Are you talking about the Inflation Reduction Act? You should be!

October 12, 2023

Your Presenters:

Daniel Lessing, LEED AP BD+C, CEM
Director of Business Development, Client Leader at BHDP Architecture Cincinnati, OH

Ryan Hoffman, PE, LEED AP BD+C, CEM
Principal, Director at HEAPY
Dayton, OH

Seth Parker

CEO at Melink Solar
Cincinnati, OH

Agenda:

1. What is it?
2. How much?
3. Prove it to me!
4. Teach me how!

BHDP + $\boldsymbol{\square}$ HEAPY + Melink

What is the BIL?

"Whe single most important piece of legislation to our industry in a lifetime."

What is it?

Bipartisan Infrastructure Law (BIL)

Provides $\$ 1.2$ trillion in federal investment to improve the nation's infrastructure, from transportation systems and power grids to broadband and other public works. Roughly half of the funding-\$550 billion in new spending-will flow into state and local governments over the coming years.

Inflation Reduction Act (IRA)

Directs new federal spending of $\$ 390$ billing toward reducing carbon emissions, lowering healthcare costs, funding the Internal Revenue Service, and improving taxpayer compliance

What is it?

Inflation Reduction Act Technologies

The Inflation Reduction Act provides tax incentives for technologies across energy industry:

- Solar Energy
- Wind Energy
- Geothermal Energy
- Ground Source Heat Pumps
- Fuel Cells
- Microturbines
- Combined Heat and Power
- Energy Storage
- Biogas
- Waste to Energy
- Dynamic Glass
- Microgrid Technology
- Electric Vehicles
- Electric Vehicle Charging Infrastructure
- Carbon Sequestration
- Advanced Manufacturing
- Clean Hydrogen
- Zero Emission Nuclear
- Sustainable Aviation Fuel
- Biodiesel renewable fuel
- Energy Efficiency
- Energy Efficient Homes

How Much?

Over the next decade, spending on climate will more than triple historic levels
 and tax expenditures

How Much?

The Inflation Reduction Act makes investments across a wide range of sectors.
Inflation Reduction Act investments by sector, \$ billion
Total $=393.7$

| Energy |
| :--- | :--- | :--- |
| 250.6 |

How Much?

Loan authority 367
Energy Infrastructure
Reinvestment loan authority
250

Innovative Clean Energy
loan authority
62

Advanced Technology Vehicle
Manufacturing loan authority
55

How Much?

Energy and climate change funding in the Inflation Reduction Act, \$ billion

\$216B Tax Credit for Corporations!
Direct Pay...meaning an entity can claim the full

Tax Credit: Reduction in your tax (MUCH BETTER!)

How Much?

Bipartisan Infrastructure Law (BIL) investments
The act allocates about $\$ 1.2$ trillion over 10 years ...

...including $\$ 550$ billion	...divided between improving in new spending...
	the surface-transportation
network ($\$ \mathbf{2 8 4}$ billion)...	

How Much?

The BIL will commit \$266B in new spending on core infrastructure: Power, water, broadband, and the environment.

The BIL will commit $\$ 284 \mathrm{~B}$ in new spending for transportation.

Disclaimer

- I am not your accountant...
- Tax law is constantly changing.
- Within Inflation Reduction Act, further clarifications are expected to be released in the coming months by the Department of Treasury

Prove it to Me !

GRID OF THE FUTURE - DECARBONIZATION IN PJM

Generation Trends

Prove it to Me!
THEN AND NOW: GEOTHERMAL

Prove it to Me!

SAMPLE GEOTHERMAL ANALYSIS

- Central condenser water pumping system
- Chiller and Boiler plant eliminated with a fully geothermal system
- Water source heat pumps throughout
- Non-HVAC systems could be tied into condenser water system
- Possible heat recovery chiller to provide hot water for hydronic heating
- Possible cooling towers and boilers to reduce overall wellfield size
- Large closed-loop geothermal wellfield: 2,500 wells, 500 ft deep

Prove it to Me!

Life-Cycle Cost Analysis

Prove it to Me!

Life Cycle Cost Comparison

Prove it to Me!

EUI, Water Source Heatpumps vs. Geothermal

Prove it to Me!

Total Annual Energy Breakdown

Water Source HP

Prove it to Me!

Annual Greenhouse Gas Emissions

Prove it to Me!

First Cost Business Case Projection w/ Incentives

Prove it to Me!

40 Year Cost Breakdown: GEO vs WSHP w/ Incentives

40 Year Cost Breakdown

Teach Me How!

