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Serial-omics of P53−/−, Brca1−/− 
Mouse Breast Tumor and Normal 
Mammary Gland
Susanne B. Breitkopf1,2, Mateus De Oliveira Taveira2,3, Min Yuan1, Gerburg M. Wulf2,3 & John 
M. Asara1,2

This study demonstrates a liquid-liquid extraction for the sequential tandem mass spectrometry (LC-
MS/MS) analysis of non-polar lipids, polar metabolites, proteins and phosphorylation sites from a single 
piece of tissue. Extraction of 10 mg BRCA−/−, p53−/− breast tumor tissue or normal mammary gland 
tissue with methyl-tert-butyl ether (MTBE) results in three phases: an upper non-polar phase containing 
1,382 lipids, a lower polar phase with 805 metabolites and a precipitated protein pellet with 4,792 
proteins with 1,072 phosphorylation sites. Comparative analysis revealed an activated AKT-mTOR 
pathway in tumors. Tumors also showed a reduction of phosphorylation sites involved in transcription 
and RNA splicing and decreased abundance of enzymes in lipid synthesis. Analysis of polar metabolites 
revealed a reduction in glycolysis, pentose phosphate pathway, polyamines and nucleotides, but an 
increase in TCA and urea cycle intermediates. Analysis of lipids revealed a shift from high triglycerides in 
mammary gland to high phospholipid levels in tumors. The data were integrated into a model showing 
breast tumors exhibit features on the proteomic, lipidomic and metabolomic level that are distinct from 
normal breast tissue. Our integrative technique lends itself to samples such as tumor biopsies, dried 
blood spots and fluids including urine and CSF to develop biomarkers of disease.

Proteomics, metabolomics and lipidomics provide increasingly robust information due to advances in high res-
olution mass spectrometry and computational methods1,2. Efforts have been made to implement these technolo-
gies into human clinical care to expand diagnoses, treatment and disease prevention. One of the challenges is to 
combine the different levels of -omics comprehensively and consistently working with small samples, such as fine 
needle aspirates, and to avoid distortion due to over-processing of the sample.

It is important for a complete view on diseases such as cancer to investigate changes on multiple levels of 
biological activity as each one gives a unique but partial profile. Hence, integration of information on proteomic, 
lipidomic and metabolomic levels promises to provide a novel, multi-dimensional view of cellular activity. Our 
lab has demonstrated the integration of phosphoproteomics using stable isotope labeling, non-polar lipidomics 
and polar metabolomics including labeled metabolic flux analysis in BCR-ABL H929 myeloma cells to generate 
a biological model of the drivers of cancer cell growth3. Polar metabolomics provides a broad overview over 
pathways in central carbon metabolism such as glycolysis, pentose phosphate pathway and TCA cycle as well 
as other metabolites such as amino acids, nucleotides, degradation pathways, etc.4,5. Recent work using mass 
spectrometry-based targeted metabolomics profiling has provided a number of insights into how and why these 
metabolic processes are rewired in cancer6–8. The top layer from a liquid extraction with MTBE contains nonpolar 
lipids required as structural and functional components of membranes, energy storage within lipid droplets, and 
intracellular and extracellular signaling molecules9. Lipidomics profiling typically requires high-resolution MS to 
obtain the high mass accuracy required to accurately identify head groups and fatty acid chains, including mass 
shifts due to differences in saturation of fatty acid chains10–13. Proteomics and phosphoproteomics have been per-
formed using tandem mass spectrometry for over two decades to identify and quantify both proteins and their 
post-translational modification sites for biomarker discovery and signaling function14–17. Phosphoproteomics 
illustrates the differences of disease tissue versus normal tissue in regards to kinase signaling that drives tumor 
growth17,18. Researchers have demonstrated one vial extraction methods for performing multiple –omics from 
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a single sample19–22. For example, Comen et al. showed proteomics, metabolomics and lipidomics data from a 
MTBE extraction from cell lines and Salem et al. showed metabolite, protein and lipid extraction data from plants 
using MTBE21.

In this study, we show a comprehensive serial study from MTBE extractions from mouse breast tumor tis-
sue and mammary gland tissue samples where we identified and quantified more than 4,792 proteins, 1,072 
unique phospho-Ser/Thr/Tyr containing peptides, 805 polar metabolites and 1,382 non-polar lipids from 10 mg 
of starting material using tandem mass spectrometry (LC-MS/MS). We utilized a combination of high resolution 
and triple quadrupole mass spectrometry for both untargeted and targeted analyses. This method offers a chance 
to evaluate metabolites, lipids, phosphopeptides and proteins from a single liquid-liquid extraction without tech-
nical variation in handling. It provides the possibility to illustrate the biological pathways in a tumor that drive 
its growth. This strategy could form the basic concept for using mass spectrometry based –omics technologies 
to identify potential new therapeutic targets and helping to identify the most effective treatment. In the age of 
personalized medicine, gathering a collection of biomarkers specific to an individual patient’s tumor is impor-
tant to formulate future treatment. Up until now, the large quantities of tissue for multiple extractions rendered 
this approach unfeasible for clinical use. Here we present a method that allows the detection of the non-genetic 
molecular biology of tumor samples on the proteomic, lipidomic and metabolomic level in a single step.

Results
We analyzed breast tumor and normal mammary tissue from the same mouse in triplicate in order to develop 
a strategy that can be applied to tumor biopsied samples or dried blood spots using a comprehensive one-step 
methyl tert-butyl ether (MTBE) based liquid-liquid extraction protocol for serial-omics19,20. It creates a MTBE, 
methanol/water and solid phase separation where the non-polar lipids are soluble in the upper phase, the aqueous 
polar metabolites are soluble in the middle phase and proteins, long DNA/RNA and cell debris are found as a 
precipitated insoluble pellet at the bottom of the tube. This method is fast, simple and straightforward with a high 
reproducibility and can be scaled according to the sample size or volume. The extraction efficiency is comparable 
to commonly used methods (80% methanol for metabolites, chloroform/methanol for lipids, acetone or TCA 
precipitation for proteins)19,20. We started with 10 mg of mouse breast tumor tissue and 10 mg of mouse mammary 
gland tissue from the same mouse (K14-Cre BRCA1f/fp53f/f female)23 and propagated in syngeneic littermate as 
described24–26.

