Resilient Building Operations

Resilient Building Operations

GOWAIBEL

Bryan Schenck WELL AP, Fitwel Amb, LEED AP BD+C Healthy Building Leader Waibel Energy Systems

Bryan.Schenck@GoWaibel.com

Where Health, Energy, and Comfort Collide

Nathan Lammers

Energy Services Leader Waibel Energy Systems

Nathan.Lammers@GoWaibel.com

Who are we?

"The Way Buildings Work Better"

Established in Vandalia, OH In business for over 75 years.

Markets include K-12, Medical, Industrial, Higher Education, and Commercial in OH, KY, & IN.

Services include Building automation systems & service, Mechanical service & repair, Energy Management services, Client Services, Plumbing services, Security & Access Control, Analytics & Fault Detection Diagnostics, and Healthy Buildings Services.

Who are we?

"The Way Buildings Work Better"

2021 Recipients of:

- DBJ's Best Places to Work in Dayton (7th time)
- BBB Eclipse Integrity Award
- Business of the Year Vandalia-Butler Chamber

Staff comprised of over 120 great associates dedicated to providing the best in technology

"The Way Buildings Work Better"

We are a COMFORT company We are an ENERGY company We are a HEALTH company We make buildings work better

Objectives

Define health and wellness improvements to existing buildings and the design of new buildings.

1.

- 2. Understanding the capabilities of existing building automation systems to optimize health, energy, and comfort goals.
- 3. Proactively evaluate and manage major building components.
- 4. Recognize the critical features of an optimized, integrated building system.

Comfort ---- Past Present Future→ Health

Comfort

Building Purpose

IAQ is one of the top 5 most urgent environmental risks to public health

An estimated 24-million Americans suffer from asthma, the #1 cause of absenteeism in K-12 schools

50% of all illness is caused by indoor air pollution

Health is the absence of disease

NOW

Health is the state of complete physical, mental, and social well-being, not merely the absence of disease or infirmity Nine Foundations of a Healthy Building

Ventilation	Air Quality	Thermal Health
Moisture	Dust & Pests	Safety & Security
Water Quality	Noise	Lighting & Views
forhealth.org, 2020		

COVID-19 IMPACTS

- Shifting out of disruption, into recovery
- Focus has shifted to physical environments
 - Office layouts, de-densifying, IAQ, cleaning/disinfecting, etc.
- How has it changed things?
 - Expediting the movement to Healthy Buildings
 - Accelerating Sustainability & Resiliency planning
- Responsible RestartOhio

PERFORMANCE PRIORITIES

- Balance between Occupant Comfort, Energy Efficiency, and Healthy Buildings
 - With Performance Indicators (PI's) for each
- Proactive Strategies vs Reactive Strategies
- Initiate Facilities Management Planning

'NEW NORMAL' TERMS

- Air Changes per Hour (ACH) or Air exchanges
- Ionization
- MERV
- Social distancing
- Aerosols
- Communicable

Critical Response Measures

- VENTILATION PERFORMANCE
- PURIFICATION STRATEGIES
- FILTRATION REPLACEMENT
- DISINFECTION PROTOCOLS

- Increase fresh, filtered air
- Dilute indoor air
- Verify operation of
 - Building Pressurization
 - Air Changes per Hour (ACH)
 - Automated Controls
 - Exhaust fans/vents
 - Dampers

- Space Conditions
 - Humidity
 - Temperature
 - Carbon Dioxide (CO₂)
 - Limit Room Transfer Air

- Considerations
 - Energy Cost Impact
 - System Capabilities
- ASHRAE Standards
 - Standard 62.1 Ventilation
 - VRP & IAQP Methods
 - Standard 55 Thermal Comfort

- Energy Impact
 - Evaluating current systems capabilities
 - Need for monitoring of systems
 - Strategic use of demand-based system control
 - Use appropriate criteria for evaluation

PURIFICATION STRATEGIES

- Ultraviolet (UV-C)
 - In Unit
 - Upper Room
- Ionization
 - Numerous Types
- Proprietary Technologies
- Packaged Air Cleaners

PURIFICATION STRATEGIES – UV-C TECHNOLOGY

- UV-C is a shortwave ultraviolet germicidal energy (UVGI).
- Safe to humans in the airstream.
- Harmful to virus, bacteria and germs.
- Passive Air Purification
- Cleans and treats the airside equipment

