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Abstract

This paper review delves into the economic and operational facets of exploiting

non-renewable resources, guided by the theoretical framework presented in Kane 1988

seminal work, "The Economic Definition of Ore." It explores the intricate balance be-

tween economic, technological, and operational considerations that dictate the pace and

strategy of resource extraction. Central to our discussion is the concept of the present

value (PV) of future cash flows derived from resource exploitation, encapsulated in a

mathematical model that seeks to maximize this value over the resource’s life. This

optimization problem hinges on identifying the optimal set of cut-off grade policies,

represented as Ω∗, within a broader strategy space Ω.

The model is structured around the dynamic relationship between the present time,

the available resource reserve R, and the present value V , with the latter being influ-

enced by the rate of resource depletion and the chosen exploitation strategy. A key

contribution of this work is the formulation of a mathematical model that captures the

economic implications of different exploitation strategies over time. By considering the

differential impacts of these strategies on the present value and available reserves, the

model provides a robust framework for decision-making in the context of non-renewable

resource management.

In addition, this study introduces an innovative application of Artificial Intelligence

(AI) and Metaheuristics within a framework where Lane acts as a manager of dynamic

programming operations. In this scheme, metaheuristics are utilized to solve optimiza-

tion subproblems, while AI is tasked with learning from all possible solutions or paths,

thus optimizing the decision-making process. This multidisciplinary approach allows
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tackling the complexity of the problem from various perspectives, enriching the final

solution and facilitating adaptation to changes and new information.

This integration of AI and Metaheuristics under a framework controlled by Lane

not only expands the knowledge frontier in the exploitation of non-renewable resources

but also provides a powerful tool to address the inherent challenges in predicting future

values and costs, thus contributing to the sustainable and economically viable man-

agement of resources.This research not only advances the theoretical understanding of

non-renewable resource exploitation but also offers practical insights for industry prac-

titioners. By systematically analyzing the interplay between economic factors, resource

depletion, and strategic planning, the paper contributes valuable knowledge towards

sustainable and economically viable resource management practices.

1 Preliminaries

Kane, in his book The Economic Definition of Ore Kane 1988, studies the use of non-
renewable resources based on the fact that exploiting a non-renewable resource involves eco-
nomic and technological components that define its rate of exploitation and considering that
each day it is depleted, hence the strategy is not unique. Lane proposes a non-renewable re-
source where, over the life (n years), there are annual flows C1, C2, C3, . . . , Cn that, brought
to the present with a capital cost δ, we have the following present value V as shown in
equation 1:

V =
n∑

i=1

Ci

(1 + δ)i
(1)

As the present time advances, reserves are being exploited making the available reserve
quantity R decrease, which implies that V depends on R and T as shown in equation 2

V = V (T,R) (2)

On the other hand, the function V has the following boundary values shown in equation 3

V (T,R) = V, V (T, 0) = 0 (3)

Also, the function V depends on other variables that define the form of exploitation, which
are the set of strategies Ω that can be followed during the time the resource is exploited, so
the function V is defined as shown in equation 4.

V (T,R,Ω) (4)
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2 Mathematical Model

The proposed mathematical model considers as its objective to maximize the function V ,
which focuses on finding that set of strategies Ω∗, also called cut-off grade policies g1, g2, g3, . . . , gn
and which are a subset of Ω. Thus, we can define the function V ∗ as shown in equation 5
that represents V for a particular strategy Ω∗.

V ∗ = V ∗(T,R) (5)

Then, we want to define what happens at the economic level in the time interval (between
T and T + t), where each end is associated with a value of V and an available reserve R.
We can define that in this period of time, a certain part of the reserves r was exploited, thus
having a flow c that depends on the cut-off grade g and the elapsed time t, where g belongs
to the cut-off grade strategy set Ω. To express this logic graphically, we can see it in Table 1.

