Informed Building Design through Energy Modeling

PEDCO High Performance Buildings Seminar October 1, 2015

Introduction

Jason M. Park, P.E.

Senior Mechanical Engineer High Performance Building Discipline Leader

Contact Information: jpark@pedcoea.com (513)-782-4920 www.pedcoea.com

Learning Objectives

- How to use energy modeling to help define and refine a project's energy goals.
- Understand the different types and uses of building energy models.
- Understand how energy modeling can optimize a building's design.

Introduction

- Who's in the room?
 - Architects
 - Owners/Facility Managers
 - Construction/Project Managers
 - Engineers
 - Energy Modelers

Energy Modeling?

					Alt 1	Alt 1	Alt 1	Alt 1	Alt 1	Alt 1	Alt 1	Alt 1	Alt 1	Alt 1	Alt 1
												QCond	QCond		
				OA Dry		Fin Tube				QCond	QCond To	Reject to	Reject to		
				Bulb	Reheat	Aux Htg	Main Clg Airflow	ClgPlant Ld	ArSd Econ	Heat Avail	Htg Coils	Twr	Twr	Boiler	Boiler
Month	Day Type	Day	Hour	deg F	Mbh	Mbh	cfm	tons	on/off	Mbh	Mbh	tons	Mbh	kW	Mbh
Mar	Wkdy	15	9	64	-91.40	-285.13	259,150.47	497.78	Econ Off	1,863.96	285.12	535.76	6,429.12	0.00	0.00
Mar	Wkdy	15	10	65	-36.54	-237.61	309,227.62	637.17	Econ Off	2,369.88	237.60	701.26	8,415.12	0.00	0.00
Mar	Wkdy	15	11	64	-13.63	-285.13	327,788.41	683.43	Econ Off	1,476.12	285.12	737.27	8,847.24	0.00	0.00
Mar	Wkdy	15	12	63	-6.97	-332.65	330,266.31	691.91	Econ Off	1,494.12	332.64	744.05	8,928.60	0.00	0.00
Mar	Wkdy	15	13	64	-28.10	-285.13	331,157.59	703.06	Econ Off	1,517.88	285.12	763.21	9,158.52	0.00	0.00
Mar	Wkdy	15	14	64	-30.76	-285.13	332,096.69	706.01	Econ Off	1,524.24	285.12	766.52	9,198.24	0.00	0.00
Mar	Wkdy	15	15	64	-30.77	-285.13	332,442.09	712.81	Econ Off	1,538.64	285.12	775.57	9,306.84	0.00	0.00
Mar	Wkdy	15	16	63	-34.28	-332.65	332,345.47	709.38	Econ Off	1,531.32	332.64	766.32	9,195.84	0.00	0.00
Mar	Wkdy	15	17	63	-35.28	-332.65	332,862.75	710.46	Econ Off	1,533.60	332.64	767.54	9,210.48	0.00	0.00
Mar	Wkdy	15	18	62	-49.23	-380.17	282,244.16	580.52	Econ Off	2,165.52	380.16	626.42	7,517.04	0.00	0.00
Mar	Wkdy	15	19	61	-67.08	-427.69	213,349.78	426.53	Econ Off	1,601.64	427.68	446.61	5,359.32	0.00	0.00
Mar	Wkdy	15	20	62	-100.31	-380.17	214,260.00	419.93	Econ Off	1,577.28	380.16	443.86	5,326.32	0.00	0.00
Mar	Wkdy	15	21	55	0.00	-475.21	71,561.79	144.06	Econ On	2,075.28	475.20	133.34	1,600.08	0.00	0.00
Mar	Wkdy	15	22	53	0.00	-570.26	71,507.55	143.91	Econ On	2,073.12	570.24	125.24	1,502.88	0.00	0.00
Mar	Wkdy	15	23	49	0.00	-760.34	71,492.95	143.85	Econ On	2,072.28	760.32	109.33	1,311.96	0.00	0.00
Mar	Wkdy	15	24	48	0.00	-807.86	71,485.42	143.80	Econ On	2,071.56	807.84	105.30	1,263.60	0.00	0.00
Mar	Wkdy	16	1	47	0.00	-855.38	71,375.66	142.47	Econ On	2,052.84	855.36	99.79	1,197.48	0.00	0.00
Mar	Wkdy	16	2	47	0.00	-855.38	71,373.46	142.44	Econ On	2,052.48	855.36	99.76	1,197.12	0.00	0.00
Mar	Wkdy	16	3	47	0.00	-855.38	71,372.21	142.43	Econ On	2,052.24	855.36	99.74	1,196.88	0.00	0.00
Mar	Wkdy	16	4	44	0.00	-997.95	71,371.80	142.42	Econ On	2,052.24	997.92	87.86	1,054.32	0.00	0.00
Mar	Wkdy	16	5	43	0.00	-1,045.47	71,371.97	142.42	Econ On	2,052.24	1,045.44	83.90	1,006.80	0.00	0.00
Mar	Wkdy	16	6	42	-202.06	-1,330.60	220,153.97	142.57	Econ On	2,054.28	1,330.56	60.30	723.60	0.00	0.00
Mar	Wkdy	16	7	41	-187.33	-1,378.12	220,256.33	142.88	Econ On	2,058.72	1,378.08	56.71	680.52	0.00	0.00
Mar	Wkdy	16	8	41	-241.79	-1,378.12	229,884.81	149.49	Econ On	2,151.24	1,378.08	64.43	773.16	0.00	0.00

