### Promoting Health & Wellbeing through Indoor Air Quality Optimizations



Why?

Americans spend an average of 87% of time indoors.

Provide buildings that don't adversely impact health

• *Sick Building Syndrome*: a condition in which people in a building suffer from symptoms of illness or become infected with chronic disease from the building in which they work or reside.

### Why?

Acceptable Indoor <u>Air Quality (IAQ)</u>: air toward which a substantial majority of occupants express no dissatisfaction with respect to <u>odor</u> and <u>sensory irritation</u> and in which there are not likely to be <u>contaminants at concentrations that are known to pose a health risk</u>

### What?

*Ventilation air*: the minimum amount of <u>outdoor air</u> required for the purpose of controlling air contaminant levels in building

Supply = dilution

Exhaust = source control

Clean air

• Filtration: particulate or odor

### Removing Building Contaminants

Standard of care for indoor air quality

Dilution

- Building Type Significantly impacts
- Minimum OA%
  - $\circ$  10 25% typical of most buildings

Filtration

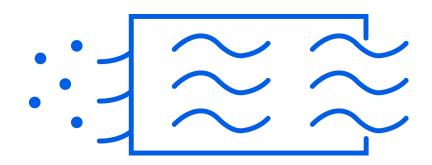
- MERV 8 in most instances
  - ≈5% of most common droplet size

**Combined Effectiveness** 

• 14-28%



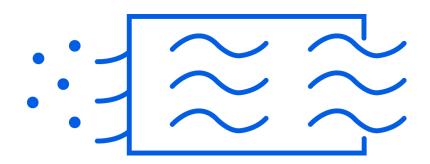
ANSI/ASHRAE Standard 62.1-2019 (Supersedes ANSI/ASHRAE Standard 62.1-2016) Includes ANSI/ASHRAE addenda listed in Appendix O


Ventilation for Acceptable Indoor Air Quality

### Perform system assessment / RETRO-COMMISSIONING

- Systems can VARY from original design parameters as much as 10-30 PERCENT
- Determine a Baseline of Current System Performance and Potential Opportunities for Improvement
  - Filters
  - Outdoor air issues
  - Sequences that affect outdoor air amounts (Fan cycling, DCV & Economizers)
  - Consider Test and Air Balance (TAB) to assess filter change potential

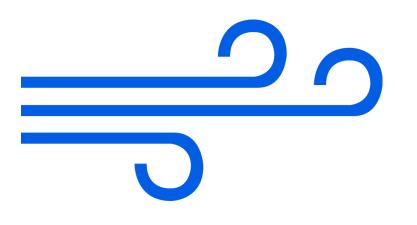



• **MODIFY FILTER RACKS** to accept higher capacity / effective filters (MERV-13, etc.)




- **IMPROVE EDGE SEALS** on filter racks to reduce bypass air
  - Pros Life cycle effectiveness, additional air cleanliness
  - Cons increased fan energy, first cost impacts, increased filter cost, feasibility determined on individual equipment basis




• Room recirculation units with HEPA or MERV 16 filter.

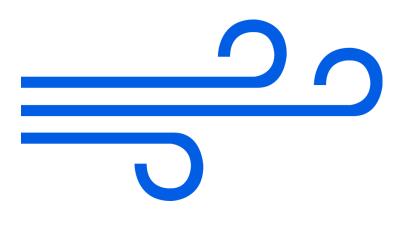



- High Occupant density Spaces or spaces with low MERV filtration
  - Pros Life cycle effectiveness, IAQ benefits, increases ACH
  - Cons increased fan energy, first cost of units, noise, maintenance cost



• **INCREASE** the quantity of **AIR** introduced to a **SPACE VIA** the **HVAC** Systems

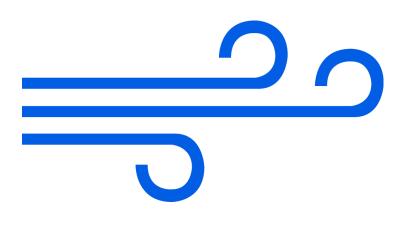



- Extend operating hours
  - Efficacy tied to filter rating and OA percentage
  - Pros Low first cost
  - Cons Additional fan power usage, potential additional cooling and heating of outdoor air

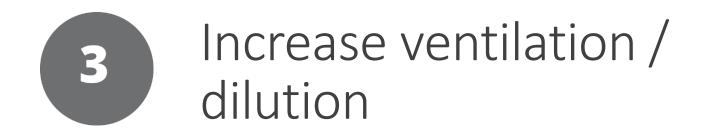


**Business Use** 

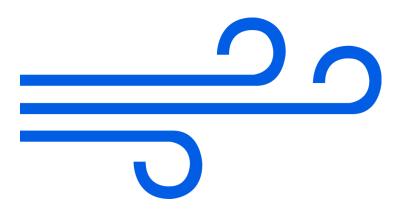



• INCREASE the quantity of AIR introduced to a SPACE VIA the HVAC Systems

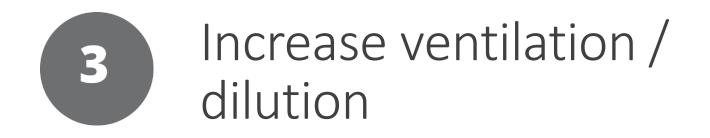



- Turn off fan cycling (increase ACH)
  - Efficacy tied to filter rating and OA percentage
  - Pros Low first cost, IAQ improvements
  - Cons Additional fan power usage, potential additional cooling and heating of outdoor air

