
TypeScript Fundamentals

Scale JavaScript Development with TypeScript Basics

Scott Tremaine
Software Developer and Educator

Breakpoint Coding Tutorials

© 2024 by John Scott Tremaine. All rights reserved.

Contents Page 1

Contents

Introduction to TypeScript 2

Setting Up the Development Environment 3

Development Tools and IDE Setup 5

First TypeScript Program 6

TypeScript Compilation and Configuration Files 7

Type Annotations and Inference 8

Declaring Variables 10

Functions in TypeScript 12

TypeScript Coding Examples and Exercises 14

Mini Project 16

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Introduction to TypeScript Page 2

Introduction to TypeScript

TypeScript, a superset of JavaScript, was created by Microsoft in 2012 to address some of
JavaScript’s inherent challenges with large-scale development. Led by Anders Hejlsberg,
who previously designed C# and Delphi, TypeScript was developed to offer features that
would make JavaScript more structured and manageable for building complex applica-
tions.

JavaScript is a highly flexible language, which allows variables to change types dynami-
cally, leading to runtime errors that can be difficult to debug. Additionally, JavaScript’s
lack of built-in tooling for advanced code completion and refactoring often leads to slower
workflows and less predictable outcomes in complex projects.

How TypeScript Improves Upon JavaScript

Static Typing System: The static typing system identifies potential type-related errors
at compile time, minimizing runtime problems. By catching errors early, many common
bugs are prevented from reaching production. The static type system also enhances the
developer’s productivity by empowering the IDE to offer features like autocompletion,
refactoring suggestions, and inline error checking. This results in faster, more accurate
coding and a greater level of confidence in the final product.

Enhanced Code Structure: Classes and interfaces, borrowed from object-oriented pro-
gramming, help developers build reusable and structured code templates that maintain
consistency throughout the application. Interfaces define clear data contracts that must
be adhered to, bringing predictability to data handling. Additionally, namespaces and
modules provide cohesive units of organization that make the code easier to navigate,
understand, and maintain, especially as projects grow in complexity.

Support for Modern JavaScript Features: The language stays current by adopt-
ing the latest ECMAScript features, enabling developers to use new capabilities like
async/await. These modern features help write asynchronous code that’s more readable
and maintainable. Early access to such features allows developers to write forward-
compatible code that works across various browsers and environments.

Seamless Migration and Compatibility: The compilation into plain JavaScript en-
sures compatibility with existing JavaScript projects, tools, and browsers. This backward
compatibility makes TypeScript suitable for teams transitioning their existing codebases.
Adopting TypeScript can be done incrementally by using it for new modules or grad-
ually refactoring older components. As a result, it seamlessly integrates with existing
JavaScript, allowing developers to mix TypeScript and JavaScript without disrupting
workflows or dependencies.

Advantages of TypeScript

The structured and modular nature of TypeScript leads to several advantages:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Setting Up the Development Environment Page 3

Reducing Runtime Errors: By catching errors before code execution, the static typ-
ing system helps prevent issues that often occur at runtime. Developers are immediately
alerted to potential bugs, reducing the risk of faulty code reaching production environ-
ments. This early detection simplifies debugging, making applications more reliable and
predictable.

Maintainability, Scalability, and Collaboration: The clear syntax and strong typing
system significantly improve maintainability. Developers can more easily understand and
modify the codebase, which is essential for long-term upkeep. The modular structures
and namespaces allow the code to remain scalable, ensuring that projects grow smoothly
and remain manageable even when large teams are involved. Interfaces and data con-
tracts establish clear guidelines and expectations, helping teams collaborate efficiently
and ensuring consistent data usage across different components and modules.

Key Differences from JavaScript

TypeScript introduces notable differences that enhance JavaScript development:

Strong Typing vs. Dynamic Typing: With strong typing, data structures are consis-
tent and predictable, which helps prevent errors that are common in dynamically typed
languages like JavaScript. Developers can be confident that their variables and functions
maintain expected types throughout the application, leading to fewer unexpected behav-
iors and runtime issues.

