
978-1-6654-9032-0/23/$31.00 ©2023 IEEE

Digital Lunar Exploration Sites Unreal Simulation Tool

(DUST)
Lee Bingham

NASA,

NASA Johnson Space Center

2101 NASA Parkway

Houston, TX 77058

Lee.K.Bingham@nasa.gov

Jack Kincaid

METECS,

NASA Johnson Space Center

2101 NASA Parkway

Houston, TX 77058

Jack.A.Kincaid@nasa.gov

Benjamin Weno

METECS,

NASA Johnson Space Center

2101 NASA Parkway

Houston, TX 77058

Ben.Weno@nasa.gov

Nicholas Davis

METECS,

NASA Johnson Space Center

2101 NASA Parkway

Houston, TX 77058

Nicholas.R.Davis@nasa.gov

Eddie Paddock

NASA,

NASA Johnson Space Center

2101 NASA Parkway

Houston, TX 77058

Eddie.Paddock@nasa.gov

Cory Foreman

METECS,

NASA Johnson Space Center

2101 NASA Parkway

Houston, TX 77058

Cory.D.Foreman@nasa.gov

Abstract— NASA’s future Artemis missions to the Moon seek to

explore areas around the Lunar South Pole. Though humans

have previously set foot on the lunar surface, the proposed

region provides unique and challenging environments that

require insight and investigation prior to arrival. Several teams

throughout the agency are performing this site and mission

planning, design, and analysis to support areas like the Human

Landing System (HLS), surface mobility, habitation elements,

and scientific exploration.

The NASA Exploration Systems Simulation (NExSyS) team at

Johnson Space Center is developing a graphical environment of

the Lunar South Pole region. Lunar terrain information

collected from the Lunar Reconnaissance Orbiter (LRO) is

compiled and made available through Johnson Space Center’s

Digital Lunar Exploration Sites (DLES) data sets. The DLES

data is used to build this graphic environment. The process of

ingesting and accurately modeling this information in a

meaningful way for analysis creates its own challenges such as

generating a performant model from the source data and the

application of curvature. Additionally, the area around the

Lunar South Pole experiences different lighting conditions than

those observed from the Apollo missions. The need to use the

lunar environmental data products provided by DLES

combined with the capability to calculate date specific

ephemerides in real-time has given rise to the development of

the DLES Unreal Simulation Tool (DUST). DUST incorporates

augmented terrain from the DLES product into a desktop

application that allows exploration of the Lunar South Pole

region and its complex lighting conditions. DUST leverages

advanced capabilities in the recently released Unreal Engine 5

renderer by Epic Games such as double precision for

positioning of planetary bodies and surface elements, multiple

infinite light sources to represent the Sun and eventually

Earthshine, high resolution shadow maps for dynamic shadow

accuracy, real-time software ray-tracing for multi-surface

bounce lighting to render sunlight reflected off surface elements

and terrain features, and performance optimized level of detail

shifting as the eyepoint changes in a scene.

This paper details the DUST application, the technologies of the

engine platform that enable scientific and engineering analysis,

the unique techniques and processes developed to consume the

DLES data sets, and how the tool is being used to support the

Artemis program.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. DESIGN GOALS .. 2
3. CAPABILITIES OVERVIEW 2
4. TERRAIN GENERATION ... 4
5. LUNAR ENVIRONMENT MODELING 8
6. FUTURE WORK .. 10
7. CONCLUSION .. 11
ACKNOWLEDGEMENTS .. 11
REFERENCES ... 11
BIOGRAPHY ... 12

INTRODUCTION

NASA’s Artemis program, in collaboration with its

commercial and international partners, will establish the first

2

long-term human-robotic presence on and around the Moon.

This program will demonstrate new technologies and

capabilities necessary to assist future exploration, provide the

opportunity to study the Moon, and inspire a new generation.

As part of the models and simulations (M&S) in support of

the Artemis program, the Digital Lunar Exploration Sites

(DLES) products are intended to provide essential lunar

environmental data [1].

The ability to accurately model the lunar environment is

crucial in developing simulations for the various elements

and aspects of the Artemis missions. There are numerous

applications and tools that are used around the agency to

visualize the Moon. Moon Trek, developed by NASA’s Jet

Propulsion Laboratory, provides a web-based tool that

presents 3D visualization of imagery data from hundreds of

lunar data products [2]. Lunaserv was developed by Arizona

State University as part of the Lunar Reconnaissance Orbiter

Camera (LROC) project to serve as a map server to render

non-Earth datasets [3]. These tools have proven to be

valuable for analysis and site selection, but do not focus on

surface-level features and how lighting plays a critical role on

operations and exploration.

The areas of interest around the Lunar South Pole region

experience challenging lighting conditions vastly different

than those seen during the Apollo missions. The NASA

Exploration Systems Simulation (NExSyS) team tasked the

development of the DLES Unreal Simulation Tool (DUST)

that can leverage the pedigree of modern commercial

rendering engines to provide a real-time high-fidelity

visualization of the lunar environment data with

representative lighting conditions that could be used to

explore surface-level features and conditions. This paper

provides an overview and design goals of the DUST

application and its capabilities; the methods of generating the

terrain; how the lunar environment is modeled; and finally,

future work and how the DUST application is being used in

support of the Artemis program.