Sample Solar Customer: Introduction

About the customer

Building sq: 45,000 sq/ft
Location: Mason Ohio
Company type: Manufacturing/Private

Customer motivation(s) / situation:

The company seeks to...
Hedge against rising electricity cost Branding/Employee attraction Sustainability/Right thing to do

Resulting in...
Energy Savings
HR+PR Benefits
Increased Revenue

Teach Me How!

Sample Solar Customer: System Details

About the proposed system
Annual Consumption: $413,616 \mathrm{kWh}$
\section*{Roof mounted System:}
Solar PV Year One: $\quad 358,879$ kWh
Solar PV Offset:
\# of Panels: 600
Project Duration: 4 Months

Teach Me How!

ENERGY ECONOMICS

Teach Me How!

Increasing Electricity Price Trends
 National average increase of 3.15\% PER YEAR between 1960 and 2021

$-\mathrm{US}-\mathrm{OH}$

Teach Me How! Recent Pricing: Skyrocketing Rates

Teach Me How!

Utility Rate Structures

Typical Utility Rate Structures include 3 major elements:

- Fixed Charges- The cost to have service, which is independent of usage.
- Consumption Costs ($\$ / \mathbf{k W h}$) - the costs of the total energy consumed for the period.
- Demand Costs ($\$ / \mathbf{k W}$) - the cost of the rate of energy delivered for the period. Customers are typically billed at their "peak demand", meaning the highest rate of energy delivered for 15 continuous minutes in a month.

Teach Me How!

Utility Rate Structure

A look into your utility bill

Teach Me How!

Utility Rate Structure

A look into your utility bill

Teach Me How!

Utility Rate Structure

A look into your utility bill

Teach Me How!

Utility Rate Structure

A look into your utility bill

Peak Demand

The highest average load during a peak demand interval in each billing cycle
*usually 75 mins
Peak Demand on
Monday has impacted Tuesday, and the rest of the billing cycle

Teach Me How!

Utility Rate Structure

Teach Me How!

BHDP + $\boldsymbol{\square}$ HEAPY + Melink

Teach Me How!

System Savings (Consumption \& Demand)

	Time Periods	Energy Use (kWh)	Max Demand (kW)	Charges			
三-	Bill Ranges \& Seasons	Total	NC / Max	Other	Energy	Demand	Total
$\bar{\square}$	1/1/2023-2/1/2023 S 1	34,900	207	\$49	\$2,641	\$2,118	\$4,808
U	21/2023-3/1/2023 S 1	34,000	207	\$49	\$2,573	\$2,118	\$4,740
$\underset{\sim}{\sim}$	3/1/2023-4/1/2023 S1	32,000	207	\$49	\$2,422	\$2,118	\$4,589
	4/1/2023-5/1/2023 S 1	40,000	207	\$49	\$3,026	\$2,118	\$5,193
ய	5/1/2023-6/1/2023 S 1	29,000	207	\$49	\$2,196	\$2,118	\$4,363
-	6/1/2022-7/1/2022 S 1	38,000	207	\$49	\$2,875	\$2,118	\$5,042
	7/1/2022-8/1/2022 S1	39,000	207	\$49	\$2,950	\$2,118	\$5,117
之	8/1/2022-9/1/2022 S1	40,000	207	\$49	\$3,026	\$2,118	\$5,193
Ш	9/1/2022-10/1/2022 S1	33,900	207	\$49	\$2,566	\$2,118	\$4,733
0	10/1/2022-11/1/2022 S1	31,800	207	\$49	\$2,407	\$2,118	\$4,574
\bigcirc	11/1/2022-121/12022 S 1	29,800	207	\$49	\$2,257	\$2,118	\$4,423
\bigcirc	12/1/2022-1/1/2023 S1	31,216	207	\$49	\$2,363	\$2,118	\$4,530
	Total	$413,616$	-	\$588	\$31,303	\$25,414	\$57,305

Teach Me How!

