

Siemens Demand Flow[®]

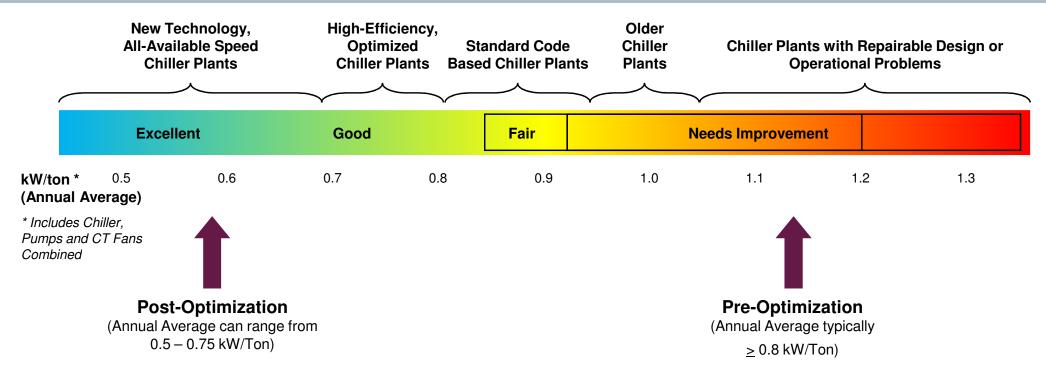
A unique and proven energy and operational cost saving application for water-cooled, central chilled water systems

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

Answers for industry.

Agenda

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps



- Demand Flow Chilled Water
 - Holistic Solution
 - Large installed critical plants across country
 - Customized Solution driven by CoE dedicated team
 - Case Studies

Overview: Why Chiller Plant Optimization?

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Source: "All Variable Speed Chiller Plants", ASHRAE Journal, September 2001

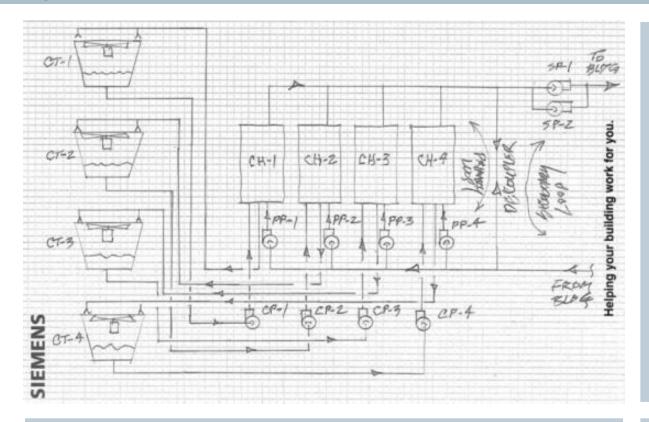
Traditional Chilled Water Plant Optimization

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

There are many traditional chiller plant optimization offerings. Typically, these offerings consist of:

- Operating each component of the central chiller plant on its own efficiency curve instead of focusing on the interrelationships between each component
- Increases total chiller run hours.
- Limited functionality for complex chiller plants.
- Resets chilled water temperature up. Tends to increase humidity.
- Increases annual AHU fan energy.
- Extreme difficulty handling site system pressure and flow control.
- Chiller sequencing program. Tries to run chillers in sweet spot.

Overview: Common CHW System Characteristics


Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Typical Characteristics	Inherent Shortcomings
Chillers not operating at design temperature splits	Plagued with "Low Delta-T Syndrome"
Excessive bypass of chilled water flow	Excessive pumping / chiller energy and shaft-miles
Constant volume pumping (both CHW and CW)	Excessive pumping / chiller energy and shaft-miles
Comfort is often sacrificed to obtain efficiency	Uncomfortable occupants = reduced productivity
Total plant energy performance not fully measured	Difficult to manage (increased risk)
Operate at design intent conditions only 5% of the time (per ARI standards)	Inefficient and costly plant operations 95% of the time (per ARI standards)
Continuous full speed operation of some plant equipment	Decreased equipment life

Overview: What is Chilled Water System Optimization?