DESIGN GOALS

NASA has a diverse development history of visualization

software for training and analysis. From virtual reality

training [4], to virtual environment data products [1], and

scientific visualization [5], NASA has developed a wide array

of rendering applications to aid in our pursuit of space

exploration. The DLES Unreal Simulation Tool (DUST) is a

novel advancement in visualization technology that provides

unprecedented scale and level of detail through a

combination of new technologies and previous lessons

learned.

DUST was initially conceived to provide a tool that could

quickly visualize the DLES data products in concert with date

specific lighting. It quickly grew to encompass several

additional capabilities to support site and mission planning

for lunar architecture and Artemis Base Camp (ABC) [6]. To

reach a broader community of engineers and scientist, the

DUST application was designed to provide a high-fidelity

visualization and analysis tool while remaining performant

on commodity workstations and compatibility for Windows,

Mac, and Linux users. Ultimately as this product matures it

will provide a framework with the ability to share and

collaborate throughout the agency as well as commercial

partners.

CAPABILITIES OVERVIEW

The DUST application integrates a variety of tools and

features designed to provide analysis capabilities of the lunar

terrain and support in preparation of the Artemis missions.

These tools provide interactions within the simulation such

as lunar rock placement and manipulation, celestial body

positioning, and visualization of date specific lighting at sites

of interest. Additional tools have been developed to support

site planning and analysis. These include features such as

topography and slope visualization, the ability to import

traverses and edit in real-time, and the implementation of a

line-of-sight communication model.

SPICE Integration

SPICE is a toolkit developed by NASA to track positions and

orientations of planetary bodies and spacecraft. The toolkit

provides an API that reads kernel datasets containing

information about the tracked objects over a timeframe. After

the datasets are loaded, a datetime can be passed to the API

to get the positions of the given object. In order to integrate

this API within Unreal Engine, we use the MaxQ Spaceflight

Toolkit [7]. In DUST, we use the toolkit to track the positions

of the Sun and Earth in relation to the lunar south pole as

shown in Figure 1. We can also visualize spacecraft

trajectories via SPICE ephemerides such as the proposed

near-rectilinear halo orbit (NRHO) of the Gateway stack. The

relevant kernels are packaged with the build and loaded with

the application. This enables accurate positions and lighting

angles for the proposed landing and mission timeframes. A

user interface (UI) can be used to select any point in the data,

and playback at multiple rates is supported.

Figure 1. Sun/Earth Trails

3

TRICK Integration

TRICK is a NASA developed open-source simulation

environment that provides an architecture for simulation

development [8] [9]. TRICK has supported the development

of high-fidelity engineering simulations at NASA in a variety

of applications over the past several decades [9]. In DUST

the user can connect to a TRICK simulation over a socket,

enabling rover control on the lunar surface. The Sun and

Earth position can also be synchronized to the TRICK

simulation, which can be used to replicate visuals with other

engines connected to the same simulation.

PODB Integration

PODB (Persistent Object Database) is a NASA generated

database with a web API wrapper that stores positional data

of persistent synthetically added lunar objects such as rocks

and craters. Synthetic features of the lunar surface are used to

enhance surface details for low resolution DEM data. The

DUST PODB integration tool shown in Figure 2. PODB

Integration Tool, queries the PODB API for rock data in any

designated region, and stores the results in a file within the

build of the application. This provides rock loading capability

in areas of interest without having to connect to PODB when

the application is deployed.

Figure 2. PODB Integration Tool

Tools

Rover Traverse Visualizer—DUST can parse rover traverse

data and display it on the simulated lunar surface. This allows

for verifying terrain and lighting conditions along the traverse

at any point. Additionally, the user can modify and export the

traverse to a .json or .geojson file format. Pins can be placed

along the traverse and used to calculate moving average

velocity. Dwell periods can be established at individual pins

to force the rover to wait for the specified duration before

continuing the traverse. Figure 3. Rover Traverse shows a

traverse displayed on the lunar surface. There are two

methods of traverse visualizing in DUST. The first utilizes

the rendered spline as a path for a rover model to follow. The

rover’s speed can be adjusted, and the traverse rate can be

scaled. This method provides a static rover model that

follows the traverse path with a follow camera, lighting

control, regolith particle effects, and track decals. The

secondary method for traversing the visualized path utilizes

the Unreal Engine Chaos physics to simulate a physical rover

following the traverse. In either traverse method, information

such as time stamps and velocities are calculated and

displayed to the user.

Figure 3. Rover Traverse Tool

Communication Visualization—Communication towers can

be placed on the surface, and their range and occlusion can

be visualized to determine where on the terrain the signal

would reach with the specified tower configuration. Up to

two towers may be visualized at once, as well as

communications with the Gateway station and Earth. Figure

4 shows the visualization of a 10 m tall communication tower

on the outside of a large crater. The blue regions indicate

areas of limited signal while red indicates strong signal

strength. All communication visualization is calculated via

line of site and provides a visual representation with no

signal metrics currently calculated.

Figure 4. Communication Visualization Tool

Heatmap Visualization Tool—Heatmap images can be

4

loaded into DUST to be displayed on top of the terrain. The

scale and width of the image can be modified at import to

support additional heatmaps.

Topography Analysis Tool—DUST can generate slope map

analysis with contour lines overlaid across all rendered lunar

terrain. Figure 5 shows how the slope map is visualized, with

red areas being more extreme slopes, and green areas being

flatter. The contour lines are also visible. Additionally,

elevation map data can be automatically calculated and

displayed in place of slope data as seen in Figure 6.

