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ABSTRACT 

 

 The black soldier fly, Hermetia illucens (L.), is a large, non-pest species whose 

larvae (BSFL) are known to consume a variety of decaying organic materials. This ability 

is being pursued for industrialization as a means to recycle wastes and produce protein for 

use as food and feed. BSFL were reared under laboratory conditions on poultry, swine, 

and dairy manure at rates of 18.0 and 27.0 g every other day until 40% reached the 

postfeeding stage. Volatile emissions were collected and analyzed from freshly thawed 

manure (control) as well as the digested waste when 90% of the BSFL reached the 

prepupal stage. Volatiles were also collected from manure not inoculated with BSFL and 

held under similar conditions until 90% of the BSFL had reached the prepupal stage in the 

treated manure  (non-digested). Manure samples were analyzed for relative amounts of 

nine odorous compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic 

acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. 

BSFL reduced emissions of all compounds by 87% or greater. Complete reductions (i.e. 

100%) in relative amounts of compounds were observed for propanoic acid, 2-methly in 

BSFL digested poultry manure, phenol, 4-methylphenol, indole and all five acids in BSFL 

digested swine manure and 4-methylphenol, indole, 3-methylindole and all five acids in 

BSFL digested dairy manure.  

This study was the first to identify volatile emissions from manure colonized by 

BSFL and compare to those found in uncolonized manure. These data demonstrate 
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additional benefits to using BSFL as a cost effective and environmentally-safe means of 

livestock manure management in comparison to current methods.   
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CHAPTER I 

 INTRODUCTION AND LITERATURE REVIEW 

 

Introduction and Literature Review 

Increasing Global Protein Demands 

There has been increasing pressure on the livestock sector to meet the growing 

demand for animal protein over the past several decades. The world’s livestock sector is 

growing at an unprecedented rate driven by an increasing global population, rising 

incomes, and urbanization (FAO 2009). Annual meat production is expected to increase 

from 218 million tons in 1997-1999 to 376 million tons in 2030 (FAO 2009). By the year 

2050, the demand for meat and milk is expected to be 58 and 70% higher, respectively, 

than their levels in 2010, and a large portion of this will come from developing countries 

(Msangi et al. 2011). In Asia, for example, consumption of animal protein per capita 

increased by 225% between 1961 and 2007. This consumption in 2007 accounted for 

nearly 40% of Asian total protein consumption compared to only 15% in 1961 (FAOSTAT 

2009). This demand is contrasted to their supply of crop-derived protein for human 

consumption, which increased only 22% during this time period. Globally, animal derived 

protein accounts for almost 40% of total protein consumption by humans and is expected 

to continue to increase significantly by 2050 (FAO 2009).  

The livestock industry is important to nations, not only as a source of much-needed 

animal-derived protein, but also in terms of the economic stability that it provides. 

Globally, the livestock sector comprises 40% of agricultural gross domestic product and 
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employs 1.3 billion people (Steinfeld et al. 2006). While important in terms of providing 

essential nutrients to diets, livestock production is a significant contributor to local and 

global environmental problems (FAO 2009, Steinfeld et al. 2006). This increase in 

demand will require more animal production as well as a need to conserve resources that 

can be utilized by humans rather than livestock. Furthermore, the negative impacts of 

animal farming are exacerbated by the trend in the livestock industry to raise large 

numbers of animals in animal feeding operations (AFOs) and concentrated animal feeding 

operations (CAFOS).  

 

Environmental and Human Health Effects of Animal Farming 

The livestock sector affects humans and their environment by occupying and using 

a large portion of natural resources. Production of this commodity represents the largest 

anthropogenic user of land occupying 75% of all agricultural land and 30% of all land-

surface on the planet (Steinfeld et al. 2006). The global population is experiencing 

problems of water shortages with an estimated 64% of the population expected to live in 

water-stressed basins by only 2025 (Steinfeld et al. 2006). Livestock production will only 

increase this problem as it consumes 8% of global water use, mainly through irrigation of 

feed crops (FAO 2009, Foley et al. 2011).  Livestock production is a huge use of natural 

resources and these animals compete directly with humans, who could otherwise use them.  

Animal production is a detriment to the environment and causes severe 

environmental issues such as water pollution, land degradation, decline in atmospheric 

quality and increased health problems (FAO 2009). For example, animal farming is 
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estimated to account for 55% of soil and sediment erosion, 37% of nationwide pesticide 

use, 80% of antibiotic usage, and over 30% of the total nitrogen and phosphorus loading 

to national drinking water (Steinfeld et al. 2006). These negative impacts are strongly tied 

to the manure production from these intensive farming facilities, which will continue to 

increase with animal production as it strives to meet consumer demands. The root causes 

of these negative environmental impacts are the large volumes of animal waste produced, 

its improper management and disposal, and the unsuitable water usage and soil 

degradation associated with feed production (EPA 2013). The need to deal with manure 

is increasing much like it’s prevalence. A tremendous amount of animal waste is produced 

annually. For 2001, the United States Department of Agriculture (USDA) reported over 

299,370,964 metric tons of manure were produced, by broiler and egg-laying chickens, 

beef and dairy cows, and hogs and of this, 86% was said to come from animals in 

confinement (NASS 2012). 

This increased need to deal with manure is also because of a geographic and 

structural shift. Livestock production is being encroached upon by expanding urban and 

peri-urban areas (Steinfeld et al. 2006), which puts consumers closer to these animals and 

their wastes. Animal production has also become more concentrated over the past two 

decades and is expected to continue along this trend (Ribaudo and Gollehon 2006). This 

increase in concentration is happening both at the scale of an individual farm and 

geographically across the United States (EPA 2013). For example, the 2007 USDA Census 

of Agriculture noted that 40% of swine production occurred in Iowa and North Carolina 

and 30% of broiler chicken production occurred in Alabama, Georgia, and Arkansas. Head 
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counts have increased on individual farms, which are becoming smaller, often leading to 

these animals being raised in high concentrations (NASS 2007).  

The increase in prevalence of animal feeding operations (AFOs) and concentrated 

animal feeding operations (CAFOs) exacerbate this problem of concentration. AFOs are 

defined as agricultural operations where animals are kept and raised in confined situations 

such that animals have been, are, or will be stables or confined and fed or maintained for 

a total of 45 d or more in any 12-month period. The standards to be qualified as a CAFO 

are presented in subsequent sections.  

Another term often used in the literature is “factory farm”. Food and Water Watch 

analyzed data from the USDA Censuses of 1997, 2002, 2007, and 2012 and created their 

own analyses of the livestock industry. They defined factory farms as having over 500 

dairy cows, over 1,000 hogs or over 100,000 layer chickens. Their analysis found that the 

total number of livestock on the largest factory farms rose by 20% from 2002 to 2012. In 

2008, it was reported that 54% of all United States’ food animals were concentrated on 

only 5% of the farms (Food and Water Watch 2015). 

Whereas animals in pasture can distribute this resource more evenly and over a 

greater area of land, CAFOs produce more manure per square foot than can be applied to 

the land (Ribaudo and Gollehon 2006). Manure, traditionally viewed as a welcome source 

of nutrients for soil amendment, has now become a liability and problematic resource. 

This excess of manure must be dealt with via other methods such as land application, 

storage, or removal all of which increase the cost to the farmer (Nowak et al. 1998).  
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Additionally, these methods may lead to pollution as contaminants associated with 

manure can move through the soil and wind to waterways. In the USA, it is estimated that 

278,416.51 km of national waters are impacted by runoff from agricultural sources (Pew 

Commission on Industrial Farm Animal Production 2008). Improper or malfunctioning 

storage and natural disasters can also lead to environmental exposure to manure. In 1999, 

Hurricane Floyd hit North Carolina, flooding much of the land, including 50 lagoons used 

for manure storage, causing three to burst. The result was the release of over 3.7 million 

L of manure mixed with the floodwaters in addition to the deaths of millions of animals, 

which drowned during the flooding (Henderson 1999). In 2009, a clogged pipe caused the 

leak of over 94,000 L of dairy manure in Pipestone County, MN, which spilled into a local 

tributary, killing fish and resulting in a state park closing to swimmers after elevated levels 

of coliform bacteria were found in the park’s waters (Kuphal 2009). In 2010, the 

Environmental Protection Agency (EPA) mandated a feedlot in Grand View, ID to cease 

the discharge of fecal bacteria-contaminated water from its stock watering system into a 

tributary of the Snake River (EPA 2010).  

Animal farming can also impact water environments by depleting limited 

freshwater sources by contaminating surface and groundwaters, often seen in air regions 

and floodplains, respectively (Burkholder et al. 2007, Mallin et al. 2003). Aquatic 

environments can also be negatively impacted by the overabundance of nutrients such as 

nitrogen and phosphorus, another issue associated with improper manure management 

(Kellogg 2003). In 2010 a broiler chicken operation with over 100,000 animals was 

ordered to cease the discharge of pollutants from large piles of uncovered manure, which 



 

 

 

 

6 

were leaching nitrogen and phosphorus into a nearby tributary of the Shenandoah River, 

VA. (EPA 2010).  

Nitrogen-containing pollutants, such as ammonium, nitrate and nitrite, pose both 

ecological and human health threats, and can reach the environment through leaching and 

surface runoff (Burkholder et al. 2007). Nitrogen in animal waste, is largely present as 

ammonium and is quickly converted to nitrate by microorganisms in aerobic conditions. 

Nitrate, which is highly soluble, moves with waters into rivers and groundwater. Nitrogen 

is a limiting nutrient in marine and estuarine environments, and therefore increased 

loading of this element can significantly contribute to downstream effects such as 

eutrophication and oxygen depletion (hypoxia), which are responsible for massive fish 

kills (Rabalais et al. 1999). Manure discharged from a dairy in O’Brien County, IA 

polluted a 45 km stretch of stream and killed over 860,000 fish. The Iowa Department of 

Natural Resources estimated the value of these fish to be over $160,000 (Iowa Department 

of Natural Resources 2014). Nitrate is also an important water contaminant that is 

regulated by the EPA’s Safe Drinking Water Act. High levels of exposure to nitrates can 

cause methomoglobinemia, or blue baby syndrome (Ward et al. 2005) in infants and is 

linked to different cancers, insulin-dependent diabetes and neurodevelopmental defects in 

adults (Burkholder et al. 2007). Phosphorus is another important contaminant linked to 

manure and intense livestock farming. Like nitrogen, phosphorus is a limiting nutrient in 

many aquatic environments. Through manure disposal, leaching, and runoff, phosphorus 

can reach these environments and result in eutrophication (PEW 2008). 
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There are many other pollutants and pathogens associated with manure such as 

those relative to human health (e.g., bacteria, viruses and protozoans) (Cole et al. 1998). 

These pathogens include bacteria such Escherichia coli 0157:H7, Salmonella spp., and 

Campylobacter spp., viruses such as Rotavirus, avian influenza virus and Hepatitis E and 

protozoa such as Cryptosporidium parvum and Giardia lamblia.   

The decomposition of manure is also responsible for environmental pollutant 

emissions such as greenhouse gases, ammonia and other volatile organic compounds. 

Livestock production is responsible for more greenhouse emissions globally than 

transportation (i.e. vehicles) and produces more carbon dioxide emissions than 

manufacturing of chemical fertilizers for animal feed (FAO 2009).  Greenhouse gases, 

specifically, methane, carbon dioxide, and nitrous oxide, are given off by the animals 

during the digestion process in the gut (FAO 2009).  The livestock sector produces 68% 

of anthropogenic nitrous oxide, which has 296 times the global warming potential of 

carbon dioxide and can remain in the atmosphere for up to 150 years. Nitrous oxide 

contributes to ozone depletion and therefore global warming. Livestock is also responsible 

for 64% of anthropogenic ammonia emissions (FAO 2009), which contribute to the 

acidification of ecosystems and acid rain. Livestock production is also responsible for 35-

40% of anthropogenic methane, which has 23 times the global warming potential of 

carbon dioxide (FAO 2009). According to the EPA, over the last 15 years, greenhouse gas 

emissions have risen significantly; methane emissions from swine and dairy cows have 

increased by 37% and 50%, respectively (EPA 2013). Greenhouse gas and other harmful 
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environmental emissions will only continue to increase as intensive livestock practices 

become more commonplace as demand continues to rise.  

The decomposition of manure is also responsible for emissions of volatile organic 

compounds (VOCs), which are pollutants and pose potential health risks (FAO 2009). 

Studies have indicated that between 100 and 330 VOCs and volatile fatty acids are 

generated by CAFOs, depending on management practices and the species of animal 

involved (Cai et al. 2006, Powers and Bastyr 2004, Schiffman et al. 2001). The Pew 

Commissions on Industrial Farm Animal Production demonstrated that both working in 

and living near intense livestock farming increased respiratory problems, including asthma 

(Trusts and Hopkins 2008). Studies have shown that as much as 25% of workers in 

confined swine production suffered from ailments such as chronic bronchitis and non-

allergenic asthma (Donham 2000). Rushton et al. (2007) demonstrated mucous membrane 

irritation, bronchitis, asthma and chronic obstructive pulmonary disease in pig farmers as 

well. Additionally, workers exposed to hydrogen sulfide at levels only slightly above the 

odor threshold were found to have accelerated deterioration of neurobehavioral function 

(Kilburn 1999). In 2010, a manure lagoon liner from a 1,650 cow dairy operation in 

Randolph County, IN, became detached and inflated with gases associated with 

decomposing manure. The operator of the farm could not afford the costs associated with 

fixing the liner, causing the county to shut down local roads to the area due to the risk 

posed by the potential lease of noxious odors or even explosion (Etter 2010). In Portage 

County, Wisconsin, 2016, a farmer and 16 cattle were overcome and killed by deadly 
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amounts of sulfur oxide fumes from a manure holding tank when agitation caused the 

surface line to crack and release deadly fumes into the environment (Cerullo 2016).  

Finally, in addition to experiencing some of the respiratory problems mentioned 

above, those living in the area of heavy animal production have been found to experience 

higher levels of tension, depression and anger (Barrett 2006). Reports have associated odor 

from animal production facilities in rural areas with other issues such as harassment from 

outspoken community members to farmers and a general negative perception by local 

residents (Thu 1997). Odors, which are so noxious they overtake an entire area, have been 

linked with a decline in local retail purchases, degradation of community fabric, and 

decline in land and property values (Goldschmidt 1979). 

Although the EPA is currently examining emission control solutions with 

programs such as carbon credits and credit trading (Jensen 2006), these emissions are 

largely unregulated. Furthermore, much of the studies and potential regulation focuses on 

greenhouse gas emissions and those, as previously mentioned, that are byproducts of the 

animals themselves versus non greenhouse gas VOCs. Regulating these compounds will 

be more difficult as it is unlikely that the number of animals being farmed in the USA will 

decrease in the near future. North Carolina has recently passed legislation to set high 

performance standards for swine AFOs with substantial reductions in emissions of 

ammonia, odors and pathogens required (General Assembly of North Carolina 2007). 

Beyond this, legislators to significantly deal with these harmful and noxious emissions 

have done little. Reducing emissions of greenhouse gases and odorous VOCs is of 

important interest to those in farming, environmental and public sectors. 
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Livestock Manure Characteristics  

The 2012 Census of Agriculture reported a total of 89.9 million cattle and calves, 

66 million hogs and pigs, and 350.7 million layers in the United States. The analyses done 

by the Food and Water Watch found that factory-farmed livestock produced 369 million 

tons of manure in 2012, about 13 times as much sewage produced by the entire U.S. 

population (Food and Water Watch 2015). Advances in production and conversion 

efficiencies are being made every year, therefore previous and dated estimates of waste 

production and composition may not always be the most accurate estimators and will often 

overestimate both the total volume of production and composition of the waste produced 

(Sweeten et al. 1998). 

 When describing manure characteristics, several terms are often used. Some terms, 

which will be used below, are herein defined (NRCS 2008). Moisture content of manure 

is the part of the waste removed by evaporation and oven drying at 103°C for 24 h. Total 

solids are the residue remaining after water is removed from waste material by 

evaporation, also known as dry matter content. Moisture content (%) plus total solids (%) 

equals 100%. Dry matter is assed in the same fashion as moisture content. Volatile solids 

are defined as the part of total solids driven off volatile (combustible) gases when heated 

to 600°C for one hour. Fixed solids are the part of the total solids remaining after volatile 

gases are driven off. Data such as moisture content is given on an “as excreted” basis and 

different handling system can affect such aspects of manure (i.e., a liquid handling system 

or dry storage). The sections below give aspects of these animals for their average size. 

However, this can be hard to compare across animal types as a layer hen is much smaller 
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than dairy cow. Therefore, these values have been calculated on a per animal unit (AU) 

(453.59 kg animal) basis to allow comparison across animals. These values are presented 

in Table 1.1 (NRCS 2008) 

 

Poultry Manure 

Poultry litter, which is a mixture of manure, bedding material, wasted feed, 

feathers, and soil that is picked up during recovery, is generally considered to be the most 

valuable animal manure owing to its relatively low moisture and high macronutrient 

content (Wilkinson 1979). An l.36 kg layer produces 0.09 kg of waste a day at 75% 

moisture. This equates to only 8.77 x 105 m3. This manure breaks down into 0.02 kg of 

total solids and 0.02 kg of volatile solids. Daily amounts of nitrogen, phosphorus and 

potassium equal 0.001, 0.0005, and 0.0005 kg respectively (NRCS 2000).  

 

Swine Manure 

The amount of manure produced by swine varies between gestating and lactating 

sow and boars. A 199.58 kg gestating sow produces 4.99 kg of manure a day, which equals 

approximately 0.005 m3. This manure is 90% moisture and contains 0.50 kg of total solids 

and 0.45 kg of volatile solids. Per day, a sow produces 0.03 kg of nitrogen, 0.009 kg of 

phosphorus and 0.02 kg of potassium. A 191.87 kg lactating sow will generate more 

manure than a gestating sow. On average these pigs produce 11.33 kg of manure a day at 

90% moisture, equaling approximately 0.011 m3. Of this waste, 1.13 kg  
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Table 1.1 Manure characteristics of poultry layer, lactating swine and dairy cow manure 

in units of per day per AU. Modified from the Agricultural Waste Management Field 

Handbook, Chapter 4 – Agricultural Waste Characteristics (NRCS 2008). 

Component Layer Lactating 

sow 

Lactating cow 

producing 27.21 kg per day 

of milk  

Manure weight (kg) 25.85 26.76 58.97 

Volume (m3) 0.03 0.03 0.06 

Moisture (%) 75 90 87 

Total Solids 15 2.67 7.71 

Volatile Solids 6.80 2.45 5.90 

Nitrogen (kg) 0.50 0.20 0.36 

Phosphorus (kg) 0.15 0.06 0.06 

Potassium 0.18 0.13 0.21 

 

 

 

are total solids, and 1.04 are volatile solids. Per day, this animal produces 0.09 kg of 

nitrogen, 0.02 kg of phosphorus and 0.05 kg of potassium. A 199.58 kg boar produces less 

manure than either of the sows with only 3.81 kg a day, about 0.003 m3. Like the others 

types this manure is 90% moisture and however contains less total and volatile solids than 

the other two types 0.38 and 0.34 kg, respectively. The boar produces 0.03 kg of nitrogen, 

0.009 kg of phosphorus and 0.02 kg of potassium a day (NRCS 2000).  
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Dairy Manure 

 A 623.96 kg lactating milk cow that produces 22.6 kg of milk a day excretes 60.33 

kg of manure a day equating to 0.06 m3. On average, the moisture content of this manure 

is 87% with 7.71 kg of total solids and 6.35 kg of volatile solids. Per day, this equates to 

0.41 kg of nitrogen, 0.07 kg of phosphorus and 0.19 kg of potassium. While moisture 

content remains the same, the more milk a cow produces daily, the more manure it 

produces and therefore higher levels of these nutrients. For example, a cow of the same 

weight which produces 46.36 kg of milk a day will produce 74.39 kg of manure breaking 

down into 9.52 kg of total solids and 8.16 kg of volatile solids. A cow that produces this 

increased amount of milk will also produce more nitrogen, phosphorous and potassium 

but only by 15.55, 26.66 and 19.51%, respectively (NRCS 2000).  

  A 544.31 kg beef cow produces 56.70 kg of manure a day. This manure is 88% 

moisture with 6.80 kg of total solids and 5.89 kg of volatile solids. Per day this equates to 

0.19 kg of nitrogen, 0.04 kg of phosphorus and 0.14 kg of potassium (NRCS 2000)  

 

CAFO Classifications 

The EPA has guidelines to determine whether an operation should be classified as 

a CAFO. Large CAFOs confine at least the number of animals listed below, while medium 

CAFOs fall within a range of sizes listed below and either 1) has a manmade ditch or pipe 

which carried manure or wastewater to surface waters, or 2) the animals come into contact 

with surface waters that pass through the area where they are confined. Even regardless of 

size, if an operation is found to be significant enough contributor of pollutants, the EPA 
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may designate a medium-sized facility as a CAFO. Small CAFOs confine fewer animals 

than listed below and have been designated as a CAFO by a permitting authority as a 

significant contributor of pollutants. 

 

Poultry  

 A small laying hen or broiler CAFO is defined as having less than 9,000 birds. A 

medium sized CAFO has 9,000-29,000 birds and large CAFOs have 30,000 or more birds. 

 

Swine  

 Swine must weigh over 24.95 kg to be included in the consideration for CAFO 

status. Small CAFOs are those with less than 750 animals while medium sized CAFOS 

contain 750-2,499 swine. A large swine CAFO is that which confines over 2,500 animals. 

 

Dairy 

A small dairy CAFO confines less than 200 cows. A medium-sized CAFO 

confines 200-699 while a large CAFO is any operation which confines more than 700 

animals.  

 

Manure Management Practices  

Proper manure management can be a cost-saving tool for farmers as manure can 

be a resource that contains nutrients needed by crops. By taking advantage of this aspect, 

farmers can reduce their fertilizer costs significantly. For example, the Purdue Extension 



 

 

 

 

15 

Service estimated that those taking advantage of poultry manure as a fertilizer could save 

up to $50 in commercial fertilizer costs per acre per application (England et al. 1978). 

Although a potential valuable resource because of its nitrogen and phosphorus content, 

livestock farming, especially that which occurs at a concentrated scale where there is more 

manure available than can be taken up by the land, must deal with the overabundance of 

manure in other ways by implementing different practices of management.  

Different management practices are often needed due to needs of the land receiving 

the manure. For example, poultry manure may need to be stored because schedule of flock 

may not coincide with crop production and the application of the manure as a fertilizer 

(Ritz et al. 2009). As such, poultry producers may be forced to store the manure 

temporarily until application times are appropriate. Regardless of size, CAFOs rely on two 

types of biological processes: aerobic and anaerobic (USDA 2000). In aerobic treatment, 

oxygen is available or provided to speed up the decomposition of organic compound found 

in the manure. The bacteria that thrive in this oxygenated environment tend to produce 

fewer odors than anaerobic bacteria. Anaerobic treatments occur when manure is 

decomposed in the absence of oxygen, which results in the production of biogas (USDA 

2000). Biogas is a mixture of methane, carbon dioxide and other gases, which can be 

captured for energy recovery (Lusk 1998). The anaerobic process involves approximately 

three steps of microbial action. First, insoluble materials such as carbohydrates, fats and 

proteins are transformed into soluble materials (liquefaction). Second, volatile fatty acids 

(VFAs) are formed from the soluble material. The VFA’s are a major source of the odors 

associated with manure. Finally VFAs are converted into biogas – partly methane- by 
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methane forming bacteria. Manure that is treated anaerobically emits significantly less 

odor than untreated or raw manure (Van Horn 1994).  

 

Poultry Manure 

Systems for dealing with the mass amounts of poultry manure revolve about the 

removal of the manure from the poultry (either layer or broiler) houses, pretreating it and 

transporting it to a field for application. The different means by which it is handled is often 

due to and controlled by its moisture content (Moore et al. 1995), size of farm and region 

where it is occurring (USDA 2000). A total cleanout of poultry litter from production 

houses is typically accomplished with tractor-mounted box scrapers or blades and 

machinery capable of scooping the material, such as front-end loaders. Upon removal from 

poultry houses, this material may be directly applied to land or temporarily stored (Moore 

et al. 1995).  

Liquid poultry manures (those containing less than 40 g dry matter kg
-1

) are 

generated when manure is scraped or flushed into storage reservoirs, such as tanks, 

detention basins, aerobic or anaerobic lagoons, and oxidation ditches. Most of the liquid 

poultry manure is generated in laying-hen operations (Miner 1977). Although these 

materials are generally amenable to hydraulic pumping, those containing between 40 and 

150 g dry matter kg
-1

, referred to as slurries, can present problems to pumping equipment 

because of their viscosity and potential to plug orifices (Miner 1977). Solid-liquid 

separation via sedimentation or filtration may be necessary when liquid poultry manures 

with higher amounts of solids are to be pumped. 
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Poultry manure that is being stored is subject to nitrogen loss based on the method 

of storage. The maximum value of poultry litter as a fertilizer occurs at the time of its 

removal from the poultry house when nitrogen content is greatest (Ritz et al. 2009). The 

longer the manure is held the more nitrogen that is lost into the atmosphere as ammonia; 

this loss is compounded when the manure is stored uncovered.  

Poultry manure can be stored in several different ways such as covered stockpiles, 

stockpiles with ground liners, permanent storage structures or stack houses (Ritz et al. 

2009). Nitrogen losses are minimized when the liquids or slurries are added to the bottom 

of storage reservoirs instead of to the surface (Carpenter 1992). Like other types of 

manure, poultry manure can also be applied to the land with the use of Nutrient 

Management Plans to prevent over application. Except for small amounts used in animal 

feed, the major portion (greater than 90%) of poultry litter is applied to agricultural land 

(Carpenter 1992). 

The transport of solid poultry manure to the field, depending on the distance, is 

typically done with spreader trucks. Slurries may be pumped from storage reservoirs into 

tank-bearing vehicles for transport to the field, which requires agitation (Miner 1977). 

Liquid poultry manures having less than 40 g dry matter kg
-1

 may be handled in the same 

manner as slurries or may be pumped directly from storage reservoirs though pipeline 

systems to irrigation equipment at the site of application. The cost of moving poultry litter 

is a major obstacle facing the more efficient use of this resource (Moore et al. 1995). 

The type of spreading equipment used depends on the method of storing and 

handling poultry manure. Traditionally, poultry litter is broadcast directly from the house, 
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using a variety of spreaders. Manure stored in deep pits is removed by scraping and is 

applied with a spreader. In a few cases, manure stored in shallow pits is removed by 

flushing and, after large solids have been removed by sedimentation and/or filtration, is 

applied with an irrigation system. Spreading equipment can vary among contractors 

(Moore et al. 1995). 

Two USDA agencies, the Animal and Plant Health Inspection Service and the 

National Agricultural Statistics Service conducted a thorough evaluation of the nation’s 

layer (versus broiler) industry in 2013. This questionnaire was administered to table-egg 

farms with 3,000 or more hens, that had been registered with the Food and Drug 

Administration (FDA). The study characterizes the manure handling practices by region 

and by size. The regions considered were the Northeast (Indiana, Michigan, Ohio, 

Pennsylvania, Connecticut, Maine, Massachusetts, New Hampshire and Vermont), the 

Southeast (Alabama, Florida, Georgia, and North Carolina), Central (Arkansas, Illinois, 

Iowa, Minnesota, Nebraska and Wisconsin) and West (California, Texas and 

Washington). Small farms were considered to have between 3,000-29,000 hens, while 

medium farms were those with 30,000-99,999 hens and finally, large farms were those 

with over 100,000 hens. The method used to house these animals significantly impacts the 

management of their waste. Just under half of the farms surveyed had a single layer house 

on site (46.5%) and about one fifth had either two or more than six houses (20.8 and 

20.0%, respectively). Finally, 12.7% of farms had 3-5 layer houses on site (USDA 2014).  

In terms of the number of animals housed within each layer house, only 0.5% of 

houses kept less than 1,000 birds in a single house. Around half of farms (51.9%) had a 
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capacity anywhere from 1,000-29,000 birds accounting for 28.1% of houses. Close to a 

third (37.2%) of farms had houses with a capacity of 30,000-99,999 birds, which 

accounted for 38.1% of houses surveyed. Approximately one-fifth of farms had layer 

houses with a capacity of 100,000-199,000 birds, accounting for 26.3% of all houses. 

Overall, 6.2% of farms had at least one house that could hold 200,000 or more birds. Layer 

houses with a capacity of 200,000 birds or more accounted for 7.1% of houses. The 

majority of farms, regardless of region use some sort of cage for housing whether these be 

conventional or enriched cages. The greatest percentage of cage use occurs in the West 

(68.0%) and the least in the Central region (45.1%). Enriched cages are those that provided 

perch, scratch and nesting areas. The use of enriched cages alone accounted for less than 

3% of farms in any given region. Around one third to one half of farms across region 

employ some sort of cage free housing type (whether certified organic or not) with the 

highest percentage being 55.6% in the Central region and the lowest being 37.1% in the 

Southeast (USDA 2014).  

The type of housing used at farms was also correlated with the size of the farm. 

Smaller farms typically employed a cage free system (95.4%) while this become less 

common with medium and larger farms (40.0 and 7.6%, respectively). In medium and 

large sized farms, conventional cages were the most common housing type (64.7 and 

93.8%, respectively) (USDA 2014).  

Typically, across regions, the layer hens do not have outdoor access. The 

percentage of farms with outdoor access for birds decreased as farm size increased. For 

example, the percent of farms with houses that do not have any outdoor access is 35.1% 
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in small farms, 84.3% in medium farms and 98.2% in large farms. The vast majority of 

farms that provide their layers with outside access were certified organic operations 

(94.9%) (USDA 2014).  

A large portion of producers in several regions of the USA used high-rise housing 

(pit at ground level with house above) to deal with their manure. A majority of farms in 

the Northeast (60.9%) employ this method in addition to 42.2% in the Southeast, 27.0% 

in the Central region and only 12.4% in the West. The use of deep pits (i.e., below ground) 

is an uncommon practice across regions with the West using this method the most (6.8%). 

Likewise, the use of shallow pits at ground level is also not common with the great 

proportion of farms using this method occurring in the Southeast and West (11.0 and 

11.9%, respectively). The use of raised slats over the floor without the use of a manure 

belt was used in roughly one fifth to one fourth of farms in the Northeast, Southeast, and 

West (21.7, 28.6, and 23.0%, respectively) with the Central region making more use of 

this method (44.0%). The use of flush systems to a lagoon are more widely used in the 

Southeast and the West (12.1 and 15.4%) compared to the other regions where such 

methods were used in less than 1.0% of farms. Manure belts are another management 

practice used, although not in a large portion of farms. The Central and West regions use 

this method the most with 18.3% and 15.3% of farms using this practice, respectively, 

compared to only 4.9% in the Northeast and 6.0% in the Southeast. Finally, a scraper 

system without a flush or pit are used but not commonly with farms in the West using this 

method the most (15%) compared to the other three regions where less than 5% used this 

method (USDA 2014).  
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 Not only are high-rise buildings more popular across regions, they are also more 

commonly found in larger scale operations. The use of these set ups is associated with 

larger operations as only 14.5% of small farms used this method compared to medium and 

large farms (61.1 and 62.0%, respectively).  Other practices associated with a larger 

proportion of large farms are manure belts, and flush systems. The use of manure belts is 

more common in large farms (21.9%) compared to medium (4.4%) and small farms 

(0.8%). Flush systems were found the highest proportion in large farms (5.7%) compared 

to medium and small farms (3.8 and 0.0%, respectively) (USDA 2014).  

Conversely, the use of raised slats over floors was associated with smaller farms 

and their use decreases as farm size increases. A large proportion of small farms (62.9%) 

use this method compared to medium (21.6%) and large (0.8%) farms. Other practices 

associated with smaller farms are the use of shallow pits and scraper systems. These two 

systems were used more in small farms (14.0 and 7.3%, respectively) compared to medium 

farms (4.1 and 3.1%, respectively) and large farms (5.1 and 3.2%, respectively).  

Poultry manure is a valuable resource for its nitrogen and phosphorus content making it a 

good alternative to commercially available fertilizers. However, due to crop timings, often 

the manure must be store before it is applied. Manure can be stored in different types of 

places, however, the location of these structures fall into three categories: in a building, in 

an open structure such as a lean to, or outside (USDA 2014).  

