# CMTA, Inc.

Provider #401104249

Carbon Emissions and Achieving Carbon Neutral Buildings

Wyatt Ross, Jerry Noble

October 5, 2022

Pepper Construction Tomorrow Transformed



Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services may be asked throughout the presentation. There will also be time allotted at the end of the presentation for additional questions.



# 

#### **Copyright Materials**

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.



# **Course Description**

This course serves as an introduction to developing carbon neutrality pursuits within the AEC industry. Covering a myriad of case studies and topics, the course identifies where carbon emissions occur in the built environment, and the strategies being proposed to address them. With a full spectrum of considerations covering the entire span of a building's lifecycle, the presentation offers valuable information the attendees can apply to their future projects.



# **Course Objectives**

- Demonstrate an understanding of the design issues affecting Carbon Neutral buildings.
- Identify the stakeholders responsible for achieving a Carbon Neutral building.
- Define the difference between embodied and operational carbon emissions.
- Apply best practices to Carbon Neutral building design, construction, and operations.



# Introductions





Wyatt Ross EIT, CEM, PVA, LEED GA Building Science Engineer

CMTA

Jerry Noble Vice President

Pepper Construction Tomorrow Transformed





#### Introduction



#### **Building Industry**

#### AIA 2030 COMMITMENT





**Committing to Zero** 





Annual Global CO<sub>2</sub> Emissions



© Architecture 2030. All Rights Reserved. Data Sources: Global ABC Global Status Report 2021, EIA



INSIDER'S GUIDE TO

#### What does it mean to be carbon neutral?

| CC<br>BL         | )2e NEUTRAL<br>.DGS.                  | PERFORMANCE<br>OR DESIGN | METRIC            | BOUNDARY | COMBUSTION<br>ALLOWED? | EFFICIENCY<br>REQUIRED?                                                 | OFFSITE RE<br>ALLOWED?                                                            | OTHER REQS.                                                                        |
|------------------|---------------------------------------|--------------------------|-------------------|----------|------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                  | LIVING<br>BUILDING<br>CHALLENGE       | $\searrow$               |                   |          |                        | NEW BUILDINGS:<br>70% EBB* W/PV<br>Existing buildings:<br>50% EBB W/PV  | Yes, using off-site<br>RE exception.                                              | Must include on-site<br>storage; 20%<br>embodied carbon<br>reduction.              |
|                  | CERTIFICATION                         | $\searrow$               |                   |          |                        | Highest<br>efficiency                                                   | Yes, must be local.<br>75% of roof for<br>solar.                                  |                                                                                    |
| (1               |                                       | $\searrow$               |                   |          |                        | NEW BUILDINGS:<br>25% < 90.1-2010<br>EXISTING BUILDINGS:<br>30% < CBECS | Yes. Must be<br>Additional.                                                       | 10% Embodied<br>Carbon Reduction                                                   |
| E                | EED Zero                              | $\nearrow$               | Ŧ                 |          |                        | No, but LEED<br>Certified                                               | Yes. See tiered<br>structure for on-<br>and offsite RE                            | Must be LEED-NC<br>or EBOM certified.<br>Performance in Arc.<br>TOU option for LZC |
|                  | EED Zero<br>Carbon                    | $\searrow$               |                   |          | (7)                    |                                                                         |                                                                                   |                                                                                    |
|                  | ZERO CODE™                            | 2                        |                   |          |                        | Must meet<br>ASHRAE 90.1-<br>2016                                       | Yes. After on-site.<br>Tiered structure<br>applies discount<br>factor to options. | Off-site renewables<br>are discounted.                                             |
|                  | WORLD<br>GREEN<br>BUILDING<br>COUNCIL | $\nearrow$               |                   | H        |                        | Highly energy<br>efficient building                                     | Yes                                                                               | Embodied carbon<br>may be included<br>later                                        |
|                  | AIA 2030 Commitment                   |                          |                   |          |                        | 70% better than<br>CBECS 2003                                           | Yes, but not<br>counted                                                           | Seeing to incorporate<br>refined carbon-<br>specific metrics                       |
| = Transportation |                                       |                          | = Embodied Carbon |          | = Site E               | Energy Use                                                              | = CO2e 4                                                                          | = Source Energy Use                                                                |







"A 'Net Zero (Whole Life) Carbon' Asset is one where the sum total of all asset related GHG emissions, both operational and embodied, over an asset's life cycle (Modules A1-A5, B1-B7, C1-C4) are minimized, meet local carbon, energy and water targets, and with residual 'offsets', equals zero." -Whole Life Carbon Network

Getting To Neutral

# Getting to Carbon Neutral





#### ELEMENTARY SCHOOL

#### **DESIGN STRATEGIES**

- Efficient HVAC Systems
- Improved Envelopes
- Energy Star Appliances
- LED Lighting

• Etc.