Figure 5. Slope Map Visualization

Figure 6. Elevation Visualization

3D Measuring Tool—Provides 3D measuring capability in

meters between user specified locations. Points can be placed

anywhere on the terrain or on objects, as seen in Figure 7

where it is utilized to measure the diameter of a crater.

Figure 7. 3D Measuring Tool

TERRAIN GENERATION

Rendering real world data in a virtual environment is an

application with uses spanning a variety of industries. Terrain

generation is a complex process for which multiple

techniques of accommodating varying resolution data in a

virtual environment have been developed [10] [11]. In this

section we present three methods of lunar terrain generation

from LRO DEM data. Each method incorporates different

features of Unreal Engine as well as various approaches to

multi-resolution handling. Figure 8 shows an example of

generated lunar terrain within DUST.

Figure 8. Generated Terrain

5

Utilizing Terrain Data

The terrain data used for DUST is sourced from the NASA

Lunar Reconnaissance Orbiter (LRO) instruments and are

stored in Digital Elevation Models (DEM). DEMs store

topographic data in a texture file with an associated

coordinate reference system (CRS) [12]. The Geospatial

Data Abstraction Software Library (GDAL) is a raster

manipulation tool that allows us to directly convert the DEM

files to readily consumable game engine file formats like

PNGs [13]. GDAL is also utilized within Unreal engine to

read the DEMs directly via the UnrealGDAL plugin [14].

Lunar Unreal Landscapes

Unreal Engine 5 has a built-in terrain generation tool referred

to as the Landscape Mode. This feature allows users to easily

create worlds via importing source data or using terrain

modification tools to sculpt a new landscape from scratch.

Using this tool, we can visualize lunar terrain from converted

heightmaps. Figure 9 displays the grid-like wireframe

generated by the Unreal landscape system.

Figure 9. Landscape Wireframe View

Lunar Landscape Import—The Unreal Landscape mode

supports heightmap imports in the form of PNG file format.

GDAL is used to generate these PNGs from a DEM, which

are then directly imported into the engine with the Landscape

Mode. To ensure an accurate elevation scale a conversion

must be incorporated from the DEM’s Float32 scale to the

Unreal Landscape Int16 scale ranging from -256 to 255.992

[15].

(𝑚𝑖𝑛_𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑚𝑎𝑥_𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) ∗ 100/512 (1)

Equation 1 converts the height scale from the DEM’s

original scale to Unreal Engine’s while maintaining relative

positions [15]. It is possible to lose precision for Float32

DEMs which results in artifacts appearing on the generated

landscape. This can be mitigated by dividing the DEMs into

tiles resulting in a decreased range between the minimum

elevations and maximum elevations.

Lunar Landscape Tradeoffs—The Unreal landscape mode is

a versatile tool with numerous practical applications. It

allows for stability, constant updates and support, as well as

ease of use with new imports taking only a few clicks.

However, there are also several downsides to the landscape

system when used to generate lunar terrain. The lack of

elevation precision hinders our ability to achieve

engineering level accuracy in the scene and detracts from

the Engine’s recent improvement of general double

precision support. Additionally, after the landscape models

are generated, they are difficult to modify without using the

in-engine landscape modeling tools which are generally

effective in producing artistic or practical results with

limited ability to replicate real features. This prevents us

from accurately incorporating lunar curvature on the x,y,

and z axes since the curvature cannot be baked into the

DEM and represented in the imported PNG. Without

curvature our Unreal Engine terrain does not exactly reflect

our other simulations and prevents additional validation and

resource sharing between the engines.

Lunar Nanite Meshes

Figure 10. Nanite Wireframe View

Nanite is Unreal Engine 5’s new virtualized geometry

system. It provides highly compressed and performant 3D

meshes through a new model format and rendering system.

As the models are imported, they are broken into clusters and

groups which are continuously exchanged during runtime to

provide level of detail (LOD) transitions without noticeable

artifacts [16]. We developed a method to generate vertices

and triangles directly from the DEMs and use them to create

an Unreal Engine static mesh with Nanite enabled. This

allows us to create massive areas of lunar terrain with

minimal impact on performance. Figure 10 displays what the

Nanite mesh’s wireframe looks like. Nanite’s level of detail

handling is visible further from the camera.

Converting DEMs to Nanite Mesh—To assist with DEM

importing we developed a simple UI shown in Figure 11.

6

This UI provides fields for the file path and tiling

parameters. Tiling is necessary to reduce DEMs greater than

2 GB into manageable pieces. If the tile size exceeds

hardware specifications, the system will utilize an excessive

amount of virtual memory causing Unreal Engine to crash

unexpectedly. The recommended tile size for systems with

at least 32 GB of random-access memory is 3334 by 3334.

Figure 11. Nanite Mesh Generation UI

After the user specifies a file path and tile parameters, they

need to determine the pixel width of their DEM. This can be

done by using a simple GDAL command: gdal_info -stats

“filename”. Finally, the user has the option to create a

corresponding collision mesh for each tile. When the Import

Heightmap button is selected, the heightmaps must first be

parsed using an external plugin called UnrealGDAL which

provides access to GDAL commands from within Unreal

Engine [14]. Using UnrealGDAL the raster is read into a

Float32 array and any non-data values are substituted with

zero. UnrealGDAL also provides the DEM dimensions. Once

the process is completed it writes out each tile as a separate

static mesh, all sharing the same origin. An output of a 300

mb converted DEM to 9 Nanite static mesh tiles is shown in

Figure 12.