Energy Modeling

- Let us dispel some myths.
 - Energy modeling does not have to be an overly complex and expensive endeavor for a project.
 - There is no "one size fits all" energy modeling type for a project.
- Energy modeling tools and resources are advancing rapidly.
 - New tools and resources are constantly being developed.

Energy Modeling

- Design phase energy models are excellent tools for indicating relative changes in energy use between design options.
- What they do not Predict
 - Design phase energy models do not predict absolute energy use during occupancy.
 - Design phase energy models do not have the ability to accurately predict fluctuations in occupant behavior and weather.
 - Atypical weather and changes to scheduled usage are often the two largest drivers to a building's performance.

Energy is a Design Problem

- "Energy is a design topic, not a technology topic." —Donald Watson, FAIA
- There is no new technology in HVAC or lighting systems that can make up for a bad design.
- Architectural Design and Energy Design are iterative processes.

Rounds and rounds of analysis.

• The Integrated Design Process is key.

Energy is a Design Problem

- Energy modeling and a focus on energy performance is not meant to replace the importance of design.
- Occupant comfort and productivity are the most important factors in the design of a building.

^{*}Based on two field studies – one in schools and one in retail. H.M.G. 1999

Energy is a Design Problem

- Using energy modeling rather than prescriptive code requirements can enhance a project's design.
- Energy modeling can provide flexibility to the design.

Energy Modeling

- There are many early design decisions that the design team makes about a building's design that has an impact on energy performance.
 - Location
 - Orientation
 - Size & Shape (Massing)
 - Envelope Type
- Energy modeling can provide <u>information</u> to the team to help them make these important decisions.

Project Energy Goals

- Information from the energy model can help:
 - Define and refine a project's energy goals.
 - Define and refine the energy goals for the different systems.
 - HVAC
 - Lighting
 - Plug Loads
 - Service Water Heating

Project Energy Goals

- Certification
 - LEED Platinum
 - Energy Star Cert
 - ASHRAE Building Energy Quotient
 - Green Globes
- Comparative
 - 50% better than ASHRAE 90.1
 - 40% energy reduction from current usage
 - Architecture 2030 Challenge

- End-Use Specific
 - Reduce energy usage by 50%
 better than ASHRAE 90.1 with a
 life-cycle cost payback of 10
 years or less

Project Energy Goals

• Starting Point

- Baseline Energy Model
 - The **WORST** building that can be designed from an energy perspective.
- Energy Star Target Finder
 - Target Finder is EPA's online calculator that helps project teams assess the energy performance data of commercial building designs and existing buildings.
- Compares it to similar buildings in a database
 - About 15 building types.
- The data is from Commercial Building Energy Use Survey (CBECS) 2003

EUI - Energy Use Intensity

- Energy Use Intensity (EUI) is a measurement of a building's annual energy consumption relative to the building's gross square footage.
- Reported in kBTU/SF/YR
- Site EUI vs. Source EUI

EUI = Energy Use Intensity

[MEASURED/METERED Energy-based on utility bills, and building operation and use]

Image Source:AIA

Project Energy Goal Example

- Project Energy Goals: Options to Review
 - Energy Star Certification Score 75 or greater.
 - Architecture 2030 Challenge 70% Better than the Median Building Type Site EUI.
 - LEED Certification Discussion.

