.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Error Handling Page 7

Error Handling Best Practices in TypeScript

• Fail Early: Detect and handle errors as soon as possible to prevent issues from
propagating further down.

• Use Exhaustive Checks: Ensure all potential scenarios are accounted for with
union types, type guards, and conditional statements.

• Consistent Error Responses: Return consistent error objects or messages, help-
ing developers identify and address issues quickly.

type Response = { success: true; data: string } | { success: false;

error: string };

function fetchData(url: string): Response {

// Simulate a failed request for demonstration

const failed = Math.random () > 0.5;

if (failed) {

return { success: false , error: "Network Error" };

} else {

return { success: true , data: "Fetched Data" };

}

}

const response = fetchData("https :// example.com/api");

if (response.success) {

console.log(response.data);

} else {

console.error(response.error); // Consistent error handling

}

Explanation:

• The Response union type enforces consistent handling of success and error cases.

• By checking the success property, the error message is consistently accessed in the
failure scenario.

Using Custom Error Classes and try-catch Blocks

Custom error classes enable you to encapsulate error details and provide more meaningful
error messages. The try-catch construct helps manage these errors gracefully.

class NetworkError extends Error {

constructor(public statusCode: number , message: string) {

super(message);

this.name = "NetworkError";

}

}

function fetchResource(url: string): string {

const failed = Math.random () > 0.5;

if (failed) {

// Throw custom error

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Error Handling Page 8

throw new NetworkError (500, ‘Unable to fetch data from ${url}‘)
;

}

return "Resource Data";

}

try {

const data = fetchResource("https :// example.com/resource");

console.log(data);

} catch (error) {

if (error instanceof NetworkError) {

console.error(‘Error (${error.statusCode }): ${error.message}‘);
} else {

console.error(‘General Error: ${error.message}‘);
}

}

Explanation:

• NetworkError extends the Error class to include an additional statusCode prop-
erty.

• The try-catch block handles the error gracefully, with specific logic for custom
errors.

• instanceof ensures errors are checked specifically, providing detailed error infor-
mation.

Strategies for Global Error Handling in Applications

Handling errors globally ensures that unhandled exceptions don’t crash your application
and provides a consistent fallback mechanism.

• Global Error Handlers: Implement global handlers to capture errors and provide
fallback behavior. In Node.js, use process.on for global errors. In client-side
frameworks, leverage global error boundaries or event listeners.

• Logging and Monitoring: Implement logging systems to capture error details,
stack traces, and user actions leading up to the error. This aids debugging and
future prevention.

• Graceful Degradation: Provide default or fallback values when data or function-
ality cannot be fetched or used due to errors.

process.on("uncaughtException", (error) => {

console.error("Uncaught Exception:", error.message);

// Log or notify the team about the exception

process.exit (1); // Exit the application safely

});

process.on("unhandledRejection", (reason , promise) => {

console.error("Unhandled Rejection at:", promise , "reason:", reason

);

// Handle the rejection properly here

});

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Debugging Techniques Page 9

Explanation:

• process.on("uncaughtException") listens for uncaught exceptions, logs the error
message, and exits the application gracefully.

• process.on("unhandledRejection") ensures any unhandled promise rejection is
properly logged and handled.

Debugging Techniques

Debugging is essential to maintaining code quality and resolving issues. TypeScript
supports advanced debugging workflows using source maps, IDEs, and browser tools.

Integrating TypeScript Source Maps for Debugging

Source maps help map the compiled JavaScript code back to its original TypeScript
source, making debugging significantly easier.

Enable Source Maps: Make sure that the sourceMap option is enabled in the tsconfig.json
file.

{

"compilerOptions": {

"sourceMap": true ,

"outDir": "./dist"

}

}

Explanation:

• The "sourceMap": true option instructs the TypeScript compiler to generate
corresponding .map files for each JavaScript file.

• This allows debuggers to trace errors back to the original TypeScript source code.

Setting Up Effective DebuggingWorkflows with IDEs and Browser
Tools

A well-structured debugging workflow can speed up issue resolution.

Visual Studio Code: This IDE provides an integrated debugger that works seamlessly
with TypeScript projects.
Launch Configuration: Create or update the launch.json file to add breakpoints,
inspect variables, and step through code.

{

"version": "0.2.0",

"configurations": [

{

"type": "node",

"request": "launch",

"name": "Debug TypeScript",

"program": "${workspaceFolder }/dist/index.js",

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Debugging Techniques Page 10

"preLaunchTask": "tsc: build - tsconfig.json",

"outFiles": ["${workspaceFolder }/dist /**/*. js"]
}

]

}

Explanation:

• The configuration above launches a Node.js program with debugging capabilities.

• The "preLaunchTask" runs TypeScript compilation to generate up-to-date JavaScript
files.

• The "outFiles" array tells the debugger to associate these compiled files with the
original TypeScript code.

Browser Developer Tools: Chrome DevTools and Firefox Developer Tools can directly
debug TypeScript code if source maps are enabled.

