
978-1-6654-9032-0/23/$31.00 ©2023 IEEE 
 

Digital Lunar Exploration Sites Unreal Simulation Tool 

(DUST) 
Lee Bingham 

NASA, 

NASA Johnson Space Center  

2101 NASA Parkway  

Houston, TX 77058  

Lee.K.Bingham@nasa.gov 

  

Jack Kincaid 

METECS, 

NASA Johnson Space Center  

2101 NASA Parkway  

Houston, TX 77058  

Jack.A.Kincaid@nasa.gov   

Benjamin Weno 

METECS,  

NASA Johnson Space Center  

2101 NASA Parkway  

Houston, TX 77058  

Ben.Weno@nasa.gov  

  

Nicholas Davis  

METECS,  

NASA Johnson Space Center  

2101 NASA Parkway  

Houston, TX 77058  

Nicholas.R.Davis@nasa.gov   

Eddie Paddock  

NASA, 

NASA Johnson Space Center  

2101 NASA Parkway  

Houston, TX 77058  

Eddie.Paddock@nasa.gov  

Cory Foreman  

METECS,  

NASA Johnson Space Center  

2101 NASA Parkway  

Houston, TX 77058  

Cory.D.Foreman@nasa.gov  

  

 

Abstract— NASA’s future Artemis missions to the Moon seek to 

explore areas around the Lunar South Pole. Though humans 

have previously set foot on the lunar surface, the proposed 

region provides unique and challenging environments that 

require insight and investigation prior to arrival. Several teams 

throughout the agency are performing this site and mission 

planning, design, and analysis to support areas like the Human 

Landing System (HLS), surface mobility, habitation elements, 

and scientific exploration.  

The NASA Exploration Systems Simulation (NExSyS) team at 

Johnson Space Center is developing a graphical environment of 

the Lunar South Pole region. Lunar terrain information 

collected from the Lunar Reconnaissance Orbiter (LRO) is 

compiled and made available through Johnson Space Center’s 

Digital Lunar Exploration Sites (DLES) data sets. The DLES 

data is used to build this graphic environment. The process of 

ingesting and accurately modeling this information in a 

meaningful way for analysis creates its own challenges such as 

generating a performant model from the source data and the 

application of curvature. Additionally, the area around the 

Lunar South Pole experiences different lighting conditions than 

those observed from the Apollo missions. The need to use the 

lunar environmental data products provided by DLES 

combined with the capability to calculate date specific 

ephemerides in real-time has given rise to the development of 

the DLES Unreal Simulation Tool (DUST). DUST incorporates 

augmented terrain from the DLES product into a desktop 

application that allows exploration of the Lunar South Pole 

region and its complex lighting conditions. DUST leverages 

advanced capabilities in the recently released Unreal Engine 5 

renderer by Epic Games such as double precision for 

positioning of planetary bodies and surface elements, multiple 

infinite light sources to represent the Sun and eventually 

Earthshine, high resolution shadow maps for dynamic shadow 

accuracy, real-time software ray-tracing for multi-surface 

bounce lighting to render sunlight reflected off surface elements 

and terrain features, and performance optimized level of detail 

shifting as the eyepoint changes in a scene. 

This paper details the DUST application, the technologies of the 

engine platform that enable scientific and engineering analysis, 

the unique techniques and processes developed to consume the 

DLES data sets, and how the tool is being used to support the 

Artemis program. 
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INTRODUCTION 

NASA’s Artemis program, in collaboration with its 

commercial and international partners, will establish the first 
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long-term human-robotic presence on and around the Moon. 

This program will demonstrate new technologies and 

capabilities necessary to assist future exploration, provide the 

opportunity to study the Moon, and inspire a new generation.  

As part of the models and simulations (M&S) in support of 

the Artemis program, the Digital Lunar Exploration Sites 

(DLES) products are intended to provide essential lunar 

environmental data [1].  

 

The ability to accurately model the lunar environment is 

crucial in developing simulations for the various elements 

and aspects of the Artemis missions. There are numerous 

applications and tools that are used around the agency to 

visualize the Moon. Moon Trek, developed by NASA’s Jet 

Propulsion Laboratory, provides a web-based tool that 

presents 3D visualization of imagery data from hundreds of 

lunar data products [2]. Lunaserv was developed by Arizona 

State University as part of the Lunar Reconnaissance Orbiter 

Camera (LROC) project to serve as a map server to render 

non-Earth datasets [3]. These tools have proven to be 

valuable for analysis and site selection, but do not focus on 

surface-level features and how lighting plays a critical role on 

operations and exploration.  