Table 1: Description of the time period
Start End

Present Time T T + t
Available Resource R R− r
Present Value V (T,R) V (T + t, R− r)
Flow c = c(g, t)

If we take as an economic model the flows discounted to the present time based on a
discount rate δ we can relate the functions V (T,R) and V (T + t, R− r) so that carrying the
flows V (T + t, R− r) and c to time t we have the following equality as shown in equation 6.

V (T,R) = r ∗ c+ V (T + t, R− r)

(1 + δ)t
(6)

In order to make the calculations simpler, the approximation shown in equation 7 is made:

1

(1 + δ)t
≈ 1− δt (7)

This way, we transform equation 6 into a simpler form to work with as shown in equation 8.

V (T,R) = r ∗ c+ V (T + t, R− r) ∗ (1− δt) (8)

If we operate on the set of strategies Ω′ that maximizes the value of V being this V ′ , that is
when g ∈ Ω

′ . Given this, we can define the function V
′ as shown in equation 9.

V
′
(T,R) = max

g∈Ω′
{r ∗ c+ V

′
(T + t, R− r) ∗ (1− δt)} (9)
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On the other hand, to solve equation 9, we must consider the differentials of t and r and
we will obtain the total derivative of V with respect to the variables T and R as shown in
equation 10, which would allow us to relate V

′
(T,R) and V

′
(T + t, R− r).

V
′
(T + t, R− r) = V

′
(T,R) +

∂V
′

∂T
t− ∂V

′

∂R
r (10)

Now, if we multiply by (1− δt) equation 10 transforms into equation 11.

V
′
(T + t, R− r) ∗ (1− δt) = V

′
(T,R) ∗ (1− δt) + (

∂V
′

∂T
t− ∂V

′

∂R
r) ∗ (1− δt) (11)

If we multiply the factors we obtain equation 12.

V
′
(T+t, R−r)∗(1−δt) = V

′
(T,R)∗(1−δt)+(

∂V
′

∂T
t− ∂V

′

∂R
r)− ∂V

′

∂T
δt2+

∂V
′

∂R
δt∗r (12)

If we consider the multiplication of differentials that tend to zero, then we can write equation
12 as shown in equation 13.

V
′
(T + t, R− r) ∗ (1− δt) = V

′
(T,R) ∗ (1− δt) + (

∂V
′

∂T
t− ∂V

′

∂R
r) (13)

Now, if we combine equation 9 with equation 13 we have equation 14 which would be the
equation to evaluate.

V
′
(T,R) = max

g∈Ω′
{r ∗ c+ V

′
(T,R) ∗ (1− δt) + (

∂V
′

∂T
t− ∂V

′

∂R
r)} (14)

Given that V ′
(T,R) is independent of the policy g, we can express the equation as shown in

equation 15.

0 = max
g∈Ω′

{r ∗ c− V
′
(T,R) ∗ δt+ (

∂V
′

∂T
t− ∂V

′

∂R
r)} (15)

It is interesting to note that the function that maximizes does not depend on the derivative
with respect to R so we can remove that part with the equation shown in equation 16.

∂V
′

∂R
r = max

g∈Ω′
{r ∗ c− V

′
(T,R) ∗ δt+ ∂V

′

∂T
t} (16)

If we divide by r in equation 16, it would be expressed as shown in equation 17.

∂V
′

∂R
= max

g∈Ω′
{c− (V

′ ∗ δ − ∂V
′

∂T
) ∗ t

r
} (17)

We can define τ = t
r

as the time per unit of resource and the opportunity cost F = δV
′− ∂V

′

∂T
,
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we can rewrite equation 17 as equation 18.

∂V
′

∂R
= max

g∈Ω′
{c− F ∗ τ} (18)

If we integrate in the range of 0 to R the integral would be as shown in equation 19.∫ R

0

∂V ′

∂R
dR =

∫ R

0

max
g∈Ω′

{c− F ∗ τ} dR (19)

Then the maximum value we would obtain by exploiting the resource R would be given by
equation 20.

