

ameresco.com

Al Powered Humidity Control: Chicago Art Institute

Lucas Dixon & Jarret Kelly, Ameresco

October 3rd, 2024

© 2023 Ameresco, Inc. All rights reserved.

Agenda

- Introduction of Concepts
- Art Museum Project
 - Electrical Submetering
 - Machine Learning & Predictive Analytics
- Questions and Ideation Discussion

Chat GPT and other Gen AI was used in the making of this presentation.

• Energy savings opportunities are everywhere.

- Existing Building Automation systems are limited in capability.
 - Building automation systems are rule based systems. They follow the same rules every day until someone changes something.
 - Building automation systems do not predict, do not learn, and do not deal well with multiple variables driving a decision.

- Evaluate the buildings, projects, and operations in your "sphere of influence" differently.
- Keep an open ear, eye, and mind for opportunities to use AI tools NOW.
- Understand the concepts and tools available a bit more.

Define Terms

• AI : Artificial Intelligence

 Artificial intelligence (AI) is a set of technologies that enable computers to perform a variety of advanced functions, including the ability to see, understand and translate spoken and written language, analyze data, make recommendations, and more.

• Generative AI= (Chat GPT)

- Generative artificial intelligence (AI) is a type of AI that can create new content, such as text, images, videos, and audio, based on patterns and structure learned from training dataA Model-
- ML: Machine Learning
 - Machine learning is a field of study within artificial intelligence (AI) that focuses on developing algorithms that can learn from data and perform tasks without explicit instructions.
- BAS- Building automation system/Control System

Training a Model

• Training is the process of feeding a machine learning algorithm a large amount of data and allowing it to learn the relationships and patterns in the data. The goal is to create a model, which is a mathematical function that can take in new inputs and make predictions or classifications based on the learned patterns.

• Discharge Air Set Point

• The temperature that the BAS system is controlling the air handler to.

Define Terms

- Machine Learning (ML) and Artificial Intelligence (AI) are closely related but distinct fields. Here's how they differ:
- In short, machine learning is a subset of AI, and it represents a key approach to achieving intelligent system.
- 1. Artificial Intelligence (AI)
- **Definition**: Al is the broader concept of machines being able to carry out tasks in a way that we would consider "smart." It encompasses any technique or technology that enables computers to mimic or simulate human intelligence, such as reasoning, problem-solving, learning, and adapting.
- Scope: Al includes various subfields, including machine learning, natural language processing, robotics, expert systems, and computer vision.
- Examples:
 - Al-powered personal assistants like Siri or Alexa
 - Chess-playing computers like Deep Blue
 - Autonomous systems like self-driving cars
- 2. Machine Learning (ML)
- **Definition**: Machine Learning is a subset of AI that focuses specifically on enabling machines to learn from data. In ML, algorithms and statistical models allow computers to improve their performance on a task without being explicitly programmed to do so. Instead, they identify patterns in data and make predictions or decisions based on that data.
- Scope: ML is a key technique used in AI to enable systems to "learn" from data. However, it does not encompass all of AI. Other AI techniques, such as rule-based systems or hard-coded logic, do not involve machine learning.
- Examples:
 - Spam email filtering
 - Image recognition in photo apps (e.g., tagging people)
 - Recommender systems (e.g., Netflix or Amazon suggestions)
- Key Differences:
- 1. Al is the broader field, and ML is one approach used within Al to achieve intelligent behavior.
- 2. Al is about enabling machines to act intelligently, while ML focuses on allowing machines to learn from data to improve their performance over time.
- 3. Al can use different methods, not all of which involve learning (e.g., rule-based systems, symbolic AI), whereas ML relies entirely on data-driven learning processes.

Predicting the Future

• Al will

- Gen AI will turn HVAC SOO into BAS Code.
- ML AI will review building operations, make suggestions, and eventually make changes automatically.
- Implementation will be come incrementally, and maybe all at once.

Al will be embedded in

- Building automation systems generally.
- Third party analytics or software layers.
- Major HVAC equipment.
- A whole new set of tools that we have/have not imagined yet.

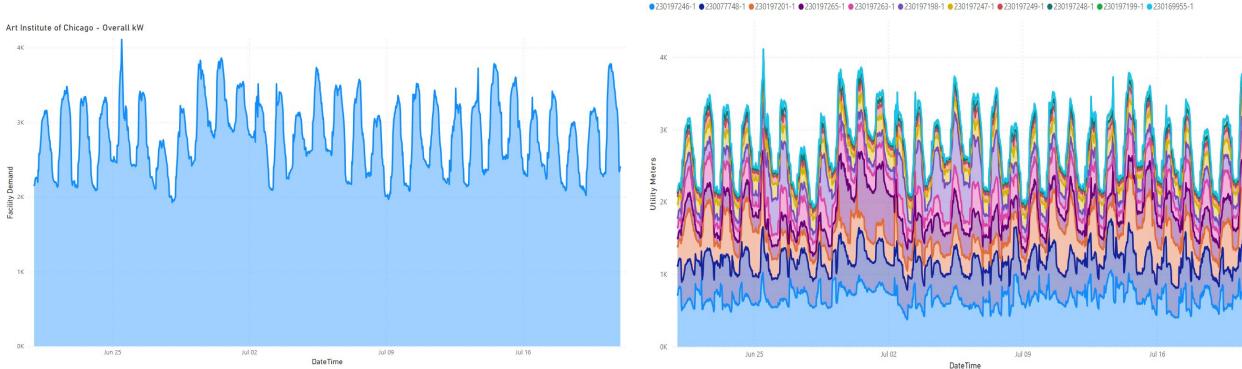
OFF the shelf AI tools exist NOW for CUSTOM implementation to save energy today.