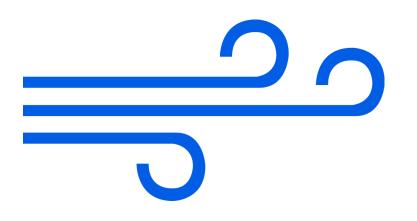



• INCREASE the quantity of AIR introduced to a SPACE VIA the HVAC Systems

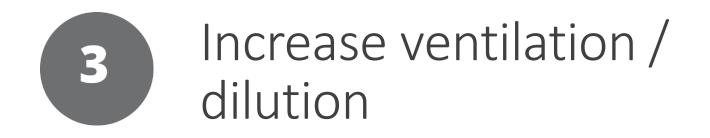



- Raise VAV box minimums (increase ACH)
  - Efficacy tied to filter rating and OA percentage
  - Pros Low first cost, maintenance
  - Cons Additional fan power usage, additional cooling and heating energy usage, may need BAS contractor, exist equipment limitations

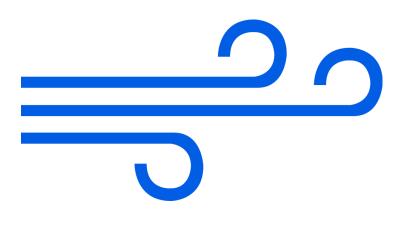



• INCREASE the quantity of OUTDOOR AIR introduced to a BUILDING VIA the HVAC Systems




- Reset Outdoor air setpoint
  - Pros Low first cost (no new equipment)
  - Cons higher heating and cooling energy usage, need to engage professionals to determine limits of equipment and set

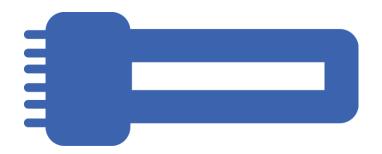



• INCREASE the quantity of OUTDOOR AIR introduced to a BUILDING VIA the HVAC Systems



- Reset Demand Control Ventilation Setpoints (typical of high occupancy spaces)
  - Pros Low first cost
  - Cons higher heating and cooling energy usage

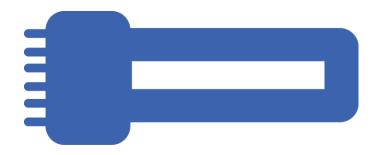



• **INCREASE** the quantity of **OUTDOOR AIR** introduced to a building **VIA** the **HVAC** Systems



- Controls sequence to maximize outdoor air
  - Pros Low first cost, IAQ benefits, low maintenance, enable disable
  - Cons Limited by equipment, strong potential high operating cost, requires BAS contractor engagement

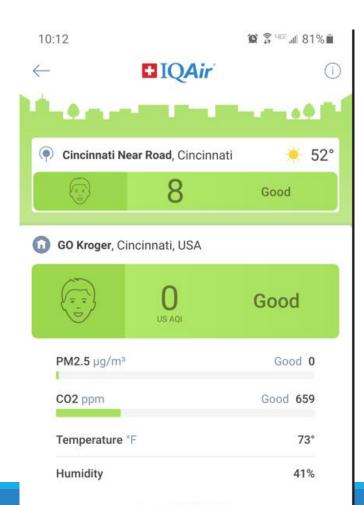



• UVGI (ultraviolet germicidal irradiation)



- Upper Room UVGI Targeting high occupant density areas (waiting rooms, breakroom)
  - Can be equated to increased ACH
- Install in Ductwork and in equipment
  - Great for mold and bacteria, less effective at viruses due to dwell time



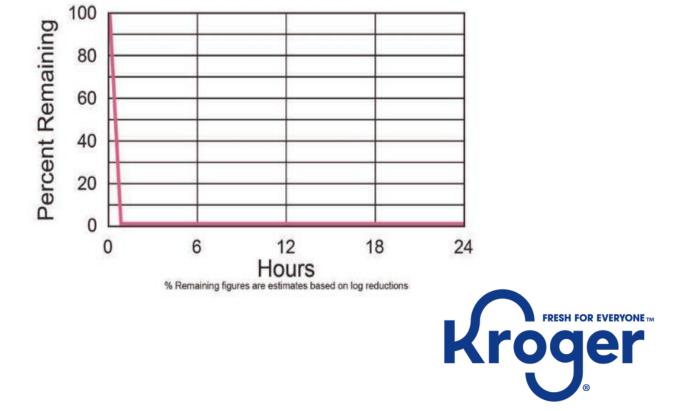

• BPI (Bi-Polar Ionization)



- Beware of Ozone development;
  - Pros Maintenance, improved IAQ benefits, terminal unit application
  - Cons Difficult to quantify benefits