Additional Features:

• Interfaces: Define consistent data structures that the code must adhere to, en-
forcing uniform data usage and making the intent clearer.

• Enums: Provide named sets of constants for easier reference, making the code more
readable and reducing the chances of errors when working with repeated values.

• Namespaces: Allow developers to group related code components together, en-
hancing modularity and enabling better organization of the project as it scales.

Setting Up the Development Environment

Installing Node.js and TypeScript Compiler

To work with TypeScript efficiently, you’ll need a development environment that in-
cludes Node.js and the TypeScript compiler. Node.js provides a server-side runtime for
JavaScript, while the TypeScript compiler (often referred to as tsc) converts TypeScript
code into JavaScript. Here’s a step-by-step guide for setting up these essential tools.

Step-by-Step Guide for Different Platforms

Windows:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Setting Up the Development Environment Page 4

1. Node.js: Download the latest version from the official Node.js website. Run the
installer and follow the instructions to complete the installation. Verify the instal-
lation by opening Command Prompt and typing

node -v

2. TypeScript Compiler: After installing Node.js, open Command Prompt and
install TypeScript globally using npm (Node’s package manager). Type:

npm install -g typescript

Confirm by typing

tsc -v

macOS:

1. Node.js: Download the Node.js installer from the official website. Run the installer
and follow the prompts to complete the installation. Verify the installation by
opening Terminal and typing.

node -v

2. TypeScript Compiler: In Terminal, install TypeScript globally using npm. Type:

npm install -g typescript

Confirm by typing

tsc -v

Linux:

1. Node.js: Depending on the Linux distribution, use the respective package man-
ager or follow the instructions provided on the Node.js website. For Ubuntu-based
distributions, open Terminal and run:

sudo apt -get update

sudo apt -get install nodejs npm

2. TypeScript Compiler: Once Node.js is installed, use npm to install TypeScript
globally:

npm install -g typescript

Verify the installation by typing tsc -v.

Installing TypeScript Globally and Locally

Global Installation: Installing TypeScript globally (using the -g flag) makes it avail-
able system-wide. This is beneficial when you need to use tsc from any project directory.

Local Installation: For individual projects, it’s also possible to install TypeScript lo-
cally as a project dependency, ensuring a specific TypeScript version is tied to that
project. Inside your project’s directory, run:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Development Tools and IDE Setup Page 5

npm install typescript --save -dev

This will add TypeScript as a development dependency in the project’s node modules

folder.

Verifying the Installation

After installation, confirm that TypeScript is properly installed by running

tsc -v

This command should print the installed version, indicating the compiler is ready for use.
Now, your development environment is ready to start coding in TypeScript.

Development Tools and IDE Setup

Popular IDEs and Editors

To write TypeScript effectively, it’s important to choose a suitable Integrated Develop-
ment Environment (IDE) or code editor. The most popular choices include:

• Visual Studio Code (VSCode): A free and open-source editor by Microsoft,
VSCode offers comprehensive support for TypeScript right out of the box. Its
robust features include syntax highlighting, intelligent code completion, and inline
error detection. The built-in TypeScript support can be extended further with
extensions.

• WebStorm: A commercial IDE by JetBrains, WebStorm provides extensive fea-
tures for TypeScript, including advanced code navigation, refactoring tools, and
built-in debugging. It comes with strong support for front-end frameworks like
Angular and React.

• Sublime Text: A lightweight, versatile text editor that can be enhanced with
third-party TypeScript plugins. It offers basic code editing features and can be
customized according to the developer’s needs.

• Atom: Developed by GitHub, Atom is highly customizable with a range of packages
for TypeScript support, offering syntax highlighting and linting features.

Enhancing Productivity with TypeScript-Specific Plugins

Regardless of the editor you choose, you can enhance your productivity by installing
TypeScript-specific plugins:

• TypeScript Language Features: Many IDEs include built-in TypeScript sup-
port that provides features like autocomplete, error checking, and type inference.
This makes it easier to write accurate and error-free code.