The tumor was allowed to grow to approximately 1 cm3 (approximately 2–3 weeks), when the mouse was euth-
anized and the tumor was immediately snap frozen in liquid nitrogen. The extraction was performed according 
to the MTBE extraction protocol published by Matyash et al.20 and Breitkopf et al.27 with frozen breast tumor or 
mammary tissue ground in 200 µL PBS, 1.5 mL methanol, 5 mL MTBE and 1.25 mL HPLC grade water. The two 
liquid phases were collected separately and dried while a solid protein precipitate remained at the bottom on the 
extraction tube (Fig. 1).

Upper phase. The dried pellet from the non-polar upper liquid phase was re-suspended in 30 µL 50/50 iso-
propanol/methanol (w/w) and injected on a reverse phase C18 HPLC column to a high resolution QExactive Plus 
Orbitrap mass spectrometer in a data dependent analysis (DDA) with positive/negative polarity switching27. The 
data was identified and quantified using LipidSearch with the integrated database and Elements software (NIST/
HMDB database), annotated with LipidMaps and further processed with MetaboAnalyst software28. LipidSearch 
software first identifies lipid based on an internal library of masses and fragment ions from fatty acid chains, and 
head groups. Lastly, the software can perform alignment of samples cohorts in order to accurately quantify the 
MS1 peak profiles29.

Middle phase. The dried samples from the middle polar liquid phase were re-suspended in 20 µL water and 
one part was injected onto an amide-HILIC HPLC column coupled to a hybrid triple quadrupole QTRAP 5500 
mass spectrometer via selected reaction monitoring (SRM) with ~300 targets with positive/negative switching, 
and integrated using MultiQuant software4. A second aliquot of the middle phase was analyzed by a reverse 
phase C18 column coupled to a high resolution QExactive HF Orbitrap mass spectrometer using data dependent 
analysis (DDA) with positive/negative polarity switching for untargeted profiling. Metabolites were identified by 
Elements with integrated spectral library databases. Further statistical and pathway analysis from both targeted 
and untargeted data was performed with MetaboAnalyst.

Lower solid phase. The pellet containing proteins were re-solubilized and loaded and run via SDS-PAGE 
gel, coomassie blue stained and cut into 10 equal fractions and digested with trypsin/LysC (Fig. 1). After peptide 
extraction, the phosphopeptides were enriched with TiO2 pipet tips. The phosphopeptides and the flow through 
(non-phosphorylated peptides) of the TiO2 tips from each gel fraction were analyzed separately by a reverse phase 
C18 column coupled to a high resolution QExactive HF Orbitrap mass spectrometer in positive mode via DDA. 
The peptides and proteins were identified by Mascot and Scaffold Q+S software using the UniProt Mouse protein 
database.

Lipidomics analysis of p53−/−, Brca1−/− breast tumor. The lipidomics platform can identify and quantify 
lipids from 18 main lipid classes and 66 sub classes including fatty acids, glycerophospholipids, triglycerides, 
cardiolipins, etc. in a global untargeted, data dependent manner. For MS1 peak and MS2 fragment ion peaks 
integration, identification and quantification we used LipidSearch Using this approach, we identified and quan-
tified 1,306 unique intact lipid ions. We also performed a spectral library matching search against the NIST  
(www.nist.gov/srd) MS/MS database using Elements software. We identified a total of 1,383 lipids using both soft-
ware strategies. While the majority of lipids were shared between the breast tumor and mammary gland tissues, 

http://www.nist.gov/srd


www.nature.com/scientificreports/

3SCIenTIfIC REPORTS | 7: 14503  | DOI:10.1038/s41598-017-15132-y

Figure 1. Workflow of the Serial-omics experiment. 10 mg of breast tumor tissue and 10 mg of normal 
mammary gland were harvested from the mouse and snap frozen separately in liquid nitrogen. The frozen tissue 
was ground to a powder over dry ice. The powder was solubilized in PBS and extracted with methyltert-butyl 
ether (MTBE), methanol and water. The upper non-polar liquid phase was collected, dried out and analyzed 
for untargeted lipidomics via DDA with a Thermo QExactive Plus high resolution Orbitrap mass spectrometer. 
The lower liquid phase was collected, dried out and analyzed with polarity switching for polar metabolomics 
via both targeted metabolomics (AB/SCIEX 5500 QTRAP hybrid triple quadrupole mass spectrometer) and 
untargeted metabolomics (high resolution Thermo QExactive HF Orbitrap). The precipitated protein pellet 
was re-suspended in sample buffer and separated via a SDS-PAGE gel, fractionated, digested with trypsin 
and enriched for phosphopeptides via TiO2. The digestion mixture and TiO2 enriched phosphopeptides were 
analyzed by DDA in pos mode with a Thermo QExactive HF.
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there were some that were uniquely found in cancer tissue. There were significant lipid class differences between 
tissue types. We discovered that the glycerophospholipid classes such as LPC, PC, LPE, and PE were elevated in 
breast tumor samples compared to mammary gland (Fig. 2A,D). Comparatively, mammary gland samples had 
very high levels of triglycerides (TG) and diacylglycerols (Fig. 2B). These findings correlate with the composition 
previously described30, where TG are the main composition (95%) in normal mammary gland tissue but makes 
up only 25% of all lipids in the mammary carcinomas31. Additionally, unsaturated fatty acids such as palmitoleate 
(C16:1), oleate (C18:1) and linoleate (C18:2) are elevated in mammary gland. These results are typical of tissues 
with a high fat component30. The saturated fatty acids stearate (C18:0) and palmitate (C16:0) showed little dif-
ference between breast tumors and mammary glands (Fig. 2C). In agreement with Rees et al., we also observed 

Figure 2. Results from the non-polar lipid fraction. (A) The overall lipid class profile across all identified lipids 
from mammary gland and breast tumor tissue. (B) A bar plot of the most regulated lipid ions from the breast 
tumor vs. mammary gland experiment. (C) The fatty acid chain profile for all lipids in the breast tumor and 
mammary gland tissue. (D) The bar plot of the intensity of non-phospho vs. phospholipids suggests a higher 
abundance of non-phosphorylated lipids in mammary gland and a larger quantity of phospholipids in breast 
tumor.
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the main difference being a higher phospholipid level in breast tumor cells and higher triglyceride levels in the 
mammary gland tissues (Fig. 2D)32. These data suggest that proliferating tumor cells generate cellular lipids to 
support the generation of membranes needed for mitosis and cell growth and to produce phospholipids required 
for signaling, while the mammary gland’s main function is storage for fat. Supporting Online Dataset I contains 
all lipid identifications from LipidSearch and Elements software27.