V ′ =

∫ R

0

max
g∈Ω′

{c− F ∗ τ} dR (20)

The application of this equation for different industries whose resource is non-renewable
would imply knowing at each t the following:

1. τ : Is the time per unit of resource r exploited.

2. F : Is the opportunity cost of the resource R−r given that r has already been exploited.

3. c: Is the cash flow obtained by exploiting r in a time t.

The real application is complex if we want to solve the differential equations given that the
function F depends on a derivative with respect to time, something we do not know, but its
form evidences that the best value of a stage i + 1 depends on the stage i which suggests
a typical behavior of Dynamic Programming where each stage is the best possible value
obtained before continuing with the next stage. Then if we manage to obtain the combination
of policies throughout the exploitation of R we could obtain the maximum value of V .

Then one way to solve it would be given a ∆t given, we could know a ∆r resource
extracted and therefore we would obtain for a set of strategies Ω different cash flows c. Then
we can define Vt in the last extraction period as shown in equation 21.

Vt =
ct

(1 + δ)t
(21)

Then we could define the partial derivative of ∆Vt with respect to T as the differentials
between t and t+∆t as shown in equation 22.

∂Vt

∂T
= Vt −

V(t+∆t)

(1 + δ)t+∆t
(22)

Then we can reformulate equation 17 using equation 22 as shown in equation 23.

∆Vrt = max
g∈Ω′

{ct − (Vt ∗ δ −
V(t+∆t)

(1 + δ)t+∆t
) ∗ ∆t

∆r
} (23)
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As mentioned before, the central problem to solve the optimization problem lies in the un-
known V(t+∆t), but in the last differential n, that is in t+∆t its value is zero since there are
no more resources and the value of Vt can be estimated with equation 21, with which we can
rewrite equation 23 as follows

∆Vrt = max
g∈Ω′

{ct ∗ (1 +
(1− δ)

(1 + δ)t
∗ t

r
)} (24)

Then in the last differential n the search for the best strategy Ωn, depends only on the function
c and finding the maximum of equation 24 would be reduced to searching for the cut-off
grade policy that maximizes c. Having found that value, which would represent the best
value, following equation 23 we could find the best value for the differential n − 1 and
successively we could find all values up to the first differential. Using this methodology
we can estimate the function V ∗ that goes through the n differential but since we start by
assuming an n we do not know exactly its value, so we must iterate with a global function
that analyzes how much it evolves for each iterative search and at some point, the function
reaches an optimum which would be when it has obtained the optimal cut-off grade policy
Ω that maximizes V .

3 Applied Model in Mining

The purpose of the economic model is to construct the cash flow c of the system based on
the following variables:

• Cut-off grade: represents the mineral grade that defines which materials should be
sent to the process and which should not. Generally, it acts as a policy.

• Throughput: the operation’s performance in material processed at each stage per unit
of time.

• Prices and Costs: The associated costs for each process and the price of the product
generated in the market.

There are three processes in a mining operation, related to the Throughput, which I describe
below in Table 2

Table 2: Processes and activities in the mining operation
Process Subprocess
Mining (Open Pit, Underground) Ore, Waste
Treatment Crushing, Grinding, Flotation
Commercialization Transport, Refinery
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Then, to define the interrelation between the different processes, their capacities, and
variable costs, we can use the definitions shown in Table 3

Table 3: Summary of mining processes and activities

Component Type Quantity Variable Cost Capacity

Mining Material 1 m M

Treatment Ore x h H

Commercial Metal xyĝ k K

We also have the following variables:

f : Fixed cost per year

p : Price of metal

c : Cash flow per unit of mineralized material

x : Is the proportion of material classified as ore

y : Metallurgical recovery of the ore

ĝ : The applied cut-off grade that defines the material’s destination

τ : Time it takes to treat 1 unit of mineralized material

M : Is the annual Mining capacity of the system

H : Is the annual Treatment capacity of the system

K : Is the annual Commercialization capacity of the system

Finally, the cash flow c is determined by equation 25.

c = (p− k)xyĝ − xh−m− f ∗ τ (25)

Then we can rewrite equation 20 as shown in equation 26.