Energy Meter Analysis

Electrical Submeter Installation

Submeter Installation

- Installed submeters at 6 locations in main electrical rooms
- Each submeter has 48 CT inputs, 16 three phase circuits, expandable.
- Metered main service, motor control centers, chillers, key panels, 49 connected loads.
- Installation required overnight shutdowns in stages
- Data flow configured to cloud based analytics engine

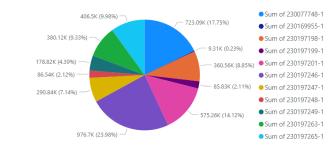


Campus Electrical Metering Project

Overall Metering

• Sixteen meters located on the campus, 10 with routine usage

Campus Energy Consumption - All Utility Meters


Energy Meter Analysis

Overall Metering

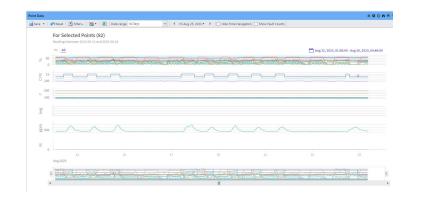
- Analysis of utility data indicated largest summer and winter meter loads
- Identified ideal electrical services for further submetering
- Captured largest loads in the building

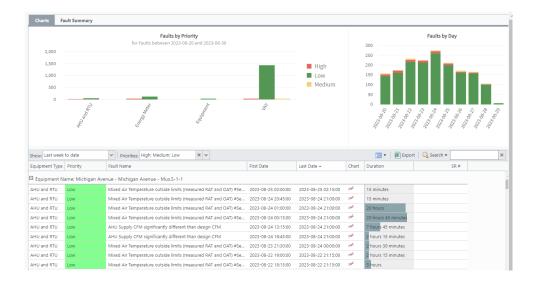
		Meter	Jul 2021				Daytime	Nighttime	Load
	Meter	Room	kWh	Max kW	Min kW	Average kW	Average	Average	Percentage
	230197246	MW055	600282	1128.6	150.6	781.6	806.6	731.6	25.3%
	230197201	MW051	444540	856.6	257.1	578.8	591.1	554.3	18,7%
	230077748	FEB44B	383411	687.0	393.8	499.2	540.6	416.6	16.1%
	230197265	MW055	207177	994.2	134.6	269.8	289.0	231.2	8.7%
	230197263	RU018	182081	366.6	139.8	237.1	269.4	172.4	7.7%
	230197198	MW051	169600	706.3	119.8	220.8	233.1	196.2	7.1%
Summer	230197247	MW055	154274	231.6	167.6	200.9	207.2	188.3	6.5%
	230197249	MW055	135993	261.0	98.0	177.1	194.5	142.3	5.7%
	230197248	MA034	48976	105.6	32.3	63.8	73.0	45.4	2.1%
	230197199	MW051	44369	94.6	21.0	57.8	72.6	28.1	1.9%
	230169955		4908	7.7	6.0	6.4	6.3	6.6	0.2%
-	230164208		21	0.7	0.0	0.0	0.0	0.0	0.0%
	230197279		8	16.0	0.0	0.0	0.0	0.0	0.0%
	230169956		4	0.0	0.0	0.0	0.0	0.0	0.0%
	230044673		0	0.0	0.0	0.0	0.0	0.0	0.0%
	230169954		0	0.0	0.0	0.0	0.0	0.0	0.0%

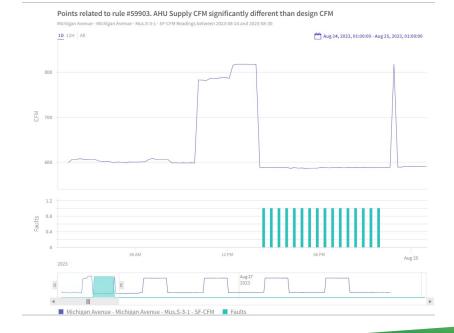
Utility Meter Loads - July 2023

		Meter Room	Dec 2021 kWh	Max kW	Min kW	Average kW	Daytime Average	Nighttime Average	Load Percentage
	230077748	FEB44B	476976	746.6	461.8	567.8	605.5	492.4	20.1%
	230197198	MW051	295279	763.7	120.1	351.5	322.1	410.5	12.4%
	230197201	MW051	273171	832.8	238.8	325.2	310.7	354.3	11.5%
	230197263	RU018	262241	502.8	154.2	312.2	342.2	252.2	11.0%
	230197246	MW055	191545	697.2	4.4	228.0	273.7	136.7	8.1%
	230197247	MW055	162412	239.6	156.6	193.3	198.0	184.0	6.8%
Winter	230197249	MW055	120456	480.6	82.4	143.4	152.2	125.9	5.1%
	230197265	MW055	73921	266.4	33.6	88.0	89.3	85.3	3.1%
	230197199	MW051	68768	127.4	36.4	81.9	98.1	49.5	2.9%
	230197248	MA034	64491	123.7	42.8	76.8	81.4	67.6	2.7%
	230169955		14942	19.9	17.0	17.8	17.7	17.9	0.6%
	230164208		23	0.0	0.0	0.0	0.0	0.0	0.0%
	230169956		10	10.5	0.0	0.0	0.0	0.0	0.0%
	230197279		7	14.6	0.0	0.0	0.0	0.0	0.0%
	230044673		0	0.0	0.0	0.0	0.0	0.0	0.0%
	230169954		0	0.0	0.0	0.0	0.0	0.0	0.0%