The manure can be stored on site at the farm or elsewhere. In large farms, 59.9% 

of operations used some sort of on site storage. This trend decreases slightly as operation 

size decreases: 49.2% of small farms and 52.1% of medium sized farm used an on site 
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storage system. Specifically, larger farms stored manure in a building (51.4%) compared 

to an open-structure (3.1%) or outside (8.2%). This is similar to medium sized farms where 

44.8% of operations stored their manure on site inside a building compared to 3.4% in an 

open structure and 5.8% outside. Smaller operations made more use of outside storage 

with 30.9% of farms storing manure outside or in an open structure (4.5%) and only 16.6% 

of operations storing manure in a building. A large percent (48.0%) of farms that stored 

manure on site had the storage facility attached to the layer house or the distance between 

the manure storage building and the layer house was less than 30.5 m (36.7%) (USDA 

2014). 

 

Swine Manure 

While several states participate in dairy farming, for example, the majority of pork 

production occurs in the Midwest (Ohio to Nebraska and Minnesota to Missouri) and 

North Carolina. According to the Bureau of the Census from 1989, 96.6% of pigs 

marketed in 1987 were produced in the north-central region of the US. In 2012, the top 

three producers, North Carolina, Iowa and, Minnesota, accounted for 55% of the value of 

U.S. hog and pig sales and 56% of the 66 million hog and end-of-year inventory (NASS 

2012). Contrary to commercial nature of dairy of poultry farming, 83% of operations, 

accounting for 41% of hog sales, were from family or individual owned farms. This sector 

was followed by corporations, which account for 8% of all farms but 34% of sales. The 

remaining operations are owned in partnership or categorized as “other” (NASS 2012). 
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Despite the high nutrient quality of swine manure, Hatfield et al. (1998) noted that 

most manure management practices for swine were not geared towards retaining the 

nutrients in the manure. The authors noted a reason for this being that land application for 

manure is limited and many facilities use aerobic lagoons to digest the manure solids 

allowing it be handled as liquid. These lagoons may volatilize up to 70 to 90% of the 

nitrogen, which is then converted into ammonia and lost into the atmosphere (Hatfield et 

al. 1998). This volatilization of nitrogen allows the land requirements to be decreased by 

10% of the land required for application of slurry manure. The use of these lagoons helps 

with the issue over nitrifying surround landscapes (Hatfield et al. 1998). 

Unlike manure from ruminants, swine manure is a relatively homogenous 

substance from farming unit to unit (Hatfield et al. 1998). Similar to the diets of poultry, 

swine in the U.S. are fed diets formulated with corn, or grain sorghum and soybean meal 

and vitamins and minerals necessary to prevent deficiency. Because diets across 

production units are relatively stable, the major differences in the composition of swine 

manure are dependent upon methods of collection, dilution and storage rather than diet 

(Hatfield et al. 1998). About 85% of the nitrogen in a typical corn and soybean diet is 

digested (McConnell et al. 1972) and the majority of nitrogen excreted from the pig is in 

the form of uric acid in the urine while organic nitrogen forms in the feces. Anywhere 

from 40-60% of phosphorus in a corn and soybean diet is digested as well (National 

Research Council 1988).  

Systems for handling solid manure are the least common in that less than 15% of 

swine in the U.S. are raised on farms using systems designed for solid manure (Hatfield 
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et al. 1998). These systems are most commonly found in the western Corn Belt and in 

facilities were smaller production systems are likely to make use of extensive housing 

systems where small roofed buildings are used to handle solid manure. Small production 

facilities may also make use of pastures or open feedlots for distributing and handling 

solid manure.  

Like with dairy manure, pasture production allows the manure to be spread 

“naturally” by the swine as they graze. Pasture production is most common in states were 

small swine farms are more common and in the mid and southern Corn Belt (Hatfield et 

al. 1998). Pasture production, however, accounts for a small proportion of swine 

production as it is estimated that no more than 5% of swine are raised on pasture (Hatfield 

et al. 1998).  

Small- and moderate-sized operations also make use of open feedlot systems. 

These systems are not covered by a roof and their surfaces often have an accumulated 

manure layer, from which the solid manure is scraped periodically in intervals that vary 

from once or twice a week to monthly (Hatfield et al. 1998). Some manure is lost through 

runoff from rain or snowmelt and therefore unless some runoff containment system is in 

place, surface contamination is possible if the runoff from a feedlot enters a body of water 

before the manure solids settle or infiltrate into soils during transport in the runoff.  

Studies have shown that anywhere from 5-20% of manure deposited in a feedlot 

can be transported via water runoff (Hatfield et al. 1998). To prevent this, solid storage 

systems are required to store manure between land disposal events and prevent the 

contamination risk associated with runoff. These storage units generally consist of an on-
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grade concrete pad with low walls surrounding it to allow manure to be pushed into storage 

and removed with either a blade or a front-end loader (Hatfield et al. 1998). Nutrient values 

of manure from solid systems are quite variable as nitrogen losses during storage have 

been reported to range from 20-40% (National Research Council 1988).  

 Other systems dealing with solid manure may also use different types of bedding 

such as straw, wood chips or newspaper, which are used to absorb urine as well as provide 

insulation for animals in unheated buildings (Hatfield et al. 1998). As noted earlier, the 

presence of bedding can have impacts on the nutrient quality of manure. Finally, solid 

manure can be applied to the field using a box spreaders or side discharge flail-type 

spreaders (Hatfield et al. 1998). 

 According to Hatfield et al. (1998), most large-scale swine production facilities 

have totally roofed confinement systems in which bedding is purposefully not used so the 

manure can be handled as either slurry or a liquid. Manure that is converted into a slurry 

is not diluted much, however, liquid manure is diluted significantly in that water is added 

to assist with its transport, treatment and land application.  

 Slurry systems are most common in the north-central region where manure can be 

taken back to cropland land and where cooler temperatures make the use of lagoons less 

conducive. Approximately 50-60% of producers use slurry systems (Hatfield et al. 1998). 

Several different types of storage structures are commonly used in slurry systems but the 

moat common system is the blow-floor pit covered with a slatted floor (Hatfield et al. 

1998). Until recently, a high proportion of operations used this deep-pit system, however, 

recent years have seen elevated concern with air quality and odor issues that arise from 
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the long-term storage of manure in these types of settings. Alternatives to this type of 

indoor system are in-ground storage tanks located remotely from the confinement 

building, aboveground tanks and earthen structures. In-ground tanks may be uncovered or 

covered and aboveground tanks are often constructed from concrete and glass-fused steel 

(Hatfield et al. 1998).  While earthen structures are cheaper than other storage structures, 

certain levels of soil investigation and construction controls must be implemented to 

prevent and minimize potential groundwater pollution. Slurry can be applied to the land 

by use of spreaders or directly injected into the land. Direct injection allows for the 

immediate covering of manure to prevent nutrient loss by volatilization, reduces the 

potential for surface runoff and reduced odor potential (Hatfield et al. 1998). 

 Hydraulic flushing systems have been used over the past two decades as a quick 

and efficient means of removing manure from swine confinement buildings. These 

flushing systems require larger manure storage systems as significant amounts of water 

are added to the manure during flushing. Lagoons are used extensively for these and 

several types exist. Lagoon water is often recycled and treated which cuts down on storage 

requirements. This water is often used for irrigation throughout the year, however, in 

places where adequate freshwater is available year round, the use of recycled lagoon water 

is not common (Hatfield et al. 1998).  

Anaerobic lagoons are popular in areas with a limited land since high loss of 

nitrogen is expected from these systems. These lagoons convert manure that is low in 

solids to a liquid, facilitating transport and application. Traditional irrigation equipment 

can be employed to apply the liquid manure to the land. While higher volumes of waster 
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are generated with these systems, the cost and labor requirements are relatively lower than 

for slurries and solids (Hatfield et al. 1998).  However, with these systems come high 

concerns for odor, potential leakage, overflow and over application of lagoon effluent. It 

is estimated that 80-90% of input Nitrogen is lost to the atmosphere through ammonia 

volatilization in anaerobic lagoon systems (Hatfield et al. 1998). 

Lagoons can also be maintained under aerobic conditions. While odors are 

minimized, the cost of mechanically aerating these lagoons is relatively high. Capital 

requirements, energy and maintenance are all cost prohibitive for the use of these systems 

typically.  

The majority of anaerobic and aerobic lagoon use occurs in warmer climates. The 

majority of larger operations (over 1,000 animals) use anaerobic systems to minimize land 

applications areas. These areas are concentrated in the Southeast, the southern Corn Belt 

and the southwest Plains. It is estimated that 20-30% of manure from swine production is 

processed in liquid manure systems (Hatfield et al. 1998).  

 

Dairy Manure 

The majority of dairy operations employ conventional operations (63.9%), 

compared to organic, grazing or a combination of the two (USDA 2007). Organic 

operations are similar to grazing, however, the pasture used in grazing must be USDA 

certified organic. In conventional operations forage is harvested and “delivered” to cows 

compared to grazing operations were forage is “harvested” by cows. These conventional 

operations accounted for a majority of dairy cows in the country (82.2%). Of larger dairies 
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(over 500 animals), 91.5% are conventional operations. This is compared to the percentage 

of conventional operations for smaller dairies at 57.1% and 79.9% for small (less than 100 

animals) and medium-sized (100-499 animals) dairies, respectively (USDA 2007).  

Across operations of all sizes, lactating cows were housed primarily in tie 

stalls/stanchions (49.2%) or in freestalls (32.6%) with only a smaller portion housed in 

pastures (9.9%) (USDA 2007). Smaller operations make larger use of tie stalls/stanchions 

(63.0%) while medium and larger-sized operations mainly use freestalls (67.5 and 72.6%, 

respectively). There is also a regional influence to the use of different housing methods; 

across all operations in the west (Texas, New Mexico, California, Washington and Idaho), 

freestalls, drylot/multiple-animal outside area and pasture are the most popular (49.7, 29.8 

and 15.0 %, respectively). These housing preferences are compared to the east (Virginia, 

Kentucky, Missouri, Iowa, Minnesota, Michigan, Wisconsin, Indiana, Ohio, 

Pennsylvania, New York and Vermont) where tiestalls/stanchions and freestalls are most 

widely used (53.1 and 31.2%, respectively) (USDA 2007).  

Cow manure handling practices often varied depending on the number of cows 

present at the dairy. In smaller operations, a gutter cleaner handles 58.5% of manure, 

17.2% with an alley scraper (either mechanical or via tractor), and 8.7% is scraped from 

the drylots. In medium-sized operations, alley scrapers are used in 64.1% of operations in 

addition to gutter cleaners (11.1%) and drylot scraping (8.7%). In larger operations, drylot 

scraping was used in 30.1%, alley scrapers in 33.5%, and alley flushing using recycled 

water in 27.4%. Other methods used across operations include leaving the manure on the 
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pasture, using a slotted floor or packing the manure to be used later as bedding (USDA 

2007).  

Manure management practices also varied between regions. Across operations, the 

most common practice for the west were drylot scraping, use of alley scrapers or flushing 

the alley with recycled water (38.2, 23.4 and 21.0%, respectively). In the east, the majority 

of operations used either gutter cleaners or alley scrapers (47.0 and 30.7%, respectively) 

(USDA 2007).  

There are also certain practices that are strongly associated with a type of housing. 

For example, 82.5% of operations that housed their cows in tiestalls/stanchions used gutter 

cleaners and 72.1% of operations that housed their cows in freestalls used alley scrapers. 

In operations where animals were housed on a drylot or an outside area, the majority of 

lots were scraped or the manure is packed for bedding (50.3 and 32.6%, respectively). 

When cows are allowed in pasture, 27.3% of operations leave the manure on the pasture 

and 40.7% use gutter cleaners (USDA 2007).  

 Manure is also stored and treated in different ways depending on herd size and 

region. In operations with smaller herds, a large proportion employ a spreader (50.4%) or 

store slurry or liquid manure in an untreated basin (24.4%). Smaller operations frequently 

also pack manure for bedding (55.8%) and/or store outside either within the drylot (24.0%) 

or outside of the drylot (44.0%) (USDA 2007).  

In medium-sized operations, 18.3% use a below floor slurry or deep pit, 44.0% 

store manure in a spreader, 21.6% store slurry in a tank, 45.7% store liquid manure or 

slurry in an untreated earthen basin, 63.4% pack manure for bedding. Additionally, 
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manure is often store outside either within the drylot (20.9%) or outside of it (32.4%) 

(USDA 2007).  

In larger operations, 18.8% use a below floor slurry or deep pit, 43.1% store liquid 

manure or slurry in untreated earthen, 31.0% pack manure, and outside storage is 

frequently used either within the drylot (29.1%) or outside of it (65.2%). A notable 

proportion of larger operations will also compost manure (26.4%) or use a solid separator 

(36.2%). Treatment lagoons either with (18.7%) or without (49.7%) mechanical aeration 

are used most commonly in larger operations (USDA 2007).  

Storage and treatment methods varied regionally across operations of all sizes, 

most noticeably, in practices such storage in manure spreader (49.9%, East; 7.5%, West), 

storing slurry or liquid manure in untreated earthen basins (29.7%, East; 44.1%, West), 

packing manure for bedding (60.4%, East; 12.4%, West), outside storage within a drylot 

(43.1%, East; 21.6%, West), and using solid separators (28.8%, East; 0.9%, West) (USDA 

2007).  

The storage and treatment of solid versus both solid and liquid manure depends on 

herd size and region as well. In small operations, 47.6% store and treat both solid and 

liquid manure. The proportion of operations that deal with both types of waste increases 

with herd size; 75.5% of medium sized operations will store and treat both types and 

99.8% of larger operations surveyed did as well. Overall, 58.0% of all dairy operations 

surveyed dealt with both types compared to 42.0% of operations that only dealt with solid 

manure. Almost all operations in the west (96.0%) store and/or treated both solid and 

liquid manure compared with 54.3% of operations in the eastern region (USDA 2007).  
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Different sized facilities also have different manure storage capacities, that is, the 

time that can pass before manure needs to be removed from the storage facility. In 

operations will small herd sizes, 32.6% responded with fewer than 7-d, 10.8% indicated 

90-179-d, 26.4% indicated 180-364-d and 16.7% indicated 365-d or more. The majority 

of responses for medium sized operations fell in the same time periods: 21.7% indicated 

fewer than 7 d, 16.7% indicated 90-179 d, 37.4% indicated 180-364 and 13.5% indicated 

365-d or more. The majority of operations with larger herd sizes were unsurprising able 

to store manure for longer periods of time as larger facilities tend to have larger storage 

structures (USDA 2007): 15.7% responded with 90-179-d, 32.3% responded with 180-

364-d and 39.6% responded with 365-d or more.  

 Almost all operations applied the manure- either liquid, solid or both- to the land 

(99.1%). A higher percentage of larger operations sold manure or received other 

compensation, gave manure away or used composted manure as bedding compared to 

smaller operations. Manure applied to the land can be done so in several ways such as 

using a broadcast/solid spreader, surface application, subsurface injection, and 

irrigation/sprinkler. The majority of operations, regardless of size, used broadcast/solid 

spreaders (91.5%) followed by surface application (40.7%). A higher percentage of 

operation in the west (60.0%) applied manure via irrigation/sprinkler compared to the east 

(2.5%). Other methods were conducted in similar proportions across the two regions 

(USDA 2007).  

The survey found that the reason or dictator for manure application and how much 

fell into four major categories: to suit crop nitrogen requirements, to suit crop phosphorous 
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requirements, manure volume and/or acreage availability and improvement of soil quality. 

Regardless of size, no single reason was significantly more common than another. Manure 

is often applied to pasture or hay, forage to be ensiled, and grain or oilseed (USDA 2007).  

 

Cost of Manure Management Practices  

Several major factors impact the cost of managing manure; however, loading, 

transportation and application to the land are of particular importance (Wright et al. 1998). 

Each of these activities can require specialized equipment, which can come at considerable 

cost to the farmer. For example, a manure scraper can cost $22,000 (USDA 2000). The 

storage of manure can require ancillary systems suck as tanks, lagoons or buildings. The 

cost for a 148 m2 timber shed for solid waste storage for a typical broiler house is estimated 

to cost $12,403 with a cost of $7.00 per ton per year (USDA 2000). Installation costs per 

3.78 L for ponds/lagoons are 2.2 cents per 3.78 L for those with capacities less than 

3,785,411.78 L, 1.8 cents per 3.78 L for capacities 3,785,411.78 – 11,356,235.35 L and 

1.5 cents per 3.78 L for capacities larger than 11,356,235.35 L (USDA 2000). The 

estimated cost for a liquid collection flush system on a 100-head dairy farm is $19,451 in 

capital costs compared to $32,973 for a 200-head farm and $46, 495 for a 300-head farm 

making the annual operating cost per head $11.84 (USDA 2000). Rental rates for pumping 

systems can run $17.50 per hour translating to about $0.20 per ton (USDA 2000).  

Different manure handling systems cost different amounts and can range 

depending on the area of the country. Depending on the region of the country, liquid 

storage can have an annual cost of $14,188-$15,777 per house for layer operations and 
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$28.45-34.85 per AU for swine operations and $32.36-$42.40 per AU for dairy operations 

(USDA 2000). Total installation costs range from $105,817-$380,814 for layers,  $17,481-

$485,227 for swine, and $23,793-$78,251 for dairy (USDA 2000). 

 Slurry storage can have annual costs of run $5.43-$11.35 per head of swine and 

$11.35 - $15.05 per head of dairy with total installation costs ranging from $6,322-$78,689 

and $12,342-$30,294, respectively (USDA 2000). The cost to manage manure is animal 

dependent, with layers having an average annual cost of $16.00 per head compared to 

$18.00 per head of swine and $22.00 per head of dairy cattle (USDA 2000). By region, 

the average annual cost of manure management varies as well with the pacific region 

having the highest total cost of $7,731 compared to that of the Lake States, which have 

the lowest average annual cost of  $1,669. Across all regions, the average total cost for 

manure management and wastewater handling and storage per farm is $2,509, which does 

not include capital costs such as equipment and installation (USDA 2000).  

Other costs associated with manure management can include gas, wages for those 

operating systems and transportation. Regardless if the cost is considered high or low, 

manure management is an ancillary cost to the farmer that must be addressed and can 

present considerable limitations for a farmer’s budget.  

 

Volatiles Associated with Manure and Their Origins 

The volatile emissions from livestock manure have been studied to determine their 

sources as well as how to practically manage them. Manure is a complex mixture of 

residues from undigested diet, endogenous secretions, and bacterial cells. Microbes 
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present in this mixture lead to the fermentation of said products and the anaerobic 

decomposition of these materials results in the production of volatile organic compound 

(VOC) emissions. When decomposing manure has a surface that is exposed to the 

environment, volatiles and their intermediates are released into the atmosphere (Sun et al. 

2008). VOCs can be broken down into two categories: those associated with odor and 

human health and those impacting the environment, such as greenhouse gases and 

ammonia. Both types are regarded as important as higher levels of greenhouse gases have 

been attributed to a global warming effect, and odors produced from livestock production 

have been related to health issues such as accelerated decline in lung function, bronchitis, 

sinusitis, inflamed nasal mucosa, throat irritation and headaches (Schenker et al. 1996, 

Donham 2000, Mitloehner and Calvo 2008).  

The odors generated from these facilities come from several different sources 

including feed, animal bodies, but in particular, urine, feces and the mixture of the two 

(Le et al. 2005). Fresh manure, its decomposition during collection, storage, handling, and 

spreading are all significant sources of odor. This odor production is influenced by many 

factors but a large part of manure-associated odors is attributed to the diet of the animal, 

which dictates the microbial conversions of non-utilized nutrients and endogenous 

products secreted in the gastrointestinal tract under anaerobic conditions; i.e. the 

fermentation and hydrolysis of undigested nutrients produce odors directly or provide the 

precursors for odor formation in the manure (Le et al. 2005). These odors can be broken 

down into four main groups: VFAs, sulfurous compounds, phenols and indoles, and 

ammonia and volatile amines. Many different odors are associated with animal production 
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facilities. O’Neill and Phillips (1992) summarized 168 odorous compounds studies in 

various animal facilities and production operations. Schiffman et al. (2001) identified a 

total of 331 different compounds from pig production facilities in North Carolina.  

The most commonly found VFAs are acetic, propanoic, butanoic, 2-

methylpropanoic (isobutanoic), 3-methylbutanoic (isovaleric), pentanoic (n-valeric) and 

capric acids (McGill and Jackson 1977, Cooper and Cornforth 1978, Spoelstra 1980). 

VFAs with higher carbon numbers have relatively lower detection thresholds than shorter 

chain acids (Mackie 1998). The majority of VFAs associated with manure come from the 

microbial breakdown of dietary plant fibers and protein residues in the large intestine (Le 

et al. 2005). These dietary plant fiber residues may include cellulose, hemicellulose and 

lignin. Cellulose and hemicellulose are first hydrolyzed by enzymes into oligomers and/or 

monomers. Microbes then convert monomers into VFAs such as acetic, propanoic and 

butanoic acids. The proportion of acids produced is dependent upon the type of substrate, 

composition of intestinal flora and pH (Le et al. 2005). Conversely, lignin is very difficult 

to degrade under the anaerobic conditions of the large intestines. The pathways of 

carbohydrate metabolism in the rumen of cattle has been described by Russell et al. (1983); 

however, the same pathways are assumed to occur in the large intestines of single 

stomached animals as well although end-product amounts and ratios may differ. 

Mortensen et al. (1987) and Rasmussen et al. (1988) state that carbohydrates are easily 

converted into acetic, propanoic and butanoic acids in fecal incubation systems, however, 

the production of branch-chained VFAs like propanoic, 2-methyl and butanoic, 3-methyl 

acids did not occur in these systems. 2-Methylpropanoic acid results from the breakdown 
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of peptides, which are hydrolyzed into amino acids (AA) by peptolytic bacteria. These AA 

are then deaminated and decarboylated into these branch-chained VFAs (Le et al. 2005). 

In addition to carbohydrates, acetic, propanoic and butanoic acids are also produced by 

the deamination of AA such as L-glutamate, L-lysine, and L-alanine (Le et al. 2005). End-

products of this deamination-decarboxylation include ammonia, CO2 and [H]. In short, 

carbohydrates are transformed to straight-chain VFAs only while proteins are transformed 

to both straight- and branched-chain VFAs.  According to Müller and Kirchgessner (1985) 

anywhere from 66-99% of short-chained VFAs produced in the large intestine are capable 

of being absorbed and used as an energy source in the host animal. This along with their 

high odor detection make the short chained VFA’s less of concern for nuisance odor, 

however, during manure storage, are capable of volatilizing and causing malodor.  

Sulfurous compounds are generally regarded to be the most offensive compounds 

and often have lower detection thresholds (O’Neill and Phillips 1992). Hydrogen sulfide 

is an important compound because it is capable of causing animal and human deaths at 

low thresholds (Donham et al. 1982). The production and emission of this gas appears to 

be heavily influenced by the type of housing and manure management systems in animal 

facilities. For example, regular flushing of manure versus long-term pit storage may cause 

significant differences in its production (Le et al. 2005). In pig manure, the most 

commonly reported sulfurous compounds responsible for odor are hydrogen sulfide and 

methanethiol (methylmercaptan) (Spoelstra 1980) and these two compounds have been 

reported to account for as much as 70-97% of total sulfur volatilized in manure (Banwart 

and Bremmer 1975). These authors also reported that in pig and poultry manure, 
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methanethiol production exceeded that of hydrogen sulfide (Banwart and Bremmer, 

1975). In addition to these compounds, carbon disulfide, 2-propanethiol, dimethyl 

disulfide, diemthyl trisulfide, 2-methylthiopropane, methanethiocyclopentane, 1-

methylthiopentane, dimethyl tetrasulfide and dimethyl hexasulfide have been found to 

cause odor in livestock manure (Odam et al. 1986).  Compared to VFAs, the detection 

thresholds of sulfurous compounds are lower and the concentrations found in the air of 

these facilities are higher (Le et al. 2005). For example, the low to high detection 

thresholds of dimethyl disulfide is 0.0001-0.3465 mg/m3 compared to 0.0840-60.000 

mg/m3 for propanoic acid (Ruth 1986). Sulfur-containing compounds are produced by 

anaerobic bacteria through sulfate reduction and metabolism of sulfur containing AA such 

as methionine and cysteine (Mackie et al. 1998).  Various bacteria are capable of 

performing this task where these AA are carbon and energy sources utilized by the 

microbes (Le et al. 2005).  During this process, intermediate products may also volatilize 

and create odor. For example, the hydrolysis of methionine creates methanethiol as an 

intermediate product, which is further degrades to sulfide (American Society of 

Agricultural Engineers 1989). Methanethiol can be chemically converted to dimethyl 

disulfide or dimethyl trisulfide in the presence of copper oxide (Parliament et al. 1982) or 

ascorbate and ferric oxide (Chin and Lindsay 1994). Another source of sulfide production 

is sulfate. For examine, in urine, the primary form of sulfur excreted is sulfate. Spoelstra 

(1980) stated the primary origin of sulfide in manure is the reduction of sulfate into sulfide, 

which proceeds through an assimilation or dissimilation pathway. In the assimilation 

pathway, bacteria produce sulfur in a reduced form for the synthesis of cysteine and 
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methionine. In dissimilation pathways, sulfate is used to accept an electron for anaerobic 

respiration much like the role of oxygen in aerobic respiration (Clanton and Schmidt, 

2001). The bacteria that are sulfate reducers belong to the genera Desulfovibrio, 

Desulfotomaculum, Desulfobacter, Desulfococcus and Desulfonema (Spoelstra 1980). As 

byproducts, these sulfate-reducing bacteria may also produce trace amounts of CO2, CS2 

and methyl, ethyl and propyl mercaptans (Spoelstra 1980). In short, sulfurous compounds 

are produced under anaerobic conditions either from sulfate in the urine or from proteins 

or AA containing sulfur in manure with various bacteria aiding in these processes.  

In terms of phenols and indoles, phenol, 4-methylphenol (p-cresol), 3-

methylphenol (m-cresol), and 4-ethylphenol are important representatives of phenolic 

compounds while indole and 3-methylindole (skatole) are important indolic compounds 

(Le et al. 2005). Spoelstra (1980) indicated that the concentration of phenol increased over 

a measuring period of 150 days while indole, 4-methylphenol and 3-methylindole 

concentrations increased initially but then decreased after day 40, 65, and 70, respectively. 

4-Methylphenol has been found to have a higher in air concentration than other phenols 

and indoles and furthermore has a lower odor detection threshold than these compounds 

making it an important compound in terms of odor nuisance compared to other compounds 

in this group (Le et al. 2005). Following 4-methylphenol, indole and 3-methylindole are 

the next most important odorous compounds in this group. While phenol has been found 

to have a high concentration in headspace air in previous studies, its high detection 

threshold (0.1788-22.43 mg/m3 (Ruth 1986)) and aromatic smell make it less of a nuisance 

odor compared to the other indolic and phenolic compounds. Like VFAs, the origin of 
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these compounds is the metabolism of AA. Specifically, indole and 3-methylindole are 

end-products of tryptophan metabolism (MacFarlane 1995) while phenol and 4-

methylphenol are products of tyrosine fermentation (Mackie et al. 1998). Phenol, 4-

methylphenol and 4-ethylphenol originate from the microbial degradation of L-tyrosine 

occurring either in manure storage or in the intestinal tract of animals. L-Tyrosine can also 

be split directly to release ammonia, phenol and pyruvic acid by Clostridium 

tetanomorphum (Brot et al. 1965) and Escherichia coli (Ichihara et al. 1956). Pig manure 

incubated with L-Tyrosine and L-tryptophan forms 4-methylphenol (Hammond et al. 

1968). Yokoyama et al. (1982) were able to isolate an anaerobic Gram-positive bacterium 

from the caecal contents of weaning pigs, which produced 4-methylphenol via the 

decarboxylation of 4-hydroxyphenylacetic acid. Other phenolic compounds are produced 

as metabolites of other compounds. For example, 3-methylphenol was found to be a 

metabolite of dihydroxyphenylalanine (DOPA), which is the precursor of such 

neurotransmitters like dopamine, noradrenaline and adrenaline (Drasar and Hill 1974). 

DOPA is produced via the oxidation of L-tyrosine by the oxygen dependent enzyme 

monophenol mono-oxygenase (Drasar and Hill 1974). Phenolics are absorbed by the large 

intestine of the host animal and detoxified by the liver resulting in glucuronides, or sulfuric 

acid that results in sulfates (Le et al. 2005). In manure, urinary glucuronides are 

hydrolyzed to release phenolic compounds. Indole and 3-methylindole are produced in the 

large intestines as a result of L-tryptophan fermentation. Indoles may be partly absorbed 

and detoxified by the liver to glucuronides and indolic detoxification products, such are 

excreted via urine. Unabsorbed indole and 3-methylindoles are excreted via the feces and 
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therefore can be found in fresh feces (Le et al. 2005). Because feces contain high levels of 

beta-glucuronidase of bacterial origin, which hydrolyzes glucuronides, the mixes of feces 

of urine causes the level of free indolic compounds to rise. The ability for indole to form 

by tryptophan is a taxonomic feature, which distinguishes enterobacteria. For example, E. 

coli and Proteus (except Proteus mirabilis), some Shigella spp., Aeromonas liquefaciens, 

some Fusobacterium, Bacteroides melaniogenicus, Bacillus alvei, some Clostridium, 

Propionibacterium acnes, Photobacterium harveyi, and Micrococcus aerogenes are all 

capable of forming indole from tryptophan (Le et al. 2005). Jensen et al. (1995) 

demonstrated in in vitro experiments that the production of indole and 3-methylindole 

were pH dependent with the highest rate of production occurring between a pH of 6.0 and 

7.0 with less than one half of the maximum production occurring at a pH of either 5.0 or 

8.0. It was found that high pH favored the production of indole while low pH values 

favored the production of 3-methylindole (Jensen et al. 1995). In short, phenol and 4-

methylphenol come from L-tyrosine while indole and 3-methylindole come from L-

tryptophan. The three sources of indole and phenol in manure are (1) the degradation of 

L-tyrosine and L-tryptophan in manure, (2) direct excretion from the large intestines of 

animals via the feces after being formed from these two AA and (3) finally the release 

from glucuronides in urine when put in contact with feces  

Ammonia and volatile amines have pungent smells. Ammonia, commonly present 

in the form of NH4
+, can be produced by the deamination of AA as well as from urea and 

nitrate.  Ammonia is an important source of nitrogen from many anaerobic bacterial 

species and when present is preferred over AA and peptides by many bacteria (Mackie et 
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al. 1998).  Volatile amines make up a small proportion of volatile nitrogenous compounds 

found in these facilities but include methylamine, ethylamine, trimethylamine, cadaverine, 

and putrescine (Le et al. 2005).  

The source of ammonia is mainly urea (Spoelstra 1980), which is formed in the 

liver as a product of the animal’s metabolism, which breaks down proteins and is then 

excreted by the kidneys. After excretion by the kidneys, it is hydrolyzed by urease found 

in feces and then converted into ammonium ions some of which will disassociate and form 

free ammonia. This activity by urease is commonplace with intestinal bacteria and has 

been observed in many species such as Bacteroides multiacidus, Bacteriodes ruminicola, 

Bifidobacterium bifidum and others (Suzuki et al. 1979). Ammonia can also be released 

from the deamination of proteins and AA when used as a source of energy. A gateway 

used by bacteria converts the amino acid L-glutamate into ammonia and respective fatty 

acid and other residual structures through oxidative deamination processes (Zhu 2000).  

The emission of ammonia into the air is a slow process which is controlled by several 

environmental factors such as the concentration of it in the air, temperature and pH with 

this last factor being especially important as the volatilization of ammonia increases with 

rising pH (Aarnink 1997). At pH below 7, ammonia is almost only present as NH4
+, which 

thereby reduces its volatilization as ammonia gas (Aarnink 1997). 