# 2. Eliminate Fossil Fuels

#### **GRID CHANGES**

- "Electrification"
- Wind and solar capacity estimated to increase by 350-465% by 2030
- Eliminating fossil fuels allows buildings to decarbonize with the grid



Grid Emissions Over Time (Predicted)

# 3. Prioritize On-Site Renewables



#### RENEWABLES

- On-Site Solar
  - Most likely to achieve true additionality
  - Multiple Installation Options:
    - Roof
    - Parking Structures
    - Ground Mount
    - Building Façade
- Self-consume as much as possible
- Consider off-site if site limitations exist.

# 4. Minimize Embodied Carbon

#### **DESIGN STRATEGIES**

- Prioritize adaptive reuse
- Reduce and optimize building materials by utilizing EPDs and WBLCA Modeling Tools
- Minimize High GWP Refrigerants



# S. Whole Life Carbon and Offsets

#### Additional Considerations

 Consider the purchase of carbon offsets/removals to "neutralize" emissions from embodied and/or operational carbon







# Advancing Net Zero Whole Life Carbon

Offsetting Residual Emissions from the Building and Construction Sector

September 2021





# $\bigcirc$ Big Idea

Can a historic building receive Historic Preservation status and simultaneously achieve Net Zero Energy and Carbon Neutrality?





#### **Pepper Construction, Cincinnati Office**





# Drawdown at Pepper

#### **5 Drawdown Solutions**

- Rooftop Solar
- Refrigerants
- Insulation
- Water Savings
- Carbon-Infused Concrete

#### 118

Drawdown Analyses completed



## 25,730,422

Gallons of water saved [ enough water to fill 39 Olympic-sized pools ]



#### 82,752

People living, learning, and working in healthier buildings from the four Drawdown solutions



#### 272,696

Tons of CO<sub>2</sub> that wasn't emitted into the atmosphere [ equivalent to driving around the globe 24,850 times ]



85,926

MWh generated [ enough solar electricity to power 12,359 homes for a year ]



#### 35,110,481

kBtu saved [ enough natural gas and electricity to heat 385,125 homes for a year ]









| Pepper<br>Construction                                                                                                                                                                                                                                                             | OWNER PROJECT REQUIREMENTS                                                            |                                                                                                                                          |                                                                     |                                                                                                                                                                      |                                      |                                                                                                                      | PROJECT REQs |                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|--|
| Building Owner<br>Building Address<br>Building Type<br>Building Size<br>Construction Budg<br>Baseline EUI (ZeroTool)<br>Target EUI                                                                                                                                                 | Pepper Con<br>Office<br>25000<br>8<br>3                                               | SF<br>5 kBTU/SF/YR<br>0 kBTU/SF/YR                                                                                                       | ne 4A<br>ad 80                                                      | Project #:                                                                                                                                                           | 032102                               | <ul> <li>Energy Intensity</li> <li>Embodied Carbon</li> <li>Envelope<br/>Performance</li> <li>Air Quality</li> </ul> |              |                                                              |  |
| DESIGN TEAM                                                                                                                                                                                                                                                                        | - Target                                                                              | s and Goal                                                                                                                               | S                                                                   |                                                                                                                                                                      | Lead                                 | Commission                                                                                                           | •            | Sound                                                        |  |
| ENERGY PERFORMA         Baseline EUI         PREDICTED EUI       659         2030 Challenge       809         Note: values in Green are high         EMBODIED CARBON         Baseline CO2e         PREDICTED CO2e       459         Stretch CO2e       659         UEI Zero Carbon | 85<br>30<br>317<br>est performing EU<br>PERFORMA<br>434<br>3238.70<br>3151.90<br>4500 | kBTU/sf/yr<br>kBTU/sf/yr<br>kBTU/sf/yr<br>I targets<br>NCE<br>kg CO2e/m <sup>2</sup><br>kg CO2e/m <sup>2</sup><br>kg CO2e/m <sup>2</sup> | Component<br>Roof<br>Wall<br>Windows<br>Infiltration<br>Air Barrier | SURE PERFORMANCE<br>Minimum Performance<br>R-35 / U-0.0286<br>Tuckpoint Existing<br>U-0.35<br>< 0.15 CFM <sub>75</sub> /ft <sup>2</sup><br>> 30 perm vapor diffusion | Arch<br>Cont<br>Arch<br>Arch<br>Arch | Met:<br>Met:<br>Met:<br>Met:<br>Met:                                                                                 | •<br>•<br>•  | Certifications<br>Historic<br>Preservation<br>Budget<br>Etc. |  |







