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9 Summary 

10 Employment of cyanobacteria in biomineralization of carbon dioxide by calcium 
11 carbonate precipitation offers novel and self-sustaining strategies for point-source carbon 
12 capture and sequestration. Although details of this process remain to be elucidated, a 
13 carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or 
14 proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can 
15 utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant 
16 calcium carbonate. Calcium can be derived from sources such as gypsum or industrial 
17 brine. A better understanding of the biochemical and genetic mechanisms that carry out 
18 and regulate cynaobacterial biomineralization should put us in a position where we can 
19 further optimize these steps by exploiting the powerful techniques of genetic engineering, 
2 0 directed evolution, and biomimetics. 

21 Introduction 

22 Strategies to reduce emissions of carbon dioxide (CO2) from fossil fuels, and hence 
2 3 mitigate climate change, include energy savings, development of renewable biofuels, and 
24 carbon capture and storage (CCS). For CCS, several scenarios are being considered. One 
25 approach is capture of point-source CO2 from power plants or other industrial sources 
26 and subsequent injection of the concentrated CO2 underground or into the ocean [l]. An 
27 alternative to this point-source CCS method is expansion of biological carbon 
28 sequestration of atmospheric CO2 by measures such as reforestation, changes in land use 
29 practices, increased carbon allocation to underground biomass, production ofbiochar, 
30 and enhanced biomineralization [2]. In addition to geological or oceanic CO2 injection, 
31 novel models for point-source CCS based on accelerated weathering and 
32 biomineralization are emerging, utilizing either abiotic [3-5] or biotic [4,6,7] processes. 

33 Biomineralization of CO2 by calcium carbonate (CaCO3) precipitation is a common 
34 phenomenon in marine, freshwater, and terrestrial ecosystems and is a fundamental 
35 process in the global carbon cycle [8]. 

36 Precipitation of CaCO3 can proceed by either or both the following reactions: 

36 
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1 Ca2+ + 2HCO3- t. CaCO3 +CO2+ H2O (1) 

2 Ca2+ + co/- t. CaCO3 (2) 

3 with reaction 2 being the principal path, at least in seawater [9,10]. 

4 Bicarbonate (HCO3) is ubiquitous in water and is formed via dissolution of gaseous CO2: 

5 CO2 (av + H2O t. H2CO3 (3) 

6 H2CO3 t. HCO3- + H+ (4) 

7 The concentration of carbonic acid (H2CO3) is small so the dissolved CO2 from reactions 
8 3 and 4 occurs predominantly as HCO3-. 

9 A fraction ofHCO3- dissociates to form carbonate (CO3-): 

10 HCO3- t. H+ + co/- (5) 

11 The lion's share of global calcification takes place through biotic processes in the oceans. 
12 Although the oceans are supersaturated with Ca2+ and CO3-, spontaneous precipitation of 
13 CaCO3 in the absence of calcifying (micro )organisms is rare owing to various kinetic 
14 barriers [11]. The contribution of microorganisms, particularly cyanobacteria, in CaCO3 
15 precipitation and sedimentation is substantial and it has played a major role in geological 
16 formations since the Archaean Era [12]. Although studies ofmicrobially mediated 
17 biomineralization through CaCO3 precipitation have a long history, the mechanistic 
18 details of the different steps are only poorly understood [13]. In this review we discuss 
19 the potential for microorganisms, specifically cyanobacteria, in calcification, that is 
20 conversion of CO2 to recalcitrant calcium CaCO3. 

21 We begin our discussion on cyanobacterial calcification and its potential in CCS by a 
22 brief description of the general features of cyanobacteria where we elaborate on the 
23 carbon -ncentrating mechanism (CCM) that allows cyanobacteria to actively take up 
24 inorganic carbon (Ci) from the external medium and perform efficient photosynthesis in 
2 5 aqueous environments. We then give an account on microbial biomineralization, 
26 specifically as it occurs in cyanobacteria. In this context we return to the CCM and point 
27 out the intimate association between CCM and the calcification process. Finally, we ask 
28 how biomineralization by calcifying cyanobacteria can contribute to CCS, and we point 
2 9 out research areas that should be prioritized to tackle some of the challenges ahead. 