• Linting Plugins: Plugins like ESLint help enforce coding standards and best prac-
tices. By integrating with TypeScript, these linters can identify potential issues in
your code, suggest improvements, and ensure uniform code style across the project.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

First TypeScript Program Page 6

• Refactoring Tools: Refactoring plugins automate code transformations to keep
your codebase clean and maintainable. For instance, extracting interfaces, convert-
ing anonymous types to named types, or renaming symbols across the codebase.

• Snippet Libraries: Code snippets help automate repetitive tasks, improving cod-
ing speed. They can be customized to fit the project’s conventions and make com-
mon patterns available as quick templates.

• Debugging Integrations: Some IDEs and plugins offer built-in debugging tools
that work directly with TypeScript. They let you set breakpoints, inspect variables,
and analyze the call stack in real time, streamlining the debugging process.

By leveraging these tools and plugins, you can maximize your productivity and ensure a
smoother, more efficient development workflow in TypeScript.

First TypeScript Program

Creating a Simple TypeScript File

To begin writing your first TypeScript program, create a new file with a .ts exten-
sion. This extension signifies that it’s a TypeScript file. For this example, let’s name it
hello.ts and place it in a directory of your choice. Open this file in your preferred IDE
or editor and write the following TypeScript code:

/* hello.ts */

function greet(name: string): string {

return ‘Hello , ${name}! Welcome to TypeScript.‘;

}

console.log(greet("Developer"));

In this small program, we’ve defined a function named greet that accepts a string pa-
rameter name and returns a greeting message. The function uses TypeScript’s type an-
notations to specify that name should be a string. We then call this function with the
value "Developer" and print the result to the console.

Compiling to JavaScript Using the TypeScript Compiler (tsc)

After writing the TypeScript code, you need to compile it into plain JavaScript that can
be executed in any JavaScript environment. The TypeScript compiler, tsc, will handle
this conversion. Open a terminal or command prompt, navigate to the directory where
hello.ts is located, and run:

tsc hello.ts

The compiler will generate a new file named hello.js in the same directory. This file
contains the equivalent JavaScript code that can be executed by any JavaScript engine.

Running the Compiled JavaScript Code

Now that you have the compiled JavaScript file (hello.js), you can execute it using
Node.js. In the terminal or command prompt, run:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

TypeScript Compilation and Configuration Files Page 7

node hello.js

This will output the message:

Hello , Developer! Welcome to TypeScript.

Congratulations! You’ve successfully written and executed your first TypeScript pro-
gram. You can now explore more complex examples or integrate TypeScript into existing
JavaScript projects.

TypeScript Compilation and Configuration Files

Compiling TypeScript

When you write a TypeScript file, it must be compiled into JavaScript before it can run in
a JavaScript environment. The TypeScript compiler (tsc) handles this process, convert-
ing TypeScript into JavaScript by following the language rules and type annotations you
specify. The compiled output maintains compatibility with all JavaScript environments,
allowing you to mix TypeScript and JavaScript seamlessly.

Understanding How TypeScript Converts to JavaScript

The compilation process transforms TypeScript into JavaScript according to the rules
defined in the configuration file or via command-line options. Type annotations are
stripped away since JavaScript doesn’t support them natively, and TypeScript’s advanced
features are translated into equivalent JavaScript code.

Compilation Targets and Output File Structures

During compilation, you can specify which version of JavaScript (ECMAScript) to target.
TypeScript supports a range of targets, from ES3 to the latest version. This ensures
compatibility with different JavaScript environments. Additionally, you can customize
the output file structure by specifying a root directory for the input source code and an
output directory for the compiled files.

Configuration with tsconfig.json

To manage all the compiler settings, you can create a tsconfig.json file in your project
directory. This file provides a structured way to define compiler options, source file
inclusions, and output directory structures. When the TypeScript compiler detects
tsconfig.json, it uses the options specified there for every compilation.

Explanation of Common Compiler Options

• target: Specifies the ECMAScript version to which TypeScript should compile
(e.g., es5, es6/es2015, es2020).

• module: Determines the module system for the output (e.g., commonjs, esnext).