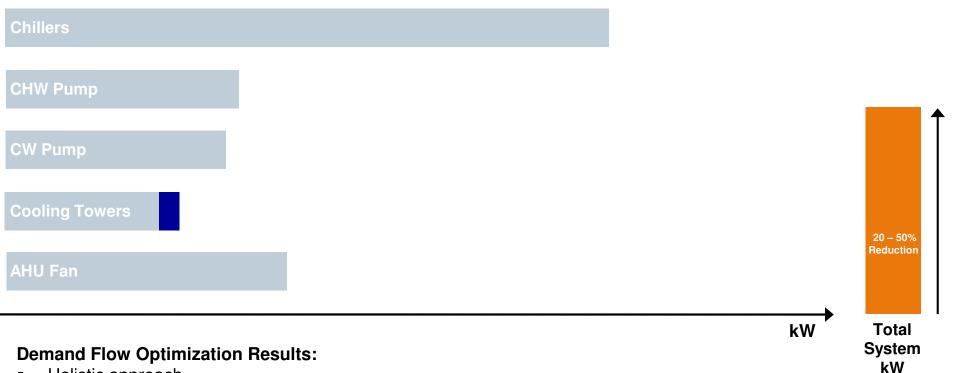
Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Fundamental energy consuming sub-systems that influence deliverable capacity:

- 1. Chillers
- 2. Chilled Water Pumping
- 3. Condenser Water Pumping
- 4. Cooling Tower Fans
- 5. Air Side

These 5 subsystems are interdependent

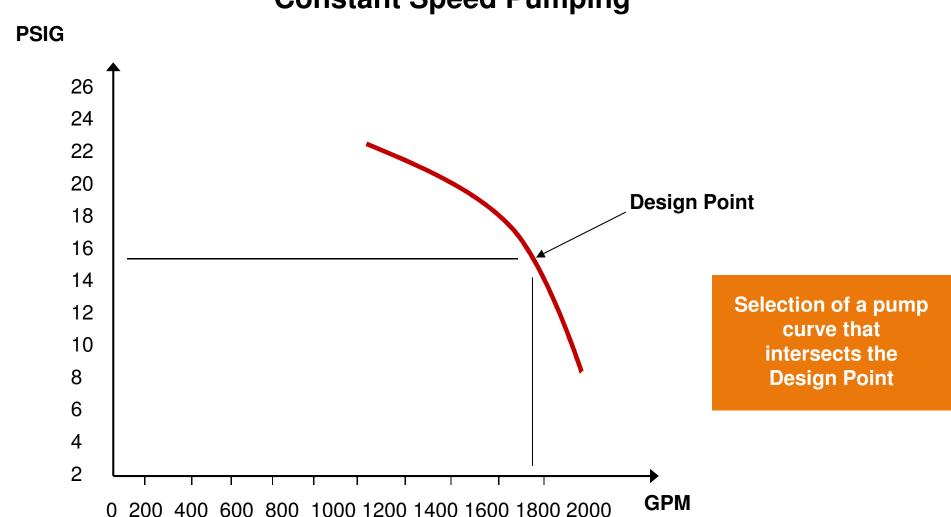
- Energy and deliverable capacity are interdependent
- Often "conservation methods" reduce deliverable capacity
- Often energy conservation methods result in a "transfer of energy" among the 5 subsystems


Siemens understands these technical relationships, delivering a "holistic" approach to CPO

Net Energy Effect of Demand Flow

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Demand Flow Optimization Project



- Holistic approach
 - 15–50% reduction of total kW
 - Improved occupant comfort
 - Improved humidity control