 

The areas of interest around the Lunar South Pole region 

experience challenging lighting conditions vastly different 

than those seen during the Apollo missions. The NASA 

Exploration Systems Simulation (NExSyS) team tasked the 

development of the DLES Unreal Simulation Tool (DUST) 

that can leverage the pedigree of modern commercial 

rendering engines to provide a real-time high-fidelity 

visualization of the lunar environment data with 

representative lighting conditions that could be used to 

explore surface-level features and conditions. This paper 

provides an overview and design goals of the DUST 

application and its capabilities; the methods of generating the 

terrain; how the lunar environment is modeled; and finally, 

future work and how the DUST application is being used in 

support of the Artemis program. 

 

DESIGN GOALS 

NASA has a diverse development history of visualization 

software for training and analysis. From virtual reality 

training [4], to virtual environment data products [1], and 

scientific visualization [5], NASA has developed a wide array 

of rendering applications to aid in our pursuit of space 

exploration. The DLES Unreal Simulation Tool (DUST) is a 

novel advancement in visualization technology that provides 

unprecedented scale and level of detail through a 

combination of new technologies and previous lessons 

learned. 

 

DUST was initially conceived to provide a tool that could 

quickly visualize the DLES data products in concert with date 

specific lighting. It quickly grew to encompass several 

additional capabilities to support site and mission planning 

for lunar architecture and Artemis Base Camp (ABC) [6]. To 

reach a broader community of engineers and scientist, the 

DUST application was designed to provide a high-fidelity 

visualization and analysis tool while remaining performant 

on commodity workstations and compatibility for Windows, 

Mac, and Linux users. Ultimately as this product matures it 

will provide a framework with the ability to share and 

collaborate throughout the agency as well as commercial 

partners. 

 

 

CAPABILITIES OVERVIEW 

The DUST application integrates a variety of tools and 

features designed to provide analysis capabilities of the lunar 

terrain and support in preparation of the Artemis missions. 

These tools provide interactions within the simulation such 

as lunar rock placement and manipulation, celestial body 

positioning, and visualization of date specific lighting at sites 

of interest. Additional tools have been developed to support 

site planning and analysis. These include features such as 

topography and slope visualization, the ability to import 

traverses and edit in real-time, and the implementation of a 

line-of-sight communication model. 

 

SPICE Integration 

SPICE is a toolkit developed by NASA to track positions and 

orientations of planetary bodies and spacecraft. The toolkit 

provides an API that reads kernel datasets containing 

information about the tracked objects over a timeframe. After 

the datasets are loaded, a datetime can be passed to the API 

to get the positions of the given object. In order to integrate 

this API within Unreal Engine, we use the MaxQ Spaceflight 

Toolkit [7]. In DUST, we use the toolkit to track the positions 

of the Sun and Earth in relation to the lunar south pole as 

shown in Figure 1. We can also visualize spacecraft 

trajectories via SPICE ephemerides such as the proposed 

near-rectilinear halo orbit (NRHO) of the Gateway stack. The 

relevant kernels are packaged with the build and loaded with 

the application. This enables accurate positions and lighting 

angles for the proposed landing and mission timeframes. A 

user interface (UI) can be used to select any point in the data, 

and playback at multiple rates is supported.  

 

 
 

Figure 1. Sun/Earth Trails 
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TRICK Integration 

TRICK is a NASA developed open-source simulation 

environment that provides an architecture for simulation 

development [8] [9]. TRICK has supported the development 

of high-fidelity engineering simulations at NASA in a variety 

of applications over the past several decades [9].  In DUST 

the user can connect to a TRICK simulation over a socket, 

enabling rover control on the lunar surface. The Sun and 

Earth position can also be synchronized to the TRICK 

simulation, which can be used to replicate visuals with other 

engines connected to the same simulation.  

 

PODB Integration 

PODB (Persistent Object Database) is a NASA generated 

database with a web API wrapper that stores positional data 

of persistent synthetically added lunar objects such as rocks 

and craters. Synthetic features of the lunar surface are used to 

enhance surface details for low resolution DEM data. The 

DUST PODB integration tool shown in Figure 2. PODB 

Integration Tool, queries the PODB API for rock data in any 

designated region, and stores the results in a file within the 

build of the application. This provides rock loading capability 

in areas of interest without having to connect to PODB when 

the application is deployed.  

