GROUP 1

PHYSICAL DATA

TIDE MEASUREMENT

CURRENT DIRECTIONS & SPEED

AIR TEMPERATURE, CLOUD COVER, AND WIND
GROUP 1: TIDE MEASUREMENT

What are Tides?
Tides are the ‘up and down’ motion or ‘rising and falling’ of water caused by the gravity of the Moon on our Earth. Some bodies of waters experience 2 high tides and 2 low tides each day which is not the case in some parts of the lagoon or even other parts of the world.

Objective: 1) Measure the change in tides for your sampling site, if any.

Materials: * Pencil * Clipboards
* Tape Measure * Long, slender, strong sticks
* Timing device [Ex. stopwatch, watch, etc.]

Procedure: Carefully read all directions before beginning the procedure!

Tide Measurement and Tidal Change:
1. Insert one stick deep into the sediment at exactly the water’s edge. Pile stones at the base of the stick to give it extra support in order to hold it upright. Use your best judgement where the water’s edge is if there are waves.

*Hint: Make sure the stick is not placed in a location that will interfere with other teams!

2. After 10 minutes, check your tide marker. If the water’s edge has moved in either direction, use the second stick (planting it the same way as the first one) to mark the new edge. Do not move the first stick!

3. Measure the distance between the first and second stick to get a change in tide.

4. Continue measuring the tides for approximately 30 minutes

<table>
<thead>
<tr>
<th>Time</th>
<th>Vertical Tidal Change (between stick #1 & #2)</th>
<th>Rising, falling or unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>10 minutes</td>
<td>3 cm</td>
<td>Fall</td>
</tr>
<tr>
<td>20 minutes</td>
<td>2 cm</td>
<td>Fall</td>
</tr>
<tr>
<td>30 minutes</td>
<td>2.5 cm</td>
<td>Fall</td>
</tr>
</tbody>
</table>

OVERALL VERTICAL TIDAL CHANGE = 7.5 cm
What is a Current?
A current is the internal movement of water, sometimes described as a push or pull in the river or bay. Scientists will often measure the direction the current is flowing and calculate current speed.

Objective: 1) Determine the direction of the water current
2) Calculate water current speed

Materials: * Pencil
* Calculator
* Metric Tape Measure
* Several floatable objects [Ex. oranges, sticks (~ the length of forearm)]
* Clipboards
* Timing device [Ex. stopwatch, watch, etc.]
* Compass

*Note: You are using a stick or an orange instead of a float or water bottle because they are biodegradable. Please recover the object you use, if possible.

Procedure: Carefully read all directions before beginning the procedure!

Current Direction:
1. Toss the orange or stick into the middle of the river or bay to allow the water current to move the object.
2. As a group, observe which direction the object moves. This is also the water current direction.
3. Using the compass, determine the current direction (east, west, etc.).
 A. What type of object did you use to measure current direction? Stick
 B. Water current direction S-SW

Current Speed: (Current speed = distance traveled / time)
1. Student #1 stands at the water's edge at the starting point with a floatable object in hand. Student #1 tosses the object in the water.
2. After floating/moving for 60 seconds, Student #2 will quickly line up with the floating object's position on the shoreline and call stop. This is the stopping point.
3. Using the **metric** measuring tape, record the distance between Student #1 and Student #2.

4. Determine current speed three times at three different locations within your site. Average the results to get 'average current speed'. Record results below.

*If you note that the current appears to be different in the main channel than it is near the shoreline area please record this observation. The data from the **main channel** is the most useful. Please endeavor to get accurate readings from as close to mid-lagoon as possible.*

<table>
<thead>
<tr>
<th>Location</th>
<th>Starting time</th>
<th>Stopping time</th>
<th>Distance object traveled (cm)</th>
<th>Direction</th>
<th>Current speed (cm/sec)</th>
<th>Current Speed (knots)</th>
<th>Ebb, Flow, Slack or Tide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1</td>
<td>Below dock</td>
<td>12:11</td>
<td>12:12</td>
<td>SW</td>
<td>4.064</td>
<td>0.008</td>
<td>Ebb</td>
</tr>
<tr>
<td>Trial 2</td>
<td></td>
<td>12:14</td>
<td>12:15</td>
<td>SW</td>
<td>4.178</td>
<td>0.080</td>
<td>Ebb</td>
</tr>
<tr>
<td>Trial 3</td>
<td></td>
<td>12:17</td>
<td>12:18</td>
<td>SW</td>
<td>4.403</td>
<td>0.080</td>
<td>Ebb</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

*Current speed calculation example
Julia’s orange traveled 125 cm in 60 seconds.

Her current speed =

Current speed = 2.08 cm/second

*Convert current speed (cm/second) to knots
Current speed = 2.08 cm/second

1 knot = 51.44 cm/sec

2.08 / 51.44 = 0.04 knots

5. Convert current speed (cm/sec) to knots. Use the conversion example above to assist your calculations. Record your data in the chart.

