ASMS2018 June 3 - 7, 2018 • San Diego, CA

Serial-Omics: From Breast Tumors to Bodily Fluids to Dried Blood Spots

John M. Asara, Ph.D.

Beth Israel Deaconess Medical Center Harvard Medical School

Biomarkers: Qualitative Analysis 06/07/2018

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

- Integrating Different – Omics Approaches

Cell signaling to central carbon and fatty acid metabolism

Separate *Omics* experiments

Breitkopf et. al., 2015, Anal. Chem.

Breitkopf et. al, 2017, Sci Reports

Willmitzer lab, Max-Planck Institute, Germany -Plants

shutterstock.com · 460334452

Ahrends lab, Univ. of Aberdeen, UK -Stem cells

+ more

Serial-Omics Platform Workflow

Applications

Steady-State Metabolic Profiling and Flux Analysis:

Platform for Untargeted Lipidomics/Metabolomics/Proteomics

FluxSearch: Untargeted ¹³C/¹⁵N Flux-Omics

Serial-Omics of Mouse Breast Tumor vs. Mammary Gland

Most regulated -omics in mouse breast tumors and mammary gland

Lipids: TG and DG load much higher in MG, Phospholipids much higher in tumor

<u>Metabolites</u>: urea cycle, TCA cycle high, parts of glycolysis, PPP low in tumor -Not glucose driven, glutamine driver

B Most regulated Lipids in Breast Tumor Most regulated L

Phosphoproteomics/proteomics: Transcription and splicing,

signaling proteins high

Serial-Omics Integrated Data and Pathway Model (Lipidomics, Metabolomics and Proteomics)

Mouse Breast Tumor

Breitkopf et al, 2017, Sci. Reports

Serial-Omics of Lung Tumor vs Normal Mouse Lung Tissue

EGFR T790M model

RMXL1, part of Ribonucleo complex, is down-regulated ENOA, enolase in glycolysis, growth control, Tumorassociated antigen is up-regulated

Log2(Tumor/Tissue)

Fatty Acid Biosynthesis is down-regulated

-6

og10(Intensity)

G(18:0/18:2/20:1)+NH4 PG(16:0/18:3)++

DG(26:0/16:0)+NH4

-16 -14 -12 -10 -8

ChE(26:6)+NH4

Serial-Omics of Dried Blood Spots

Analysis of the MTBE protein precipitate and Dried Blood Spot paper

DBS, post tryptic digestion

170 DBS proteins identified:

- Hemoglobin (α,β,δ) 52% & Albumin 10% of total signal
- No significant PO₄ info

Proteins identified from 5µL of 2-3 year old dried blood spot

Dried Blood Spot Lipidomics & Metabolomics by LC-MS/MS

Elements metabolite ID

ID Score	MS2 Score	Metabolite Name	Molecular Form	ula Dried Blood Spot (Log2 Peak A	rea)
0.716	0.88	Creatinine	C 4H 7N 3O		10.5
0.915	0.94	Hypoxanthine	C 5H 4N 4O	Ton 35	10.3
0.81	0.68	Edetic Acid	C 10H 16N 2O 8	100 33	10.3
0.978	0.98	Niacinamide	C 6H 6N 2O	untargotod	10.2
0.972	0.98	Phosphoric acid	H 3O 4P	untargeted	10.2
0.919	0.93	Alpha-D-Glucose 1,6-bisphosphate	C 6H 14O 12P 2		10.2
0.655	0.86	Cytosine	C 4H 5N 30 👖	hetabolites by	10.2
0.941	0.91	2,3-Diphosphoglyceric acid	C 3H 8O 10P 2		10.1
0.973	1	L-Isoleucine	C 6H 13NO 2	abundance	10
0.885	0.85	Acetic acid, (aminooxy)-	C 2H 5NO 3	abandance	9.98
0.948	1	3-Phosphoglyceric acid	C 3H 7O 7P		9.86
0.971	0.99	L-Carnitine	C 7H 15NO 3		9.77
0.987	1	DL-Phenylalanine	C 9H 11NO 2		9.74
0.955	0.97	N-Methyl-a-aminoisobutyric acid	C 5H 11NO 2		9.72
0.929	0.98	Phosphoenolpyruvic acid	C 3H 5O 6P		9.7
0.67	0.95	Diethanolamine	C 4H 11NO 2		9.6
0.971	0.99	2-Imidazolecarboxaldehyde	C 4H 4N 2O		9.54
0.98	1	Creatine	C 4H 9N 3O 2		9.49
0.679	0.87	Senecioic acid	C 5H 8O 2		9.49
0.956	0.93	4-Pyridoxic acid	C 8H 9NO 4		9.46
0.986	0.99	Hexanoylcarnitine	C 13H 25NO 4		9.42
0.908	0.97	Deoxygalactonojirimycin	C 6H 13NO 4		9.42
0.954	0.91	Cadaverine	C 5H 14N 2		9.42
0.976	0.98	Citric acid	C 6H 8O 7		9.4
0.633	0.29	Glucaric acid	C 6H 10O 8		9.32
0.958	1	L-Glutamic acid	C 5H 9NO 4		9.3
0.899	0.87	3-Hydroxydodecanoic acid	C 12H 24O 3		9.25
0.699	0.79	Myristoleic acid	C 14H 26O 2		9.25
0.661	0.61	Gamma-Aminobutyric acid	C 4H 9NO 2		9.25
0.938	0.99	Succinic acid	C 4H 6O 4		9.24
0.991	. 1	L-Tyrosine	C 9H 11NO 3		9.21
0.941	. 1	Adenosine monophosphate	C 10H 14N 5O 7F	b	9.19
0.722	1	L-Pipecolic acid	C 6H 11NO 2		9.18
0.763	0.94	Adenine	C 5H 5N 5		9.18
0 000	0.07	Sorricornin	C 11H 22O 2		0 16

