PIKE WATER INCORPORATED

CONSUMER CONFIDENCE REPORT

2018 DATA

"We have a current, unconditioned license to operate our water system"

We are pleased to present to you this year's Consumer Confidence Report. This report is designed to inform you about the quality water and services we deliver every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We are committed to ensuring the quality of your water. Over 90% of the water provided by Pike Water is ground water pumped from wells located directly across State Route 104 from the treatment plant north of Jasper. The remaining percentage is purchased from Ross County Water.

IMMUNO-COMPROMISED PERSONS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline. (800-426-4791)

SOURCES OF CONTAMINATION

The sources of drinking water both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; (C) pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (D) organic chemical contaminants, including synthetic and volatile organic chemicals, which are by products of industrial processes and petroleum production, and can also come from gas stations, urban storm runoff, and septic systems; (E) radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline. (800-426-4791)

In this report you will find results of three different water systems. If you are interested in knowing which particular system that you are on or have any questions about this report feel free to contact our office between 8:30 am until 4:30 pm Monday thru Friday at 740-947-2524 or our toll free number 888-863-5000.

Pike Water Incorporated routinely monitors for contaminants in your drinking water according to Federal and State laws. The table on the reverse side shows the results of our monitoring for the period of January 1st to December 31st 2018. Some of the data is older than 2018 due to monitoring frequency.

HIGH SUSCEPTIBILITY PUBLIC WATER SYSTEM BASED ON HIGH SENSITIVITY

The **Teays Valley aquifer** that supplies drinking water to Pike Water has a high susceptibility to contamination, due to the sensitive nature of the aquifer in which the drinking water wells are located and the existing potential contaminant sources identified. This does not mean that this well field will become contaminated, only that conditions are such that the ground water could be impacted by potential contaminant sources. Future contamination may be avoided by implementing protective measures. More information is available by calling our office at 740-947-2524.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pike Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may want to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the **Safe Drinking Water Hotline** at **800-426-4791** or at http://www.epa.gov/safewater/lead.

PIKE WATER INCORPORATED FACTS

We serve approximately 14,700 people and have approximately 4,684,600 gallons of storage throughout our system that is supplied mainly by our treatment plant which is capable of producing approximately 3,428,000 gallons of water per day.

PUBLIC PARTICIPATION

You can participate in decisions regarding your water by attending the Board of Directors meeting which is held on the third Thursday of every month at 2277 Boswell Run Road at 7:30 pm.

TABLE OF CONTENTS FOR THE FOLLOWING CHART

AL or Action level: the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. NA: not applicable. < Less than. pCi/I or picocures per liter: Measurement of radioactivity in water.

PPM or Parts per Million and mg/l or Milligrams per liter: either measurement is equal to one second in approximately 11.5 days.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. It allows for a margin of safety. Maximum Contaminant Level or MCL: The highest level of contaminant that is allowed in drinking water. Parts Per Billion (ppb) or Micrograms per liter (ug/l): either measurement is equal to one second in 31.7 years.