Metabolomics analysis of P53−/−, Brca1−/− breast tumor. We employed two metabolomic platforms capable 
of identifying hundreds of unique endogenous polar metabolites including SRM based QTRAP technology and a 
global non-targeted platform from MS and MS/MS spectral library matching using a high resolution QExactive 
Orbitrap mass spectrometry. The results from each metabolomics analysis were combined and produced 804 
unique metabolites including potential isomers (254 from the targeted analysis) and covering all major central 
carbon metabolism pathways as well as many others including amino acids, nucleotides, vitamins, redox, ROS, 
etc. (Supporting Online Dataset II). The majority of unique metabolites were again detected in the breast tumor, 
similar to the lipidomics datasets although the vast majority of detected metabolites were shared between tissue 
types.

We identified distinct profiles for both mammary gland and breast tumor including a high level of amino 
acids such as histidine, lysine, methionine, proline and tyrosine in breast tumor cells compared to mam-
mary tissue (Fig. 3A,C). From the targeted LC-MS/MS data, the most highly up-regulated metabolites in the 
breast tumor tissue were uric acid, xanthine and several members involved in protein biosynthesis such as 
basic amino acids. The most down-regulated metabolites were UDP-glucose and several intermediates of 
glycolysis. The untargeted LC-MS/MS metabolomics data showed amino acids including methionine and 
related metabolites as well as taurine as the most highly elevated in breast tumor. The most down-regulated 
metabolites in tumor were organic acids and tri-amino acids involved in protein biosynthesis and purine 
metabolism. Additionally, metabolites of the urea cycle such as arginine, citrulline carbamoyl phosphate 
and ornithine were highly concentrated in breast tumor (Fig. 3A,D) however, polyamines generated from 
ornithine and the urea cycle showed a higher level in mammary glands. For the central carbon metabo-
lism pathways, the TCA cycle and glycolysis demonstrated mixed regulation within the major pathways. For 
the TCA cycle, mostly higher levels were observed in breast tumor with up-regulated malate, citrate, isoc-
itrate and fumarate though succinate and oxaloacetate were slightly down-regulated in tumors (Fig. 3A,E). 
The amino acids generated from the TCA cycle such as arginine, glutamine, glutamic acid and asparagine 
were all up-regulated in the breast tumor, consistent with increased TCA cycle activity (Fig. 3E). In contrast, 
many of the glycolytic intermediates including glucose-6-phosphate, 1,6-fructose-bisphosphate, dihydroxy-
acetone phosphate, 3-phosphoglycerate and phosphoenolpyruvate were down-regulated in breast tumor 
(Fig. 3B,C and F). Interestingly, pyruvate and lactate were increased in the breast tumor tissue. That may 
indicate that glycolytic flux is greater than consumption and efflux of pyruvate and lactate, the end products 
of glycolysis. Similar to the glucose-derived glycolysis pathway, the pentose phosphate pathway (PPP) inter-
mediates from both oxidative and non-oxidative arms were lower in mouse breast tumor (Fig. 3B,C and G).  
In contrast to amino acids, mononucleotides showed elevated levels in the mammary gland but not in breast 
tumor. Figure 4A–F shows the distribution of both lipids and metabolites identified with LipidSearch and 
Elements across the breast tumor and mammary gland tissues. The data shows that the mammary gland con-
tained the majority of unique lipids while the breast tumor contained the majority of unique polar metabolites.

Proteomics analysis of p53−/−, Brca1−/− breast tumor. The protein precipitate was solubilized for and sepa-
rated by SDS-PAGE into ten fractions, digested with trypsin, enriched by titanium dioxide (TiO2) resin packed 
tips for phospho-peptide enrichment and both the phosphopeptide enriched samples as well as the flow through 
of the TiO2 enrichment were analyzed by reversed-phase (C18) LC-MS/MS using a high resolution QExactive HF 
Orbitrap mass spectrometer via higher energy dissociation (HCD) with (Top 10, DDA) coupled to a nanoflow 
HPLC. The peptide sequence and protein identification and label free quantification via spectral counting33 was 
performed via the Mascot search engine and Scaffold Q+S software. We could identify 4,792 unique proteins and 
1,071 unique phosphorylation sites from 10 mg of combined breast tissues (Supporting Online Dataset III). It is 
worth noting that the total protein level in 10 mg of tissue was significantly different between the breast tumor and 
mammary gland which was also reflected in both the SDS-PAGE gel and by the summed total ion counts (TIC) 
over all identified proteins by LC-MS/MS (Fig. 5E). An equal mass of breast tumor contained a 7-fold higher 
protein content than the mammary gland. In breast tumor, we identified 2,728 unique proteins as opposed to only 
149 unique proteins in the mammary gland with an overlap of 1,915 proteins between tissue types.