Project Energy Goal Example

- Office Building
 - Gross Area 54,000 sq ft
 - Occupancy 268 people
 - 1 computer per person + 4 servers 272 computers
 - Building is 100% heated and cooled
 - Cincinnati, Ohio

Energy Star Target Finder

About Your Design Name: Country:	Project	Pro In ord select correc	perty Use Details er to provide you with metrics about your desig ied, we are assuming this is how the floor area thy classify the square footage of your design	m, we need to know how the spac of this property will be used. If yo property.	e in this property v ur property has mu Office	will be used. Based on the primary function you ultiple uses you can add them below in order to
Street Address:						
City/Municipality:		Esti	mated Design Energy (Optiona have an estimate of how much energy your de	al) esign property will use annually, er	nter it below to rec	eive a score (if available) and energy metrics for
State/Province:	Select ▼	your o provid	lesign. You can then use these metrics to com le estimates for total annual energy from each don't have (or don't want to) enter energy estin	ipare to your target and/or property energy type. nates.	y's performance (in	the future). To get the most accurate metrics,
Postal Code:			Energy Type	Units	Estimated To Annual Energ	tal Energy Rate
Reporting Units:	Conventional EPA Units (e.g., kBtu/ft²) Metric Units (e.g., GJ/m²)		Electric - Grid	kBtu (thousand Btu) 🔻		Estimated Total Annual Energy Use A property design does not have any actual energy data, therefore, you need to estimate the property's
Year Planned for Construction Completion:			lete Selected Entries Id Another Entry			energy use for metric calculations.
Primary Function for your Design Project:	* Select a primary function					
Gross Floor Area: How many physical buildings	Sq. Ft. ▼	Tary You c consu	get an choose either a Target ENERGY STAR Sc ming annually to reach your target. If you have farget ENERGY STAR Score (1-100)	ore or a Target % Better than Med e estimated your property's annual STAR Scores are not available for every	lian to see how mu consumption, you type of property beca	ich energy your property would need to be i can compare this against your target. use of availability of reliable reference information.
will be part of your property?	None: My property is part of a building One: My property is a single building More than One: My property includes multiple buildings (<u>Campus Guidance</u>) How many?		Farget % Better than Median 🛛 👔 This is call the same t	culated based on the median property. F ype.	ior example, you might	like your property to be 20% better than a typical property of

Source: Energy Star Portfolio Manager

Energy Star Target Finder

Metrics Comparison for Your Design and/or Target										
Metric	Design Target*	Median Property*								
ENERGY STAR score (1-100)	75	50								
Source EUI (kBtu/ft²)	200.8	271.4								
Site EUI (kBtu/ft²)	90.7	122.7								
Source Energy Use (kBtu)	10,840,671.40	14,656,920.00								
Site Energy Use (kBtu)	4,898,821.00	6,623,356.00								
Energy Cost (\$)	91,351.96	123,510.64								
Total GHG Emissions (Metric Tons CO2e)	663.1	896.5								

* To perform calculations for your design target, we use the fuel mix that you've entered for your design energy estimates. If you have not entered estimated design energy, we'll use the average for your state. To perform calculations for the national median, we will assume the fuel mix and operational details of your property measurement in use, if available. Otherwise, we will use your design estimates.

Our project needs a site EUI of 90.7 or lower.

Baseline Building

- Build a preliminary baseline energy model per the energy code.
- Energy Code: ASHRAE 90.1-2007
 - Minimum Envelope Insulation (Roof, Walls, Floors, etc.)
 - Minimum Glazing
 Performance (U-Values, SHGC)
 - Maximum WWR
 - Minimum Lighting Power
 Density (W/sqft)
 - Minimum HVAC equipment Efficiencies
 - Minimum HVAC Controls

Most energy modeling software will construct an ASHRAE Standard 90.1 compliant model with just a few inputs.