Barlum (ppm) Image: Second Participation of Parteripation of Partipation of Participation of Parteripation of Pa	TABLE OF DETECTED C	ONTAMINAN	ITS	1			-	1						
Gross alpha (pC/L)015<32013<32013NoErosion of natural deposits.Combined Combined Radium Resolved 20238 (pC/L)000000000000000000000000000000000001.57000	Contaminants (Units)	MCLG	MCL	Level	Detections		Detections	Violation	Typical Source of Contaminants					
Gross alpha (pC/1) Circle Circle Circle Circle Circle Circle No Erosion of natural deposits. Combined Radium Combined Radium Image: Single (Circle) No Erosion of natural deposits. Inorganic Contaminants Single (Circle) 0 2 1.5 1.5/2016 No Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. Gross alpha (pC/1) 0 2 1.5/2016 1.5 1.5/2016 No Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits; Water additive which prome strong teacting. Gross alpha (pC/1) 4 1.09 81-1.20 1.02 .85-1.15 No Erosion of natural deposits; Water additive which prome strong teacting. Fluoride (ppm) 4 1.09 .81-1.20 1.02 .85-1.15 No Erosion of natural deposits; Wutoff from orchards; Runoff from or	Radioactive Contamin	ants												
226/228 (pC/L) Image: market of the second sec	Gross alpha (pCi/L)	0	15	<3	2013	<3	2013	No	o Erosion of natural deposits.					
Barlum (ppm)02.15.15/2016.15.15/2016NoDischarge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.Cyanide (ppb)1111.02.81.12NoDischarge from plastic and fertilizer factories; Discharge from factilizer and aluminum factorieFluoride (ppm)441.09.81.1201.02.85.85NoErosion of natural deposits; Water additive which promo strong teeth; Discharge from fertilizer and aluminum factorieArsenic (ppb)11IIIINoErosion of natural deposits; Water additive which promo strong teeth; Discharge from fertilizer and aluminum factorieDisinefectants and Disertectant By-Products of DistributionSampleg of DistributionViolationVear SampledTypical Source of ContaminantsChoirne (ppm)MRDLG=4MRD.7.3.60.802018Water additive used to control microbesHaloacetic Acids08017.314.619.5No2018By-products of drinking water disinfectionChalar (ppb)Implementare06049.638.5-59.9No2018By-products of drinking water disinfectionContaminants (units)Level (AL)NoSamples termentareTypical Source of ContaminantsContaminants (units)Level (AL)NoSamples termentareTypical Source of ContaminantsContaminants (units)Level (AL)NoSamples termentareTypical Source of ContaminantsContaminants (units)								No	Erosion of natural deposits.					
Barlum (ppm) Image: Second Secon	Inorganic Contaminan	ts												
Cyandie (ppb)Image: constraint of the second s	Barium (ppm)	0	2	.15	.15/2016	.15	.15/2016	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.					
Huonde (ppm) Image	Cyanide (ppb)							No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.					
Arsenic (ppb) Image: constraint of the second of the	Fluoride (ppm)	4	4	1.09	.81-1.20	1.02	.85-1.15	No	Erosion of natural deposits; Water additive which promote strong teeth; Discharge from fertilizer and aluminum factories.					
Contaminants (Units)MCLGMCLLevel FoundRenge of DetectionsViolationYear SampledTypical Source of ContaminantsChlorine (ppm)MRDLG=4MRDL.73.6089No2018Water additive used to control microbesHaloacetic Acids (HAAS) (ppb)08017.314.6-19.5No2018By-products of drinking water disinfectionTotal Trihalomethanes (PTMM) (ppb)06049.638.5-59.9No2018By-products of drinking water disinfectionLead and CopperEvent Wee for the	Arsenic (ppb)							No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes					
Contaminants (Units) MCLG MCL Level Found Detections Violation Year Sampled Typical Source of Contaminants Chlorine (ppm) MRDLG=4 MRD .73 .6089 No 2018 Water additive used to control microbes Haloacetic Acids 0 80 17.3 14.6-19.5 No 2018 By-products of drinking water disinfection Total Trihalomethanes 0 60 49.6 38.5-59.9 No 2018 By-products of drinking water disinfection Lead and Copper Individual (THM) (ppb) 60 49.6 38.5-59.9 No 2018 By-products of drinking water disinfection Lead and Copper Iotal Trihalomethanes 0 60 49.6 38.5-59.9 No 2018 By-products of drinking water disinfection Lead and Copper Iceal (AL) Individual Results over the Were less than Violation Year Sampled Typical source of Contaminants Lead (ppb) Individual (ppb) Results over the Were less than Violation Year Sampled Typical source of Contaminants Lead (ppb) Individual (ppb) Results over the Were less than Violation <td>Disinefectants and Dis</td> <td>enfectant By</td> <td>-Product</td> <td>s (Distribu</td> <td>tion Sampling)</td> <td></td> <td></td> <td></td> <td></td>	Disinefectants and Dis	enfectant By	-Product	s (Distribu	tion Sampling)									
Chlorine (ppm) MRDLG=4 Image: Chlorine (ppm) No Water additive used to control microbes Haloacetic Acids (HAAS) (ppb) 0 80 17.3 14.6-19.5 No 2018 By-products of drinking water disinfection Total Trihalomethanes (TTHM) (ppb) 0 60 49.6 38.5-59.9 No 2018 By-products of drinking water disinfection Lead and Copper Ead and Copper Individual Results over the were less than AL W6 of test levels were less than Violation Year Sampled Typical source of Contaminants Lead (ppb) 15 0 <0006	Contaminants (Units)	MCLG	MCL	Level Fou	nd	Violation	Year Sampled	Typical Sou	pical Source of Contaminants					
(HAAS) (ppb) Individual (TTHM) (ppb) No Individual (TTHM) (ppb) No By-products of drinking water disinfection Lead and Copper 0 60 49.6 38.5-59.9 No 2018 By-products of drinking water disinfection Lead and Copper Action Individual Results over the Results ov	Chlorine (ppm)	MRDLG= 4	MRDL	.73	.6089	No	2018	Water add	Nater additive used to control microbes					
Image: constraint of the second of the se		0	80	17.3	14.6-19.5	No	2018	By-product	By-products of drinking water disinfection					
Contaminants (units) Action Level (AL) Individual Results over the AL W6 of test levels were less than AL Violation Year Sampled Typical source of Contaminants Lead (ppb) 15 0 <0006		0	60	49.6	38.5-59.9	No	2018	By-product	By-products of drinking water disinfection					
Contaminants (units) Level (AL) Results over the Marce were less than AL Violation Year Sampled Typical source of Contaminants Lead (ppb) 15 0 <0006	Lead and Copper													
Lead (ppb) O out of 31 samples were found to have lead levels in excess of the lead action level of 15 ppb. Copper (ppm) 1.3 .159 <0-1.03	Contaminants (units)		Results	-		Violation	Year Sampled	Typical sou	ypical source of Contaminants					
O out of 31 samples were found to have lead levels in excess of the lead action level of 15 ppb. Copper (ppm) 0 out of 31 samples were found to have copper levels in excess of the copper action level of 1.3 ppm.		15	0		<0006	No	2017	Corrosion o	of household plumbing systems; Erosion of natural deposits.					
Copper (ppm) O out of 31 samples were found to have copper levels in excess of the copper action level of 1.3 ppm.	Lead (ppb)	O out of 31	samples	were four	nd to have lead leve	ls in excess o	f the lead action	level of 15 p	opb.					
O out of 31 samples were found to have copper levels in excess of the copper action level of 1.3 ppm.		1.3	.1	59	<0-1.03	No	2017							
Definitions	Copper (ppm)	O out of 31 samples were found to have copper levels in excess of the copper action level of 1.3 ppm.												
	Definitions													

• Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

• Maximum Contaminant level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

• Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

• Maximum Residual Disinfectant Level Goal (MRDLG): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

• Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Parts per Million (ppm) or Milligrams per Liter (mg/L) are units of measure for concentration of a contaminant. A part per million corresponds to one second in a little over 11.5 days.

• Parts per Billion (ppb) or Micrograms per Liter (gg/L) are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.

CONTAMINANT	MCLG	MCL Mg/I	LEVEL FOUND	RANGE OF DETECTION Ug/I	VIOLATION	SAMPLE YEAR	TYPICAL SOURCE OF CONTAMINANT
Total Coliform	0	5%	0	0-<5%	NO	2018	Naturally present
Barium (PPM)	0	2	.15	.15	NO	2018	Erosion of natural deposits
Fluoride (PPM)	4	4	.95	.84-1.05	NO	2018	Promotes healthy teeth
Nitrate – Nitrite (PPM)	0	10	.50	.50	NO	2018	Runoff from fertilizer
IDSE TTHMs (PPB)	NA	NA	40.6 avg	14.6-61.9	NO	2009	Disinfection byproduct
IDSE HAA5 (PPB)	NA	NA	14.5 avg	7.0-21.7	NO	2009	Disinfection byproduct
Total Chlorine (PPM)	4	4	1.86	1.11-2.23	NO	2018	Used for disinfection
ALPHA Total (pCi/L)	0	15	<3	N/A	NO	2013	Erosion of natural deposits