 

 
 

Figure 2. PODB Integration Tool 
 

Tools 

Rover Traverse Visualizer—DUST can parse rover traverse 

data and display it on the simulated lunar surface. This allows 

for verifying terrain and lighting conditions along the traverse 

at any point. Additionally, the user can modify and export the 

traverse to a .json or .geojson file format. Pins can be placed 

along the traverse and used to calculate moving average 

velocity. Dwell periods can be established at individual pins 

to force the rover to wait for the specified duration before 

continuing the traverse. Figure 3. Rover Traverse  shows a 

traverse displayed on the lunar surface. There are two 

methods of traverse visualizing in DUST. The first utilizes 

the rendered spline as a path for a rover model to follow. The 

rover’s speed can be adjusted, and the traverse rate can be 

scaled. This method provides a static rover model that 

follows the traverse path with a follow camera, lighting 

control, regolith particle effects, and track decals. The 

secondary method for traversing the visualized path utilizes 

the Unreal Engine Chaos physics to simulate a physical rover 

following the traverse. In either traverse method, information 

such as time stamps and velocities are calculated and 

displayed to the user. 

 

 
 

Figure 3. Rover Traverse Tool 
 

Communication Visualization—Communication towers can 

be placed on the surface, and their range and occlusion can 

be visualized to determine where on the terrain the signal 

would reach with the specified tower configuration. Up to 

two towers may be visualized at once, as well as 

communications with the Gateway station and Earth. Figure 

4 shows the visualization of a 10 m tall communication tower 

on the outside of a large crater. The blue regions indicate 

areas of limited signal while red indicates strong signal 

strength. All communication visualization is calculated via 

line of site and  provides a visual representation with no 

signal metrics currently calculated. 

 

 
 

Figure 4. Communication Visualization Tool 

 
Heatmap Visualization Tool—Heatmap images can be 
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loaded into DUST to be displayed on top of the terrain. The 

scale and width of the image can be modified at import to 

support additional heatmaps. 

 

Topography Analysis Tool—DUST can generate slope map 

analysis with contour lines overlaid across all rendered lunar 

terrain. Figure 5 shows how the slope map is visualized, with 

red areas being more extreme slopes, and green areas being 

flatter. The contour lines are also visible. Additionally, 

elevation map data can be automatically calculated and 

displayed in place of slope data as seen in Figure 6. 

 

 

Figure 5. Slope Map Visualization 

 

Figure 6. Elevation Visualization 

 

3D Measuring Tool—Provides 3D measuring capability in 

meters between user specified locations. Points can be placed 

anywhere on the terrain or on objects, as seen in Figure 7 

where it is utilized to measure the diameter of a crater.  

 

 
 

Figure 7. 3D Measuring Tool 
 

TERRAIN GENERATION 

Rendering real world data in a virtual environment is an 

application with uses spanning a variety of industries. Terrain 

generation is a complex process for which multiple 

techniques of accommodating varying resolution data in a 

virtual environment have been developed [10] [11]. In this 

section we present three methods of lunar terrain generation 

from LRO DEM data. Each method incorporates different 

features of Unreal Engine as well as various approaches to 

multi-resolution handling. Figure 8 shows an example of 

generated lunar terrain within DUST. 

 

 

Figure 8. Generated Terrain 
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Utilizing Terrain Data 

The terrain data used for DUST is sourced from the NASA 

Lunar Reconnaissance Orbiter (LRO) instruments and are 

stored in Digital Elevation Models (DEM). DEMs store 

topographic data in a texture file with an associated 

coordinate reference system (CRS) [12]. The Geospatial 

Data Abstraction Software Library (GDAL) is a raster 

manipulation tool that allows us to directly convert the DEM 

files to readily consumable game engine file formats like 

PNGs [13]. GDAL is also utilized within Unreal engine to 

read the DEMs directly via the UnrealGDAL plugin [14].  

 

Lunar Unreal Landscapes 

Unreal Engine 5 has a built-in terrain generation tool referred 

to as the Landscape Mode. This feature allows users to easily 

create worlds via importing source data or using terrain 

modification tools to sculpt a new landscape from scratch. 

Using this tool, we can visualize lunar terrain from converted 

heightmaps. Figure 9 displays the grid-like wireframe 

generated by the Unreal landscape system.  

 

 

 

Figure 9. Landscape Wireframe View 

 

Lunar Landscape Import—The Unreal Landscape mode 

supports heightmap imports in the form of PNG file format.  

GDAL is used to generate these PNGs from a DEM, which 

are then directly imported into the engine with the Landscape 

Mode. To ensure an accurate elevation scale a conversion 

must be incorporated from the DEM’s Float32 scale to the 

Unreal Landscape Int16 scale ranging from -256 to 255.992 

[15].  

 

(𝑚𝑖𝑛_𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑚𝑎𝑥_𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) ∗ 100/512  (1) 

 

Equation 1 converts the height scale from the DEM’s 

original scale to Unreal Engine’s while maintaining relative 

positions [15]. It is possible to lose precision for Float32 

DEMs which results in artifacts appearing on the generated 

landscape. This can be mitigated by dividing the DEMs into 

tiles resulting in a decreased range between the minimum 

elevations and maximum elevations. 

