
22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

Detailed Report: How the
Internet Works – An End-
to-End Example of
Accessing ‘Google.com’ .
Abstract: This report provides a comprehensive
examination of the intricate processes involved
when accessing a website, using "www.google.com"
as an example. It delves into each step, from the
initial input in the browser to the final rendering of
the web page. Key stages include browser actions,
DNS resolution, TCP/IP stack operations, HTTP
request and response cycles, server processing, data
transfer, and browser rendering. Understanding
these mechanisms reveals the sophisticated nature of
internet communication and highlights the
coordinated actions across various layers that enable
seamless web interactions.

» What is Internet?

The Internet is a vast global network of
interconnected computers and other devices that
communicate and exchange data using standardized
protocols. It allows for the sharing of information
and resources across vast distances, enabling various
applications and services.

Keywords: Internet communication , DNS
resolution , TCP/IP stack , HTTP request , Browser
rendering , Server processing , Data transfer, Web
infrastructure , Network routing , Web interaction .

I. Definitions:
a) Internet Communication : The exchange of

data between devices over a network,
allowing users to access information and
services online. It encompasses various
protocols and technologies that facilitate
data transmission.

b) DNS Resolution : The process of
converting a human-readable domain name
(e.g. www.google.com) into an IP address
that computers can use to identify each
other on the network.

c) TCP/IP Stack: A suite of communication
protocols used to interconnect network
devices on the internet. TCP (Transmission
Control Protocol) and IP (Internet
Protocol) are the core protocols that define
how data is transmitted and routed.

d) HTTP Request: A message sent by a client
(e.g., a web browser) to a server, requesting
specific resources or services. An HTTP
GET request is commonly used to fetch
web pages.

e) Browser Rendering : The process by which
a web browser interprets HTML, CSS, and
JavaScript to construct and display a web
page visually on the screen.

f) Server Processing : The actions performed
by a server upon receiving a request, which
may include running scripts, querying
databases, and generating content to send
back to the client.

g) Data transfer: The movement of data
packets between devices across a network.
This involves routing through multiple
intermediary nodes and reassembling the
packets at the destination.

h) Web Infrastructure : The underlying
framework that supports internet services
and applications. This includes servers,
data centres, networking hardware, and
software systems that ensure reliable and
scalable operations.

i) Network routing: The process of selecting
paths in a network along which to send data

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

packets. Routers use algorithms and
protocols to determine the most efficient
route from source to destination.

j) Web Interaction : The dynamic exchange
between a user and a web application,
which can involve navigating pages,
submitting forms, and receiving real-time
updates. This interaction is facilitated by
web technologies and protocols.

II. Literature:

 1. Browser Actions

® URL Parsing

When you type "www.google.com" into
the browser's address bar and press Enter,
the browser parses the URL. This involves
breaking down the URL into different
components:

• Scheme: The browser identifies the
protocol (HTTP or HTTPS). In this
case, it’s usually HTTPS, indicating a
secure connection.

• Domain Name: The browser extracts
"www.google.com" as the domain
name.

• Port: Although typically hidden from
the user, the browser defaults to port 80
for HTTP and port 443 for HTTPS.

• Path: If any, the path indicates a
specific page or resource on the site.

• Query Parameters: These are
additional parameters that might be
included in the URL to pass data to the
server.

® Cache Check
• Cache checking is a process used in

computing to determine if a requested
piece of data is already stored in a
cache memory, thus avoiding the need
to retrieve it from a slower storage or
compute it again. Thus leading to

performance improvement & resource
optimization.

• Cache Types: The browser uses
multiple caches, such as the disk
cache and memory cache. The disk
cache is used for long-term storage,
while the memory cache is used for
quick access to recently accessed
resources.

• Cache Validation: The browser may

also send a request to the server with
headers like If-Modified-Since or If-
None-Match to check if the cached
content is still valid.

2. DNS Resolution

DNS resolution, also known as Domain Name
System resolution, is the process by which a
domain name is translated into an IP address
(example:192.0.2.1) that computers use to
identify each other on a network.