6. Record ebb, flood, or slack tide in data chart above.

River sites

* Ebb tide = current is moving downriver towards the bay
* Flood tide = current is moving upstream
* Slack tide = no change in water movement

Bay sites

* Ebb tide = receding or outgoing tide
* Flood tide = incoming or rising tide
* Slack tide = no change in water movement
GROUP 1: AIR TEMPERATURE, CLOUD COVER, AND WIND

What is a Weather?
Weather includes current conditions and recent conditions at a particular place and time that may have an impact on the water quality of the lagoon.

Objective: 1) Record air temperature in both Fahrenheit and Celsius
2) Estimate cloud cover
3) Determine wind direction and speed

Materials: * Pencil
* Thermometer
* Beaufort Scale (See Diagram)
* Clipboards
* Anemometer (measures wind speed)
* Compass (optional)
* Calculator (optional)

Procedure: Carefully read all directions before beginning the procedure!

Air Temperature:
1. Record air temperature in both Fahrenheit and Celsius once every hour, if possible (see chart below)
 *Note: Place your thermometer in a shady location, if possible

<table>
<thead>
<tr>
<th>Time</th>
<th>Air Temperature (° Fahrenheit)</th>
<th>Air Temperature (° Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:19</td>
<td>87.5 °F</td>
<td>30.9 °C</td>
</tr>
<tr>
<td>10:30</td>
<td>89.5 °F</td>
<td>32.0 °C</td>
</tr>
<tr>
<td>10:43</td>
<td>88.7 °F</td>
<td>31.5 °C</td>
</tr>
</tbody>
</table>

*If your thermometer is not able to read both Fahrenheit and Celsius, then you will need to use the conversion chart to assist you.

To calculate Celsius from Fahrenheit: °C = (___ °F - 32) x 0.556

To calculate Fahrenheit from Celsius: °F = (1.8 x ___ °C) + 32
Cloud Cover:

1. Estimate cloud cover

- Clear (0-25%)
- Partly cloudy (25-50%)
- Mostly cloudy (50-75%)
- Overcast (75-100%)

Wind Direction and Speed:

Wind levels can increase choppiness in the water while adding oxygen to it. This is important for many of the animals that live in the estuary. Wind can affect the movement of surface water, making it difficult to determine current direction and speed.

1. Record wind direction using either the “water on the face method” or “flag method”

 - South

*Remember: Wind direction is determined by the direction the wind is blowing from

2. Circle the descriptive word that best describes the conditions of the water.

 Virtually flat (Calm) Rippled Choppy

3. Measure wind speed by using either an anemometer and the Beaufort Scale

 A. Using the anemometer, record wind speed __ knots or __ mph

 B. Using the Beaufort Scale (please refer to the next page), figure out which Beaufort Force # best describes wind speed __________
Beaufort Scale

Devised by British Rear - Admiral Sir Francis Beaufort in 1805 based on observations of the effects of wind on ocean water.

<table>
<thead>
<tr>
<th>Beaufort Scale</th>
<th>Wind Speed knots / mph</th>
<th>Wave Height feet</th>
<th>Description</th>
<th>Effects Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 / 0</td>
<td>-</td>
<td>calm</td>
<td>calm, water is like a mirror</td>
</tr>
<tr>
<td>1</td>
<td>1-3 / 1-3</td>
<td>0.25</td>
<td>light air</td>
<td>wind shown by smoke drift but not by wind vane; no foamy crests</td>
</tr>
<tr>
<td>2</td>
<td>4.6 / 4.7</td>
<td>0.5-1.0</td>
<td>light breeze</td>
<td>wind felt on face; leaves rustle; small wavelets</td>
</tr>
<tr>
<td>3</td>
<td>7-10 / 8-12</td>
<td>2-3</td>
<td>gentle breeze</td>
<td>leaves and twigs in constant motion; wind extends light flag; scattered whitecaps</td>
</tr>
<tr>
<td>4</td>
<td>11-16 / 13-18</td>
<td>3.5-5.0</td>
<td>moderate breeze</td>
<td>raises loose paper; small branches are moved; numerous whitecaps</td>
</tr>
<tr>
<td>5</td>
<td>17-21 / 19-24</td>
<td>6-8</td>
<td>fresh breeze</td>
<td>small trees begin to sway; many whitecaps; some spray</td>
</tr>
<tr>
<td>6</td>
<td>22-27 / 25-31</td>
<td>9.5-13</td>
<td>strong breeze</td>
<td>large branches in motion; large waves forming; whitecaps everywhere</td>
</tr>
<tr>
<td>7</td>
<td>28-33 / 32-38</td>
<td>13.5-19</td>
<td>near gale</td>
<td>Whole trees in motion; white foam from breaking waves</td>
</tr>
</tbody>
</table>
GROUP 2

SITE DESCRIPTION

PHYSICAL CHARACTERISTICS OF THE SITE

MAP OF THE SITE

SEDIMENT SAMPLE OF THE SHORELINE
AND SITE BOTTOM
What are the physical characteristics of a site?
The physical characteristics of a sampling site are the geographic features. This includes trees, shrubs, dunes, lagoon, buildings, parking lot, etc.