Building Automation System Analysis

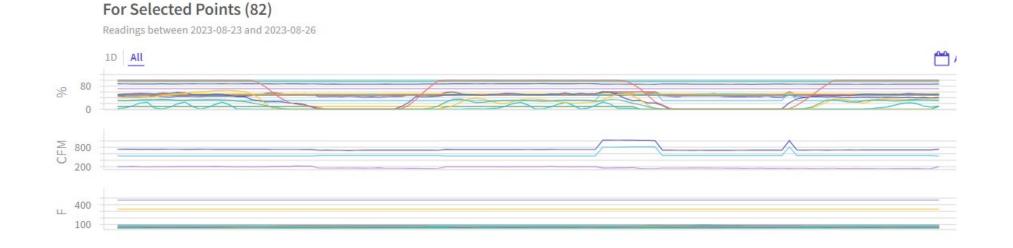


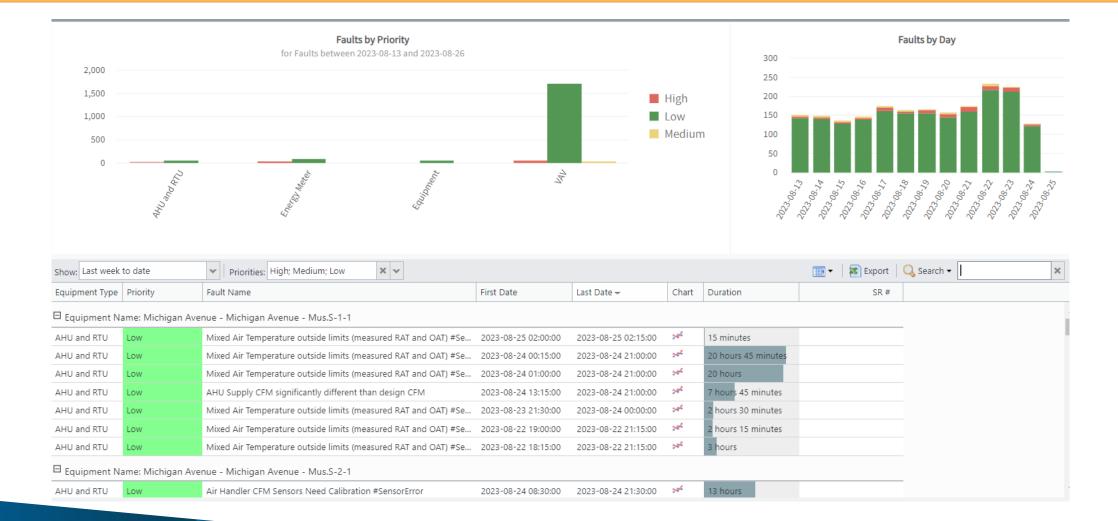

Building Automation System Analysis


- Integration with campus Building Automation System
- Providing cloud-based data analytics

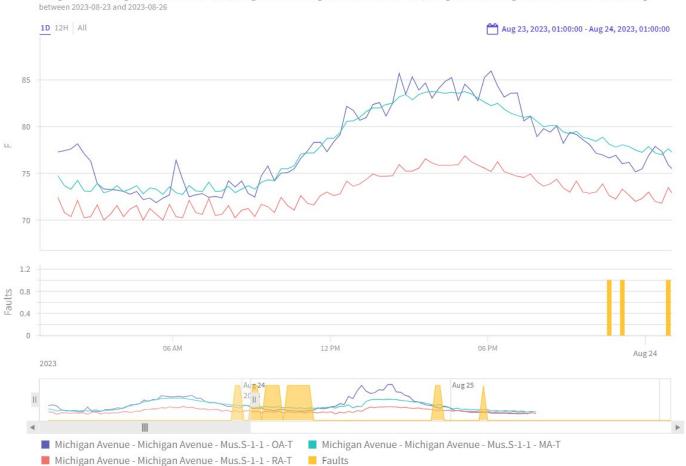
AMERESCO 🧭

- Rules and configured to monitor data and provide alerts
- Proactive identification of energy waste or equipment fault




Building Automation System Monitoring

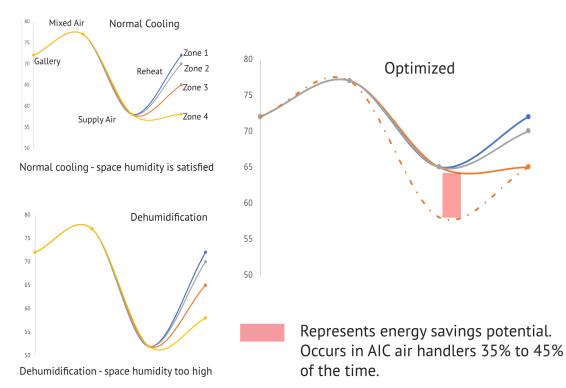
- Data collected from Bacnet network and pushed to cloud-based monitoring platform
- Data brought into common format
- Points are tagged with common naming convention
- Rule template library, can push rules to all matching equipment
- Different priority levels established



BAS Monitoring – Rules

BAS Monitoring – Rules

Points related to rule #59927. Mixed Air Temperature outside limits (measured RAT and OAT) #SensorError Michigan Avenue - Michigan Avenue - Mus.S-1-1 - OA-T, Michigan Avenue - Michigan Avenue - Mus.S-1-1 - MA-T, Michigan Avenue - Mus.S-1-1 - RA-T Readings


Machine Learning & Predictive Analysis

Machine Learning and Predictive Analytics

Concept Overview

- Goal To reduce the amount of energy used to control temperature and humidity in art gallery spaces.
 - \circ Criteria
 - ✓ Spaces to be maintained at 72+/-4°F and 50% +/-5% RH at all times
 - ✓Approach must be fast acting and adaptable
 - Must not interfere with the existing building automation system
 - Easy to turn off if temperature and humidity are not properly controlled
 - ✓ Improve space conditions
 - ✓ Save energy

Concept Overview

- Can we build **a third-party machine** learning model that will learn from the art institutes air handler and space temperature performance to reduce energy required to cool the space and control the humidity level?
- Can we do this using the existing JCI BAS system while giving the buildings technicians total control when and when not to use the tool?