Figure 12. Tiled Nanite Mesh DEM

Mesh Generation from Heightmap Data—Using the DEM

dimensions and elevation data we create the mesh

information needed to define a 3D model representing the

heightmaps. The dimensions allow us to create an

appropriately sized grid of float vector vertices with the z-

axis representing height. The stored float elevations are

applied iteratively to each point’s z-axis on the grid and

stored in an array of vectors.

Applying Lunar Curvature—Before the elevations are

applied to the array, they are first converted to our coordinate

frame and lunar curvature is applied. When applying lunar

curvature, we complete a planar to spherical transformation

on the x, y, and z components of each vertex. This

transformation assumes the center of the sphere is located at

the center of our lunar reference with a radius equal to the

Moon’s approximate radius of 1,737,400 meters. To apply

the curvature, we create a vector from the center of the Moon

reference to each point on the planar grid and subtract the

reference sphere’s center. This vector is then normalized and

extended by the lunar radius plus the heightmap’s elevation

value at that point. Finally, the reference sphere’s center is

added. These steps are represented in Equations 2,3, and 4

below.

𝑉̂𝑛𝑜𝑟𝑚 =
〈𝑥−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑋,𝑦−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑌,−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑍〉

 |〈𝑥−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑋,𝑦−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑌,−𝑀𝑐𝑒𝑛𝑡𝑒𝑟𝑍〉|
 (2)

𝑉⃗ 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = 𝑉̂𝑛𝑜𝑟𝑚 ∗ (𝑟𝑎𝑑𝑖𝑢𝑠 + 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) (3)

𝑉⃗ 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑉⃗ 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 + 𝑀⃗⃗ 𝑐𝑒𝑛𝑡𝑒𝑟 (4)

Mesh Generation—The vertex array is used to calculate mesh

triangles and normal vectors. The mesh triangles are

represented as an array of integers each corresponding to an

index of the vertex array. After generating the mesh data, it

is forwarded to a custom function that is based on an Unreal

Engine provided Static Mesh implementation. This function

builds the necessary file format and rendering structure

required by Unreal to be saved as their custom file format, a

static mesh .uasset. Additionally, it enables Nanite

initializing the required compression and formatting. Once

the meshes are processed, they are saved to the Unreal Engine

file system and can be used in any future level or project.

Lunar Nanite Mesh Tradeoffs— Nanite is a powerful tool that

allows for rendering on an unprecedented scale for open

world games or simulations involving hundreds of kilometers

of terrain. With our lunar Nanite meshes we can render over

150 square kilometers of terrain at 15 m per pixel resolution

with little impact on frame rate. Runtime performance is not

the limiting factor when it comes to Nanite. Memory usage

presents an issue when utilizing lunar Nanite meshes. As

more meshes are generated, they increase the project and

build size even with the efficient compression applied by

Nanite. Additionally, rendering the meshes in the scene takes

an increasing amount of random-access memory (RAM).

Therefore, we can create high-fidelity lunar scenes with

accurate terrain data and curvature, however they require

intensive hardware restrictions. Currently Nanite PC support

is limited to Windows OS with DirectX12 and Nvidia

graphics cards [16]. In addition to the platform restriction of

7

Nanite, due to the scale of our scene, users need at least 32

GB of RAM and an NVIDIA GeForce Graphics Card 2000

series or better to launch the application. The cost of the

meshes is increased depending on the amount of collisions

needed. Generating collisions over the entire scene with high

fidelity is not practical forcing us to limit collisions to areas

where they are most needed. However, even with these

limitations lunar Nanite meshes are extremely powerful with

numerous potential uses. They are optimized to work with

Unreal Engine’s Virtual Shadow Maps, which provide

performant shadows across hundreds of kilometers of terrain.

Therefore, without the memory or platform constraint, it is

possible to create lunar scenes with tens of millions of

vertices that minimally affect the overall frame rate and

rendering cost. To provide a solution to these limitations we

decided to pursue a dynamically updating terrain approach.

Lunar Clipmaps

The terrain implementation currently implemented in the

DUST application utilizes a simplified runtime clipmap

approach. Our DEMs are loaded into memory and provide

data to our rendered mesh to dynamically position the

vertices.

Clipmaps—Geometry clipmaps refer to a variable resolution

terrain rendering approach developed by Losasso and Hoppe

in 2004 [10]. Losasso and Hoppe present a leveled terrain

rendering grid where the resolution decreases as the distance

from the viewpoint increases. During runtime, their grid

would receive heightmap data or noise data and assign it to

the mesh vertex buffer. The grid would follow the viewpoint

and update the mesh vertex buffer as the viewpoint moved

[10]. We adapted the clipmap rendering approach for our

Unreal Engine lunar terrain.

Mesh Generation—When the application is first started, a flat

clipmap grid is generated. During runtime, the grid is

referenced each time a terrain update is needed. Each vertex

in the grid is moved to its proper position with the DEM

information and curvature applied to it. The final mesh is

rendered using Runtime Mesh Component [17]. This allows

us to render large amounts of dynamic data, as well as update

the mesh on a separate thread when needed. In Figure 13 the

final clipmap mesh is visible in wireframe.