Objective: 1) Describe the shoreline of your sampling location
2) Create a site map
3) Work with the Documentation Team to take photos of your site from several angles

Materials: * Pencil
* Clipboards
* GPS unit/Phone with capabilities

Procedure: Carefully read all directions before beginning the procedure!

Shoreline Description:
1. Walk down to the shoreline. This is going to be your sampling site.
 A. Identify the latitude and longitude of your sampling site

 B. Check all of the characteristics that apply.

<table>
<thead>
<tr>
<th>Sandy ✓</th>
<th>Bulkhead</th>
<th>Vegetated (grasses, shrubs) ✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Ending</td>
<td>Rocky ✓</td>
<td>Pipe entering lagoon</td>
</tr>
<tr>
<td>Gentle beach slope ✓</td>
<td>Steep slope</td>
<td>Pier ✓</td>
</tr>
<tr>
<td>Riprap (large amounts of rocks piled up)</td>
<td>Garbage</td>
<td>Oyster reef</td>
</tr>
</tbody>
</table>

What are some other noteworthy features or characteristics of your sampling site (ex. muddy)

Mangrove trees/leaves, Australian pine, Muddy, Trail nearby

C. Lagoon bottom is predominately (circle one)

![Sandy](Muddy! Rocky! Weedy! Muck! Unable to determine]

D. What percentage of the lagoon bottom is covered in vegetation?

- 0-25%
- 25-50%
- 50-75%
- 75-100%

E. What percentage of the lagoon surface is covered in vegetation?

- 0-25%
- 25-50%
- 50-75%
- 75-100%
Sketch a Site Map:

Locate your sampling site. Sketch a detailed map of your location. Include features found within 100 feet on either side of you. Be sure to include any physical characteristics that may help others identify your sampling site and label them accordingly.
GROUP 2: MAP OF THE SITE

Sketch a Site Map:

Locate your sampling site. Sketch a detailed map of your location. Include features found within 100 feet on either side of you. Be sure to include any physical characteristics that may help others identify your sampling site and label them accordingly.
What is a Sediment?
Sediment is solid matter that can be moved and deposited by wind and water. It comes in many forms and sizes and from a variety of sources. Collecting a sediment core and studying the different layers, organisms, and even gases present in the core is a helpful way of determining the geographical profile of an area. You can not tell how many years your core represents by simply looking at it. The amount of time represented by your core will range depending upon the location chosen and the processes of weather, current, and sedimentation. In areas with high deposition, it might be only a few weeks represented versus in other areas the same length of core might represent decades.

![Diagram of sediment core]

Top Layer: light in color, newly deposited; **oxidized**
- oxidized = contains oxygen

Lower Layer: dark in color, older; **anoxic**
- anoxic = very little or no oxygen

Objective: 1) Collect and observe a sediment core sample

Materials:
- Pencil
- Ruler
- Tray/bin
- Clipboards
- Sediment Corer (tube, rubber mallet)

Procedure: Carefully read all directions before beginning the procedure!

Sediment Core Collection:
1. Find an area in the water where the sediment is soft enough to push the end of a sediment corer into. Push the sediment core into the bottom at least 3/4 of the way down. You may have to try several locations or use the rubber mallet to help get a good length into the substrate. Choose a spot that is not too deep for your team to work.
Sketch a Site Map:

Locate your sampling site. Sketch a detailed map of your location. Include features found within 100 feet on either side of you. Be sure to include any physical characteristics that may help others identify your sampling site and label them accordingly.
GROUP 2: SEDIMENT SAMPLE OF THE SHORELINE & SITE BOTTOM

What is a Sediment?
Sediment is solid matter that can be moved and deposited by wind and water. It comes in many forms and sizes and from a variety of sources. Collecting a sediment core and studying the different layers, organisms, and even gases present in the core is a helpful way of determining the geographical profile of an area. You cannot tell how many years your core represents by simply looking at it. The amount of time represented by your core will range depending upon the location chosen and the processes of weather, current, and sedimentation. In areas with high deposition, it might be only a few weeks represented versus in other areas the same length of core might represent decades.

![Diagram of sediment core with labels](image)

Top Layer: light in color; newly deposited; oxidized

oxidized = contains oxygen

Lower Layer: dark in color; older; anoxic

anoxic = very little or no oxygen

![Actual sediment core](image)

Objective: 1) Collect and observe a sediment core sample

Materials:
* Pencil
* Ruler
* Tray/ bin
* Clipboards
* Sediment Corer (tube, rubber mallet)

Procedure: Carefully read all directions before beginning the procedure!