Build a Model: Using a third-party tool from Microsoft Azure toolset. This is the "Model." that sets DAT.

Send to JCI BAS: Send the discharge air temp setpoint to the existing JCI system.

Complete Data Loop: Send the building performance data back to the model for comparison and evolution.

What does raising the discharge air temperature do?

- Lowers demand on chiller plant= Energy Savings
- Increases the % use of Outdoor Air and/or Return Air= Energy Savings
- Reduces Reheat Needs= Energy Savings

Model Requirements

- Provide optimized discharge air setpoint value, between 52°F and 70°F, based on conditions
- Meet space temperature and humidity setpoints first, save energy second

Limitations of Traditional Control Methodologies

- Traditional controls techniques are reactive
- Rules based logic challenging with multiple criteria
- Experienced operators know ideal patterns of control, but programming has limitations

Machine Learning Approach

- ML models ingests a whole data set and determines what will happen based on historical data.
- Recreates human experience for different operating conditions.
- Given current condition data from critical points, what will happen next?
- Predict if zone will stay within satisfactory range if next setpoint is used, limits to changing DAT
- Can use logic after ML model to apply limitations or reductions to changes.
- Over time, can feed new data back into model to enhance model performance.

ML Model Creation Steps

Project Steps

- Establish data flow from BAS system to analytics platform
- Identify hardware or sensor issues that affect operations
- Create point mapping for naming consistency
- Create ticketing data flow from door scans as occupancy indicator
- Build individual ML models for each air handler, custom, but with reusable template process

Model Creation Process

- Provide training data set, identify critical variables
- Develop machine learning model(s), select best characteristics
- Test with new data, known results
- Refine model
- Implement


Machine Learning – BAS Integration

Create sequence in BAS to utilize optimized setpoint, utilizing limits to ensure space conditions maintained

- Model must meet temperature setpoint, +- 5°F
- Model must maintain humidity setpoint, +-3%
- If limits are exceeded, automatically reverts back to standard setpoint, usually 58F.

Discharge Setpoint Control				
Control Enable	Yes			
Calculated Setpoint	64.9 deg F			
Zone Temp Disabled	No			
Zone Hum Disabled	No			
Zone Tem p + - DeadBand	5.0 deg F			
Zone Hum + - DeadBand	3.0 %RH			
Disable Reset	N/A			

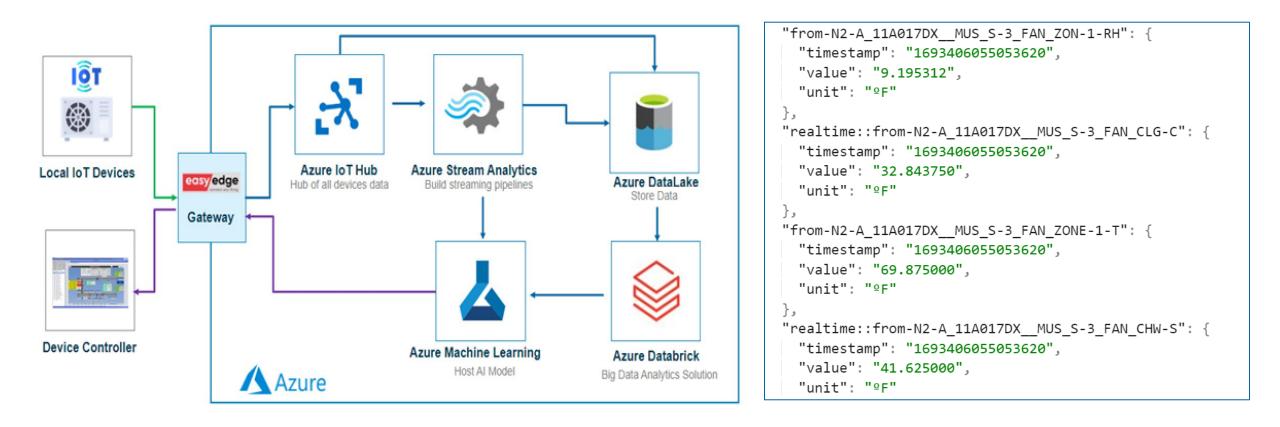
AMERESCO 🧭

Machine Learning Tech Stack

Existing (OLD) Building Automation System

- This project is implemented by/on an existing JCI N2 and Pneumatic building automation system.
- Extensive building automation upgrades were NOT required to complete this project.

Consumer Available AI/ML Toolset


- Built with readily available tools.
- Built on the Microsoft Azure ML platform.
- Requires a data connection out and back with the site.

Project Financials

- Upfront: \$500k to implement software, modify existing BAS, build and test programming. Monitor and improve over the first year+.
- Ongoing: Approx.. \$1,000 in monthly compute costs, and dropping.
- ROI: Approx.. \$220-230k in annual savings. Just over a 2-year simple payback.