System Savings (Consumption \& Demand)

	Time Periods	Energy Use (kWh)	Max Demand (kW)	Charges			
	Bill Ranges \& Seasons	Total	NC / Max	Other	Energy	Demand	Total
∞	1/1/2023-21/12023 S1	34,900	207	\$49	\$2,641	\$2,118	\$4,808
$\underline{\cup}$	2/1/2023-3/1/2023 S1	34,000	207	\$49	\$2,573	\$2,118	\$4,740
■	3/1/2023-4/1/2023 S1	32,000	207	\$49	\$2,422	\$2,118	\$4,589
	4/1/2023-5/1/2023 S1	40,000	207	\$49	\$3,026	\$2,118	\$5,193
Ш	5/1/2023-6/1/2023 S1	29,000	207	\$49	\$2,196	\$2,118	\$4,363
Ш	6/1/2022-7/1/2022 S 1	38,000	207	\$49	\$2,875	\$2,118	\$5,042
	7/1/2022-8/1/2022 S 1	39,000	207	\$49	\$2,950	\$2,118	\$5,117
Z	8/1/2022-9/1/2022 S 1	40,000	207	\$49	\$3,026	\$2,118	\$5,193
Ш	9/1/2022-10/1/2022 S 1	33,900	207	\$49	\$2,566	\$2,118	\$4,733
$\stackrel{\square}{\sim}$	10/1/2022-11/1/2022 S 1	31,800	207	\$49	\$2,407	\$2,118	\$4,574
\bigcirc	11/1/2022-12/1/2022 S 1	29,800	207	\$49	\$2,257	\$2,118	\$4,423
\bigcirc	12/1/2022-1/1/2023 S1	31,216	207	\$49	\$2,363	\$2,118	\$4,530
	Total	413,616	-	\$588	\$31,303	\$25,414	\$57,305
			- ,				
Ш	Time Periods	Energy Use (kWh)	Max Demand (kW)			arges	
2	Bill Ranges \& Seasons	Total	NC / Max	Other	Energy	Demand	Total
	1/1/2023-2/1/2023 S 1	20,925	198	\$49	\$1,587	\$2,026	\$3,662
$\stackrel{\square}{4}$	211/2023-3/1/2023 S1	15,692	195	\$49	\$1,193	\$1,995	\$3,237
Ш	3/1/2023-4/1/2023 S1	3,729	173	\$49	\$284	\$1,770	\$2,103
\checkmark	4/1/2023-5/1/12023 S 1	3,269	165	\$49	\$249	\$1,688	\$1,986
$\underline{1}$	5/1/2023-6/1/2023 S1	-12,390	167	\$49	\$942	\$1,709	\$815
-	6/1/2022-7/1/2022 S 1	-6,435	168	\$49	\$490	\$1,719	\$1,278
0	7/1/2022-8/1/2022 S 1	-5,652	144	\$49	\$430	\$1,551	\$1,169
\cdots	8/1/2022-9/1/2022 S 1	-1,736	175	\$49	\$133	\$1,790	\$1,707
+	9/1/2022-10/1/2022 S1	504	178	\$49	\$39	\$1,821	\$1,909
\bigcirc	10/1/2022-11/1/2022 S1	5,848	186	\$49	\$445	\$1,903	\$2,397
Ш-	11/1/2022-121/2022 S1	12,941	189	\$49	\$984	\$1,934	\$2,967
Ш	12/1/2022-1/1/2023 S1	18,043	197	\$49	\$1,370	\$2,016	\$3,434
3	Total	-54,738	-	\$588	\$4,156	\$21,921	\$26,665
Z				ngs	-87\%	-14\%	-53\%

Teach Me How!

System Savings (Consumption \& Demand)