Sediment Core Collection:
1. Find an area in the water where the sediment is soft enough to push the end of a sediment corer into. Push the sediment core into the bottom at least 3/4 of the way down. You may have to try several locations or use the rubber mallet to help get a good length into the substrate. Choose a spot that is not too deep for your team to work.
Sketch a Site Map:

Locate your sampling site. Sketch a detailed map of your location. Include features found within 100 feet on either side of you. Be sure to include any physical characteristics that may help others identify your sampling site and label them accordingly.
What is a Sediment?
Sediment is solid matter that can be moved and deposited by wind and water. It comes in many forms and sizes and from a variety of sources. Collecting a sediment core and studying the different layers, organisms, and even gases present in the core is a helpful way of determining the geographical profile of an area. You cannot tell how many years your core represents by simply looking at it. The amount of time represented by your core will range depending upon the location chosen and the processes of weather, current, and sedimentation. In areas with high deposition, it might be only a few weeks represented versus in other areas the same length of core might represent decades.

Top Layer: light in color; newly deposited; oxidized
- oxidized = contains oxygen

Lower Layer: dark in color; older; anoxic
- anoxic = very little or no oxygen

Actual sediment core

Objective:
1) Collect and observe a sediment core sample

Materials:
- Pencil
- Ruler
- Tray/bin
- Clipboards
- Sediment Corer (tube, rubber mallet)

Procedure: Carefully read all directions before beginning the procedure!

Sediment Core Collection:
1. Find an area in the water where the sediment is soft enough to push the end of a sediment corer into. Push the sediment core into the bottom at least 3/4 of the way down. You may have to try several locations or use the rubber mallet to help get a good length into the substrate. Choose a spot that is not too deep for your team to work.
Sketch a Site Map:

Locate your sampling site. Sketch a detailed map of your location. Include features found within 100 feet on either side of you. Be sure to include any physical characteristics that may help others identify your sampling site and label them accordingly.
GROUP 2: SEDIMENT SAMPLING OF THE SHORELINE & SITE BOTTOM

What is a Sediment?

Sediment is solid matter that can be moved and deposited by wind and water. It comes in many forms and sizes and from a variety of sources. Collecting a sediment core and studying the different layers, organisms, and even gases present in the core is a helpful way of determining the geographical profile of an area. You cannot tell how many years your core represents by simply looking at it. The amount of time represented by your core will range depending upon the location chosen and the processes of weather, current, and sedimentation. In areas with high deposition, it might be only a few weeks represented versus in other areas the same length of core might represent decades.

Top Layer: light in color, newly deposited; oxidized

oxidized = contains oxygen

Lower Layer: dark in color, older; anoxic

anoxic = very little or no oxygen

Objective: 1) Collect and observe a sediment core sample

Materials:
* Pencil
* Ruler
* Tray/bin
* Clipboards
* Sediment Corer (tube, rubber mallet)

Procedure: Carefully read all directions before beginning the procedure!

Sediment Core Collection:

1. Find an area in the water where the sediment is soft enough to push the end of a sediment corer into. Push the sediment core into the bottom at least 3/4 of the way down. You may have to try several locations or use the rubber mallet to help get a good length into the substrate. Choose a spot that is not too deep for your team to work.
1. Carefully, withdraw the sediment corer from the water. Keep the core upright as you move it to
collection tray or bin for observation. Position one hand on the bottom of the corer and the other
on the top (see photo above) to keep the sample steady.

2. If possible, slide the sediment core out of the tube onto the tray or bin.

A. Sketch a detailed picture of the sediment sample

*Remember: Be sure to include the different layers, plants, animals, and other items you see

![Sketch of sediment core]

B. Total length of your sediment core $L_o = 5 \text{ cm}$

C. Length of oxidized layer (if present) $L_{ox} = 7.75 \text{ cm}$

D. Length of anoxic layer (if present) $L_o = 10 \text{ cm}$

*Interesting Fact: The anoxic layer may have a sulfur-like or 'rotten egg' smell. This is from bacteria
that thrive in anoxic zones and produce hydrogen sulfide (H_2S) as a respiratory waste product.

F. Observe and dissect the sediment core. Fill out the chart below based on your
findings.

<table>
<thead>
<tr>
<th></th>
<th>Absent</th>
<th>Rare</th>
<th>Common</th>
<th>Abundant</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (feels thick & dense)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud (smooth between fingers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand (gritty, fine sandpaper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel (pea-sized sediment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebbles (larger than pea-sized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalve Shells (Ex. clam, oyster)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snail Shells (single shell)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroinverts (Ex. worm, crab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muck (black in color; thick ooze)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Material (Ex. leaves, grass)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GROUP 3

BIOLOGICAL SAMPLING

AQUATIC BIOLOGY SURVEY

HABITAT ASSOCIATION SURVEY
What is a Sediment?
Sediment is solid matter that can be moved and deposited by wind and water. It comes in many forms and sizes and from a variety of sources. Collecting a sediment core and studying the different layers, organisms, and even gases present in the core is a helpful way of determining the geographical profile of an area. You can not tell how many years your core represents by simply looking at it. The amount of time represented by your core will range depending upon the location chosen and the processes of weather, current, and sedimentation. In areas with high deposition, it might be only a few weeks represented versus in other areas the same length of core might represent decades.