Machine Learning – Data Flow

So, What Happened?

Deployed on small set of AHUs to Run as a test.

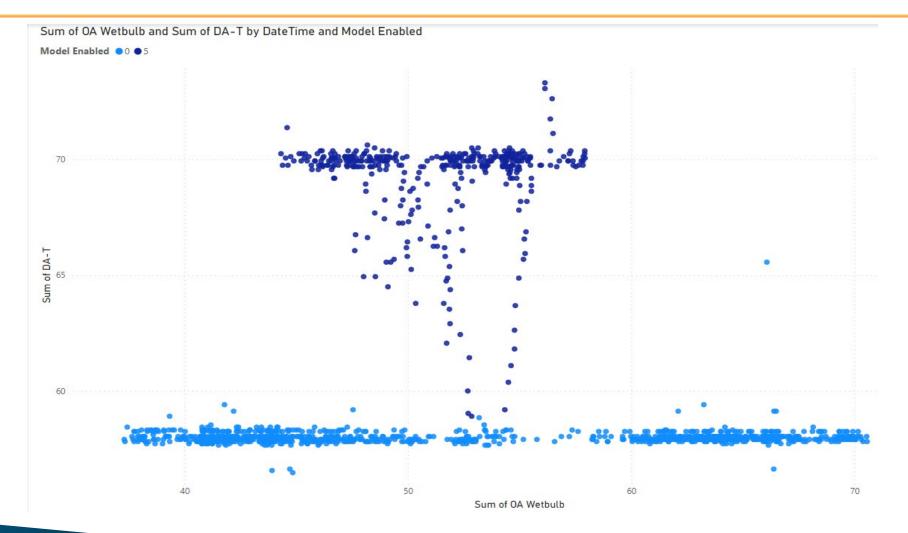
- Used first year of data to input into the model to improve.
- Tweaked the weight of the model's data to:
 - Reduce trips.
 - Increase amount of time the model could run.
 - Improve performance.

Results

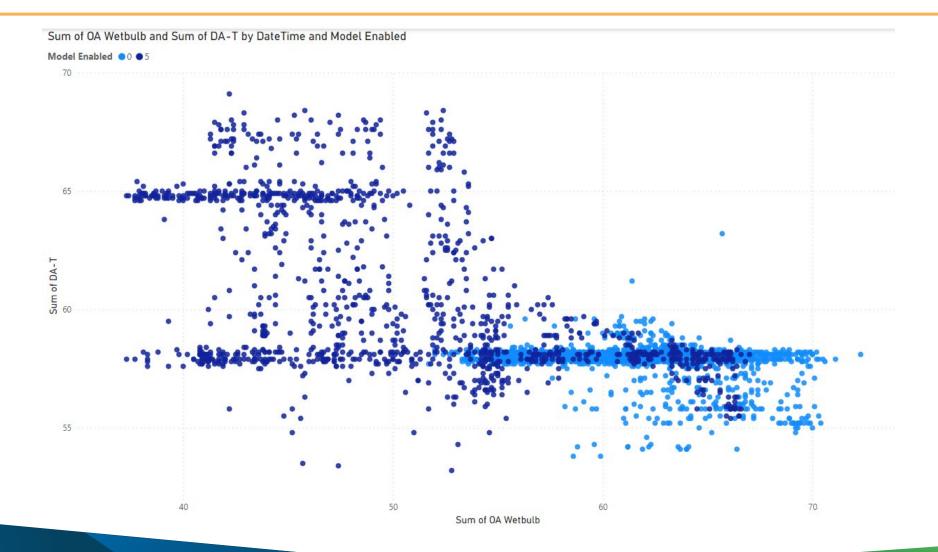
- Energy was/is being saved.
- Deployed to rest of eligible Air Handlers.
- Space Temperature and Humidity control IMPROVED.
- As Discharge air temp setpoint went up, reheat need went down.



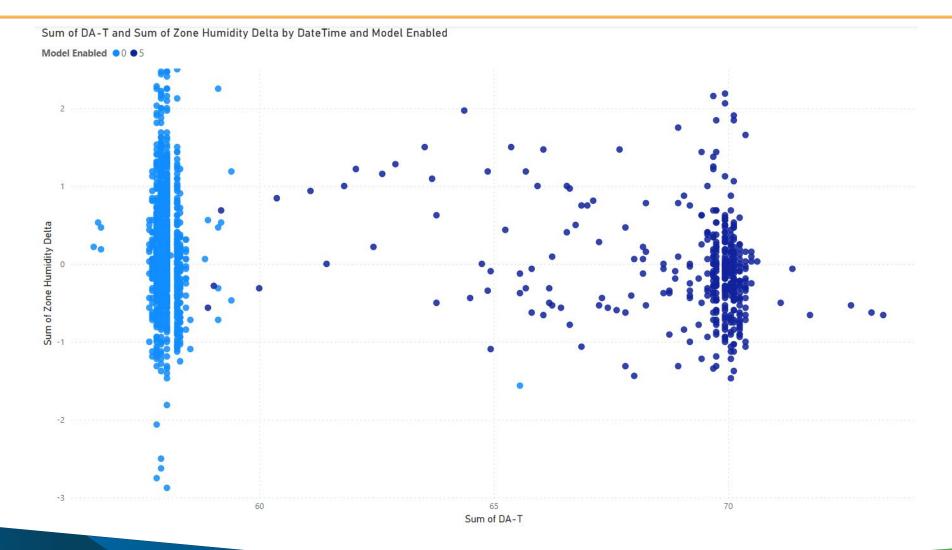
Results – Museum S1



Results – Museum S2



Results – Museum S1 – OA Wetbulb vs DA-T



Results – Museum S2 – OA Wetbulb vs DA-T

Results – Museum S1 – DAT vs Humidity Delta

Results – Museum S2 – DAT vs Humidity Delta

Conclusions

Significant technology advances make advanced data analytics possible

Processing vast quantities of data can be completed quickly

Real time analytics of metering data & building automation system data can identify issues & locate opportunities to improve building performance & save energy

