
Structuring Components in Angular

Building an Effective UI

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Introduction to Components 2

Generate a New Component 3

Component Lifecycle 4

Data Binding and Communication 7

Advanced Component Interaction 9

Component Types 10

Best Practices for Component Architecture 12

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Introduction to Components Page 2

Introduction to Components

Definition and Role of Components in Angular

In Angular, components are the fundamental building blocks of the application’s user
interface. Each component represents a coherent section of the user interface, and it en-
compasses elements of both the view (HTML) and the logic (TypeScript). A component
in Angular is defined using a decorator called @Component, which provides metadata that
dictates how the component should be processed, instantiated, and used at runtime.

Components help in achieving a modular design. By dividing the application into smaller,
reusable, and manageable pieces, developers can maintain and scale applications more
efficiently. Each component is responsible for a specific screen area and has its own
part of the view coupled with its corresponding data and logic. This encapsulation of
functionality promotes cleaner code, easier maintenance, and the potential for reusability
within the same application or across different applications.

Overview of the Component-based Architecture

Component-based architecture is a design pattern that encapsulates the application’s in-
terface into distinct blocks, each being a self-sustained unit. This architecture provides
a clear methodology for the user interface development process, facilitating cooperation
among multiple developers and improving development efficiency. In Angular, this archi-
tecture is implemented through the creation of components, each handling specific tasks
and interacting with other components to form a cohesive application.

Key Features of Component-based Architecture:

• Components are designed as isolated and independent units that manage their own
state and presentation. This isolation allows developers to develop, test, debug, and
update components independently without impacting the rest of the application.

• Once a component is created, it can be reused across different parts of the appli-
cation. This reuse can significantly reduce the time and effort required to develop
new user interfaces.

• Components reduce complexity by dividing the application into smaller, manage-
able pieces. Each piece can be maintained separately by different teams or individ-
uals, leading to better maintainability.

• As applications grow, the component-based structure helps manage this growth
more systematically. Components can be added or replaced without impacting the
entire system, making the application scalable.

• In a typical Angular application, components interact through a well-defined inter-
face of inputs and outputs. Inputs allow the parent component to pass data to the
child component, whereas outputs enable the child to send data back to the par-
ent or to communicate with other components. This interaction pattern supports a
clear and structured data flow within the application, which is essential for building
large-scale applications that are easy to understand and manage.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Generate a New Component Page 3

By adhering to a component-based architecture, Angular applications can be developed
in a way that enhances flexibility, efficiency, and robustness, making it an ideal framework
for building dynamic and complex web applications. This architecture not only makes
the application more organized but also aligns with modern development practices that
prioritize modularity and maintainability.

Generate a New Component

Generate a new standalone component using the Angular CLI:

ng generate component Simple --standalone

This command creates a new directory simple under src/app/ with three files: simple.component.ts,
simple.component.html, and simple.component.css.

Write the Component Code

Edit the simple.component.ts file to define the component. Angular allows us to include
imports directly in the component, making it truly standalone.

import { Component } from ’@angular/core’;

@Component ({

selector: ’app -simple ’,

standalone: true ,

templateUrl: ’./ simple.component.html’,

styleUrls: [’./ simple.component.css’],

})

export class SimpleComponent {

message = ’Hello , Angular!’;

}

In this code:

• The @Component decorator defines the metadata for the component:

– selector specifies the custom HTML tag that will be used to invoke the com-
ponent.

– standalone: true indicates that the component does not require an NgMod-
ule.

– templateUrl and styleUrls point to the external files for the component’s
HTML and CSS.