Baseline Building

- Baseline Energy Model
 - Site EUI = 60.5 kbtu/sqft
 - Total Site Energy = 3,242,526 kbtu

Energy Star Results

Metrics Comparison for Your Design and/or Target											
Metric	Design Project	Design Target*	Median Property*								
ENERGY STAR score (1-100)	78	75	50								
Source EUI (kBtu/ft²)	190	200.8	271.4								
Site EUI (kBtu/ft²)	60.5	90.7	122.7								
Source Energy Use (kBtu)	10,181,531.80	10,840,671.40	14,656,920.00								
Site Energy Use (kBtu)	3,242,526.00	4,898,821.00	6,623,356.00								
Energy Cost (\$)	91,893.20	91,351.96	123,510.64								
Total GHG Emissions (Metric Tons CO2e)	651.5	663.1	896.5								

* To perform calculations for your design target, we use the fuel mix that you've entered for your design energy estimates. If you have not entered estimated design energy, we'll use the average for your state. To perform calculations for the national median, we will assume the fuel mix and operational details of your property measurement in use, if available. Otherwise, we will use your design estimates.

Project could earn Energy Star with a score of 78.

Architecture 2030 Challenge

All new buildings, developments, and major renovations shall be carbonneutral by 2030.

Architecture 2030 Challenge

Metrics Comparison for Your Design and/or Target										
Metric	Design Project	Design Project Design Target*								
ENERGY STAR score (1-100)	78	99	50							
Source EUI (kBtu/ft²)	190	81.4	270.7							
Site EUI (kBtu/ft²)	60.5	36.8	86.2							
Source Energy Use (kBtu)	10,101,501.00	4,007,076.00	14,509,712.90							
Site Energy Use (kBtu)	3,242,526.00	1,987,006.80	4,620,927.10							
Energy Cost (\$)	91,893.20	37,053.19	130,957.10							
Total GHG Emissions (Metric Tons CO2e)	651.5	269	928.4							

* To perform calculations for your design target, we use the fuel mix that you've entered for your design energy estimates. If you have not entered estimated design energy, we'll use the average for your state. To perform calculations for the national median, we will assume the fuel mix and operational details of your property measurement in use, if available. Otherwise, we will use your design estimates.

Architecture 2030 Challenge – Site EUI 70% better than Median Property.

Architecture 2030 Challenge

- To meet this project energy goal we will have to look at a number of ECMs
 - Reducing the loads
 - Building design to improve daylighting opportunities.
 - Improved Envelope (Wall & Roof Insulation).
 - HP Glazing and WWR on different exposures.
 - South, West, and East shading on glazing.
 - HP HVAC Systems Radiant Systems
 - Reducing Lighting Power Density with Daylighting
 - Reduce Plug Loads
 - Onsite Renewable Energy

LEED Certification

LEED v4 - EA Credit: Optimize Energy Performance

New Construction	Points	Site Energy Use (kBtu)	Site EUI (kBtu/ft²)		
5%	PREREQ	2,741,556	51.1		
6%	1	2,712,697	50.6		
8%	2	2,654,980	49.5		
10%	3	2,597,263	48.5		
12%	4	2,539,546	47.4		
14%	5	2,481,829	46.3		
16%	6	2,424,112	45.2		
18%	7	2,366,395	44.1		
20%	8	2,308,679	43.1		
22%	9	2,250,962	42.0		
24%	10	2,193,245	40.9		
26%	11	2,135,528	39.8		
29%	12	2,048,952	38.2		
32%	13	1,962,377	36.6		
35%	14	1,875,801	35.0		
38%	15	1,789,226	33.4		
42%	16	1,673,792	31.2		
46%	17	1,558,358	29.1		
50%	18	1,442,924	26.9		

- Baseline Building (90.1-2010)
 - EUI = 53.8 kBtu/ft²
 - Total Site Energy = 2,883,680 kBtu
- This information allows us to see how many points are possible and what our EUI target is for the project.

Individual System Energy Goals

- Information can be extracted from the energy model to see how the individual systems will need to reduce their energy usage.
- These individual system energy goals influence the schematic design, design development and contract document phases of the project.

Individual System Energy Goals

Types of Energy Modeling

Four Most Common Types:

- Design Performance Modeling (DPM) Building Energy Modeling (BEM)
- Building Operation Modeling (BOM) •
- Project Resource Modeling (PRM)

- Used early on or at the start of the project.
 Concept and Schematic Design Phases.
- Used to provide information to building design decisions by predicting a building's energy performance.
- Allows for quick analysis of many design alternatives.