30 Cyanobacteria 

31 Cyanobacteria are photosynthetic Gram-negative bacteria that carry out oxygenic 
32 photosynthesis and are thought to be the origin of chloroplasts of plants and eukaryotic 
3 3 algae via endosymbiotic events in the late Proterozoic or early Cambrian period. 
34 Cyanobacteria occupy a wide array of terrestrial, marine, and freshwater habitats, 
3 5 including extreme environments such as hot springs, deserts, bare rocks, and permafrost 
36 zones. In their natural environments, some cyanobacteria are often exposed to the highest 
3 7 rates of UV irradiance known on our globe. Cyanobacteria also have an extensive fossil 
38 record. Indeed, the oldest known fossils are of cyanobacteria from Archaean rocks of 
39 western Australia, dated 3.5 billion years old. Through their photosynthetic capacity 
40 cyanobacteria have been tremendously important in shaping the course of evolution and 
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2 Fig. 1. Model of the carbon-concentrating mechanism (CCM) and calcification in a 
3 cyanobacterial cell. CO2 enters the cells mainly via active transport ofHCO3- and also through 
4 diffusion of CO2, which is converted to HCO3- during the uptake. Cytosolic HCO3- is 
5 subsequently imported to the carboxysome. CA, carbonic anhydrase; Ci, inorganic carbon; EPS, 
6 exopolysaccharide sheath; NDH, NADPH dehydrogenase; and PET photosynthetic electron 
7 transport. Modified from Riding (2006) [ 4 7]. 

8 ecological change throughout Earth's history, and they continue to contribute to a large 
9 share of the total photosynthetic harnessing of solar energy and assimilation of CO2 to 

10 organic compounds. For example half of global photosynthesis is carried out by 
11 phytoplankton, which mostly consist of cyanobacteria [ 14]. Indeed, 25% of global 
12 photosynthesis can be accounted for by the two marine cyanobacterial genera, 
13 Synechococcus and Prochlorococcus [15]. Our oxygenic atmosphere was originally 
14 generated by numerous cyanobacteria during the Archaean and Proterozoic Eras. 
15 Cyanobacteria generally thrive in high CO2 levels and are considered as attractive 
16 systems for CO2 capture from flue gas [16]. Many cyanobacteria are halophilic and, 
17 therefore, cyanobacteria for biofuel production or CCS can be cultured in marine waters, 
18 saline drainage water, or brine from petroleum refining industry or CO2 injection sites, 
19 thereby sparing freshwater supplies. A large number of strains are thermophilic and thus 
20 tolerate high temperatures characteristic of flue gas. Also, being bacteria, cyanobacteria 
21 are amenable to homologous recombination, which allows rapid site-directed 
22 mutagenesis, gene insertions, replacements and deletions in a precise targeted and 
23 predictable manner. 

24 Cyanobacteria and eukaryotic microalgae exhibit a CCM, a metabolic system that allows 
25 the cells to enrich the amount of CO2 at the site ofRubisco (the first enzyme in the Calvin 
26 cycle that assimilates CO2 into organic carbon compounds) up to 1000-fold over that in 
2 7 the surrounding medium [ 17-19]. The salient features of the CCM in cyanobacteria are 
28 shown in Fig. 1. Details differ between cyanobacteria, and the mechanisms are 
29 incompletely understood but the general arrangement consists of transport ofHCO3-, the 
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1 major uptake form of Ci in cyanobacteria, across the outer membrane and the plasma 
2 membrane, through HCO3-/Na+ symports or ATP-driven uniports, as well as diffusion of 
3 CO2, into the cytosol. Conversion of cytosolic CO2 is carried out by NADPH 
4 dehydrogenase (NDH) complexes on the thylakoid and plasma membranes. HCO3- then 
5 enters the carboxysome, the protein-enclosed compartment that houses most of the 
6 Rubisco population, where it is converted to CO2 in a reaction catalyzed by carbonic 
7 anhydrase (CA) 

8 CO2+ H2O !::. H+ + HCO3- (6) 

9 The conversion of CO2 to HCO3- via the NDH complexes relies on CA-like activities in 
10 associated proteins [18,20]. The active transport ofHCO3- is dependent on extra ATP 
11 generated by cyclic electron transport around Photosystem I (PSI) in the photosynthetic 
12 electron transport chain (PET) [21-23]. The Ci transporters and the NDH complexes 
13 together constitute the combination of constitutive and inducible HCO3- uptake systems 
14 of the cyanobacterial CCM. When cells are exposed to CO2/HCO3- limitation (<50 ppm 
15 CO2), the inducible transport systems are activated, accompanied with increases in 
16 Rubisco activity and carboxysome content [20]. 

17 Interestingly, the explanation to why many cyanobacteria and eukaryotic microalgae have 
18 the ability to tolerate very high CO2 concentrations, in some cases well above 50% CO2 
19 [21,24,25] might be found in the CCM. Inhibition of Rubisco through acidification under 
2 0 high CO2 conditions is prevented by the CA reaction and by state II transition of PET 
21 (rearrangement of the phycobilisomes to favor light absorption by PSI) [21]. 