RESULTS FOR PIKE WATER TREATMENT PLANT

RESULTS FOR ROSS #2 SYSTEM-Alma Omega Rd. Higby Rd. Sandy Rd. and Omega Area

					0 01	1	
CONTAMINANT	MCLG	MCL Mg/l	LEVEL FOUND	RANGE OF DETECTION	VIOLATION	SAMPLE YEAR	TYPICAL SOURCE OF CONTAMINANT
Copper (ug/l)	0	AL-1.3	857	0-1130	NO	2018	Corrosion of Plumbing
Lead (ug/l)	0	AL-15.5	0	0	NO	2018	
ттнм (ррв)	N/A	80	16.9 Ug/I	14.9-18.9 Ug/l	NO	2018	DISINFECTION BY-PRODUCT
НАА5 (РРВ)	N/A	60	6.0 Ug/I	6.0 Ug/I	NO	2018	DISINFECTION BY-PRODUCT

RESULTS FOR ROSS #3 SYSTEM-Park Rd., Woodland Park Rd. area										
CONTAMINANT	MCLG	MCL Mg/l	LEVEL FOUND	RANGE OF DETECTION	VIOLATION	SAMPLE YEAR	TYPICAL SOURCE OF CONTAMINANT			
Copper (ug/I)	0	AL=1.3	734.6	<.05-842	NO	2018	Corrosion of plumbing			
Lead (ug/l)	0	AL=.15	0	0	NO	2018	Corrosion of plumbing			
ТТНМ (РРВ)	N/A	80	17.4 Ug/I	17.4 Ug/I	NO	2018	DISINFECTION BY-PRODUCT			
HAA5 (PPB)	N/A	60	<6.0 Ug/I	<6.0 Ug/I	NO	2018	DISINFECTION BY-PRODUCT			

			ROSS COU	INTY WATER			
CONTAMINANT	MCLG	MCL	LEVEL FOUND	RANGE OF DETECTION	VIOLATION	SAMPLE YEAR	TYPICAL SOURCE OF CONTAMINANT
Total Coliform	0	5%>	<5%	N/A	NO	2018	Naturally present
Barium (PPM)	2	2	0.05	.039048	NO	2016	Runoff from fertilizer
Lead (PPB)	0	AL=15	<5.0	NA	NO	2018	Corrosion of plumbing
Copper (PPM)	1.3	Al=1.3	.833	.062910	NO	2018	Corrosion of plumbing
Fluoride (PPM)	4	4	.96	0.81-1.14	NO	2018	Promotes healthy teeth
Nitrate (PPM)	10	10	.95	<5-9.5	NO	2018	Runoff from fertilizer
ТТНМ (РРВ)	0	80	21.8 Ug/l	20.6-21.8 Ug/l	NO	2018	Disinfection by-product
НАА5 (РРВ)	0	60	6.6 Ug/l	<6-6.6 Ug/l	NO	2018	Disinfection by-product
Total Chlorine (PPM)	4	4	1.6	1.2-1.7	NO	2018	Used for disinfection
ALPHA TOTAL pCi/L	0	15	<3	N/A	NO	2016	Erosion of Natural Deposits

*Under the Stage 2 disinfectants/Disinfection Byproducts rule (D/DBPR), our public water system was required by USEPA to conduct an evaluation of our distribution system. This is known as an Initial Distribution System Evaluation (IDSE), and is intended to identify locations in our distribution system with elevated disinfection byproduct concentrations. The locations selected for the IDSE may be used for compliance monitoring under Stage 2 DBPR, beginning in 2013. Disinfection byproducts are the result of providing continuous disinfection of water. Disinfection byproducts are grouped into two categories, Total Trihalomethanes (TTHM) and Haloacetic Acid (HAA5). USEPA sets standards for controlling the levels of disinfectants and disinfectant byproducts in drinking water, including both THMs and HAAs.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards.

Pike Water Inc. License status for;

Pike Water Inc. Treatment Plant PWS ID: OH6602412 License #6602412-1204196-2018

Pike Water Inc. ROSS 2 System PWS ID: OH6601803 License #6601803-1203656-2018

3 System PWS ID: OH6602303 License #6602303-1202339-2018 Were all current during calendar year 2017.

Pike Water Inc. Ross

Consumer Confidence Public Posting

Wayside Grocery 6710 St. R. 104 Piketon, OH 45661

FIRST STOP 12 Main Street Sinking Springs, OH 45172

Shirley's Grocery 17846 St. Rt. 335 Beaver, OH 45613

FREDNECKS MINI MART 144 ST RT 772 BAINBRIDGE, OHIO 45612