The tumor tissue showed a distinct protein expression profile compared to the mammary gland (Fig. 5A–C).  
Proteins from the most regulated biological process that were found elevated in mammary gland tissue or 
down-regulated in breast tumor were involved in lipid and fatty acid metabolism (beta oxidation) according to 
Panther gene ontology classification. These included proteins such as fatty acid synthase (FASN), carboxylester-
ase 1 (CES1D), and fatty acid binding protein 4 (FABP4) (Fig. 5B). De novo fatty acid synthesis depends on the 
production of acetyl coenzyme A (CoA) from glucose through the action of ATP citrate lyase (ACLY)34 which 
was also found elevated in mammary gland. Additional down-regulation can be found for the CoA carboxy-
lase (ACACA), the enzyme catalyzing carboxylation of acetyl-CoA to malonyl-CoA34, FASN, which produces 
palmitate from malonyl-CoA34 and fatty acid binding protein 4 (FABP4), which is involved in fatty acid trans-
port. Further, we found key proteins in triglyceride storage and lipolysis PLIN1 and PLIN4 down-regulated on 
protein level in breast tumor, which confirms previous findings in breast tumors (Fig. 5A,B)35. Taken together, 
these key proteins support reduced de novo lipid synthesis in breast tumor compared to mammary gland as 
determined by lipidomics. However, it also shows that mammary gland tissue is synthesizing triacylglycerides 
at high levels and the presence of tumor tissue interferes with normal breast’s ability to produce lipids needed 
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for milk production. We also identified down-regulated tumor proteins which have been associated with poor 
prognosis in breast cancers including monoacylglycerol lipase (MGL), AHNAK, MYOSIN-1C, guanine nucle-
otide binding protein GNAI1, serum deprivation response protein SDPR, EH domain containing EHD2 pro-
tein, Annexin A1, SPOCK2, Polymerase 1 and transcript release factor Catalase as well as a down-regulation of 
GAPDH an enzyme supporting the mostly down-regulated glycolysis pathway in the breast tumor, which has also 
apoptotic properties36. The most up-regulated individual proteins in the breast tumor compared to mammary 
gland are involved in basic cellular building blocks and the cytoskeleton such as tubulin, heat shock, actin, etc. 

Figure 3. Results from the polar metabolite fraction. (A) The biological pathway profile with fold enrichment 
across all up-regulated metabolites including p-values generated with MetaboAnalyst software. (B) The 
pathway profile with fold enrichment across all down-regulated metabolites including p-values generated by 
MetaboAnalyst. (C) A bar plot of the most regulated metabolites from the breast tumor vs. mammary gland 
experiments. (D) A bar plot for detected metabolites of the urea cycle, elevated in breast tumors. (E) A bar plot 
for detected metabolites of the TCA cycle. (F) A bar plot for detected metabolites in the glycolysis pathway. (G) 
A bar plot for detected metabolites of the pentose phosphate pathway.
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(Fig. 5A). Therefore, we focused on proteins involved in biological pathways with a statistically significant P value 
according to Panther gene ontology. These included proteins involved in mRNA processing including splicing 
such as shi-related sequence 4 (SRS4), SRS10, splicing factor 3a subunit 1 (SF3A1), Splicing factor, suppressor 
of white-apricot homolog (SFSWA) (Fig. 5A), SRSF1 and SRSF4. Their overexpression has been associated with 
transformation of normal mammary cells to breast cancer cells37. More to the point, Y-box proteins (Fig. 5A) acti-
vate transcription and mRNA metabolism including transcription, RNA splicing, mRNA stability and translation 
in low concentrations (Fig. 5C). This leads to the suspicion of alternative splicing in our breast tumor model, 
which has been described as a crucial function in the survival of cancer cells, and making spliceosome inhibitors 
effective treatments38. In regards to kinase signaling, up-regulation on the protein level in the tumor was detected 
on both upstream and downstream of the mTOR including AKT1, PI3Kα, GRB2, mTOR, DPTOR, S6K and 

Figure 4. Venn diagrams for the distribution of unique small molecules. (A) The venn diagram shows the total 
amount of unique lipids (1,382) identified from the serial-omics of mouse breast tumor and mouse mammary 
gland by LC-MS/MS. (B) The lipid number distribution identified with LipidSearch (1,033) and (C) Elements 
(350) from mouse breast tumor and mammary gland. (D) The venn diagram shows the total amount of unique 
metabolites (805) identified from the serial-omics from mouse breast tumor and mammary gland by LC-MS/
MS. (E) The targeted metabolite number distribution (254) and (F) untargeted metabolite number (551) 
distribution identified with Elements from the mouse breast tumor and mouse mammary gland.
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S6 (Fig. 5D), which is known to be highly mutated in cancer39. The consequences of this up-regulated pathway 
was seen in regulation of transcription factors and splicing factors, inducing the gene expression of the glucose 
transporter GLUT1/340. Pathways such as mTORC1 have a huge impact on transcription factors such as the 
up-regulation of transcriptional corepressor TIF1b and the down-regulation of transcriptional activators PurA 
and PurB41 (Fig. 5B). Furthermore the mTORC1 complex inhibits lipolysis42 and fatty acid synthesis and changes 
the TG concentration and fat storage in the tumor43, which we already revealed on the lipid level. We could isolate 
important up-regulation of the breast tumor marker, HSP90 and its interactor Fkbp444, which chaperons mutated 

Figure 5. Results from the protein pellet. (A) A bar plot of a portion of the most regulated proteins from the 
breast tumor vs. mammary gland experiment. Down-regulated proteins, such as PLIN1 and ACSA in breast 
tumor tissue are involved in lipid metabolism. (B) The profile for biological processes with fold enrichment 
across all down-regulated proteins including p-values generated with the Panther Classification System. (C) 
The profile for biological processes with fold enrichment across all up-regulated proteins including p-value 
generated with Panther Classification System. (D) A bar plot with all detected proteins involved in the mTOR 
pathway. (E) A bar blot representing the total protein levels in both breast tumor and mammary gland tissue by 
summing the MS2 total ion count intensity over all identified proteins (peptides).



www.nature.com/scientificreports/

9SCIenTIfIC REPORTS | 7: 14503  | DOI:10.1038/s41598-017-15132-y

and overexpressed oncogenes, causing decreased survival rate of cancer patients (Fig. 5E)45. This up-regulation 
expands to other potential tumor markers including A1AT1, tropomyosin-4, TUBB3, ACTN4, DDX3X, LMNB1, 
PARP and vimentin.