22 The idea of capitalizing on the high-CO2 tolerance of cyanobacteria and microalgae for 
2 3 mitigation of CO2 emissions in flue gas in connection with biofuel production was 
24 spawned already three decades ago [26,27] (and refs. therein). Since then, a large number 
2 5 of studies have been published where the potential for cyanobacterial and microalgal 
26 biofuels and beneficial CO2 recycling is described and discussed [16,24,28-31]. Biomass 
2 7 production and CO2 uptake in cyanobacteria and microalgae exposed to elevated CO2 
28 levels from flue gas or other streams have been followed for a variety of strains 
2 9 [ 16,29 ,31-3 6]. The overall conclusions from a large body of experiments are that: ( 1) 
30 cyanobacteria and microalgae can successfully assimilate significant amounts of CO2 
31 from sources such as flue gas; (2) many species are unaffected by the NOx and SOx 
32 present in flue gas; (3) thermophiles can be employed so as to minimize the cost of 
33 cooling the flue gas; (4) nutrients can be supplied via municipal wastewater to further 
34 reduce operation costs; and (5) both freshwater and marine species can be used. 

3 5 Bio mineralization by calcifying cyanobacteria 

36 The occurrence and distribution of calcfying microorganisms are widespread [37-39]. A 
3 7 number of microbial strains capable of calcification have been reported, e.g. various 
38 cyanobacteria, eukaryotic microalgae, Bacillus, Pseudomonas, Vibrio, and sulfate-
39 reducing bacteria. Although the phenomenon of microbial calcification has long been 
40 recognized, its physiological function is unknown. It might confer a selective advantage 
41 in providing a protective shield against high-light exposure [ 40], by offering a means for 
42 excretion of toxic levels of intracellular calcium [ 41 ], by enhancing nutrient uptake 
43 [ 40,42], or by serving as a buffer against pH rise in an alkaline environment [ 40], or 
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1 increasing the uptake of CO2 [43]. Since calcium is an important second messenger in 
2 cellular signaling, it is crucial that cells can control the flux of calcium in and out of cells, 
3 and calcification may be part of that regulatory process. 

4 Calcification is particularly obvious in cyanobacterial species [40,44]. The geological and 
5 ecological significance of cyanobacterial calcification is immense [12,44-52]; spectacular 
6 examples of cyanobacterial calcification are stromatolites [53-55] and whitings, very fast, 
7 large-scale precipitations of fine-grained CaCO3 together with organic compounds that 
8 can tum entire water bodies such as Lake Michigan and the Great Bahama Bank into a 
9 milky state [56-58]. Although our understanding of the molecular processes that trigger 

10 and control cyanobacterial calcification is hazy, and many of the mechanistic details of 
11 proposed models remain controversial, the general process is outlined in Fig. 1. 

12 Cyanobacterial calcification is a non-obligate process that depends on photosynthetic 
13 activities, the CCM, extracellular surface properties, and environmental conditions 
14 [47,59]. Calcification might even be considered an integral part of the CCM. 
15 Calcification in cyanobacteria is an extracellular process and occurs on in the 
16 exopolysacccharide sheath (BPS) or proteinaceous surface layer (S-layer) that surrounds 
17 the cells [ 40,58,60-62]. Microenvironments of alkaline pH are generated at the BPS or S-
18 layer owing to the CA activity in the carboxysome (reaction 6), which consumes H+ (or 
19 produces OH-) [63]. Other reactions that might contribute to local alkalinization of the 
20 BPS or S-layer are the PET (Fig. 1) and the plasma membrane-located Ca2+m+ antiport, 
21 which transports Ca2+ out (and H+ in) in an effort to maintain an optimal Ca2+ 
22 concentration in the cell [57]. The alkaline pH at the BPS or S-layer shifts the equilibria 
23 of the bicarbonate buffer system (reactions 4 and 5) to the right and promotes localized 
24 regions of increased co/- concentrations at the cell exterior. CA in the BPS [64] can 
25 further enhance local levels ofHCO3- and co/- from incoming CO2 or CO2 that is 
26 leaked out from the cytosol [20]. In addition, both the BPS and S-layer contain Ca2+-
2 7 binding domains, el glutamate and aspartate residues, which, together with the export of 
28 Ca2+ through the Ca +/H+ translocator, raises the local Ca2+ concentration and serve as 
29 nucleation sites for CaCO3 precipitation. Formed CaCO3 can either precipitate as part of 
30 the BPS matrix or as calcified S-layers that shed from the cells, followed by subsequent 
31 synthesis of new S-layers. Cells that become completely embedded in CaCO3 and die due 
32 to their inability to take up nutrients have also been observed [57]. 