PURIFICATION STRATEGIES – UV-C TECHNOLOGY

- Considerations
 - Safety measures once installed warning stickers, door switches
 - Breakdown of plastics, wiring, and filter media
 - Bulb replacement

PURIFICATION STRATEGIES – ION TECHNOLOGY

- Purifies air as it passes through positive and negative ions
- Breakdown pollutants into harmless compounds
 - These compounds are then able to collect in the filtration media
- Active Air Purification
- Reduces odor and contaminants

PURIFICATION STRATEGIES – ION TECHNOLOGY

- Considerations
 - No harmful bi-products
 - UL Listed products (867 & 2998)
 - Variety of application/installation methods
 - Low maintenance

PURIFICATION STRATEGIES – PROPRIETARY TECHNOLOGIES

- Several products now utilize UVGI and Ionization through:
 - Photo-hydroionization (PHI)
 - Reflective Electro Magnetic Energy (REME)
- Active Air Purification
 - Rapid recovery units are available (Reactive Approach)
- Friendly oxidizers (biproducts of oxygen/hydrogen)

PURIFICATION STRATEGIES – PROPRIETARY TECHNOLOGIES

- Considerations
 - Increased equipment performance
 - UL Listed products
 - Low maintenance
 - Simple installation

PURIFICATION STRATEGIES

- Energy Impact
 - Compare total costs
 - Include additional benefits
 - How does it impact ventilation performance?
 - How does it impact filtration performance?

www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

FILTRATION REPLACEMENT

- Increase regularity of changes
- Increase filter rating (MERV)
- Dust collection
- Room level options for HEPA, Carbon, or Charcoal filter equipment.

FILTRATION REPLACEMENT

- Considerations
 - System capability
 - System pressure drop
 - Coordination necessary
 - Could increase maintenance costs

FILTRATION REPLACEMENT

- Energy Impact
 - Compare recurring costs
 - How does it impact preventative maintenance?
- Health Impact
 - How does it impact ACH?

DISINFECTION PROTOCOLS SYSTEM DISINFECTION

- Mechanical System Cleaning
 - Coils
 - Drain pan
 - Equipment cabinet
 - Fan wheels

Particulates 🔵 🔿 🔿

This near infrared nephelometer has a range of 0 to 50 μ m³ in the range of 0.5 to 10 microns and an accuracy of ± 20% CV.

Findings

We did not detect any major issues in your facility during this deployment. This does not mean there may not still be opportunities to improve the performance of your facility, but it does highlight the need for maintaining the optimal performance.

Chemical Pollutants

This metal oxide semi-conductor (MOS) sensor has a range of 0 – 4,000 ug/m³ and an accuracy of \pm 112 ug/m³.

Findings

We have detected a couple locations with elevated levels of Organic Chemicals that could have long term exposure issues for sensitive individuals. There are several simple solutions we have outlined to help reduce the source of these Organic Chemicals.

Carbon Monoxide

This electrochemical sensor has a range of 0 to 100 ppm and an accuracy of \pm 3 ppm.

Findings

We did not detect any major issues in your facility during this deployment. This does not mean there may not still be opportunities to improve the performance of your facility, but it does highlight the need for maintaining the optimal performance.

CONFIRMING EXISTING BUILDING PERFORMING

- Without a Building Automation System (BAS)
 - Visual Inspection of Equipment and Dampers
 - Temporary Data Loggers
 - Can help identify scheduling
 - CO₂
 - VOC
 - PPM
 - Temp
 - Humidity

CONFIRMING EXISTING BUILDING PERFORMING

- With a Building Automation System (BAS)
 - Review Graphics
 - CO₂
 - Temp
 - Humidity
 - Query for Points, Overrides
 - Lighting and load control

CONFIRMING BUILDING PERFORMING

- With a Building Automation System (BAS)
 - System Level (AHU's RTU's DOAS)
 - Unitary Level
 - VAV's
 - Unit Vents
 - Fan Coils
 - Opportunity for Analytics and FDD

NEW CONSTRUCTION BUILDING PERFORMING

- Design with a Building Automation System (BAS)
- Outside Airflow Measuring Stations (OAFMS)
- High Rated MERV (13 to 16) Filtration
- Building-level utility meters
- Include Sensors Temp, RH, VOC, CO₂, PM2.5, PM10, Particle, etc
- Air Purification Ionization, Ultraviolet, etc
- Analytics & FDD