Phosphoproteomics analysis of p53−/−, Brca1−/− breast tumor. We first performed an activity assay of key 
signaling proteins including receptor tyrosine kinases (RTKs) and other important signaling molecules using the 
commercially available PathScan RTK Signaling Array antibody kit that includes 28 receptor tyrosine kinases and 

Figure 6. PathScan RTK Array. PathScan RTK Signaling antibody array kit tests the phosphorylated tyrosine 
and serine/threonine kinase signaling of 39 different kinases from p53−/−, Brca1−/− breast tumor, normal 
mammary gland, K14 breast cancer cells, MCF7 breast cancer cells and the MCF10A normal breast cell line.
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11 important signaling nodes (Fig. 6). The assay was performed on the breast tumor and mammary gland tissue as 
well as the K14 breast cancer cells, MCF10A normal mammary gland cell line and MCF7 breast cancer cells. The 
data was then normalized between tissue types based on the control spots on the array. The pan-phosphotyrosine 
sites on EGFR, which is essential for ductal development in mammary gland46 as well as FGFR3, a fibroblast 
growth factor essential for normal mammary gland development47 are both up-regulated in mouse mammary 
gland tissue. Additionally, the important phospho-AKT T308 signaling site responsible for cell growth and prolif-
eration is up-regulated in mammary gland which is somewhat surprising. The signal for phospho-ERK1/2 on the 
PathScan array was found to be up-regulated in breast tumor, somewhat expected in tumor development and it 
is consistent with the total ERK up-regulation in the LC-MS/MS tumor data. This also suggests that the P53−/−, 
Brca1−/− tumors signal predominantly through ERK and are less dependent upon AKT for kinase signaling. 
Interestingly, the protein level of AKT was higher in breast tumor according to our LC-MS/MS data. The S6 phos-
phorylation sites S235/236 were found up-regulated in breast tumor according to PathScan, which also correlate 
with the increased S6K protein intensity found in the LC-MS/MS data. Highly elevated PathScan signaling mole-
cules in breast tumor compared to normal mammary gland included phospho-RET (pan Tyr), which is known to 
be up-regulated in estrogen receptor-positive breast cancers48 and Tie2 pan Tyr phosphorylation which has been 
correlated with poor overall survival and high metastasis risk49. The complete results of the PathScan analysis 
from all breast tissues and cell types are shown in Supporting Online Dataset IV.

The gel separated and TiO2 enriched phosphoproteomics data revealed a vast difference in the amount of 
phosphorylation sites identified in each tissue sample. From a total of 1,072 phosphosites, the breast tumor con-
tained a total of 938 unique phosphosites with 732 Ser, 181 Thr and 25 Tyr residues. The mammary gland con-
tained only 105 unique phosphosites in total with 66 Ser, 31 Thr and 7 Tyr phosphorylation sites (Fig. 7B–G). The 
phosphosites could be found on 645 different proteins in BT and 111 unique proteins in MG with an overlap of 
only 36 (Fig. 7F). It is not surprising that the majority of phosphorylation sites were detected in the breast tumor 
tissue rather than the mammary gland since cancers are known to show high levels of kinase signaling which 
drive their growth50. Specific to the LC-MS/MS phosphoproteomics dataset (Fig. 8A), the upregulated pSTY 
data in mouse breast tumor tissue includes S293 on Pdha1 (Pyruvate dehydrogenase E1 component subunit 
alpha) which regulates the activity of the enzyme and further induces the activity of upregulated sites (S232, 
S295)51. S462 on Lipin1 was up-regulated in breast tumor and is an important regulator of fatty acid metabolism 
and induced in response to DNA damage and glucose deprivation. Lipin1 regulates gene expression involved in 
fatty acid oxidation and catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol, a key step in the 
biosynthesis of triacylglycerol (TG). T638 on AP2 associated kinase 1 (AAK1) showed up-regulation and can 
regulate fatty acids through LDL-receptor expression regulation and endocytosis52. Sites T958/T960 on PLIN4 
were up-regulated in tumor, and with PLIN1, is responsible for lipid droplet formation in the biogenesis of lipid 
droplets35. These data help support that normal lipid biosynthesis processes in mammary glands become dysreg-
ulated in breast tumors.

Fewer phosphosites were down-regulated in breast tumor tissue or enriched in mammary gland. The large 
tumor suppressor kinase 1 (LATS1) was down-regulated on both the protein level and on site S48 in breast tumor. 
Other down-regulated phosphosites were found on proteins that play a regulatory role in transcription and splic-
ing including ubinuclein-1, UBN1 (S603), Poly(RC) binding protein 2, PCBP2 (S183/184), RNA polymerase II 
elongation factor, ELL2 (S603/Y606) and MINT (S244). Most phosphorylation sites on trascription factors were 
down-regulated in breast tumor (Fig. 8B), although their protein levels were elevated. The same effect was noted 
on proteins involved in RNA splicing and their phosphosites (Fig. 8C). Figure 8D shows the enriched protein 
processes in the mammary gland tisssue while Fig. 8E shows protein processes enriched in the breat tumor exclu-
sively from the regulated phosphoproteomics data. The complete set of identified phosphorylation sites, their 
regulation and the corresponding proteins can be found in Supporting Online Dataset V. The complete list of 
enriched Panther biological processes from the proteomic and phosphoproteomic datasets in the breast tumor 
with P values are shown in Supporting Online Dataset VI.