 

Lunar Landscape Tradeoffs—The Unreal landscape mode is 

a versatile tool with numerous practical applications. It 

allows for stability, constant updates and support, as well as 

ease of use with new imports taking only a few clicks. 

However, there are also several downsides to the landscape 

system when used to generate lunar terrain. The lack of 

elevation precision hinders our ability to achieve 

engineering level accuracy in the scene and detracts from 

the Engine’s recent improvement of general double 

precision support. Additionally, after the landscape models 

are generated, they are difficult to modify without using the 

in-engine landscape modeling tools which are generally 

effective in producing artistic or practical results with 

limited ability to replicate real features. This prevents us 

from accurately incorporating lunar curvature on the x,y, 

and z axes since the curvature cannot be baked into the 

DEM and represented in the imported PNG. Without 

curvature our Unreal Engine terrain does not exactly reflect 

our other simulations and prevents additional validation and 

resource sharing between the engines.  

 

Lunar Nanite Meshes 

 

Figure 10. Nanite Wireframe View 

Nanite is Unreal Engine 5’s new virtualized geometry 

system. It provides highly compressed and performant 3D 

meshes through a new model format and rendering system. 

As the models are imported, they are broken into clusters and 

groups which are continuously exchanged during runtime to 

provide level of detail (LOD) transitions without noticeable 

artifacts [16]. We developed a method to generate vertices 

and triangles directly from the DEMs and use them to create 

an Unreal Engine static mesh with Nanite enabled. This 

allows us to create massive areas of lunar terrain with 

minimal impact on performance. Figure 10 displays what the 

Nanite mesh’s wireframe looks like. Nanite’s level of detail 

handling is visible further from the camera. 

 

Converting DEMs to Nanite Mesh—To assist with DEM 

importing we developed a simple UI shown in Figure 11. 
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This UI provides fields for the file path and tiling 

parameters. Tiling is necessary to reduce DEMs greater than 

2 GB into manageable pieces. If the tile size exceeds 

hardware specifications, the system will utilize an excessive 

amount of virtual memory causing Unreal Engine to crash 

unexpectedly. The recommended tile size for systems with 

at least 32 GB of random-access memory is 3334 by 3334.  

 

 

Figure 11. Nanite Mesh Generation UI 

 

After the user specifies a file path and tile parameters, they 

need to determine the pixel width of their DEM. This can be 

done by using a simple GDAL command: gdal_info -stats 

“filename”. Finally, the user has the option to create a 

corresponding collision mesh for each tile. When the Import 

Heightmap button is selected, the heightmaps must first be 

parsed using an external plugin called UnrealGDAL which 

provides access to GDAL commands from within Unreal 

Engine [14]. Using UnrealGDAL the raster is read into a 

Float32 array and any non-data values are substituted with 

zero. UnrealGDAL also provides the DEM dimensions. Once 

the process is completed it writes out each tile as a separate 

static mesh, all sharing the same origin. An output of a 300 

mb converted DEM to 9 Nanite static mesh tiles is shown in 

Figure 12. 

 

 

Figure 12. Tiled Nanite Mesh DEM 

Mesh Generation from Heightmap Data—Using the DEM 

dimensions and elevation data we create the mesh 

information needed to define a 3D model representing the 

heightmaps. The dimensions allow us to create an 

appropriately sized grid of float vector vertices with the z-

axis representing height. The stored float elevations are 

applied iteratively to each point’s z-axis on the grid and 

stored in an array of vectors.  

 

Applying Lunar Curvature—Before the elevations are 

applied to the array, they are first converted to our coordinate 

frame and lunar curvature is applied. When applying lunar 

curvature, we complete a planar to spherical transformation 

on the x, y, and z components of each vertex. This 

transformation assumes the center of the sphere is located at 

the center of our lunar reference with a radius equal to the 

Moon’s approximate radius of 1,737,400 meters. To apply 

the curvature, we create a vector from the center of the Moon 

reference to each point on the planar grid and subtract the 

reference sphere’s center. This vector is then normalized and 

extended by the lunar radius plus the heightmap’s elevation 

value at that point. Finally, the reference sphere’s center is 

added. These steps are represented in Equations 2,3, and 4 

below. 