Objective: 1) Collect and observe a sediment core sample

Materials: * Pencil
* Ruler
* Tray/bin

* Clipboards
* Sediment Corer (tube, rubber mallet)

Procedure: Carefully read all directions before beginning the procedure!

Sediment Core Collection:
1. Find an area in the water where the sediment is soft enough to push the end of a sediment corer into. Push the sediment core into the bottom at least 3/4 of the way down. You may have to try several locations or use the rubber mallet to help get a good length into the substrate. Choose a spot that is not too deep for your team to work.
1. Carefully, withdraw the sediment corer from the water. Keep the core upright as you move it to collection tray or bin for observation. Position one hand on the bottom of the corer and the other on the top (see photo above) to keep the sample steady.

2. If possible, slide the sediment core out of the tube onto the tray or bin.

A. Sketch a detailed picture of the sediment sample

*Remember: Be sure to include the different layers, plants, animals, and other items you see

B: Total length of your sediment core \(\frac{1}{2}, 5 \) cm

C. Length of oxidized layer (if present) \(7.75 \) cm

D. Length of anoxic layer (if present) \(6 \) cm

*Interesting Fact: The anoxic layer may have a sulfide or rotten egg smell. This is from bacteria that thrive in anoxic zones and produce hydrogen sulfide (H2S) as a respiratory waste product.

F. Observe and dissect the sediment core. Fill out the chart below based on your findings.

<table>
<thead>
<tr>
<th></th>
<th>Absent</th>
<th>Rare</th>
<th>Common</th>
<th>Abundant</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (feels thick & dense)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud (smooth between fingers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand (gritty; fine sand paper)</td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel (pea-sized sediment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebbles (larger than pea-sized)</td>
<td>(\checkmark)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalve Shells (Ex. clam, oyster)</td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snail Shells (single shell)</td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrinoverts (Ex. worm, crab)</td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muck (black in color; thick ooze)</td>
<td></td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
</tr>
<tr>
<td>Plant Material (Ex. leaves; grass)</td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GROUP 3

BIOLOGICAL SAMPLING

AQUATIC BIOLOGY SURVEY

HABITAT ASSOCIATION SURVEY
What is an Aquatic Biological Survey?
During an aquatic biological survey, the investigator identifies and counts each species of fish or macro-invertebrate that is caught during collection. This gives the scientist a better idea as to species diversity and overall health of a given site along the lagoon.

What is a macro-invertebrate?
A macro-invertebrate is an organism that is easily visible without magnification and does not have a vertebrate or backbone! Examples of common, aquatic macro-invertebrates include crabs, horseshoe crabs, barnacles, clams, oysters, snails, shrimp, jellyfish, sand hoppers, worms, and much more!

Objective: 1) Conduct an aquatic biological survey to get a total number of each species caught, largest individual species, and overall total number of species
2) Calculate Catch Per Unit Effort (CPUE)

Materials: * Pencil
* Measuring tape
* Collection buckets
* Net(s) for collection (seine {Preferred}, dip nets, plankton, cast, etc.)

*Clipboards
* Binoculars
* Reference guide

Procedure: Carefully read all directions before beginning the procedure!

Fish & Macro-invertebrate Inventory Using a Seine Net:
1. Students in Group #3 must have all of the Aquatic Biological Survey rules reviewed with them prior to starting this station. Below are a few of the most important rules!

 *Respect all animals and equipment
 *Do not stand on the seine net
 *When the seine net is hauled to the beach, students are to kneel at its edge gently picking out the fish first and then other invertebrates (crabs, barnacles, shellfish, etc)

2. Prior to seining, answer the following questions:
 A. Length of the seine net 30 (feet) meters Width of the seine net 6 (feet) meters
 Mesh size 60 mm
 B. Names of those using the seine net

3. While the seine is being pulled;

Remember: Be sure to ask for assistance if you are unsure how to use a seine properly

A. Record the distance the seine is pulled ______________ (units)

B. Fill buckets with water

4. Haul seine to the shoreline.

A. First, collect all fish and gently place into buckets

B. Second, collect all macro-invertebrates and gently place into buckets

Remember: Work quickly to get all living organisms into buckets or bins of water

5. Use the reference guides to help identify each organism to the best of your abilities. Fill out the data chart. Have your Documentation Team take pictures of each species that you observe, especially those that you are unsure about!

Remember: If you have trouble identifying organisms to the species level, list them in the most specific level of classification possible. Many killifish species also look similar to one another. If you are unsure, group them together as 'killifish'.