® DNS Query
• Local DNS Cache: The browser first

checks the operating system’s DNS cache
to see if it has recently resolved the domain
name.

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

• DNS Over HTTPS (DoH): Modern
browsers may use DNS over HTTPS to
encrypt DNS queries, enhancing privacy
and security.

® Recursive Query

The DNS resolver performs a recursive
query to find the IP address, If the operating
system cache also does not have the
information, the request is forwarded to a
recursive DNS resolver, typically provided
by the user’s Internet Service Provider
(ISP).

• Root DNS Server: There are 13 root

servers worldwide, labelled A through M,
which handle queries about TLDs.

• TLD DNS Server: These servers handle
queries about domains within their
respective top-level domain, such
as .com, .net, or .org.

• Authoritative DNS Server: These servers
hold the DNS records for specific
domains, including A records (IP
addresses), CNAME records (aliases),
MX records (mail servers), and more.

• Accessing the Website: The browser uses
the IP address to establish a connection to
the web server hosting the website, and the
site is loaded.

• Caching: To optimize future requests, the
resolved IP address is cached at various
levels (browser, operating system,
recursive resolver) according to the time-
to-live (TTL) value specified in the DNS
records.

® Response

The DNS resolver returns the IP address to
the browser, which uses it to establish a
connection with the Google server.

 3. TCP/IP Stack Operations

® TCP Handshake

The browser uses the TCP/IP protocol suite
to establish a connection:

• SYN: The browser sends a SYN
(synchronize) packet to the server to
initiate the connection.

• SYN-ACK: The server responds with a
SYN-ACK (synchronize-acknowledge)
packet, acknowledging the request.

• ACK: The browser sends an ACK
(acknowledge) packet, establishing a
stable connection.

• Sequence Numbers: Each SYN packet
includes a sequence number, which is
used to track the order of packets and
ensure reliable delivery.

• Window Size: The TCP handshake also
negotiates the window size, which
determines the amount of data that can
be sent before receiving an
acknowledgment.

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

4. HTTP Request

® Request Headers: The browser
constructs an HTTP GET request for
"www.google.com". This request
includes headers that provide additional
information:

• Host: Specifies the domain name of the
server (e.g., "www.google.com").

• User-Agent: Identifies the browser and
operating system.

• Accept: Indicates the types of content the
browser can handle (e.g., text/html,
application/Json).

• Referrer: Indicates the URL of the
referring page.

• Connection: Specifies whether the
connection should be kept alive or closed
after the response.

• Cookies: If the browser has cookies
stored for "www.google.com," these are
included in the request headers to maintain
session state.

• Accept-Encoding: This header specifies
the content-encoding methods the client
can handle (e.g., gzip, deflate), allowing
the server to compress the response.

5. Server Processing

Server processing refers to the actions and
computations performed by a server in
response to client requests. It involves tasks
like data retrieval, data storage,
computation, content delivery,
authentication & authorization, logging &
monitoring, network communication &
resource management.

® Request Handling

Upon receiving the request, the Google
server performs these actions:

• Routing: The server determines which
service or application should handle the
request.

• Authentication and Authorization: If
needed, the server verifies the client's
identity and permissions.

• Data Processing: The server may execute
backend scripts, query databases, and
perform computations to generate the
response.

• Load Balancing: Large websites like

Google use load balancers to distribute
incoming requests across multiple servers,
ensuring high availability and
performance.

• Edge Servers: Content delivery networks
(CDNs) may serve static content (e.g.,
images, CSS, JavaScript) from edge
servers located close to the user to reduce
latency.

® Response Generation

The server generates an HTTP response,
which includes:

• Status Line: Indicates the status of the
request (e.g., "200 OK" for success).

• Response Headers: Provide metadata

about the response (e.g., Content-Type,
Content-Length).

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

• Body: Contains the requested content
(e.g., HTML, CSS, JavaScript).

• Dynamic Content: The server may
generate dynamic content using server-
side scripting languages (e.g., PHP,
Python, Node.js) or frameworks (e.g.,
Django, Express).