V ′ =

∫ R

0

max
g∈Ω′

{x((p− k)yĝ − h)−m− f ∗ τ − F ∗ τ} dR (26)

3.1 Mine Limits the System

When the mine limits the system, it implies that τ , which is the time to process a unit of
mineralizable material, is equivalent to equation 27.

τ = 1/M (27)
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Then, finding the maximum of the internal component of equation 26, taking into account the
result of equation 27, implies deriving with respect to g and setting the system of equations
to zero. If we derive with respect to g and set it to 0, we obtain the following function as
shown in equation 28.

∂x

∂g
∗ ((p− k)yĝ − h) + x ∗ ((p− k)y

∂ĝ

∂g
) = 0 (28)

If we appropriately group, we can obtain a separable differential equation as shown in equa-
tion 29.

∂ĝ
h

y(p−k)
− ĝ

=
∂x

x
(29)

If we integrate x in the range [0, x] and ĝ in the range of [gmax, ĝ], we can obtain equation 30
that represents the cut-off grade when the mine limits the system.

ĝm =
h

y(p− k)
(30)

This result implies that when the mine limits the system, that is, we are at the maximum
capacity of the mining process and still have not met the plant’s requirement, the optimal
grade that defines the maximum of function 26 is given by equation 30.

3.2 Plant Limits the System

When the plant limits the system, it implies that τ , the time to process a unit of mineralizable
material, is equivalent to equation 31.

τ = x/H (31)

Then, finding the maximum of the internal component of equation 26, taking into account the
result of equation 31, implies deriving with respect to g and setting the system of equations
to zero. If we derive with respect to g and set it to 0, we obtain the following function as
shown in equation 32.

∂x

∂g
∗ ((p− k)yĝ − h− (f + F )

H
) + x ∗ ((p− k)y

∂ĝ

∂g
) = 0 (32)

If we appropriately group, we can obtain a separable differential equation as shown in equa-
tion 33.

∂ĝ

h+
(f+F )

H

y(p−k)
− ĝ

=
∂x

x
(33)
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If we integrate x in the range [0, x] and ĝ in the range of [gmax, ĝ], we can obtain equation 34
that represents the cut-off grade when the plant limits the system.

ĝp =
h+ (f+F )

H

y(p− k)
(34)

This result implies that when the plant limits the system, that is, we are at the maximum
capacity of the treatment process, the optimal grade that defines the maximum of function 26
is given by equation 34. This equation is interesting because it includes the opportunity cost
F in the determination of the optimal cut-off grade, evidencing its connection throughout
the exploitation of the deposit and during the early years based on the equation the optimal
cut-off grade will be high and as the deposit is exploited, it will reduce since the opportunity
cost decreases due to the financial nature of the discounted cash flows.

3.3 Market Limits the System

When the market limits the system, it implies that τ , the time to process a unit of mineraliz-
able material, is equivalent to equation 35.

τ =
xyĝ

K
(35)

Then, finding the maximum of the internal component of equation 26, taking into account the
result of equation 35, implies deriving with respect to g and setting the system of equations
to zero. If we derive with respect to g and set it to 0, we obtain the following function as
shown in equation 36.

∂x

∂g
∗ ((p− k)yĝ − h− (f + F )

K
yĝ) + x ∗ ((p− k − (f + F )

K
)y
∂ĝ

∂g
) = 0 (36)

If we appropriately group, we can obtain a separable differential equation as shown in equa-
tion 37.

∂ĝ
h

y(p−k− (f+F )
K

)
− ĝ

=
∂x

x
(37)

If we integrate x in the range [0, x] and ĝ in the range of [gmax, ĝ], we can obtain equation 38
that represents the cut-off grade when the market limits the system.

ĝk =
h

y(p− k − (f+F )
K

)
(38)

This result implies that when the market limits the system, the optimal grade that defines the
maximum of function 26 is given by equation 38.
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4 Integrated Planning

The mining system consists of three fundamental components: Mining, Plant, and Market.
Each represents a key phase in the operational cycle:

1. Mining: This is the extraction phase, where mineral resources are obtained from the
ground. It is the first step in the mining value chain.