Bidirectional data flow can be utilized to create more advanced optimization tools for facilities

Other Applications Ideas

- What other opportunities exist to utilize ML/AI Today?
 - Large buildings with large HVAC equipment (central plants).
 - Buildings with high tolerances.
 - Buildings with dynamic loads.
 - Occupancy changes.
 - Intensity of demand on the space.
 - Owners/Manager desiring to have buildings perform better.

Thanks for wanting to learn more about AI in Buildings!

Discussions/Questions

Appendix

Long Term Maintenance

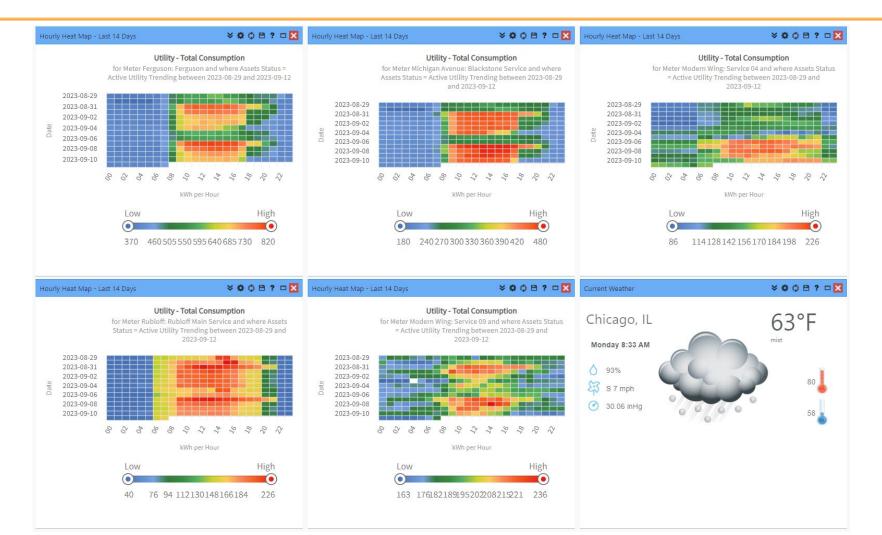
- Models are trained with historic data, but periodic retraining will be necessary
- Changes in the building will affect model prediction quality
- Provide critical parameters to operations team, impact of sensor replacement/calibration
- Be mindful of cloud computation costs when designing system, monitor and optimize

Panel Level Monitoring

AMERESCO 🧭

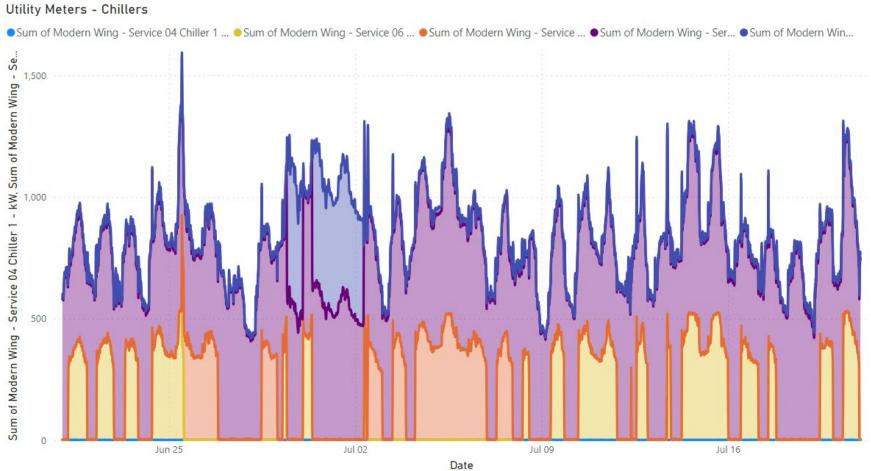
- Collecting kW, kWh, Volts, Amps, Power Factor
- Data collected for a period to identify baseline
- Create rules to identify anomalies on major equipment, panels
- Flexible rules, day/night, weather dependent

Rule Details	Rule Faults							
Show: Past 3 Mo	nths	✔ Priorities: High; Medium; Low ¥ ✔				III - 🗃	Export 🛛 🔍 Search 🕶	×
Equipment Type	Priority	Fault Name	First Date	Last Date 👻	Chart	Duration	SR #	
Equipment N	ame: Modern Win	g - Service 07 Main						
Energy Meter	Low	Max Demand of Day Over Preset Limit #EnergyWaste	2023-08-24 11:45:00	2023-08-24 12:30:00	54 ⁴	45 minutes		
Energy Meter	Low	Max Demand of Day Over Preset Limit #EnergyWaste	2023-08-23 10:15:00	2023-08-23 23:30:00	54 ⁴	13 hours 15 minutes		
Rule Details	Rule Faults							
Show: Past 3 Mor	ths	✔ Priorities: High; Medium; Low ¥ ✔				🎹 🕶 🛛 📧 Exp	oort 🛛 🔍 Search 👻	×
Equipment Type	Priority	Fault Name	First Date	Last Date 👻	Chart	Duration	SR #	
Equipment Name: Modern Wing - Service 04 Main								
Energy Meter	High	Three Phase Meter Voltage Too Low or Too High	2023-08-24 00:00:00	2023-08-24 16:15:00	×4	16 hours 15 minutes	SR000013	
Energy Meter	High	Three Phase Meter Voltage Too Low or Too High	2023-08-23 00:15:00	2023-08-24 00:00:00	×4	23 hours 45 minutes	SR000013	
Energy Meter	High	Three Phase Meter Voltage Too Low or Too High	2023-08-23 00:00:00	2023-08-24 00:00:00	*	24 hours	SR000013	
Energy Meter	High	Three Phase Meter Voltage Too Low or Too High	2023-08-22 00:00:00	2023-08-23 00:00:00	**	24 hours	SR000013	