Figure 13. UE5 Clipmap Wireframe View

Heightmap Parsing— A unique feature of this terrain method

is its ability to parse the DEMs at runtime and present a fixed

size mesh regardless of the amount of lunar terrain data

provided. This mesh updates the position and normal vector

for each vertex after the camera has moved a set update

distance. Default heightmaps are provided for approximately

4000 square kilometers of terrain at varying resolutions, or

the user can substitute their own. Any number of DEMs can

be imported, limited only by the system memory required to

load them. The highest resolution DEM takes precedence

over lower when coordinates overlap. When the vertex grid

of the DEM does not align with the generated clipmap grid,

we interpolate the height with the 4 nearest data points to get

the height for the specified vertex. The normal vectors for

each vertex are calculated using slopes obtained by sampling

nearby points on the heightmap.

Clipmap Details—When the camera is moving, either in the

Unreal Engine editor or in the running DUST application, the

mesh updates at a rate calculated to lower the number of new

vertex positions, which limits visual artifacts. This rate

defines how far the camera needs to move before the clipmap

terrain updates. This means that the rate cannot be larger than

the first level of the clipmap, since the camera should not be

able to get to an area with lower resolution. Technically the

best update rate would equal our largest level’s resolution

because that would mean that each vertex would move into

an existing vertex position, or between two existing vertex

positions. However, if we used this rate, we would violate the

rule where the rate must be smaller than the first level.

Therefore, we use the largest level’s resolution where the

resolution is still smaller than the size of the first level. When

the calculated update is reached, the mesh pulls vertex

information from the stored heightmap data on a separate

thread.

Clipmap Terrain Tradeoffs—The clipmap terrain method can

generate lunar terrain for thousands of kilometer squared

regions by directly reading heightmap data. This process

8

ensures that there is no precision loss from the source data to

the mesh construction and lunar curvature is incorporated as

the data is applied to the clipmap mesh. Due to the clipmap’s

resolution fall-off nature and configurability, the render size

and resolution can be scaled to meet hardware requirements

without modifying the source data. This feature also ensures

the method remains memory efficient as the majority of the

memory usage results from the multiple gigabyte sized DEM

files being loaded at runtime. If the DEM files are

overloading a system’s hardware requirements, the user can

remove unnecessary heightmaps providing only the required

data to the clipmap generator. Additionally, the lunar terrain

clipmaps can be utilized on a variety of platforms including

Windows, Mac, Linux, and Virtual Reality. Current

limitations to the clipmap method include several possible

visual artifacts. When traversing the terrain at a relatively fast

camera speed visual artifacts can occur when the clipmap

level resolution updates. Additionally, it is possible for

shadows to be incomplete when a clipmap is rendered with

low level counts that include partially formed terrain features.

Finally, when abruptly transitioning from terrain locations

with low resolution such as 15 mpp to much higher resolution

such as 20 cmpp there may be noticeable resolution updates

as the clipmap levels adjust.

Summary

Three methods for generating lunar terrain in Unreal Engine

5 have been developed each with unique benefits and

limitations. The visual results from each method are similar

with few noticeable differences. When choosing a terrain

generation method, the decision is primarily utility driven.

For example, the landscape method is the easiest to use,

however, it has limitations on precision. Nanite terrain

meshes provide the highest fidelity and accuracy, however,

they have stringent hardware limitations. The method

currently utilized in DUST is clipmap terrain generation due

primarily to its scalability and platform flexibility. This

method allows us to tailor the terrain’s detail to meet

hardware requirements as well as adapt the terrain as new

data becomes available. Its limitations are primarily visual

artifacts which can be mitigated by increasing computational

resources. Overall, clipmap terrain generation utilizes novel

technologies with trusted techniques to present a versatile

real-time terrain rendering method.

LUNAR ENVIRONMENT MODELING

Lunar Curvature

Lunar curvature is easy to overlook in low-fidelity lunar

terrain simulations as its inclusion drastically increases the

difficulty of accurately positioning objects on the terrain’s

surface. Unreal Engine 5 utilizes a left-hand coordinate

system with the x-axis forward, y-axis right, and z-axis up.

Applying curvature to convert a flat plane to a sphere of

radius 1,737,400 meters results in a modification to each

point in the plane on all three axes.

Figure 14. Lunar Curvature Representation

In DUST, when the positions are close to the South Pole the

effect is minimal as this is where the origin of our coordinate

system is located. However, as the terrain extends in the xy-

plane, the magnitude of the offset applied by curvature to

each point increases when compared to its uncurved original

position. Therefore, when calculating positions in areas close

to the origin the effect of curvature is minimal and can even

be less than 1 m. This can lead to the false conclusion that

curvature is insignificant in the generation of lunar terrain.

However, when considering the cumulative effect of

curvature over 100s of kilometers of lunar terrain the shadow

lengths and world positions change significantly. The overall

contribution of curvature applied to over a thousand

kilometers in width of lunar terrain provides a visual

distortion demonstrated in Figure 14.