In order to assemble and integrate the data from five different –omics analyses (1. Untargeted lipidomics, 2. 
Targeted metabolomics, 3. Untargeted metabolomics, 4. Untargeted proteomics and 5. Untargeted phosphopro-
teomics) from a single piece of tumor or mammary gland, we annotated a virtual cell based on signal transduc-
tion processes, metabolism, lipid biosynthesis, and RNA transcription and protein synthesis (Figures 9-10). The 
integration was performed based on informatics obtained from each individual analysis and assembled based on 
knowledge of the current literature. We used multiple pieces of software to bioinformatically assemble the model. 
Figure 9 shows the overlay as a scatterplot of all omics data and the normalized regulation of each analysis as a 
single plot. It shows that some –omics data has tighter regulation than others and also shows differences in the 
dynamic range for each analysis. The metabolomics data shows the widest range of scattered regulation, mostly 
from the untargeted analysis while the lipidomics data shows the tightest amount of scatter within the dataset. The 
proteomics and phosphoproteomics datasets showed the most dramatic regulated signals as displayed as bands of 
data points since many phosphosites and proteins were only detected in either breast tumor or mammary gland 
but not both. Figure 10 shows the serial-omics data integration which describes the regulation of members of 
connecting biological pathways including central metabolism, kinase signaling, RNA transcription and splicing, 
amino acid and nucleotides as well as fatty acid and lipid synthesis in mouse P53−/−, Brca1−/− breast tumor 
and normal mammary gland tissue.

Discussion
The biggest advantage of the MTBE extraction lies in one simple and quick extraction, which separates tissue sam-
ples for three different -omics from a single sample of small quantity. This makes the possibility for finding bio-
markers from needle biopsies less than 10 mg, dried blood spots less than 10 μL, etc. possible. We showed that only 
10 mg of tissue was sufficient enough to cover our targeted metabolomics profile list of ~290 important central 
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carbon metabolites of the cell but we further identified 500 additional metabolites by performing the untargeted 
data dependent metabolomics approach, exposing important changes in breast tumor metabolism compared to 
mammary gland. Our untargeted lipidomics approach routinely identifies 1,000–1,500 lipid molecules across all 

Figure 7. Venn diagrams for the distribution of proteins and peptides. (A) The venn diagram shows the total 
amount of unique phosphosites (1,072) identified from the serialomics of mouse breast tumor and mouse 
mammary gland by LC-MS/MS. (B) The venn diagram shows the total amount of unique phosphoproteins 
(792) identified from the serialomics of mouse breast tumor and mouse mammary gland by LC-MS/MS. 
(C) The venn diagram shows the total amount of unique phosphothreonine, (D) phosphoserine, and (E) 
phosphotyrosine sites identified in mouse breast tumor and mouse mammary gland. (F) The venn diagram 
shows the total amount of unique proteins (4,792) identified from the serial-omics of mouse breast tumor and 
mouse mammary gland by LC-MS/MS. (G) The bar plot represents the amounts of total phosphosites, phospho-
threonine, - serine and -tyrosine as well as phosphoproteins in mouse breast tumor and mouse mammary 
gland. (H) Immunoblots of the important signaling proteins FASN, mTOR, HSP90, ODC and SRSF4 with 
actin loading control.
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major lipid classes. We not only acquire lipid class and fatty acid chain information but the exact composition of 
the lipid ion including its saturation level. Lastly, the combination of in-gel digestion and TiO2 phosphopeptide 
enrichment from 10 mg per tissue extracted nearly 5,000 proteins and more than 1,000 phosphosites from min-
imal fractionation. The integration of these multiple –omics data from the same small piece of sample has major 
advantages since variability across different tissue samples has been eliminated, thus increasing reproducibility. 
The ability to incorporate data from multiple -omics experiments into a cellular pathway model is extremely pow-
erful for developing a therapeutic strategy for a personalized medicine approach. The first thing that was noted by 
comparing the serial-omics of 10 mg of breast tumor and mammary gland tissue was the different levels between 
large and small molecules. The ratio of lipids between breast tumor versus mammary gland was approximately 
1:1, the ratio for metabolites is ~2:1 in favor of breast tumor and the most dramatic difference was in the protein 
level which was ~7:1 in favor of the breast tumor and a ~20 times greater level for phosphopeptides in the breast 

Figure 8. Results from the phosphopeptide enriched protein pellet. (A) A bar plot of the most regulated 
pSTY phoshosites normalized by protein level from the breast tumor vs. mammary gland experiment. (B) A 
bar plot of detected transcription factors in the phosphopeptide enriched fraction. (C) A bar plot of proteins 
involved in RNA splicing from the identified phosphopeptides. (D) The profile of protein classes with fold 
enrichment across all enriched proteins in mammary gland including p-values generated with Panther. (E) The 
profile of protein classes with fold enrichment across all enriched proteins in breast tumor including p-values.
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tumor. However, very different classes of lipids and small molecules were present between the two tissue types as 
was a same with proteins identified.

We identified activated signaling pathways in the p53−/−, Brca1−/− breast tumor with an especially ele-
vated ERK-MTOR-S6 pathway, which contributes to activation changes on proteins involved in transcription and 
splicing. Furthermore, we revealed a connection between protein regulation and small molecule metabolites. In 
the breast tumor, important members of de-novo lipid synthesis were down-regulated on both the lipid and pro-
tein level, and the activated mTOR pathway contributed to inhibition of lipolysis. Despite the increased expres-
sion of the glucose transporter GLUT1/3, the glycolysis and pentose phosphate pathways were mostly decreased 
although amino acids, urea and TCA cycle intermediates showed elevation in breast tumor tissue compared to 
normal mammary gland. The proteomic and RTK data suggest a possible intervention in these tumors with ERK 
inhibitors.

Figure 9. Overlayed scatterplot of metabolomics, lipidomics, proteomics and phosphoproteomics datasets. A 
scatterplot showing the distribution of the various -omics results from the MTBE extraction of the breast tumor 
vs. mammary gland experiment. Datasets were normalized for viewing purposes.
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Taken together, the results from our serial-omics approach exposed the molecular mechanism and signal 
pathways in the p53−/−, Brca1−/− breast tumor cells. Our model demonstrates the power of acquiring and 
assembling four types of –omics data derived from a single piece of tissue. It shows that an enormous amount of 
data can be captured from a specimen without wasting any precious tissue. We were capable of detecting known 
breast tumor suppressor and marker proteins and molecules from a small sample amount equivalent to a needle 
biopsy. In the future, this approach could be used to help understand the driving mechanism in cancers and help 
to personalize the treatment of cancer patients from biopsied samples and dried blood spots and potentially from 
other fluids such as urine, tears, CSF, synovial fluid, etc.