 

𝑉̂𝑛𝑜𝑟𝑚 =
〈𝑥−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑋,𝑦−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑌,−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑍〉

     |〈𝑥−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑋,𝑦−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑌,−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑍〉|    
 (2) 

 

𝑉⃗  𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = 𝑉̂𝑛𝑜𝑟𝑚 ∗ (𝑟𝑎𝑑𝑖𝑢𝑠 + 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)  (3) 
 

𝑉⃗ 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑉⃗ 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 + 𝑀⃗⃗ 𝑐𝑒𝑛𝑡𝑒𝑟   (4) 

 

 

Mesh Generation—The vertex array is used to calculate mesh 

triangles and normal vectors. The mesh triangles are 

represented as an array of integers each corresponding to an 

index of the vertex array. After generating the mesh data, it 

is forwarded to a custom function that is based on an Unreal 

Engine provided Static Mesh implementation. This function 

builds the necessary file format and rendering structure 

required by Unreal to be saved as their custom file format, a 

static mesh .uasset. Additionally, it enables Nanite 

initializing the required compression and formatting. Once 

the meshes are processed, they are saved to the Unreal Engine 

file system and can be used in any future level or project.  

 

Lunar Nanite Mesh Tradeoffs— Nanite is a powerful tool that 

allows for rendering on an unprecedented scale for open 

world games or simulations involving hundreds of kilometers 

of terrain. With our lunar Nanite meshes we can render over 

150 square kilometers of terrain at 15 m per pixel resolution 

with little impact on frame rate. Runtime performance is not 

the limiting factor when it comes to Nanite. Memory usage 

presents an issue when utilizing lunar Nanite meshes. As 

more meshes are generated, they increase the project and 

build size even with the efficient compression applied by 

Nanite. Additionally, rendering the meshes in the scene takes 

an increasing amount of random-access memory (RAM). 

Therefore, we can create high-fidelity lunar scenes with 

accurate terrain data and curvature, however they require 

intensive hardware restrictions. Currently Nanite PC support 

is limited to Windows OS with DirectX12 and Nvidia 

graphics cards [16]. In addition to the platform restriction of 
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Nanite, due to the scale of our scene, users need at least 32 

GB of RAM and an NVIDIA GeForce Graphics Card 2000 

series or better to launch the application. The cost of the 

meshes is increased depending on the amount of collisions 

needed. Generating collisions over the entire scene with high 

fidelity is not practical forcing us to limit collisions to areas 

where they are most needed. However, even with these 

limitations lunar Nanite meshes are extremely powerful with 

numerous potential uses. They are optimized to work with 

Unreal Engine’s Virtual Shadow Maps, which provide 

performant shadows across hundreds of kilometers of terrain. 

Therefore, without the memory or platform constraint, it is 

possible to create lunar scenes with tens of millions of 

vertices that minimally affect the overall frame rate and 

rendering cost. To provide a solution to these limitations we 

decided to pursue a dynamically updating terrain approach. 

 

Lunar Clipmaps 

The terrain implementation currently implemented in the 

DUST application utilizes a simplified runtime clipmap 

approach. Our DEMs are loaded into memory and provide 

data to our rendered mesh to dynamically position the 

vertices.  

 

Clipmaps—Geometry clipmaps refer to a variable resolution 

terrain rendering approach developed by Losasso and Hoppe 

in 2004 [10]. Losasso and Hoppe present a leveled terrain 

rendering grid where the resolution decreases as the distance 

from the viewpoint increases. During runtime, their grid 

would receive heightmap data or noise data and assign it to 

the mesh vertex buffer. The grid would follow the viewpoint 

and update the mesh vertex buffer as the viewpoint moved 

[10]. We adapted the clipmap rendering approach for our 

Unreal Engine lunar terrain.  

 

Mesh Generation—When the application is first started, a flat 

clipmap grid is generated. During runtime, the grid is 

referenced each time a terrain update is needed. Each vertex 

in the grid is moved to its proper position with the DEM 

information and curvature applied to it. The final mesh is 

rendered using Runtime Mesh Component [17]. This allows 

us to render large amounts of dynamic data, as well as update 

the mesh on a separate thread when needed. In Figure 13 the 

final clipmap mesh is visible in wireframe. 

 

   

Figure 13. UE5 Clipmap Wireframe View 

Heightmap Parsing— A unique feature of this terrain method 

is its ability to parse the DEMs at runtime and present a fixed 

size mesh regardless of the amount of lunar terrain data 

provided. This mesh updates the position and normal vector 

for each vertex after the camera has moved a set update 

distance. Default heightmaps are provided for approximately 

4000 square kilometers of terrain at varying resolutions, or 

the user can substitute their own. Any number of DEMs can 

be imported, limited only by the system memory required to 

load them. The highest resolution DEM takes precedence 

over lower when coordinates overlap. When the vertex grid 

of the DEM does not align with the generated clipmap grid, 

we interpolate the height with the 4 nearest data points to get 

the height for the specified vertex. The normal vectors for 

each vertex are calculated using slopes obtained by sampling 

nearby points on the heightmap. 