Lunar Surface Texture

Our rendered terrain surface texture is a constantly evolving

material that is continuously improved to increase fidelity

and visual acuity. Its goal is to provide up-close fine grain

texturing as well as accurately reflect the lunar surface’s

albedo at increased distances. In our initial attempts we

encountered evident material tiling due to the varying

resolution terrain causing the UV axis of our textures to scale

inconsistently. To resolve this, we removed UV values from

our terrain meshes and instead utilized our Unreal world

positions as our texture’s UV coordinates. This change

provided us with identical texture response regardless of the

mesh’s resolution. To create texture tiling that provided

details without obvious repetition at any height above the

surface we needed to minimize apparent repetition by linearly

interpolating sets of normal map textures with varying scale

factors applied. These normal sets are swapped as the height

above the surface increases or decreases. An additional

problem we encountered was the extremely low light angle

present at the lunar south pole. The low light angle caused

9

our material’s normal map to appear dark, washing out any

visible details. We apply normal flattening at varying

distances to maximize details depending on the camera’s

height above the surface. The lunar surface texture, as

represented on the DUST lunar surface, is demonstrated in

Figure 15.

Figure 15. Lunar Surface Texture

Rocks and Craters

To increase the realism of the lunar terrain, additional

features such as rocks and craters are added. The positions

and scales of these features are statistically representative of

the lunar south pole and captured within PODB. This

information is used to apply these features to the DUST

scene. The craters are distributed via an upscaled DEM,

which currently achieves a maximum resolution of 20

centimeters per pixel. This is accomplished by upscaling the

5 meters per pixel LRO data and overlaying the crater

distributions directly on the DEM. This process is outlined in

DLES [1]. The DEM can then be read into our clipmap

terrain. This capability allows DUST to generate craters

anywhere on the lunar surface where a 20 centimeters per

pixel heightmap file has been provided. The lunar rocks are

generated at runtime by reading a JSON file received from

PODB. The JSON file contains the coordinates, scale, and

model type for each rock instance. In Figure 16 both the rocks

and craters are visible on the lunar surface.

Figure 16. DUST Rocks and Craters

The rocks are placed in a circular area around a specified

latitude, longitude, and radius. The meshes utilized to create

the lunar rocks are 3D scanned digital twins of collected

Apollo era rock samples. The scanned samples are scaled to

provide additional variation in the rock layers. Currently, all

rocks are generated and displayed in the scene at once with

no partitioning applied to improve performance. Rock

caching/partitioning is not necessary at this time due to the

application of Nanite to all rock meshes used in the lunar

scene. Nanite provides highly detailed geometry that has a

minimal impact on performance. Additionally, it determines

which mesh details can be reduced depending on the camera

position and adjusts the level of detail to optimize

performance without changing visuals [16]. Therefore, we

are capable of rendering hundreds of thousands of rocks with

little to no decrease in frame rate. Additionally, all rocks are

rendered with collisions and because they are generated from

PODB data they match across our various rendering

technologies.

Lumen

Lumen is a new feature in Unreal Engine 5 which provides

dynamic bounce lighting approximations. Lumen can

provide bounce lighting with either software ray tracing or

hardware ray tracing [18]. Figure 17 demonstrates how

Lumen can render bounce lighting off a surface. Hardware

ray tracing provides the best results at the highest

performance cost and is limited to Windows OS with DirectX

12 [18]. In our DUST instance we utilized Lumen with

software ray tracing to provide bounce lighting inside craters,

within rock shadows, and off objects like rovers and astronaut

extravehicular activity suits. The dynamic lighting helps

illustrate crater depth and the impact of the sun’s intensity

without an atmosphere to hinder it.

10

Figure 17. Lumen Lighting

Virtual Shadow Maps

Virtual Shadow Maps (VSMs) are a novel shadow rendering

method in Unreal Engine that employ high resolution shadow

maps of 16k-by-16k pixels supplemented with clipmaps to

increase resolution for directional lights in large worlds [19].

VSMs are optimized for Nanite geometry and provide a

dynamic shadow rendering solution capable of displaying

detailed shadows over thousands of kilometers of terrain.

Figure 18 is a rendering of around 75 kilometers of terrain in

width, with high-fidelity shadows throughout. Additionally,

there is minimal reduction in visible shadow accuracy as the

distance to the mesh increases. With VSMs DUST can

provide performant dynamic shadows for hundreds of

thousands of Nanite enabled rocks and across craters with

shadows spanning tens of kilometers in length. The shadows

are also able to render dynamically as SPICE updates the

position of the sun.

Figure 18. Shadow Rendering

Double Precision

Unreal Engine 5 now provides double precision in most areas

of the engine. This means that instead of FLOAT32 as the

primary data type of various engine components such as actor

transforms the engine now utilizes FLOAT64, increasing the

available precision. SPICE can now position the various

planetary bodies such as the Sun and the Earth in their actual

calculated positions without significant loss of precision.

Previous implementations required scaling of the positions

via a consistent scale factor to maintain accuracy.

Additionally, we are now able to create simulations that

involve spacecraft such as lunar landers, which may need to

traverse distances of thousands of kilometers, with minimal

precision loss.

FUTURE WORK

Our future work includes continuing to expand upon the

existing tools and features in DUST, as well as experimenting

with the inclusion of the DUST terrain into additional

projects. As the newly released features in Unreal Engine 5

receive improvements and optimizations we hope to provide

increased performance and a greater variety of supported

platforms.