2. Plant: Here occurs the transformation. The extracted minerals are processed and re-
fined to turn them into usable or marketable products. This step is crucial to add value
to the extracted materials.

3. Market: Finally, the commercialization phase represents the sale or distribution of
the transformed mining products. Here is where the products reach consumers and
generate revenue for the mining operation.

At some point in their operation, each of these components may face limitations due to
two types of factors:

1. Own Operational Factors: These are challenges or constraints inherent to the min-
ing operations themselves, such as technical problems in extraction or processing, or
logistical challenges in commercialization.

2. External Factors: These are external influences that can affect mining operations, such
as changes in market demand, price fluctuations, environmental or policy regulations,
and global economic conditions.

Each of these components and the associated challenges are interdependent and crucial for
the success and sustainability of mining operations, and the theory of cut-off grades defines
the behavior depending on which cut-off grade is limiting the system. Therefore, effective
management in mining involves not only optimizing each of these steps individually but
also ensuring their alignment and coordination to face and overcome both operational and
external challenges.

5 Conclutions

The exploration of non-renewable resource exploitation within this paper underscores the
critical interplay between economic, technological, and operational parameters in determin-
ing the optimal extraction strategy. Through the lens of Kane’s theoretical insights on ore
economics, the study elucidates the nuanced considerations that underpin the sustainable
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management of finite resources. The mathematical model developed herein serves as a piv-
otal tool for maximizing the present value (PV) of resource exploitation, highlighting the
significance of strategic cut-off grade policies (Ω∗) within the broader strategy space (Ω).

Key conclusions drawn from this study include:

1. Strategic Optimization: The paper successfully demonstrates the utility of a mathe-
matical model in optimizing the extraction of non-renewable resources. By focusing
on maximizing the present value of cash flows derived from resource exploitation, it
provides a strategic framework for decision-making that balances economic benefits
against the rate of resource depletion.

2. Dynamic Programming Approach: The adoption of a dynamic programming ap-
proach to resolve the optimization problem emphasizes the paper’s innovative method-
ology. This approach allows for the iterative examination of exploitation policies, fa-
cilitating the identification of an optimal set of strategies that maximize the economic
return over the resource’s lifespan.

3. Complexity of Real-World Application: The study candidly addresses the complexi-
ties involved in applying the proposed model to real-world scenarios. It acknowledges
the challenges in forecasting future values and costs, underscoring the need for ro-
bust analytical tools and methodologies in the strategic management of non-renewable
resources.

4. Sustainability and Economic Viability: The research highlights the delicate balance
between resource sustainability and economic viability. It contributes to the discourse
on sustainable resource management by providing insights into how strategic planning
and optimization techniques can enhance the economic outcomes of non-renewable
resource exploitation while mindful of conservation principles.

5. Future Research Directions: The paper identifies avenues for future research, par-
ticularly in refining the model to better accommodate the unpredictability of market
conditions and technological advancements. It calls for continued exploration into
more adaptive and resilient strategic planning tools that can navigate the uncertainties
inherent in non-renewable resource management.

In conclusion, this paper enriches the field of resource economics by offering a compre-
hensive model for the strategic exploitation of non-renewable resources. It bridges theoreti-
cal concepts with practical applications, offering valuable perspectives for both researchers
and industry practitioners aimed at optimizing the economic returns of resource exploitation
within sustainable and environmentally conscious frameworks.
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6 Disclaimer

It’s important to highlight that 100% of the formulas presented in this research have been
developed by the author based in Kane 1988 research. However, it’s pertinent to mention that
the responsibility for the correct formulation and development of these equations rests solely
with the author. Lane provides an initial framework but does not bear direct responsibility for
the validity of the developed formulas. The author has independently solved the equations,
assuming full responsibility for their accuracy and applicability within the context of the
research.
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