 

Clipmap Details—When the camera is moving, either in the 

Unreal Engine editor or in the running DUST application, the 

mesh updates at a rate calculated to lower the number of new 

vertex positions, which limits visual artifacts. This rate 

defines how far the camera needs to move before the clipmap 

terrain updates. This means that the rate cannot be larger than 

the first level of the clipmap, since the camera should not be 

able to get to an area with lower resolution. Technically the 

best update rate would equal our largest level’s resolution 

because that would mean that each vertex would move into 

an existing vertex position, or between two existing vertex 

positions. However, if we used this rate, we would violate the 

rule where the rate must be smaller than the first level. 

Therefore, we use the largest level’s resolution where the 

resolution is still smaller than the size of the first level. When 

the calculated update is reached, the mesh pulls vertex 

information from the stored heightmap data on a separate 

thread. 

 

Clipmap Terrain Tradeoffs—The clipmap terrain method can 

generate lunar terrain for thousands of kilometer squared 

regions by directly reading heightmap data. This process 
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ensures that there is no precision loss from the source data to 

the mesh construction and lunar curvature is incorporated as 

the data is applied to the clipmap mesh. Due to the clipmap’s 

resolution fall-off nature and configurability, the render size 

and resolution can be scaled to meet hardware requirements 

without modifying the source data. This feature also ensures 

the method remains memory efficient as the majority of the 

memory usage results from the multiple gigabyte sized DEM 

files being loaded at runtime. If the DEM files are 

overloading a system’s hardware requirements, the user can 

remove unnecessary heightmaps providing only the required 

data to the clipmap generator. Additionally, the lunar terrain 

clipmaps can be utilized on a variety of platforms including 

Windows, Mac, Linux, and Virtual Reality. Current 

limitations to the clipmap method include several possible 

visual artifacts. When traversing the terrain at a relatively fast 

camera speed visual artifacts can occur when the clipmap 

level resolution updates. Additionally, it is possible for 

shadows to be incomplete when a clipmap is rendered with 

low level counts that include partially formed terrain features. 

Finally, when abruptly transitioning from terrain locations 

with low resolution such as 15 mpp to much higher resolution 

such as 20 cmpp there may be noticeable resolution updates 

as the clipmap levels adjust. 

 

Summary  

 

Three methods for generating lunar terrain in Unreal Engine 

5 have been developed each with unique benefits and 

limitations. The visual results from each method are similar 

with few noticeable differences. When choosing a terrain 

generation method, the decision is primarily utility driven. 

For example, the landscape method is the easiest to use, 

however, it has limitations on precision. Nanite terrain 

meshes provide the highest fidelity and accuracy, however, 

they have stringent hardware limitations. The method 

currently utilized in DUST is clipmap terrain generation due 

primarily to its scalability and platform flexibility. This 

method allows us to tailor the terrain’s detail to meet 

hardware requirements as well as adapt the terrain as new 

data becomes available. Its limitations are primarily visual 

artifacts which can be mitigated by increasing computational 

resources. Overall, clipmap terrain generation utilizes novel 

technologies with trusted techniques to present a versatile 

real-time terrain rendering method. 

 

LUNAR ENVIRONMENT MODELING 

Lunar Curvature 

 
Lunar curvature is easy to overlook in low-fidelity lunar 

terrain simulations as its inclusion drastically increases the 

difficulty of accurately positioning objects on the terrain’s 

surface. Unreal Engine 5 utilizes a left-hand coordinate 

system with the x-axis forward, y-axis right, and z-axis up. 

Applying curvature to convert a flat plane to a sphere of 

radius 1,737,400 meters results in a modification to each 

point in the plane on all three axes.  

 

 

Figure 14. Lunar Curvature Representation 

 

In DUST, when the positions are close to the South Pole the 

effect is minimal as this is where the origin of our coordinate 

system is located. However, as the terrain extends in the xy-

plane, the magnitude of the offset applied by curvature to 

each point increases when compared to its uncurved original 

position. Therefore, when calculating positions in areas close 

to the origin the effect of curvature is minimal and can even 

be less than 1 m. This can lead to the false conclusion that 

curvature is insignificant in the generation of lunar terrain. 

However, when considering the cumulative effect of 

curvature over 100s of kilometers of lunar terrain the shadow 

lengths and world positions change significantly. The overall 

contribution of curvature applied to over a thousand 

kilometers in width of lunar terrain provides a visual 

distortion demonstrated in Figure 14. 