Industry Control Standard

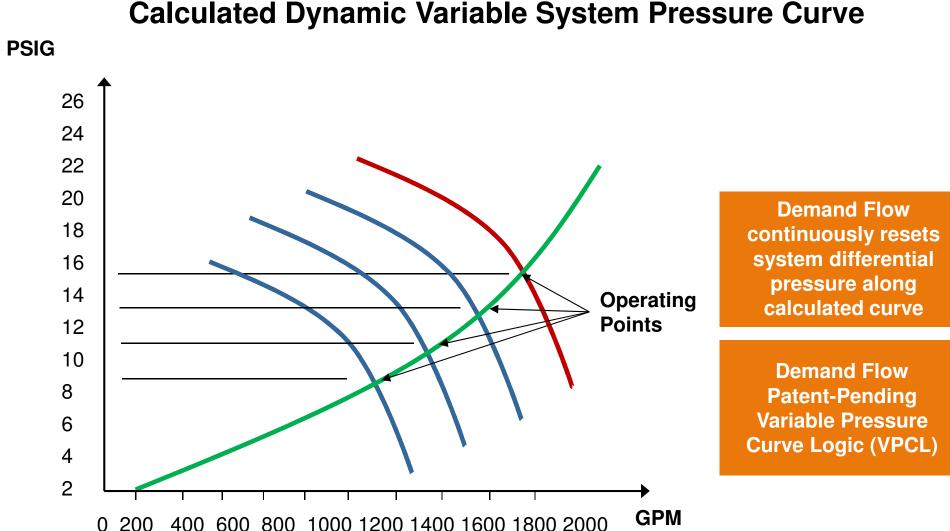
Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Constant Speed Pumping

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

Industry Control Standard

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

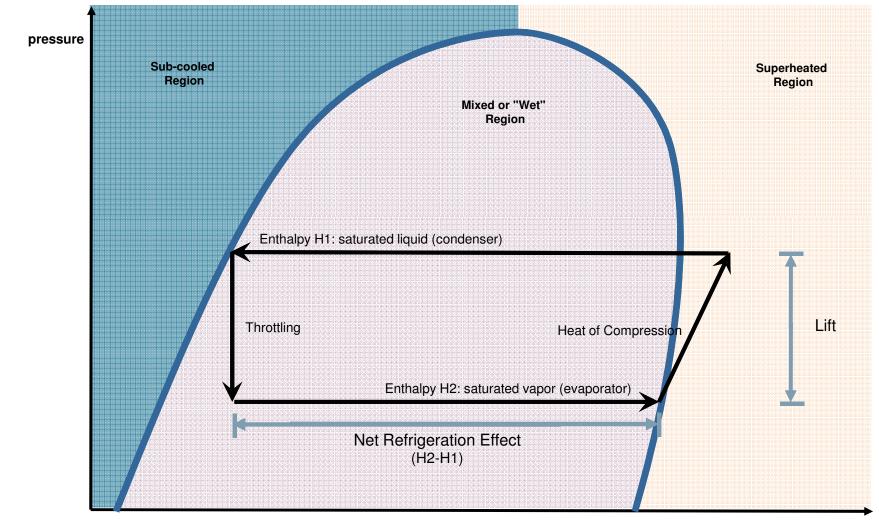

PSIG 26 24 **Operating points Constant Pressure*** 22 20 18 A typical control strategy is to control to 16 a constant differential 14 pressure in the loop 12 10 With the application of a 8 60Hz variable speed drive, the 6 50Hz pump curve shifts as 40Hz motor speed decreases 4 2 **GPM** 400 600 800 1000 1200 1400 1600 1800 2000 0 200

Variable Speed Pumping

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

Demand Flow Control Strategy: Variable Pressure Curve Logic (VPCL)

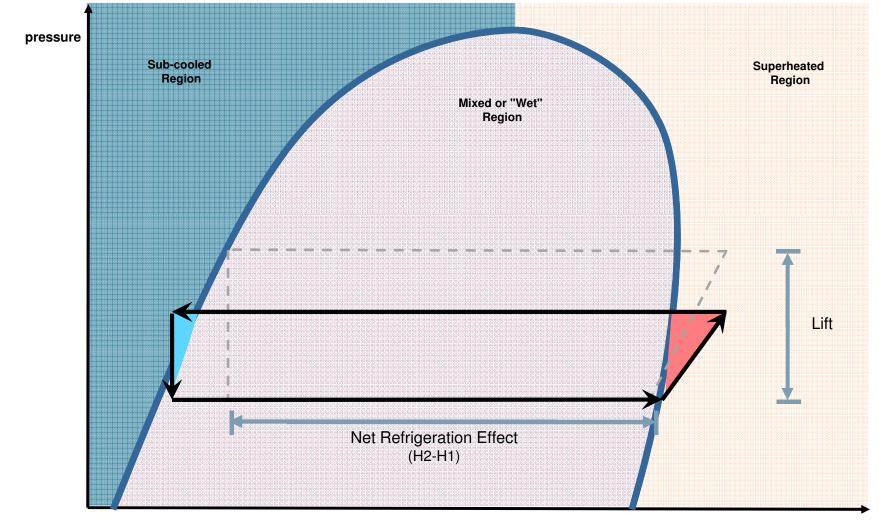
Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps


SIEMENS

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

Refrigeration Cycle and Mollier Curve

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps



Restricted © Siemens Industry, Inc. 2013 All rights reserved.