Add Component to the Application’s Main Entry Point

To use this component, you need to declare it in the main application component or
another component where it should be displayed. Update the app.component.html to
include the SimpleComponent:

<!-- app.component.html -->

<app -simple ></app -simple >

You will also need to import your new component in the app.component.ts:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Component Lifecycle Page 4

import { Component } from ’@angular/core’;

import { CommonModule } from ’@angular/common ’;

import { FormArray , FormControl , FormGroup , ReactiveFormsModule ,

Validators } from ’@angular/forms ’;

import { SimpleComponent } from "./ simple/simple.component";

@Component ({

selector: ’app -root’,

standalone: true ,

templateUrl: ’./app.component.html’,

styleUrls: [’./app.component.css’],

imports: [ReactiveFormsModule , CommonModule , SimpleComponent]

})

Explanation of the Code and Structure

• simple.component.ts: This is where the logic for your component lives. It in-
cludes the class SimpleComponent with a property message that holds a string.
The class is decorated with @Component, which defines how Angular should render
the component and how the component behaves.

• simple.component.html: This file contains the HTML associated with your com-
ponent. It can be as simple or complex as needed. For our example, it will display
the message:

<!-- simple.component.html -->

<p>{{ message }}</p>

• simple.component.css: This file will handle all the styling for your component.
For now, it could remain empty or you could add basic styles:

/* simple.component.css */

p {

color: blue;

}

By following these steps, you have created a standalone Angular component that is easier
to maintain and reuse. Use the serve command to view the application:

ng serve -o

Component Lifecycle

Understanding the component lifecycle is needed to manage the way components are
created, rendered, and destroyed within your Angular applications. Angular provides
lifecycle hooks that give visibility into these key life moments and allow you to act on
them.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Component Lifecycle Page 5

Overview of Lifecycle Hooks

Angular manages the lifecycle of components through various hooks, allowing you to
perform specific actions at defined points in a component’s life:

• ngOnInit: Initializes the component after Angular first displays the data-bound
properties and sets the component’s input properties. It is called once, after the
first ngOnChanges.

• ngOnChanges: Responds when Angular sets or resets data-bound input proper-
ties. The method receives a SimpleChanges object of current and previous property
values.

• ngDoCheck: Detects and acts upon changes that Angular can’t or won’t detect
on its own.

• ngAfterContentInit: Responds after Angular projects external content into the
component’s view.

• ngAfterContentChecked: Responds after Angular checks the content projected
into the component.

• ngAfterViewInit: Responds after Angular initializes the component’s views and
child views.

• ngAfterViewChecked: Responds after Angular checks the component’s views
and child views.

• ngOnDestroy: Cleans up just before Angular destroys the component. Use this
to unsubscribe from observables and detach event handlers to avoid memory leaks.

Practical Examples of Using Lifecycle Hooks

To illustrate how these lifecycle hooks work, let’s extend the SimpleComponent created
earlier by incorporating some of these hooks to see them in action.

Modify the Component Code

Update simple.component.ts to include several lifecycle hooks:

import { Component , OnInit , OnDestroy , OnChanges , SimpleChanges } from

’@angular/core’;

@Component ({

selector: ’app -simple ’,

standalone: true ,

templateUrl: ’./ simple.component.html’,

styleUrls: [’./ simple.component.css’],

})

export class SimpleComponent implements OnInit , OnDestroy , OnChanges {

message = ’Hello , Angular!’;

timer: any;

constructor () {

console.log(’Constructor: the component is being constructed ’);

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Component Lifecycle Page 6

}

ngOnChanges(changes: SimpleChanges) {

console.log(’ngOnChanges: the component input properties have

changed ’, changes);

}

ngOnInit () {

console.log(’ngOnInit: the component is initialized ’);

this.timer = setInterval (() => this.updateMessage (), 1000);

}

updateMessage () {

this.message = ’Updated message at ’ + new Date();

}

ngOnDestroy () {

console.log(’ngOnDestroy: the component is about to be destroyed ’);

if (this.timer) {

clearInterval(this.timer);

}

}

}

Explanation of the Code:

• Constructor: Used to set up the initial state and dependencies of the component.
It runs before Angular does anything else.

• ngOnChanges: This method logs a message every time Angular sets or resets
data-bound input properties. It provides a SimpleChanges object detailing the
changes.