 

Lunar Surface Texture 

 

Our rendered terrain surface texture is a constantly evolving 

material that is continuously improved to increase fidelity 

and visual acuity. Its goal is to provide up-close fine grain 

texturing as well as accurately reflect the lunar surface’s 

albedo at increased distances. In our initial attempts we 

encountered evident material tiling due to the varying 

resolution terrain causing the UV axis of our textures to scale 

inconsistently. To resolve this, we removed UV values from 

our terrain meshes and instead utilized our Unreal world 

positions as our texture’s UV coordinates. This change 

provided us with identical texture response regardless of the 

mesh’s resolution. To create texture tiling that provided 

details without obvious repetition at any height above the 

surface we needed to minimize apparent repetition by linearly 

interpolating sets of normal map textures with varying scale 

factors applied. These normal sets are swapped as the height 

above the surface increases or decreases. An additional 

problem we encountered was the extremely low light angle 

present at the lunar south pole. The low light angle caused 
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our material’s normal map to appear dark, washing out any 

visible details. We apply normal flattening at varying 

distances to maximize details depending on the camera’s 

height above the surface. The lunar surface texture, as 

represented on the DUST lunar surface, is demonstrated in 

Figure 15. 

 

 

Figure 15. Lunar Surface Texture 

 

Rocks and Craters 

 

To increase the realism of the lunar terrain, additional 

features such as rocks and craters are added. The positions 

and scales of these features are statistically representative of 

the lunar south pole and captured within PODB. This 

information is used to apply these features to the DUST 

scene. The craters are distributed via an upscaled DEM, 

which currently achieves a maximum resolution of 20 

centimeters per pixel. This is accomplished by upscaling the 

5 meters per pixel LRO data and overlaying the crater 

distributions directly on the DEM. This process is outlined in 

DLES [1]. The DEM can then be read into our clipmap 

terrain. This capability allows DUST to generate craters 

anywhere on the lunar surface where a 20 centimeters per 

pixel heightmap file has been provided. The lunar rocks are 

generated at runtime by reading a JSON file received from 

PODB. The JSON file contains the coordinates, scale, and 

model type for each rock instance. In Figure 16 both the rocks 

and craters are visible on the lunar surface.  
 

  

Figure 16. DUST Rocks and Craters 

 

The rocks are placed in a circular area around a specified 

latitude, longitude, and radius. The meshes utilized to create 

the lunar rocks are 3D scanned digital twins of collected 

Apollo era rock samples. The scanned samples are scaled to 

provide additional variation in the rock layers. Currently, all 

rocks are generated and displayed in the scene at once with 

no partitioning applied to improve performance. Rock 

caching/partitioning is not necessary at this time due to the 

application of Nanite to all rock meshes used in the lunar 

scene. Nanite provides highly detailed geometry that has a 

minimal impact on performance. Additionally, it determines 

which mesh details can be reduced depending on the camera 

position and adjusts the level of detail to optimize 

performance without changing visuals [16]. Therefore, we 

are capable of rendering hundreds of thousands of rocks with 

little to no decrease in frame rate. Additionally, all rocks are 

rendered with collisions and because they are generated from 

PODB data they match across our various rendering 

technologies. 

 

Lumen 

 

Lumen is a new feature in Unreal Engine 5 which provides 

dynamic bounce lighting approximations. Lumen can 

provide bounce lighting with either software ray tracing or 

hardware ray tracing [18]. Figure 17 demonstrates how 

Lumen can render bounce lighting off a surface. Hardware 

ray tracing provides the best results at the highest 

performance cost and is limited to Windows OS with DirectX 

12 [18]. In our DUST instance we utilized Lumen with 

software ray tracing to provide bounce lighting inside craters, 

within rock shadows, and off objects like rovers and astronaut 

extravehicular activity suits. The dynamic lighting helps 

illustrate crater depth and the impact of the sun’s intensity 

without an atmosphere to hinder it.  
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Figure 17. Lumen Lighting 

Virtual Shadow Maps 

 

Virtual Shadow Maps (VSMs) are a novel shadow rendering 

method in Unreal Engine that employ high resolution shadow 

maps of 16k-by-16k pixels supplemented with clipmaps to 

increase resolution for directional lights in large worlds [19]. 

VSMs are optimized for Nanite geometry and provide a 

dynamic shadow rendering solution capable of displaying 

detailed shadows over thousands of kilometers of terrain. 

Figure 18 is a rendering of around 75 kilometers of terrain in 

width, with high-fidelity shadows throughout. Additionally, 

there is minimal reduction in visible shadow accuracy as the 

distance to the mesh increases. With VSMs DUST can 

provide performant dynamic shadows for hundreds of 

thousands of Nanite enabled rocks and across craters with 

shadows spanning tens of kilometers in length. The shadows 

are also able to render dynamically as SPICE updates the 

position of the sun. 