					4	Air H	lanc	ller C)ver	viev	v							
Γ	Mech Name	Serves	Occupa	ncy	DA Temp	DATS	Setpt	MA Temp	HW	Valve	DX Co	ooling 04	Damper	Min OA	Damper	LL Ala	rm SFan S	Status
	AHU A201	Middle School Admin	Area Occup	ied	79.3 °F	55.0	D °F	76.6 °F	0.0)%	0)n	0.0 %	15	.0 %	Norm	al O	n
	AHU C201	High School Admin A	Area Occup	ied	60.7 °F	65.0	D °F	75.8 °F	100.	.0 %	0	ff	0.0 %	10	.0 %	Norm	al C	n
lech N	ame	Serves	Occupancy	DA Te	emp DA	r Setpt	MA Ten	np 1 MA	Temp 2	HW V	/alve	CHW Valve	e OA Da	amper	Min OA D	amper	LL Alarm	SFan Statu
AHU A	202	Classrooms	Occupied	66.0	°F 6	5.0 °F	74.5	°F 7	4.2 °F	0.0	%	24.5 %	0.0	%	15.0	%	Normal	On
	ame	Serves	Occupancy	Zone Te	mp 1 Zone	Temp 2	DA Te	mp DA	T Setpt	HW V	/alve	CHW Valve	e OA Da	mper	Min OA D	amper	LL Alarm	SFan Statu
1ech N			O a sussia d	71.3	0E 7	2 4 °F	65.8	°F 6	5 Q ºF	0.0	%	19.9 %	20.0	0 %	20.0	%	Normal	On