• strict: Enables strict mode, turning on all strict type-checking options.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Type Annotations and Inference Page 8

• rootDir: Defines the root folder of the input TypeScript files.

• outDir: Specifies the directory where the compiled JavaScript files will be saved.

Creating and Configuring a tsconfig.json File

To create a tsconfig.json file automatically, navigate to your project directory in the
terminal or command prompt and run:

tsc --init

This command generates a default configuration file. You can then customize it as needed.
For instance:

/* tsconfig.json */

{

"compilerOptions": {

"target": "es5",

"module": "commonjs",

"strict": true ,

"rootDir": "./src",

"outDir": "./dist"

},

"include": ["src /**/*"],

"exclude": ["node_modules"]

}

In this configuration:

• target is set to es5 to ensure compatibility with older browsers.

• module uses commonjs to align with Node.js module systems.

• strict mode is enabled to enforce best coding practices.

• rootDir defines src as the root directory for TypeScript source files.

• outDir specifies that compiled files should be output to the dist folder.

Using include and exclude for Better Control

The include and exclude fields refine which files and directories should be considered
by the compiler. For instance, the configuration above includes all .ts files inside the
src directory and ignores files inside node modules. This helps reduce compilation time
and ensures that only the intended files are processed.

With a well-configured tsconfig.json, you can streamline your TypeScript project’s
compilation process, making development more efficient and organized.

Type Annotations and Inference

Primitive Types

TypeScript allows you to specify explicit type annotations for variables and parameters.
Primitive types include:

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Type Annotations and Inference Page 9

string: Represents text values. For example:

let username: string = "Alice";

number: Represents both integers and floating-point numbers.

let age: number = 30;

boolean: For true or false values.

let isStudent: boolean = true;

symbol: Used to create unique identifiers.

let uniqueId: symbol = Symbol("unique");

undefined and null: Represent the absence of value.

let data: undefined = undefined;

let value: null = null;

Arrays and Tuples

Arrays can store multiple values of the same type, while tuples allow you to define an
ordered list of values with mixed types.

Array:

let scores: number [] = [85, 90, 95];

Tuple:

let person: [string , number] = ["Alice", 30];

Object Types and Functions

TypeScript also supports type annotations for objects and functions.

Interfaces and Inline Object Type Declarations: Interfaces define the structure
and data types of objects, while inline types allow quick type definitions.

interface User {

name: string;

age: number;

isActive: boolean;

}

let user: User = { name: "Alice", age: 30, isActive: true };

Function Parameter and Return Types: You can specify the types for function
parameters and return values.

function greet(name: string): string {

return ‘Hello , ${name}!‘;
}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Declaring Variables Page 10

Enums

Enums are a way to define a set of named constants, which can be numeric or string-based.

Numeric Enums: By default, numeric enums assign sequential values starting from
zero.

enum Direction {

North ,

East ,

South ,

West

}

let travel: Direction = Direction.North;

String Enums: String enums map each constant to a specified string.

enum Status {

Success = "SUCCESS",

Failure = "FAILURE"

}

let operation: Status = Status.Success;

Enums are useful for switch statements and control flow to maintain readable and pre-
dictable logic.

Type Inference

Type inference is the feature that allows TypeScript to automatically infer the type of a
variable if an annotation is omitted. For example:

let greeting = "Hello , TypeScript!"; // inferred as string

let counter = 42; // inferred as number

Benefits and Risks of Relying on Inference

The benefit of type inference is that it reduces verbosity, making code easier to read and
write. TypeScript still ensures that variables maintain consistent types throughout their
usage.

However, relying entirely on inference can be risky, especially with complex data types.
When types are not explicitly stated, inferred types might not align with your expecta-
tions, potentially leading to subtle bugs. It’s advisable to use explicit annotations for
function parameters and return types, as well as any data structures with significant
complexity.