Volatile amines are frequently produced from products containing proteins under 

anaerobic conditions (Le et al. 2005). The microbial formation of volatile amines is 

capable through three different mechanisms. First, AA are capable of undergoing 

decarboxylation within the gastrointestinal tract and during the storage of fresh manure 
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(Bast et al. 1971). Certain genera of bacteria with decarboxylating activity include the 

enterobacteria Bacteroides, Bifidobacterium, Selenomonas, and Streptococcus (Spoelstra 

1979). Secondly, Bast et al. (1971) indicated the formation of different amines through the 

amination of corresponding aldehydes. Examples he cited included the formation of 

hexylamine and ethylamine by Sarcina lutea, hexylamine by E. coli and isobutylamine by 

Aerobacter aerogenes (Bast et al. 1971). Finally, the urine in manure may provide a source 

of amines. For example, in an average man, the daily excretion of dimethylamine is 

estimated to be 20mg half of which originates from choline and the activity of gut flora 

(Drasar and Hill 1974). Choline is subsequently degraded to either ethylamine plus 

ethanolamine or to triethylamine, which is subsequently de-methylated (Drasar and Hill 

1974). In short, ammonia is produced when AA are deaminated through their use as energy 

by bacteria and additionally through the hydrolysis of urea, the main source of ammonia 

in animal facilities, in urine by urease. Volatile amines are produces through the 

decarboxylation of amino acid, the amination of aldehydes, and the demethylation of 

choline (Le et al. 2005).  

 In summary, many microbial activities are responsible for odorous compounds 

generated either in the large intestines of livestock animals and poultry or during the 

storage of manure. These compounds can be intermediate or end-products from microbial 

conversions under anaerobic conditions. Diet heavily influences the generation of these 

compounds with proteins and fermentable carbohydrates being the most important 

macronutrients at play (Le et al. 2005).  
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Poultry Manure 

Deibel (1967) found that the chief volatiles of decomposing poultry manure were 

butanoic acid, ethanol, and acetoin. Deibel noted that butanoic acid was the most 

malodorous and attributed to the offensive odor associated with accumulated poultry 

manure. Burnett and Dondero (1969) trapped gases from poultry manure in a column 

submerged in an acetone-dry ice bath and identified eight compounds: acetic, propanoic, 

iso-butanoic, n-butanoic, iso-valeric, and n-valeric acid, and indole and 3-methylindole. 

Another study identified 72 compounds associated with poultry manure, using gas 

chromatography-mass spectrometry (Yasuhara 1987). This study found that the volatile 

profile of manure changed through time, and the key odorous compounds were butanoic 

acid, 3-methylbutanoic acid, dimethyl trisulphide, indole and 3-methylindole with phenol 

being the most abundant compound in every sample. It was noted that certain compounds’ 

concentrations increase with the decomposition and rotting of the manure. These 

compounds included carboxylic acids, sulfur containing compounds, phenols and indoles. 

The concentrations of compounds such as alcohols and aldehydes were found to increase 

in the early stages of decomposition but then decrease in the long term. Burnett and 

Dondero (1969) implicated sulfur compounds, organic acids, and 3-methylindole as being 

important malodorous compounds involved in air pollution.  

Like with swine manure, odor emissions have been tied to diet quality and an 

excess of protein (Jacob et al. 1994). Similar to that of swine a general guide indicates that 

for each 1% unit reduction in dietary crude protein (CP), along with AA supplementation, 

the estimated ammonia loses in poultry manure is around (Jacob et al. 1994). 
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Swine Manure 

Shiffman et al. (2001) reported a diverse group of compounds found in swine barn 

air and lagoon wastewater. These 324 VOCs and seven fixed gases identified were 

classified into acids, alcohols, aldehydes, amides, amines, aromatics, esters, ethers, fixed 

gases, halogenated hydrocarbons, hydrocarbons, ketones, nitriles, other nitrogen-

containing compounds, phenols, sulfur-containing compounds and steroids. An additional 

16 compounds were placed in an “unclassified” group.  Relatively abundance VOCs that 

have been reported in at least two or more independent studies include acetic acid, 

butanoic acid, dimethyl sulfide, dimethyl disulfide, iso-valeric, 4-methylphenol, 

propanoic acid, 3-methylindole, trimethyl amine and valeric acid (Ni et al. 2012). Cooper 

and Cornforth (1978) tested 20 pig slurry samples and found that pig slurry contained 

more volatile fatty acids than cow slurry. The number of VOCs found in manure itself is 

less than in swine facilities. The largest number of VOCs analyzed in manure samples 

came from a study conducted by Yasuhara and Fuwa (1983) were volatiles were analyzed 

from manure, urine and a mixture of the two in which 36 VOCs were identified. The 

number of VFAs in swine manure varies by study but the first study to report on their 

abundance was by Roustan et al. (1997). This study reported the abundance of acetic, 

propanoic, butanoic, iso-butanoic, iso-valeric and valeric acids in decreasing order. 

Yasuhara and Fuwa (1977) conducted an earlier study were reported the major 

components of odor in swine manure were butanoic, iso-valeric, benzoic, phenyl acetic 

acids and 4-methylphenol.   
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In swine, excessive ammonia and odorous compound emissions have been tied to 

excess protein or AA in the diet (Le et al. 2005).  The excessive protein in the diet will 

either be excreted in the urine as urea, glucuronides and sulfate, non-digested proteins in 

the feces, bacterial proteins in the feces. Diets with reduced CP contents and supplemented 

with essential AA have been shown to have reduced amounts of fecal nitrogen excretion 

by 25-30% (Cromwell and Coffey 1994). Not only does this lowered CP reduce nitrogen 

excreted in manure, Sutton et al. (1990) demonstrated that the pH of manure was also 

lowered thus reducing ammonia volatilization. Studies have indicated that, in general, for 

each 1% unit reduction in dietary CP, along with AA supplementation, estimated ammonia 

loses are reduced by 10% in swine (Sutton et al. 1990, Kay and Lee 1997).  

 

Dairy Manure  

Hales et al. (2012) examined volatiles from cattle manure and found that phenol; 

4-methyl was responsible for 67.3% of odor activity. Bethea and Narayan (1972) 

examined beef cattle manure and found four classes of compounds: alcohols, amines, 

aldehydes and esters. Indole, 3-methylindole, ammonia and hydrogen sulfide were also 

identified (Bethe and Narayan 1972). A study that compared the VOC emissions of dairy 

cows and that of fresh manure found that fresh manure did not produce notable fluxes in 

CH4 but rather it is the cattle who’re responsible for the production of this gas (Sun et al. 

2008). After land application of cattle manure, Woodbury et al. (2014) found isovaleric 

acid, butanoic acid and 4-methylphenol to account for 28.9, 18.0 and 17.7% of odor 

activity, respectively.  
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The amount of wet distillers grains with solubles (WDGS) fed to feedlot cattle 

influences the uptake and excretion of phosphorus, nitrogen and sulfur, by these animals. 

Feeding WDGS to cattle has been linked to the production of odorous VOCs such as VFAs 

and phenol (Spiehs and Varel 2009). However, increases in specific VFAs may not lead 

to overall increases in total VFA emissions. Similar studies found that total VFA 

concentrations in manure can decrease as WDGS increase in the diet and that the 

concentration of other aromatic compounds (4-methylphenol, indole, 3-methylindole) in 

cattle feces does not change (Spiehs and Varel 2009, Parker et al. 2013). Another study 

found that VOC flux or odor activity values did not differ between measured VOC 

emissions from feces and urine from cattle fed corn diets containing 0, 15, 30, or 45% 

WDGS (Hales et al. 2012). 

 

Microbial VOCs as Insect Semiochemicals  

Volatile emissions have been shown to serve as cues to communicate different 

information between insects (Price et al. 2011). Often, volatile organic compounds 

(VOCs) are the mechanism behind the initiation of colonization of an ephemeral resource 

(Benbow et al. 2015). These emissions can be derived from a variety of sources such as 

plants and microbes, and from decaying organic material like carrion and manure.  

Livestock manure is biologically-active resource that is home to many different 

microbes, which utilize the energy contained in manure (Zhu 2000). Microbial activity is 

part of the natural process of manure decomposition and VOCs are often the intermediate 

and end-products of this process.  
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Many insect-plant interactions have been studied by examining the volatiles that 

perhaps stimulate many symbiotic relationships between two organisms. However, many 

volatiles that are microbial in origin such as those from fungi, yeast and bacteria play 

significant roles within an ecosystem and especially within ephemeral resource ecology.  

Microbes have long been recognized for their responsibility regarding arthropod 

colonization of resources. Many insects are sensitive to odors that relay information about 

resources, potential mates and habitat suitability (Price et al. 2011). Microbial VOCS 

(MVOCs) can play a role in oviposition and its site selection for many insects including 

Diptera. Many dipteran species have expressed semiochemical-related oviposition 

behavior as it relates to odors from ephemeral sources like decaying organic material in 

the form of carrion and animal wastes.  

MVOCs can serve as either repellents or attractants for certain dipterans. For 

example, Lindh et al. (2008) found that bacteria-containing water stimulated oviposition 

in the mosquito Anopheles gambiae (Giles) (Diptera: Culicidae), while Huang et al. (2006) 

demonstrated that volatiles from bacteria cultured in agarose media were deterrents to 

gravid mosquitoes of the same species. Trexler et al. (2003) isolated bacteria from the 

rearing water of Aedes albopictus (Skuse) (Diptera: Culicidae) and evaluated the response 

of gravid females in behavioral assays. The authors found that water-containing bacteria 

elicited a significantly (P < 0.01) greater oviposition response than sterile control water. 

Volatiles collected from larval rearing water elicited significant (P < 0.05) 

electroantennogram responses in females (Trexler et al. 2003). 
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Other studies have demonstrated that blow fly (Diptera: Calliphoridae) oviposition 

is stimulated by the ammonia production that occurred during bacterial putrefaction 

(Holdaway 1930, Seddon 1931). Gravid house flies are able to evaluate volatile profiles 

from microbes on conspecific eggs, which in turn help females ensure conducive 

conditions for larval development (Lam 2007) 

Bacteria that produce sulphur-containing compounds are highly attractive to 

gravid Lucilia spp. (Diptera: Calliphoridae) whereas oviposition was stimulated by 

ammoniacal volatiles resulting from bacterial putrefaction on sheep (Ashworth 1994).  

Chaudhury et al. (2002) inoculated bovine blood with eight species of coliform 

bacteria and found that gravid Cochliomyia hominivorax (Coquerel) (Diptera: 

Calliphoridae) responded positively to odors generated after incubation in comparison to 

uninocluated blood. Their results concluded that inoculated blood, when incubated for 48-

72 h, gave off volatiles chemicals, which were attractive to gravid females and furthermore 

contained oviposition stimulants (Chaudhury et al. 2002). 

Robacker and Moreno (1995) tested the hypothesis that Mexican fruit flies, 

Anastrepha ludens (Loew) (Diptera: Tephritidae), were attracted to odor produced by 

tryptic soy broth cultures of Staphylococcus aurous (Rosenbach). Their results indicated 

that bacterial odor was driving the attraction as the flies sought our proteinaceous 

resources (Robacker and Moreno 1995). 

 For black soldier flies Hermetia illucens (L.) (Diptera: Stratiomyidae), Zheng et 

al. (2013) found that bacteria from conspecific eggs attracted gravid females to lay eggs. 
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This attraction was hypothesized to be due to associated volatile emissions (Zheng et al. 

2013).  

 

Manure Associated Volatiles as Dipteran Attractants   

Intermediate and end-products of the microbial degradation of manure include 

VOCs, many of which are responsible for the malodor associated with manure (Zhu 2000). 

Attractiveness to volatiles associated with animal waste and manure has been studied in 

several species particularly for phenols, indoles and VFAs.  

A study conducted by Jeanbourquin and Guerin (2007) found that the stable fly, 

Stomoxys calictrans (L.) (Diptera: Muscidae) uses olfactory cues to locate suitable 

substrates for oviposition at distances between 50 and 130 cm and furthermore found 

dimethyl trisulphide, butanoic acid and 4-methylphenol to attract S. calcitrans. Another 

stable fly study identified compounds from cattle manure slurry and with an olfactometer 

found that phenol, 4-methylphenol, and 3-methylphenol were attractive to adults. 

Furthermore, adults were most attracted to blends of these compounds rather than a single 

phenolic (Tangtrakulwanich et al. 2015). 

Several studies have focused on using animal waste and/or known associated 

compounds to study the effects these compounds have on different Tabanidae (Diptera) 

species. In Turkey, Krčmar et al. (2009) found that canopy traps baited with a combination 

of octanol, acetone and ammonia trapped 15 times more tabanid flies than the control. 

Traps baited with donkey urine, lactic acid, and fresh human urine collected 12, 4 and 2.5 

times as many tabanids, respectively, than the unbaited control traps (Krčmar et al. 2009). 
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Altunsoy and Afacan (2014) used malaise traps that were baited with either 1-octen-3-ol 

or 4-methylphenol. Of the 5153 adult tabanid specimens collected, 53.37% of them were 

with the octanol trap, 34.59% with the 4-methylphenol trap and only 12.04% with the 

unbaited control trap. In Canada, Mihok and Lange (2012) observed in five Hybomitra 

(Diptera: Tabanidae) species, that baits containing ammonia and/or octenal in addition to 

phenol saw a 1.7-4.1 fold increase in adults caught relative to the untreated trap. Neither 

ammonia alone nor in combination with octenol was attractive for these flies indicating a 

synergism between ammonia and phenol, the combination of which is found in aged urine. 

Baldacchino et al. (2014) assessed the electrophysical and behavioral responses of females 

of two tabanid species, Tabanus bromius (L.) and Atylotus quadrifarius (Loew) to 

ammonia, octenol, phenols and aged horse urine. Electroantennogram responses in both 

species to octenol, 4-methylphenol, phenol, 3-propyl and a phenol mixture of the two 

aforementioned compounds increased in a dose dependent fashion. The most effective 

stimulus was 4-methylphenol. The horse urine elicited strong responses in both species as 

well. Twenty-nine compounds were identified in the horse urine using GC-MS, with 4-

methylphenol being the most abundant compound (~80%) (Baldacchino et al. 2014).  

Mulla et al. (1977) examined synthetic fly attractants of Musca domestica (L.) 

(Diptera: Muscidae) on poultry ranches and found the chemical constituents showing 

maximum attractancy were trimethylamine hydrochloride, ammonium salt, linoleic acid 

and indole, with the first and the last compounds being the main attractants. Butanoic acid 

was found to increase attractiveness, however, not significantly (Mulla et al. 1977). Cossé 

and Baker (1996) used wind tunnels and electroantennographic (EAG) assays to examine 
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house fly behavior to swine manure volatiles. Compounds such as dimethyl disulfide, 

butanoic acid, 3-methylbutanoic acid, phenol, indole and 3-methylindole were found to be 

EAG active. Additionally, antennal response in females increased with dose in the case of 

butanoic acid, phenol and indole. Butanoic acid, 3-methylbutanoic acid, indole and 3-

methylindole elicited the greatest response in females compared to other compounds 

examined (Cossé and Baker 1996). A study with Lucilia sericata (Meigen) (Diptera: 

Calliphoridae) found that their attraction to putrefying substances was largely due to the 

presence of indole, skatole and ammonium carbonate and when dilution of this substances 

were placed on sheep fleece, female L. sericata were attracted to oviposit (Hobson 1936).  

Bursell et al. (1988) found that the attractiveness of cattle urine to Glossina 

morsitans (Westwood) and G. pallidipes (Austen) (Diptera: Glossinidae) was attributed 

to the phenolic compounds in urine. Eight phenolics were identified and four of those (4-

methylphenol, 3-methylphenol, 3-ethylphenol, and 3-propylphenol) were 

electroantennographically active (Bursell et al. 1988).  Level of attraction of Hippelates 

gnats (Diptera: Chloropidae) to aqueous solutions of chicken whole-egg power was 

significantly enhanced when solutions of propanoic acid were added and attraction was 

also increased when indole or skatole was added to the mixture (Hwang 1976).  

Fatty acids, which contribute to the noxious smell of livestock manure (Burnett 

and Dondero 1969, Zhu 2000), are also attractive to many dipterans. Perry and Fay (1967) 

reported that gravid Aedes aegypti (L.) (Diptera: Culicidae) exhibited an olfactory 

response to fatty acids in a laboratory setting with propanoic and butanoic acids eliciting 

the greatest response in females (Perry and Fay 1967).  Another study found that baits 
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with attractant mixtures with butanoic and pentanoic acid trapped 5-20 times more Lucilia 

cuprina (Wiedemann) (Diptera: Calliphoridae) than the liver standard (Urech et al. 2004). 

Trap increases were also seen for Chrysomya spp. (0.85-2.7) and Calliphora spp. (Diptera: 

Calliphoridae) (0.020-0.2) (Urech et al. 2004). 

 

Background on the Black Soldier Fly 

Black solider fly (BSF), Hermetia illucens (L.), (Diptera: Stratiomyidae) larvae 

(BSFL) are an attractive alternative means of manure management because of their 

abilities to reduce organic matter (Nguyen 2013) including human feces (Banks 2014), 

livestock manure (Sheppard et al. 1994, Newton et al. 2005, Myers et al. 2008), pathogens 

(Erickson et al. 2004, Liu et al. 2008), pollutants (Myers et al. 2008) and house fly 

populations (Furman et al. 1959, Bradley and Sheppard 1984, Sheppard et al. 1994, Tingle 

et al. 1975, Kilpatrick and Schoof 1959). Larval stock can be sold as feedstuff for livestock 

and aquacultures (Bondari and Sheppard 1981, Bondari and Sheppard 1987, St-Hilaire et 

al. 2007, Sealey et al. 2011, Kroeckel et al. 2012), and the processed manure as fertilizer 

(Čičková et al. 2015). The utilization of wild black soldier fly populations is also cheaper 

than traditional manure management practices and requires no additional equipment 

(Newton et al. 2005, Čičková et al. 2015). Furthermore, it has been estimated that the use 

of BSFL larvae as a manure management tool could increase net revenue by $25,000 per 

poultry layer house per year (Newton et al. 2005). The black soldier fly is distributed 

throughout the sub-tropic and tropic regions of the world (James 1935, Callan 1974). This 

species is relatively large with larvae achieving 18-20 mm in length (Nartshuk 1988). They 
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have a life cycle of 40 days at 27°C with larval stages lasting ~22-24 days (Tomberlin et 

al. 2002). The adults will colonize a variety of decaying organic and animal matter (James 

1935), ovipositing in cracks and crevices associated with the resource (Copello 1926, 

Gonzales et al. 1963). Adults do not need to feed as they rely on nutrients accumulated 

during their larval development (Tomberlin and Sheppard 2002). Because adults do not 

feed, they do not compete with humans for food resources and therefore have not been 

shown to vector human pathogens. These reasons and they non-synanthropic nature have 

earned them the label of a non-pest species.  

BSF will colonize a variety of livestock manures (Zhou et al. 2013) including 

poultry, swine and cattle (Sheppard et al. 1994, Newton et al. 2005, Myers et al. 2008). 

The amount of manure that BSFL are able to consume is dependent upon resource 

availability; for example, those fed 27 g of dairy manure daily, reduced dry matter by 58%, 

while those fed 70 g daily reduced dry matter by 33% (Myers et al. 2008).  Banks et al. 

(2014) also observed that the ability to digest manure could be larval density dependent 

with 10 larvae being fed a feed ratio of 100 mg of human feces per larvae per day reducing 

the wet weight of waste by 49.7 ± 1.03% compared to that of 100 larvae fed the same ratio 

reducing the wet weight by 54.2 ± 0.86% (Banks et al. 2014). Across larval densities and 

feeding regimes, however, Banks et al. (2014) observed waste reductions from 25-55%. 

Another study which examined the ability of BSFL to digest human feces saw a 73% 

reduction on total solids and a 75% reduction in volatile solids compared to only a 30 and 

34% decrease, respectively, in control feces without larvae (Lalander et al. 2013). A third 
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study indicated a 54.7% reduction in the dry weight of fecal sludge by BSFL (Diener et 

al. 2011).  

Sheppard et al. (1994) estimated a dry matter reduction in poultry manure 50% or 

more, while previous studies reported 56 and 42% reductions in manure accumulation 

(Sheppard 1983).  Oonincx et al. (2015) observed a ~37% reduction in dry matter across 

three manure types (poultry, swine and dairy cow). Zhou et al. (2013) recorded 31-61% 

reduction in poultry manure, 28-53% reductions in swine manure and 34-57% reductions 

in dairy manure. Finally, Li et al. (2011) observed a 53% reduction in dry matter of dairy 

manure.  

Additionally, it has been shown that waste reduction plasticity occurs across 

strains. Zhou et al. (2013) examined the ability of three different strains of BSFL to reduce 

livestock manure. Two strains from provinces in China, Wuhan and Guangzhou, were 

examined in addition to one from Texas. It was found that larvae from the Wuhan strain 

reduced manure dry matter greater than the Guangzhou strain by 48.4, 46.0 and 40.1% for 

poultry, swine, and dairy manure, respectively, and 7.9, 6.9 and 7.2% greater than the 

Texas strain (Zhou et al. 2013) 

During the decomposition of dairy manure, black soldier flies also reduce 

concentrations of nitrogen and phosphorus. In a study where BSFL were allowed to feed 

on poultry, swine and dairy manure, nitrogen content was reduced by 80, 37 and 30% 

respectively (Oonincx et al. 2015). Another study that examined these three manure types 

saw nitrogen reduced by 24-51% in poultry manure, 22-49% in swine manure and 25-53% 

in dairy manure (Zhou et al. 2013). 
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Another study indicated a 62% reduction in nitrogen content of poultry manure fed 

on by BSFL (Sheppard 1983). Li et al. (2011) observed a 43.6% reduction in nitrogen 

from dairy manure fed upon by BSFL while Myers et al. (2008) observed reductions of 

nitrogen and phosphorus in dairy manure by 30-50% and 61-70%, respectively. Newton 

et al. (2005) observed a 55.1% decrease in nitrogen and a 44.1% decrease in phosphorus 

in swine manure processed by BSFL.   

Manure decomposed by BSFL is also suitable for use as fertilizer (Čičková et al. 

2015). During the degradation of manure, its temperature rises, pH shifts to alkaline, 

moisture decreases and ammonia release increases.  Human feces which began in the 

experiment with a pH of 6.0 ± 0.0, finished with a pH of 7.5 ± 0.0 after being processed 

with BSFL.  

Dairy manure digested by BSFL had a dry matter percent of 54.4 ± 0.3 compared 

to that of 46.5 ± 0.2 in fresh manure and the authors noted that no odor was smelled from 

the digest manure (Li et al. 2011). Odor emissions and humidity of manure that was treated 

with larvae were also decreased (Čičková et al. 2015).  

BSFL reduce pathogens such as Escherichia coli in poultry and dairy manure 

(Erickson et al. 2004, Liu et al. 2008), When poultry manure colonized by larvae was 

maintained at temperatures of 27 or 32C, populations of E. coli O157:H7 were reduced 

by 1.5-log and 5-log, respectively (Erickson et al. 2004) . However, the ability of BSFL 

to reduced E. coli O157:H7 was dependent on the manure type. For example, E. coli 

O157:H7 populations were amplified in swine manure that had larvae in comparison to 

manure without larvae (Erickson et al. 2004).  A 2.5 log reduction in populations of 
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Salmonella enterica in poultry manure treated with BSFL was also found. However, the 

larvae became infected with the pathogen after feeding on contaminated manure.  

The ability of BSFL to decrease E. coli in dairy manure was dependent upon how 

much manure was provided to the larvae. Regardless, pathogen populations were greatly 

reduced in all treatments (Liu et al., 2008). The greatest reduction in pathogens loads 

occurred when the larvae were fed a single dose of 125 g of manure. E. coli was inoculated 

into dairy manure at 7.0 log cfu/g manure, and after 72 hours, only 0.23±3.39 log cfu/g 

remained when larvae were given 125g of manure.  This study determined BSFL were 

most successful at reducing E. coli counts in dairy manure maintained at 27 and 31°C. A 

study that examined the ability of BSFL to reduce human waste found that their presence 

reduced Salmonella spp. by 6 log in eight days, compared to a 2 log reduction in the control 

over the same time period (Lalander et al. 2013). 

Manure colonized by BSFL inhibits colonization by house flies, Furman and Catts 

1959, Kilpatrick and School 1959, Axtell and Edwards 1970, Tingle 1975, Sheppard 1983, 

Bradley and Sheppard 1984, Sheppard et al. 1994). Furman and Catts (1959) demonstrated 

that as the number of actively feeding BSFL in manure increased, the number of 

successfully developing house flies decreased. Furthermore, field tests conducted in the 

San Joaquin Valley of California, USA noted that house flies were outcompeted by dense 

populations of BSFL in manure; house flies were absent from both dry and moistened 

manure that had been inoculated with BSFL after the second week of treatment (Furman 

and Catts, 1959).  Artificial infestation of BSFL prevented house fly breeding while 

adjacent manure not infested with BSFL experienced heavy infestation by house flies 
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(Furman and Catts 1959). Kilpatrick and Schoof (1959) found that pit privies treated with 

insecticides such that BSF populations were eliminated experiences dense populations of 

house flies compared to untreated privies, which maintained BSFL populations, and 

therefore minimum adult house fly presence and zero larval colonization.  

 Axtell and Edwards (1970) found that when larviciding poultry houses to control 

for BSF adults, their absence produced a dramatic invasion of house flies compared to 

their complete absence when BSFL were present in the poultry manure. Observations by 

Tingle et al. (1975) supported the findings of Furman and Catts (1959) that BSFL can be 

a significant factor in controlling house fly populations at poultry operations.  

This relationship was demonstrated in south Georgia, USA where there was a 

significant (P ≤ 0.05) negative correlation between black soldier fly populations on house 

fly and lesser house fly, Fannia canicularis (L.), (Diptera: Muscidae) numbers. In fact, no 

other dipteran larvae were observed in treatments where BSFL were dense.  Treatments 

saw over 94-100% reductions in both house fly and lesser house fly populations 

(Sheppard, 1983). 

Bradley and Sheppard (1984) observed that this relationship between the two 

species was density dependent where house flies would readily oviposit in poultry manure 

when BSFL populations were less dense i.e. one larvae and would not oviposit in manure 

where BSFL were densely populated i.e. 10 or 100 larvae. These authors were the first to 

attempt to characterize the mechanism behind this interspecific competition and suggested 

that an allomone could be driving this relationship.  
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The impact of BSFL on manure volatiles has not been researched. Green and Popa 

(2012) found that BSFL feeding on leachate from decaying food scraps increased 

ammonium (NH4
+) concentrations five to six fold relative to leachate that was not fed on 

by larvae. BSFL increased nitrogen mineralization by elevating the ammonia 

concentration while feeding on the leachate. Furthermore, the larvae assimilated nitrogen 

and carbon that would have otherwise been released into the environment as gases such 

as ammonia, nitrogen oxide, and nitrous oxide (Green and Popa 2012).  

Black soldier fly mating and oviposition has been examined in a few studies. 

Tingle et al. (1975) observed that males could “call” females to an area with mating 

occurring on the ground with the genders facing opposite directions. Other authors have 

noted in-flight mating (Copello, 1926) and as well as lekking behaviors (Tomberlin and 

Sheppard 2001). In another study by Tomberlin and Sheppard (2002), the authors noted 

that 69% of mating occurred two days after emergence and 70% of oviposition occurred 

four days after emergence. Factors such as sunlight, time of day, temperature, and 

humidity significantly (P < 0.0001) correlated with oviposition (Tomberlin and Sheppard 

2002).  

Zheng et al. (2013) demonstrated that bacteria mediate oviposition for BSF (Zheng 

et al. 2013). Significantly (P < 0.05) more eggs were laid in sites with bacteria isolated 

from conspecifics on decomposing material. It was hypothesized that this attraction by 

gravid females was due to volatile emissions (Zheng et al. 2013) Furthermore, it was 

ascertained that a mixture of bacteria versus a single species, differentially influenced the 
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behavior of adults. Bacteria species and concentration also had different effects on adult 

fly behavior  

The relationship between microbes and black soldier flies has been investigated by 

Yu et al. (2011) who found that larvae fed manure that had been inoculated with bacteria 

were 9-22% heavier than larvae fed sterile manure and overall had enhanced development 

such as shorter larval durations. Zheng et al. (2013) used 16S rDNA pyrosequencing to 

survey the bacterial diversity of successive life stages of BSF. It was found that bacteria 

from the phyla Bacteroidetes and Proteobacteria were most dominant and accounted for 

two thirds of the identified bacteria.  
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Objectives and Hypotheses  

The research objectives are as follows:  

1. Examine how feeding by BSFL at different feed rates affects volatile emissions 

from three manure types.   

H01: The overall VOC community will not be different between freshly-

thawed, BSF digested and non-digested manures.  

Ha1: The overall VOC community will be different between freshly-

thawed, BSF digested and non-digested manures.  

H02: The diversity of VOC compounds will not be different between 

freshly-thawed, BSF digested and non-digested manures. 

Ha2: The diversity of VOC community will be different between freshly-

thawed, BSF digested and non-digested manures. 

H03: The relative amounts of select odorous VOCs will not be different 

between freshly-thawed, BSF digested and non-digested manures. 

H03: The relative amounts of select odorous VOCs will be different 

between freshly-thawed, BSF digested and non-digested manures. 

2. Examine the effect of volatiles found on site selection and oviposition by the black 

soldier fly.  

H01: Attraction and oviposition preferences will not be different between 

VOCs of different manure types and their treatments.  

Ha1: Attraction and oviposition preferences will be different between 

VOCs of different manure types and their treatments. 
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CHAPTER II 

 VOC ANALYSIS: RESEARCH, RESULTS, AND DISCUSSION 

 

Introduction 

With a rise in the global human population and increase in demand for meat over 

the past several decades, especially within developing countries, livestock producers have 

been forced to increase their output to match the growing demand (FAO 2009, Msangi et 

al. 2011). Furthermore, animal farming has become increasingly concentrated as more 

animals are housed over smaller areas of land (EPA 2013). Between 1997 and 2012 the 

number of dairy cows on factory farms doubled, the number of hogs increased by one-

third, and the number of egg-laying hens increased nearly one quarter, reaching numbers 

of 5.6 million, 46.1 million and 269 million animals, respectively by 2012 (USDA 2014). 

These animals produced over 369 million tons of manure in 2012 equating to over 13.8 

billion cubic feet of waste to be dealt with (USDA 2014). 

Manure can be a valuable resource, such as on-farm fertilizer, but its use is less 

feasible with the increase in number of confined animal feeding operations (CAFOs) and 

factory farms. Whereas animals in pasture can distribute this resource more evenly and 

over a greater area of land, CAFOs produce more manure per square foot than can be 

applied as fertilizer (Ribaudo et al. 2003). In 1997, animal feeding operations controlled 

over 73 million acres of cropland and permanent pasture, which was estimated to 

assimilate only 40% and 30% of recoverable nitrogen and phosphorus, respectively, from 

manure (Gollehon et al. 2001). Large farming facilities (more than 1000 animals), which 



 

 

 

 

62 

constituted only 2% of farms, accounted for nearly half of the excess on-farm nutrients 

(Gollehon et al. 2001). The excess of manure must be dealt with via alternative methods 

such as storage in tanks and lagoons or transportation elsewhere which require the 

purchase of ancillary equipment such as tanks or the construction of pits and lagoons all 

at increased cost to the farmer (Nowak et al. 1998). 

Furthermore, these methods may lead to further pollution as contaminants 

associated with livestock and their manure can move through the soil and wind to 

waterways through a variety of circumstances (Mawdsley et al. 1995). In 1999, Hurricane 

Floyd hit North Carolina, flooding much of the land, including 50 lagoons used for manure 

storage, causing three to burst. The result was the release of over 3.7 million L of manure 

mixed with the floodwaters in addition to the deaths of millions of animals, which 

drowned during the flooding (Henderson and Suchetka 1999).  

There are many microbial contaminants associated with manure including 

pathogenic organisms, such as bacteria, viruses and protozoans (Cole et al. 1998). In 2009, 

a clogged pipe caused the leak of over 94,000 L of dairy manure in Pipestone County, 

MN, which spilled into a local tributary, killing fish and resulting in a state park closing 

to swimmers after elevated levels of coliform bacteria were found in the park’s waters 

(Kuphal 2009). In 2010, the Environmental Protection Agency (EPA) mandated a feedlot 

in Grand View, ID to cease the discharge of fecal bacteria-contaminated water from its 

stock watering system into a tributary of the Snake River (EPA 2010).  