6. Record the total number of each species counted during each seine pull in the data chart

7. Measure the largest individual of each species. For most species it will not be possible to determine gender, but for those that you can (ex. crabs) it is useful to know the ratios of the sexes of the samples.
Collection Method #1

Record length of collection net and mesh size of the equipment used

Seine net **(preferred testing method)**

Optional Methods: Dip net ______ Crab Trap _______ Cast Net _______ Other _______

Length of Pull __________________________

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mojarras</td>
<td>1</td>
<td>14.0</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td>Shrimp</td>
<td>1</td>
<td>5.0</td>
<td>cm</td>
</tr>
<tr>
<td>3</td>
<td>Aquatic bumper</td>
<td>1</td>
<td>10.0</td>
<td>cm</td>
</tr>
</tbody>
</table>

Total fish in collection #1: **13**

Comments: __
Collection Method #1

Record length of collection net and mesh size of the equipment used

Scine net **(preferred testing method)**

Optional Methods: Dip net ______ Crab Trap _______ Cast Net _______ Other _______

Length of Pull: **20 ft**

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Catfish</td>
<td>1</td>
<td>25 cm</td>
<td>25 cm</td>
</tr>
<tr>
<td>2</td>
<td>Sardine</td>
<td>2</td>
<td>8 cm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Silverside</td>
<td>1</td>
<td>2.5 cm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mogura</td>
<td>2</td>
<td>7 cm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total fish in collection #1: 6

Comments: **Leena Stolicic**
Collection Method #2

*Record length of collection net and mesh size of the equipment used

Scine net [preferred testing method] ☑

Optional Methods: Dip net Crab Trap Cast Net Other

Length of Pull 45 ft

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spotted Sunfish</td>
<td>2</td>
<td>8</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td>Shrimp</td>
<td>1</td>
<td>3.5</td>
<td>cm</td>
</tr>
</tbody>
</table>

Total fish in collection #2

Comments: June 7, July
Collection Method #1

Record length of collection net and mesh size of the equipment used

Seine net *(preferred testing method)*

Optional Methods: Dip net Crab Trap Cast Net Other

Length of Pull

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magic Crab (2 males)</td>
<td>2</td>
<td>9 cm 8.5 cm 6 cm 9 cm</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td>Crab</td>
<td>6</td>
<td>9 cm 2.5 cm 2 cm 3.5 cm</td>
<td>cm</td>
</tr>
<tr>
<td>3</td>
<td>Lobster Crab</td>
<td>1</td>
<td>8 cm 6 cm 3.5 cm 8.5 cm</td>
<td>cm</td>
</tr>
</tbody>
</table>

Total fish in collection #1 7

Comments: __
Collection Method #2

Record length of collection net and mesh size of the equipment used

Scienc net (preferred testing method) []

Optional Methods: Dip net [] Crab Trap [] Cast Net [] Other []

Length of Pull

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atlantic Silverside</td>
<td>16</td>
<td>10</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total fish in collection #2

Comments: Caught [] No Fish []
Collection Method #1

*Record length of collection net and mesh size of the equipment used

Scientific (preferred testing method)

Optional Methods: Dip net Crab Trap Cast Net Other

Length of Pull Did not complete

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All</td>
<td>9</td>
<td>9</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td>Shrimp</td>
<td>1</td>
<td>6</td>
<td>cm</td>
</tr>
<tr>
<td>3</td>
<td>Bay Anchovy</td>
<td>22</td>
<td>6.5</td>
<td>cm</td>
</tr>
<tr>
<td>4</td>
<td>Flounder</td>
<td>6</td>
<td>7</td>
<td>cm</td>
</tr>
<tr>
<td>5</td>
<td>Juvenile mangrove</td>
<td>7</td>
<td>9</td>
<td>cm</td>
</tr>
<tr>
<td>6</td>
<td>Snapper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Silver Sides</td>
<td>3</td>
<td>4</td>
<td>cm</td>
</tr>
<tr>
<td>8</td>
<td>Banana Shrimp</td>
<td>1</td>
<td>9</td>
<td>cm</td>
</tr>
</tbody>
</table>

Total fish in collection #1 38

Comments:___
Collection Method #2

Record length of collection net and mesh size of the equipment used

Seine net **(preferred testing method)**

Optional Methods: Dip net Crab Trap Cast Net Other

Length of Pull

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Species</th>
<th>Total # of individuals</th>
<th>Size of largest individual</th>
<th>Units (mm, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atlantic Silverside</td>
<td>16</td>
<td>10</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do not include in total!

Total fish in collection #2

Comments: ________________________________
GROUP 3: HABITAT ASSOCIATION SURVEY

What is a Habitat Association Survey?
A habitat association survey is an important record of the various organisms (birds, mammals, etc.) that are observed at your study site.