Methods
MTBE Extraction. The mouse breast tumor tissue and mouse mammary gland were treated separately for 
comparison. Each tissue specimen was snap frozen in liquid nitrogen (−196 °C) right after resection and stored 
in −80 °C until the extraction. Right before extraction the frozen tissue was ground on dry ice with the help of 
a pestle and mortar. 10 mg of the tissue grind were transferred into a glass vial (Fisher Scientific, 03-340-47 A) 
and 200 µL of 1X PBS (RT) were added followed by 1.5 mL HPLC grade methanol and vigorous vortexing for 
1 min. After the addition of 5 mL of MTBE, anhydr. 99.8% (Sigma Aldrich, 306975-1L) the samples were shaken 
for 1 hr at RT. We added 1.2 mL of water, vortexed for 1 min and spun for 10 min. The resulting upper (lipid) and 
lower (metabolite) phases were collected separately in 1.5 mL glass vials and dried out in a SpeedVac. The protein 

Figure 10. Model of the breast tumor vs mammary gland serial-omics experiment. The MTBE liquid-liquid 
extraction of the solid protein fraction revealed an active mTOR pathway and regulation on transcription and 
splicing in the breast tumor. Proteins involved in lipid metabolism were found to be downregulated in breast 
tumor. The top layer lipid fraction exposed a reduction in lipid biosynthesis and triglyceride levels but an increase 
in phospholipid levels in breast tumor. The middle layer revealed higher levels of polar metabolites in the 
urea cycle, TCA cycle and the amino acids in the breast tumor, however, the pentose phosphate pathway and 
many glycolytic intermediates were reduced in breast tumors.



www.nature.com/scientificreports/

1 5SCIenTIfIC REPORTS | 7: 14503  | DOI:10.1038/s41598-017-15132-y

pellet was resuspended in 200 µL 0.5x sample buffer (6X SDS Sample Buffer (0.375 M Tris pH 6.8, 12% SDS, 60% 
glycerol, 0.6 M DTT, 0.06% bromophenol blue) transferred to a microcentrifuge tube and dried down to 50 µL in 
a SpeedVac.

Proteomics/Phosphoproteomics. The protein samples were loaded on a 4–12% gradient gel (Lonza, 
#58520) and ran until the loading dye reached the bottom of the gel. The gel was stained GelCode Blue Stain 
(Fisher Scientific, #PI24590) for 30 minutes and each lane with sample was cut into 10 equal pieces. Gel sec-
tions were reduced with 55 mM DTT, alkylated with 10 mM iodoacetamide (Sigma-Aldrich), and digested over-
night with TPCK modified trypsin (Promega) at pH = 8.3. Peptides were extracted, dried out in a SpeedVac, 
resuspended in 10 μL of 50% ACN, 6%TFA and rocked on a shaker for 15 min. The TiO2 TopTip (PolyLC, # 
TT10TIO) were washed with 50% ACN, 6% TFA, spin at 1500 rpm 0.5 min for four times. The samples were 
loaded on the TiO2 tips and incubated for 30 min followed by wash with 10 µl 50% ACN, 1% TFA (spin at 
1500 rpm 0.5 min), repeated two times, eluted with three times 10 µl 40% ACN, 15% NH4OH, added 60 µl buffer 
A (0.1% formic acid/99.9% water) and dried down to 5 µL. The protein sample was analyzed by positive ion 
mode LC-MS/MS using a high resolution hybrid QExactive HF Orbitrap Mass Spectrometer (Thermo Fisher 
Scientific) via HCD with data-dependent analysis (DDA) with 1 MS1 scan followed by 8 MS2 scans per cycle 
(Top 8). Peptides were delivered and separated using an EASY-nLC nanoflow HPLC (Thermo Fisher Scientific) 
at 300 nL/min using self-packed 15 cm length × 75 μm i.d. C18 fritted microcapillary columns. Solvent gradi-
ent conditions were 120 minutes from 3% B buffer to 38% B (B buffer: 100% acetonitrile; A buffer: 0.9% ace-
tonitrile/0.1% formic acid/99.0% water). MS/MS spectra were analyzed using Mascot Version 2.5.1.0 (Matrix 
Science) by searching the reversed and concatenated mouse protein database (version 201509, http://www.ebi.
ac.uk/uniprot/database/download.html) with a parent ion tolerance of 18 ppm and fragment ion tolerance of 
0.05 Da. Carbamidomethylation of cysteine (+57.0293 Da) was specified as a fixed modification and oxidation 
of Methionine (+15.9949), phosphorylation of Serine/Threonine/Tyrosine (+79.97) as variable modifications. 
Results were imported into Scaffold Q+S 4.6 software (Proteome Software, Inc.) with a peptide threshold of 
~85%, protein threshold of 95%, resulting in a peptide false discovery rate (FDR) of ~1%. Known contaminants 
such as keratins, caseins, trypsin and BSA were removed from the analysis. Further statistical analysis was per-
formed using Panther (http://www.pantherdb.org/).

Lipidomics. The lipid samples were re-suspended in 30 µL of 1:1 LC/MS grade isopropanol:methanol prior to 
LC-MS/MS analysis, 5 µL were injected. A Cadenza 150 mm × 2 mm 3 µm C18 column (Imtakt) heated to 40 °C at 
260 µL/min was used with a 1100 quaternary pump HPLC with room temperature autosampler (Agilent). Lipids 
were eluted over a 20 min. gradient from 32% B buffer (90% IPA/10% ACN/10 mM ammonium formate/0.1% 
formic acid) to 97% B. A buffer consisted of 59.9% ACN/40% water/10 mM ammonium formate/0.1% formic 
acid. Lipids were analyzed using a high resolution hybrid QExactive Plus Orbitrap mass spectrometer (Thermo 
Fisher Scientific) in DDA mode (Top 8) using positive/negative ion polarity switching. DDA data were acquired 
from m/z 225-1450 in MS1 mode and the resolution was set to 70,000 for MS1 and 35,000 for MS2. MS1 and MS2 
target values were set to 5e5 and 1e6, respectively. Lipidomics data were analyzed using LipidSearch 4.1.9 software 
(Thermo Fisher Scientific) and Elements for Metabolomics (Proteome Software) NIST database incorporated.