Open the developer tools and set breakpoints in the ”Sources” tab to inspect variables
and step through code.

Identifying and Solving Common Debugging Challenges in Type-
Script

Scope Issues: Problems with variable scope can lead to unexpected values.

Solution: Use let and const to ensure variables are block-scoped and inspect variable
values through the debugger.

Asynchronous Code Issues: Unhandled promise rejections and asynchronous behav-
ior can cause errors that are challenging to track.

Solution: Use the async/await pattern or .catch() for error handling and ensure de-
bugging workflows handle rejected promises.

async function fetchData(url: string): Promise <string > {

try {

const response = await fetch(url);

if (! response.ok) {

throw new Error(‘HTTP error! status: ${response.status}‘);
}

return await response.text();

} catch (error) {

console.error(‘Fetch error: ${error.message}‘);
return "Error occurred";

}

}

Explanation:

• The try-catch block ensures any asynchronous error is caught and logged, provid-
ing clarity on failures.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Built-In Utility Types Page 11

Type Errors: Misaligned types often lead to runtime errors.

Solution: Enable strict type checking (strict option in tsconfig.json), use type
guards, and ensure all variables are properly typed.

function isString(value: unknown): value is string {

return typeof value === "string";

}

function printLength(value: unknown): void {

if (isString(value)) {

console.log(‘Length: ${value.length}‘);
} else {

console.error("Value is not a string");

}

}

Explanation:

• isString is a type guard that checks whether a value is a string.

• The printLength function uses this guard to handle different types safely.

Built-In Utility Types

TypeScript provides a collection of built-in utility types to help manipulate and transform
object types. These utilities, such as Partial, Pick, Record, and Omit, can simplify your
code and reduce redundancy by creating new types from existing ones. Let’s explore each
type with practical examples.

Partial

Overview: The Partial type makes all properties of an object type optional, which is
particularly useful when updating or modifying a subset of an object’s properties.

interface User {

id: number;

name: string;

email: string;

isActive: boolean;

}

// Making all properties optional using Partial

function updateUser(id: number , updates: Partial <User >): User {

const originalUser: User = { id, name: "John Doe", email: "john.

doe@example.com", isActive: true };

// Apply updates using spread operator

return { ... originalUser , ... updates };

}

const updatedUser = updateUser (1, { email: "new.email@example.com",

isActive: false });

console.log(updatedUser); // Outputs: { id: 1, name: "John Doe", email:

"new.email@example.com", isActive: false }

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Built-In Utility Types Page 12

Explanation:

• Partial<User> creates a new type with all User properties set as optional.

• The updateUser function can accept an object with any combination of User prop-
erties for selective updates.

Pick

Overview: The Pick type extracts a subset of properties from an object type. This is
helpful when working with APIs or specific data requirements.

interface BlogPost {

id: string;

title: string;

content: string;

author: string;

createdAt: Date;

updatedAt: Date;

}

// Creating a type that only includes title and author

type BlogPostPreview = Pick <BlogPost , "title" | "author">;

const previewPost: BlogPostPreview = { title: "TypeScript Tips", author

: "Jane Smith" };

console.log(previewPost); // Outputs: { title: "TypeScript Tips",

author: "Jane Smith" }

Explanation:

• Pick<BlogPost, "title" | "author"> creates a new type with only the title

and author properties of the BlogPost type.

• This reduces the data footprint when sharing preview information.

Record

Overview: The Record type creates a map-like object structure with specified keys and
values, making it useful for constructing collections of consistent types.

type UserRoles = "admin" | "editor" | "viewer";

const roleDescriptions: Record <UserRoles , string > = {

admin: "Has full access to all system features",

editor: "Can edit and manage content",

viewer: "Can only view published content",

};

console.log(roleDescriptions["admin"]); // Outputs: "Has full access to

all system features"

Explanation:

• Record<UserRoles, string> creates an object type where keys are UserRoles

and values are string.

• Each role description is strictly typed to match the specified roles, providing con-
sistency.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Built-In Utility Types Page 13

Omit

Overview: The Omit type removes specific properties from an object type, often used
to hide sensitive or unnecessary data.

interface FullUserProfile {

id: number;

name: string;

email: string;

password: string;

createdAt: Date;

lastLogin: Date;

}

// Creating a public profile without password or lastLogin

type PublicUserProfile = Omit <FullUserProfile , "password" | "lastLogin"

>;

const publicProfile: PublicUserProfile = {

id: 123,

name: "Alice Smith",

email: "alice.smith@example.com",

createdAt: new Date("2024 -01 -01"),

};

console.log(publicProfile); // Outputs: { id: 123, name: "Alice Smith",

email: "alice.smith@example.com", createdAt: Date }

Explanation:

• Omit<FullUserProfile, "password" | "lastLogin"> creates a new type exclud-
ing sensitive information like password and lastLogin.

• The resulting PublicUserProfile ensures that data shared externally is safe.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Classes and Object-Oriented Programming
	Interfaces and Types
	Error Handling
	Debugging Techniques
	Built-In Utility Types