 

 

Figure 18. Shadow Rendering 

Double Precision 

 

Unreal Engine 5 now provides double precision in most areas 

of the engine. This means that instead of FLOAT32 as the 

primary data type of various engine components such as actor 

transforms the engine now utilizes FLOAT64, increasing the 

available precision. SPICE can now position the various 

planetary bodies such as the Sun and the Earth in their actual 

calculated positions without significant loss of precision. 

Previous implementations required scaling of the positions 

via a consistent scale factor to maintain accuracy. 

Additionally, we are now able to create simulations that 

involve spacecraft such as lunar landers, which may need to 

traverse distances of thousands of kilometers, with minimal 

precision loss. 

 

FUTURE WORK 

Our future work includes continuing to expand upon the 

existing tools and features in DUST, as well as experimenting 

with the inclusion of the DUST terrain into additional 

projects. As the newly released features in Unreal Engine 5 

receive improvements and optimizations we hope to provide 

increased performance and a greater variety of supported 

platforms.  

 

We are constantly improving the fidelity of DUST to increase 

its effectiveness in visualizing lunar terrain. One example is 

the current rock distribution capability which is being 

developed to provide a greater generation radius and 

increased fidelity for the smaller rock layers. PODB provides 

the statistical distribution for our rocks and craters currently 

in the DUST scene, however we are limited by the number of 

rocks we can add on specific platforms. While Nanite does 

provide us the capability to generate thousands of rocks with 

minimal performance impact, this feature is only available on 

machines running Windows OS. By incorporating the 

combination of Nanite and a rock grid caching system we 

hope to support rock generation over a 100 km by 100 km 

area of lunar terrain. Additionally, we are working to add to 

the feature set present in DUST. The traverse tool is currently 

limited to presenting primarily visual data with little 

empirical value other than time estimates. The tool is planned 

to deliver power and temperature estimations throughout the 

duration of a traverse at different times/dates. The fidelity of 

the communication analysis tool will be refined to 

incorporate radio transmission fall-off instead of an entirely 

line of site implementation. New features such as in-engine 

physics rover control, and lunar terrain impact deformation 

are undergoing preliminary development. 

 

One platform we are beginning to implement Unreal lunar 

terrain in is virtual reality. Currently Unreal Engine does not 

support the use of Lumen or Nanite in virtual reality, 

however, the engine does provide multiple infinite light 

sources and double precision. These features would allow us 

to create high-fidelity virtual reality simulations utilizing the 

same clipmap terrain present in DUST. An additional future 

innovation is the use of DUST with Unreal Engine’s nDisplay 

feature. The nDisplay feature in Unreal allows the user to 

map their Unreal instance to any number of rendering 

displays. We are hoping to implement this feature with a 

rover traverse simulation which visualizes the terrain via a 

wall of monitors each displaying a portion of a mapped 

DUST instance. Finally, we are creating a Pixel Streaming 

implementation to serve as an additional DUST distribution 
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option. Pixel Streaming is another Unreal Engine feature that 

provides a framework for interacting with the Unreal instance 

via a web browser. This capability would allow us to 

distribute DUST to a wide array of platforms without 

hardware and performance limitations.  

 

CONCLUSION 

The DLES Unreal Simulation Tool is an advanced lunar 

visualization environment that presents unique tools and 

capabilities for high fidelity analysis of the lighting 

conditions and terrain details present on the lunar surface.  

 

DUST’s current platform support includes Mac, Linux, and 

Windows. Certain Unreal features such as Nanite are not 

available on all platforms. DUST includes a variety of tools 

to provide additional analysis capability including traverse 

rendering, communication analysis, heat map overlay, and 

slope and elevation map visualization. With the clipmap lunar 

terrain, we can adjust fidelity to match specific hardware 

requirements. Additionally, as new terrain data is made 

available the generation can be updated by simply replacing 

the stored heightmap files. 

 

Novel Unreal Engine 5 features such as Lumen, Nanite, 

Virtual Shadow Maps, and double precision provide 

capability to render increased detail and scale. The addition 

of performant bounce lighting provided by Lumen 

demonstrates the effect of the Sun’s intensity reflecting off 

various scene elements. Nanite allows in-simulation meshes 

to hold high vertex counts with little impact on performance, 

which is currently utilized on lunar rock rendering. Virtual 

Shadow Maps provide high resolution shadows over 

expanded regions of terrain that maintain visible accuracy as 

the camera’s distance increases. The addition of double 

precision allows us to accurately position planetary bodies 

and incorporate engineering-based simulations with TRICK. 

Overall, Unreal Engine 5 presents a unique feature set that 

indicates promising initial results in its ability to support 

accurate simulation development. 

 

DUST is currently in early stages of development and has not 

been widely distributed for use. Its designed purpose is to 

provide lighting and terrain analysis in support of future 

Artemis missions.  
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