Impact on Lift and Refrigeration Effect

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

enthalpy

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

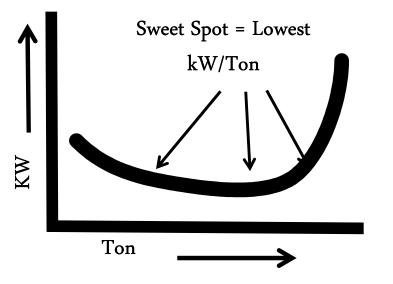
Compressor Energy = Mass Flow of Refrig. x Differential Pressure or 'Lift'

Mass Flow of Refrigerant = 200 / Refrigerant Effect x Effective Tonnage

Compressor Energy = <u>200</u> x Effective Tonnage x 'Lift' RE

Simplified Chiller Sequencing

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps


Traditional methods of optimization

- Reset chilled water temperature up
- Chillers sequenced via a database of load profiles
- They all try to find a "sweet spot"
- Kw/ton based on historical data not necessarily in real-time

Demand Flow Sequencing

- Demand Flow widens "sweet spot"
- Wider "sweet spot" = increased efficiency through the entire tonnage range
- Increased deliverable tonnage
- Less start/stop = less wear and tear
- Chillers sequenced lead / lag based on run-time
- Most efficient system kw/ton in real-time

Siemens Demand Flow[®] Chilled Water System optimization

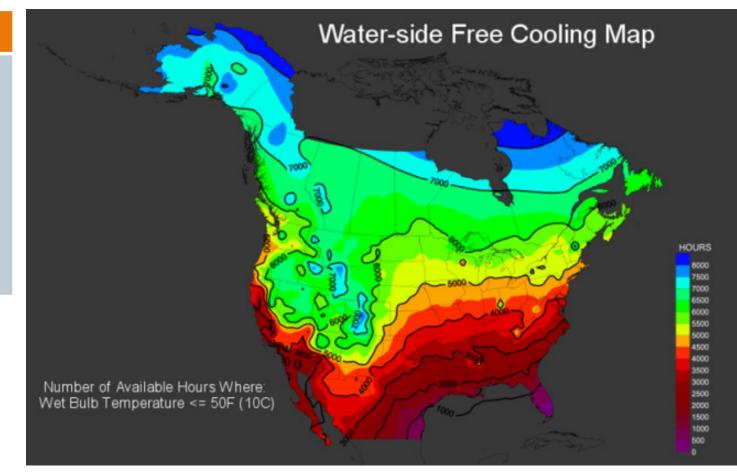
Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

What's Different

- VFDs installed on all CHW and CW Pumps and CT Fans
- Water Flow Varies thru Chiller Evaporator and Condenser
- Virtually no CHW/CW bypass
- Optimize Pressure and Temperature set-points based on system dynamics
- VFDs are **not** required on the Chillers (Will work with or without VFDs on chillers)
- Turn-key Installation and Commissioning
- Pre and Post Measurement and Verification

System Effects

- Solves Low Delta T Syndrome
- Increases system deliverable tonnage (where low Delta-T is present)
- Manages chiller "Lift", effectively eliminates refrigerant flow issues at low load conditions
- Stable Chiller Refrigerant loop performance at virtually all tonnage loads



Demand Flow Enables Water-Side Economizer

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Demand Flow & Free Cooling

- Reliable switch-over to Water-Side Economizer
- Enables simultaneous operation of plate and frame and chiller in Demand Flow mode w/o the need for a variable speed chiller
- Proven capabilities

(Source: The Green Grid)

Primary Benefits of Demand Flow

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

- Reduced energy consumption and greater performance
 - Typically 15-50% total Chilled Water System energy savings
 - 2-4 year simple payback
 - Requires less energy to deliver potentially colder chilled water temperatures
 - Improves System Deliverable Cooling Capacity