We are constantly improving the fidelity of DUST to increase

its effectiveness in visualizing lunar terrain. One example is

the current rock distribution capability which is being

developed to provide a greater generation radius and

increased fidelity for the smaller rock layers. PODB provides

the statistical distribution for our rocks and craters currently

in the DUST scene, however we are limited by the number of

rocks we can add on specific platforms. While Nanite does

provide us the capability to generate thousands of rocks with

minimal performance impact, this feature is only available on

machines running Windows OS. By incorporating the

combination of Nanite and a rock grid caching system we

hope to support rock generation over a 100 km by 100 km

area of lunar terrain. Additionally, we are working to add to

the feature set present in DUST. The traverse tool is currently

limited to presenting primarily visual data with little

empirical value other than time estimates. The tool is planned

to deliver power and temperature estimations throughout the

duration of a traverse at different times/dates. The fidelity of

the communication analysis tool will be refined to

incorporate radio transmission fall-off instead of an entirely

line of site implementation. New features such as in-engine

physics rover control, and lunar terrain impact deformation

are undergoing preliminary development.

One platform we are beginning to implement Unreal lunar

terrain in is virtual reality. Currently Unreal Engine does not

support the use of Lumen or Nanite in virtual reality,

however, the engine does provide multiple infinite light

sources and double precision. These features would allow us

to create high-fidelity virtual reality simulations utilizing the

same clipmap terrain present in DUST. An additional future

innovation is the use of DUST with Unreal Engine’s nDisplay

feature. The nDisplay feature in Unreal allows the user to

map their Unreal instance to any number of rendering

displays. We are hoping to implement this feature with a

rover traverse simulation which visualizes the terrain via a

wall of monitors each displaying a portion of a mapped

DUST instance. Finally, we are creating a Pixel Streaming

implementation to serve as an additional DUST distribution

11

option. Pixel Streaming is another Unreal Engine feature that

provides a framework for interacting with the Unreal instance

via a web browser. This capability would allow us to

distribute DUST to a wide array of platforms without

hardware and performance limitations.

CONCLUSION

The DLES Unreal Simulation Tool is an advanced lunar

visualization environment that presents unique tools and

capabilities for high fidelity analysis of the lighting

conditions and terrain details present on the lunar surface.

DUST’s current platform support includes Mac, Linux, and

Windows. Certain Unreal features such as Nanite are not

available on all platforms. DUST includes a variety of tools

to provide additional analysis capability including traverse

rendering, communication analysis, heat map overlay, and

slope and elevation map visualization. With the clipmap lunar

terrain, we can adjust fidelity to match specific hardware

requirements. Additionally, as new terrain data is made

available the generation can be updated by simply replacing

the stored heightmap files.

Novel Unreal Engine 5 features such as Lumen, Nanite,

Virtual Shadow Maps, and double precision provide

capability to render increased detail and scale. The addition

of performant bounce lighting provided by Lumen

demonstrates the effect of the Sun’s intensity reflecting off

various scene elements. Nanite allows in-simulation meshes

to hold high vertex counts with little impact on performance,

which is currently utilized on lunar rock rendering. Virtual

Shadow Maps provide high resolution shadows over

expanded regions of terrain that maintain visible accuracy as

the camera’s distance increases. The addition of double

precision allows us to accurately position planetary bodies

and incorporate engineering-based simulations with TRICK.

Overall, Unreal Engine 5 presents a unique feature set that

indicates promising initial results in its ability to support

accurate simulation development.

DUST is currently in early stages of development and has not

been widely distributed for use. Its designed purpose is to

provide lighting and terrain analysis in support of future

Artemis missions.

ACKNOWLEDGEMENTS

The authors would like to acknowledge and thank Paul

Bielski, Zack Crues, and Eddie Paddock for your vision,

guidance, and support in the development of DUST and in

providing the DLES product suite. We would also like to

acknowledge Steve Munday (head of the Human Landing

Systems Crew Compartment Office) and Doug Craig (head

of the Human Exploration Office, Systems Engineering and

Integration, Strategy and Architecture Team) for the funding

and direction.

REFERENCES

[1] E. Z. Crues, S. J. Lawrence, A. Britton, P. Bielski, J.

Schlueter, A. Jagge, C. Foreman, C. Raymond and N.

Davis, "Digital Lunar Exploration Sites (DLES)," in

2022 IEEE Aerospace Conference (AERO), 2022.

[2] "Moon Trek," NASA, [Online]. Available:

https://trek.nasa.gov/moon/. [Accessed 09 2022].

[3] N. M. Estes, C. D.Hanger, A. A. Licht and E.

Bowman-Cisneros, "Lunaserv Web Map Service:

History Implementation Details Development and

Uses," in 44th Lunar and Planetary Science

Conference, 2013.

[4] A. D. Garcia, J. Schlueter and E. Paddock, "Training

Astronauts using Hardware-in-the-Loop Simulations

and Virtual Reality," in AIAA Scitech 2020 Forum,

Orlando, 2020.

[5] "Scientific Visual Studio," NASA, [Online].

Available: https://svs.gsfc.nasa.gov/. [Accessed 6

September 2022].

[6] NASA, "NASA’s Lunar Exploration Program

Overview," September 2020. [Online]. Available:

https://www.nasa.gov/sites/default/files/atoms/files/ar

temis_plan-20200921.pdf. [Accessed September

2022].

[7] "MaxQ: Spaceflight Toolkit For Unreal Engine 5,"

Gamergenic, 25 12 2021. [Online]. Available:

https://www.gamergenic.com/project/maxq/.

[Accessed 2022].

[8] "Trick Simulation Development Environment,"

NASA, August. [Online]. Available:

https://nasa.github.io/trick/. [Accessed September

2022].

