Using Tandem Mass Spectrometry to Choose Appropriate Kinase Inhibitor Drugs in Cancers: A Personalized Medicine Approach Based on Protein-Protein Interactions (PPI)

John M Asara, Ph.D.

Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA USA

Beth Israel Deaconess Medical Center Official hospital of the Boston Red Sox

Red Sox Nation

Human PI3K / Akt Signaling

Normal AKT signaling

Proliferation, protein synthesis, etc. Cancer growth

Uncontrolled AKT signaling

Use of Mass Spectrometry to Identify and Quantify Activating Adaptors of

PI3K

The protein-protein interaction (PPI) is what governs downstream signaling \rightarrow tumor growth

•Need it to be compatible with human tumor tissue

•Ability to quantify differences in PI3K binding is essential

•p85 regulatory subunit of **PI3K** binds to **pYXXM** motifs of activating adaptor proteins

Cancer Cell PI3K Protein complex

IP/enrichment antibody LC/MS/MS

Shotgun LC/MS/MS from a p85 (PI3K) IP of EBC Cancer Cells

Dirty IPs

Several known PI3K binders are detected but there are lots of non-specific binders

Quantification was unreliable due to low spectral counts and high background

Targeted MS/MS Workflow Using Orbitrap XL

Quantitative Targeted runs using an Ion Trap portion of LTQ Orbitrap XL

Peptide #2

•Target ~ 2 peptides per protein in MS/MS mode

•Average the MS/MS TIC for all peptides across each protein in Scaffold 3.1

•Quantitation is *only relative* to a reference sample

Functional Role of PI3K in NSCL Cancer

The Activating Adaptors to PI3K/AKT in Lung Cancer Cell Lines

Discovering drug resistance mechanisms...

•Rapamycin (TOR inhibitor) activates AKT at long exposures

•Targeted IP-MS discovers a PI3K switch from IRS1 to IRS2

PI3K Proteomic Assay Now Working with In Vivo Tumor Tissue

Quantifying a Mutation's Role in Proliferation (PI3K Activation)

Prove the mutation plays a direct role in activation

MS/MS spectrum

DPLSEITEQEK (WT) p110a:2+, m/z 644.82

MS/MS spectrum

p110a:2+, m/z 451.75

5500 QTRAP has allowed us to expand our targeted complex list to accommodate both **direct** and *secondary* binding proteins

Orbitrap XL (Ion Trap CID)

8 total proteins in p85 complex represented by 2 peptides

(16 CID scans per cycle) ~2.4 sec

5500 QTRAP (MRM + CID)

16 total proteins in p85 complex represented by 3 peptides and 3 transitions per peptide (144 Q1/Q3 scans and 48 CID scans per cycle) ~ 1.8 sec

The ability to target secondary (indirect) protein-protein interactions allows us to dig deeper into functional mechanisms with more MRM targets

Direct Binders

Grb2 IP for MAPK Signaling

How do we choose the appropriate kinase inhibitor therapies ?

FDA Approved Tyrosine Kinase Inhibitors

Drug	Key targets for therapeutic activity	US FDA-approved indication
Imatinib	BCR-ABL, PDGFR and KIT	CML and GIST
Dasatinib	BCR-ABL	CML
Nilotinib	BCR-ABL	CML
Gefitinib	EGFR	Lung cancer
Erlotinib	EGFR	Lung and pancreatic cancers
Lapatinib	EGFR and ERBB2	Breast cancer
Sunitinib	VEGFR2, PDGFR and KIT	Kidney cancer and GIST
Sorafenib	VEGFR2 and PDGFR	Kidney and liver cancers
Pazopanib	VEGFR2, PDGFR and KIT	Kidney cancer
Everolimus	mTOR	Kidney cancer
Antibody		
Trastuzumab	ERBB2	Breast cancer
Cetuximab	EGFR	Colorectal, and head and neck cancers
Panitumumab	EGFR	Colorectal cancer
Bevacizumab	VEGF	Colorectal, lung and breast cancers

CML, chronic myeloid leukaemia; EGFR, epidermal growth factor receptor; FDA, Food and Drug Administration; GIST, gastrointestinal stromal tumour; PDGFR, platelet-derived growth factor receptor; VEGFR2, vascular endothelial growth factor receptor 2.

Lots More Kinase Inhibitors in Clinical Trials

Inhibitor	Company	Phase of clinical trial	Refs	
Dual PI3K and mTOR inhibitors				
BEZ235	Novartis	Phase I/II	37,92,96,103,149	
BGT226	Novartis	Phase I/II	NS	
XL765	Exelixis	Phase I	NS	
SF1126	Semafore	Phase I/II	NS	
GSK1059615	GSK	Preclinical	150	
PI3K inhibitors				
XL147	Exelixis	Phase I	NS	
PX866	Oncothyreon	Phase I	100,151,152	
GDC0941	Genentech/Piramed/Roche	Phase I	NS	
BKM120	Novartis	Phase I	NS	
CAL101 (targets p110δ)	Calistoga Pharmaceuticals	Phase I	NS	
Akt inhibitors				
Perifosine	Keryx	Phase I/II	153-156	
GSK690693	GSK	Phase I	157,158	
VQD002	Vioquest	Phase I	NS	
MK2206	Merck	Phase I	NS	
mTOR inhibitors (catalytic site)				
OSI027	OSI Pharmaceuticals	Phase I	NS	
AZD8055	AstraZeneca	Phase I/II	NS	
NS, not stated.				

Hypothetical 'Personalized Treatment Plan' for Cancer Based on PI3K Mass Spec Assay...

Unsupervised Hierarchical Heat Map for p85 Complex across Cell Lines and Xenograft Tumors

This can ultimately be used as a reference to make therapeutic decisions in a cancer according to the PI3K signature

Summary

•Cancer cells typically involve a small set of oncogene addictions that govern their uncontrolled proliferation

We can use IPs and targeted MS to predict response to drug therapies for a particular cancer through quantitative protein-protein interactions (PPI)
Multiple MS technologies can be used (orbitrap, ion trap, QqQ, qExactive, etc.)

Acknowledgements

Beth Israel Deaconess Medical Center

Susanne Breitkopf Min Yuan Xuemei Yang Lewis Cantley Massachusetts General Hospital

Alexa Turke Youngchul Song Jie Qi Jeffrey Engelman

Vanderbilt University

Todd Miller Brent Rexer Carlos Arteaga Dana Farber Cancer Institute Pasi Janne

<u>Funding</u> National Institutes of Health (NIH)