• ngOnInit: Here, we start a timer that updates the message every second. It’s im-
portant to set up timers or initiate HTTP requests within ngOnInit rather than in
the constructor to ensure that inputs and component settings are fully established.

• ngOnDestroy: This hook clears the timer when the component is destroyed. It
is essential for releasing resources that were allocated by the component to prevent
memory leaks.

Practical Use

These lifecycle hooks enable you to manage component behavior effectively across differ-
ent stages of its life. For example:

• Initializing a component with data from a backend API would typically be per-
formed in ngOnInit to ensure the component is ready to receive that data.

• Any cleanup logic to prevent memory leaks, like unsubscribing from services or
clearing timers, should be placed in ngOnDestroy.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Data Binding and Communication Page 7

Data Binding and Communication

Data binding is a core concept in Angular that allows you to define communication be-
tween the TypeScript code of your components and their templates. Angular provides a
variety of ways to manage and implement data binding, specifically focusing on commu-
nication between components, which is essential for building scalable and maintainable
applications. This section covers the primary mechanisms for inter-component commu-
nication using @Input and @Output decorators, and provides examples of how these can be
implemented for parent-child component interactions.

Overview of Data Binding

Angular supports several types of data binding:

• Interpolation ({{ value }}): Binds expression values directly into the HTML.

• Property Binding ([property]="value"): Binds an expression to a property of an
HTML element or a directive.

• Event Binding ((event)="handler()"): Allows the application to respond to user
input and events.

• Two-way Binding ([(ngModel)]="property"): Combines property and event bind-
ing to allow two-way data flow between the component model and the view.

For component communication, Angular utilizes @Input and @Output:

• @Input: Allows data to flow from the parent component to the child component. It
makes it possible to bind a property in the parent to a property in the child.

• @Output: Allows data to flow from the child back to the parent. This is achieved
using Angular’s EventEmitter to emit events from the child, which the parent can
listen to.

Examples of Parent-Child Component Communication

To demonstrate the use of @Input and @Output, let’s create a parent component and a child
component where the child sends data back to the parent upon user action.

Create Child Component

Generate a new child component named Child:

ng generate component Child --standalone

Modify the child.component.ts:

import { Component , EventEmitter , Input , Output } from ’@angular/core’;

@Component ({

selector: ’app -child ’,

standalone: true ,

templateUrl: ’./child.component.html’,

styleUrls: [’./child.component.css’],

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Data Binding and Communication Page 8

})

export class ChildComponent {

@Input () childMessage: string | undefined; // Receives data from the

parent

@Output () notify: EventEmitter <string > = new EventEmitter <string >();

// Sends data to the parent

sendMessageToParent () {

this.notify.emit(’Message from Child’);

}

}

And the child.component.html:

<p>Message from parent: {{ childMessage }}</p>

<button (click)="sendMessageToParent ()">Send Message to Parent </button >

Integrate Child Component in Parent Component

In the parent component (app.component.ts), include the child and set up to receive
the event:

import { Component } from ’@angular/core’;

import { ChildComponent } from "./ child/child.component";

@Component ({

selector: ’app -root’,

standalone: true ,

templateUrl: ’./app.component.html’,

styleUrls: [’./app.component.css’],

imports: [ChildComponent]

})

export class AppComponent {

parentMessage = ’Hello from Parent ’;

receivedMessage: string = "";

onChildNotification(message: string) {

this.receivedMessage = message;

}

}

Now update the parent template to show the child component:

<app -child [childMessage]="parentMessage" (notify)="onChildNotification

($event)"></app -child >
<p>Received message: {{ receivedMessage }}</p>

Explanation and Usage

In this example:

• The @Input decorator in ChildComponent allows it to receive a message (childMessage)
from its parent (AppComponent).