[9] J. M. Penn and A. S. Lin, "The Trick Simulation

Toolkit: A NASA/Open source Framework for

Runnning Time Based Physics Models," in AIAA

Modeling and Simulation Technologies Conference,

2016.

[10] F. Losasso and H. Hoppe, "Geometry clipmaps: terrain

rendering using nested regular grids," ACM

Transactions on Graphics, vol. 23, no. 3, p. 769–776,

2004.

[11] R. Campos, J. Quintana, R. Garcia, T. Schmitt, G.

Spoelstra and D. M. A. Schaap, "3D Simplification

Methods and Large Scale Terrain Tiling," Remote

Sensing, vol. 12, no. 3, p. 437, January 2020.

[12] United States Geological Survey, "What is a digital

elevation model (DEM)?," [Online]. Available:

https://www.usgs.gov/faqs/what-digital-elevation-

model-dem. [Accessed 09 2022].

[13] G. Contributors, "GDAL/OGR Geospatial Data

Abstraction Software Library," Open Source

Geospatial Foundation, 2021. [Online]. Available:

https://gdal.org. [Accessed 15 08 2022].

12

[14] "UnrealGDAL: Unreal Engine GDAL plugin,"

TensorWorks Pty Ltd., 2020. [Online]. Available:

https://github.com/TensorWorks/UnrealGDAL.

[Accessed 2022].

[15] "Landscape Technical Guide," Epic Games, [Online].

Available: https://docs.unrealengine.com/4.27/en-

US/BuildingWorlds/Landscape/TechnicalGuide/.

[Accessed 2022].

[16] "Nanite Virtualized Geometry," Epic Games, [Online].

Available: https://docs.unrealengine.com/5.0/en-

US/nanite-virtualized-geometry-in-unreal-engine.

[Accessed 2022].

[17] TriAxis-Games, "Runtime Mesh Component Git

Hub," [Online]. Available:

https://github.com/TriAxis-

Games/RuntimeMeshComponent. [Accessed 09

2022].

[18] "Lumen Technical Details," Epic Games, [Online].

Available: https://docs.unrealengine.com/5.0/en-

US/lumen-technical-details-in-unreal-engine/.

[Accessed 09 2022].

[19] "Virtual Shadow Maps," Epic Games, [Online].

Available: https://docs.unrealengine.com/5.0/en-

US/virtual-shadow-maps-in-unreal-engine/.

[Accessed 9 2022].

BIOGRAPHY

Lee Bingham received a B.S. in

Computer Engineering from the

University of Houston – Clear Lake

and a M.S. in Electrical Engineering

from the University of Houston. Lee

began his career at NASA Johnson

Space Center in 2016 with the

Software, Robotics and Simulation

Division and has contributed to

simulation and visualization development for the NASA

Exploration Systems Simulations (NExSyS) team and the

Virtual Reality Training Lab. He is the lead of the Digital

Lunar Exploration Sites Unreal Simulation Tool (DUST) and

the Lunar Surface Mixed-Reality and Active Response

Gravity Offload System (ARGOS) projects.

Jack Kincaid received a B.S. in

Computer Engineering from Purdue

University in 2021. He is a Software and

Simulation Engineer for METECS

supporting NASA Johnson Space

Center's Software, Robotics and

Simulation Division under the Simulation

and Graphics Branch. He has several

years of experience in game engine

development with a recent focus in

Aerospace applications. Jack is one of the lead developers of

the Digital Lunar Exploration Sites Unreal Simulation Tool

(DUST).

 Benjamin Weno received his B.S. in

Computer Engineering from Iowa State

University in 2018. He is a Software and

Simulation Engineer for METECS

supporting NASA Johnson Space

Center's Software, Robotics and

Simulation Division under the

Simulation and Graphics Branch. His

professional experience includes full

stack and game engine development. He is currently a lead

developer on the Digital Lunar Exploration Sites Unreal

Simulation Tool (DUST).

Nicholas Davis received a A.S. degree in

Physics from San Jacinto College in 2010.

Through his fifteen-year career in

software development, he cultivated

expertise focusing on modern web-based

architectures and high availability data

models. Leveraging his sharp acumen in

this area, Mr. Davis developed web-based

solutions for the NFL providing valuable

situational insights during key events. He has also developed

core logistical technologies used by telecom networks as well

as oil and gas providers. Currently, Mr. Davis designs

intersystem engines for the NASA Prototype Immersive

Technology (PIT) lab, enabling a network of VR elements to

function cohesively in lunar exploration simulations.

Eddie Paddock - Virtual Reality (VR)

Technical Discipline Lead (TDL) for

NASA’s Engineering Directorate at

the Johnson Space Center (JSC),

Houston, TX. Over 40 years of

experience in developing and

managing aerospace and robotics

simulation and graphics projects

including most recently eXtended

Reality (XR) applications for ISS, Gateway and Artemis

Programs.

Cory Foreman received B.S. and M.S

degrees in Aerospace Engineering from

Iowa State University in 2006 and 2008

respectively. Upon completion of his

M.S., Cory began his career at NASA

Johnson Space Center in Houston, TX

where he has contributed to the design

and development of the Orion crew

capsule and Training Systems 21st

Century (TS21). Cory has over 13 years

of experience in simulation and software

development and currently works as a simulation and

13

software engineer in the Simulation and Graphics Branch

where he contributes to development of simulations focused

on lunar landing and surface exploration systems.