- Simple models K.I.S.S.
 - Remove the details that have little or no impact on the energy performance.
 - Modeling the heat transfer surfaces.
 - Using standard or packaged inputs.
 - HVAC and Lighting system are treated like a "black box".

- Concept Design Phase
 - Used to set and qualify project energy goals.
 - Experiment with building massing and orientation alternatives.
 - Determine envelope construction alternatives.
 - Assess daylighting possibilities with the building design alternatives.

DPM – Massing Study

Site EUI (kBtu/ft²)	53
Site Energy Use (MMBtu)	2,841
Daylighting Potential	Bad

Basic Design

Large Core Space - Daylighting Issues Large Core Space - Cooling Energy High Smaller Wall Surface Area Large Roof Area Small Window Area Orientation low impact

Site EUI (kBtu/ft²)	47
Site Energy Use (MMBtu)	2,519
Daylighting Potential	Maximum

Tall Skinny Design

Small Core Space - Maximum Daylighting Small Core Space - Cooling energy lower Large Wall Surface Area Large Window Area Small Roof Area Orientation high impact

Site EUI (kBtu/ft²)	50
Site Energy Use (MMBtu)	2,680
Daylighting Potential	Good

Section Design

Small Core Space - Good Daylighting Small Core Space - Cooling energy lower Large Wall Surface Area Large Window Area Large Roof Area Orientation some impact

Response Curves Examples: Wall Insulation Glazing Shading

DPM – Response Curves

DPM – Response Curves

DPM – Response Curves

- Schematic Design Phase
 - Explore ways to reduce loads.
 - Test energy conservation measures (ECM) to determine the lowest possible energy use.
 - Review alternative HVAC systems for the project.
 - Develop lighting power densities and controls to support daylighting.

DPM – ECM Analysis

Annual Energy Consumption [kbtu]		Annual Energy Use per Gross Annua Internal Area Coc [kbtu/sqft] [ki		Space ing tu]	Annual Space Heating [kbtu]		Heating Capacity [mbh]		Cooling Capacity [tons]			
Baseline Concept	2,591,861		48		537,028		765,295		1,200		133.3	
Strategy Bundle	1,841,337	29%	34	29%	369,225	31%	266,529	48%	624	48%	83.5	37%
HVAC System Eff	2,094,099	19%	39	19%	458,392	15%	430,124	20%	966	20%	113.1	15%
East & West Shading	2,582,763	0%	48	0%	516,558	4%	776,667	0%	1,200	0%	130.8	2%
South Shading	2,591,491	0%	48	0%	536,526	0%	765,427	0%	1,200	0%	132.9	0%
North WWR 40%	2,562,238	1%	48	0%	519,489	3%	753,211	2%	1,179	2%	130.8	2%
North WWR 45%	2,565,567	1%	48	0%	521,466	3%	754,562	2%	1,181	2%	131.1	2%
Infiltration	2,431,144	6%	45	6%	533,987	1%	607,619	18%	984	18%	121.2	9%
Wall Insulation	2,547,294	2%	47	2%	542,661	-1%	715,096	3%	1,159	3%	132.0	1%
HP Glazing	2,523,460	3%	47	2%	446,400	17%	787,522	4%	1,148	4%	121.1	9%
Roof Insulation	2,570,158	1%	48	0%	538,390	0%	742,230	1%	1,182	1%	132.8	0%

DPM – HVAC Alternatives

	HVAC System Type	Heating Equipment Capacity [mbh]		Cooling Equipment h] Capacity [tons]		EUI [kbtu/se	qft]	Annual Energ Cost [\$]	
Baseline Concept	Packaged Rooftop VAV w/ Reheat	1,488		98.6		39		61,045	
	Water Source Heat Pump	1,197	20%	86.9	12%	37	5%	46,941	23%
	VRF Fan Coil Units w/ Central Outside Air	640	57%	100.2	-2%	29	26%	44,675	27%
	Fan Coils w/ Central Outside Air	1,132	24%	85	14%	35	10%	45,329	26%

DPM – HVAC Alternatives

DPM – HVAC Alternatives

- End of Schematic Design
 - Identified possible ECM.
 - Develop a matrix with preliminary energy cost for each ECM.
 - Financial Analysis Life-Cycle Cost Analysis
 - Additional first-cost investment
 - Anticipated annual energy cost savings
 - Simple payback periods
 - Return on investment (ROI)

Building Energy Modeling

- Used during the Design Development and Construction Document Phases.
 - Detailed models
 - Modeling each space in the building
 - Actual people count
 - Actual plug loads
 - Actual lighting loads

Building Energy Modeling

Zone Cooling

- Design Development Phase
 - Applying the final package of ECM into the project.
 - Right sizing equipment.
 - HVAC
 - Lighting
 - Financial investment/life-cycle cost analysis.
 - Analyzing VE options.