• The @Output decorator uses EventEmitter to create an event (notify) that the child
can emit. This event carries data that the parent can respond to.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Advanced Component Interaction Page 9

• When the child’s button is clicked, it triggers sendMessageToParent(), which emits
an event via notify. The parent component listens to this event with (notify)="

onChildNotification(\$event)", receives the data, and updates receivedMessage

accordingly.

This pattern of using @Input and @Output facilitates a clear, decoupled communication
channel between components, making your Angular applications more modular and main-
tainable.

Advanced Component Interaction

Angular provides sophisticated mechanisms for component interactions used for building
complex applications with dynamic and interconnected user interfaces.

Using Event Emitters to Handle Custom Events

Event Emitters in Angular are used to facilitate custom event handling. This allows
components to emit events that can be bound to event listeners in other components,
particularly useful in parent-child component scenarios.

Example: Creating and Using an Event Emitter

child.component.ts

import { Component , EventEmitter , Output } from ’@angular/core’;

@Component ({

selector: ’app -child ’,

standalone: true ,

templateUrl: ’./child.component.html’,

})

export class ChildComponent {

@Output () customEvent: EventEmitter <string > = new EventEmitter <string

>();

triggerEvent () {

this.customEvent.emit(’This is a custom event from the Child!’);

}

}

Explanation

• @Output() customEvent: EventEmitter<string> = new EventEmitter<string>(); The
Output decorator designates customEvent as a property that can send data out of
the component to whatever component is hosting it (typically the parent compo-
nent).

• The EventEmitter declares that customEvent will emit events that carry a string
payload. EventEmitter is generic, which means it can be configured to emit any
type of data object, but in this case, it’s set to emit strings.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Component Types Page 10

• The ”new” keyword instantiates a new EventEmitter object. This object will be
used to emit the custom events.

• triggerEvent() method, when called, triggers the customEvent EventEmitter to
emit an event. The string is passed as an argument to the emit method, which is
the data that will be transmitted with the event.

Usage

In practical use, when the triggerEvent() method is called, the customEvent emits an
event carrying the message ’This is a custom event from the Child!’. Parent components
can listen for this event using the (customEvent=”someParentMethod(\$event)”) syntax in
their templates, where someParentMethod is a method in the parent component that will
handle the event.

child.component.html

<button (click)="triggerEvent ()">Trigger Event </button >

Parent Component (app.component.ts)

Here, the parent component listens to the customEvent from the child component.

import { Component } from ’@angular.core’;

import { ChildComponent } from "./ child/child.component";

@Component ({

selector: ’app -root’,

standalone: true ,

templateUrl: ’./app.component.html’,

styleUrls: [’./app.component.css’],

imports: [ChildComponent]

})

export class AppComponent {

eventMessage = ’’;

handleCustomEvent(message: string) {

this.eventMessage = message;

}

}

app.component.html

<app -child (customEvent)="handleCustomEvent($event)"></app -child >
<p>Event message: {{ eventMessage }}</p>

Component Types

In Angular and broader front-end development, components are generally classified into
two main types based on their responsibilities and how they manage data: smart compo-
nents (also known as container components) and dumb components (also referred to as
presentational components). Understanding the distinction and appropriate use of each
can greatly enhance the maintainability and scalability of your applications.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Component Types Page 11

Explanation of Smart vs. Dumb Components

Smart Components (Container Components):

Smart components are primarily concerned with how things work. They are more involved
in the application’s behavior, such as data fetching, state management, and back-end
communications. These components serve as a bridge between the presentation layers
and the business logic or data services.

Characteristics:

• Interact directly with services to fetch or persist data.

• Manage application state or hold business logic.

• Often act as a data source for child components.

• Pass data to presentational components through bindings.

When to Use:

• When you need to handle business logic or interact with a service.

• For state management and data handling tasks.

• As a mediator between the presentation layer and the rest of the application, such
as services or state stores.

Benefits:

• Isolates complex business logic and backend interactions from the presentation layer,
making the components easier to manage and test.

• Helps in scaling the application by keeping the complex logic centralized and making
other components more straightforward and reusable.