Extended equipment Life

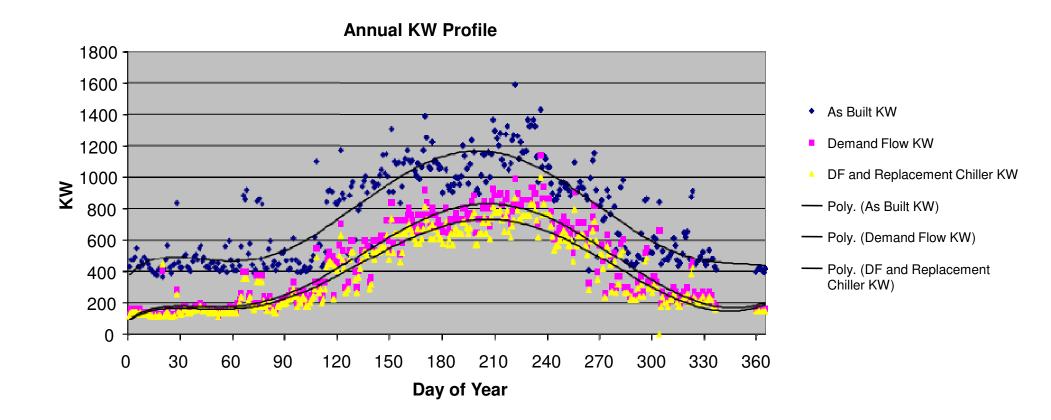
- Increased *Deliverable* tonnage means more redundancy
- Reduced run-time = less maintenance
- Less wear and tear on system components

Improved indoor environmental quality

- Occupant comfort is not sacrifices to provide energy savings
- More effective humidity control

Simplified system operation

- Sequencing chillers is typically Lead/Lag based on run-hours (can be customized)
- More intuitive sequencing of equipment
- Improved system reliability and control


Demand Flow results in significant energy savings and improved comfort

Statistical Energy Modeling

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

SIEMENS

Siemens utilizes 12 months of customer's historical chiller logs to develop baseline energy consumption vs. optimized energy consumption

Financial Analysis: What Can You Expect

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

		Typical Sell Price: \$ 300k		MBCx & "Service": \$ 15k/yr			Example: Avg	
ł		Typical Sa	avings: \$100k/yr		CPI: 2% escalation			1,800 Ton Plant
	Year	DF Savings (\$)	Project Cost (\$)	Incentives Received (\$)	MBCx & Service (\$)	Annual Cash Flow (\$)	Cumulative Cash Flow (\$)	
	0					-300,000		
	1	+100,000	-300,000	0	-15,000	+85,000	-215,000	
	2	+102,000	-		-15,300	+86,700	-128,300	
	3	+104,040	-		-15,606	+88,434	-39,866	Break-even
	4	+106,121	-		-15,918	+90,203	50,337	point
	5	108,243	-		16,236	+92,007	142,343	
	6	110,408	-		16,561	+93,847	236,190	
	7	112,616	-		16,892	+95,638	331,914	
	8	114,869	-		17,230	+97,638	429,552	
	9	117,166	-		17,575	+99,591	529,143	
	10	119,509	-		17,926	+101,583	630,726	
		Total C	ost: \$ 300,000		Total Benefit: \$630,726			3.4 Year
		IRR: 27.2%			ROI: 210.2%			Payback