316 metabolites (untargeted + targeted)

MetaboAnalyst Pathway Enrichment

Serial-Omics of Horse Urine and Mane Hair

<u>333 µL Urine</u>

specimen

Mane Hair

specimen

Horse mare

JF Sierra Flame

Horse gelding

Phoenix

Lipidomics

Metabolomics

Proteomics

Poster 813, Mon, June 4, Yuan et. al.

Serial-Omics of Horse Urine

Horse mare urinary system

MW & Peak Intensity Distribution of Horse Urine -Omics 1,000,000 100,000 MW (Da) Proteins 10,000 Metabolites Lipids 1,000 100 10 12 2 3 4 5 6 10 11 Log10(Peak Area)

Serial-omics Molecule Distribution

- Omics catalog
- Biomarkers
- Tracers of drugs, feed, plants, supplements, etc.
- Health status (disease presence or progression)

Horse Urine Serial-omics Pathway Analysis

Metabolomics

Proteomics ~50 proteins, ≥3 spectra, Horse DB -32

PANTHER GO-Slim Biological Process Total # Genes: 45 Total # process hits: 101

Lipidomics (negligible)

Top 60 metabolites

Table II. Top 60 identified metabolites by intensity from 47	4 unique equir	ie urine metaboli	tes
Horse mare polar metabolites (Untargeted run)	Accession	Molecular Formula	Avg MS1 Log10 Peak An
Hippuric acid	HMDB00714	C 9H 9NO 3	1
Phenylacetylglycine	HMDB00821	C 10H 11NO 3	1
2-Hydroxy-4-trifluoromethyl benzoic acid	HMDB60715	C 8H 5F 3O 3	1
Creatinine	HMDB00562	C 4H 7N 3O	1
p-Cresol glucuronide	HMDB11686	C 13H 16O 7	1
Buntansin A	HMDB35086	C 11H 80 5	1
Acetohydroxamic Acid	HMDB14691	C 2H 5NO 2	1
Mesoridazine	HMDB15068	C 21H 26N 2OS 2	1
Mammeigin	HMDB30785	C 25H 24O 5	1
Monomethyl phenylphosphonate	HMDB31868	C 7H 9O 3P	1
Neoisoliquiritin	HMDB37317	C 21H 22O 9	1
Geranylgeranylcysteine	HMDB11678	C 23H 37NO 35	1
4-Hydroxy-8-methoxy-2H-furo[2,3-h]-1-benzopyran-2-one	HMDB32659	C 12H 8O 5	1
N'-Hydroxysaxitoxin	HMDB33664	C 10H 17N 7O 5	1
4-Hydroxyphenyl-2-propionic acid	HMDB41683	C 9H 10O 3	1
cis-Mulberroside A	HMDB31726	C 26H 32O 14	1
N-Methylphthalimide	CASNO:550-44-7	C 9H 7NO 2	1
Phlorizin	HMDB36634	C 21H 24O 10	1
L-leucyl-L-proline	HMDB11175	C 11H 20N 2O 3	1
Benzocaine	HMDB04992	C 9H 11NO 2	1
Vanilloloside	HMDB32013	C 14H 20O 8	1
apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)]	HMDB59607	C 7H 15N 3O 2	1
Trimethylamine N-oxide	HMDB00925	C 3H 9NO	1
Acetaminophen	HMDB01859	C 8H 9NO 2	1
D-(-)-Isoascorbic acid	CASNO:89-65-6	C 6H 8O 6	1
Butyrylcarnitine	HMDB02013	C 11H 21NO 4	1
DOPA sulfate	HMDB02028	C 9H 11NO 75	1
Pilocarnine	HMDB15217	C 11H 16N 2O 2	- 1
Pyrogallol-2-O-glucuronide	HMDB60017	C 12H 14O 9	1
Horse mare polar metabolites (Targeted run)	Accession	Molecular Formula	Avg Q3 Log10 Peak Area
2-Hydroxy-2-methylbutanedioic acid	C02612	C5H8O5	
citrate	C00158	C6H8O7	
2-IsopropyImalic acid	C02504	C7H12O5	
1-Methyl-Histidine	C01152	C7H11N3O2	
betaine	C00719	C5H11NO2	
aconitate	C00417	C6H6O6	
oxaloacetate	C00036	C4H4O5	
Acetylcarnitine DL	C02571	C9H18NO4	
allantoin	C01551	C4H6N4O3	
Urea	C00086	CH4N2O	
Acetyllysine	C02727	C8H16N2O3	
N6-Acetyl-L-lysine	C02727	C8H16N2O3	
2-hydroxygluterate	C02630	C5H8O5	
D-sedoheptulose-1-7-phosphate	C05382	C7H15O10P	
Phenylpropiolic acid	HMDB00563	C9H6O2	
DL-Pipecolic acid	C00408	C6H11NO2	
Citraconic acid	C02226	C5H6O4	
Ascorbic acid	C00072	C6H8O6	
3-hydroxybuteric acid	C01089	C4H8O3	
Ng.NG-dimethyl-L-argining	C03626	C8H18N4O2	
Kynurenicacid	C01717	C10H7NO3	
p-hydroxybenzoate	C00156	C7H6O3	
taurine	C00245	C2H7NO3S	
succinate	C00042	C4H6O4	
Aminoadipic acid	C00956	C6H11NO4	
Atrolactic acid	HMD800475	C9H10O3	
nantotnenate	C00864	C9H17NO5	
pantotnenate 2-debydro-D-gluconate	C00864 C00629	C9H17NO5	