Declaring Variables

TypeScript supports three primary ways to declare variables: var, let, and const, each
with different behaviors concerning scope and mutability.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Declaring Variables Page 11

var: Variables declared with var have function scope, meaning they are visible through-
out the entire function, even before their actual declaration due to hoisting. This behavior
can sometimes lead to unexpected bugs and makes var less desirable.

function example () {

var age = 30;

if (true) {

var age = 40; // This redeclares the ’age’ variable in the

function scope

}

console.log(age); // Output: 40

}

let: The let keyword declares variables with block scope, meaning their visibility is
limited to the nearest enclosing block or statement. This is useful to avoid issues with
var’s hoisting and makes it the preferred way to declare mutable variables.

function example () {

let age = 30;

if (true) {

let age = 40; // This is a separate variable from the outer ’

age’

}

console.log(age); // Output: 30

}

const: The const keyword also declares block-scoped variables, but with immutability.
This means that once a value is assigned to a const variable, it cannot be reassigned or
changed.

const birthYear = 1990;

birthYear = 1991; // Error: Cannot reassign a constant

When to Use Each Declaration

• var: var should generally be avoided due to its function scoping and hoisting
behavior, which can lead to confusing code.

• let: Use let for variables that need to be mutable and are scoped to a particular
block.

• const: Use const for variables that will remain constant throughout their use.

Special Types and Guards

any: The any type disables TypeScript’s strict type-checking. It’s useful when work-
ing with dynamic or third-party libraries but should be used sparingly as it bypasses
TypeScript’s benefits.

let data: any = "Hello";

data = 42; // No type error , even though the value changes type

unknown: The unknown type is similar to any but requires explicit type checks before
usage, which makes it safer. It’s useful for safely handling values from external sources.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Functions in TypeScript Page 12

let input: unknown = "Some input";

if (typeof input === "string") {

console.log(input.toUpperCase ());

}

never: The never type represents code paths that cannot be reached or values that
should never occur. For example, functions that always throw errors or infinite loops
would return never.

function throwError(message: string): never {

throw new Error(message);

}

Using Type Guards and Assertions for Error Handling

Type guards help ensure that a value is of a specific type. They can involve operators
like typeof, instanceof, or custom user-defined functions.

typeof: Detects primitive types such as string, number, and boolean.

function printMessage(value: string | number) {

if (typeof value === "string") {

console.log(value.toUpperCase ());

} else {

console.log(value.toFixed (2));

}

}

instanceof: Checks if an object is an instance of a specific class.

class Car {}

let myCar = new Car();

console.log(myCar instanceof Car); // Output: true

Type Assertions: When TypeScript cannot infer a specific type, you can use type
assertions to specify it explicitly.

let inputValue: unknown = "Hello TypeScript";

let trimmedValue = (inputValue as string).trim(); // Asserted as a

string

Type assertions should be used carefully, as they can bypass TypeScript’s type-checking
and potentially introduce errors.

Functions in TypeScript

Parameter and Return Types

In TypeScript, you can specify types for function parameters and return values to ensure
type consistency and catch errors early.

Required Parameters: By default, parameters are required. If you don’t pass the
required parameters to a function, TypeScript will generate an error.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Functions in TypeScript Page 13

function multiply(x: number , y: number): number {

return x * y;

}

Optional Parameters: Optional parameters are denoted by a question mark (?) after
the parameter name. TypeScript infers the type as the union of the declared type and
undefined.

function greet(name: string , title ?: string): string {

return title ? ‘${title} ${name}‘ : ‘Hello , ${name}‘;
}

Default Parameters: Default parameters have a value assigned to them if not explicitly
passed.

function applyDiscount(price: number , discount: number = 0.1): number {

return price * (1 - discount);

}

Return Type Annotations and Inference: Functions can explicitly declare the return
type to ensure the function returns the correct type of value. If no return type is specified,
TypeScript will infer it from the function body.

function add(x: number , y: number): number {

return x + y; // Explicit return type annotation

}

function sayHello (): void {

console.log("Hello!"); // Void indicates no return value

}

Function Overloads

TypeScript allows you to define multiple function signatures for a single function im-
plementation, known as function overloads. These signatures guide TypeScript’s type-
checking and autocompletion.