• Database Access: For dynamic pages, the
server often queries databases to retrieve
or update data. This can involve SQL
queries for relational databases or API
calls for NoSQL databases.

6. Data Transfer

® Packet Transmission
Packet transmission is the process of
sending data across a network in small
units called packets. It involves
processes like: Data Segmentation,
Packet Headers, routing , reassembly &
error checking.

• Data Segmentation: Large data files are
divided into smaller packets for easier
and more efficient transmission. Each
packet contains a portion of the data,
along with control information such as
source and destination addresses, and
sequencing details. Maximum
Transmission Unit is the largest size of a
packet or frame, in bytes, that can be sent
in a single network transmission. The
MTU is an important parameter in
networking because it affects the
efficiency and performance of data
transmission. For Ethernet networks, the
standard MTU is 1500 bytes.

• Congestion Control: TCP implements

congestion control algorithms (e.g., TCP
Reno, TCP Cubic) to prevent network
congestion and ensure fair bandwidth
distribution.

Diagram Interpretation:

• Low Received Power (-38 dBm to -34
dBm): Both TCP Reno and TCP Cubic
have low throughput.

• Medium Received Power (-34 dBm to -
30 dBm): TCP Cubic increases throughput
faster than TCP Reno, indicating better
performance in improving signal
conditions.

• High Received Power (-30 dBm to -28
dBm): Both algorithms reach maximum
throughput, but TCP Cubic achieves this
faster and maintains it better than TCP
Reno.
Overall, TCP Cubic demonstrates superior
performance by achieving higher
throughput more quickly and efficiently as
received power improves, making it better
suited for environments with fluctuating
signal strengths.

® Network Routing
• Packets are transmitted from the source

to the destination through a series of
routers and switches. Each router
examines the packet header and
forwards the packet to the next hop along
the path to its destination.

• Routers use algorithms and protocols to
determine the most efficient path for
each packet from the server to the
browser. This path may involve several
hops across different networks.

• Routing Protocols: protocols like BGP
(Border Gateway Protocol) are used to
exchange routing information and

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

determine the best path for data packets.
Some pointers are as follows:

- Path Vector Protocol: BGP maintains
the path information that gets updated as
the network topology changes. This path
information is used to make routing
decisions based on policies and rule sets
rather than just the shortest path.

- BGP Routing Tables: BGP routers
maintain tables that contain information
on available routes, which is used to
make forwarding decisions. These tables
are constantly updated with new routing
information from peer routers.

- Policy-Based Routing: Unlike interior
gateway protocols that focus on finding
the shortest path, BGP is heavily policy-
driven. Network administrators can
define routing policies that control how
BGP selects paths, including preferring
certain routes over others.

- Types of BGP: eBGP (External BGP):
Used for routing between different
autonomous systems. iBGP (Internal
BGP): Used for routing within the same
autonomous system.

® Packet Reassembly
• 	Packet reassembly is the process of

reconstructing fragmented packets back
into their original, complete form at the
destination device. This process is
essential for ensuring that the transmitted
data can be accurately understood and
used by the receiving application or
system. Key processes in packet
reassembly:

a. Fragmentation:
- Occurs when packets exceed the

Maximum Transmission Unit (MTU)
size of a network segment and need to be
broken down into smaller fragments for
transmission.

- Each fragment is transmitted separately,
with necessary headers to ensure correct
routing and reassembly.

b. Headers and Identifiers:
- Each fragmented packet includes a

header with information such as the
source and destination IP addresses, a
unique identifier for the fragmented
packet, and offset values indicating the
position of the fragment in the original
packet.

- The More Fragments (MF) flag is set in
all but the last fragment to indicate that
more fragments are to come.

c. Reassembly Process:
- At the destination, the IP layer receives

the fragments and uses the header
information to reassemble them in the
correct order.

- The unique identifier and offset values
ensure that fragments are correctly
ordered and placed.

- The reassembly process waits until all
fragments have arrived, indicated by the
absence of the MF flag in the final
fragment.

d. Error Handling:
- If any fragment is lost or corrupted, the

entire packet may need to be
retransmitted since reassembly cannot
complete with missing pieces.