Dumb Components (Presentational Components):

Dumb components focus on how things look. Their sole responsibility is to present data
in a certain way. They are generally reusable and do not depend on application-specific
logic.

Characteristics:

• Receive data through inputs and raise events through outputs.

• Do not have dependencies on services.

• Limit their functionality to displaying data and user interactions (e.g., clicks, in-
puts).

• Are often stateless, meaning they do not manage or mutate any state themselves.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Best Practices for Component Architecture Page 12

When to Use:

• When creating reusable UI elements that can be configured with different data.

• For components that are purely used for the presentation with inputs to specify
their content and behavior.

Benefits:

• Enhances the reusability of the UI components across different parts of the appli-
cation or even different projects.

• Simplifies the testing of components as they do not contain complex logic or de-
pendencies on external services or state.

An effective Angular application structure often involves a mix of both smart and dumb
components. For example, a smart component might manage fetching user data from a
server and hold state, while several dumb components might handle displaying various
parts of the user data, like user profiles, lists of items, and interactive forms. This separa-
tion of concerns not only simplifies development but also enhances component reusability
and maintainability.

By adhering to this architecture, developers can create more manageable and modular
Angular applications, where changes to business logic (in smart components) do not
affect the presentation layers (dumb components), and vice versa. This clear separation
facilitates easier updates, testing, and debugging, leading to more robust and scalable
applications.

Best Practices for Component Architecture

A well-thought-out component architecture is vital for building scalable and maintain-
able Angular applications. By organizing components thoughtfully, you can ensure that
your application remains flexible, easy to understand, and simple to extend or modify.
Below, we will discuss some best practices for organizing the component tree and examine
example architectures from real-world applications.

Organizing the Component Tree for Scalability and Maintain-
ability

The organization of the component tree in an Angular application should reflect the
functional structure and data flow of the application. Here are some strategies to consider:

• Feature Modules: Organize components into feature modules that encapsulate all
the components, services, and pipes related to a specific feature of the application.
This modular approach not only makes the application easier to navigate but also
enhances lazy loading capabilities, which can improve load times and performance.

• Hierarchical Components: Structure components in a hierarchical manner, mir-
roring the data structure and UI layout. Parent components should handle data
fetching and state management, distributing data down to child components via
@Input() and handling events from children via @Output().

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Best Practices for Component Architecture Page 13

• Reusability and Encapsulation: Design components to be as independent and
reusable as possible. Encapsulate the functionality within a component so that it
can be moved or refactored without affecting the rest of the system.

• State Management: Consider using a state management library (like NgRx,
Akita, or Ngxs) if the application complexity grows. This externalizes the state
from the component tree, simplifying the components and making state transitions
explicit and more manageable.

Example Component Tree Organization

• AppComponent (Root Component)

• NavBarComponent (Dumb Component)

• FooterComponent (Dumb Component)

• HomePageComponent (Smart Component)

– ProductListComponent (Smart Component)

∗ ProductItemComponent (Dumb Component)

– NewsFeedComponent (Smart Component)

∗ NewsArticleComponent (Dumb Component)

• UserProfilePageComponent (Smart Component)

– UserDetailsComponent (Dumb Component)

– UserOrdersComponent (Smart Component)

∗ OrderDetailsComponent (Dumb Component)

In this structure:

• Smart Components like HomePageComponent and UserProfilePageCom-
ponent fetch and manage data, dictating what should be displayed in the child
components.

• Dumb Components like NavBarComponent, FooterComponent, and Pro-
ductItemComponent are solely focused on presenting data and user interactions,
receiving all necessary data through inputs.

This structured approach not only facilitates better maintenance but also enhances the
scalability of Angular applications, making them more robust and easier to adapt to new
requirements.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Introduction to Components
	Generate a New Component
	Component Lifecycle
	Data Binding and Communication
	Advanced Component Interaction
	Component Types
	Best Practices for Component Architecture

