5/6/22, 2:10 PM

tutorial_quantum_transfer_learning

This cell 1is added by sphinx-gallery
It can be customized to whatever you Like
%matplotlib inline

Quantum transfer learning
{#quantum_transfer_learning}

i {meta} :property=\"og:description\": Combine PyTorch and PennyLane to train a hybrid
quantum-classical image classifier using transfer learning. :property=\"og:image\":

https://pennylane.ai/gml/_images/transfer_images.png ::
Author: PennylLane dev team. Last updated: 28 Jan 2021.

In this tutorial we apply a machine learning method, known as transfer learning, to an image

classifier based on a hybrid classical-quantum network.

This example follows the general structure of the PyTorch tutorial on transfer learning by Sasank
Chilamkurthy, with the crucial difference of using a quantum circuit to perform the final
classification task.

More details on this topic can be found in the research paper [1] (Mari et al. (2019)).

Introduction

Transfer learning is a well-established technique for training artificial neural networks (see e.g.,
Ref. [2]), which is based on the general intuition that if a pre-trained network is good at solving
a given problem, then, with just a bit of additional training, it can be used to also solve a
different but related problem.

As discussed in Ref. [1], this idea can be formalized in terms of two abstract networks A and B,
independently from their quantum or classical physical nature.

{.align-center}

As sketched in the above figure, one can give the following general definition of the transfer
learning method:

1. Take a network A that has been pre-trained on a dataset D 4 and for a given task T'4.
2. Remove some of the final layers. In this way, the resulting truncated network A’ can be
used as a feature extractor.

3. Connect a new trainable network B at the end of the pre-trained network A’.

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 1712

5/6/22,2:10 PM tutorial_quantum_transfer_learning

4. Keep the weights of A’ constant, and train the final block B with a new dataset Dp and/or
for a new task of interest T'g.

When dealing with hybrid systems, depending on the physical nature (classical or quantum) of
the networks A and B, one can have different implementations of transfer learning as

summarized in following table:

i {rst-class} docstable :::
Network A Network B Transfer learning scheme

Classical Classical CC - Standard classical method. See e.g., Ref. [2].
Classical Quantum CQ - Hybrid model presented in this tutorial.

Quantum Classical QC - Model studied in Ref. [1].

Quantum Quantum QQ - Model studied in Ref. [1].

Classical-to-quantum transfer learning

We focus on the CQ transfer learning scheme discussed in the previous section and we give a
specific example.

1. As pre-trained network A we use ResNet18, a deep residual neural network introduced by
Microsoft in Ref. [3], which is pre-trained on the ImageNet dataset.

2. After removing its final layer we obtain A’, a pre-processing block which maps any input
high-resolution image into 512 abstract features.

3. Such features are classified by a 4-qubit \"dressed quantum circuit\" B, i.e., a variational
quantum circuit sandwiched between two classical layers.

4. The hybrid model is trained, keeping A’ constant, on the Hymenoptera dataset (a small

subclass of ImageNet) containing images of ants and bees.
A graphical representation of the full data processing pipeline is given in the figure below.

{.align-center}

General setup

= {note} :: { title} Note ::

To use the PyTorch interface in PennylLane, you must first install PyTorch. ::

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 212

5/6/22,2:10 PM tutorial_quantum_transfer_learning

In addition to PennyLane, we will also need some standard PyTorch libraries and the plotting
library matplotlib.

Some parts of this code are based on the Python script:
https://github.com/pytorch/tutorials/blob/master/beginner_source/transfer_Learning 1
License: BSD

import time
import os
import copy

PyTorch

import torch

import torch.nn as nn

import torch.optim as optim

from torch.optim import lr_scheduler

import torchvision

from torchvision import datasets, transforms

Pennylane
import pennylane as gml
from pennylane import numpy as np

torch.manual_seed(42)
np.random.seed(42)

Plotting
import matplotlib.pyplot as plt

OpenMP: number of parallel threads.
os.environ["OMP_NUM_THREADS"] = "1"

Setting of the main hyper-parameters of the
model

= {note} :: {.title} Note :::

To reproduce the results of Ref. [1], num_epochs should be set to 3@ which may take a long
time. We suggest to first try with num_epochs=1 and, if everything runs smoothly, increase it
to a larger value. ::

n_qubits = 4

step = 0.0004

batch_size = 4
num_epochs = 3

gq_depth = 6
gamma_lr_scheduler = 0.1
g_delta = 0.01
start_time = time.time()

Number of qubits

Learning rate

Number of samples for each training step

Number of training epochs

Depth of the quantum circuit (number of variational Laye
Learning rate reduction applied every 10 epochs.