Objective: 1) Identify and count organisms at your study site during your visit

Note: If you are unsure of an organism, please describe it in the notes section below

Materials: * Pencil
* Binoculars
* Clipboards
* Reference guide

Procedure: Carefully read all directions before beginning the procedure!

Wildlife Inventory:

1. Spend some time observing the area around your study site. Using binoculars if possible, identify and count birds, mammals or other organisms seen during your visit to your study site. Record the organisms in the chart below. These are in addition to any organisms caught using nets in the lagoon. Other teams’ observations of animals should be included as well.

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mangroves (shore)</td>
<td>Anole</td>
<td>2</td>
</tr>
<tr>
<td>2 Mangroves (shore)</td>
<td>Spiny orb. weaver spider</td>
<td>3</td>
</tr>
<tr>
<td>3 Spoil island</td>
<td>Pelican (brown)</td>
<td>1</td>
</tr>
<tr>
<td>4 Shoreline</td>
<td>Fiddler crabs</td>
<td>5</td>
</tr>
<tr>
<td>5 Water</td>
<td>Dolphins</td>
<td>2</td>
</tr>
<tr>
<td>6 Dock</td>
<td>Mosquitoes</td>
<td>>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Description of unknown organisms:________________________
GROUP 4

CHEMICAL ANALYSIS

WATER TEMPERATURE, DISSOLVED OXYGEN,
AND PH

SALINITY AND TURBIDITY
Group 4: Water Temperature, Dissolved Oxygen, & pH

Water temperature, dissolved oxygen, and pH are important factors to study when learning about a specific study site. Organisms are adapted to survive in specific ranges of temperatures, pH, and dissolved oxygen (DO) before they become stressed.

Objective:
1) Record water temperature in BOTH Fahrenheit and Celsius
2) Measure dissolved oxygen
3) Measure pH

Materials:
- * Pencil
- * Clipboards
- * Water thermometer
- * LaMotte Water Quality Kit (DO & pH) {required method}
- * pH reference guide (optional)

Procedure: Carefully read all directions before beginning the procedure!

1. Water Temperature:
 Record in situ water temperature in BOTH Fahrenheit and Celsius every 15 or 30 minutes and then average the results (see chart below)
 *Note: It may help to have the thermometer securely tied to a string or lanyard for ease of use.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Location</th>
<th>Time</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1</td>
<td>Below dock (NW300)</td>
<td>11:01</td>
<td>28.1</td>
<td>82.6</td>
</tr>
<tr>
<td>Trial 2</td>
<td>Below dock (SW220)</td>
<td>11:18</td>
<td>28.3</td>
<td>82.9</td>
</tr>
<tr>
<td>Trial 3</td>
<td>Below dock (NE50)</td>
<td>11:19</td>
<td>28.4</td>
<td>83.1</td>
</tr>
<tr>
<td>Average</td>
<td>X</td>
<td>X</td>
<td>28.3</td>
<td>82.9</td>
</tr>
</tbody>
</table>

*If your thermometer is not able to read both Fahrenheit and Celsius, then you will need to use the conversion chart to assist you.

To calculate Celsius from Fahrenheit: \(^\circ C = (___^\circ F - 32) \times 0.556 \)

To calculate Fahrenheit from Celsius: \(^\circ F = (1.8 \times ___^\circ C) + 32 \)
2. **Dissolved Oxygen (DO):**

 The amount of DO in a lagoon is one of the most important indicators of its health. Many variables influence DO including temperature, time of day, abundance of vegetation, and wind conditions. DO measurements are read in units of mg/L, ppm and/or as percent saturation. Plants and wind can add oxygen to the water and animal respiration can subtract oxygen from the water. Therefore, at night plants do not produce oxygen, and the organisms in the water continue to respire.

 A. *Circle* the DO measuring method(s)

 - Drop count test kit ampules
 - Digital Titrameter
 - LaMotte Water Quality Kit *(required)*
 - Other: YSI probe

 *Note: Be sure to eliminate all air bubbles before testing!!!

 ![Image of DO measurement table]

 B. Determining percent saturation:

 For a relatively quick and easy determination of the percent saturation value for dissolved oxygen at a given temperature, use the saturation chart below. Pair up the measured mg/l of DO with the temperature of the water (in °C). Draw a straight line (use a straight edge) between the two values. The % saturation is the value where your drawn line intercepts the angled saturation scale. Waterways with a saturation value of 90% or greater are generally considered healthy.

 ![Image of DO saturation chart]
3. **Water pH:**
Most aquatic organisms are adapted to survive in a pH range between 6.8 - 8.0.