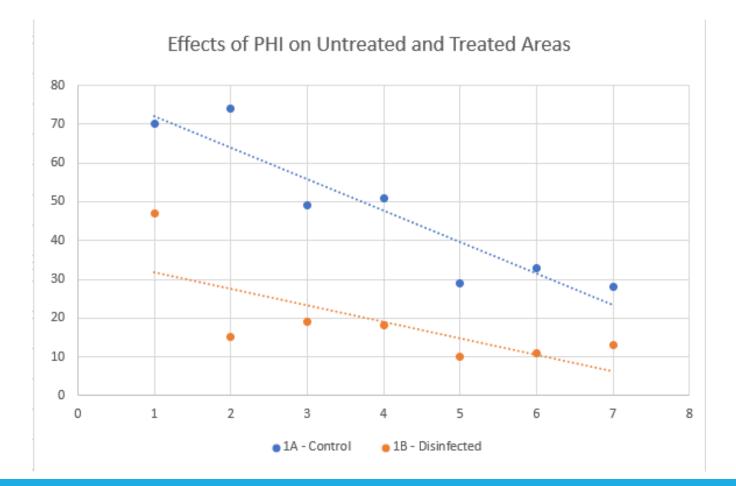
- Monitor IAQ
- Open Fresh Air Dampers to Maximum System Can Handle
- Increase Filtration
- Photohydroionization (PHI)
- Verification











Last update 10:11 AM

Testing summary: >99.8% inactivation of the airborne SARS-CoV-2 virus within the occupied space based on the direct air sampling method



SARS-CoV-2 Reduction in Air

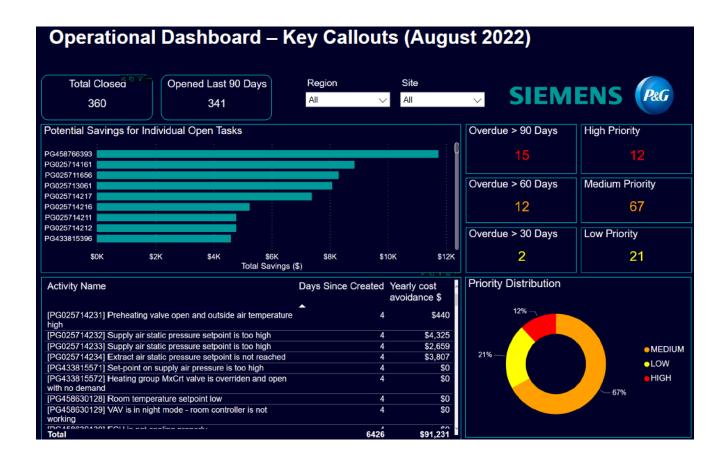




The ATP test is a process of rapidly measuring actively growing microorganisms through detection of adenosine triphosphate, or ATP.



### Procter & Gamble – Health & Wellness Management Ventilation Systems


- Employee Health & Wellness Training
- Design HVAC Systems to ASHRAE Standards (55 and 62)
- Computerized Maintenance Management System
- Advanced Building Diagnostic Systems
- Monitoring of Temperature/Humidity/CO2



### Procter & Gamble – Health & Wellness Management Ventilation Systems

| Carbon Dioxide (CO <sub>2</sub> ) Hazard Scale                                                                                                                                                                                                                        | IAQ                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,000,000 ppm<br>(100%)                                                                                                                                                                                                                                               | RMT1   74.66 DEG F   RMT2   74.77 DEG F   RH 2   51.00 rh   16th   RMT1   73.98 DEG F   RH 1   52.00 rh     CO2 2   467.00 ppm   467.00 ppm   16th   CO2 1   472.00 ppm              |
| 100,000 ppm<br>(10%)<br>70,000<br>50,000<br>200,000<br>Certain death<br>Acute toxicity, death (5 min)<br>Nausea, unconsciousness<br>Exhaled air, intoxication                                                                                                         | RMT1   69.48 DEG F   RMT2   68.00 DEG F   RH 2   61.00 rh   15th   RMT1   68.97 DEG F   RH 1   59.00 rh     CO2 2   449.00 ppm   449.00 ppm   15th   CO2 1   457.00 ppm   457.00 ppm |
| Critical Health Risk Short-term exposure (STEL) (10-15 min)   10,000 ppm<br>(1%) 8,000 Unhealthy                                                                                                                                                                      | RMT1   68.72 DEG F   RMT2   68.43 DEG F   RH 2   61.00 rh   14th   RMT1   68.04 DEG F   RH 1   61.00 rh     CO2 2   449.00 ppm   449.00 ppm   CO2 1   463.00 ppm   463.00 ppm        |
| 5,000<br>4,000<br>2,500<br>1,500<br>Cognitive Impairment<br>(0.1%)<br>5,000<br>2,500<br>1,500<br>Cognitive Impairment<br>Cognitive dysfunction<br>8-hr TWA (UK schools)<br>Upper comfort boundary<br>City/urban air<br>Mauna Loa air (2015)<br>Pre-industrial-era air |                                                                                                                                                                                      |

### Procter & Gamble – Health & Wellness Management Ventilation Systems