Initial spread of random quantum weights

Start of the computation timer

BB OB R R B R

We initialize a PennyLane device with a default.qubit backend.

dev = gml.device("default.qubit", wires=n_qubits)

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 312

5/6/22,2:10 PM tutorial_quantum_transfer_learning

We configure PyTorch to use CUDA only if available. Otherwise the CPU is used.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Dataset loading
= {.note} :: {.title} Note :::

The dataset containing images of ants and bees can be downloaded here and should be
extracted in the subfolder ../ data/hymenoptera_data .::

This is a very small dataset (roughly 250 images), too small for training from scratch a classical

or quantum model, however it is enough when using transfer learning approach.

The PyTorch packages torchvision and torch.utils.data are used for loading the

dataset and performing standard preliminary image operations: resize, center, crop, normalize,
etc.

data_transforms = {
"train": transforms.Compose (
[
transforms.RandomResizedCrop(224), # uncomment for data augmentatior
transforms.RandomHorizontalFLlip(), # uncomment for data augmentatior
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
Normalize input channels using mean values and standard deviations of In
transforms.Normalize([0©.485, 0.456, 0.406], [0.229, ©.224, 0.225]),
]
)>
"val": transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([©.485, 0.456, 0.406], [0.229, 0.224, 0.225]),

)s

data_dir = "data/hymenoptera_data"
image_datasets = {
x if x == "train" else "validation": datasets.ImageFolder(
os.path.join(data_dir, x), data_transforms[x]

)

for x in ["train", "val"]
}
dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]}
class_names = image_datasets["train"].classes

Initialize dataloader
dataloaders = {
x: torch.utils.data.DatalLoader(image_datasets[x], batch_size=batch_size, shuffle=1

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 4/12

5/6/22, 2:10 PM

tutorial_quantum_transfer_learning

for x in ["train", "validation"]

}

function to plot images
def imshow(inp, title=None):
"""Display image from tensor.
inp = inp.numpy().transpose((1, 2, 0))
Inverse of the initial normalization operation.
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)

Let us show a batch of the test data, just to have an idea of the classification problem.

Get a batch of training data
inputs, classes = next(iter(dataloaders["validation"]))

Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

dataloaders = {
x: torch.utils.data.DatalLoader(image_datasets[x], batch_size=batch_size, shuffle=1
for x in ["train", "validation"]

Variational quantum circuit

We first define some quantum layers that will compose the quantum circuit.

def H_layer(nqubits):
"""Layer of single-qubit Hadamard gates.
for idx in range(nqubits):
gml.Hadamard(wires=idx)

def RY_layer(w):
"""Layer of parametrized qubit rotations around the y axis.

for idx, element in enumerate(w):
gml.RY(element, wires=idx)

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 5/12

5/6/22,2:10 PM tutorial_quantum_transfer_learning

def entangling layer(nqubits):
"""Layer of CNOTs followed by another shifted layer of CNOT.

In other words it should apply something Like :

CNOT CNOT CNOT CNOT... CNOT

CNOT CNOT CNOT... CNOT

for i in range(©, nqubits - 1, 2): # Loop over even indices: 1=0,2,...N-2
gml.CNOT(wires=[i, i + 1])

for i in range(1, nqubits - 1, 2): # Loop over odd indices: 1i=1,3,...N-3
gml.CNOT(wires=[i, i + 1])

Now we define the quantum circuit through the PennylLane [gnode]{.title-ref} decorator .
The structure is that of a typical variational quantum circuit:

¢ Embedding layer: All qubits are first initialized in a balanced superposition of up and down
states, then they are rotated according to the input parameters (local embedding).

¢ Variational layers: A sequence of trainable rotation layers and constant entangling layers
is applied.

* Measurement layer: For each qubit, the local expectation value of the Z operator is
measured. This produces a classical output vector, suitable for additional post-processing.

@gml.gnode(dev, interface="torch")
def quantum_net(q_input_features, q_weights flat):

The variational quantum circuit.