A. *Circle* the pH measuring method(s)

<table>
<thead>
<tr>
<th>Litmus paper</th>
<th>pH meter</th>
<th>LaMotte Water Quality Kit required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator solution</td>
<td>Other</td>
<td>___________________________</td>
</tr>
</tbody>
</table>

B. Test water pH **three times at three different locations** within your site and average the results. Record results below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMotte Water Quality Kit required</td>
<td>Belm</td>
<td>11:10</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Other Test Method optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH Scale

Acidic
- 1: Battery Acid
- 2: Coca Cola Acid
- 3: Vinegar
- 4: Acid Rain
- 5: Black Coffee

Neutral
- 6: Pure Water
- 7: Saliva
- 8: Sea Water
- 9: Soda

Alkaline
- 10: Baking Soda
- 11: Milk
- 12: Ammonia
- 13: Alka Seltzer
- 14: Bleach
- 15: Drain Cleaner
GROUP 4: SALINITY AND TURBIDITY

Salinity and turbidity are factors that scientists study to better understand a specific study site. Organisms are only adapted to survive in a specific range of salinity and increased turbidity can negatively influence the biodiversity of the lagoon.

Objective: 1) Measure salinity
2) Determine turbidity

Materials: * Pencil
* Clipboards
* Salinity measurement Tool (hydrometer, refractometer, test strip, etc.)
* Turbidity measurement tool (Secchi disc, short sight tube, and/or long sight tube, etc)

Procedure: Carefully read all directions before beginning the procedure!

1. Salinity:
 Salinity is the measure of ‘total salts’, ‘conductivity’, or more specifically the concentration of Chloride ions (Cl⁻). In freshwater parts of the river, the unit of measurement may be parts per million (ppm) or milligrams per liter (mg/L). These two units are equivalent. In saltier parts of the bay, you may measure salinity in parts per thousand (ppt); one part per thousand equals 1000 mg/L.

 A. Circle the measuring method(s) used for salinity
 Hydrometer Test strips LaMotte Water Quality Kit (requires distilled or deionized water) Refractometer Other
 B. Record salinity three times at three different locations within your site and average the results. Record results below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Average*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMotte Water Quality Kit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Test Method</td>
<td>Dock</td>
<td>11:00</td>
<td>28.70</td>
<td>28.60</td>
<td>28.50</td>
</tr>
</tbody>
</table>
2. **Turbidity:**

 Turbidity is a measure of water clarity, which is an important feature of an estuary. Different techniques for determining turbidity use different units of measurement.

 A. *Circle* the measuring method(s) used for turbidity

 Secchi disc Short sight tube/ LaMotte Water Quality Kit
 Long sight tube Turbidimeter Other____________________

 B. Record turbidity *three times at three different locations* within your site and then average the results. Record results below. Be sure to enter data on the correct line for the technique you use.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Location</th>
<th>Time</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Average</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secchi Disc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feet or cm</td>
</tr>
<tr>
<td>Short Sight Tube</td>
<td>Dock</td>
<td>10:40am</td>
<td>40JTUs</td>
<td></td>
<td></td>
<td></td>
<td>JTUs</td>
</tr>
<tr>
<td>Long Sight Tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cm/meter</td>
</tr>
<tr>
<td>Turbidimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTUs</td>
</tr>
</tbody>
</table>
APPENDIX A: OPTIONAL CHEMICAL ANALYSES

Objective: 1) Measure phosphates
2) Measure nitrates
3) Preparation for fecal coliform bacteria test (to be completed in classroom/ laboratory)

Materials: * Pencil * Clipboard
* Timer * LaMotte Water Quality Kit

Procedure: Carefully read all directions before beginning the procedure!

1. Phosphate:
Phosphate is a nutrient required for plant and animal growth. High levels of phosphate can results in the overgrowth of plants, increased bacterial activity and decreased dissolved oxygen levels.

A. Using the LaMotte Water Quality Kit, measure phosphate levels three times at three different locations within your site and average the results. Record results below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Average (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMotte Water Quality Kit</td>
<td>Below dock</td>
<td>11:21 am</td>
<td>1 ppm</td>
<td>2 ppm</td>
<td>1.5 ppm</td>
</tr>
</tbody>
</table>

2. Nitrate:
The nutrient, nitrate, is necessary to build protein in all aquatic plants and animals. Excess levels of nitrate cause increased plant growth and decay, enhanced bacterial decomposition, and consequently a decrease in dissolved oxygen.

A. Using the LaMotte Water Quality Kit, measure nitrate levels three times at three different locations within your site and average the results. Record results below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Average (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMotte Water Quality Kit</td>
<td>Below dock</td>
<td>11:23 am</td>
<td>2 ppm</td>
<td>5 ppm</td>
<td>3.5 ppm</td>
</tr>
</tbody>
</table>

3. Fecal Coliform Bacteria:
Fecal coliform bacteria are present in the human digestive tract. When coliform bacteria is found in water, it reliably indicates the presence of fecal or sewage contamination *This test requires a 48 hr

<table>
<thead>
<tr>
<th>Location of collection</th>
<th>Time of collection</th>
<th>Negative or Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMotte Water Quality Kit</td>
<td>Below dock</td>
<td>11:20 am</td>
</tr>
</tbody>
</table>