3 3 An inspection of reaction 1 above shows that production of CaCO3 results in the release 
34 of CO2. Although less obvious, the same applies if carbonation proceeds from co/-
35 (reaction 2) [43,65]. As a consequence, the partial pressure of CO2 at the water surface 
36 rises. This calculation leads to the often puzzling and counterintuitive realization that 
3 7 CaCO3 precipitation is associated with an increase in atmospheric CO2. Simulations 
38 suggest that the released CO2:precipitated carbonate ratio is close to 1 in freshwater but 
39 around 0.6 in marine waters, which are more buffered [43,65-67]. However, field and 
40 laboratory measurements revealed that biotic calcification exhibit released 
41 CO2:precipitated carbonate ratios between 0.1 and 0.006 [43]. This agrees with careful 
42 experimental analyses of carbon flux during cyanobacterial calcification that showed a 
43 significant net CO2 sequestration both in the field and laboratory [68]. The discrepancy 
44 between theoretic models and observed values most probably reflects the tight coupling 
45 between calcification and photosynthesis [43,66]. For example, the CO2 released during 
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1 calcification may be re-captured through photosynthesis [43]. Taking into account the 
2 combined effects of photosynthesis and calcification in seawater, Suzuki [66] presented a 
3 model showing that when the rate of photosynthetic biomass production (measured as 
4 organic carbon production:calcification) exceeds 0.6, the net effect is seawater 
5 absorption of atmospheric CO2. On the contrary, for long-term carbon sequestration it is 
6 important that as much CO2 as possible be routed to calcification rather than to organic 
7 compounds [57,69]. 

8 CCS using calcifying cyanobacteria 

9 Through photosynthesis and calcification, cyanobacteria have the potential to capture 
10 CO2 from flue gas and store it as precipitated CaCO3. Calcium is abundant in many 
11 terrestrial, marine and lacustrine ecosystems. By using halophilic cyanobacteria, seawater 
12 or brines, e.g. agricultural drainage water, or saline water produced from petroleum 
13 production or geological CO2 injections, can serve as potential calcium sources for the 
14 calcification process. Calcification can further be boosted by supplying calcium from 
15 gypsum [70] or silicate minerals, possibly in connection with biologically accelerated 
16 weathering [ 4]. 

17 However, successful implementation of calcifying cyanobacteria for point-source CCS 
18 are met with significant challenges that need to be addressed. For example, as seeing how 
19 alkalinization of the EPS or S-layer depends on HCO3- import (Fig. 1), the question arises 
2 0 as to whether calcification in cyanobacteria will occur also under high CO2 conditions, 
21 e.g. when fed CO2 from a flue gas stream. At high CO2 levels, the CCM is not needed 
22 and cells will preferentially take up CO2 rather than HCO3-. The conversion of CO2 
23 during transport to the cytosol (Fig. 1) produces H+ (reaction 6) that needs to be 
24 neutralized, possibly via export to the medium [18]. This counterbalances the subsequent 
2 5 and opposite alkalinization reaction in the carboxysome. Also, rapid infusion of gaseous 
26 CO2 into a cyanobacterial pond will probably lower the ambient pH, impeding 
2 7 alkalinization at the extracellular surface. Cyanobacteria still calcify under elevated CO2 
28 levels but photosynthesis seems to exert little or no influence on the process [13,57]. 
2 9 Furthermore, CaCO3 precipitates were found to be more peripherally located on the 
30 extracellular surface and have a different morphology in cells predominantly taking up 
31 CO2 instead ofHCO3- [57,71]. Whether reactions such as PET and Ca2+ efflux suffice to 
32 generate extracellular alkaline microenvironments, to which extent CA activities in the 
3 3 EPS are involved, or if CaCO3 precipitation during rapid CO2 uptake becomes a passive 
34 process relying mainly of Ca2+ binding and nucleation at the EPS or S-layer, remains to 
35 be clarified. 