The overabundance of nitrogen and phosphorus in the environment is another issue 

associated with improper manure management (Kellogg 2003). In 2010 a broiler chicken 
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operation with over 100,000 animals was ordered to cease the discharge of pollutants from 

large piles of uncovered manure, which were leaching nitrogen and phosphorus into a 

nearby tributary of the Shenandoah River in Virginia (EPA 2010). Nitrogen-containing 

pollutants pose both ecological and human health threats, and can reach the environment 

through leaching and surface runoff (Burkholder et al. 2007). Nitrogen is a limiting 

nutrient in marine and estuarine environments, and therefore increased loading of this 

element through forms such as ammonium and nitrate, can significantly contribute to 

downstream effects such as eutrophication and oxygen depletion, which are responsible 

for massive fish kills (Rabalais et al. 2002). Manure discharged from a dairy in O’Brien 

County, Iowa polluted a 45 km stretch of stream and killed over 860,000 fish. The Iowa 

Department of Natural Resources estimated the value of these fish to be over $160,000 

(Iowa Department of Natural Resources 2014). In 2009, over 150,000 L of swine manure 

was released over a farm field in Mitchell County, IA, which was responsible for killing 

over 150,000 fish over a six km stretch of local stream. In 2009, over 150,000 L of swine 

manure was released over a farm field in Mitchell County, IA, which was responsible for 

killing over 150,000 fish over a six km stretch of local stream (Wilkton 2004). Nitrate is 

also an important water contaminant that is regulated by the EPA’s Safe Drinking Water 

Act. High levels of exposure to nitrates can cause methomoglobinemia, or blue baby 

syndrome (Ward et al. 2005) in infants and is linked to different cancers, insulin-

dependent diabetes and neurodevelopmental defects in adults (Burkholder et al. 2007). 

Phosphorus is another important contaminant linked to manure and intense 

livestock farming. Like nitrogen, phosphorus is a limiting nutrient in many aquatic 
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environments. Through manure disposal, leaching, and runoff, phosphorus can reach these 

environments and result in eutrophication (Sharpley1999).  

The decomposition of manure is also responsible for environmental emissions 

such as greenhouse gases, ammonia and other volatile organic compounds (VOCs), which 

are pollutants and pose potential health risks (FAO 2009). Studies have indicated that 

between 100 and 330 VOCs and volatile fatty acids are generated by CAFOs, depending 

on management practices and the species of animal involved (Cai et al. 2015, Powers and 

Bastyr 2004, Schiffman et al. 2001). The compounds most associated with or responsible 

for the odor of manure are phenols, indoles, skatoles, alcohols, organic sulphides, and 

volatile fatty acids (Hales et al. 2012, Kuroda et al. 1996, El-Mashad et al. 2011). For 

example, Hales et al. (2012) found that 4-methylphenol was responsible for 67.3% of odor 

activity in dairy manure. Another study found that the key odorous compounds in poultry 

manure were butanoic acid, 3-methylbutanoic acid, dimethyl trisulphide, indole and 

skatole (Yasuhara 1987). These VOCs, which are noxious odors, can also negatively affect 

humans by posing potential health risks to those living in areas surrounding communities 

(PEW 2008). VOCs responsible for noxious odors contribute to higher levels of tension, 

depression and anger experiences by those working or living in close proximity to areas 

with heavy animal farming (Barrett 2006). Buildup of such gases can also pose certain 

safety risks. In 2010, a manure lagoon liner from a 1,650 cow dairy operation in Randolph 

County, Indiana, became detached and inflated with gases associated with decomposing 

manure. The operator of the farm could not afford the costs associated with fixing the 

liner, causing the county to shut down local roads to the area due to the risk posed by the 
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potential lease of noxious odors or even explosion (Etter 2010). In Portage County, 

Wisconsin, 2016, a farmer and 16 cattle were overcome and killed by deadly amounts of 

sulfur oxide fumes from a manure holding tank when agitation caused the surface line to 

crack and release deadly fumes into the environment (Cerullo 2016).  

With the increasing amount of manure and the need for a sustainable method of 

management, fly (Diptera) larvae have become an alternative means to deal with this 

resource. Black solider fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae (BSFL) 

have been studied as a means of manure management because of several beneficial 

abilities. First, BSFL reduce organic matter such as livestock manure. Significant 

reductions in poultry manure were observed by Sheppard (1994) who observed an 

estimated 50% reduction in poultry manure in addition to a previous study, which reported 

56 and 42% reductions in dry weight (Sheppard 1983). Myers et al. (2008) saw a 58% and 

33% reduction in dry matter of manure from BSFL fed 27g and 70 g of dairy manure daily, 

respectively. Newton et al. (2005) observed a 39% reduction in the dry weight of swine 

manure processed by BSFL. In a study comparing poultry, swine, and dairy manure, the 

dry matter of all three manure types was reduced by ~37% (Oonincx et al. 2015). 

In addition to the reduction of dry matter of manure, nutrients present in manure, 

which in excess can be detrimental to the environment, were decreased. During the 

decomposition of dairy manure, BSFL reduced concentrations of nitrogen and phosphorus 

by 30-50% and 61-70%, respectively (Myers et al. 2008). Another study indicated a 62% 

reduction in nitrogen content of poultry manure consumed by BSFL (Sheppard 1983). In 

a study where BSFL were allowed to feed on dairy, swine, and poultry manure, nitrogen 
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content was reduced by 30, 37, and 80%, respectively (Oonincx et al. 2015). However, to 

date, no one has examined the impact of black soldier fly digestion of manure on noxious 

odor production. The purpose of this study was to assess how the presence and digestion 

of these manure types by BSFL impacts select noxious VOCs.  

 

Materials and Methods 

Acquisition of Flies  

Hermetia illucens larvae used in this experiment came from a colony maintained 

at the Forensic Laboratory for Investigative Entomological Sciences (F.L.I.E.S.) Facility 

at Texas A&M University in College Station, TX. This colony was established in 2014 

from eggs received from a laboratory colony maintained at the Coastal Plains Experiment 

Station, University of Georgia, Tifton, GA. Adult flies were maintained in a 2.6 × 1.2 × 

1.3 m wooden cage fitted with metal screening in a greenhouse maintained at 

approximately 27°C. Adults were allowed to oviposit on three 7.0 × 5.0 × 0.3 cm pieces 

of corrugated cardboard (Booth and Sheppard, 1984) held together with masking tape and 

placed on the lid of a 30.0 × 15.0 × 11.0 cm plastic shoe box containing one kilogram of 

Gainesville diet (Hogsette 1992) saturated with water. A 13.0 × 5.0 cm portion of the lid 

was removed and replaced with metal screening on which the cardboard pieces were 

placed; this allowed volatiles to escape from the wet Gainesville diet and attract the flies, 

but prevented the flies from contacting and/or ovipositing directly into the media instead 

of the cardboard. The cardboard was removed from the cage after eight hours, and eggs 

were removed from cardboard using a sterile plastic spatula and weighed. One gram of 
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eggs were then placed in a 0.5 L plastic container, covered with a paper towel secured 

with a rubber band, stored in a walk-in environmental chamber (29 ± 0.3°C with 60 ± 

5.1% RH and 16:8 L:D) and checked every 12 h until hatch. Two hundred grams of 

Gainesville diet at 70% moisture was added to the container once larvae emerged. Newly-

emerged larvae were allowed to feed for four days in the environmental chamber prior to 

use in the experiment.  

 

Acquisition of Manure 

Three different livestock manure types were used in this study. Poultry manure 

was collected from layer hens housed at the Poultry Science Research, Teaching, and 

Extension Center at Texas A&M University in College Station, TX. The hens were fed a 

mixture of corn and soybean meal that is considered typical layer diet, consisting of 18.5% 

crude protein, 2.5% crude fat and 2.4% crude fiber. Dairy manure was collected from cows 

maintained at the Southwest Regional Dairy Center in Stephenville, TX. The diet for these 

animals consisted of 16.1% crude protein, 5.0% crude fat and 28.1% crude fiber. The 

majority of this diet is composed of a mixture of corn silage (32.0%), ground corn (22.5%), 

and concentrate pre-mix (19.4%) composed of canola and soybean meal. Swine manure 

was collected from sows raised by Schroeder Genetics in Anderson, TX. The sows were 

maintained on cubes containing 14.0% crude protein, 2.8% crude fat, and 6.5% crude fiber 

formulated for gilts, sows and adult boars.  

Each manure type was collected on site within 12 h of excretion, using a shovel 

and two 19 L buckets with lids (Home Depot®) that had been sterilized prior to use for 



 

 

 

 

68 

manure collection. The manure was transported to the F.L.I.E.S. Facility where it was 

homogenized in the buckets and transferred to individual 3.78 L self-sealing plastic freezer 

bags and frozen at -20°C until used. Manure was removed from the freezer and allowed 

to thaw for 24 h at room temperature before use. Thawed manure was stored in a 

refrigerator at 4°C.  

 

Experiment Design 

 One hundred 4-d-old larvae were placed in 88.7 ml plastic bathroom cups and 

assigned to one of the three manure types and one of two feed rates (18.0 or 27.0 g every 

other day). Feed rates used were based off the methods of Myers et al. (2008) who used 

300 larvae and feed rates of 27, 40, 54 and 70 g of manure per day. The feed rates used in 

this study are therefore modified from this due to only 100 larvae being used and feeding 

occurring every other day. Preliminary experiments were conducted to confirm these feed 

rates. 

Containers without larvae were used as controls and subsequently referred to as 

non-digested manure. These containers received manure assigned at a given feed rate in 

similar fashion to those with larvae. Three replicates for each feed rate and manure type 

with and without larvae were used. Containers were placed in a randomized block design 

among three levels of a shelving unit in the environmental chamber.  The experiment was 

replicated twice. 

Initially, larvae in each replicate were provided manure at the assigned amount and 

allowed to feed for four days. Larvae and contents of the bathroom cup were then 
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transferred to a 1.89 L Reditainer™ EXTREME FREEZE™ deli container (Clear Lake 

Enterprises, Port Richey, FL) and fed every other day. Manure was weighed directly into 

the containers using a Scout® Pro Balance (Ohaus, Parsippany, NJ). Containers were then 

covered with a 25.4 × 25.4 cm piece of tulle for ease of visualization and returned to the 

environmental chamber.  

Containers were checked daily for post-feeding larvae (i.e., prepupae Sheppard et 

al. 1994), which were then subsequently removed. Prepupae could be visually identified 

by the cuticle turning from opaque to black (May 1961). Additionally, to monitor the 

progress of larval feeding, manure in each container was shifted using forceps that had 

been sterilized with 70% ethanol. Separate forceps were used for each manure type to 

prevent cross contamination. Feeding of larvae terminated when 40% of the larvae reached 

the prepupal stage (Sheppard et al. 2002). VOCs were sampled when approximately 90% 

of the larvae reached the prepupal stage. This level of pupation was selected, as it would 

also represent industrialized production of BSFL. When a replicate from a treatment 

reached 90% prepupation, a replicate from the non-digested group of the same manure 

type and feed rate was randomly selected and volatiles were collected from both samples.  

 

Volatile Sampling 

Volatile organic compounds were collected from the following manure samples: 1) 

freshly-thawed also referred to as the control, 2) replicates of each treatment when 

approximately 90% of the larvae had reached the prepupal stage, referred to as BSF 

digested, and 3) a replicate without larvae corresponding to the second sample, referred to 
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as non-digested. Larvae remaining in a replicate that had reached 90% prepupation were 

removed and the remaining waste homogenized. A subsequent 20.0 g sample was 

transferred to a 236.5 ml Ball® mason jar (Ball Corporation, Broomfield, CO, USA) and 

covered with a metal lid. The lid was equipped with two holes equidistant from each other 

in the center: one held a 14.6 cm glass Labcraft Pasteur pipet (Curtin Matheson Scientific, 

Inc., Morris Plains, NJ, USA) filled with approximately 0.75 g Black Diamond® activated 

carbon (Marineland, Cincinnati, OH, USA) as a means to purify incoming air. The second 

hole was fitted with a volatile trap packed with approximately 30.0 mg of Hayesep® Q 

porous polymer (Volatile Assay Systems, Rensselaer, NY, USA) as a means to collect 

VOCs (Figure 2.1). The volatile traps were attached to a length of 6.4 mm diameter 

Tygon® tubing (Saint-Gobain S.A., Malvern, PA, USA).  The opposing end of the Tygon® 

tubing was attached to an intake port on a flow meter (Dwyer Instruments, Inc., Michigan 

City, IN, USA). The exhaust port on the flow meter was attached to Tygon® tubing which 

led to an AC110V, 60Hz Rocker 300 oil free vacuum pump (Rocker, Scientific Co., Ltd., 

New Taipei City, Taiwan). The pump and flow meters allowed purified air to be pulled 

over the samples at a rate of 1 L min−1 for  
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two hours under lab conditions. A total of three volatile samples were taken from each 

20.0 g sample of manure; one to be processed in a GC-MS and two to be used in 

subsequent oviposition and attraction assays.  

 

 

Figure 2.1. Headspace collection set up used to collect volatiles 

from manure samples. A 236.5 ml Ball® mason jar was outfitted 

with two holes in the lid: one for a carbon filter to purify ambient 

air (left) and another for the volatile trap (right). Volatile traps 

contain 30.0 mg of porous polymer mix Hayesep® Q to which 

volatiles adhere to. Samples of 20g were placed at the bottom 

while air was pulled at 1.0 L per min for 1 hr.  

10 cm  



 

 

 

 

72 

 

 

 

GC-MS Analysis 

VOCs were eluted from the Hayesep® Q into 1.5 ml SureStop™ GC vials (Thermo 

Fisher Scientific, Waltham, MA, USA) containing a 9.0 mm 300 μl insert (Thermo Fisher 

Figure 2.2. VOCs were eluted from the Hayesep® Q into 1.5 ml 

SureStop™ GC vials containing a 9.0 mm 300 μl insert with 150 

μl of dichloromethane (Sigma-Aldrich, St. Louis, MO, USA) 

injected into the trap which was pushed gently through with N2 . 

An additional 5.0 μl of n-Octane at a concentration of 80 ng/μl 

was added to each sample as an internal standard. 

8 cm 
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Scientific, Waltham, MA, USA) with 150 μl of dichloromethane (Thermo Fisher 

Scientific, Waltham, MA, USA) injected into the trap which was pushed gently through 

with N2 (Figure 2.2). An additional 5.0 μl of n-Octane (Sigma-Aldrich, St. Louis, MO, 

USA) at a concentration of 80 ng/μl was added to each sample as an internal standard. 

Samples were then capped and stored at -20°C until taken to the Geochemical 

Environmental Research Group at Texas A&M University in College Station, Texas to be 

analyzed using a using an Agilent 6890 gas chromatograph with an Agilent 5973 mass 

selective detector (Agilent Technologies, Santa Clara, CA, USA). The column employed 

for the separation of VOCs was a fused silica DB-5MS capillary column (30 m x 0.25 mm 

ID, 0.50 μm film thickness) (Agilent Technologies, Santa Clara, CA, USA).  

Injections of 1μL were performed in splitless mode with an injection temperature 

of 250°C. The column temperature program was as follows: an initial temperature of 35°C 

was held for 8 min then increased at a rate of 4°C min−1 until 60°C was attained. This 

temperature was maintained for one minute followed by an increase in temperature at a 

rate of 6°C min−1 until 160°C was reached and maintained for 1 min. Finally the 

temperature was increased to 300°C at a rate of 20°C min−1 and held for 10 minutes. Zero-

grade helium was used as the carrier gas at a flow rate was 1.29 mL min−1. Electron impact 

ionization was at 70 eV and mass range was from m/z 45-450. Compounds were identified 

using standards where available in addition to comparing their mass spectra fragmentation 

patterns with those stored in the NIST05 mass spectra library.  
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Chemical Standards 

Acetic acid (99% purity), propanoic acid (99.5%), 2-methylpropanoic acid (99%), 

butyric acid (99%), 3-methylbutanoic acid (99%), pentanoic acid (99%), pentanoic acid, 

4-methyl (99%), hexanoic acid (99.5%), heptanoic acid (97%), 3-methylindole (98%), 4-

methylphenol (99%), benzaldehyde (99.5%), indole (99%), phenol (99%) were purchased 

from Absolute Standards, Inc. (Hambed, CT, USA). Octane (99%), dichloromethane 

(99.8%) and dimethyl disulfide (99%) were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Beyond octane, the internal standard, and dichloromethane, the elution 

solvent, additionally chemicals herein were purchased and used to confirm the 

identifications of select compounds of interest, which were further examined. 

 

Moisture Content 

Moisture content of the freshly-thawed manure was assessed at the beginning of 

the experiment and compared to the treatment at 90% pupation and its corresponding 

control. Moisture content was determined gravimetrically using a Scout® Pro Balance 

(Ohaus, Parsippany, NJ). Ten g of manure in three replicates was weighed out into an 

aluminum pie dish and dried for 24 h at 55°C in a Precision Scientific Thelco Oven 

(Thermo Fisher Scientific, Waltham, MA, USA).  

 

Statistical Analyses 

Numbers of compounds present in treatments (control manure, BSF digested 

manure and non-digested manure were compared using a two-way analysis of variance 
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(ANOVA) using JMP Pro 12 statistical software (SAS Institute, Cary, NC, USA). 

Significant differences in means were further separated using Tukey-Kramer Honest 

Significant Difference (HSD) (P ≤ 0.05). Identified compounds were quantified using 

peak areas obtained from each chromatogram. The peak area of the identified compound 

was divided by the peak area of the internal standard, n-Octane, to obtain relative areas 

for use in analyses. Relative peak areas were also compared using a two-way ANOVA 

using JMP Pro 12 statistical software with significant differences further separated using 

Tukey-Kramer Honest Significant Difference (HSD) (P ≤ 0.05). 

Additional analyses were performed using the vegan 2.0-9 library in the R 

statistical package (Anderson, 2001; R Core Team, 2013). Differences among volatile 

profiles of treatments were assessed using a permutational multivariate analysis of 

variance (PERMANOVA) with the adonis function; a nonparametric technique based on 

the Bray-Curtis dissimilarity matrix. Bray-Curtis distance with non-metric 

multidimensional scaling (NMDS) was performed to visualize similarities among 

treatments (initial freshly-thawed manure, digested treatment manure and non-digested 

manure) and does not assume linearity between variables (McCune and Grace, 2002). A 

multiple response permutation procedure (MRPP) was employed to test for statistical 

differences between covariates. Finally, an Indicator Species Analysis (ISA) was used to 

determine statistically unique compounds present in volatile sources. 
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Research Results 

Moisture Content  

The moisture contents of BSF digested and non-digested manure compared to 

freshly-thawed manure are provided in Table 2.1 separated by manure type and feed rate. 

Corresponding ANOVAs and Tukey HSD tests are provided in Table 2.2 for the 18 g feed 

rate and 2.3 for the 27 g feed rate. The moisture contents of freshly-thawed among manure 

types were significantly different (F2,12 = 159.66, P  ≤ 0.0001). Each manure type was 

significantly different (P ≤ 0.05) from one another. 

 

 

  

Table 2.1. Mean moisture percentages ± SEM of poultry, swine, and dairy manure 

(n1 = 3) at 18 and 27 g with and without Hermetia illucens (L.) larvae compared to 

control manure maintained at 29 ± 0.3°C with 60 ± 5.1% and 14:10 L:D cycle (P < 

0.05). 

Manure Treatment  18 g 27 g 

     

Poultry Control  77.25 ± 0.28a2 77.25 ± 0.28a 

 BSF Digested  13.43 ± 0.98b 42.00 ± 6.73b 

 Non-Digested  25.90 ± 7.03b 52.99 ± 1.82b 

    

Swine Control  73.77 ± 0.338a 73.77 ± 0.338a 

 BSF Digested  13.50 ± 0.84b 36.74 ± 8.51b 

 Non-Digested  11.90  ± 0.92b 43.52  ± 7.75b 

    

Dairy Control  84.16 ± 0.50a 84.16 ± 0.50a 

 BSF Digested  10.83 ± 0.47b 38.50 ± 13.59b 

 Non-Digested  10.40  ± 1.15b 37.35  ± 12.37b 
1n = replicates; 2Different letters within a feed rate and manure type indicate significant 

difference (P < 0.05). 
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Table 2.2. ANOVA and Tukey-Kramer HSD on mean moisture percentages ± SEM of poultry, swine, 

and dairy manure (n1 = 3) at 18 g with and without Hermetia illucens (L.) larvae compared to control 

manure. Experiments were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Poultry 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 13731.3 6865.6 68.0 <0.0001 

Error  15 1515.1 101.0   

C. Total  17 15246.4    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

CL 

Upper 

CL 

P Value 

Control vs BSF Digested 63.8 5.8 48.8 78.9 <0.0001 

Control vs Non-Digested 51.3 5.8 36.3 66.4 <0.0001 

BSF Digested vs Non-Digested 12.5 5.8 -2.6 27.6   0.1131 

Swine 

ANOVA      

Source  Df SS MS F Ratio P Value 

Treatment  2 14924.6 7462.3 2253.4 <0.0001 

Error  15 49.7 3.3   

C. Total  17 14974.3    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 60.3 1.0 57.5 63.0 <0.0001 

Control vs Non-Digested 61.9 1.0 59.1 64.6 <0.0001 

BSF Digested vs Non-Digested 1.6 1.0 -1.1 4.3 0.3091 

Dairy 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 21638.1 3016.2 3016.2 <0.0001 

Error  15 53.8 3.6   

C. Total  17 21691.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 73.3 1.1 70.5 76.2 <0.0001 

Control vs Non-Digested 73.8 1.1 70.9 76.6 <0.0001 

BSF Digested vs Non-Digested 0.4 1.1 -2.4 3.3 0.9204 
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Table 2.3. ANOVA and Tukey-Kramer HSD on mean moisture percentages ± SEM of poultry, swine, and 

dairy manure (n1 = 3) at 27 g with and without Hermetia illucens (L.) larvae compared to control manure. 

Experiments were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05).   

Poultry 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 3903.9 1951.9 20.0 <0.0001 

Error  15 1461.4 97.4   

C. Total  17 5365.2    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

CL 

Upper 

CL 

P Value 

Control vs BSF Digested 35.3 5.7 20.4 50.1 <0.0001 

Control vs Non-Digested 24.3 5.7 9.5 39.1 0.0019 

BSF Digested vs Non-Digested 11.0 5.7 -3.8 25.8 0.1650 

Swine 

ANOVA      

Source  Df SS MS F Ratio P Value 

Treatment  2 4664.4 2332.2 8.8 0.0030 

Error  15 3976.7 265.1   

C. Total  17 8641.1    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 37.0 9.4 12.6 61.4 0.0035 

Control vs Non-Digested 30.2 9.4 5.8 54.7 0.0150 

BSF Digested vs Non-Digested 6.8 9.4 -17.6 31.2 0.7547 

Dairy 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 8555.7 4277.8 6.3 0.0101 

Error  15 10131.5 675.4   

C. Total  17 18687.2    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 45.7 15.0 6.7 84.6 0.0211 

Control vs Non-Digested 46.8 15.0 7.8 85.8 0.0181 

BSF Digested vs Non-Digested 1.2 15.0 -37.8 40.1 0.9967 
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The mean moisture content of BSF digested manure was marginally significantly different 

among manure types (F2,15 = 3.70, P = 0.0496) for 18 g. However, Tukey-Kramer HSD 

did not find their separation to be significant from one another. The mean final moisture 

content of BSF digested manure was not significantly different among manure types (F2,12 

= 0.07, P  = 0.9316) for the 27 g feed rate.   

The mean moisture content of non-digested manure was significantly different 

among manure types (F2,15 = 4.25, P = 0.0345) for the 18 g feed rate. The moisture content 

of poultry manure was significantly different (P = 0.0459) from dairy; however,  

the differences between poultry and swine (P = 0.0740) and swine from dairy (P = 0.9645) 

were not. The mean moisture content of non-digested manure was not significantly 

different among manure types (F2,12 = 0.8613, P = 0.4425) for 27 g.  

Feed rate was significant for poultry manure (F1,22 = 26.90, P ≤ 0.0001) and 

therefore analyses were done separately. Trial was significant in neither the freshly-

thawed poultry manure (F1,4 = 0.70, P = 0.4477) nor the 18 g (F1,10 = 0.32, P = 0.5838) 

nor the 27 g (F1,10 = 2.59, P = 0.1385) feed rates of BSF digested or non-digested manure.  

Treatment was significant in both the 18 g feed rate (F2,15 = 67.97, P ≤ 0.001)  and the 27 

gram feed rate (F2,15 = 20.03, P ≤ 0.0001). The freshly-thawed poultry manure had an 

average moisture content of 77.25 ± 0.28% compared to that of 13.43 ± 0.98 % of the BSF 

digested manure and 25.90 ± 7.03% in the non-digested manure in the lower feed rate. In 

the higher feed rate of 27 g, the average moisture content of the BSF digested manure was 

42.00 ± 6.73% and 52.99 ± 1.82% in the non-digested manure. On average, black soldier 

flies reduced the moisture content of poultry manure by 82.61% in the low feed rate and 
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45.63% in the high feed rate. This is compared to the non-digested manure, which saw an 

average reduction of 66.47% in the low feed rate and 31.40% in the high feed rate. The 

BSF digested manure, therefore, experienced greater reductions in moisture content at 

both feed rates compared to the non-digested manure.  

Feed rate was significant for swine manure (F1,22 = 23.84, P ≤ 0.001) and therefore 

analyses were done separately. Trial was significant in neither the freshly-thawed swine 

manure (F1,4 = 0.23, P = 0.6584) nor the 18 g (F1,10 = 1.60, P = 0.2351) nor the 27 g (F1,10 

= 0.05, P = 0.8239) feed rates of BSF digested or non-digested manure.  Treatment was 

significant in both the 18 g feed rate (F2,15 = 2253.42, P ≤ 0.0001) and the 27 gram feed 

rate (F2,15 = 8.80, P = 0.0030). The freshly-thawed swine manure had an average moisture 

content of 73.77 ± 0.34% compared to that of 13.50 ± 0.84 % of the BSF digested manure 

and 11.90 ± 0.92% in the non-digested manure in the lower feed rate. In the higher feed 

rate of 27 g, the average moisture content of the BSF digested manure was 36.74 ± 8.51% 

and 43.52 ± 7.75% in the non-digested manure. On average, black soldier flies reduced 

the moisture content of swine manure by 81.69% in the low feed rate and 50.20% in the 

high feed rate. This is compared to the non-digested manure, which saw an average 

reduction of 83.87% in the low feed rate and 41.00% in the high feed rate. The BSF 

digested manure, therefore, experienced a greater reduction in moisture than the non-

digested manure at the higher feed rate whereas the treatments had comparable reductions 

in moisture at the lower feed rate. 
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Black soldier flies, therefore, reduced moisture content to a higher feed rate than 

the non-digested manure in the higher feed rate however, non-digested manure was drier 

in the lower feed rate. 

Feed rate was significant for dairy manure (F1,22 = 9.68, P = 0.0051) and therefore 

analyses were done separately.  Trial was significant in neither freshly-thawed dairy 

manure (F1,4 = 0.19, P = 0.6856) nor the 18 g (F1,10 = 0.31, P = 0.5874) nor 27 g (F1,10 = 

1.49, P = 0.2498) feed rates of BSF digested or non-digested manure. Treatment was 

significant in both the 18 g feed rate (F2,15 = 3016.21, P ≤ 0.0001) and the 27 gram feed 

rate (F2,15 = 6.33, P = 0.0101 The freshly-thawed dairy manure had an average  

 

 

 

Table 2.4. Mean number of compounds ± SEM of poultry, swine, and dairy manure with 

and without Hermetia illucens (L.) larvae compared to control manure (n1 = 3) 

maintained at 29 ± 0.3°C with 60 ± 5.1%  and 14:10 L:D cycle (P < 0.05). 

Manure Treatment  Number of Compounds 

    

Poultry Control  35.00 ± 2.51a2 

 BSF Digested  17.83 ± 2.04b  

 Non-Digested  30.42  ± 1.35a 

    

Swine Control  26.00 ± 1.53a 

 BSF Digested  15.25 ± 1.71b 

 Non-Digested  16.00 ± 1.66b 

    

Dairy Control  21.67 ± 1.45a 

 BSF Digested  17.33 ± 1.78a 

 Non-Digested  15.17 ± 1.46a 
1n = replicates; 2Different letters within a subset of a column indicate significant difference (P 

< 0.05). 
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moisture content of 84.16 ± 0.50% compared to that of 10.83 ± 0.47 % of the BSF digested 

manure and 10.40 ± 1.15% in the non-digested manure in the lower feed rate. In the higher 

feed rate of 27 g, the average moisture content of the BSF digested manure was 38.50 ± 

13.59% and 37.35 ± 12.37% in the non-digested manure. On average, black soldier flies 

reduced the moisture content of dairy manure by 87.13% in the low feed rate and 54.25% 

in the high feed rate. This is compared to the non-digested manure, which saw an average 

reduction of 87.64% in the low feed rate and 55.62% in the high feed rate. Black soldier 

flies, therefore, reduced moisture content to comparable levels of that of non-digested 

manure.  

 

Multivariate Work  

Data generated from multivariate analyses were inconclusive. All data generated 

are presented in Appendices A-C.  

 

Number of Compounds  

A summary of the number of compounds per manure type and treatment is 

provided in Table 2.4 and the corresponding ANOVAs and Tukey HSD tests in Table 2.5. 

The number of compounds in a given treatment differed significantly (F2,78 = 7.84, P = 

0.008) among the three manure types. In the control manure, the number of compounds 

was significantly different by manure type (F2,6 = 12.87, P = 0.0067) with the number of 

compounds in control poultry manure significantly different from dairy (P = 0.0060) and 

swine (P = 0.0060). However, the number of compounds in control swine  
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Table 2.5. ANOVA and Tukey-Kramer HSD on mean number of compounds ± SEM of poultry, 

swine, and dairy manure (n1 = 3) at 27 g with and without Hermetia illucens (L.) larvae compared 

to control manure. Experiments were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D 

cycle (P < 0.05).   

Poultry 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 1220.5 610.3 18.0 <0.0001 

Error  24 812.7 33.9   

C. Total  26 2033.2    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

CL 

Upper 

CL 

P Value 

Control vs BSF Digested 16.2 3.8 6.8 25.5 0.0007 

Control vs Non-Digested 3.5 3.8 -5.9 12.9 0.6259 

BSF Digested vs Non-

Digested 

12.6 2.37 6.7 18.6 <0.0001 

Swine 

ANOVA      

Source  Df SS MS F Ratio P Value 

Treatment  2 290.4 145.2 4.6 0.0201 

Error  24 764.3 31.8   

C. Total  26 1054.7    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 10.75 3.6 1.7 19.8 0.0184 

Control vs Non-Digested 10.0 3.6 0.9 19.1 0.0293 

BSF Digested vs Non-

Digested 

0.8 2.3 -5.0 6.5 0.9434 

Dairy 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 106.4 53.2 1.8 0.1876 

Error  24 711.0 29.6   

C. Total  26 817.4    
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manure was not significantly different from that of control dairy manure (P = 0.3097). In 

BSF digested manure, the number of compounds was significantly different by manure 

type (F2,33 = 32.91, P ≤ 0.0001) with the number of compounds in control poultry manure 

significantly different from that of dairy (P ≤ 0.0001) and of swine (P ≤ 0.0001). However, 

the number of compounds in control swine manure was not significantly different from 

that of control dairy manure (P = 0.9181). In non-digested manure, the number of 

compounds was not significantly different by manure type (F2,33 = 0.5504, P = 0.5819). 

Further analyses on the number of compounds were conducted within a given manure 

type.  

 

Poultry Manure  

Treatment and feed rate did not significantly (F1,17 = 0.84, P = 0.3725) interact as 

it related to the number of compounds present. Furthermore, neither trial (F1,22 = 1.23, P 

= 0.2791) nor feed rate were significant (F1,22 = 1.72, P = 0.2030) and were therefore 

excluded from analyses. The number of compounds between control, BSF digested and 

non-digested manure was significantly different (F2,24 = 18.42, P ≤ 0.0001). The control 

manure had a mean of 35.00 ± 2.51 compounds compared to 17.83 ± 2.04 in the BSF 

digested manure and 30.42 ± 1.35 in the non-digested manure. Black soldier flies reduced 

the number of compounds in manure by 49.06% compared to non-digested manure, which 

experienced a 13.05% reduction in the number of compounds.  
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Swine Manure  

Treatment and feed rate did not significantly (F1,17 = 0.94, P = 0.3400) interact as 

it related to the number of compounds present. Furthermore, neither trial (F1,22 = 1.23, P 

= 0.2194 nor feed rate were significant (F1,22 = 0.01, P = 0.9176) and were therefore 

excluded from analyses. The number of compounds between control, BSF digested and 

non-digested manure was significantly different (F2,24 = 4.56, P = 0.0210). The control 

manure had a mean of 26.00 ± 1.53 compounds compared to 15.25 ± 1.71 in the BSF  

digested manure and 16.00 ± 1.66 in the non-digested manure. Black soldier flies and non-

digested manure, therefore, saw similar decrease in the number of compounds compared 

to the control with 41.45 and 38.46% reductions, respectively.  