Name	Area	Occupancy	Thermostat	Space Temp	Active Setpt	Cool Deviation	DA Tem p	HW Reheat	Air Flow	Flow Setpt	Damper	Fan Enable	Occ Ovr Button	
VVF-A001	Room A011	Occupied	Lockout Thermostat	70.7 °F	74.0 °F	-3.29 °F	69.5 °F	0 %	401 cfm	400 cfm	53 %	On	False	4
VVF-A002	Room A009	Occupied	Lockout Thermostat	71.4 °F	74.0 °F	-2.59 °F	69.4 °F	0 %	451 cfm	450 cfm	44 %	On	False	
VVF-A003	Room A010	Occupied	Lockout Thermostat	70.4 °F	70.0 °F	-3.60 °F	69.9 °F	0 %	450 cfm	450 cfm	39 %	On	False	
VVF-A004	Room A008	Occupied	Lockout Thermostat	70.0 °F	74.0 °F	-3.99 °F	65.6 °F	0 %	687 cfm	678 cfm	22 %	Off	False	
VVF-A005	Room A007	Occupied	Lockout Thermostat	71.3 °F	74.0 °F	-2.75 °F	66.8 °F	0 %	687 cfm	678 cfm	41 %	On	False	
VVF-A006	Room A004	Occupied	Lockout Thermostat	72.9 °F	74.0 °F	-1.07 °F	69.4 °F	0 %	537 cfm	543 cfm	48 %	Off	False	
VVF-A007	Room A005	Occupied	Lockout Thermostat	70.8 °F	70.0 °F	-3.17 °F	70.3 °F	0 %	448 cfm	450 cfm	40 %	On	False	
VVF-A008	Room A003	Occupied	Lockout Thermostat	72.5 °F	74.0 °F	-1.46 °F	65.9 °F	0 %	452 cfm	450 cfm	30 %	Off	False	
VVF-A101	Media Center	Occupied	Lockout Thermostat	73.1 °F	74.0 °F	-0.90 °F	70.7 °F	0 %	970 cfm	965 cfm	55 %	On	False	
VVF-A102	Room A113	Occupied	Lockout Thermostat	79.9 °F	74.0 °F	5.92 °F	107.7 °F	0 %	156 cfm	250 cfm	100 %	On	False	E
VVF-A103	Room A110	Occupied	Lockout Thermostat	72.1 °F	74.0 °F	-1.88 °F	71.6 °F	0%	572 cfm	578 cfm	33 %	On	False	
VVF-A104	Room A108	Occupied	Lockout Thermostat	73.5 °F	74.0 °F	-0.49 °F	71.4 °F	0 %	449 cfm	450 cfm	23 %	On	False	
VVF-A105	Room A109	Occupied	Lockout Thermostat	73.1 °F	74.0 °F	-0.90 °F	72.6 °F	0%	446 cfm	450 cfm	46 %	On	False	
VVF-A106	Room A106	Occupied	Lockout Thermostat	72.3 °F	70.0 °F	-1.66 °F	74.4 °F	0%	395 cfm	390 cfm	22 %	On	False	
VVF-A107	Room A132	Occupied	Lockout Thermostat	71.4 °F	70.0 °F	-2.59 °F	70.4 °F	0 %	648 cfm	663 cfm	38 %	On	False	
VVF-A108	Room A105	Occupied	Lockout Thermostat	72.4 °F	74.0 °F	-1.61 °F	72.2 °F	0 %	393 cfm	400 cfm	44 %	On	False	
VVF-A109	Room A102	Occupied	Lockout Thermostat	72.8 °F	74.0 °F	-1.18 °F	71.9 °F	0 %	447 cfm	450 cfm	28 %	On	False	
VVF-A110	Room A103	Occupied	Lockout Thermostat	71.9 °F	74.0 °F	-2.05 °F	70.4 °F	0 %	456 cfm	450 cfm	51 %	On	False	
VVF-A111	Room A136	Occupied	Lockout Thermostat	73.8 °F	74.0 °F	-0.16 °F	69.6 °F	0%	1734 cfm	1729 cfm	67 %	On	False	
VVF-A112	Room A101	Occupied	Lockout Thermostat	73.4 °F	74.0 °F	-0.63 °F	73.1 °F	0%	558 cfm	553 cfm	39 %	On	False	
VVF-A113	Media Center	Occupied	Lockout Thermostat	73.2 °F	74.0 °F	-0.75 °F	68.6 °F	0 %	915 cfm	960 cfm	97 %	On	False	
VVF-A114	Room A115	Occupied	Lockout Thermostat	73.1 °F	74.0 °F	-0.89 °F	71.8 °F	0 %	202 cfm	200 cfm	45 %	On	False	
VVF-B001	Room B002	Occupied	Lockout Thermostat	72.4 °F	74.0 °F	-1.61 °F	66.3 °F	0 %	579 cfm	578 cfm	22 %	On	False	
VVF-B003	Room B003	Occupied	Lockout Thermostat	72.1 °F	74.0 °F	-1.93 °F	70.4 °F	0%	406 cfm	400 cfm	39 %	On	False	
VVF-B004	Room B006	Occupied	Lockout Thermostat	70.8 °F	74.0 °F	-3.19 °F	71.0 °F	0%	548 cfm	550 cfm	45 %	On	False	
VVF-B005	Room B007	Occupied	Lockout Thermostat	71.7 °F	70.0 °F	-2.31 °F	71.3 °F	0 %	525 cfm	528 cfm	14 %	On	False	
VVF-B006	Room B012	Occupied	Lockout Thermostat	73.2 °F	74.0 °F	-0.78 °F	73.4 °F	0%	624 cfm	613 cfm	24 %	On	False	
VVF-B007	Room B008	Occupied	Lockout Thermostat	70.7 °F	70.0 °F	-3.31 °F	71.2 °F	0 %	403 cfm	400 cfm	30 %	On	False	
VVF-B101	Room B114	Occupied	Lockout Thermostat	73.8 °F	74.0 °F	-0.18 °F	73.2 °F	0 %	1570 cfm	1587 cfm	25 %	On	False	
VVF-B102	Room B103	Occupied	Lockout Thermostat	75.1 °F	74.0 °F	1.12 °F	88.1 °F	0 %	698 cfm	1255 cfm	100 %	On	False	
VVF-B103	Room B104	Occupied	Lockout Thermostat	74.4 °F	74.0 °F	0.43 °F	77.3 °F	0 %	545 cfm	280 cfm	0 %	On	False	
VVF-B104	Room B103	Occupied	Lockout Thermostat	75.3 °F	74.0 °F	1.28 °F	70.0 °F	0 %	750 cfm	1000 cfm	100 %	On	False	
VVF-B105	Room B115	Occupied	Lockout Thermostat	76.9 °F	74.0 °F	2.93 °F	80.0 °F	0 %	2595 cfm	1650 cfm	0 %	On	False	
VVF-B106	Room B118	Occupied	Lockout Thermostat	73.8 °F	74.0 °F	-0.17 °F	75.4 °F	0 %	315 cfm	317 cfm	39 %	On	False	*