36 It will be important to unravel the mechanisms of calcification and how they are 
3 7 regulated in cyanobacteria growing under flue gas conditions, and in the presence of 
38 pulverized gypsum or calcium silicate minerals. Strategies to promote HCO3-uptake 
39 would be to use strains where both the constitutive and inducible CO2 uptake/conversion 
40 systems (Fig. 1) have been inactivated. Such mutants have been generated in 
41 Synecococcus PCC7942 and they exhibited HCO3-but no CO2 uptake capacity [72]. 
42 Mutant cells grew at high CO2 levels, but growth was not observed under CO2-limiting 
43 conditions. Another option might be to have the flue gas pass through a CA system so as 
44 to convert incoming CO2 to HCO3-prior to reaching the calcifying cyanobacteria. CA 

6 



1 could either be overproduced and secreted as extracellular enzymes directly into the 
2 solution by cyanobacteria or other bacteria, or immobilized on solid supports. 

3 Another issue relates to scale. A 500 MW coal-fired power plant emits between 3 and 4 
4 Mt of CO2 per year [73]. To be industrially relevant, ponds ( or photobioreactors) with 
5 calcifying cyanobacteria have to produce large enough amounts of CaCO3 to make an 
6 impact. Only a few attempts have been made at evaluating the rate of calcification in 
7 cyanobacteria. Extrapolating from whitings events in the Great Bahama Bank with an 
8 average of70 km2, and microcosm experiments with the marine Synechococcus 8806 (S. 
9 8806), Lee et al. [7] estimated that calcification by S. 8806 could account for 

10 approximately 2.5 Mt CaCO3 per year. This translates to sequestration of over half of the 
11 CO2 produced from a 500 MW power plant [ 6, 7]. Robust cyanobacterial strains or 
12 consortia need to be designed that exhibit maximized photosynthetic CO2 uptake and that 
13 can fully utilize the plentiful calcium available in silicate minerals or gypsum. 
14 Calcification can be enhanced by increasing the number of carboxylate amino acids in the 
15 BPS that can be used as nucleation sites, and by increasing CA activities in the BPS. It is 
16 also crucial that strains be developed that have highly efficient light utilization and 
17 photoprotection properties. Cyanobacteria in general have low light requirements but 
18 when grown in ponds, cells below the surface will be light-limited while those at the top 
19 might experience excessive light intensities. 

20 Furthermore, the information gained from studying calcification in cyanobacteria can be 
21 used for biomimetic approaches where artificial systems based on CA, CCM, BPS, or S-
22 layers are designed for CO2 capture and biomineralization. Crucial to these efforts is 
23 optimizing the long-term stability of the resulting carbonates [74]. For example, large 
24 calcite crystals containing an organic matrix similar to marine sediments are particularly 
2 5 stable and are highly desirable. Controlling the detailed morphology and composition of 
26 the organic (proteins, polysaccharide, etc.) and inorganic materials to result in highly 
2 7 stable carbonates is an important goal and may be achieved using biomimetic pathways 
28 to cyanobacterial mineralization. Ultimately such strategies could result in useful 
29 materials (i.e. bio-concrete). 

30 Conclusions 

31 Employment of cyanobacteria for point-source CCS of flue gas via calcification offers 
32 promising strategies for reducing anthropogenic CO2 emissions. However, much research 
3 3 is urgently needed to further our understanding of the biochemical and physical processes 
34 in cyanobacteria that promote calcification, and that will allow us to select or design 
3 5 strains with optimized properties for specific applications and conditions using genetic 
36 engineering or directed evolution. For example, it is crucial that we determine the 
3 7 physiological functions of calcification in order to define conditions for maximal CaCO3 
38 production, and to be able to apply proper selection pressure for strain improvement. We 
39 also need to understand the different steps, that is nucleation, phase transition, 
40 crystallization, and aggregation in the biomineralization process, and the energy barriers 
41 for these stages so that we can identify bottlenecks in the overall process under different 
42 environmental conditions. We need to analyze the structural and functional 
43 characteristics of the EPSs and S-layers during calcification. We must investigate 
44 calcification at elevated CO2 levels, such as in flue gas, and understand how 
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1 photosynthetic light harvesting and photoprotection can be improved in cyanobacteria 
2 growing in open pond cultures or in photobioreactors under such conditions. We need to 
3 identify the genes involved in calcification and utilize available batteries of 'omics 
4 technologies to obtain profiles for strains with different EPSs, S-layers, and capacities for 
5 calcification under various conditions. 

6 Finally, it should not be expected that calcification by cyanobacteria and microalgae 
7 present an alternative to geological CCS. Rather biomineralization should most probably 
8 be viewed as a niche technology, preferably linked to small coal-fired power plants, 
9 natural gas systems, municipal solid waste combustion, and CO2-emitting industries such 

10 as cement manufacture, and iron and steel production. If nation-wide distributions of such 
11 units were to be deployed in countries such as the U.S.A., China and India, the impact in 
12 mitigation of global greenhouse gas emissions could be enormous. 
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