	Time Periods	Energy Use (kWh)	Max Demand (kW)	Charges			
三-	Bill Ranges \& Seasons	Total	NC / Max	Other	Energy	Demand	Total
∞	1/1/2023-2/1/2023 S 1	34,900	207	\$49	\$2,641	\$2,118	\$4,808
$\underline{\sim}$	211/2023-3/1/2023 S 1	34,000	207	\$49	\$2,573	\$2,118	\$4,740
¢	3/1/2023-4/1/2023 S1	32,000	207	\$49	\$2,422	\$2,118	\$4,589
	4/1/2023-5/1/2023 S 1	40,000	207	\$49	\$3,026	\$2,118	\$5,193
Ш	5/1/2023-6/1/2023 S1	29,000	207	\$49	\$2,196	\$2,118	\$4,363
W	6/1/2022-7/1/2022 S 1	38,000	207	\$49	\$2,875	\$2,118	\$5,042
	7/1/2022-8/1/2022 S 1	39,000	207	\$49	\$2,950	\$2,118	\$5,117
,	8/1/2022-9/1/2022 S 1	40,000	207	\$49	\$3,026	\$2,118	\$5,193
	9/1/2022-10/1/2022 S 1	33,900	207	\$49	\$2,566	\$2,118	\$4,733
$\stackrel{\sim}{\square}$	10/1/2022-11/1/2022 S1	31,800	207	\$49	\$2,407	\$2,118	\$4,574
\bigcirc	11/1/2022-12/1/2022 S1	29,800	207	\$49	\$2,257	\$2,118	\$4,423
\bigcirc	12/1/2022-1/1/2023 S1	31,216	207	\$49	\$2,363	\$2,118	\$4,530
	Total	413,616	-	\$588	\$31,303	\$25,414	\$57,305
			- ,				
ш	Time Periods	Energy Use (kWh)	Max Demand (kW)			arges	
	Bill Ranges \& Seasons	Total	NC / Max	Other	Energy	Demand	Total
	1/1/2023-21/12023 S1	20,925	198	\$49	\$1,587	\$2,026	\$3,662
	211/2023-3/1/2023 S 1	15,692	195	\$49	\$1,193	\$1,995	\$3,237
Ш	3/1/2023-4/1/2023 S1	3,729	173	\$49	\$284	\$1,770	\$2,103
	4/1/2023-5/1/2023 S 1	3,269	165	\$49	\$249	\$1,688	\$1,986
-	5/1/2023-6/1/2023 S1	-12,390	167	\$49	\$942	\$1,709	\$815
\cdots	6/1/2022-7/1/2022 S 1	-6,435	168	\$49	\$490	\$1,719	\$1,278
0	7/1/2022-8/1/12022 S 1	-5,652	144	\$49	\$430	\$1,551	\$1,169
\cdots	8/1/2022-9/1/2022 S 1	-1,736	175	\$49	\$133	\$1,790	\$1,707
-	9/1/2022-10/1/2022 S1	504	178	\$49	\$39	\$1,821	\$1,909
O	10/1/2022-11/1/2022 S1	5,848	186	\$49	\$445	\$1,903	\$2,397
,	11/1/2022-121/2022 S1	12,941	189	\$49	\$984	\$1,934	\$2,967
Ш	12/1/2022-1/1/2023 S1	18,043	197	\$49	\$1,370	\$2,016	\$3,434
3	Total	- 54,738	-	\$588	\$4,156	\$21,921	\$26,665
之				ngs	-87\%	-14\%	-53\%

Energy Mix

Teach Me How!

System Savings (IRA \& Tax Depreciation)

Investment Tax Credit (ITC) $=30 \%$ of System Value - $\$ 180,350$

- The Inftation Reduction Act (IRA) of 2022 establishes and extends the federal Investment Tax Credit (ITC) for solar photovoltaic (PV) systems at a rate of 30% of the total PV system cost
- Unlike tax deductions, this tax credit can be used to directly offset your tax liability.
- The IRA extended the carryback period to 3 years, and the carryforward period to 22 years, in cases where the tax credit exceeds a customer's tax liability in the 'placed-in-service' year
- For PV projects greater than 1 MW AC in size, the IRA established prevailing wage and apprenticeship requirements in order to qualify for the full 30% "increased rate", rather than a "base rate" which would only qualify for a 6\% ITC. Projects with an output of less than 1 megawatt qualify for the "increased rate" irrespective of if prevailing wage or apprenticeship requirements are met.

Teach Me How!

System Savings (IRA \& Tax Depreciation)

Investment Tax Credit (ITC) $=\mathbf{3 0 \%}$ of System Value - $\$ 180,350$

- The Inftation Reduction Act (IRA) of 2022 establishes and extends the federal Investment Tax Credit (ITC) for solar photovoltaic (PV) systems at a rate of 30% of the total PV system cost
- Unlike tax deductions, this tax credit can be used to directly offset your tax liability.
- The IRA extended the carryback period to 3 years, and the carryforward period to 22 years, in cases where the tax credit exceeds a customer's tax liability in the 'placed-in-service' year.
- For PV projects greater than 1 MW AC in size, the IRA established prevailing wage and apprenticeship requirements in order to qualify for the full 30% "increased rate", rather than a "base rate" which would only qualify for a 6% ITC. Projects with an output of less than 1 megawatt qualify for the "increased rate" irrespective of if prevailing wage or apprenticeship requirements are met.

Federal MACRS, Bonus Depreciation Value

= \$189,066

Under the federal Modified Cost Recovery System (MACRS), businesses may recover investments in solar PV property through depreciation deductions over a 5-year established lifespan.

- For PV systems, the taxable basis of the equipment must be reduced by 50% of any federal tax credits associated with the system.
- Projects placed in service in 2023 qualify for 80% bonus depreciation, which means in the first year of service, companies can elect to depreciate 80% of the basis while the remaining 20% is depreciated under the normal MACRS schedule.