 

Dairy Manure  

Treatment and feed rate did not significantly (F1,17 = 0.37, P = 0.5486) interact as 

it related to the number of compounds present. Furthermore, neither trial (F1,22 = 3.68, P 

= 0.0681) nor feed rate were significant (F1,22 = 0.02, P = 0.8863) and were therefore 

excluded from analyses.  The number of compounds between control, BSF digested and 

non-digested manure did not differ significantly (F2,24 = 1.80, P = 0.1876). While not 

significant, the control manure had a greater number of compounds (21.67 ± 1.45) than 

BSF digested (17.33 ± 1.78) and non-digested (15.17 ± 1.46) manure. Black soldier flies, 

therefore, did not reduce the number of compounds more than non-digested manure with 

only a 20.02% reduction compared to a 30.00% reduction, respectively.  

 



 

 

 

 

86 

Select Odorous Compounds in Poultry Manure  

A summary of the average relative amounts of select odorous compounds in 

poultry manure is presented in Table 2.6 and 2.7. ANOVA and Tukey-Kramer HSD tables 

for each compound are provided in Table 2.8.  

Treatment and feed rate did not significantly (F1,17 = 1.6, P = 0.2229) interact as 

related to phenol. Furthermore, neither trial (F1,22 = 1.8, P = 0.1949) nor feed rate (F1,22 = 

0.0, P = 0.9960) were significant and were therefore excluded from the analyses. Level of 

phenol present across manure types was significantly different (F2,24 = 247.8, P ≤ 0.0001). 

The level of phenol production between BSF digested and non-digested was not 

significantly different (P = 0.3485), while the differences between both the control and 

BSF digested and the control and the non-digested were significant (P ≤ 0.0001). 
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Table 2.6. Mean relative peak areas2 ± SEM of noxious odors emitted from poultry, swine, and dairy manure (1n = 3) with and without Hermetia 

illucens (L.) larvae compared to control manure at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Manure Treatment Volatile 

   Phenol  4-Methylphenol Indole 3-Methylindole 

Poultry Control  462.05 ± 57.48a3 512.06 ± 70.39a 82.90 ± 12.34a 24.50 ± 3.80a 

 BSF Digested  3.00 ± 2.61b 2.06 ± 1.51b 0.03 ± 0.3b 0.04 ± 0.04b 

 Non-Digested  22.11 ± 6.44b 16.03 ± 2.80b 15.32 ± 8.28b 18.09 ± 7.18b 

    

Swine Control  243.67 ± 64.18a 860.95 ± 215.77a 177.61 ± 37.79a 283.3 ± 224.2a 

 BSF Digested  0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.0 ± 14.3b 

 Non-Digested  9.04  ± 9.04b 33.49  ± 33.49b 19.54  ± 19.54b 13.2  ± 14.3b 

    

Dairy Control  93.70 ± 17.99a 414.00 ± 22.0a 8.99 ± 4.50a 66.03 ± 17.30a 

 BSF Digested  0.27 ± 0.94b 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 

 Non-Digested  0.77  ± 2.68b 0.85  ± 0.85b 0.38  ± 0.38b 0.07  ± 0.07b 
1n = replicates; 2Relative areas were obtained by dividing the peak area of the compound by the peak area of the internal standard, n-Octane, 

obtained from the chromatogram; 3different letters within a subset of a column indicate significant difference (P < 0.05). 
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Table 2.7. Mean relative peak areas2 ± SEM of noxious odors emitted from poultry, swine, and dairy manure (1n = 3) with and without Hermetia illucens 

(L.) larvae compared to control manure at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Manure Treatment  Volatile 

   Propanoic Acid 2-Methylpropanoic 

Acid 
Butanoic Acid 3-Methylbutanoic 

Acid 

Pentanoic Acid 

Poultry Control  
63.61 ± 27.30a3 17.49  ± 9.68a 1871.98 ± 1583.60a 347.34 ± 46.75a 

832.40 ± 

365.20a 
 BSF Digested  7.64 ± 7.64b 0.00  ± 0.00a 32.55 ± 32.60b 17.18 ± 16.86b 12.94 ± 12.94b 

 Non-Digested  4.80 ± 3.45b 13.58  ± 9.35a 39.34 ± 28.30b 49.96 ± 36.04b 49.52 ± 31.39b 

    

Swine Control  42.01 ± 2.46a 16.27 ± 5.22a 170.05 ± 43.71a 177.95 ± 30.03a N/A 

 BSF Digested  0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b N/A 

 Non-Digested  0.00 ± 0.00b 0.00  ± 0.00b 0.00 ± 0.00b 0.00  ± 0.00b N/A 

    

Dairy Control  162.01 ± 13.89a 86.27 ± 4.21a 146.71 ± 6.58a 90.28 ± 5.87a 74.46 ± 4.86a 

 BSF Digested  0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 

 Non-Digested  0.00  ± 0.00b 0.00  ± 0.00b 0.00  ± 0.00b 0.00  ± 0.00b 0.00 ± 0.00b 
1n = replicates; 2Relative areas were obtained by dividing the peak area of the compound by the peak area of the internal standard, n-Octane, obtained 

from the chromatogram; 3different letters within a subset of a column indicate significant difference (P < 0.05). 
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Table 2.8. ANOVA and Tukey-Kramer HSD on relative amount of amounts of odorous volatile 

compounds in poultry manure (n = 3) with and without Hermetia illucens (L.) larvae compared to control 

manure. Experiments were conducted at 29 ± 0.3°C with 60 ± 5.1%  RH and 14:10 L:D cycle (P < 0.05). 

Phenol  

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 540960.0 270480.0 247.8 <0.0001 

Error  24 26193.0 1091.0   

C. Total  26 567153.0    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

CL 

Upper 

CL 

P Value 

Control vs BSF Digested 459.0 21.3 405.8 512.3 <0.0001 

Control vs Non-Digested 439.9 21.3 386.7 493.2 <0.0001 

BSF Digested vs Non-Digested 19.1 13.5 -14.5 52.8   0.3485 

4-Methylphenol 

ANOVA      

Source  Df SS MS F Ratio P Value 

Treatment  2 675884.3 337943.0 261.1 <0.0001 

Error  24 31067.3 1294.0   

C. Total  26 706951.6    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 510.0 23.2 452.0 568.0 <0.0001 

Control vs Non-Digested 496.0 23.2 438.0 554.0 <0.0001 

BSF Digested vs Non-Digested 14.0 14.7 -22.7 50.6 0.6144 

Indole 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 16488.2 8244.1 19.9 <0.0001 

Error  24 9958.7 415.0   

C. Total  26 26446.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 82.9 13.1 50.0 115.7 <0.0001 

Control vs Non-Digested 67.6 13.1 34.7 100.4 <0.0001 



 

 

 

90 

Table 2.8 (Continued)      

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

BSF Digested vs Non-Digested 15.3 8.3 -5.5 36.1 0.1788 

3-Methylindole 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 2590.9 1295.5 4.5 0.0218 

Error  24 6897.4 287.4   

C. Total  26 9488.3    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

 CL 

Upper  

CL 

P Value 

Control vs BSF Digested 24.5 10.9 -2.7 51.8 0.0854 

Control vs Non-Digested 6.4 10.9 -20.9 33.7 0.8289 

BSF Digested vs Non-Digested 18.1 6.9 0.8 35.3 0.0395 

Propanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 8830.6 4415.3 9.6 0.0009 

Error  24 11066.1 461.1   

C. Total  26 19896.7    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 56.0 13.9 21.4 93.4 0.0013 

Control vs Non-Digested 58.8 13.9 24.2 94.4 0.0008 

BSF Digested vs Non-Digested 2.8 8.8 -19.1 24.7 0.9442 

2-Methylpropanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 1411.6 705.8 1.4 0.2658 

Error  24 12092.3 503.8   

C. Total  26 13503.9    

Butanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 8989566.0 4494783.0 7.1 0.0039 

Error  24 15291817.0 637150.0   
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Table 2.8 (Continued)      

Source Df SS MS F Ratio P Value 

C. Total  26 24281383.0    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 1839.4 515.3 552.7 3126.2 0.0043 

Control vs Non-Digested 1832.6 515.3 545.9 3119.4 0.0044 

BSF Digested vs Non-Digested 6.8 325.9 -807.0 820.6 0.9999 

3-Methylbutanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 268981.7 134491.0 14.5 <0.0001 

Error  24 222297.0 9262.0   

C. Total  26 491278.8    

TUKEY HSD 

Level  Differences Std Err 

 Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 330.2 62.1 175.0 489.3 <0.0001 

Control vs Non-Digested 297.4 62.1 142.2 452.5 0.0002 

BSF Digested vs Non-Digested 32.8 39.3 -65.3 130.9 0.6858 

Pentanoic Acid 

ANOVA  

Source  Df SS MS F Ratio P Value 

Treatment  2 1719690.0 859845.0 21.7 <0.0001 

Error  24 952763.4 39698.0   

C. Total  26 2672453.4    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 

 

819.5 128.6 498.3 1140.6 <0.0001 

Control vs Non-Digested 782.9 128.6 461.7 1104.1 <0.0001 

BSF Digested vs Non-Digested 36.6 81.3 -5166.6 239.7 0.8950 
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The mean amount of phenol was reduced by 99.35% in the BSF digested manure and 

95.21% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,17 = 1.0, P = 0.3385) interact as it 

related to 4-methylphenol. Furthermore, neither trial (F1,22 = 0.9, P = 0.3587) nor feed rate 

(F1,22 = 0.92, P = 0.3490) were significant and were therefore excluded from the analyses. 

The amount of 4-methylphenol production across manure types was significantly different 

(F2,24 = 261.1, P ≤ 0.0001). The level of 4-methylphenol production between BSF digested 

and non-digested was not significantly different (P = 0.6144) while the differences 

between both the control and BSF digested and the control and the non-digested were 

significant to a level of P ≤ 0.0001. The mean amount of 4-methylphenol was reduced by 

99.60% in the BSF digested manure and 96.87% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,17 = 1.0, P = 0.3385) interact as it 

related to indole.  Furthermore, neither trial (F1,22 = 1.0, P = 0.3324) nor feed rate (F1,22 = 

1.37, P = 0.2550) were significant either and were therefore excluded from the analyses. 

Amount indole production across manure types was significantly different (F2,24 = 19.9, P 

≤ 0.0001). The level of indole production between BSF digested and non-digested was not 

significantly different (P = 0.1788) while the differences between both the control and 

BSF digested and the control and the non-digested were significant to a level of P ≤ 

0.0001. The mean amount of indole was reduced by 99.96% in the BSF digested manure 

and 81.52% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,17 = 1.0, P = 0.3385) interact as it 

related to 3-methylindole. Furthermore, neither trial (F1,22 = 0.5, P = 0.4729) nor feed rate 
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(F1,22 = 1.99, P = 0.1721) were significant either and were therefore excluded from the 

analyses. The amount of 3-methylindole production across manure types was significantly 

different (F2,24 = 17.6, P ≤ 0.0001). The level of 3-methylindole production between BSF 

digested and non-digested was not significantly different (P = 0.9237) while the 

differences between both the control and BSF digested and the control and the non-

digested were significant to a level of P ≤ 0.0001. The mean amount of 3-methylindole 

was reduced by 99.35% in the BSF digested manure and 95.21% in the non-digested 

manure. 

Treatment and feed rate did not significantly (F1,17 = 2.6, P = 0.1210) interact as it 

related to propanoic acid. Furthermore, neither trial (F1,22 = 1.3, P = 0.2691) nor feed rate 

(F1,22 = 0.11, P = 0.7385) were significant either and were therefore excluded from the 

analyses. The amount of propanoic acid production across manure types was significantly 

different (F2,24 = 261.1, P = 0.0009). The level of propanoic acid production between BSF 

digested and non-digested was not significantly different (P = 0.9442) while significant 

differences between both the control and BSF digested (P = 0.0013) and the control and 

the non-digested (P = 0.0018) were observed. The mean amount of propanoic acid was 

reduced by 87.99% in the BSF digested manure and 92.45% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,17 = 1.3, P = 0.2668) interact as it 

related to 2-methylpropanoic acid. Furthermore, neither trial (F1,22 = 2.1, P = 0.1603) nor 

feed rate (F1,22 = 1.19, P = 0.2873) were significant either and were therefore excluded 

from the analyses. The amount of 2-methylpropanoic acid across manure types was not 

significantly different (F2,24 = 1.4, P = 0.2658). The mean amount of propanoic acid, 2-
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methy was reduced by 100% in the BSF digested manure and 22.36% in the non-digested 

manure. 

Treatment and feed rate did not significantly (F1,17 = 2.8, P = 0.1133) interact as it 

related to butanoic acid. Furthermore, neither trial (F1,22 = 1.6, P = 0.2179) nor feed rate 

(F1,22 = 0.01, P = 0.9053) were significant either and were therefore excluded from the 

analyses. The amount of butanoic acid production across manure types was significantly 

different (F2,24 = 17.6, P = 0.0039). The level of butanoic acid production between BSF 

digested and non-digested was not significantly different (P = 0.9999) while significant 

differences between both the control and BSF digested (P = 0.0043) and the control and 

the non-digested (P = 0.0044) were observed. The mean amount of butanoic acid was 

reduced by 98.26% in the BSF digested manure and 97.90% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,17 = 2.4, P = 0.1431) interact as it 

related to 3-methylbutanoic acid. Furthermore, neither trial (F1,22 = 2.2, P = 0.1522) nor 

feed rate (F1,22 = 0.42, P = 0.5223) were significant either and were therefore excluded 

from the analyses. The amount of 3-methylbutanoic acid production across manure types 

was significantly different (F2,24 = 17.6, P ≤ 0.0001). The level of 3-methylbutanoic acid 

production between BSF digested and non-digested was not significantly different (P = 

0.6858) while significant differences between both the control and BSF digested (P ≤ 

0.0001) and the control and the non-digested (P = 0.0002) were observed. The mean 

amount of 3-methylbutanoic acid was reduced by 95.05% in the BSF digested manure and 

85.62% in the non-digested manure. 
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Treatment and feed rate did not significantly (F1,17 = 2.46, P = 0.13354) interact as 

it related to pentanoic acid. Furthermore, neither trial (F1,22 = 1.8, P = 0.1973) nor feed 

rate (F1,22 = 0.54, P = 0.4692) were significant either and were therefore excluded from 

the analyses. The amount of pentanoic acid production across manure types was 

significantly different (F2,24 = 21.66, P ≤ 0.0001). The level of pentanoic acid production 

between BSF digested and non-digested was not significantly different (P = 0.8950) while 

the differences between both the control and BSF digested and the control and the non-

digested were significant to a level of P ≤ 0.0001. The mean amount of pentanoic acid was 

reduced by 98.45% in the BSF digested manure and 94.05% in the non-digested manure. 

 

Select Odorous Compounds in Swine Manure 

A summary of the average relative amounts of select odorous compounds in swine 

manure is presented in Tables 2.6 and 2.7. ANOVA and Tukey-Kramer HSD tables for 

each compound are provided in Table 2.9. The amounts of all select volatiles in swine 

manure were significantly reduced (P < 0.05) in both the BSF digested and non-digested 

treatments compared to the control manure.  

Treatment and feed rate did not significantly (F1,18.1 = 1.0, P = 0.3195) interact as 

it related to phenol. Furthermore, neither trial (F1,22 = 1.0 P = 0.3282) nor feed rate (F1,22  
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Table 2.9. ANOVA and Tukey-Kramer HSD on relative amount of amounts of odorous volatile 

compounds in swine manure (n = 3) with and without Hermetia illucens (L.) larvae compared to control 

manure. Experiments were conducted at 29 ± 0.3°C with 60 ± 5.1%  RH and 14:10 L:D cycle (P < 0.05). 

Phenol  

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 153005.3 76502.6 51.7 <0.0001 

Error  24 35499.6 1479.1   

C. Total  26 188504.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

CL 

Upper 

CL 

P Value 

Control vs BSF Digested 243.7 24.8 181.7 305.7 <0.0001 

Control vs Non-Digested 234.6 24.8 172.6 296.6 <0.0001 

BSF Digested vs Non-Digested 9.0 15.7 -30.2 48.3 0.8342 

4-Methylphenol 

ANOVA      

Source  Df SS MS F Ratio P Value 

Treatment  2 1907193.4 953597.0 53.5 <0.0001 

Error  24 427414.1 17809.0   

C. Total  26 2334607.5    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 860.9 86.1 645.8 1076.1 <0.0001 

Control vs Non-Digested 827.5 86.1 612.3 1042.6 <0.0001 

BSF Digested vs Non-Digested 33.5 54.4 -102.6 169.5 0.8135 

Indole 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 77412.9 38706.4 15.8 <0.0001 

Error  24 58970.1 2457.1   

C. Total  26 136383.0    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 177.6 32.0 97.7 257.5 <0.0001 
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Table 2.9 (Continued)      

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs Non-Digested 158.1 32.0 78.2 238.0 <0.0001 

BSF Digested vs Non-Digested 19.5 20.2 -31.0 70.1 0.6051 

3-Methylindole 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 205151.3 102576.0 41.7 <0.0001 

Error  24 58979.6 2457.0   

C. Total  26 264130.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

 CL 

Upper  

CL 

P Value 

Control vs BSF Digested 283.3 32.0 203.4 363.2 <0.0001 

Control vs Non-Digested 270.0 32.0 190.1 350.0 <0.0001 

BSF Digested vs Non-Digested 13.2 20.2 -37.3 63.8 0.7921 

Propanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 4706.4 2353.2 1558.9 <0.0001 

Error  24 36.2 1.5   

C. Total  26 4742.6    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 42.0 0.8 40.0 44.0 <0.0001 

Control vs Non-Digested 42.0 0.8 40.0 44.0 <0.0001 

BSF Digested vs Non-Digested 0.0 0.5 -1.3 1.3 1.0000 

2-Methylpropanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 706.3 353.1 51.8 <0.0001 

Error  24 163.7 6.8   

C. Total  26 870.0    
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Table 2.9 (Continued)      

TUKEY HSD      

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 16.3 1.7 12.1 20.5 <0.0001 

Control vs Non-Digested 16.3 1.7 12.1 20.5 <0.0001 

BSF Digested vs Non-Digested 0.0 1.1 -2.7 2.7 1.0000 

Butanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 77107.4 38553.7 80.7 <0.0001 

Error  24 11462.5 477.6   

C. Total  26 88569.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 170.0 14.1 134.8 205.3 <0.0001 

Control vs Non-Digested 170.0 14.1 134.8 205.3 <0.0001 

BSF Digested vs Non-Digested 0.0 8.9 -22.3 22.3 1.000 

3-Methylbutanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 84439.9 42219.9 145.9 <0.0001 

Error  24 6946.2 289.4   

C. Total  26 91386.0    

TUKEY HSD 

Level  Differences Std Err 

 Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 177.9 11.1 150.5 205.4 <0.0001 

Control vs Non-Digested 177.9 11.1 150.5 205.4 <0.0001 

BSF Digested vs Non-Digested 0.0 6.9 -17.3 17.3 1.000 

Pentanoic Acid 

ANOVA  

Source  Df SS MS F Ratio P Value 

Treatment  2 1719690.0 859845.0 21.7 <0.0001 
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Table 2.9 (Continued)      

Source  Df SS MS F Ratio P Value 

Error  24 952763.4 39698.0   

C. Total  26 2672453.4    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 

 

819.5 128.6 498.3 1140.6 <0.0001 

Control vs Non-Digested 782.9 128.6 461.7 1104.1 <0.0001 

BSF Digested vs Non-Digested 36.6 81.3 -5166.6 239.7 0.8950 

 

 

 

= 1.00, P = 0.3282) were significant either and were therefore excluded from the analyses. 

Level of phenol present across manure types was significantly different (F2,24 = 51.7, P ≤ 

0.0001). The level of phenol production between BSF digested and non-digested was not 

significantly different (P = 0.8342), while the differences between both the control and 

BSF digested and the control and the non-digested were significant (P ≤ 0.0001). The 

mean amount of phenol was reduced by 99.35% in the BSF digested manure and 95.21% 

in the non-digested manure. 

Treatment and feed rate did not significantly (F1,18.1 = 1.0, P = 0.3195) interact as 

it related to 4-methylphenol. Furthermore, neither trial (F1,22 = 1.0, P = 0.3282) nor feed 

rate (F1,22 = 1.00, P = 0.3282) were significant either and were therefore excluded from 

the analyses. Amount of 4-methylphenol production across manure types was significantly 

different (F2,24 = 53.5, P ≤ 0.0001). The level of 4-methylphenol production between BSF 

digested and non-digested was not significantly different (P = 0.8135) while the 

differences between both the control and BSF digested and the control and the  
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non-digested were significant to a level of P ≤ 0.0001. The mean amount of 4-

methylphenol was reduced by 100% in the BSF digested manure and 96.11% in the non-

digested manure. 

Treatment and feed rate did not significantly (F1,18.1 = 1.0, P = 0.3195) interact as 

it related to indole. Furthermore, neither trial (F1,22  = 1.0, P = 0.3282) nor feed rate (F1,22 

= 1.00, P = 0.3282) were significant either and were therefore excluded from the analyses. 

Indole production across manure types was significantly different (F2,24 = 15.8, P ≤ 

0.0001). The level of indole production between BSF digested and non-digested was not 

significantly different (P = 0.6051) while the differences between both the control and 

BSF digested and the control and the non-digested were significant to a level of P ≤ 

0.0001. The mean amount of indole was reduced by 100% in the BSF digested manure 

and 89.0% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,18.1 = 1.0, P = 0.3182) interact as 

it related to 3-methylindole. Furthermore, neither trial (F1,22  = 1.0, P = 0.3268) nor feed 

rate (F1,22 = 1.00, P = 0.3268) were significant either and were therefore excluded from 

the analyses. 3-Methylindole production across manure types was significantly different 

(F2,24 = 41.7, P ≤ 0.0001). The level of 3-methylindole production between BSF digested 

and non-digested was not significantly different (P = 0.7921) while the differences 

between both the control and BSF digested and the control and the non-digested were 

significant to a level of P ≤ 0.0001. The mean amount of 3-methylindole was reduced by 

100% in the BSF digested manure and 95.34% in the non-digested manure. 
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The select volatile fatty acids examined (propanoic acid, 2-methylpropanoic acid, 

butanoic acid, and 3-methylbutanoic acid) were only present in the control manure and 

not detected (i.e., 100% reduction) in either the BSF digested or the non-digested samples 

and thus statistically significant (Table 2.7). Pentanoic acid was not present in swine 

manure samples.  

 

Select Odorous Compounds in Dairy Manure 

A summary of the average relative amounts of select odorous compounds in dairy 

manure is presented in Tables 2.6 and 2.7. ANOVA and Tukey-Kramer HSD tables for 

each compound are provided in Table 2.10. The amounts of all select volatiles in dairy 

manure were significantly reduced (P < 0.05) in both the BSF digested and non-digested 

treatments compared to the control manure.  

Treatment and feed rate did not significantly (F1,18 = 1.6, P = 0.229) interact as it 

related to phenol. Furthermore, neither trial (F1,22 = 0.4 P = 0.5476) nor feed rate( F1,22 = 

0.37, P = 0.5476) were significant either and were therefore excluded from the analyses. 

Level of phenol present across manure types was significantly different (F2,24 = 136.8, P 

≤ 0.0001). The level of phenol production between BSF digested and non-digested was 

not significantly different (P = 0.9902), while the differences between both the control 

and BSF digested and the control and the non-digested were significant (P ≤ 0.0001). The 

mean amount of phenol was reduced by 99.71% in the BSF digested manure and 99.17% 

in the non-digested manure. 
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Table 2.10. ANOVA and Tukey-Kramer HSD on relative amount of amounts of odorous volatile 

compounds in dairy manure (n = 3) with and without Hermetia illucens (L.) larvae compared to control 

manure. Experiments were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Phenol  

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 2313.4 11576.7 136.8 <0.0001 

Error  24 2031.5 84.6   

C. Total  26 25184.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

CL 

Upper 

CL 

P Value 

Control vs BSF Digested 93.4 5.9 78.6 1083.0 <0.0001 

Control vs Non-Digested 92.9 5.9 78.1 107.8 <0.0001 

BSF Digested vs Non-Digested 0.5 3.8 -8.9 9.9 0.9902 

4-Methylphenol 

ANOVA      

Source  Df SS MS F Ratio P Value 

Treatment  2 456129.9 228064.0 156.9 <0.0001 

Error  24 34893.8 1454.0   

C. Total  26 491022.7    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 414.0 24.6 352.5 475.5 <0.0001 

Control vs Non-Digested 413.2 24.6 351.7 474.6 <0.0001 

BSF Digested vs Non-Digested 0.8 15.6 -38.0 39.7 0.9984 

Indole 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 206.5 103.3 17.6 <0.0001 

Error  24 140.4 5.9   

C. Total  26 346.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 9.0 1.6 5.1 12.9 <0.0001 
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Table 2.10 (Continued)      

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs Non-Digested 8.6 1.6 4.7 12.5 <0.0001 

BSF Digested vs Non-Digested 0.4 0.4 -2.1 2.8 0.9237 

3-Methylindole 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 2590.9 1295.5 4.5 0.0218 

Error  24 6897.4 287.4   

C. Total  26 9488.3    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower 

 CL 

Upper  

CL 

P Value 

Control vs BSF Digested 24.5 10.9 -2.7 51.8 0.0854 

Control vs Non-Digested 6.4 10.9 -20.9 33.7 0.8289 

BSF Digested vs Non-Digested 18.1 6.9 0.8 35.3 0.0395 

Propanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 69993.1 34996.6 726.0 <0.0001 

Error  24 1156.8 48.200.0   

C. Total  26 71149982.0    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 162.0 4.5 150.8 173.2 <0.0001 

Control vs Non-Digested 162.0 4.5 150.8 173.2 <0.0001 

BSF Digested vs Non-Digested 0.0 2.8 -7.1 7.1 1.0000 

2-Methylpropanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 19848.7 9924.4 22243.1 <0.0001 

Error  24 106.2 4.4   

C. Total  26 19954.9    
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Table 2.10 (Continued) 

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 86.3 1.4 82.9 89.7 <0.0001 

Control vs Non-Digested 86.3 1.4 82.9 89.7 <0.0001 

BSF Digested vs Non-Digested 0.0 0.9 -2.1 2.1 1.0000 

Butanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 57398.1 28699.0 2650.9 <0.0001 

Error  24 295.8 10.8   

C. Total  26 57657.9    

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 146.7 2.1 141.4 152.0 <0.0001 

Control vs Non-Digested 146.7 2.1 141.4 152.0 <0.0001 

BSF Digested vs Non-Digested 0.0 1.3 -3.4 3.4 1.000 

3-Methylbutanoic Acid 

ANOVA 

Source  Df SS MS F Ratio P Value 

Treatment  2 21734.5 10867.3 1260.2 <0.0001 

Error  24 207.0 8.6   

C. Total  26 21941.5    

TUKEY HSD 

Level  Differences Std Err 

 Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 90.3 1.9 85.5 95.0 <0.0001 

Control vs Non-Digested 90.3 1.9 85.5 95.0 <0.0001 

BSF Digested vs Non-Digested 0.0 1.2 -3.0 3.0 1.000 

Pentanoic Acid 

ANOVA  

Source  Df SS MS F Ratio P Value 

Treatment  2 14785.3 7392.7 1254.1 <0.0001 

Error  24 141.5 5.9   

C. Total  26 144926.8    
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Table 2.10 (Continued) 

TUKEY HSD 

Level  Differences Std Err  

Diff 

Lower  

CL 

Upper  

CL 

P Value 

Control vs BSF Digested 

 

74.5 1.6 70.5 78.4 <0.0001 

Control vs Non-Digested 74.5 1.6 70.5 78.4 <0.0001 

BSF Digested vs Non-Digested 0.0 1.0 -2.5 2.5 1.000 

 

 

 

Treatment and feed rate did not significantly (F1,18 = 0.97, P = 0.3385) interact as 

it related to 4-methylphenol. Furthermore, neither trial (F1,22 = 1.0, P = 0.3282) nor feed 

rate (F1,22 = 1.0, P = 0.3282) were significant either and were therefore excluded from the 

analyses. Amount of 4-methylphenol production across manure types was significantly 

different (F2,24 = 156.9, P ≤ 0.0001). The level of 4-methylphenol production between BSF 

digested and non-digested was not significantly different (P = 0.9984) while the 

differences between both the control and BSF digested and the control and the non-

digested were significant to a level of P ≤ 0.0001. The mean amount of 4-methylphenol 

was reduced by 100% in the BSF digested manure and 99.79% in the non-digested 

manure. 

Treatment and feed rate did not significantly (F1,18 = 0.96, P = 0.3385) interact as 

it related to indole. Furthermore, neither trial (F1,22 = 1.0, P = 0.3282) nor feed rate (F1,22  

= 1.0, P = 0.3282) were significant and were therefore excluded from the analyses. 

Amount of indole production across manure types was significantly different (F2,24 = 17.6, 

P = ≤ 0.0001). The level of indole production between BSF digested and non-digested 
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was not significantly different (P = 0.9237) while the differences between both the control 

and BSF digested and the control and the non-digested were significant to a level of P ≤ 

0.0001. The mean amount of indole was reduced by 100% in the BSF digested manure 

and 95.77% in the non-digested manure. 

Treatment and feed rate did not significantly (F1,18 = 0.97, P = 0.3385) interact as 

it related to 3-methylindole. Furthermore, neither trial (F1,22 = 1.0, P = 0.3282) nor feed 

rate (F1,22 = 1.0, P = 0.3282) were significant either and were therefore excluded from the 

analyses. 3-methylindole production across manure types was significantly different (F2,24 

= 77.5, P = ≤ 0.0001). The level of 3-methylindole production between BSF digested and 

non-digested was not significantly different (P = 0.9998) while the differences between 

both the control and BSF digested and the control and the non-digested were significant 

to a level of P ≤ 0.0001. The mean amount of 3-methylindole was reduced by 100% in the 

BSF digested manure and 99.89% in the non-digested manure.  

 The select volatile fatty acids examined (propanoic acid, 2-methylpropanoic acid, 

butanoic acid, 3-methylbutanoic acid and pentanoic acid) were only present in the control 

manure and not detected (i.e., 100% reduction) in either the BSF digested or the non-

digested samples and thus statistically significant (Table 2.7).  
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Discussion 

 

I was able to determine that colonization and digestion of manure by BSFL reduces the 

emissions of select odorous VOCs across all manure types and feed rates compared to 

amounts present in the control manure. The black soldier fly was adept at reducing select 

volatile emissions at rates of 87% or greater. In the case of 4-methylphenol, indole, skatole 

and the five fatty acids examined, no levels of compounds were detected in either digested 

swine or dairy manure (i.e., 100% reduction).  

This ability of BSFL to reduce VOC emissions, particularly those associated with 

the offensive smell of manure, demonstrates another added benefit to using these larvae 

as a manure management tool in addition to the benefits presented in previous studies such 

as reductions in dry matter (Sheppard 1994), nitrogen and phosphorus (Myers et al. 2008) 

and pathogenic Gram-negative bacteria (Erickson et al. 2004; Liu et al. 2008). With black 

soldier flies manure is rendered into a substance that is more environmentally and human 

health friendly.  

 The reduction of select odorous VOCs is believed to be in part due to a decrease 

of moisture. VOC emissions are heavily dependent on environmental factors such as 

moisture content, pH, temperature, O2 availability, and biodegradability of a substrate 

(Brinton 1998).  

Moisture content data (Table 2.1) indicates that both treatments were lower in 

moisture than the freshly-thawed manure. In the low feed rate, BSFL reduced moisture 

the greatest in dairy manure (87.13%), followed by poultry (82.61%) and swine (81.69%). 

Lower levels of reduction were seen in the higher feed rate. Dairy manure was reduced 
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the greatest by 54.25% followed by swine (50.20%) and poultry (45.63%). The non-

digested manures saw similar trends in manure types with dairy manure moisture reduced 

the greatest followed by swine and poultry in both 18 g (87.64, 83.87 and 66.47%, 

respectively) and 27 g feed rates (55.62, 41.00 and 31.40%, respectively) with reduction 

being greater in the lower feed rate.   