ZERÓTOOL

#### Identifying ECMs

- Load Reduction
  - Improved Existing Envelope
  - High Performance HVAC
  - Office Equipment
  - LED Lighting and Daylighting
- Constraints
  - SHPO Requirements
  - Existing Structure/Envelope
  - Costs





#### **Envelope Selection**

| Option 1    | Option 2                            | Option 3                      | Option 4                                              | Option 5                                              | Option 6                      | Option 7                   |
|-------------|-------------------------------------|-------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------|----------------------------|
| Repair Only | High<br>Performance<br>Lime Plaster | Air Barrier, No<br>Insulation | Air Barrier,<br>Insulation,<br>Smart Vapor<br>Barrier | Air Barrier,<br>Insulation,<br>Smart Vapor<br>Barrier | No Air Barrier,<br>Insulation | Air Barrier,<br>Insulation |

Pepper



#### Option 5

- Interior Insulation
- Air-Sealing Using Liquid Applied Air Barrier

#### 100 90 80 70 (J°) TEMPERATURE 60 50 40 30 20 10 Μ S 0 Ν D F Μ А 1 А



#### **OPTION 5 - INTERIOR BRICK SURFACE TEMPERATURE**

# Antimize Energy Efficiency



**Option 3** 

![](_page_29_Picture_0.jpeg)

# **HVAC Selection**

|                                                | Geothermal Water Cooled VRV/VRF                                         | Geothermal Heat Recovery Chiller W/Fan Coils                                                                 |
|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| \$/S.F. Includes Geothermal<br>Well Field Cost | \$56/Square Foot = \$1,341,078                                          | \$61/Square Foot = \$1,461,078                                                                               |
| Replacement Cycle                              | 15 – 20-year replacement of entire system including refrigerant piping. | 20 – 25-year replacement of Chiller. 30 – 40-year replacement of fan coils. Infrastructure remains in place. |
| 15/20 Year LCA                                 | \$1,618,000/\$3,050,650                                                 | \$1,728,000/\$1,916,500                                                                                      |
| Refrigerant Volume Based<br>on 40 Tons         | 284 lbs. of Refrigerant                                                 | Factory Sealed Refrigerant System. 48 lbs. of Refrigerant                                                    |

#### **HVAC SELECTION**

• Heat Pump Chiller + Fan Coils

![](_page_30_Figure_3.jpeg)

#### HVAC SELECTION

- Heat Pump Chiller + Fan Coils
- Ventilation Air Conditioning
  - Enverid
  - Energy Recovery
  - IAQ Monitoring
  - MERV-13

![](_page_31_Figure_8.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

#### Additional Efficiency Measures

- Lighting:
  - 0.35 W/sf
  - Interior and Exterior Lighting Controls
- Plug Loads:
  - Laptop Docking Stations
  - Energy Star Appliances
  - No bevi Machines
- DHW
  - Low Flow Fixtures
  - Heat Pump DWH Heaters

![](_page_33_Figure_12.jpeg)

# Eliminate Fossil Fuels

![](_page_34_Picture_1.jpeg)

No fossil fuels combusted on-site

- Geothermal Heat Pumps
- DHW Heat Pumps
- All-Electric Appliances

![](_page_34_Figure_6.jpeg)

Pepper

![](_page_35_Picture_0.jpeg)

#### Solar Array

- DC Capacity = 214.5 kW
- AC Capacity = 200 kW
- Annual Production = 250,000 kWh
- Net Positive Energy

![](_page_35_Figure_6.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Figure_1.jpeg)

- Total Electric Load
- PV Curtailed Generation
- PV Serving Load
- Grid Serving Load

NZ Carbon in Operation – "An asset where no fossil fuels are used, all energy use (Module B6) has been minimized and meets the local energy use target, and all energy use is generated onor off-site using renewables that represent additionality" - WLCN, LETI, RIBA

### Minimize Embodied Carbon

![](_page_37_Figure_1.jpeg)

Based on early-stage Life Cycle Assessments (A1-A5, B1-B5, C1-C4) for structure, enclosure, and interior scopes.

# S Carbon Comparison

12,000

![](_page_38_Figure_1.jpeg)

Embodied Carbon

Operational Emissions (50 yrs)

![](_page_38_Figure_4.jpeg)

![](_page_38_Figure_5.jpeg)

Pepper

#### **Pepper Construction, Cincinnati Office**

![](_page_39_Picture_1.jpeg)

# THANK YOU

Wyatt Ross – WRoss@cmta.com Jerry Noble – JNoble@pepperconstruction.com

CMTA :

#### Pepper Construction Tomorrow Transformed