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

- Error-checking mechanisms, such as
checksums in the packet headers, help
detect and handle such issues.

• Importance of Packet Reassembly:
- Data Integrity: Ensures that the data

received is complete and accurate,
preserving the integrity of the
transmitted information.

- Efficient Communication: Allows for
efficient utilization of network resources
by enabling the transmission of large
data packets over networks with smaller
MTU sizes.

- Reliability: Supports reliable
communication, especially in networks
where fragmentation is common due to
varying MTU sizes across different
segments.

7. Browser Rendering

® Parsing HTML
• The browser parses the HTML content to

build the Document Object Model (DOM).
The DOM represents the structure of the
web page as a tree of nodes.

• DOM Construction: The browser builds the
DOM tree by parsing the HTML markup.
Each element and attribute becomes a node
in the tree.

® Loading Resources
• The browser identifies additional resources

specified in the HTML (e.g., CSS,
JavaScript, images) and sends separate
HTTP requests to fetch them.

• Resource Prioritization: The browser
prioritizes loading resources that are critical
for rendering the above-the-fold content,
such as CSS and critical JavaScript files.

® Applying CSS
• The browser applies CSS styles to the DOM,

determining the layout and appearance of
elements.

• CSSOM Construction: The browser
constructs the CSS Object Model (CSSOM),
a tree-like structure that represents the styles
for each element in the DOM.

® Executing JavaScript
• The browser executes JavaScript code,

which can modify the DOM, handle user
interactions, and dynamically load
additional content.

• JavaScript Engines: Browsers use
JavaScript engines (e.g., V8 for Chrome,
Spider Monkey for Firefox) to compile and
execute JavaScript code.

® Layout and Paint
• The browser calculates the layout of

elements based on the CSS and renders the
visual representation of the web page on the
screen. This involves:

- Layout: Calculating the position and size
of elements.

- Paint: Drawing pixels on the screen to
display the content.

- Reflow: The browser calculates the
layout of elements. Reflow can be an
expensive operation if it involves many
elements or nested structures.

- Compositing: The browser uses a
compositing process to combine layers
and render the final image on the screen.
Modern browsers use GPU acceleration
to speed up this process.

8. Interactivity

® Event Handling
• The browser listens for user interactions

(e.g., clicks, keystrokes) and handles
events accordingly. JavaScript event
listeners can modify the DOM, send
additional HTTP requests (e.g., via
AJAX), and update the page without
requiring a full reload.

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

• Event Loop: JavaScript uses an event loop
to handle asynchronous operations, such
as user interactions and network requests.

• AJAX: Asynchronous JavaScript and
XML (AJAX) allows the browser to send
HTTP requests and update the page
dynamically without reloading it.

 9. Security

• SSL/TLS Handshake: For HTTPS
connections, the browser and server
perform an SSL/TLS handshake to
establish an encrypted connection. This
involves exchanging certificates and keys.

• Security Headers: The server may include
security headers (e.g., Content-Security-
Policy, X-Frame-Options) to protect
against common vulnerabilities.

• Content-Security-Policy (CSP) is a
security feature that helps prevent various
types of attacks, including Cross-Site
Scripting (XSS), data injection attacks,
and other code execution vulnerabilities. It
does so by restricting the sources of
content that can be loaded on a web page.

• X-Frame-Options is an HTTP response
header that provides a simple and effective
way to prevent clickjacking attacks by
controlling whether a web page can be
displayed within an iframe or frame.
Clickjacking is a type of attack where a
malicious site tricks users into clicking on
something different from what they
perceive, potentially leading to
unauthorized actions or data exposure.

10. Performance Optimization

• Minification: Servers often minify HTML,
CSS, and JavaScript to reduce file sizes and
improve load times.

• Lazy Loading: The browser can delay the
loading of non-critical resources (e.g.,

22030121179 Cloud Architecture & Security Ronit Vyas

Symbiosis Institute of Computer Studies & Research

images below the fold) until they are
needed.

III. References:

o Google
o YouTube
o GeekforGeeks
o JavaTpoint