This change in moisture by manure type was expected due to the longer larval 

development times seen in swine and dairy manure compared to poultry. For example, 

time to 90% pupation significantly different among manure types at both the 18 g feed 

rate (F2,33 = 30.61, P ≤ 0.0001) and the 27 g feed rate (F2,33 = 21.92, P ≤ 0.0001). For both 

18 g and 27 g feed rates, poultry larvae reached 90% significantly quicker than swine (P 

≤ 0.0001, P ≤ 0.0001) and dairy (P ≤ 0.001, P = 0.0021). Dairy and swine did not reach 

90% pupation at significantly different rates in the 18 g feed rate (P = 0.8121) but did in 

the 27 g feed rate (P = 0.0176). On average, poultry larvae reached 90% pupation 46.50 

and 44.23% more quickly than swine and dairy manure, respectively, at the 18 g feed rate. 

For the 27 g feed rate, poultry developed 27.89 and 40.81% more quickly on swine and 

dairy manure, respectively. This data is supported by previous studies where larvae fed 

pig manure developed slower and were smaller compared to larvae feed a control of 

poultry feed (Zhou et al. 2013). This long larval development time was believed to be to 

due to the lower nutritional quality of the manure (i.e. calories, protein and fat content) 

when compared to the other feed treatments such as kitchen waste. Oonincx et al. (2015) 

observed longer development times with larvae fed poultry, swine and cow manure 

compared to a control diet of chicken feed (144-215 vs 20-d).  
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 In this study, the increased development times observed in swine and dairy 

manure gave larvae more time to reduce the moisture content via digestion and aeration. 

Similarly, because VOCs were taken at 90% pupation, corresponding controls for these 

manure types sat for longer periods of time than either feed rates of poultry manure and 

dried out extensively in the environmental chamber. Thus, the dairy and swine manure, 

especially at the lower feed rates, had even higher reduced moisture contents in both the 

digested and non-digested treatments than poultry manure. The greater level of moisture 

reduction in these manure types and feed rates could therefore be the reason that 

compounds such as a volatile fatty acids (VFAs) are completely absent from both swine 

and dairy manure samples compared to present in the poultry manure samples. However, 

in some instances, the BSFL were more adept at reducing VOCs than manure without 

larvae. For example, the lower moisture content of BSF digested manure compared to non-

digested manure in the higher feed rate could be the reason we see a complete reduction 

(i.e. 100%) of certain compounds such as 2-methylpropanoic acid in poultry manure and 

phenol, 4-methylphenol, and indole in swine manure compared to higher amounts present 

in the non-digested manure (Tables 2.4 and 2.5).  

Moisture data aligned with previous studies, which demonstrated other 

saprophagous species’ abilities to decrease the moisture content of manure. For example, 

larval feeding by Musca domestica (L.) (Diptera: Muscidae) decreased the moisture of 

poultry manure by as much as 89% (Barnard et al. 1998) compared to reductions ranging 

from 81.69-87.13% in the lower feed rate of this study.  
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The ability of the black soldier fly to reduce the moisture content of the substrate 

on which it feeds, particularly manure, impacts microbial populations which whose are 

responsible for generating many odorous VOCs (Zhu 2000). Tate (1978) determined 

survival of E. coli to be greatest in organic soils that were under flooded conditions and 

Hagedorn et al. (1978) similarly determined E. coli populations to be highest in a water 

table following a major rainfall. Similarly, Streptococcus faecalis degrades rapidly under 

low soil moisture conditions (Kibbey et al. 1978). Moisture content of manure and the 

effect on bacteria survival has been less thoroughly studied, however, Wang et al. (1996) 

suggested dehydration of manure could contribute to the die off E. coli O157:H7 and 

observed this with fecal Streptococci spp. in a later study (Wang et al. 2004). Another 

study examining the survival of E. coli O157:H7 and Salmonella typhimrum in cow 

manure and slurry observed a similar effect with these microbes persisting in wastes with 

higher moisture contents (Himathongkham et al. 1999).  

A reduction in microbial populations in manure digested by the BSFL could also 

contribute to reduction in targeted VOCs. Lalander et al. (2013) saw a 6 log10 reduction in 

Salmonella spp. in human feces with BSFL digestion compared to a less than 2 log10 

reduction in the control feces, which had no larvae.  Poultry manure inoculated with 

Salmonella enterica serovar Enteritidis that was digested by BSFL experienced pathogen 

populations 2.5 log lower than control samples without larvae after three days (Erickson 

et al. 2004). Lalander et al. (2015) observed a 107 CFU g-1 to below the detection limit of 

1 CFU g-1 reduction in Salmonella spp. in compost reactors that were supplied a mix of 

human and pig manure, and organic wastes and allowed to be digested by BSFL. Liu et 
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al. (2008) inoculated dairy manure with E. coli and observed that larvae were successful 

at reducing the pathogen loads in the manure across all treatments; however, their ability 

to reduce the pathogen was affected by the amount of manure they were provided and the 

temperature at which the experiment was conducted. The greatest reduction of E. coli 

occurring with a manure amount of 50 g at 27°C which after 72 h went from 7.0 log CFU 

g-1 to 0.23 ± 3.39 log CFU g-1. 

Reduction in microbial populations will reduce many odors associated with 

manure, as VOCs are the coproducts of different metabolic pathways, which serve as 

waste products or potential signals for the microbes (Mayrhofer 2006). Bacteria from 

several genera are responsible for many of the odorous compounds found in manure 

(Mackie et al. 1998). Streptococcus spp. are capable of producing ammonia, five of which 

have been found in swine manure (Russell 1979). Peptostreptococcus spp. will metabolize 

peptone and AA into VFAs including acetic, formic, propionic, caproic, isobutryic, 

isovaleric, and isocaproic acids (Mackie et al. 1998). Other bacteria in genera such as 

Eubacteria, Lactobacillus, Escherichia, Clostridium Propionibacterium, Bacteroides and 

Megasphaera are all responsible for the production of odorous compounds such as VFAs, 

indole and sulfur containing compounds all of which can contribute significantly to odor 

(Mackie et al. 1998; Zhu, 2000; Le et al. 2005). 

A study by Mayrhofer et al. (2006) found positive correlations between the 

production of VOCs and the enhancement of microbial growth and conversely negative 

correlations between microbial inhibition and VOC emissions during the breakdown of 

household biowastes over a course of 16-d (Mayrhofer et al. 2006). This relationship 
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between microbes and specific VOC emissions has been demonstrated by several authors 

(Senecal et al. 2002, Lechner et al. 2005, Jünger et al. 2012) with the hopes of uniquely 

identifying human bacterial pathogens from specific volatile fingerprints and therefore 

circumventing biases, which may arise from DNA extraction procedures (Mayrhofer et al. 

2006).  These studies all support the idea that the microbial structure of manure would 

affect VOC emissions.   

This study should be conducted at industrial scale to determine if the results are 

consistent. Diener et al. (2009) indicated the challenges that may be faced when trying to 

take a bioconversion system with the black soldier fly to a larger scale which included 

altered environmental conditions (e.g. humidity, solar radiation, different predator/prey 

interactions), system operability and design issues that could lead to potentially 

problematic contents such as heavy metals and pathogens (Diener et al. 2009). For 

example, mass production of Trichogramma spp. (Hymenoptera: Trichogrammatidae) for 

biological control has proven unsuccessful in many countries such as Australia and the 

United States compared to the mass rearing success seen in the silkworm industry of 

China, despite successful small scale laboratory rearing (Consoli et al. 2010). Efforts to 

eradicate the New World screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: 

Calliphoridae) through sterile release programs have warranted the successful mass 

rearing of these insects, however, Babilonia and Maki (1991) noted that the requirements 

for a stable rearing environment in artificial rearing systems can be met only in varying 

degrees but never entirely. Screwworm rearing plants in Mexico observed only a 

maximum rearing efficiency of 60 to 70%, a decreased efficiency attributed to quality and 
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quantity of diet, rearing temperature and relative humidity, and higher levels of physical 

handling than would occur with natural insect densities (Babilonia and Maki, 1991). 

Despite this, Sheppard et al. (1995) determined black soldier fly production was scalable 

from the laboratory to the field. They witnessed an increased in efficacy of manure-to-

feedstuff conversion from 1-6 to 7-8% when they increased the size from 11 to 230 hens 

per basin indicating that the black soldier fly may favor larger scales. 

Additional limitations of my study were in part due to the availability of fresh 

manure, which would have been ideal to work with because fresh manure would more 

closely resemble field or commercial operation conditions that this research aims to be 

applied to. Additionally, black soldier flies are posited to develop optimally on fresh 

manure (Sheppard 1983).  Despite this, working with fresh manure daily was not feasible 

due to the distance of the farms from which it was collected.  

The freezing of the manure may have had effects on the microbial structure of the 

manure. Previous studies have indicated that the microbial structure of manure differs with 

different freezing temperature. For example, a study by Kudva et al. (1998) found that 

survival of Escherichia coli O157:H7 in bovine manure was dependent on manure storage 

temperatures. Because many manure odors are microbial in origin (Le et al. 2005), a 

change in the microbial structure of the manure may have had effects on the volatile 

emissions of the manure as it subsequently was thawed and allowed to decompose or be 

digested. However, because all manure types were treated the same way we do not propose 

differences seen between manure types to be only due to manure freezing. The freezing of 

manure could, however, explain the trial effect observed as the manure used in second 
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trial was frozen for two months longer than that of the first trial. Georgsson et al. (2006) 

found that the amount of Campylobacter on broiler carcasses was significantly (P > 0.05) 

different on those frozen at 7°C for 31 d compared to 73 d using the most probably number 

technique with Preston broth. This difference in bacteria populations was not seen, 

however, in carcasses frozen at 22°C. However, while the complex profile of volatiles 

differed between trials, the amounts and changes of select odorous volatile compounds 

did not differ, and the effects seen in both the BSF digested and non-digested manure were 

the same between trials.   

 Feed rates used in this experiment were based off those used in Myers et al. (2008). 

They employed four feed rates (27, 40, 54 and 70 g/day) and two significant ones were 

chosen (54 and 70 g/day) and reduced by approximately two thirds to produce the ones 

used in this study (18 and 27 g/day). Initially, a preliminary study was conducted using 

lower feed rates (4.5 and 9.0 g/day), however, after 100 days it was established that these 

feed rates were not sufficient to carry out larval development and newer, higher feed rates 

were chosen.  The limitations are due to Myers et al. (2008) only examining the ability of 

BSFL to reduce dairy manure versus this study, which also examined swine and poultry 

manure. Feed rates used in my study possibly were not optimal for larval development, 

waste reduction, and therefore VOC reduction across all three manure types. Further 

studies should examine the effect of different feed rates in an attempt to optimize the 

system based on the goal and application of the research whether it is to maximize waste 

reduction or VOCs or to optimize larval development.  
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 Future studies should examine different treatments (e.g., storage method and 

temperature) of manure and how this affects the digestion and subsequent VOC emissions. 

Yasuhara (1983) saw a difference in volatile profiles from samples of fresh poultry 

manure, manure that was immediately frozen and manure was allowed to age before being 

frozen. Husted (1993) found that methane production from dairy manure was increased 

when stored at higher temperatures. Gibson et al. (1987) noted that different temperature 

regimes affected the growth of Clostridium botulinum spores in pork slurry. Therefore, it 

is reasonable to hypothesize that different temperatures regimes could affect the microbial 

community of manure and therefore alter VOC emissions.  
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CHAPTER III 

OVIPOSITION AND ATTRACTION ASSAYS: RESEARCH, RESULTS, AND 

DISCUSSION 

 

Introduction 

Insects are highly adapted to detect a wide range of both volatile and soluble 

chemicals in an environment (Dethier 1948). Compared to gustatory receptors, which 

react to higher concentrations of liquids and solutions, olfactory receptors respond to very 

low concentrations of compounds, which are volatile at regular temperature (Dethier 

1948).  The most-studied method of insect chemoreception is olfaction as many insects 

are sensitive to odors that relay different information about resource availability, habitat 

suitability, potential predators, prey and mates to name a few (Price et al. 2011). 

Additionally, many insects utilize chemical signaling produced by other organisms for 

their benefit (Endler 1993).  This “eavesdropping” is widespread among animals. For 

example, many parasitoids will exploit sex pheromones of their hosts as a means to locate 

them (Vinson 1984). 

Volatile emissions have been shown to serve as cues to communicate different 

information between insects. Often, volatile organic compounds (VOCs) are the 

mechanism behind the initiation of colonization of an ephemeral resource (Benbow et al. 

2015). These emissions can be derived from a variety of sources, such as decomposing 

plants, animals or associated microbes. 
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Livestock manure is an ephemeral resource that is home to many different types 

of microbes (Zhu 2000). Microbial activity is an important part in the process of manure 

decomposition with VOCs intermediate and end-products (Zhu 2000). Microbes play an 

important role in terms of insect interactions; however, much previous research has been 

focused within the context of a certain role (e.g., nutrient recyclers and biological control). 

Nevertheless, many volatiles that are microbially derived play significant roles within an 

ecosystem and especially within ephemeral resource ecology.  

Microbes have long been recognized for their responsibility regarding arthropod 

colonization of resources. Many insects are sensitive to odors that relay information about 

resources, potential mates, and habitat suitability (Price 2011). Microbial volatile organic 

compounds (MVOCs) can play a role in oviposition and its site selection for many insects 

including dipterans (Davis et al. 2013).  

Many dipteran species have expressed semiochemical related oviposition behavior 

as it relates to odors from ephemeral sources like decaying organic material in the form of 

carrion and animal wastes. For example, it has been observed that blow fly (Diptera: 

Calliphoridae) oviposition is stimulated by the ammonia production that occurs during 

bacterial putrefaction (Holdaway 1930, Seddon 1931). Lindh et al. (2008) found that 

water-containing bacteria stimulated oviposition by the mosquito Anopheles gambiae 

(Giles) (Diptera: Culicidae), while Huang et al. (2006) demonstrated that cultured 

bacterial volatiles in agarose media deterred gravid mosquitoes of the same species. 

Chaudhury et al. (2002) found that blood inoculated with bacteria released different VOCs 
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and attracted gravid Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) and 

stimulated oviposition more so than uninocluated control blood. 

Specifically, as it pertains to manure VOCs, attractiveness has also been studied in 

several dipteran species. A study conducted by Jeanbourquin and Guerin (2007) found 

that the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) used olfactory cues 

dimethyl trisulphide, butanoic acid and 4-methylphenol to locate suitable substrates for 

oviposition at a distance. In Turkey, Krčmar et al. (2009) found that traps baited with 

donkey urine, lactic acid, and fresh human urine collected 12, 4 and 2.5 times as many 

tabanids, respectively, than the unbaited control traps (Krčmar et al. 2009). Hobson (1936) 

found that attraction for Lucilia sericata (Meigen) (Diptera: Calliphoridae) to putrefying 

substances was largely due to the presence of indole and skatole - two compounds 

associated with manure and responsible for its characteristic fecal smell (Burnett and 

Dondero 1969). These compounds were attractive to L. sericata and stimulated 

oviposition when diluted and applied to live sheep fleece.    

The black soldier fly (BSF), Hermetia illucens (L.), (Diptera: Stratiomyidae) is a 

temperate and tropical species (James 1935) reaching 18-20 mm in length that acquires 

the nutrients necessary for life during larval development (Tomberlin 2002). Adults, 

which therefore do not need to feed, do not compete with humans for food resources. This 

and other added benefits have earned them the label of non-pest species. Such benefits 

include their ability to decompose a wide variety of decaying organic matter including 

human (Banks 2014) and livestock manure (Bradley and Sheppard 1984, Myers et al. 

2008). Larval digestion of manure reduced moisture content and dry matter by 50% or 
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more (Newton et al. 2005). Additional benefits include the reduction of nitrogen and 

phosphorus by as much as 30-50% and 61-70%, respectively, as well as reductions in 

pathogens such as gram-negative bacteria (Erickson et al. 2004, Liu et al. 2008).  

Furthermore, manure colonized by BSFL in dense proportions see anywhere from 

significant reduction to a complete absence of house fly populations (Furman 1959, 

Kilpatrick and Schoof 1959, Bradley and Sheppard 1984).  

How volatiles associated with decomposing manure and animal wastes affect the 

behavior and oviposition preference of the black soldier fly is currently unknown; the 

objective of this study was to examine how these compounds extracted from black soldier 

fly larval digested and non-digested manures impact adult BSF attraction and oviposition. 

A reduction in noxious odors with increased adult attraction and oviposition would 

provide an added benefit to using these insects as an alternative means of manure 

management in addition to providing insight into the potential mechanisms that drive these 

insects to colonize this resource.   

 

Materials and Methods 

Volatile Sampling  

Volatile samples used in attraction and oviposition assays were collected using 

methods outlines in Chapter II. Volatiles from this chapter were collected in triplicate with 

the first set used for GC-MS analysis and the second and third replicates used for behavior 

work.  
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Acquisition of Flies  

Hermetia illucens larvae used in this experiment originated from a colony 

maintained at the Forensic Laboratory for Investigative Entomological Sciences 

(F.L.I.E.S.) Facility at Texas A&M University in College Station, TX. This colony was 

established in 2014 from eggs received from a laboratory colony maintained at the Coastal 

Plains Experiment Station, University of Georgia, Tifton, GA. Adult flies were maintained 

in a 2.6 × 1.2 × 1.3 m wooden cage fitted with metal screening in a greenhouse maintained 

at approximately 27° ± 1.34 C. Adults were allowed to oviposit on three 7.0 × 5.0 × 0.3 

cm pieces of corrugated cardboard (Booth and Sheppard 1984) held together with masking 

tape and placed on the lid of a 30.0 × 15.0 × 11.0 cm plastic shoe box containing one 

kilogram of Gainesville diet (Hogsette 1992) saturated with water. A 13.0 × 5.0 cm portion 

of the lid was removed and replaced with metal screening on which the cardboard pieces 

were placed; this allowed volatiles to escape from the wet Gainesville diet and attract the 

flies, but prevented the flies from contacting and/or ovipositing directly into the media 

instead of the cardboard. The cardboard was removed from the cage after eight hours and 

eggs were removed from cardboard using a sterile plastic spatula and weighed. One gram 

of eggs were placed in a 0.5 L plastic container, covered with a paper towel secured with 

a rubber band, stored in a walk-in environmental chamber (30˚C, 60% RH, and 16:8 L:D) 

and checked every 12 h until hatch. Two hundred grams of Gainesville diet at 70% 

moisture was added to the container once larvae emerged. Larvae were raised on the 

Gainesville diet and fed ad libitum until 40% reach pupation at which time feeding ceased. 
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Larvae were maintained in the walk-in environment until adulthood.  Adults, ages 24 h to 

6-d-old were used in the assays.  

 

Oviposition and Attraction Assays 

 

 

 

 

Figure 3.1. Cage used for oviposition and attraction assays June-July, 2016 at the F.L.I.E.S. Facility 

in College Station, TX. Cups with cardboard were placed inside the cages. Eluate from BSF digested, 

non-digested manure, and two controls were applied to the cardboard. Adults were allowed to 

oviposit for eight hours on treatments after which egg masses were collected and weighed. 
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The two samples of eluate from each manure sample not used in the GC-MS 

analysis were used in two trials of oviposition and attraction assays. A 3.05 × 1.82  × 1.82 

m cage was set up outside the F.L.I.E.S. Facility in late June and July, 2016 (Figure 3.1. 

The four corners were placed 19 L buckets (Home Depot®) that had been sterilized prior 

to use and secured using approximately 18 kg of sand. Approximately 5,000 adult flies, 

with a 50:50 sex ratio, were released within the cage over the course of five days to allow 

for mating and oogenesis to occur (Tomberlin and Sheppard 2002). During this time, 

adults were misted with water approximately three times per day in order to improve adult 

survivorship (Tomberlin et al. 2002). On the following day, three rows of eight 473 ml 

drinking cups were laid out in the tent in a randomized block design (Figure 3.2). Each 

cup, outfitted with approximately 80 g of sand and three pieces of cardboard, as previously 

described, taped to the inside approximately 4 cm below the lid had 150 µL from the 

volatile extractions of one of six treatments or two controls applied to it. The six treatments 

were as follows: A replicate of each treatment when approximately 90% of the larvae had 

reached the prepupal stage for each of the three manure types and its corresponding non-

digested replicate for each of the three manure types. The two controls consisted of: one 

control of plain solvent, dichloromethane, which was used in the eluting process and an 

additional negative control which consisted of plain cardboard that had nothing applied to 

it. Treatments were applied to the cardboard with a pipette approximately 30 minutes  
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prior to the initiation of the experiment. Treatments and controls were assigned a position 

within the row at random with each row having one of each treatment and control.  

Figure 3.2. Block design of cups within cage examining adult 

oviposition and attraction June 19th, 2016.  Three pieces of cardboard, 

to which the eluate was applied, were taped approximately 4 cm below 

the lid inside each cup. Different treatments included three replicates 

of digested manure at 90%, its corresponding non-digested replicate 

and two controls (dichloromethane and negative control with no eluate 

applied). Experiments were run from 0800 – 1700.   
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Experiments were conducted from 8:00 am to 5:00 pm on the sixth day after adult 

emergence, during which adult attraction was assessed at every hour by counting the 

number of adults on the oviposition substrate (cardboard), or the cup (both inside and 

outside). At the conclusion of each trial, the cups were removed and the cardboard was 

inspected for egg masses which were subsequently weighed using a Scout® Pro Balance 

(Ohaus, Parsippany, NJ). Each experiment was replicated twice with trials for each of the 

two feed rates being carried out separately.  

 

Statistical Analyses 

Differences in oviposition between treatments for behavioral assays were 

determined using the proportion of eggs laid per treatments.  Differences in oviposition 

were examined using a one-way analysis of variance (ANOVA) using JMP Pro 12 

statistical software (SAS Institute, Cary, NC, USA). Significant differences in means were 

further separated using Tukey-Kramer Honest Significant Difference (HSD) (P ≤ 0.05). 

Differences in attraction were also determined using a one-way ANOVA to assess 

differences in the number of adults landing on each treatment. Similarly, Tukey’s Honest 

Significance Difference (HSD) test was used to determine differences between treatments 

(P < 0.05). 
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Research Results 

Oviposition and Attraction Assays  

There were no eggs laid on any of the treatments or controls in any of the trials. 

With regards to attraction, treatment and trial did not significantly (P > 0.05) interact in 

either the 18 g trials (F1,7 = 0.4, P = 0.8743) or the 27 g trials (F1,7 = 0.4, P = 0.8743). 

Furthermore, treatment was not significant in either the 18 g trials (F7, 40 = 0.6, P = 0.7281) 

or the 27 g trials (F7, 40 = 0.6, P = 0.7608).  

During the trials, adult flies were observed to congregate heavily in both the 

northeast and southeast corners of the cage, which received significant sunlight during the 

day. Therefore, data were analyzed for quadrant and positional effects by breaking the 
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Figure 3.3. Cage used for oviposition and attraction assays June-July, 2016 at the F.L.I.E.S. Facility in 

College Station, TX broken down and examined for positional effects by quadrant and position within 

each quadrant. The cage was divided into four quadrants east to west and each cup within a quadrant 

given a position A-F.  
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cage into four quadrants from east to west with each quadrant having six positions 

assigned letters A through F (Figure 3.3). A significant quadrant effect was not observed 

for the 18 g trials (F3, 44 = 1.3, P = 0.2873) but was observed in the south most quadrant 

(F3, 44 = 4.6, P = 0.0072) for the 27 g trials (Table 3.1).  A significant position effect was 

observed in the 18 g trials (F5, 42 = 7.4, P ≤ 0.001) with positions C and F being 

significantly different from the other letters (Table 3.2). Position was not significant for 

the 27 g trials (F5, 42 = 1.5, P = 0.2100). A treatment effect was then re-examined with the 

significant quadrant removed for the 27 g trials and the significant positions removed from 

the 18 g trials. With these modifications, treatment was still not a significant effect for 

either the 18 g trials (F7, 24 = 0.5, P = 0.8130) or the 27 g trials (F7, 26 = 0.6, P = 0.9826) 

 

 

 

Table 3.1. Mean number ± SEM of adult Hermetia illucens (L.) per oviposition quadrant 

across two trials under field conditions. Each quadrant contained cups outfitted with 

three layers of corrugated cardboard which was treated with VOCS isolated from 

manure provided at two different feed rates to larval black soldier flies. 

Quadrant  18 g 27 g 

    

1  11.33 ± 3.76a1 71.25 ± 22.23a 

2  5.58 ± 1,12a 25.75 ± 5.71b 

3  6.33 ± 1.36a 15.83 ± 3.73b 

4  7.83 ± 1.69a 21.00 ± 5.40b 
1 Different letters within a subset of a column indicate significant difference (P < 0.05). 
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Table 3.2. Mean number ± SEM of adult Hermetia illucens (L.) per oviposition position 

across two trials under field conditions. Each position represents a cup outfitted with 

three layers of corrugated cardboard which was treated with VOCS isolated from 

manure provided at two different feed rates to larval black soldier flies. 

Position  18 g 27 g 

    

A  3.50 ± 1.09c1 15.63 ± 5.74a 

B  4.25 ± 1.19bc 36.13 ± 11.43a 

C  17.00 ± 4.08a 57.63 ± 24.25a 

D  2.87 ± 0.55c 10.25 ± 3.12a 

E  6.13  ± 1.52bc 27.88  ± 9.53a 

F  12.88  ± 2.37ab 53.25  ± 25.49a 
1 Different letters within a subset of a column indicate significant difference (P < 

0.05). 
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Discussion 

 

No eggs were laid on any treatments during any trials of the assays, therefore, it 

can be suggested that volatiles from the treatments were not sufficient to stimulate an 

oviposition response in BSF adults. This lack of response may have occurred due to 

several factors.   

Both digested and non-digested manure types had considerably lower moisture 

contents than their fresh counterpart (Table 2.1 from Chapter II). The freshly-thawed 

manures had average moisture contents of 77.25, 73.77, and 84.16% for poultry, swine 

and dairy, respectively. BSFL digested manure had moisture contents of 25.90, 13.50, and 

10.83% and 42.00, 36.74, and 38.50% in the low and high feed rates for poultry, swine 

and dairy manure, respectively. This is compared to non-digested manure, which had 

average moisture contents of 13.43, 11.90 and 10.40% and 52.99, 44.52, and 37.35% for 

the low and high feed rates of poultry, swine and dairy manure, respectively.  

As demonstrated here, previous studies have shown that larval fly digestion 

reduces the moisture content of manure anywhere from 48 to 89% (Miller et al. 1974, 

Barnard et al. 1998). Black soldier fly digestion is capable of rendering the manure into a 

drier substance that is a less suitable habitat for microorganism such as bacteria 

responsible for volatile production. For example, many strains of Escherichia coli (90-

100%) produce indole, a very odorous compound in manure (Zhu 2000). Furthermore, 

indole is a known fly attractant for species like the house fly, Musca domestica (L.) 

(Diptera: Muscidae), (Mulla et al. 1977) and L. sericata (Hobson 1936). Studies have 
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demonstrated that digestion of manure by BSFL reduces populations of Escherichia coli 

O157:H7 and Salmonella enterica in poultry manure and E. coli in dairy manure (Erickson 

et al. 2004, Liu et al. 2008).  

Different bacteria strains require different moisture contents, temperatures and pH 

levels to survive and replicate in a substrate. BSFL digestion is capable of changing these 

factors in manure, such as raising temperatures, shifting manure pH from neutral to 

alkaline, and decreasing moisture (Čičková 2015). All of these factors affect the suitability 

of manure as a habitat for VOC producing microbes. For example, E. coli loads in manure 

are temperature dependent with the organism surviving longer in manures of lower 

temperatures (5°C) compared to those of higher temperatures (22°C and 37°C) (Wang et 

al. 1996). Another study indicated that the pathogen’s survivorship increases in nonaerated 

ovine versus aerated ovine manure from 4 to 21 months, respectively (Kudva et al. 1998).  

Additionally, several bacteria species that are responsible for malodor and general 

VOC production are obligately anaerobic and therefore their fate in aerobic conditions is 

limited (Zhu 2000). For example, certain Eubacteria and Clostridium species are capable 

of producing large amount of volatile fatty acids and indole, which both contribute 

significantly to odor in manure but are obligate anaerobes.  

Another genera of bacteria, Lactobacillus, which produces lactic acid, a known 

attractant for culicids (Acree et al. 1968) and glossinids (Vale 1979), grows best in slightly 

acidic media (pH 4.5-6.4) with growth rates reduced when an environment becomes 

neutral or alkaline (Zhu 2000). This and other bacteria have optimal pH ranges that are 
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often are neutral or slightly acidic, making the alkaline conditions of BSFL rendered 

manure unfavorable.  

In summary, changes in moisture, temperature and pH levels, whether driven by 

BSFL digestion or not, are capable of alternating the environment of manure and rendering 

it into a less suitable habitat for microorganisms producing VOCs that are known fly 

attractants.  

Other factors could be at play beyond a complete absence of chemical cues needed 

for oviposition i.e. a lack of or inadequate chemoreception. For example, volatiles alone 

are not enough and that other conditions are necessary for certain responses. For example, 

a study by Larsen et al. (1968) examined the olfactory and oviposition responses of the 

house flies to different manure types. They found that manure with air passed over the 

surface was not effective at eliciting positive responses from house flies inside the 

olfactometer. However, the authors found that the odor source, when taken from air passed 

through a mixture of manure and water, was effective at stimulating positive responses 

from adult flies.  The authors concluded that while odor from manure appeared to be 

strong, constant moisture may be required to maintain concentrations high enough for 

effective detection by flies and to compensate for the drying out effect that the constant 

passage of air over the manure possibly had (Larsen et al. 1968).  

Olfactory stimulation is a major factor involving the attraction of house flies which 

seek to sate natural drives of hunger and oviposition (Crumb and Lyon 1917); however, 

Larsen et al. (1968) also noted that olfactory stimuli alone cannot be used as criterion for 

most-favorable oviposition sites. For example, it is known that moisture of a substrate can 
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play a role in the oviposition of adult black soldier flies. Fatchurochim et al. (1989) 

observed BSF oviposition in different poultry manures with moisture contents ranging 

from 20-90% and found the majority of oviposition to occur in manure with moisture 

contents of 40-70%. The authors concluded that little fly oviposition and larval 

development would be expected from manure with moisture contents less than 40% 

(Fatchurochim et al. 1989). 

 Detection of volatiles by insects also requires that a threshold of response be met, 

i.e. that the compound exists in concentrations high enough for the insect to perceive it. 

For example, Geotrupes sylvaticus (Panzer) (Coleoptera: Geotrupidae) has a threshold of 

response of 0.003-0.009 mg/L (Warnke 1931) to skatole. If volatiles from manure have 

been reduced through black soldier fly digestion, it is possible that thresholds of response 

are not being met to such a level to elicit oviposition responses.  

Olfactory thresholds of response are significantly influenced by environmental 

factors such as temperature and humidity (Dethier 1948). Furthermore, in behavioral 

studies, responses are based off the locomotion of insects whose overall activity is 

influenced by temperature and humidity (Fraenkel and Gunn 1961). A study by Tomberlin 

et al. (2009) examined the development of the black soldier fly in relation to temperature 

and found that adult survival was better at 27 and 30°C with 74-97% adult survival when 

compared to 36°C, with only 0.1% adult survival. The paper illustrated temperature 

differences of only 3°C are capable of significantly influencing the life history of BSF. 

Another study found that factors such as sunlight, time of day, temperature, and humidity 

significantly (P < 0.0001) correlated with oviposition (Tomberlin and Sheppard 2002). 
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Behavioral assays were conducted from late June to the third week of July in Texas 

with temperatures on experiment days averaging 30.27 ± 1.87°C with highs averaging 

35.55 ± 2.20°C and lows averaging 24.44 ± 1.55°C. The average relative humidity was 

67.50 ± 2.10%. Holmes et al. (2012) examined the effects of different relative humidity 

levels (25, 40 and 70%) on adult BSF longevity at 25°C and noted that adult longevity 

was highest with the highest at 70% RH. While the humidity of the ambient temperature 

may not have had deleterious effects on adults, the high ambient temperatures of the 

outside environment could have affected the adults in a way previously not encountered 

as behavioral experiments are often conducted inside or within greenhouses with regulated 

temperature parameters.  