Reshape weights
gq_weights = gq_weights_flat.reshape(q_depth, n_qubits)

Start from state [+> , unbiased w.r.t. [@> and [1>
H_layer(n_qubits)

Embed features in the quantum node
RY_layer(q_input_features)

Sequence of trainable variational Layers
for k in range(q_depth):
entangling layer(n_qubits)
RY_layer(q_weights[k])
Expectation values in the Z basis

exp_vals = [gml.expval(gml.PauliZ(position)) for position in range(n_qubits)]
return tuple(exp_vals)

Dressed quantum circuit

We can now define a custom torch.nn.Module representing a dressed quantum circuit.

This is a concatenation of:

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 6/12

5/6/22, 2:10 PM

tutorial_quantum_transfer_learning

e A classical pre-processing layer (nn.Linear).

e A classical activation function (torch.tanh).

® Aconstant np.pi/2.0 scaling.

® The previously defined quantum circuit (quantum_net).

® A classical post-processing layer (nn.Linear).

The input of the module is a batch of vectors with 512 real parameters (features) and the output

is a batch of vectors with two real outputs (associated with the two classes of images: ants and

bees).

class DressedQuantumNet(nn.Module):

Torch module implementing the *dressed* quantum net.

def

def

__init_ (self):

Definition of the *dressed* layout.

non

super().__init_ ()

self.pre_net = nn.Linear(512, n_qubits)

self.q_params = nn.Parameter(q_delta * torch.randn(q_depth * n_qubits))
self.post_net = nn.Linear(n_qubits, 2)

forward(self, input_features):
Defining how tensors are supposed to move through the *dressed* quantum
net.

non

obtain the input features for the quantum circuit
by reducing the feature dimension from 512 to 4
pre_out = self.pre_net(input_features)

g_in = torch.tanh(pre_out) * np.pi / 2.0

Apply the quantum circuit to each element of the batch and append to q_out
g_out = torch.Tensor(0, n_qubits)
g_out = q_out.to(device)
for elem in g_in:
g_out_elem = quantum_net(elem, self.q_params).float().unsqueeze(0)
g_out = torch.cat((q_out, g_out_elem))

return the two-dimensional prediction from the postprocessing layer
return self.post_net(q_out)

Hybrid classical-quantum model

We are finally ready to build our full hybrid classical-quantum network. We follow the transfer

learning approach:

1. First load the classical pre-trained network ResNet18 from the torchvision.models zoo.

2. Freeze all the weights since they should not be trained.

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html

712

5/6/22,2:10 PM tutorial_quantum_transfer_learning

3. Replace the last fully connected layer with our trainable dressed quantum circuit

(DressedQuantumNet).
= {.note} :: {.title} Note :::

The ResNet18 model is automatically downloaded by PyTorch and it may take several minutes

(only the first time). :::

model_hybrid = torchvision.models.resnetl8(pretrained=True)

for param in model_hybrid.parameters():
param.requires_grad = False

Notice that model_hybrid.fc is the last Layer of ResNet18
model_hybrid.fc = DressedQuantumNet ()

Use CUDA or CPU according to the "device" object.
model_hybrid = model hybrid.to(device)

Training and results

Before training the network we need to specify the loss function.

We use, as usual in classification problem, the cross-entropy which is directly available within

torch.nn .

criterion = nn.CrossEntropyLoss()

We also initialize the Adam optimizer which is called at each training step in order to update the
weights of the model.

optimizer_hybrid = optim.Adam(model_hybrid.fc.parameters(), lr=step)

We schedule to reduce the learning rate by a factor of gamma_lr_scheduler every 10 epochs.

exp_lr_scheduler = 1lr_scheduler.StepLR(
optimizer_hybrid, step_size=10, gamma=gamma_lr_scheduler

)

What follows is a training function that will be called later. This function should return a trained

model that can be used to make predictions (classifications).

def train_model(model, criterion, optimizer, scheduler, num_epochs):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_loss = 10000.0 # Large arbitrary number
best_acc_train = 0.0
best_loss_train = 10000.0 # Large arbitrary number
print("Training started:")

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 8/12

5/6/22,2:10 PM tutorial_quantum_transfer_learning

for epoch in range(num_epochs):

Each epoch has a training and validation phase
for phase in ["train", "validation"]:
if phase == "train":
Set model to training mode
model.train()
else:
Set model to evaluate mode
model.eval()
running_loss = 0.0
running_corrects = 0

Iterate over data.

n_batches = dataset_sizes[phase] // batch_size

it =0

for inputs, labels in dataloaders[phase]:
since_batch = time.time()

batch_size_ = len(inputs)
inputs = inputs.to(device)
labels = labels.to(device)

optimizer.zero_grad()