Diet Specific Metabolism Hay/Grain

- Neoisoliquirtin
- 4-hydroxy-2-propionic acid
- Cis-Mulberroside A
- Phlorizin
- Buntansin A
- Mammeigin

-Plant derived

Serial-Omics of Horse Mane Hair

Identified Proteins and Bioinformatics Analysis of Horse Mane Hair

Top 50 Proteins (391 total) by Intensity

Total # Genes: 387 Total # protein class hits: 319 Click to get gene list for a category: 65 calcium-binding protein (PC00060) 60 cell adhesion molecule (PC00069) cell junction protein (PC00070) 55 chaperone (PC00072) 50 cytoskeletal protein (PC00085) 45 defense/immunity protein (PC00090) enzyme modulator (PC00095) 40 extracellular matrix protein (PC00102) cenes 80 32 hydrolase (PC00121) isomerase (PC00135) ligase (PC00142) 25 Iyase (PC00144) 20 membrane traffic protein (PC00150) nucleic acid binding (PC00171) 15 oxidoreductase (PC00176) 10 receptor (PC00197) signaling molecule (PC00207) transcription factor (PC00218) transfer/carrier protein (PC00219) Category transferase (PC00220) **Chart tooltips are read as: Category name (Accession): # genes; Percent of transmembrane receptor regulatory/adaptor gene hit against total # genes; Percent of gene hit against total # Protein Class hits transporter (PC00227)

PANTHER Protein Class

• A wide variety of proteins can be detected beyond just keratins, hair is complex!

Metabolomics Pathway Enrichment and Lipid Profile in Horse Mane Hair

Mane Hair Lipid Profile

TEM

	Hair shaft (%)	IRS (%)	Whole hair follicle (%)
Fatty acid	29.60	49.90	49.10
Phytosphingosine	37.20	23.30	26.30
Ceramide	26.90	23.20	20.20
Cholesterol	5.10	2.50	3.70
Cholesterol sulfate	1.10	0.20	0.30
Cholesterol oleate	0.20	0.80	0.30

Lee et. al., 2005, J. Investig. Dermatol

Mane Hair Metabolite Pathways

<u>Summary</u>: Single Liquid-Liquid Extractions can be used for Multi-Omics from Tumors, DBS, Urine, Hair, etc.

Lesion < 5-10 mg

Needle Biopsy

Dried Blood Strips

Untargeted T lipidomics li			argeted pidomics				
Untargeted Targeted Metabolomics/peptidomics metabolomics							
Untargeted Proteomics	TMT labeling (126-131) pho		TiO2 phosphoproteomics				

LC-MS/MS

Assay Development

- Merge –omics data
- Save money/reagents
- Reduce chemical waste
- Improve reproducibility (one prep)
- Biomarker discovery
- Robust assay development

Acknowledgements

Beth Israel Deaconess Medical Center / Harvard Medical School

Susanne Breitkopf Stephane Ricoult Aaron Hosios Min Yuan Gerburg Wulf He Huang Dan Tenen Brendan Manning

Thermo Fisher Scientific

Proteome Software

Funding NIH grants 5P01CA120964, R35CA197459 NIH DF/HCC Support 5P30CA006516 NIH 1S100D010612

Applications in Horse Racing and Olympic Eventing