 Finally, the small amount of eluate, 150μL, applied to the cardboard may not have 

been adequate to elicit a response and is a limitation of the study. In previous studies that 

examined behavioral responses of flies to manure volatiles, larger amounts were used. For 

example, Cossé and Baker (1996) formulated their odor sources in 10 ml of water in a 

Petri dish for wind-tunnel behavioral assays and experiences positive responses. Krčmar 

(2007), whose traps were baited with 4-methylphenol captured 16 times more tabanids 

than unbaited traps, used 4 ml of bait in his study. However, previous studies which 

employed an electroantennographic detector were capable of eliciting antennal responses 

from house flies and stables files with as little as 10 and 100μL, respectively (Cossé and 

Baker 1996, Jeanbourquin and Guein 2007). While small amounts are a compound of 

interest are capable of eliciting some kind of response in adult flies, oviposition responses 

may be dependent on larger doses. The small amount used in this study was to allow 



 

 

 

133 

comparability with the samples collected in Chapter II to be processed via GC-MS. While 

changes in the design might have been implemented, the limited quantity of the resource 

would not permit the experiment to be replicated enough times with the new design to 

affirm that any results were legitimate and not simply due to a change in the experiment 

design  

 Future work should keep in mind the effects that variable weather can have on 

behavioral studies and consider the benefits of conducting experiments in 

environmentally-controlled settings. It has been noted that controlling for these factors is 

a key component in behavioral assays (Dethier 1948). While environmentally-controlled 

settings may be optimal for controlling factors such as temperature and humidity, they are 

often not an option in BSF studies as limited oviposition has been observed with artificial 

light sources (Zhang et al. 2010).  Studies could also examine different aspects, such as 

age of adults, to see if this could be playing a role in the lack of oviposition and if perhaps 

response is associated with age. In this study, in order to maintain large enough numbers, 

adults ranging several days were used versus a shorter range. In this study, all manure 

types were tested together including BSF digested and non-digested manure treatments. 

Future studies may consider running assays one manure type at a time in a single choice 

assay to yield perhaps more concise results. The F.L.I.E.S. facility has continued success 

with their methods of laying cardboard over a contained with moistened Gainesville diet 

(Hogsette 1992) as a method of procuring BSF eggs. An altered experiment design that 

places the cardboard with VOC eluate over a similar set up may yield an oviposition 

response.  
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CHAPTER IV 

 CONCLUSION AND FUTURE STUDIES 

 

I determined that digestion by black soldier fly larvae (BSFL) of poultry, swine, 

and dairy manures significantly reduced noxious volatile organic compound (VOC) 

emissions of control manure (P < 0.05) (Table 2.6 and 2.7). I hypothesize that the 

significant (P < 0.05) reduction in moisture content of both BSF digested and non-digested 

manure (Table 2.1) contributed to this reduction in odorous compounds by rendering the 

manure an unsuitable habitat for microorganisms responsible for producing these VOCs.  

Furthermore, I determined that volatiles from manure alone are perhaps not enough 

to elicit an oviposition response from adults. In terms of attraction, there was no difference 

in attraction to any of the treatments (i.e., the BSF digested versus non-digested manure) 

or the controls. This was demonstrated in both trials and between both the high and low 

feed rates of 18 and 27 g.  

Odors associated with intensive animal farming are noxious and potentially 

harmful to human health (FAO 2009). Those who work or live in close proximity to these 

farming areas suffer a decreased quality of life in the form of elevated levels of tension, 

anger and depression (Barrett 2006). Previous research has already presented the black 

soldier fly as an attractive candidate as an alternative means of manure management for 

poultry (Sheppard et al. 1983), swine (Newton et al. 2005) and dairy manure (Myers et al. 

2008). Using this insect would provide an on-site treatment option that would be cheaper 

to the farmers than conventional and currently used methods. For example, Bentley et al. 
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(2016) calculated that the cost of storing, hauling and applying dairy manure averaged 

$306.13 per cow per year.  Not only would this option be cheaper, but the benefits of 

BSFL processing of manure are numerous and their ability to lower noxious odors emitted 

from manure is another reason to use this fly over other dipteran species to manage the 

copious amounts of manure that are being produced from livestock. This amount will only 

continue to increase as consumer demands more meat grow (FAO 2011).  The need to 

deal with this resource is ever growing and pressing.  

Another potential of BSFL is their use as a livestock feed additive. Pupae have 

been found to be an adequate substitute in diets of swine (Newton et al. 1977), poultry 

(Hale 1973), and several aquaculture species (Bondari et al. 1981, Bondari and Sheppard 

1987, Sealey et al. 2011, Kroeckel et al. 2012, St-Hilaire et al. 2007). If the commercial 

production of BSFL for feed purposes is to succeed, these animals will have to be grown 

in mass amounts to meet the demands of the animals consuming them i.e. the growing 

aquaculture and livestock markets (Msangi et al. 2011, Brown 2002). A key to the success 

of this potential industry will be to generate enough BSF eggs to produce quantities of 

pupae to match demands. Large yields of pupal stock will require mass amounts of egg-

laying by adult black soldier flies. Black soldier flies are attracted to lay eggs on decaying 

organic matter (James 1935); however, the mechanism behind this attraction has not been 

explained. In the second objective, oviposition was not observed on any of the treatments 

and attraction was not significantly different on any particular treatment or on controls 

suggesting there are other factors, whether abiotic or biotic, at play that are required to 

elicit an oviposition response from adults. Once the mechanisms which drive oviposition, 
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perhaps in addition to volatiles, are elucidated, then the volatiles found in manure could 

be easily produced synthetically (Cossé and Baker 1996) and applied to a substrate in a 

commercial production operation. The ability to manipulate and increase oviposition 

would greatly aide the mass production of BSF pupae and would increase the ability for 

these animals to be farmed in large numbers. Future research should continue to uncover 

what other factors determine this response from adults such as moisture.  

 While the results from my study were informative, limitations were determined. 

First and foremost, the small scale on which my study was conducted is a limitation and 

the ability to translate these results to an industrial scale should be done with caution. 

Diener et al. (2009) indicated the challenges that may be faced when trying to take a 

bioconversion system with the black soldier fly to a larger scale including altered 

environmental condition such as humidity, solar radiation, different predator/prey 

interactions, system operability and design and the issue of potentially problematic 

contents such as heavy metals and pathogens (Diener et al. 2009). For example mass 

production of Trichogramma spp. (Hymenoptera: Trichogrammatidae) for biological 

control have proven unsuccessful in many countries (Brazil, France, Australia and the 

United States) when compared to the mass rearing success in the silkworm industry of 

China, despite successful small scale laboratory rearing (Consoli et al. 2010). Efforts in 

eradicating the New World screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: 

Calliphoridae) through sterile release programs have warranted the successful mass 

rearing of these insects, however, Babilonia and Maki (1991) noted that in artificial rearing 

systems the requirements for a stable rearing environment can be met only in varying 
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degrees but never entirely. Screwworm rearing plants in Mexico observed only a 

maximum rearing efficiency of 60 to 70%. This decrease in efficiency was attributed to 

their quality and quantity of diet, rearing temperature and relative humidity, and higher 

levels of physical handling that would occur with natural insect densities (Babilonia and 

Maki 1991). Despite this, Sheppard et al. (1995) found a large-scale commercial 

application to his small study on black soldier flies and their ability to digest manure of 

layer hens to be feasible. They witnessed an increased in efficacy of manure-to-feedstuff 

conversion from 1-6 to 7-8% when they increased the size from 11 to 230 hens per basin 

indicating that the black soldier fly may favor larger scales. Additional limitations of my 

study were in part due to the availability of manure. It would have been optimal to work 

with fresh manure each day, as this would more closely resemble the field or commercial 

operation conditions that this research aims to be applied to and black soldier flies are 

posited to develop optimally on fresh manure (Sheppard 1983), however there is so data 

to support this hypothesis. Regardless, the use of fresh manure was not feasible as only 

the poultry manure was collected locally. The swine manure came from a facility 

approximately 40 km away and the dairy manure came from a center approximately 250 

km away. Because of this distance, the manure had to be collected beforehand and frozen 

prior to use in the study. The freezing of the manure may have also had effects on the 

microbial structure of the manure. Previous studies have indicated that the microbial 

structure of manure differs with different freezing temperature. For example, a study by 

Kudva et al. (1998) found that survival of Escherichia coli O157:H7 in bovine manure 

was dependent on manure storage temperatures. However, because all manure types were 
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treated the same way we do not propose differences seen between manure types to be 

because the manure was frozen.  

The colony used for this experiment has been in use at the F.L.I.E.S. Facility since 

2014, and it is possible that genetic shifts within this strain may have occurred between 

previous studies and the time in which this experiment was conducted. For example, 

Francuski et al. (2014) found a reduction in genetic diversity in Eristalis tenax (L.) 

(Diptera: Syrphidae) in the fourth and eight generations of a laboratory colony compared 

with earlier and natural populations. Berlocher and Friedman (1981) demonstrated a loss 

of genetic variation in laboratory-reared Phormia regina (Diptera: Calliphoridae) after a 

single generation. Behavior changes can also be a result of laboratory rearing and 

subsequent inbreeding; Waldbauer (1983) observed that parasitoids raised for many 

generations began to flee at the sight of their natural host.   

While similar to previous findings conducted at the F.L.I.E.S. Facility, these 

results are still specific to this strain and different results are possible due to variations 

between different BSF strains. For example, Zhou et al. (2013) found a significant 

difference in the dry matter reduction of swine manure between a BSF strain from Wuhan, 

China (53.4 ± 0.3%) and two other strains from Guangzhou, China (28.8± 0.2%) and 

Texas, USA (49.7 ± 0.4%). However, the differences in dry matter reduction for dairy and 

chicken manure did not vary by strain and the differences in nitrogen reduction did not 

vary by strain in any manure type (Zhou et al. 2013). Furthermore, wild black soldier fly 

adults typically weigh more than those reared in laboratory settings due to different 

nutritional sources provided to larvae (Tomberlin 2002). It is therefore possible that wild 
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black soldier flies may then be able to digest manure differently than larvae from a 

laboratory maintained colony.   

 Feed rates used in these experiments were based off those used in Myers et al. 

(2008) and reduced to compensate for our use of 100 larvae compared to their 300 g. 

Myers employed four feed rates (27, 40, 54, and 70 g/day) and of these two significant 

ones were chosen (54 and 70 g/day) and reduced by approximately two thirds to produce 

the ones used in this study (18 and 27g/day). Initially, a preliminary study was conducted 

using lower feed rates (4.5 g and 9.0 g/day), however, after 100 days it was established 

that these feed rates were not sufficient to carry out larval development and newer, higher 

feed rates were chosen. While feed rates were initially based off Myers et al. (2008), their 

study examined BSFL feeding only on dairy manure and therefore feed rates, which were 

satisfactory in that study may not have been satisfactory for larvae feeding on poultry or 

swine manure.  Therefore, it is possible that feed rates used in my study were not optimal 

for larval development, waste reduction, and therefore VOC reduction across all three 

manure types. Further studies should examine the effect of different feed rates in an 

attempt to optimize the system based on the goal and application of the research whether 

it is to maximize reduction or VOCs or optimize larval development.  

 Additional future studies should examine different treatments of manure and how 

this affects the digestion and subsequent VOC emissions. Different variables to be 

examined could be using different ages of manure. This study used freshly-thawed manure 

but subsequent ones could investigate the effect of aging the manure on VOC emissions. 

Yasuhara (1983) saw a difference in volatile profiles from samples of fresh poultry 
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manure, manure that was immediately frozen and manure was allowed to age before being 

frozen.   Another variable to examine would be to conduct this experiment at different 

temperatures. This experiment was run in an environmental chamber at a constant 

temperature but future studies could examine the effects that a lower and higher 

temperature would have on the variables examined here. Husted (1993) found that 

methane production from dairy manure was increased when stored at higher temperatures. 

Zhu (1999) hypothesized that odor from swine manure was a product of volatile fatty acids 

and the presence of two bacterial genera, Eubacterium and Clostridium. Gibson et al. 

(1987) noted that different temperature regimes affected the growth of Clostridium 

botulinum spores in pork slurry. Therefore it is reasonable to hypothesize that different 

temperatures regimes could affect the microbial community of manure and therefore 

altering VOC emissions.  

  Furthermore, as the development of black soldier fly is temperature dependent 

(Tomberlin et al. 2009), different rates of digestion due to temperature shifts could affect 

VOC emissions observed.  Similarly, future studies should examine the effect of freezing 

manure at different temperature to see if this would effect the volatile emissions of the 

manure. Finally, subsequently studies could examine the effect of different larval densities 

on their ability to process the manure and how that subsequently affects VOC emissions. 

Previous studies on other species have indicated that larval raised at different densities 

often have altered life history traits such as differences in pupal weight, adult emergence 

and weight, and mortality as demonstrated for Musca domestica (Sullivan and Sokal 
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1963), different blow fly species (Ulyett 1950) and Drosophila melanogaster (Meigen) 

(Diptera: Drosophilidae) (Chiang and Hodson 1950). 
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APPENDIX A  

A.1 STRESS PLOTS AND NMDS ORDINATIONS FROM VOLATILES FROM MANURE WITH 

AND WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

 

 

Poultry Manure 

 

 

 

 

 

  

Figure A.1.1. NMDS stress plots for all volatiles emitted from poultry manure (n = 3) from Trial 1 

(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: 

Stress: 0.1588, r2 = 0. 8064; Trial 2: Stress: 0.1590, r2 = 0. 8068). Trials were conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.1.2. NMDS ordinations of the community of volatile organic compounds from Trial 1 (left) 

and Trial 2 (right) of control, non-digested and digested poultry manure (n = 3) by Hermetia illucens 

(L.). Trials were conducted at 29 ± 0.3°C with 60 ± 5.1%RH and14:10 L:D cycle (P < 0.05). 
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Swine Manure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A.1.3. NMDS stress plots for all volatiles emitted from swine manure (n = 3) from Trial 1(left) 

and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: Stress: 

0.1280, r2 = 0. 8849; Trial 2: Stress: 0.1323, r2 = 0. 8858). Trials were conducted at 29 ± 0.3°C with 60 ± 

5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.1.4. NMDS ordinations of the community of volatile organic compounds from Trial 1 (left) and 

Trial 2 (right) of control, non-digested and digested swine manure (n = 3) by Hermetia illucens (L.). Trials 

were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and14:10 L:D cycle (P < 0.05). 
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Figure A.1.5. NMDS stress plots for all volatiles emitted from dairy manure (n = 3) from Trial 1 

(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 

1: Stress: 0.1557, r2 = 0. 8146; Trial 2: Stress: 0.1325, r2 = 0. 8829). Trials were conducted at 29 ± 

0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.1.6. NMDS ordinations of the community of volatile organic compounds from Trial 1 (left) and 

Trial 2 (right) of control, non-digested and digested dairy manure (n = 3) by Hermetia illucens (L.). Trials 

were conducted at 29 ± 0.3°C with 60 ± 5.1%  RH and14:10 L:D cycle (P < 0.05). 
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A.2 STRESS PLOTS AND NMDS ORDINATIONS FROM REDUCED VOLATILES FROM MANURE 

WITH AND WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

. 

Volatile profile was reduced by eliminating compounds, which were only present in one technical 

replicate from the analyses.  
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Figure A.2.1. NMDS stress plots for reduced volatiles emitted from poultry manure (n = 3) from Trial 

1 (left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: 

Stress: 0.1530, r2 = 0. 8262; Trial 2: Stress: 0.1565, r2 = 0. 8074). Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

0 10 20 30 40 50

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Index

p
lo

t_
c
o
o

rd
$
s
tr

e
s
s

 

Plot stress for Treatments, five dimensions max 

 

Plot stress for Treatments, five dimensions max 



 

 

 

166 

 

 

 

 

 

 

 

 

 

 

 

  

-0.8

-0.4

0.0

0.4

0.8

-1.0 -0.5 0.0 0.5 1.0

X1

X
2

Treatment

BSF Digested

Control

Non Digested

Three dimensions

Figure A.2.2. NMDS ordinations of the reduced community of volatile organic compounds from Trial 1 

(left) and Trial 2 (right) of control, non-digested and digested poultry manure (n = 3) by Hermetia illucens 

(L.). Trials were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Swine Manure  
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Figure A.2.3. NMDS stress plot for reduced volatiles emitted from swine manure (n = 3) from Trial 1 

(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: 

Stress: 0.1288, r2 = 0. 8939; Trial 2:  Stress: 0.1255, r2 = 0. 8890). Trials were conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.2.4 NMDS ordinations of the reduced community of volatile organic compounds from Trial 

1 (left) and Trial 2 (right) of control, non-digested and digested swine manure (n = 3) by Hermetia 

illucens (L.). Trials were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and14:10 L:D cycle (P < 0.05). 
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Figure A.2.5. NMDS stress plot for reduced volatiles emitted from dairy manure (n = 3) from Trial 1 

(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: 

Stress: 0.1502, r2 = 0. 8340; Trial 2: Stress: 0.1240, r2 = 0. 9008). Trials were conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.2.6 NMDS ordinations of the reduced community of volatile organic compounds from Trial 

1 (left) and Trial 2 (right) of control, non-digested and digested dairy manure (n = 3) by Hermetia 

illucens (L.). Trials were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and14:10 L:D cycle (P < 0.05). 
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A.3 STRESS PLOTS AND NMDS ORDINATIONS FROM REDUCED VOLATILES FROM MANURE 

WITH AND WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

. 

Volatile profile was reduced by grouping compounds into chemical classes.  
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Figure A.3.1. NMDS stress plots for reduced volatiles emitted from poultry manure (n = 3) from 

Trial 1(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control 

(Trial 1: Stress: 0.1027, r2 = 0.9320; Trial 2: Stress: 0.1178, r2 = 0.9020). Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.3.2. NMDS ordinations of the reduced community of volatile organic compounds from Trial 

1 (left) and Trial 2 (right) of control, non-digested and digested poultry manure (n = 3) by Hermetia 

illucens (L.). Trials were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and14:10 L:D cycle (P < 0.05). 
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Swine Manure 
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Figure A.3.3. NMDS stress plots for reduced volatiles emitted from swine manure (n = 3) from Trial 1 

(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: 

Stress: 0.0836, r2 = 0. 9644; Trial 2: Stress: 0.0895, r2 = 0. 9473). Trials were conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 
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Figure A.3.4. NMDS ordinations of the reduced community of volatile organic compounds from 

Trial 1 (left) and Trial 2 (right) of control, non-digested and digested swine manure (n = 3) by 

Hermetia illucens (L.). Trials were conducted at 29 ± 0.3 °C with 60 ± 5.1% RH and14:10 L:D cycle 

(P < 0.05). 

 

-0.8

-0.4

0.0

0.4

0.8

-1.0 -0.5 0.0 0.5 1.0

X1

X
2

Treatment

BSF Digested

Control

Non Digested

Three dimensions



 

 

 

175 

Dairy Manure 
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Figure A.3.5. NMDS stress plots for reduced volatiles emitted from dairy manure (n = 3) from Trial 1 

(left) and Trial 2 (right) with and without Hermetia illucens (L.) larvae compared to control (Trial 1: 

Stress: 0.1062, r2 = 0. 9313; Stress: 0.0801, r2 = 0. 9707). Trials were conducted at 29 ± 0.3°C with 60 

± 5.1% RH and 14:10 L:D cycle (P  < 0.05). 
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Figure A.3.6. NMDS ordinations of the reduced community of volatile organic compounds from 

Trial 1 (left) and Trial 2 (right) of control, non-digested and digested dairy manure (n = 3) by 

Hermetia illucens (L.). Trials were conducted at 29 ± 0.3°C with 60 ± 5.1% RH and14:10 L:D cycle 

(P  < 0.05). 
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APPENDIX B 

PERMANOVA AND MULTIPLE COMPARISON TABLES 

B.1 PERMANOVA AND MULTIPLE COMPARISON TABLES FOR VOLATILES FROM MANURE 

WITH AND WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

 

 

Poultry Manure 

Table B.1.1. Analysis of volatiles emitted from poultry manure with and without Hermetia illucens (L.) 

larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 ± 0.3°C with 

60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 6.522 0.002 

Feed Rate 1 1.223 0.232 

Trial  1 2.883 0.002 

Treatment x Feed Rate  1 1.732 0.064 

Treatment x Trial 1 1.627 0.076 

Feed Rate x Trial  1 0.648 0.844 

Treatment x Feed Rate x Trial  1 0.753 0.705 

Total  7   

 

 

 

Table B.1.2. Analysis of volatiles emitted from poultry manure with and without Hermetia illucens (L.) 

larvae compared to control (Trial 1) using Permutational analysis of variance (PERMANOVA). Trial was 

conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 6.689 0.001 

Feed Rate 1 1.399 0.202 

Treatment x Feed Rate  1 1.347 0.189 

Total  4   
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Table B.1.3. Pairwise comparisons of volatiles emitted among treatments of poultry manure (Trial 1) after 

Bonferroni’s correction (P < 0.025).   

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                Treatment 1 1.269 1.269 6.688 0.488 0.026 

 Residual 7 1.328 0.189  0.512  

 Total 8 2.597   1.000  

        

BSF Digested x Control Treatment 1 1.430 1.430 6.807 0.494 0.030 

 Residual 7 1.470 0.210  0.506  

 Total 8 2.901   1.000  

        

Non-Digested x BSF 

Digested                   

Treatment 1 1.428 1.428 5.794 0.366 0.004 

 Residual 10 2.465 0.246  0.634  

 Total 11 3.893   1.000  

 

 

 

Table B.1.4. Analysis of volatiles emitted from poultry manure with and without Hermetia illucens (L.) 

larvae compared to control (Trial 2) using Permutational analysis of variance (PERMANOVA).  Trial 

was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 3.912 0.001 

Feed Rate 1 0.803 0.571 

Treatment x Feed Rate  1 1.513 0.152 

Total  4   
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Table B.1.5. Pairwise comparisons of volatiles emitted among treatments of poultry manure (Trial 2) after 

Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P value 

Non-Digested x Control             Treatment 1 0.984 0.984 4.189 0.374 0.022 

l Residual 7 1.645 0.235  0.626  

 Total 8 2.630   1.000  

        

BSF Digested  x Control     x Treatment 1 1.251 1.251 6.156 0.467 0.028 

l Residual 7 1.423 0.203  0.533  

 Total 8 2.675   1.000  

        

Non-Digested x BSF 

Digested                       x 

Treatment 1 0.653 0.653 2.389 0.192 0.028 

 Residual 10 2.734 0.273  0.808  

 Total 11 3.388   1.000  

 

 

 

Swine Manure  

 

Table B.1.6. Analysis of volatiles emitted from swine manure with and without Hermetia illucens (L.) 

larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 ± 0.3°C with 

60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 2.283 0.018 

Feed Rate 1 2.994 0.003 

Trial  1 5.411 0.000 

Treatment x Feed Rate  1 1.738 0.069 

Treatment x Trial 1 0.712 0.732 

Feed Rate x Trial  1 3.512 0.000 

Treatment x Feed Rate x Trial  1 0.841 0.589 

Total  7   
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Table B.1.7. Analysis of volatiles emitted from swine manure with and without Hermetia illucens (L.) 

larvae compared to control (Trial 1) using Permutational analysis of variance (PERMANOVA). Trial was 

conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.726 0.001 

Feed Rate 1 3.707 0.006 

Treatment x Feed Rate  1 1.015 0.401 

Total  4   

 

 

 

Table B.1.8. Pairwise comparisons of volatiles emitted among treatments of swine manure (Trial 1) after 

Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                         Treatment 1 1.374 1.374 6.950 0.498 0.024 

 Residual 7 1.384 0.197  0.502  

 Total 8 2.759   1.000  

        

BSF Digested x Control      x Treatment 1 1.462 1.461 9.579 0.577 0.026 

 Residual 7 1.068 0.152  0.423  

 Total 8 2.530   1.000  

        

Non-Digested x BSF 

Digested                        

Treatment 1 0.178 0.178 0.779 0.072 1.252 

 Residual 10 2.290 0.229  0.928  

 Total 11 2.468   1.000  

 

 

 

Table B.1.9. Analysis of volatiles emitted from swine manure with and without Hermetia illucens (L.) 

larvae compared to control (Trial 2) using Permutational analysis of variance (PERMANOVA). Trial was 

conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.316 0.001 

Feed Rate 1 4.017 0.003* 

Treatment x Feed Rate  1 2.027 0.066 

Total  4   
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Table B.1.10. Pairwise comparisons of volatiles emitted among treatments of swine manure (Trial 2) after 

Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                       Treatment 1 1.103 1.103 5.393 0.435 0.036 

 Residual 7 1.431 0.204  0.564  

 Total 8 2.534   1.000  

        

BSF Digested x Control Treatment 1 1.342 1.342 6.926 0.497 0.024 

 Residual 7 1.356 0.194  0.502  

 Total 8 2.698   1.000  

        

Non-Digested x BSF 

Digested          x 

Treatment 1 0.409 0.409 1.556 0.134 0.300 

 Residual 10 2.625 0.263  0.865  

 Total 11 3.034   1.000  

 

 

 

Dairy Manure 

 

Table B.1.11. Analysis of volatiles emitted from dairy manure with and without Hermetia illucens (L.) 

larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 ± 0.3°C with 

60 ± 5.1% RH and 14:10 L:D cycle (P  < 0.05). 

Factor  df F Model  P Value  

Treatment 1 2.561 0.007 

Feed Rate 1 1.864 0.050 

Trial  1 5.054 0.000 

Treatment x Feed Rate  1 1.527 0.121 

Treatment x Trial 1 0.601 0.837 

Feed Rate x Trial  1 1.863 0.045 

Treatment x Feed Rate x Trial  1 0.864 0.552 

Total  7   
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Table B.1.12. Analysis of volatiles emitted from dairy manure with and without Hermetia illucens (L.) 

larvae compared to control (Trial 1) using Permutational analysis of variance (PERMANOVA). Trial was 

conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.065 0.001 

Feed Rate 1 1.603 0.139 

Treatment x Feed Rate  1 2.167 0.068 

Total  4   

 

 

 

Table B.1.13. Pairwise comparisons of volatiles emitted among treatments of dairy manure (Trial 1) after 

Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested  x Control Treatment 1 1.234 1.234 5.111 0.422 0.042 

 Residual 7 1.691 0.241  0.578  

 Total 8 2.925   1.000  

        

BSF Digested x Control Treatment 1 1.427 1.427 10.175 0.5925 0.032 

 Residual 7 0.981 0.140  0.4075  

 Total 8 2.409   1.000  

        

Non-Digested x BSF 

Digested 

Treatment 1 0.428 0.428 1.647 0.141 0.238 

 Residual 10 2.600 0.260  0.859  

 Total 11 3.028   1.000  

 

 

 

Table.B.1.14. Analysis of volatiles emitted from dairy manure with and without Hermetia illucens (L.) 

larvae compared to control  (Trial 2) using Permutational analysis of variance (PERMANOVA). Trial 

was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.840 0.001 

Feed Rate 1 3.141 0.015 

Treatment x Feed Rate  1 0.568 0.763 

Total  4   
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Table B.1.15. Pairwise comparisons of volatiles emitted among treatments of dairy manure (Trial 2) after 

Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                                    Treatment 1 1.291 1.291 7.348 0.512 0.024 

l Residual 7 1.229 0.175  0.488  

 Total 8 2.530   1.000  

        

BSF Digested x Control          Treatment 1 1.328 1.328 10.684 0.604 0.024 

l Residual 7 0.879 0.124  0.396  

 Total 8 2.199   1.000  

        

Non-Digested x BSF 

Digested                           

Treatment 1 0.233 0.233 1.151 0.103 0.614 

 Residual 10 2.027 0.202  0.897  

 Total 11 2.261   1.000  
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B.2 PERMANOVA AND MULTIPLE COMPARISON TABLES FOR REDUCED VOLATILES FROM 

MANURE WITH AND WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL 

MANURE 

 

Volatile profile was reduced by eliminating compounds, which were only present in one technical 

replicate from the analyses.  

 

Poultry Manure  

 

Table B.2.1. Analysis of reduced volatiles emitted from poultry manure with and without Hermetia 

illucens (L.) larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 6.852 0.000 

Feed Rate 1 1.217 0.239 

Trial  1 2.020 0.002 

Treatment x Feed Rate  1 1.728 0.067 

Treatment x Trial 1 1.695 0.073 

Feed Rate x Trial  1 0.623 0.855 

Treatment x Feed Rate x Trial  1 0.731 0.732 

Total  7   

 

 

 

 

Table B.2.2. Analysis of reduced volatiles emitted from poultry manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 1) using Permutational analysis of variance 

(PERMANOVA). Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 7.072 0.001 

Feed Rate 1 1.375 0.192 

Treatment x Feed Rate  1 1.310 0.242 

Total  4   
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Table B.2.3. Pairwise comparisons of reduced volatiles emitted among treatments of poultry manure 

(Trial 1) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F Model R2 P 

value 

Non-Digested x Control                   Treatment 1 1.281 1.281 6.968 0.499 0.026 

l Residual 7 1.287 0.183  0.501  

 Total 8 2.569   1.000  

        

BSF Digested x Control         Treatment 1 1.453 1.453 7.248 0.509 0.018 

 Residual 7 1.403 0.200  0.491  

 Total 8 2.856   1.000  

        

Non-Digested x BSF 

Digested                         

Treatment 1 1.467 1.467 6.222 0.384 0.060 

 Residual 10 2.357 0.235  0.616  

 Total 11 3.824   1.000  

 

 

 

Table B.2.4. Analysis of reduced volatiles emitted from poultry manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 2) using Permutational analysis of variance 

(PERMANOVA).  Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 4.046 0.001 

Feed Rate 1 0.792 0.616 

Treatment x Feed Rate  1 1.510 0.152 

Total  4   
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Table B.2.5. Pairwise comparisons of reduced volatiles emitted among treatments of poultry manure 

(Trial 2) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F Model R2 P value 

Non-Digested x Control             Treatment 1 0.992 0.992 4.298 0.380 0.028 

l Residual 7 1.616 0.230  0.620  

 Total 8 2.609   1.000  

        

BSF Digested x Control        Treatment 1 1.258 1.258 6.288 0.473 0.022 

 Residual 7 1.401 0.200  0.527  

 Total 8 2.660   1.000  

        

Non-Digested  x BSF 

Digested                       

Treatment 1 0.656 0.656 2.443 0.196 0.038 

 Residual 10 2.684 0.268  0.804  

 Total 11 3.341   1.000  

 

 

 

 

Swine Manure  

 

Table B.2.6. Analysis of reduced volatiles emitted from swine manure with and without Hermetia illucens 

(L.) larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 2.334 0.014 

Feed Rate 1 3.077 0.002 

Trial  1 5.604 0.000 

Treatment x Feed Rate  1 1.762 0.071 

Treatment x Trial 1 0.726 0.695 

Feed Rate x Trial  1 3.658 0.000 

Treatment x Feed Rate x Trial  1 0.826 0.589 

Total  7   
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Table B.2.7. Analysis of reduced volatiles emitted from swine manure with and without Hermetia illucens 

(L.) larvae compared to control (Trial 1) using Permutational analysis of variance (PERMANOVA). Trial 

was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.941 0.002 

Feed Rate 1 3.878 0.003 

Treatment x Feed Rate  1 0.995 0.404 

Total  4   

 

 

 

Table B.2.8. Pairwise comparisons of reduced volatiles emitted among treatments of swine manure 

(Trial 1) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                        Treatment 1 1.382 1.382 7.111 0.504 0.032 

 Residual 7 1.360 0.194  0.496  

 Total 8 2.743   1.000  

        

BSF Digested x Control Treatment 1 1.470 1.470 9.891 0.586 0.037 

 Residual 7 1.041 0.148  0.414  

 Total 8 2.511   1.000  

        

Non-Digested x BSF 

Digested                        

Treatment 1 0.178 0.178 0.797 0.074 1.170 

 Residual 10 2.242 0.224  0.926  

 Total 11 2.420   1.000  

 

 

 

Table B.2.9. Analysis of reduced volatiles emitted from swine manure with and without Hermetia illucens 

(L.) larvae compared to control (Trial 2) using Permutational analysis of variance (PERMANOVA). Trial 

was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 4.454 0.001 

Feed Rate 1 4.116 0.002 

Treatment x Feed Rate  1 2.051 0.075 

Total  4   
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Table B.2.10. Pairwise comparisons of reduced volatiles emitted among treatments of swine manure 

(Trial 2) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                          Treatment 1 1.111 1.111 5.516 0.441 0.024 

 Residual 7 1.410 0.201  0.559  

 Total 8 2.521   1.000  

        

BSF Digested x Control        Treatment 1 1.349 1.349 7.060 0.502 0.034 

 Residual 7 1.337 0.191  0.498  

 Total 8 2.686   1.000  

        

Non-Digested x BSF Digested             Treatment 1 0.405 0.405 1.565 0.136 0.306 

 Residual 10 2.588 0.258  0.864  

 Total 11 2.993   1.000  

 

 

 

Dairy Manure 

 

Table B.2.11. Analysis of reduced volatiles emitted from dairy manure with and without Hermetia 

illucens (L.) larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 2.661 0.008 

Feed Rate 1 1.916 0.048 

Trial  1 5.292 0.000 

Treatment x Feed Rate  1 1.613 0.108 

Treatment x Trial 1 0.604 0.807 

Feed Rate x Trial  1 1.927 0.046 

Treatment x Feed Rate x Trial  1 0.854 0.562 

Total  7   
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Table B.2.12. Analysis of reduced volatiles emitted from dairy manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 1) using Permutational analysis of variance 

(PERMANOVA). Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.213 0.001 

Feed Rate 1 1.613 0.144 

Treatment x Feed Rate  1 2.179 0.049 

Total  4   

 

 

 

Table B.2.13. Pairwise comparisons of reduced volatiles emitted among treatments of dairy manure 

(Trial 1) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F Model R2 P value 

Non Digested x Control                        Treatment 1 1.241 1.241 5.216 0.427 0.028 

 Residual 7 1.666 0.238  0.573  

 Total 8 2.908   1.000  

        

BSF Digested x Control       Treatment 1 0.416 0.416 1.644 0.141 0.298 

 Residual 7 2.535 0.253  0.859  

 Total 8 2.952   1.000  

        

Non-Digested x BSF 

Digested                         

Treatment 1 1.441 1.441 10.735 0.605 0.040 

 Residual 10 0.940 0.134  0.394  

 Total 11 2.381   1.000  

 

 

 

Table B.2.14. Analysis of reduced volatiles emitted from dairy manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 2) using Permutational analysis of variance 

(PERMANOVA). Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 6.319 0.001 

Feed Rate 1 3.327 0.017 

Treatment x Feed Rate  1 0.629 0.678 

Total  4   
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Table B.2.15. Pairwise comparisons of reduced volatiles emitted among treatments of dairy manure (Trial 

2) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control                                    Treatment 1 1.303 1.303 7.701 0.524 0.020 

l Residual 7 1.185 0.169  0.476  

 Total 8 2.488   1.000  

        

BSF Digested x Control           Treatment 1 1.344 1.344 11.587 0.623 0.018 

l Residual 7 0.812 0.116  0.377  

 Total 8 2.156   1.000  

        

Non-Digested x BSF 

Digested                               

Treatment 1 0.236 0.236 1.226 0.109 0.500 

 Residual 10 1.926 0.192  0.891  

 Total 11 2.162   1.000  
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B.3 PERMANOVA AND MULTIPLE COMPARISON TABLES FOR REDUCED VOLATILES FROM 

MANURE WITH AND WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL 

MANURE 

. 