Er	nergy Meter (49)
	Service 04 BDP 1
÷ 🏢	Service 04 Chiller 1
÷ 🏢	Service 04 Chiller 3
÷ 🏢	Service 04 Main
÷ 🏢	Service 04 SE 3
Ė 🏢	Service 06 Chiller 2
Ė 🏢	Service 06 Main
÷ 🏢	Service 06 MCC 2
÷ 🏢	Service 06 SWMDP 1
÷ 🏢	Service 06 SWMDP 2
÷ 🏢	Service 07 Chiller 4
÷ 🏢	Service 07 Main
÷ 🏢	Service 07 MCC 4
🖻 🏢	Service 07 MCC 5
🖻 🏢	Service 08 Chiller 5
🖻 🏢	Service 08 Main
🖻 🏢	Service 08 MCC 3
🖻 🏢	Service 08 MCC 6
🖻 🏢	Service 09 Main
🖻 🏢	Service 09 Panel 2LPW 2
🖻 🏢	Service 09 Panel MSA 1
÷ 🏢	Service 09 Panel MSA 2
÷ 🏢	Service 09 Panel MSA 4
÷ 🏢	Service 09 Panel MSA 5
ė 🏢	Service 09 RM 334

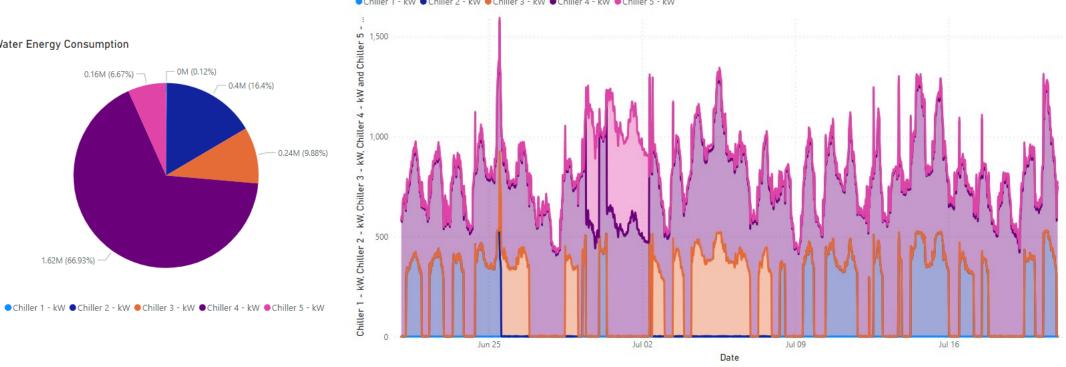
🗄 🏾 Service 10 2HW1 Snow Melt Bervice 10 Main Equipment Rules (2) Equipment Points (9) ->* kWh ->* Phase A Current ->- Phase A Voltage ->- Phase B Current ->** Phase B Voltage Mase C Current 🕀 🎟 Service 10 MSB 1 Bervice 10 MSB 2 Bervice 10 MSB 3 Bervice 10 MSB 4 Bervice 10 MSB 5 🗄 🏢 Service 10 Panel GHF 🕮 🎟 Service Ferguson Admin Main 🕸 🏢 Service Ferguson Basement 🗄 🏢 Service Ferguson BHDDP1A B Service Ferguson BHDDP1B 🗄 🎟 Service Ferguson Blackstone 🕸 🏢 Service Ferguson BLDP1 🕸 🏢 Service Ferguson Main 🗄 🎟 Service Rubloff DP2 🗄 🏢 Service Rubloff DP4 🗄 🏢 Service Rubloff EE9 👜 🎟 Service Rubloff Main B Service Rubloff MSP2 🕸 🏢 Service Rubloff MSP5 🗄 🎟 Service Rubloff S3

- E Service Rubloff SR3
- Bervice Rubloff SR4


41

Panel Level Monitoring Dashboard

Campus Metering - Chillers



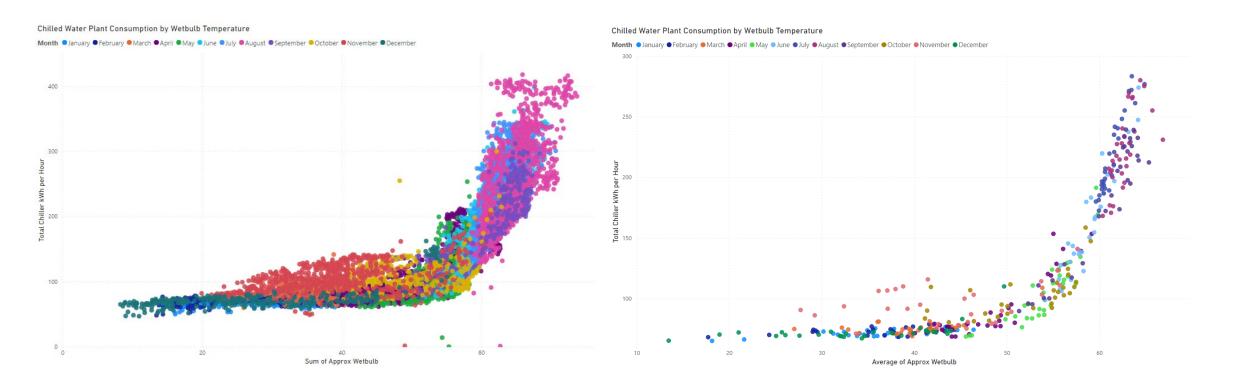
Chiller Plant Energy Consumption

- 0.4M (16.4%)