Metabolomics. Half of the metabolite samples were re-suspended in 20 μL LC/MS grade water, 5 μL were 
injected over a 15 min gradient using a hybrid 5500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX) 
coupled to a Prominence UFLC HPLC system (Shimadzu) via SRM of a total of 287 SRM transitions using pos-
itive/negative polarity switching corresponding to 258 unique endogenous water soluble metabolites. The dwell 
time was 3 ms per SRM resulting in ∼10–14 data points acquired per detected metabolite. Samples were sepa-
rated using a Amide XBridge HPLC hydrophilic interaction liquid chromatographic (HILIC) column (3.5 μm; 
4.6 mm inner diameter (i.d.) × 100 mm length; Waters) at 300 μL/min. Gradients were run starting from 85% 
buffer B (HPLC grade acetonitrile) to 40% B from 0–5 min; 40% B to 0% B from 5–16 min; 0% B was held from 
16–24 min; 0% B to 85% B from 24–25 min; 85% B was held for 7 min to re-equilibrate the column. Buffer A was 
comprised of 20 mM ammonium hydroxide/20 mM ammonium acetate (pH = 9.0) in 95:5 water/acetonitrile. 
Peak areas from the total ion current for each metabolite SRM transition were integrated using MultiQuant ver-
sion 2.1 software (AB/SCIEX) via the MQ4 peak integration algorithm using a minimum of 8 data points with a 
20 sec retention time window.

The other half of the metabolite samples were re-suspended in 30 μL LC/MS grade water, 5 μL were analyzed 
by positive negative switching mode using a high resolution QExactive HF hybrid quadrupole-Orbitrap mass 
spectrometer (Thermo Fisher Scientific) via a Top 8 DDA. Metabolites were delivered and separated using an 
EASY-nLC nanoflow HPLC (Thermo Fisher Scientific) at 225 nL/min using self-packed 15 cm length × 75 μm 
i.d. C18 fritted microcapillary columns. Solvent gradient conditions were 25 minutes from 3% B buffer to 38% B 
(B buffer: 100% acetonitrile; A buffer: 0.1% formic acid/99.9% water). The data were analyzed using Elements for 
Metabolomics (Proteome Software) with the NIST database incorporated (http://chemdata.nist.gov/mass-spc/
msms-search/) followed by statistical analysis with Metaboanalyst 3.0 (http://www.metaboanalyst.ca/).

Normalization of data sets. For normalization each of the three data sets first the average value of all 
ratios, breast tumor versus mammary gland was calculated followed by multiplying each data point of the mam-
mary gland data set with the calculated average value. Additional normalization was needed for the values of the 
phosphorylation sites. The ratio of breast tumor versus mammary gland of each phosphosite was divided by the 
ratio of breast tumor versus mammary gland of the corresponding protein.

Syngeneic Tumor Implants. All animal experiments were conducted in accordance with Institutional 
Animal Care and Use Committee-approved protocols at Beth Israel Deaconess Medical Center. Tumors generated 

http://www.ebi.ac.uk/uniprot/database/download.html
http://www.ebi.ac.uk/uniprot/database/download.html
http://www.pantherdb.org/
http://chemdata.nist.gov/mass-spc/msms-search/
http://chemdata.nist.gov/mass-spc/msms-search/
http://www.metaboanalyst.ca/
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in K14-Cre BRCA1f/fp53f/f mice were syngeneically transplanted into the mammary pad of K14-Cre− mice to 
generate cohorts of mice. Tumors were extracted when they reached 20 mm in diameter.

Cell culture. The human mammary epithelium cell line MCF7 (Ralph Scully lab, BIDMC) and mouse breast 
tumor cell line K14 were obtained in Dulbecco’s Modified Eagle’s medium (Corning; DMEM with L-Glutamine, 
4.5 g/L Glucose) supplemented with 10% FCS, 100 units/mL penicillin and 100 units/mL streptomycin. MCF10A 
(Ralph Scully lab, BIDMC) were maintained in MEGM bullet kit (Lonza CC-3150) with 100 ng/ml cholera toxin, 
100 units/mL penicillin and 100 units/mL streptomycin.

PathScan RTK signaling array. The PathScan RTK signaling array kit containing 39 fixed antibodies in 
duplicates against phosphorylated forms of common key signaling proteins by the sandwich ELISA format was 
used per manufacturer’s direction (Cell Signaling Technologies). Images were analyzed with ImageJ (http://rsb-
web.nih.gov/ij/) by loading the image as a gray scale. Each kinase array dot was manually selected and an average 
intensity for each kinase was calculated. Normalization within one stimulation experiment was done by subtract-
ing the intensity of the negative control dot from each value. For comparison of different stimulation conditions, 
sets were normalized so that the positive controls had equal intensities.

Western Blots. Cells were lysed in lysis buffer (0.5% (v/v) NP-40, 1% (v/v) Triton X-100, 150 mM NaCl, 50 mM 
Tris·Cl, pH 7.4, 1 mM EDTA, 1 mM EGTA, protease inhibitors), and protein concentration was calculated using 
Bradford assay. Equal amounts were loaded onto a Gradient Gel 4–20% (Lonza). Western blot analyses were con-
ducted after separation by SDS-PAGE (Gradient Tris-Glycin gel 4–20%, Lonza) and transferred to a nitrocellu-
lose membrane. Antibodies against HSP90 (rabbit polyclonal CS 4874S), mTor (rabbit polyclonal CS 2972), Fatty 
Acid Synthase (rabbit polyclonal CS 3180), beta-Actin (rabbit polyclonal CS 4970), ODC (rabbit polyclonal, Abcam 
ab126590), SFRS4 (rabbit polyclonal, Abcam ab73893) PLIN1 (rabbit polyclonal). All antibodies were used per 
manufacturer’s instructions. Antibody binding was detected using enhanced chemiluminescence (PerkinElmer).
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