Volatile profile was reduced by grouping compounds into chemical classes. 

 

Poultry Manure 
 

Table B.3.1. Analysis of reduced volatiles emitted from poultry manure with and without Hermetia 

illucens (L.) larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 9.709 0.000 

Feed Rate 1 1.016 0.393 

Trial  1 2.615 0.022 

Treatment x Feed Rate  1 1.229 0.268 

Treatment x Trial 1 1.991 0.066 

Feed Rate x Trial  1 0.605 0.767 

Treatment x Feed Rate x Trial  1 0.609 0.756 

Total  7   

 

 

 

Table B.3.2. Analysis of reduced volatiles emitted from poultry manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 1) using Permutational analysis of variance 

(PERMANOVA).  Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 10.530 0.001 

Feed Rate 1 1.232 0.260 

Treatment x Feed Rate  1 0.823 0.507 

Total  4   
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Table B.3.3. Pairwise comparisons of reduced volatiles emitted among treatments of poultry manure 

(Trial 1) after Bonferroni’s correction (P < 0.025).  

Factor  df SS MS F Model R2 P value 

Non-Digested x Control                  Treatment 1 1.244 1.244 11.852 0.629 0.034 

l Residual 7 0.734 0.105  0.371  

 Total 8 1.979   1.000  

        

BSF Digested x Control         Treatment 1 1.547 1.547 10.215 0.593 0.014 

 Residual 7 1.060 0.151  0.407  

 Total 8 2.607   1.000  

        

Non-Digested x BSF 

Digested                         

Treatment 1 1.562 1.562 10.059 0.502 0.010 

 Residual 10 1.553 0.155  0.498  

 Total 11 3.116   1.000  

 

 

 

Table B.3.4. Analysis of reduced volatiles emitted from poultry manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 2) using Permutational analysis of variance 

(PERMANOVA).  Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 5.078 0.001 

Feed Rate 1 0.712 0.594 

Treatment x Feed Rate  1 1.246 0.260 

Total  4   
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Table B.3.5. Pairwise comparisons of reduced volatiles emitted among treatments of poultry manure 

(Trial 2) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P 

value 

Non-Digested x Control              Treatment 1 0.994 0.994 5.920 0.458 0.036 

 Residual 7 1.175 0.167  0.542  

 Total 8 2.170   1.000  

        

BSF Digested x Control        Treatment 1 1.273 1.273 7.980 0.533 0.020 

 Residual 7 1.117 0.159  0.467  

 Total 8 2.391   1.000  

        

Non-Digested x BSF 

Digested                        

Treatment 1 0.605 0.605 2.949 0.228 0.042 

 Residual 10 0.051 0.205  0.772  

 Total 11 2.656   1.000  

 

 

 

Swine Manure 

 

Table B.3.6. Analysis of reduced volatiles emitted from swine manure with and without Hermetia illucens 

(L.) larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 2.394 0.039 

Feed Rate 1 3.069 0.011 

Trial  1 5.520 0.000 

Treatment x Feed Rate  1 1.788 0.104 

Treatment x Trial 1 1.156 0.305 

Feed Rate x Trial  1 4.212 0.002 

Treatment x Feed Rate x Trial  1 0.673 0.659 

Total  7   
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Table B.3.7. Analysis of reduced volatiles emitted from swine manure with and without Hermetia illucens 

(L.) larvae compared to control (Trial 1) using Permutational analysis of variance (PERMANOVA).  Trial 

was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 8.181 0.002 

Feed Rate 1 3.894 0.017 

Treatment x Feed Rate  1 0.773 0.504 

Total  4   

 

 

 

Table B.3.8. Pairwise comparisons of reduced volatiles emitted among treatments of swine manure (Trial 

1) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F Model R2 P value 

Non-Digested x Control                        Treatment 1 1.379 1.3790 10.362 0.596 0.032 

 Residual 7 0.935 0.134  0.404  

 Total 8 2.317   1.000  

        

BSF Digested x Control Treatment 1 1.450 1.450 13.742 0.663 0.037 

 Residual 7 0.738 0.105  0.337  

 Total 8 2.189   1.000  

        

Non-Digested x BSF 

Digested                        

Treatment 1 0.118 0.118 0.768 0.071 1.014 

 Residual 10 1.539 0.153  0.929  

 Total 11 1.657   1.000  

 

 

 

Table B.3.9. Analysis of reduced volatiles emitted from swine manure with and without Hermetia illucens 

(L.) larvae compared to control (Trial 2) using Permutational analysis of variance (PERMANOVA). Trial 

was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P  < 0.05). 

Factor  df F Model  P Value  

Treatment 2 6.379 0.001 

Feed Rate 1 4.632 0.004 

Treatment x Feed Rate  1 2.008 0.091 

Total  4   
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Table B.3.10. Pairwise comparisons of reduced volatiles emitted among treatments of swine manure 

(Trial 2) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F 

Model 

R2 P value 

Non-Digested x Control                         Treatment 1 1.052 1.052 6.804 0.493 0.018 

 Residual 7 1.082 0.154  0.507  

 Total 8 2.135   1.000  

        

BSF Digested x Control       Treatment 1 1.280 1.280 7.344 0.512 0.036 

 Residual 7 1.219 0.174  0.488  

 Total 8 2.499   1.000  

        

Non-Digested x BSF 

Digested             

Treatment 1 0.393 0.393 1.814 0.154 0.230 

 Residual 10 2.168 0.216  0.846  

 Total 11 3.034   1.000  

 

 

 

Dairy Manure 

 

Table B.3.11. Analysis of reduced volatiles emitted from dairy manure with and without Hermetia 

illucens (L.) larvae using Permutational analysis of variance (PERMANOVA). Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 1 2.054 0.080 

Feed Rate 1 1.795 0.122 

Trial  1 5.871 0.000 

Treatment x Feed Rate  1 1.766 0.129 

Treatment x Trial 1 0.278 0.919 

Feed Rate x Trial  1 0.841 0.522 

    

Treatment x Feed Rate x Trial  1 0.549 0.736 

Total  7   
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Table B.3.12. Analysis of reduced volatiles emitted from dairy manure with and without  Hermetia 

illucens (L.) larvae compared to control (Trial 1) using Permutational analysis of variance 

(PERMANOVA). Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 6.557 0.001 

Feed Rate 1 1.853 0.133 

Treatment x Feed Rate  1 2.263 0.083 

Total  4   

 

 

 

Table B.3.13. Pairwise comparisons of reduced volatiles emitted among treatments of dairy manure (Trial 

1) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F Model R2 P 

value 

Non-Digested x Control                         Treatment 1 1.204 1.204 6.079 0.465 0.034 

 Residual 7 1.386 0.198  0.535  

 Total 8 2.591   1.000  

        

BSF Digested x Control       Treatment 1 1.451 1.451 16.994 0.7083 0.026 

 Residual 7 0.597 0.085  0.292  

 Total 8 2.049   1.000  

        

Non-Digested x BSF 

Digested 

Treatment 1 0.288 0.288 1.484 0.129 0.438 

 Residual 10 1.941 0.194  0.871  

 Total 11 2.230   1.000  

 

 

 

Table B.3.14. Analysis of reduced volatiles emitted from dairy manure with and without Hermetia 

illucens (L.) larvae compared to control (Trial 2) using Permutational analysis of variance 

(PERMANOVA). Trial was conducted at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor  df F Model  P Value  

Treatment 2 7.687 0.001 

Feed Rate 1 1.314 0.261 

Treatment x Feed Rate  1 0.325 0.888 

Total  4   
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Table B.3.15. Pairwise comparisons of reduced volatiles emitted among treatments of dairy manure (Trial 

2) after Bonferroni’s correction (P < 0.025). 

Factor  df SS MS F Model R2 P 

value 

Non-Digested x Control                                    Treatment 1 1.320 1.320 12.821 0.647 0.022 

 Residual 7 0.720 0.102  0.353  

 Total 8 2.041   1.000  

        

BSF Digested x Control      Treatment 1 1.329 1.329 17.138 0.710 0.034 

 Residual 7 0.542 0.077  0.290  

 Total 8 1.872   1.000  

        

Non-Digested x BSF 

Digested                     

Treatment 1 0.064 0.064 0.524 0.050 1.476 

 Residual 10 1.221 0.122  0.950  

 Total 11 1.285   1.000  
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APPENDIX C 
 

SUMMARY OF INDICATOR SPECIAL ANALYSIS (ISA) 

 

C.1 ISA SUMMARY FROM VOLATILES EMITTED FROM MANURE WITH AND WITHOUT 

Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

 

Poultry Manure  

 

Table C.1.1.1. Indicator compound analysis based on volatiles emitted from poultry manure (n = 3) (Trial 

1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  2(3H)-Furanone, dihydro-5-pently 1.000 0.010 

 2(3H)-Furanone, 5-ethylhydro-5-methyl 0.946 0.010 

 Benzene, 1,4-dichloro 0.779 0.015 

 Benezenepropanoic acid, ethyl ester 1.000 0.010 

 Benzenepropanoic acid, methyl ester 1.000 0.010 

 Benzoic, 2-hydroxy-, methyl ester 1.000 0.010 

 Butanoic acid 0.995 0.010 

 Butanoic acid, 2-methyl 0.985 0.010 

 Butanoic acid, 3-methyl 0.986 0.010 

 Butanoic acid, propyl ester 1.000 0.010 

 Heptanoic acid 1.000 0.010 

 Hexanoic acid 1.000 0.010 

 Indole 0.881 0.015 

 Indole, 3-methyl 0.816 0.025 

 Isobornyl acetate 1.00 0.010 

 Maltol 0.816 0.035 

 Oleic acid 0.816 0.050 

 Pentanoic acid 0.989 0.010 

 Pentanoic acid, 4-methyl 0.993 0.010 

 Pentanoic acid, propyl ester 1.000 0.010 

 Phenol 0.964 0.010 

 Phenol, 2-methoxy 1.000 0.010 

 Phenol, 2-methoxy-4-methyl 0.931 0.010 

 Phenol, 4-ethyl 0.978 0.010 

 Phenol, 4-methyl 0.986 0.010 

 Propanoic acid  0.976 0.010 

 Propanoic acid, 2-methyl 0.816 0.035 

    

BSF Digested 2-Undecanone 0.913 0.015 

 3-Octanone 1.000 0.005 

 3,4-Dimethoxytoluene 1.000 0.005 



 

 

 

199 

Table C.1.1 (Continued)   

 Acetophenone 0.985 0.010 

 Cyclohept-4-enone 0.913 0.020 

 Dimethyl sulfone 0.991 0.005 

 Hexadecane 0.898 0.035 

 Pentadecane 0.972 0.005 

 Phenol, 2-(1-methylethyl) 0.907 0.020 

 Pyrazine, tetramethyl- 0.786 0.050 

 Pyrazine, trimethyl- 0.838 0.030 

    

Non-Digested 2-Nonanone 0.986 0.005 
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Table C.1.2. Indicator compound analysis based on volatiles emitted from poultry manure (n = 3) (Trial 

2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control Benezenepropanoic acid, ethyl ester 1.000 0.005 

 Benzenepropanoic acid, methyl ester 1.000 0.005 

 Benzoic, 2-hydroxy-, methyl ester 1.000 0.005 

 Butanoic acid 0.968 0.040 

 Butanoic acid, 2-methyl 0.863 0.035 

 Butanoic acid, 3-methyl 0.858 0.030 

 Butanoic acid, propyl ester 1.000 0.005 

 Heptanoic acid 0.896 0.015 

 Hexanoic acid 0.848 0.040 

 Indole 0.962 0.005 

 Isobornyl acetate 1.000 0.005 

 Maltol 0.816 0.045 

 Pentanoic acid 0.941 0.020 

 Pentanoic acid, 4-methyl 0.937 0.005 

 Pentanoic acid, propyl ester 1.000 0.005 

 Phenol 0.984 0.005 

 Phenol, 2-methoxy 1.000 0.005 

 Phenol, 2-methoxy-4-methyl 0.952 0.005 

 Phenol, 4-ethyl 0.968 0.010 

 Phenol, 4-methyl 0.979 0.005 

 Propanoic acid  0.863 0.035 

    

BSF Digested Benzoic acid, 4-ethoxy-ethyl ester 0.732 0.025 

    

Non-Digested 2-Nonanone 0.988 0.005 

 2-Undecanone 0.959 0.005 

 3,4-Dimethoxytoluene 0.913 0.030 

 Acetophenone 0.981 0.005 

 Dimethyl sulfone 0.859 0.015 
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Swine Manure  

 

Table C.1.3 Indicator compound analysis based on volatiles emitted from swine manure (n = 3) (Trial 1) 

with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  2-Decanone 1.000 0.005 

 Acetophenone 0.855 0.005 

 Benzaldehyde  0.761 0.010 

 Butanoic acid 1.000 0.005 

 Butanoic acid, 3-methyl 1.000 0.005 

 Decane 0.816 0.015 

 Diphenyl sulfide 1.000 0.005 

 Indole 1.000 0.005 

 Indole, 3-methyl 1.000 0.005 

 Isobornyl acetate 1.000 0.005 

 Pentanoic acid, 4-methyl 0.977 0.005 

 Phenol 1.000 0.005 

 Phenol, 4-ethyl 0.994 0.005 

 Phenol, 4-methyl 1.000 0.005 

 Propanoic acid  1.000 0.005 

 Propanoic acid, 2-methyl 1.000 0.005 

 Toluene 1.000 0.005 

 Undecane 0.955 0.005 

    

Non-Digested 3-Octanone 0.816 0.035 
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Table C.1.4. Indicator compound analysis based on volatiles emitted from swine manure (n = 3) (Trial 2) 

with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  2-Decanone 1.000 0.010 

 Acetophenone 0.821 0.040 

 Butanoic acid 1.000 0.010 

 Butanoic acid, 3-methyl 1.000 0.010 

 Decanal 0.725 0.050 

 Diphenyl sulfide 1.000 0.010 

 Indole 0.905 0.015 

 Indole, 3-methyl 0.956 0.010 

 Pentanoic acid, 4-methyl 1.000 0.010 

 Phenol 0.964 0.010 

 Phenol, 4-ethyl 0.982 0.010 

 Phenol, 4-methyl 0.963 0.010 

 Propanoic acid  1.000 0.010 

 Propanoic acid, 2-methyl 1.000 0.010 

 Toluene 1.000 0.010 

    

Non-Digested 3-Octanone 0.816 0.020 

 Benzoic acid, 4-ethoxy-ethyl ester 0.735 0.050 

 

 

 

Dairy Manure  

 

Table C.1.5. Indicator compound analysis based on volatiles emitted from dairy manure (n = 3) (Trial 1) 

with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P  < 0.05). 

Factor Compound Indicator Value  P Value 

Control  Butanoic acid 1.000 0.010 

 Butanoic acid, 3-methyl 1.000 0.010 

 Decane 0.816 0.035 

 Indole 0.784 0.045 

 Indole, 3-methyl 0.999 0.010 

 Isobornyl acetate 0.816 0.040 

 Pentanoic acid 1.000 0.010 

 Phenol 0.992 0.010 

 Phenol, 2-ethyl 0.816 0.045 

 Phenol, 4-ethyl 0.957 0.015 

 Phenol, 4-methyl 0.998 0.010 

 Propanoic acid  1.000 0.010 

 Propanoic acid, 2-methyl 1.000 0.010 

 Undecane 0.968 0.010 
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Table C.1.6. Indicator compound analysis based on volatiles emitted from dairy manure (n = 3) (Trial 2) 

with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 0.3°C 

with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  Butanoic acid 1.000 0.005 

 Butanoic acid, 3-methyl 1.000 0.005 

 Indole 0.816 0.015 

 Indole, 3-methyl 1.000 0.005 

 Pentanoic acid 1.000 0.005 

 Phenol 0.997 0.005 

 Phenol, 2-ethyl 0.816 0.015 

 Phenol, 4-ethyl 1.000 0.005 

 Phenol, 4-methyl 1.000 0.005 

 Pinene  0.816 0.035 

 Propanoic acid  1.000 0.005 

 Propanoic acid, 2-methyl 1.000 0.005 

    

BSF Digested Naphthalene 0.913 0.020 

    

Non-Digested 3-Octanone 0.816 0.035 

 Pentadecane 0.967 0.005 
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C.2 ISA SUMMARY BASED OFF REDUCED VOLATILES EMITTED FROM MANURE WITH AND 

WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

 

Volatile profile was reduced by eliminating compounds, which were only present in one technical 

replicate from the analyses.  

 

Poultry Manure  

 

Table C.2.1. Indicator compound analysis based on reduced volatiles emitted from poultry manure (n = 3) 

(Trial 1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 

0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  2(3H)-Furanone, dihydro-5-pently 1.000 0.005 

 2(3H)-Furanone, 5-ethylhydro-5-methyl 0.945 0.005 

 Benzene, 1,4-dichloro 0.779 0.005 

 Benezenepropanoic acid, ethyl ester 1.000 0.005 

 Benzenepropanoic acid, methyl ester 1.000 0.005 

 Benzoic acid, 2-hydroxy-, methyl ester 1.000 0.005 

 Butanoic acid 0.995 0.005 

 Butanoic acid, 2-methyl 0.985 0.005 

 Butanoic acid, 3-methyl 0.986 0.005 

 Butanoic acid, propyl ester 1.000 0.005 

 Heptanoic acid 1.000 0.005 

 Hexanoic acid 1.000 0.005 

 Indole 0.881 0.030 

 Indole, 3-methyl   0.816 0.030 

 Isobornyl acetate 1.00 0.005 

 Maltol 0.816 0.030 

 Oleic acid 0.816 0.035 

 Pentanoic acid 0.989 0.005 

 Pentanoic acid, 4-methyl 0.993 0.005 

 Pentanoic acid, propyl ester 1.000 0.005 

 Phenol 0.964 0.005 

 Phenol, 2-methoxy 1.000 0.005 

 Phenol, 2-methoxy-4-methyl 0.931 0.010 

 Phenol, 4-ethyl 0.977 0.010 

 Phenol, 4-methyl 0.987 0.010 

 Propanoic acid  0.976 0.005 

 Propanoic acid, 2-methyl 0.816 0.030 

    

Non-Digested 2-Butanone, 3-hydroxy 0.816 0.035 

 2-Nonanone 0.986 0.005 

 2-Undecanone 0.912 0.010 

 3,4-Dimethoxytoluene 1.000 0.005 

 3-Octanone 1.000 0.005 

 Acetophenone 0.985 0.005 

 Cyclohept-4-enone 0.913 0.015 

 Dimethyl sulfone 0.991 0.005 

 Hexadecane 0.898 0.035 

 Pentadecane 0.972 0.005 

 Phenol, 2-(1-methylethyl) 0.907 0.015 

 Pyrazine, trimethyl- 0.838 0.020 
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Table C.2.2. Indicator compound analysis based on reduced volatiles emitted from poultry manure (n = 

3) (Trial 2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 

29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control 2(3H)-Furanone, dihydro-5-pently 0.799 0.040 

 Benezenepropanoic acid, ethyl ester 1.000 0.005 

 Benzenepropanoic acid, methyl ester 1.000 0.005 

 Benzoic acid, 2-hydroxy-, methyl ester 1.000 0.005 

 Butanoic acid 0.968 0.020 

 Butanoic acid, 2-methyl 0.863 0.025 

 Butanoic acid, 3-methyl 0.858 0.025 

 Butanoic acid, propyl ester 1.000 0.005 

 Heptanoic acid 0.896 0.020 

 Hexanoic acid 0.848 0.040 

 Indole 0.962 0.005 

 Isobornyl acetate 1.000 0.005 

 Maltol 0.816 0.025 

 Pentanoic acid 0.941 0.015 

 Pentanoic acid, 4-methyl 0.937 0.010 

 Pentanoic acid, propyl ester 1.000 0.005 

 Phenol 0.984 0.005 

 Phenol, 2-methoxy 1.000 0.005 

 Phenol, 2-methoxy-4-methyl 0.952 0.005 

 Phenol, 4-ethyl 0.968 0.010 

 Phenol, 4-methyl 0.979 0.005 

 Propanoic acid  0.863 0.030 

    

BSF Digested Benzoic acid, 4-ethoxy-ethyl ester 0.732 0.025 

    

Non-Digested 2-Nonanone 0.988 0.005 

 2-Undecanone 0.959 0.005 

 3,4-Dimethoxytoluene 0.913 0.010 

 3-Octanone 0.816 0.045 

 Acetophenone 0.981 0.005 

 Dimethyl sulfone 0.859 0.020 

 Dimethyl trisulfide 0.816 0.045 

 Pentadecane 0.782 0.050 
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Swine Manure  

 

Table C.2.3 Indicator compound analysis based on reduced volatiles emitted from swine manure (n = 3) 

(Trial 1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  2(3H)-Furanone, dihydro-5-pently 1.000 0.010 

 2(3H)-Furanone, 5-ethylhydro-5-methyl 0.945 0.010 

 Acetic acid, phenylmethyl ester 0.700 0.020 

 Benzene, 1,4-dichloro 0.779 0.010 

 Benezenepropanoic acid, ethyl ester 1.000 0.010 

 Benzenepropanoic acid, methyl ester 1.000 0.010 

 Benzoic acid, 2-hydroxy-, methyl ester 1.000 0.010 

 Butanoic acid 0.995 0.010 

 Butanoic acid, 2-methyl 0.982 0.010 

 Butanoic acid, 3-methyl 0.986 0.010 

 Butanoic acid, propyl ester 1.000 0.010 

 Heptanoic acid 1.000 0.010 

 Hexanoic acid 1.000 0.010 

 Indole 0.881 0.025 

 Indole, 3-methyl  0.817 0.010 

 Isobornyl acetate 1.000 0.030 

 Maltol 0.816 0.015 

 Pentanoic acid 0.989 0.010 

 Pentanoic acid, 4-methyl 0.993 0.010 

 Pentanoic acid, propyl ester 1.000 0.010 

 Phenol 0.964 0.015 

 Phenol, 2-methoxy 1.000 0.010 

 Phenol, 2-methoxy-4-methyl 0.931 0.010 

 Phenol, 4-ethyl 0.978 0.010 

 Phenol, 4-methyl 0.907 0.010 

 Propanoic acid  0.976 0.010 

 Propanoic acid, 2-methyl 0.816 0.015 

    

Non-Digested 2-Nonanone 0.986 0.005 

 2-Undecanone 0.912 0.020 

 3,4-Dimethoxytoluene 1.000 0.005 

 3-Octanone 1.000 0.005 

 Acetophenone 0.985 0.005 

 Cyclohept-4-enone 0.913 0.010 

 Dimethyl sulfone 0.991 0.005 

 Pentadecane 0.972 0.005 

 Phenol, 2-(1-methylethyl) 0.907 0.005 

 Pyrazine, tetramethyl 0.786 0.400 

 Pyrazine, trimethyl 0.838 0.035 
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Table C.2.4. Indicator compound analysis based on reduced volatiles emitted from swine manure (n = 3) 

(Trial 2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  2(3H)-Furanone, dihydro-5-pently 0.799 0.020 

 Benezenepropanoic acid, ethyl ester 1.000 0.005 

 Benzenepropanoic acid, methyl ester 1.000 0.005 

 Benzoic acid, 2-hydroxy-, methyl ester 1.000 0.005 

 Butanoic acid 0.968 0.015 

 Butanoic acid, 2-methyl 0.862 0.015 

 Butanoic acid, 3-methyl 0.858 0.015 

 Butanoic acid, propyl ester 1.000 0.005 

 Heptanoic acid 0.896 0.010 

 Hexanoic acid 0.848 0.015 

 Indole 0.962 0.010 

 Isobornyl acetate 1.000 0.005 

 Maltol 0.816 0.025 

 Oleic acid 0.766 0.040 

 Pentanoic acid 0.941 0.005 

 Pentanoic acid, 4-methyl 0.937 0.005 

 Pentanoic acid, propyl ester 1.000 0.005 

 Phenol 0.984 0.010 

 Phenol, 2-methoxy 1.000 0.005 

 Phenol, 2-methoxy-4-methyl 0.952 0.005 

 Phenol, 4-ethyl 0.968 0.005 

 Phenol, 4-methyl 0.979 0.005 

 Propanoic acid  0.863 0.020 

    

BSF Digested  Benzoic acid, 4-ethoxy-ethyl ester 0.732 0.040 

    

Non-Digested 2-Nonanone 0.988 0.005 

 2-Undecanone 0.959 0.005 

 3,4-Dimethoxytoluene 0.913 0.010 

 3-Octanone 0.816 0.040 

 Acetophenone 0.981 0.005 

 Dimethyl sulfone 0.859 0.035 

 Dimethyl trisulfide 0.816 0.035 

 Pentadecane 0.783 0.045 
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Dairy Manure  

 

Table C.2.5. Indicator compound analysis based on reduced volatiles emitted from dairy manure (n = 3) 

(Trial 1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  Butanoic acid 1.000 0.010 

 Butanoic acid, 3-methyl 1.000 0.010 

 Decane 0.816 0.015 

 Indole 0.784 0.035 

 Indole, 3-methyl   0.999 0.010 

 Isobornyl acetate 0.816 0.025 

 Pentanoic acid 1.000 0.010 

 Phenol 0.992 0.010 

 Phenol, 2-ethyl 0.816 0.035 

 Phenol, 4-ethyl 0.957 0.010 

 Phenol, 4-methyl 0.998 0.010 

 Propanoic acid  1.000 0.010 

 Propanoic acid, 2-methyl 1.000 0.010 

 Undecane 0.968 0.010 

 

 

 

Table C.2.6 Indicator compound analysis based on reduced volatiles emitted from dairy manure (n = 3) 

(Trial 2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 

± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Indicator Value  P Value 

Control  Butanoic acid 1.000 0.005 

 Butanoic acid, 3-methyl 1.000 0.005 

 Indole 0.816 0.015 

 Indole, 3-methyl   1.000 0.005 

 Pentanoic acid 1.000 0.005 

 Phenol 0.997 0.005 

 Phenol, 2-ethyl 0.816 0.015 

 Phenol, 4-ethyl 1.000 0.005 

 Phenol, 4-methyl 1.000 0.005 

 Pinene 0.816 0.035 

 Propanoic acid  1.000 0.005 

 Propanoic acid, 2-methyl 1.000 0.005 

    

BSF Digested  Naphthalene 0.912 0.020 

    

Non-Digested 3-Octanone 0.816 0.035 

 Pentadecane 0.967 0.005 
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C.3 ISA SUMMARY BASED OFF REDUCED VOLATILES EMITTED FROM MANURE WITH AND 

WITHOUT Hermetia illucens (L.) LARVAE COMPARED TO CONTROL MANURE 

 

Volatile profile was reduced by grouping compounds into chemical classes.  

 

Poultry Manure  

 

Table C.3.1 Indicator compound class analysis based on reduced volatiles emitted from poultry manure 

(n = 3) (Trial 1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted 

at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Class Indicator Value  P Value 

Control  Carboxylic acids 1.000 0.005 

 Esters 0.957 0.005 

 Fatty acids 0.991 0.005 

 Indoles 0.817 0.020 

 Phenols 0.943 0.010 

    

Non-Digested Hydrocarbons 0.851 0.010 

 Ketones 0.923 0.005 

 Phenols 0.943 0.010 

 N-Containing 0.885 0.015 

 

 

 

Table C.3.2. Indicator compound class analysis based on reduced volatiles emitted from poultry manure 

(n = 3) (Trial 2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted 

at 29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Class Indicator Value  P Value 

Control  Carboxylic acids 0.855 0.025 

 Esters 0.922 0.010 

 Fatty acids 0.932 0.010 

    

Non-Digested  Ketones 0.947 0.005 

 S-Containing 0.867 0.005 

 

 

 

 

Swine Manure  

 

Table C.3.3. Indicator compound class analysis based on reduced volatiles emitted from swine manure (n = 

3) (Trial 1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 

0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Class Indicator Value  P Value 

Control  Esters 0.743 0.015 

 Ethers 0.767 0.050 

 Fatty acids 0.998 0.005 

 Hydrocarbons 0.695 0.040 

 Indoles 1.000 0.005 

 Phenols 0.998 0.005 

 S-Containing 1.000 0.005 
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Table C.3.4. Indicator compound class analysis based on reduced volatiles emitted from swine manure (n = 

3) (Trial 2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 29 ± 

0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Class Indicator Value  P Value 

Control  Fatty acids 1.000 0.010 

 Indoles 0.956 0.010 

 Phenols 0.963 0.010 

 S-Containing 0.777 0.030 

    

Non-Digested Ketones 0.943 0.035 

 

 

 

Dairy Manure  

 

Table C.3.5. Indicator compound class analysis based on reduced volatiles emitted from dairy manure (n 

= 3) (Trial 1) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 

29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Class Indicator Value  P Value 

Control  Fatty acids 1.000 0.005 

 Indoles 0.999 0.005 

 Phenols 0.995 0.005 

 

 

 

Table C.3.6. Indicator compound class analysis based on reduced volatiles emitted from dairy manure (n 

= 3) (Trial 2) with and without Hermetia illucens (L.) larvae compared to control. Trial was conducted at 

29 ± 0.3°C with 60 ± 5.1% RH and 14:10 L:D cycle (P < 0.05). 

Factor Compound Class Indicator Value  P Value 

Control  Fatty acids 1.000 0.005 

 Indoles 1.000 0.005 

 Phenols 0.999 0.005 

    

Non-Digested Ketones 0.977 0.030 

 

 

 

 

 

 

 