Defining Multiple Signatures: Overload signatures are defined before the function
implementation.

function display(value: string): void;

function display(value: number): void;

function display(value: string | number): void {

if (typeof value === "string") {

console.log(‘String: ${value}‘);
} else {

console.log(‘Number: ${value}‘);
}

}

Applying Overloads in Practical Scenarios: Function overloads are particularly
useful when a function can handle multiple types or scenarios, such as handling different
input types in logging or formatting functions.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

TypeScript Coding Examples and Exercises Page 14

Arrow Functions

Arrow functions are a shorthand syntax introduced in ES6 that allows you to write more
concise functions. They also handle the this keyword differently compared to traditional
functions.

Arrow Function Syntax: Arrow functions use the => syntax and are useful for simple
expressions.

const square = (n: number): number => n * n;

this Keyword Behavior: Unlike traditional functions, arrow functions do not bind
their own this. Instead, they inherit this from the surrounding context, known as
lexical scoping.

class Timer {

private seconds = 0;

start() {

setInterval (() => {

this.seconds ++; // Inherits ‘this ‘ from the ‘Timer ‘ class

console.log(this.seconds);

}, 1000);

}

}

const timer = new Timer ();

timer.start();

Typing Arrow Functions: Arrow functions can have parameter and return type an-
notations, just like regular functions.

const multiply = (x: number , y: number): number => x * y;

Using arrow functions is particularly beneficial when working with asynchronous call-
backs, as their lexical scoping avoids issues with incorrect this references.

TypeScript Coding Examples and Exercises

Practicing with Primitives, Arrays, Objects, and Functions

Declare variables for different primitive types and log their values:

const age: number = 25;

const isStudent: boolean = true;

const firstName: string = "Alice";

console.log(‘Age: ${age}, Student: ${isStudent}, Name: ${firstName}‘);

Create an array of numbers and iterate through it using a loop:

const scores: number [] = [85, 90, 78, 92];

for (let score of scores) {

console.log(‘Score: ${score}‘);
}

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

TypeScript Coding Examples and Exercises Page 15

Define an object with a custom type and manipulate its properties:

interface Person {

name: string;

age: number;

isEmployed: boolean;

}

let person: Person = { name: "Bob", age: 28, isEmployed: true };

person.age += 1; // Increment age

console.log(‘Updated Age: ${person.age}‘);

Refactoring Small JavaScript Snippets into TypeScript

Take a simple JavaScript function like this:

function multiply(a, b) {

return a * b;

}

Refactor it into TypeScript:

function multiply(a: number , b: number): number {

return a * b;

}

The TypeScript version adds type annotations to the parameters and return value, making
the function more predictable.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

Mini Project Page 16

Mini Project

Building a Simple TypeScript Application from Scratch

Create a basic calculator application that adds and subtracts numbers:

// calculator.ts

interface Operation {

type: string;

value: number;

}

function calculate(initialValue: number , operations: Operation []):

number {

let result = initialValue;

for (let op of operations) {

switch (op.type) {

case "add":

result += op.value;

break;

case "subtract":

result -= op.value;

break;

default:

console.log(‘Unknown operation: ${op.type}‘);
}

}

return result;

}

const operations: Operation [] = [

{ type: "add", value: 10 },

{ type: "subtract", value: 5 }

];

const finalResult: number = calculate (0, operations);

console.log(‘Final Result: ${finalResult}‘);

In this project:

• Interface Operation: Defines the structure of an operation object.

• calculate Function: Applies multiple arithmetic operations based on the input
array.

• Switch Statement: Implements addition and subtraction based on the operation
type.

Copyright © 2024 John Scott Tremaine. Content for BreakpointCoding.com. Not for
redistribution.

	Introduction to TypeScript
	Setting Up the Development Environment
	Development Tools and IDE Setup
	First TypeScript Program
	TypeScript Compilation and Configuration Files
	Type Annotations and Inference
	Declaring Variables
	Functions in TypeScript
	TypeScript Coding Examples and Exercises
	Mini Project