Device: VVF-A001 Location: Room A011

Occupancy Command: Effective VAV Mode: Effective VAV Mode determines	Occupied Cool which setpt is used for control	Active Cooling Setpt: Active Heating Setpt: The "Zone Setpt Source" +/- "Occupied	74.0 °F 70.0 °F d Offset" calculates	Max Flow Setpt: Reheat Flow Setpt: Min Flow Setpt:	900 cfm 899 cfm 400 cfm
Zone Temp: Active Zone SetPt:	70.7 °F 74.0 °F	the Active Occupied Clg and Occupied Occupied Offset Setpt: The "Occupied Offset Setpt" w	ied Htg setpoints 4.00 Δ°F ill Effect the	Flow Override Sta	ite:
Zone Setpt Source: Network Setpt: Wall Module High SetPt:	Lockout Thermostat 72.0 °F 73.0 °F	Thumbwheel Setpt and the Net Zone Cool Setpt Deviation: The Unoccupied Cool Setpoint is locate Graphics.	work Setpt. -3.29 °F ed at the AHU Info	Damper Override Position:	+inf %
Wall Module Low SetPt:	68.0 °F	Unoccupied Heat Setpt:	60.0 °F		

HVAC Analytic Software

- Software that organizes BAS data, records it, and automatically analyzes it for faults
 - Typically, every 5- or 15- minutes log data
- Wanted to change our business
- Turn HVAC services into a proactive and preventative process rather than reactive

COMMON ORGANIZATION

Device Class	⊗ Qty ⊗	Overall ↑ ⊗	Comfort 🛛 📎	Efficiency 🛛 📎	Performance 📎	Systems 📎	Ventilation 😸 🗏
AHU Simple Cool Heat	1	6.3	3.7	9.1	10		0
Boiler	4	6.9	0.1	5.1	10		
Chilled Water System	1	7.1	5	6.4	9.8		
Building	1	8	8.3	9.1		6.1	8.5
VAV	123	8.6	8.8	8.8	9.5		7.2
Air-Cooled Chiller	2	8.9	10	6.9	9.9		
Light Commercial RTU	2	9	9.6	8.3			
AHU Internal Face Bypass	23	9.1	7.4	9.3	10		9.5
AHU Stacked Return Economizer	1	9.3	8.9	9.9	10		8
Unit Vent	11	9.5	9.5	8.9			10
AHU Simple Cool Heat Dehumid	2	9.6	9	9.8	10		

ANALYTICS & FDD

- Outdoor AirFlow
- Outdoor Damper position
- Return Humidity
- Return CO₂
- Zone CO₂
- Zone Temperature
- Zone Humidity
- Zone Minimum Air Flow
- Zone Airflow vs Setpoint
- Zone Air Changes

- Economizer
- Scheduling
- Valve Hunting
- Fan Hunting
- Heat Wheel Performance
- Heat Cool Switching
- Leaky Valves
- Valves not opening
- Air handler static and VAV position
- And many more!

← VAV Scores					⊘ O
Device Name	⊗ Overall 🛧 ⊗	Comfort 🛛 👳	Efficiency 🛛 🗧	Performance 📎	Ventilation $_{\otimes}$ \equiv
VAR_38	5.7	10	9.3	3.3	0
VAR_49	5.8	5.8	9.3	7.9	0
VAR_42	6.1	9	9.3	6.3	0
VAR_45	6.2	10	9.3	5.7	0
VAR_41	6.3	10	9.3	5.8	0
VAR_77	7.3	5	9.9	4.4	10
VAR_48	7.6	3.8	7.4	9.2	10
VAR_61	8.1	5.2	9.9	7.3	10
VAR_14	8.5	9.9	9.9	6.3	7.8
VAR_12	8.5	10	9.9	6.3	7.8
	-	-	-	-	-

GOWAIBEL

Bryan Schenck WELL AP, Fitwel Amb, LEED AP BD+C, TRUE Advisor Healthy Building Leader Waibel Energy Systems

Bryan.Schenck@GoWaibel.com

Questions?

Nathan Lammers

Energy Services Leader Waibel Energy Systems

Nathan.Lammers@GoWaibel.com