Teach Me How!

System Savings (IRA \& Tax Depreciation)

Investment Tax Credit (ITC) $=\mathbf{3 0 \%}$ of System Value - $\$ 180,350$

- The Inftation Reduction Act (IRA) of 2022 establishes and extends the federal Investment Tax Credit (ITC) for solar photovoltaic (PV) systems at a rate of 30% of the total PV system cost
- Unlike tax deductions, this tax credit can be used to directly offset your tax liability.
- The IRA extended the carryback period to 3 years, and the carryforward period to 22 years, in cases where the tax credit exceeds a customer's tax liability in the 'placed-in-service' year
- For PV projects greater than 1 MW AC in size, the IRA established prevailing wage and apprenticeship requirements in order to qualify for the full 30% "increased rate", rather than a "base rate" which would only qualify for a 6\% ITC. Projects with an output of less than 1 megawatt qualify for the "increased rate" irrespective of if prevailing wage or apprenticeship requirements are met.

Federal MACRS, Bonus Depreciation Value

= \$189,066

Under the federal Modified Cost Recovery System (MACRS), businesses may recover investments in solar PV property through depreciation deductions over a 5-year established lifespan.

- For PV systems, the taxable basis of the equipment must be reduced by 50% of any federal tax credits associated with the system.
- Projects placed in service in 2023 qualify for 80% bonus depreciation, which means in the first year of service, companies can elect to depreciate 80% of the basis while the remaining 20% is depreciated under the normal MACRS schedule.

State (OH) Modified Accelerated Value

$=\$ 30,058$

- Under the Modlfied Cost Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class lives for various types of property over which the property may be depreciated.

Teach Me How!

System Savings (IRA \& Tax Depreciation)

Investment Tax Credit (ITC) $=\mathbf{3 0 \%}$ of System Value - $\$ 180,350$

- The Inftation Reduction Act (IRA) of 2022 establishes and extends the federal Investment Tax Credit (ITC) for solar photovoltaic (PV) systems at a rate of 30% of the total PV system cost
- Unlike tax deductions, this tax credit can be used to directly offset your tax liability.
- The IRA extended the carryback period to 3 years, and the carryforward period to 22 years, in cases where the tax credit exceeds a customer's tax liability in the 'placed-in-service' year.
- For PV projects greater than 1 MW AC in size, the IRA established prevailing wage and apprenticeship requirements in order to qualify for the full 30% "increased rate", rather than a "base rate" which would only qualify for a 6% ITC. Projects with an output of less than 1 megawatt qualify for the "increased rate" irrespective of if prevailing wage or apprenticeship requirements are met.

Federal MACRS, Bonus Depreciation Value

= \$189,066

Under the federal Modified Cost Recovery System (MACRS), businesses may recover investments in solar PV property through depreciation deductions over a 5-year established lifespan.

- For PV systems, the taxable basis of the equipment must be reduced by 50% of any federal tax credits associated with the system.
- Projects placed in service in 2023 qualify for 80% bonus depreciation, which means in the first year of service, companies can elect to depreciate 80% of the basis while the remaining 20% is depreciated under the normal MACRS schedule.

State (OH) Modified Accelerated Value

$=\$ 30,058$

- Under the Modlfied Cost Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class lives for various types of property over which the property may be depreciated.

System Price

Solar PV System Cost and Incentives

Solar PV System Cost	$\$ 601,165$	
Federal Tax Credit	$(\$ 180,350)$	-30%
Federal - MACRS Bonus Depreciation	$(\$ 189,066)$	-31%
State (OH) Depreciation	$(\$ 30,058)$	-5%
Net Solar PV System Cost	$\$ 201,691$	34%

Teach Me How!

Return on Investment \& Payback

Teach Me How!

Return on Investment \& Payback (Graph)

Cumulative Cost

CONTACT

Visit BHDP's website:
www.bhdp.com
Reach out:
Dlessing@bhdp.com Let's connect:
linkedin.com/in/dlessing

\triangle HEAPY

Visit HEAPY's website:
www.heapy.com
Reach out:
RMHoffman@heapy.com
Let's connect:
linkedin.com/in/ryan-hoffman-pe-cem-leed-ap-8681453a

Melink Solar

Visit MELINK's website:
www.melinksolar.com
Reach out:
sparker@melinksolar.com
Let's connect:
linkedin.com/in/seth-parker-
686a6687