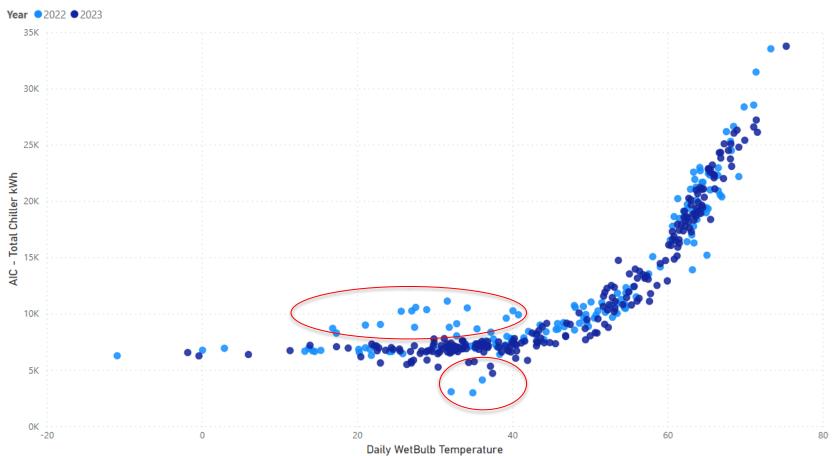
- 0M (0.12%)

0.16M (6.67%) -

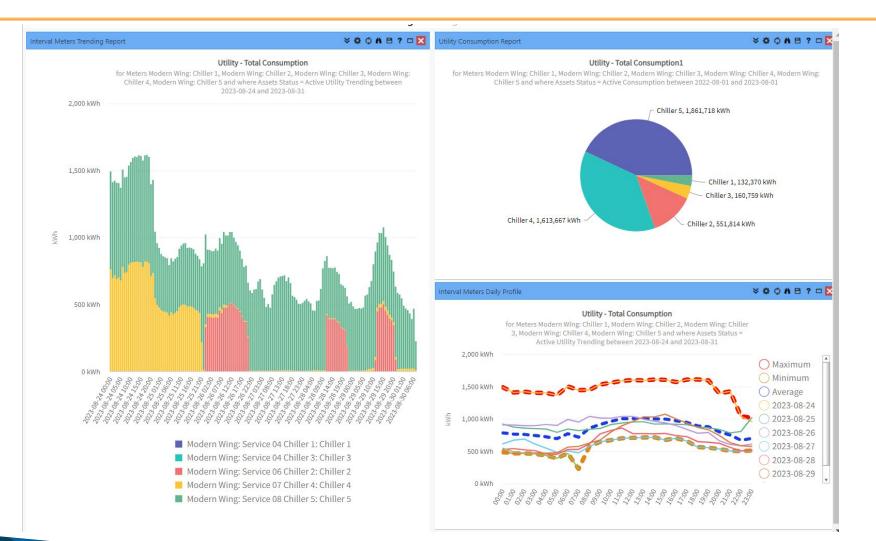
Submeters - Chillers

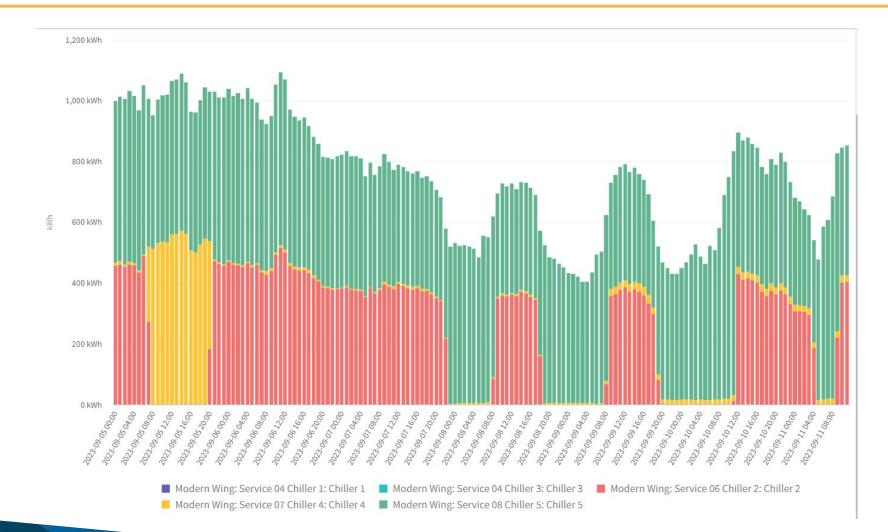

● Chiller 1 - kW ● Chiller 2 - kW ● Chiller 3 - kW ● Chiller 4 - kW ● Chiller 5 - kW

1.62M (66.93%) ----


Chilled Water Energy Consumption

Chiller Plant Energy Consumption


Chiller Plant Energy Consumption



Chiller Energy Dashboard

Chiller Energy Tracking