Track/compute gradient and make an optimization step only when trair
with torch.set_grad_enabled(phase == "train"):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == "train":
loss.backward()
optimizer.step()

Print iteration results
running_loss += loss.item() * batch_size_

batch_corrects = torch.sum(preds == labels.data).item()
running_corrects += batch_corrects
print(
"Phase: {} Epoch: {}/{} Iter: {}/{} Batch time: {:.4f}".format(

phase,

epoch + 1,

num_epochs,

it + 1,

n_batches + 1,
time.time() - since_batch,

)
end="\r",
flush=True,
)
it += 1

Print epoch results
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]

print(
"Phase: {} Epoch: {}/{} Loss: {:.4f} Acc: {:.4f} ".format (
"train" if phase == "train" else "validation ",
epoch + 1,

num_epochs,
epoch_loss,

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 9/12

5/6/22, 2:10 PM

tutorial_quantum_transfer_learning

epoch_acc,

)

Check if this is the best model wrt previous epochs

if phase == "validation" and epoch_acc > best_acc:
best_acc = epoch_acc
best_model wts = copy.deepcopy(model.state_dict())

if phase == "validation" and epoch_loss < best_loss:
best_loss = epoch_loss

if phase == "train" and epoch_acc > best_acc_train:
best_acc_train = epoch_acc

if phase == "train" and epoch_loss < best_loss_train:
best_loss_train = epoch_loss

Update learning rate
if phase == "train":
scheduler.step()

Print final results
model.load_state_dict(best_model wts)
time_elapsed = time.time() - since
print(
"Training completed in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapse
)
print("Best test loss: {:.4f} | Best test accuracy: {:.4f}".format(best_loss, besi
return model

We are ready to perform the actual training process.

model_hybrid = train_model(
model_hybrid, criterion, optimizer_hybrid, exp_lr_scheduler, num_epochs=num_epoch:

)

Training started:
Phase: train Epoch: 1/3 Iter: 2/62 Batch time: 0.1528

C:\Users\cory\anaconda3\envs\Quantum\lib\site-packages\torch\autograd__init__.py:17
5: UserWarning: Casting complex values to real discards the imaginary part (Triggered
internally at C:\actions-runner_work\pytorch\pytorch\builder\windows\pytorch\aten\s
rc\ATen\native\Copy.cpp:239.)

allow_unreachable=True, accumulate grad=True) # Calls into the C++ engine to run t
he backward pass
Phase: train Epoch: 1/3 Loss: ©.6990 Acc: 0.5246
Phase: validation Epoch: 1/3 Loss: 0.6429 Acc: 0.6536
Phase: train Epoch: 2/3 Loss: 0.6134 Acc: ©0.7008
Phase: validation Epoch: 2/3 Loss: 0.5389 Acc: 0.8235
Phase: train Epoch: 3/3 Loss: 0.5652 Acc: 0.7418
Phase: validation Epoch: 3/3 Loss: 0.4484 Acc: 0.8497
Training completed in @m 51s
Best test loss: ©.4484 | Best test accuracy: 0.8497

Visualizing the model predictions

We first define a visualization function for a batch of test data.

def visualize model(model, num_images=6, fig name="Predictions"):

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html

10/12

5/6/22,2:10 PM tutorial_quantum_transfer_learning

images_so_far = 0
_fig = plt.figure(fig_name)
model.eval()
with torch.no_grad():
for _i, (inputs, labels) in enumerate(dataloaders["validation"]):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[@]):
images_so_far += 1
ax = plt.subplot(num_images // 2, 2, images_so_far)
ax.axis("off")
ax.set_title("[{}]".format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
return

Finally, we can run the previous function to see a batch of images with the corresponding

predictions.

visualize_model(model_hybrid, num_images=batch_size)
plt.show()

[ants] [ants]

References

[1] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran. Transfer
learning in hybrid classical-quantum neural networks. arXiv:1912.08278 (2019).

[2] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught
learning: transfer learning from unlabeled data. Proceedings of the 24th International
Conference on Machine Learning*, 759--766 (2007).

[3] Kaiming He, Xiangyu Zhang, Shaoging ren and Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
770-778 (2016).

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html

11/12

5/6/22,2:10 PM tutorial_quantum_transfer_learning

[4] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan,
and Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical
computations. arXiv:1811.04968 (2018).

file:///C:/Users/cory/Downloads/tutorial_quantum_transfer_learning.html 12/12