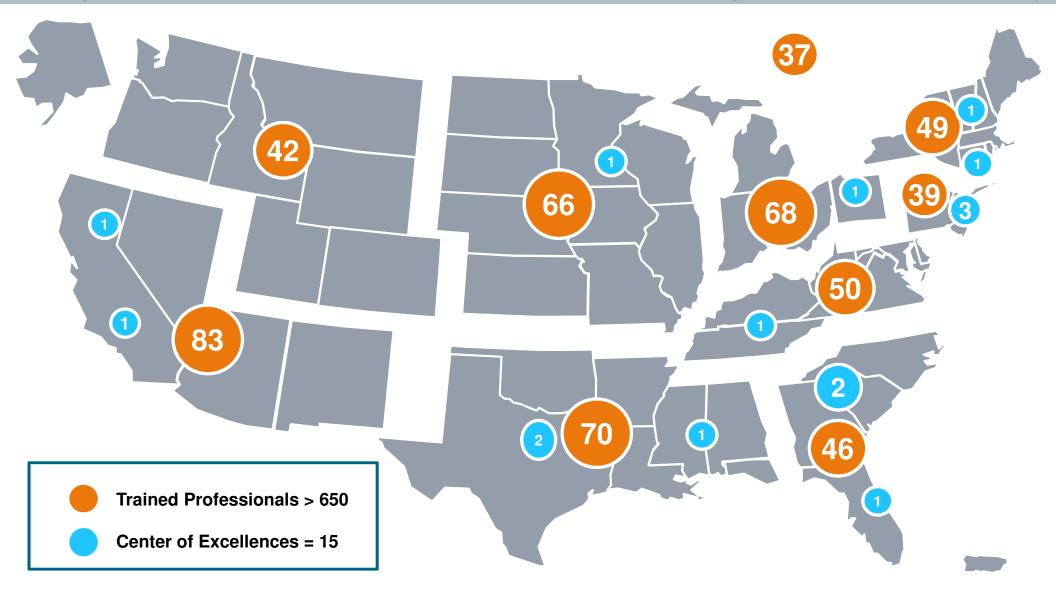
Financial Analysis: What Can You Expect

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

	DF sell price: \$ 300k DF savings: 100k/yr		MBCx & "Service": \$ 15k/yr CPI: 2% escalation			Example: Typical 1,800 Ton Chiller Plant	
Year	DF Savings (\$)	Project Cost (\$)	Incentives Received (\$)	MBCx & Service (\$)	Annual Cash Flow (\$)	Cumulative Cash Flow (\$)	
0					-300,000		
1	+100,000	-300,000	100,000	-15,000	+185,000	- 2 15,000	
2	+102,000	-		-15,300	+86,700	-128,300	
3	+104,040	-		-15,606	+88,434	-69, 866	Break-even
4	+106,121	-		-15,918	+90,203	1 50,337	point
5	108,243	-		16,236	+92,007	2 42,34 8	
6	110,408	-		16,561	+93,847	2 36,19 0	
7	112,616	-		16,892	+95,638	4 31,91 5	
8	114,869	-		17,230	+97,638	5 29,55 2	
9	117,166	-		17,575	+99,591	629,145	
10	119,509	-		17,926	+101,583	630,728	
	Total Cost: \$ 300,000			Total Benefit: \$730,726			2.3 Year
	IRR: 37.5%				ROI: 243.5%		Payback

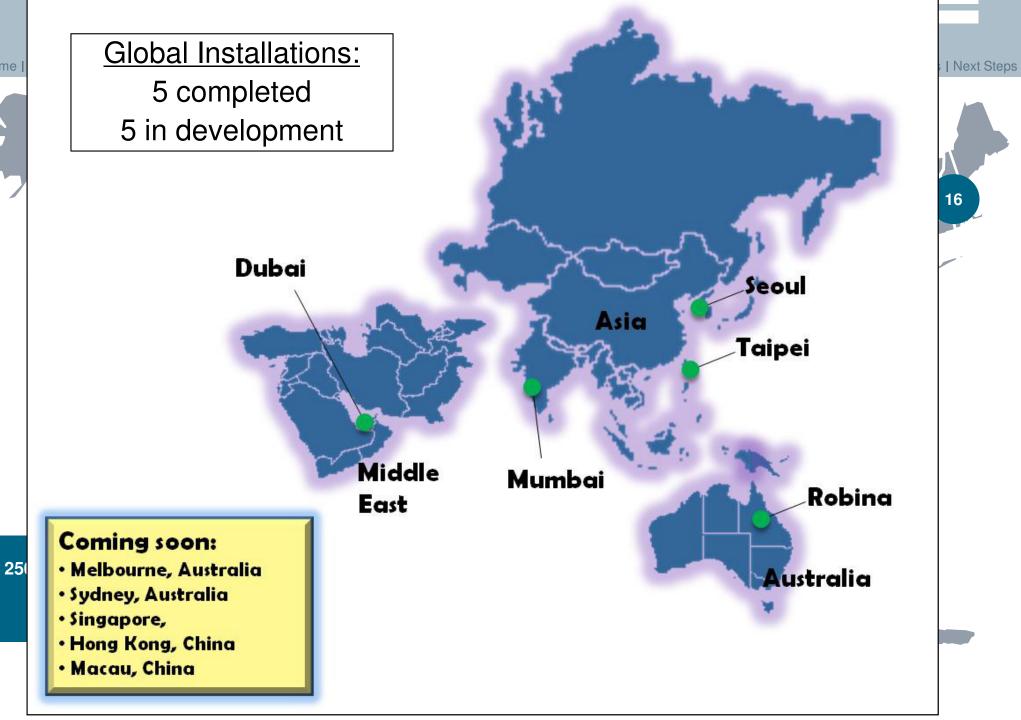
Utility Rebates to Improve ROI (partial list)

Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps


Utility	Service Territory	Project Site
Duke Energy.	 Indiana Kentucky North Carolina South Carolina 	 IBM 401 Data Center
	Eastern Massachusetts	 Novartis
nationalgrid	 Massachusetts New Hampshire Rhode Island New York Upstate 	Twin River
	 New Haven and Bridgeport, CT 	Bluestone
Energy Innovation Solutions.	New York State	 IBM Fishkill
conEdison	New York CityWestchester County	Financial Customer
⊘ Xcel Energy=	 Colorado Kansas Michigan Minnesota New Mexico North Dakota Oklahoma South Dakota, Texas 	 USPS Data Center Ameriprise Financial Methodist Hospital
O PSEG	New Jersey	 Data Center Customer

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

EXPERTISE – DF Center of Excellence Team – Branch Office Support



Home | Integrated Solution | Market Factors | Overview of CPO | Overview Demand Flow | Financial Overview | Partnering with Siemens | Case Studies | Process | Next Steps

Restricted © Siemens Industry, Inc. 2013 All rights reserved.

Home |

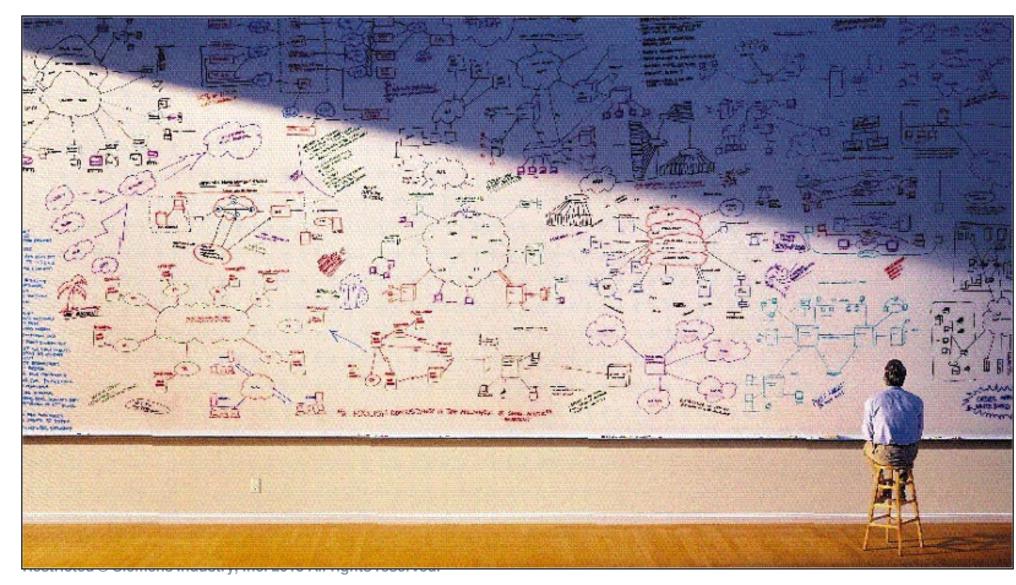
Kettering Medical Center Kettering, OH Demand Flow 2014

\$500K project 4 chillers – 3750 Tons \$127K savings \$250K rebate *2.3 GWH* Energy Reduction

~3.9 Year ROI (1.9 ROI w/Incentive)

<u>Team Members:</u> Danny McCloud - KMC Donald Bloom – KMC Brian Arbogast – Heapy Engineering Mark Dancer – DP&L Scott Johnson – Siemens Jim Moore – Siemens Jake Meyers - Siemens

KETTERING HEALTH NETWORK



ADD P&G INFO

Questions?