	Calculated Design Load [Btu/h]	User Design Load [Btu/h]	User Design Load per Area [Btu/h- ft2]	Calculated Design Air Flow [ft3/min]	User Design Air Flow [ft3/min]
L001_C01	49062.27	49062.27	7.48	2519.583	2519.583
L001_P02	54661.77	54661.77	15.51	2815.462	2815.462
L001_P01	23847.10	23847.10	11.12	1228.351	1228.351
L001_P03	36644.12	36644.12	17.08	1887.670	1887.670

Building Energy Modeling

- Contract Document Phase
 - Adding the final details for all of the building systems.
 - Finishing the energy model for:
 - Project compliance with the energy code.
 - Project compliance with green building certification.
 - Utility company rebates.

SECTION 1.6 - PERFORMANCE RATING METHOD COMPLIANCE REPORT

Table EAp2-4. Baseline Performance - Performance Rating Method Compliance

In the table below, list each energy end use for the project (including all end uses reflected in the baseline and proposed designs). Then check whether the end-use is a process load, select the energy type, and list the energy consumption and peak demand for each end-use for all four baseline design orientations.

End Use	Process	Baseline Design Energy Type	Units of Annual Energy & Peak Demand		Baseline (0° rotation)	Baseline (90° rotation)	Baseline (180° rotation)	Baseline (270° rotation)	Baseline Building Results
Interior Lighting		Electricity	Energy Use	kWh	28,767	28,767	28,767	28,767	28,767
			Demand	kW	9.5	9.5	9.5	9.5	9.5
Exterior Lighting		Electricity	Energy Use	kWh	6,066	6,066	6,066	6,066	6,066
			Demand	kW	1.5	1.5	1.5	1.5	1.5
Space Heating		Natural Gas	Energy Use	therms	2,603.8	2,608.5	2,620.5	2,612.2	2,611.25
			Demand	therms/h	228.2	228.2	228.2	228.2	228.2
Space Cooling		Electricity	Energy Use	kWh	7,300	7,317	7,326	7,249	7,298
			Demand	kW	48.5	48.5	49.1	48.4	48.63
Pumps			Energy Use						
			Demand						
Heat Rejection		Electricity	Energy Use	kWh	734	734	735	727	732.5
			Demand	kW	6.5	6.5	6.5	6.5	6.5

The End

 Design Performance Modeling and Building Energy Modeling are tools that can be used throughout the design to optimize the performance of all the building systems.

Advanced Energy Design Guides

- Provides design guidance and prescriptive solutions to get significant energy savings over minimum building energy codes.
- Partnership between the U.S. Department of Energy (DOE), ASHRAE, AIA, USGBC, and IES
- 50% AEDG
 - Small to Medium Office Buildings
 - K-12 School Buildings
 - Medium to Big Box Retail Buildings
 - Large Hospitals
 - Grocery Stores
- 30% AEDG
 - Small Office Buildings
 - Small Retail Buildings
 - Small Warehouses and Self-Storage Buildings
 - Highway Lodging
 - Hospitals/Healthcare Buildings
 - K-12 School Buildings
- 50% AEDGs can be used to meet LEED v4 EA CREDIT: Optimize Energy Performance Option 2.
- <u>FREE</u> download at ASHRAE. www.ashrae.org/aedg

Technical Support Document:

- The Technical Support
 Document describes the
 process and methodology
 for the development of
 the Advanced Energy
 Design Guides.
- There are reports for each of the AEDGs.
- And yes they are free!!

Thank You

- Remember to Sign-in for the Breakout Sessions.
- Questions?

Jason M. Park, P.E.

Contact Information: jpark@pedcoea.com (513)-782-4920 www.pedcoea.com